Version 0.99.04
[nasm.git] / nasm.h
bloba120ccda0e27ad531545b56e8863514b341870fa
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #include <stdio.h>
15 #include <inttypes.h>
16 #include "version.h" /* generated NASM version macros */
17 #include "compiler.h"
18 #include "nasmlib.h"
19 #include "insnsi.h" /* For enum opcode */
21 #ifndef NULL
22 #define NULL 0
23 #endif
25 #ifndef FALSE
26 #define FALSE 0 /* comes in handy */
27 #endif
28 #ifndef TRUE
29 #define TRUE 1
30 #endif
32 #define NO_SEG -1L /* null segment value */
33 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
35 #ifndef FILENAME_MAX
36 #define FILENAME_MAX 256
37 #endif
39 #ifndef PREFIX_MAX
40 #define PREFIX_MAX 10
41 #endif
43 #ifndef POSTFIX_MAX
44 #define POSTFIX_MAX 10
45 #endif
47 #define IDLEN_MAX 4096
50 * Name pollution problems: <time.h> on Digital UNIX pulls in some
51 * strange hardware header file which sees fit to define R_SP. We
52 * undefine it here so as not to break the enum below.
54 #ifdef R_SP
55 #undef R_SP
56 #endif
59 * We must declare the existence of this structure type up here,
60 * since we have to reference it before we define it...
62 struct ofmt;
65 * -----------------------
66 * Other function typedefs
67 * -----------------------
71 * A label-lookup function should look like this.
73 typedef int (*lfunc) (char *label, int32_t *segment, int32_t *offset);
76 * And a label-definition function like this. The boolean parameter
77 * `is_norm' states whether the label is a `normal' label (which
78 * should affect the local-label system), or something odder like
79 * an EQU or a segment-base symbol, which shouldn't.
81 typedef void (*ldfunc) (char *label, int32_t segment, int32_t offset,
82 char *special, int is_norm, int isextrn,
83 struct ofmt * ofmt, efunc error);
86 * List-file generators should look like this:
88 typedef struct {
90 * Called to initialize the listing file generator. Before this
91 * is called, the other routines will silently do nothing when
92 * called. The `char *' parameter is the file name to write the
93 * listing to.
95 void (*init) (char *, efunc);
98 * Called to clear stuff up and close the listing file.
100 void (*cleanup) (void);
103 * Called to output binary data. Parameters are: the offset;
104 * the data; the data type. Data types are similar to the
105 * output-format interface, only OUT_ADDRESS will _always_ be
106 * displayed as if it's relocatable, so ensure that any non-
107 * relocatable address has been converted to OUT_RAWDATA by
108 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
109 * dummy call used to give the listing generator an offset to
110 * work with when doing things like uplevel(LIST_TIMES) or
111 * uplevel(LIST_INCBIN).
113 void (*output) (int32_t, const void *, uint32_t);
116 * Called to send a text line to the listing generator. The
117 * `int' parameter is LIST_READ or LIST_MACRO depending on
118 * whether the line came directly from an input file or is the
119 * result of a multi-line macro expansion.
121 void (*line) (int, char *);
124 * Called to change one of the various levelled mechanisms in
125 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
126 * used to increase the nesting level of include files and
127 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
128 * two binary-output-suppression mechanisms for large-scale
129 * pseudo-instructions.
131 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
132 * it indicates the beginning of the expansion of a `nolist'
133 * macro, so anything under that level won't be expanded unless
134 * it includes another file.
136 void (*uplevel) (int);
139 * Reverse the effects of uplevel.
141 void (*downlevel) (int);
142 } ListGen;
145 * The expression evaluator must be passed a scanner function; a
146 * standard scanner is provided as part of nasmlib.c. The
147 * preprocessor will use a different one. Scanners, and the
148 * token-value structures they return, look like this.
150 * The return value from the scanner is always a copy of the
151 * `t_type' field in the structure.
153 struct tokenval {
154 int t_type;
155 int64_t t_integer, t_inttwo;
156 char *t_charptr;
158 typedef int (*scanner) (void *private_data, struct tokenval * tv);
161 * Token types returned by the scanner, in addition to ordinary
162 * ASCII character values, and zero for end-of-string.
164 enum { /* token types, other than chars */
165 TOKEN_INVALID = -1, /* a placeholder value */
166 TOKEN_EOS = 0, /* end of string */
167 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
168 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
169 TOKEN_ERRNUM, /* numeric constant with error in */
170 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
171 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
172 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
173 TOKEN_SHL, TOKEN_SHR, /* << and >> */
174 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
175 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
176 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
177 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
178 TOKEN_FLOAT, /* floating-point constant */
179 TOKEN_FLOATIZE, /* __floatX__ */
182 enum floatize {
183 FLOAT_16,
184 FLOAT_32,
185 FLOAT_64,
186 FLOAT_80M,
187 FLOAT_80E,
188 FLOAT_128L,
189 FLOAT_128H,
192 typedef struct {
193 int32_t segment;
194 int64_t offset;
195 int known;
196 } loc_t;
199 * Expression-evaluator datatype. Expressions, within the
200 * evaluator, are stored as an array of these beasts, terminated by
201 * a record with type==0. Mostly, it's a vector type: each type
202 * denotes some kind of a component, and the value denotes the
203 * multiple of that component present in the expression. The
204 * exception is the WRT type, whose `value' field denotes the
205 * segment to which the expression is relative. These segments will
206 * be segment-base types, i.e. either odd segment values or SEG_ABS
207 * types. So it is still valid to assume that anything with a
208 * `value' field of zero is insignificant.
210 typedef struct {
211 int32_t type; /* a register, or EXPR_xxx */
212 int64_t value; /* must be >= 32 bits */
213 } expr;
216 * Library routines to manipulate expression data types.
218 int is_reloc(expr *);
219 int is_simple(expr *);
220 int is_really_simple(expr *);
221 int is_unknown(expr *);
222 int is_just_unknown(expr *);
223 int64_t reloc_value(expr *);
224 int32_t reloc_seg(expr *);
225 int32_t reloc_wrt(expr *);
228 * The evaluator can also return hints about which of two registers
229 * used in an expression should be the base register. See also the
230 * `operand' structure.
232 struct eval_hints {
233 int64_t base;
234 int type;
238 * The actual expression evaluator function looks like this. When
239 * called, it expects the first token of its expression to already
240 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
241 * it will start by calling the scanner.
243 * If a forward reference happens during evaluation, the evaluator
244 * must set `*fwref' to TRUE if `fwref' is non-NULL.
246 * `critical' is non-zero if the expression may not contain forward
247 * references. The evaluator will report its own error if this
248 * occurs; if `critical' is 1, the error will be "symbol not
249 * defined before use", whereas if `critical' is 2, the error will
250 * be "symbol undefined".
252 * If `critical' has bit 8 set (in addition to its main value: 0x101
253 * and 0x102 correspond to 1 and 2) then an extended expression
254 * syntax is recognised, in which relational operators such as =, <
255 * and >= are accepted, as well as low-precedence logical operators
256 * &&, ^^ and ||.
258 * If `hints' is non-NULL, it gets filled in with some hints as to
259 * the base register in complex effective addresses.
261 #define CRITICAL 0x100
262 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
263 struct tokenval * tv, int *fwref, int critical,
264 efunc error, struct eval_hints * hints);
267 * Special values for expr->type. These come after EXPR_REG_END
268 * as defined in regs.h.
271 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
272 #define EXPR_SIMPLE (EXPR_REG_END+2)
273 #define EXPR_WRT (EXPR_REG_END+3)
274 #define EXPR_SEGBASE (EXPR_REG_END+4)
277 * Preprocessors ought to look like this:
279 typedef struct preproc_ops {
281 * Called at the start of a pass; given a file name, the number
282 * of the pass, an error reporting function, an evaluator
283 * function, and a listing generator to talk to.
285 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
288 * Called to fetch a line of preprocessed source. The line
289 * returned has been malloc'ed, and so should be freed after
290 * use.
292 char *(*getline) (void);
295 * Called at the end of a pass.
297 void (*cleanup) (int);
298 } Preproc;
300 extern Preproc nasmpp;
303 * ----------------------------------------------------------------
304 * Some lexical properties of the NASM source language, included
305 * here because they are shared between the parser and preprocessor
306 * ----------------------------------------------------------------
310 * isidstart matches any character that may start an identifier, and isidchar
311 * matches any character that may appear at places other than the start of an
312 * identifier. E.g. a period may only appear at the start of an identifier
313 * (for local labels), whereas a number may appear anywhere *but* at the
314 * start.
317 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
318 || (c)=='@' )
319 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
320 || (c)=='~' )
322 /* Ditto for numeric constants. */
324 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
325 #define isnumchar(c) ( isalnum(c) )
327 /* This returns the numeric value of a given 'digit'. */
329 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
332 * Data-type flags that get passed to listing-file routines.
334 enum {
335 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
336 LIST_INCBIN, LIST_TIMES
340 * -----------------------------------------------------------
341 * Format of the `insn' structure returned from `parser.c' and
342 * passed into `assemble.c'
343 * -----------------------------------------------------------
347 * Here we define the operand types. These are implemented as bit
348 * masks, since some are subsets of others; e.g. AX in a MOV
349 * instruction is a special operand type, whereas AX in other
350 * contexts is just another 16-bit register. (Also, consider CL in
351 * shift instructions, DX in OUT, etc.)
353 * The basic concept here is that
354 * (class & ~operand) == 0
356 * if and only if "operand" belongs to class type "class".
358 * The bits are assigned as follows:
360 * Bits 0-7, 29: sizes
361 * 0: 8 bits (BYTE)
362 * 1: 16 bits (WORD)
363 * 2: 32 bits (DWORD)
364 * 3: 64 bits (QWORD)
365 * 4: 80 bits (TWORD)
366 * 5: FAR
367 * 6: NEAR
368 * 7: SHORT
369 * 29: 128 bits (OWORD)
371 * Bits 8-11 modifiers
372 * 8: TO
373 * 9: COLON
374 * 10: STRICT
375 * 11: (reserved)
377 * Bits 12-15: type of operand
378 * 12: REGISTER
379 * 13: IMMEDIATE
380 * 14: MEMORY (always has REGMEM attribute as well)
381 * 15: REGMEM (valid EA operand)
383 * Bits 16-19: subclasses
384 * With REG_CDT:
385 * 16: REG_CREG (CRx)
386 * 17: REG_DREG (DRx)
387 * 18: REG_TREG (TRx)
389 * With REG_GPR:
390 * 16: REG_ACCUM (AL, AX, EAX, RAX)
391 * 17: REG_COUNT (CL, CX, ECX, RCX)
392 * 18: REG_DATA (DL, DX, EDX, RDX)
393 * 19: REG_HIGH (AH, CH, DH, BH)
395 * With REG_SREG:
396 * 16: REG_CS
397 * 17: REG_DESS (DS, ES, SS)
398 * 18: REG_FSGS
399 * 19: REG_SEG67
401 * With FPUREG:
402 * 16: FPU0
404 * With XMMREG:
405 * 16: XMM0
407 * With MEMORY:
408 * 16: MEM_OFFS (this is a simple offset)
409 * 17: IP_REL (IP-relative offset)
411 * With IMMEDIATE:
412 * 16: UNITY (1)
413 * 17: BYTENESS (-128..127)
415 * Bits 20-26: register classes
416 * 20: REG_CDT (CRx, DRx, TRx)
417 * 21: RM_GPR (REG_GPR) (integer register)
418 * 22: REG_SREG
419 * 23: IP_REG (RIP or EIP) [unused]
420 * 24: FPUREG
421 * 25: RM_MMX (MMXREG)
422 * 26: RM_XMM (XMMREG)
424 * Bits 27-29 & 31 are currently unallocated.
426 * 30: SAME_AS
427 * Special flag only used in instruction patterns; means this operand
428 * has to be identical to another operand. Currently only supported
429 * for registers.
432 typedef uint32_t opflags_t;
434 /* Size, and other attributes, of the operand */
435 #define BITS8 0x00000001L
436 #define BITS16 0x00000002L
437 #define BITS32 0x00000004L
438 #define BITS64 0x00000008L /* x64 and FPU only */
439 #define BITS80 0x00000010L /* FPU only */
440 #define BITS128 0x20000000L
441 #define FAR 0x00000020L /* grotty: this means 16:16 or */
442 /* 16:32, like in CALL/JMP */
443 #define NEAR 0x00000040L
444 #define SHORT 0x00000080L /* and this means what it says :) */
446 #define SIZE_MASK 0x200000FFL /* all the size attributes */
448 /* Modifiers */
449 #define MODIFIER_MASK 0x00000f00L
450 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
451 #define COLON 0x00000200L /* operand is followed by a colon */
452 #define STRICT 0x00000400L /* do not optimize this operand */
454 /* Type of operand: memory reference, register, etc. */
455 #define OPTYPE_MASK 0x0000f000L
456 #define REGISTER 0x00001000L /* register number in 'basereg' */
457 #define IMMEDIATE 0x00002000L
458 #define MEMORY 0x0000c000L
459 #define REGMEM 0x00008000L /* for r/m, ie EA, operands */
461 /* Register classes */
462 #define REG_EA 0x00009000L /* 'normal' reg, qualifies as EA */
463 #define RM_GPR 0x00208000L /* integer operand */
464 #define REG_GPR 0x00209000L /* integer register */
465 #define REG8 0x00209001L /* 8-bit GPR */
466 #define REG16 0x00209002L /* 16-bit GPR */
467 #define REG32 0x00209004L /* 32-bit GPR */
468 #define REG64 0x00209008L /* 64-bit GPR */
469 #define IP_REG 0x00801000L /* RIP or EIP register */
470 #define RIPREG 0x00801008L /* RIP */
471 #define EIPREG 0x00801004L /* EIP */
472 #define FPUREG 0x01001000L /* floating point stack registers */
473 #define FPU0 0x01011000L /* FPU stack register zero */
474 #define RM_MMX 0x02008000L /* MMX operand */
475 #define MMXREG 0x02009000L /* MMX register */
476 #define RM_XMM 0x04008000L /* XMM (SSE) operand */
477 #define XMMREG 0x04009000L /* XMM (SSE) register */
478 #define XMM0 0x04019000L /* XMM register zero */
479 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
480 #define REG_CREG 0x00111004L /* CRn */
481 #define REG_DREG 0x00121004L /* DRn */
482 #define REG_TREG 0x00141004L /* TRn */
483 #define REG_SREG 0x00401002L /* any segment register */
484 #define REG_CS 0x00411002L /* CS */
485 #define REG_DESS 0x00421002L /* DS, ES, SS */
486 #define REG_FSGS 0x00441002L /* FS, GS */
487 #define REG_SEG67 0x00481002L /* Unimplemented segment registers */
489 #define REG_RIP 0x00801008L /* RIP relative addressing */
490 #define REG_EIP 0x00801004L /* EIP relative addressing */
492 /* Special GPRs */
493 #define REG_SMASK 0x000f0000L /* a mask for the following */
494 #define REG_ACCUM 0x00219000L /* accumulator: AL, AX, EAX, RAX */
495 #define REG_AL 0x00219001L
496 #define REG_AX 0x00219002L
497 #define REG_EAX 0x00219004L
498 #define REG_RAX 0x00219008L
499 #define REG_COUNT 0x00229000L /* counter: CL, CX, ECX, RCX */
500 #define REG_CL 0x00229001L
501 #define REG_CX 0x00229002L
502 #define REG_ECX 0x00229004L
503 #define REG_RCX 0x00229008L
504 #define REG_DL 0x00249001L /* data: DL, DX, EDX, RDX */
505 #define REG_DX 0x00249002L
506 #define REG_EDX 0x00249004L
507 #define REG_RDX 0x00249008L
508 #define REG_HIGH 0x00289001L /* high regs: AH, CH, DH, BH */
510 /* special types of EAs */
511 #define MEM_OFFS 0x0001c000L /* simple [address] offset - absolute! */
512 #define IP_REL 0x0002c000L /* IP-relative offset */
514 /* memory which matches any type of r/m operand */
515 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM)
517 /* special type of immediate operand */
518 #define UNITY 0x00012000L /* for shift/rotate instructions */
519 #define SBYTE 0x00022000L /* for op r16/32,immediate instrs. */
521 /* special flags */
522 #define SAME_AS 0x40000000L
524 /* Register names automatically generated from regs.dat */
525 #include "regs.h"
527 enum ccode { /* condition code names */
528 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
529 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
530 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
531 C_none = -1
535 * REX flags
537 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
538 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
539 #define REX_H 0x80 /* High register present, REX forbidden */
540 #define REX_P 0x40 /* REX prefix present/required */
541 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
542 #define REX_W 0x08 /* 64-bit operand size */
543 #define REX_R 0x04 /* ModRM reg extension */
544 #define REX_X 0x02 /* SIB index extension */
545 #define REX_B 0x01 /* ModRM r/m extension */
546 #define REX_REAL 0x4f /* Actual REX prefix bits */
549 * Note that because segment registers may be used as instruction
550 * prefixes, we must ensure the enumerations for prefixes and
551 * register names do not overlap.
553 enum prefixes { /* instruction prefixes */
554 PREFIX_ENUM_START = REG_ENUM_LIMIT,
555 P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32,
556 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES
559 enum { /* extended operand types */
560 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
563 enum { /* special EA flags */
564 EAF_BYTEOFFS = 1, /* force offset part to byte size */
565 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
566 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
567 EAF_REL = 8, /* IP-relative addressing */
568 EAF_ABS = 16, /* non-IP-relative addressing */
569 EAF_FSGS = 32 /* fs/gs segment override present */
572 enum eval_hint { /* values for `hinttype' */
573 EAH_NOHINT = 0, /* no hint at all - our discretion */
574 EAH_MAKEBASE = 1, /* try to make given reg the base */
575 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
578 typedef struct { /* operand to an instruction */
579 int32_t type; /* type of operand */
580 int addr_size; /* 0 means default; 16; 32; 64 */
581 enum reg_enum basereg, indexreg; /* address registers */
582 int scale; /* index scale */
583 int hintbase;
584 enum eval_hint hinttype; /* hint as to real base register */
585 int32_t segment; /* immediate segment, if needed */
586 int64_t offset; /* any immediate number */
587 int32_t wrt; /* segment base it's relative to */
588 int eaflags; /* special EA flags */
589 int opflags; /* see OPFLAG_* defines below */
590 } operand;
592 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
593 #define OPFLAG_EXTERN 2 /* operand is an external reference */
595 typedef struct extop { /* extended operand */
596 struct extop *next; /* linked list */
597 int32_t type; /* defined above */
598 char *stringval; /* if it's a string, then here it is */
599 int stringlen; /* ... and here's how long it is */
600 int32_t segment; /* if it's a number/address, then... */
601 int64_t offset; /* ... it's given here ... */
602 int32_t wrt; /* ... and here */
603 } extop;
605 #define MAXPREFIX 4
606 #define MAX_OPERANDS 4
608 typedef struct { /* an instruction itself */
609 char *label; /* the label defined, or NULL */
610 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
611 int nprefix; /* number of entries in above */
612 enum opcode opcode; /* the opcode - not just the string */
613 enum ccode condition; /* the condition code, if Jcc/SETcc */
614 int operands; /* how many operands? 0-3
615 * (more if db et al) */
616 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
617 extop *eops; /* extended operands */
618 int eops_float; /* true if DD and floating */
619 int32_t times; /* repeat count (TIMES prefix) */
620 int forw_ref; /* is there a forward reference? */
621 int rex; /* Special REX Prefix */
622 int drexdst; /* Destination register for DREX suffix */
623 } insn;
625 enum geninfo { GI_SWITCH };
627 * ------------------------------------------------------------
628 * The data structure defining an output format driver, and the
629 * interfaces to the functions therein.
630 * ------------------------------------------------------------
633 struct ofmt {
635 * This is a short (one-liner) description of the type of
636 * output generated by the driver.
638 const char *fullname;
641 * This is a single keyword used to select the driver.
643 const char *shortname;
647 * this is reserved for out module specific help.
648 * It is set to NULL in all the out modules and is not implemented
649 * in the main program
651 const char *helpstring;
654 * this is a pointer to the first element of the debug information
656 struct dfmt **debug_formats;
659 * and a pointer to the element that is being used
660 * note: this is set to the default at compile time and changed if the
661 * -F option is selected. If developing a set of new debug formats for
662 * an output format, be sure to set this to whatever default you want
665 struct dfmt *current_dfmt;
668 * This, if non-NULL, is a NULL-terminated list of `char *'s
669 * pointing to extra standard macros supplied by the object
670 * format (e.g. a sensible initial default value of __SECT__,
671 * and user-level equivalents for any format-specific
672 * directives).
674 const char **stdmac;
677 * This procedure is called at the start of an output session.
678 * It tells the output format what file it will be writing to,
679 * what routine to report errors through, and how to interface
680 * to the label manager and expression evaluator if necessary.
681 * It also gives it a chance to do other initialisation.
683 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
686 * This procedure is called to pass generic information to the
687 * object file. The first parameter gives the information type
688 * (currently only command line switches)
689 * and the second parameter gives the value. This function returns
690 * 1 if recognized, 0 if unrecognized
692 int (*setinfo) (enum geninfo type, char **string);
695 * This procedure is called by assemble() to write actual
696 * generated code or data to the object file. Typically it
697 * doesn't have to actually _write_ it, just store it for
698 * later.
700 * The `type' argument specifies the type of output data, and
701 * usually the size as well: its contents are described below.
703 void (*output) (int32_t segto, const void *data, uint32_t type,
704 int32_t segment, int32_t wrt);
707 * This procedure is called once for every symbol defined in
708 * the module being assembled. It gives the name and value of
709 * the symbol, in NASM's terms, and indicates whether it has
710 * been declared to be global. Note that the parameter "name",
711 * when passed, will point to a piece of static storage
712 * allocated inside the label manager - it's safe to keep using
713 * that pointer, because the label manager doesn't clean up
714 * until after the output driver has.
716 * Values of `is_global' are: 0 means the symbol is local; 1
717 * means the symbol is global; 2 means the symbol is common (in
718 * which case `offset' holds the _size_ of the variable).
719 * Anything else is available for the output driver to use
720 * internally.
722 * This routine explicitly _is_ allowed to call the label
723 * manager to define further symbols, if it wants to, even
724 * though it's been called _from_ the label manager. That much
725 * re-entrancy is guaranteed in the label manager. However, the
726 * label manager will in turn call this routine, so it should
727 * be prepared to be re-entrant itself.
729 * The `special' parameter contains special information passed
730 * through from the command that defined the label: it may have
731 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
732 * be obvious to the output format from the other parameters.
734 void (*symdef) (char *name, int32_t segment, int32_t offset, int is_global,
735 char *special);
738 * This procedure is called when the source code requests a
739 * segment change. It should return the corresponding segment
740 * _number_ for the name, or NO_SEG if the name is not a valid
741 * segment name.
743 * It may also be called with NULL, in which case it is to
744 * return the _default_ section number for starting assembly in.
746 * It is allowed to modify the string it is given a pointer to.
748 * It is also allowed to specify a default instruction size for
749 * the segment, by setting `*bits' to 16 or 32. Or, if it
750 * doesn't wish to define a default, it can leave `bits' alone.
752 int32_t (*section) (char *name, int pass, int *bits);
755 * This procedure is called to modify the segment base values
756 * returned from the SEG operator. It is given a segment base
757 * value (i.e. a segment value with the low bit set), and is
758 * required to produce in return a segment value which may be
759 * different. It can map segment bases to absolute numbers by
760 * means of returning SEG_ABS types.
762 * It should return NO_SEG if the segment base cannot be
763 * determined; the evaluator (which calls this routine) is
764 * responsible for throwing an error condition if that occurs
765 * in pass two or in a critical expression.
767 int32_t (*segbase) (int32_t segment);
770 * This procedure is called to allow the output driver to
771 * process its own specific directives. When called, it has the
772 * directive word in `directive' and the parameter string in
773 * `value'. It is called in both assembly passes, and `pass'
774 * will be either 1 or 2.
776 * This procedure should return zero if it does not _recognise_
777 * the directive, so that the main program can report an error.
778 * If it recognises the directive but then has its own errors,
779 * it should report them itself and then return non-zero. It
780 * should also return non-zero if it correctly processes the
781 * directive.
783 int (*directive) (char *directive, char *value, int pass);
786 * This procedure is called before anything else - even before
787 * the "init" routine - and is passed the name of the input
788 * file from which this output file is being generated. It
789 * should return its preferred name for the output file in
790 * `outname', if outname[0] is not '\0', and do nothing to
791 * `outname' otherwise. Since it is called before the driver is
792 * properly initialized, it has to be passed its error handler
793 * separately.
795 * This procedure may also take its own copy of the input file
796 * name for use in writing the output file: it is _guaranteed_
797 * that it will be called before the "init" routine.
799 * The parameter `outname' points to an area of storage
800 * guaranteed to be at least FILENAME_MAX in size.
802 void (*filename) (char *inname, char *outname, efunc error);
805 * This procedure is called after assembly finishes, to allow
806 * the output driver to clean itself up and free its memory.
807 * Typically, it will also be the point at which the object
808 * file actually gets _written_.
810 * One thing the cleanup routine should always do is to close
811 * the output file pointer.
813 void (*cleanup) (int debuginfo);
817 * values for the `type' parameter to an output function. Each one
818 * must have the actual number of _bytes_ added to it.
820 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
821 * which will be a relative jump. For this we need to know the
822 * distance in bytes from the start of the relocated record until
823 * the end of the containing instruction. _This_ is what is stored
824 * in the size part of the parameter, in this case.
826 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
827 * and the contents of the "data" parameter is irrelevant.
829 * The "data" parameter for the output function points to a "int32_t",
830 * containing the address in question, unless the type is
831 * OUT_RAWDATA, in which case it points to an "uint8_t"
832 * array.
834 #define OUT_RAWDATA 0x00000000UL
835 #define OUT_ADDRESS 0x10000000UL
836 #define OUT_REL2ADR 0x20000000UL
837 #define OUT_REL4ADR 0x30000000UL
838 #define OUT_RESERVE 0x40000000UL
839 #define OUT_TYPMASK 0xF0000000UL
840 #define OUT_SIZMASK 0x0FFFFFFFUL
843 * ------------------------------------------------------------
844 * The data structure defining a debug format driver, and the
845 * interfaces to the functions therein.
846 * ------------------------------------------------------------
849 struct dfmt {
852 * This is a short (one-liner) description of the type of
853 * output generated by the driver.
855 const char *fullname;
858 * This is a single keyword used to select the driver.
860 const char *shortname;
863 * init - called initially to set up local pointer to object format,
864 * void pointer to implementation defined data, file pointer (which
865 * probably won't be used, but who knows?), and error function.
867 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
870 * linenum - called any time there is output with a change of
871 * line number or file.
873 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
876 * debug_deflabel - called whenever a label is defined. Parameters
877 * are the same as to 'symdef()' in the output format. This function
878 * would be called before the output format version.
881 void (*debug_deflabel) (char *name, int32_t segment, int32_t offset,
882 int is_global, char *special);
884 * debug_directive - called whenever a DEBUG directive other than 'LINE'
885 * is encountered. 'directive' contains the first parameter to the
886 * DEBUG directive, and params contains the rest. For example,
887 * 'DEBUG VAR _somevar:int' would translate to a call to this
888 * function with 'directive' equal to "VAR" and 'params' equal to
889 * "_somevar:int".
891 void (*debug_directive) (const char *directive, const char *params);
894 * typevalue - called whenever the assembler wishes to register a type
895 * for the last defined label. This routine MUST detect if a type was
896 * already registered and not re-register it.
898 void (*debug_typevalue) (int32_t type);
901 * debug_output - called whenever output is required
902 * 'type' is the type of info required, and this is format-specific
904 void (*debug_output) (int type, void *param);
907 * cleanup - called after processing of file is complete
909 void (*cleanup) (void);
913 * The type definition macros
914 * for debugging
916 * low 3 bits: reserved
917 * next 5 bits: type
918 * next 24 bits: number of elements for arrays (0 for labels)
921 #define TY_UNKNOWN 0x00
922 #define TY_LABEL 0x08
923 #define TY_BYTE 0x10
924 #define TY_WORD 0x18
925 #define TY_DWORD 0x20
926 #define TY_FLOAT 0x28
927 #define TY_QWORD 0x30
928 #define TY_TBYTE 0x38
929 #define TY_OWORD 0x40
930 #define TY_COMMON 0xE0
931 #define TY_SEG 0xE8
932 #define TY_EXTERN 0xF0
933 #define TY_EQU 0xF8
935 #define TYM_TYPE(x) ((x) & 0xF8)
936 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
938 #define TYS_ELEMENTS(x) ((x) << 8)
941 * -----
942 * Special tokens
943 * -----
946 enum special_tokens {
947 S_ABS, S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
948 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD
952 * -----
953 * Other
954 * -----
958 * This is a useful #define which I keep meaning to use more often:
959 * the number of elements of a statically defined array.
962 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
965 * -----
966 * Global modes
967 * -----
971 * This declaration passes the "pass" number to all other modules
972 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
973 * where 0 = optimizing pass
974 * 1 = pass 1
975 * 2 = pass 2
978 extern int pass0;
980 extern int tasm_compatible_mode;
981 extern int optimizing;
982 extern int globalbits; /* 16, 32 or 64-bit mode */
983 extern int globalrel; /* default to relative addressing? */
984 extern int maxbits; /* max bits supported by output */
986 #endif