eval: Use nasm_error helpers
[nasm.git] / include / nasm.h
blob1d26df982d79be82ce03491c22ee99aceb1579c4
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2018 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <time.h>
46 #include "nasmlib.h"
47 #include "nctype.h"
48 #include "strlist.h"
49 #include "preproc.h"
50 #include "insnsi.h" /* For enum opcode */
51 #include "directiv.h" /* For enum directive */
52 #include "labels.h" /* For enum mangle_index, enum label_type */
53 #include "opflags.h"
54 #include "regs.h"
56 /* Time stamp for the official start of compilation */
57 struct compile_time {
58 time_t t;
59 bool have_local, have_gm, have_posix;
60 int64_t posix;
61 struct tm local;
62 struct tm gm;
64 extern struct compile_time official_compile_time;
66 #define NO_SEG INT32_C(-1) /* null segment value */
67 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
69 #define IDLEN_MAX 4096
70 #define DECOLEN_MAX 32
73 * Name pollution problems: <time.h> on Digital UNIX pulls in some
74 * strange hardware header file which sees fit to define R_SP. We
75 * undefine it here so as not to break the enum below.
77 #ifdef R_SP
78 #undef R_SP
79 #endif
82 * We must declare the existence of this structure type up here,
83 * since we have to reference it before we define it...
85 struct ofmt;
88 * Values for the `type' parameter to an output function.
90 enum out_type {
91 OUT_RAWDATA, /* Plain bytes */
92 OUT_RESERVE, /* Reserved bytes (RESB et al) */
93 OUT_ZERODATA, /* Initialized data, but all zero */
94 OUT_ADDRESS, /* An address (symbol value) */
95 OUT_RELADDR, /* A relative address */
96 OUT_SEGMENT, /* A segment number */
99 * These values are used by the legacy backend interface only;
100 * see output/legacy.c for more information. These should never
101 * be used otherwise. Once all backends have been migrated to the
102 * new interface they should be removed.
104 OUT_REL1ADR,
105 OUT_REL2ADR,
106 OUT_REL4ADR,
107 OUT_REL8ADR
110 enum out_sign {
111 OUT_WRAP, /* Undefined signedness (wraps) */
112 OUT_SIGNED, /* Value is signed */
113 OUT_UNSIGNED /* Value is unsigned */
117 * The data we send down to the backend.
118 * XXX: We still want to push down the base address symbol if
119 * available, and replace the segment numbers with a structure.
121 struct out_data {
122 int64_t offset; /* Offset within segment */
123 int32_t segment; /* Segment written to */
124 enum out_type type; /* See above */
125 enum out_sign sign; /* See above */
126 int inslen; /* Length of instruction */
127 int insoffs; /* Offset inside instruction */
128 int bits; /* Bits mode of compilation */
129 uint64_t size; /* Size of output */
130 const struct itemplate *itemp; /* Instruction template */
131 const void *data; /* Data for OUT_RAWDATA */
132 uint64_t toffset; /* Target address offset for relocation */
133 int32_t tsegment; /* Target segment for relocation */
134 int32_t twrt; /* Relocation with respect to */
135 int64_t relbase; /* Relative base for OUT_RELADDR */
139 * And a label-definition function. The boolean parameter
140 * `is_norm' states whether the label is a `normal' label (which
141 * should affect the local-label system), or something odder like
142 * an EQU or a segment-base symbol, which shouldn't.
144 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
145 char *special, bool is_norm);
148 * Token types returned by the scanner, in addition to ordinary
149 * ASCII character values, and zero for end-of-string.
151 enum token_type { /* token types, other than chars */
152 TOKEN_INVALID = -1, /* a placeholder value */
153 TOKEN_EOS = 0, /* end of string */
154 TOKEN_EQ = '=',
155 TOKEN_GT = '>',
156 TOKEN_LT = '<', /* aliases */
157 TOKEN_ID = 256, /* identifier */
158 TOKEN_NUM, /* numeric constant */
159 TOKEN_ERRNUM, /* malformed numeric constant */
160 TOKEN_STR, /* string constant */
161 TOKEN_ERRSTR, /* unterminated string constant */
162 TOKEN_FLOAT, /* floating-point constant */
163 TOKEN_REG, /* register name */
164 TOKEN_INSN, /* instruction name */
165 TOKEN_HERE, /* $ */
166 TOKEN_BASE, /* $$ */
167 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
168 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
169 TOKEN_SHL, /* << or <<< */
170 TOKEN_SHR, /* >> */
171 TOKEN_SAR, /* >>> */
172 TOKEN_SDIV, /* // */
173 TOKEN_SMOD, /* %% */
174 TOKEN_GE, /* >= */
175 TOKEN_LE, /* <= */
176 TOKEN_NE, /* <> (!= is same as <>) */
177 TOKEN_LEG, /* <=> */
178 TOKEN_DBL_AND, /* && */
179 TOKEN_DBL_OR, /* || */
180 TOKEN_DBL_XOR, /* ^^ */
181 TOKEN_SEG, /* SEG */
182 TOKEN_WRT, /* WRT */
183 TOKEN_FLOATIZE, /* __floatX__ */
184 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
185 TOKEN_IFUNC, /* __ilog2*__ */
186 TOKEN_DECORATOR, /* decorators such as {...} */
187 TOKEN_OPMASK /* translated token for opmask registers */
190 enum floatize {
191 FLOAT_8,
192 FLOAT_16,
193 FLOAT_32,
194 FLOAT_64,
195 FLOAT_80M,
196 FLOAT_80E,
197 FLOAT_128L,
198 FLOAT_128H
201 /* Must match the list in string_transform(), in strfunc.c */
202 enum strfunc {
203 STRFUNC_UTF16,
204 STRFUNC_UTF16LE,
205 STRFUNC_UTF16BE,
206 STRFUNC_UTF32,
207 STRFUNC_UTF32LE,
208 STRFUNC_UTF32BE
211 enum ifunc {
212 IFUNC_ILOG2E,
213 IFUNC_ILOG2W,
214 IFUNC_ILOG2F,
215 IFUNC_ILOG2C
218 size_t string_transform(char *, size_t, char **, enum strfunc);
221 * The expression evaluator must be passed a scanner function; a
222 * standard scanner is provided as part of nasmlib.c. The
223 * preprocessor will use a different one. Scanners, and the
224 * token-value structures they return, look like this.
226 * The return value from the scanner is always a copy of the
227 * `t_type' field in the structure.
229 struct tokenval {
230 char *t_charptr;
231 int64_t t_integer;
232 int64_t t_inttwo;
233 enum token_type t_type;
234 int8_t t_flag;
236 typedef int (*scanner)(void *private_data, struct tokenval *tv);
238 struct location {
239 int64_t offset;
240 int32_t segment;
241 int known;
243 extern struct location location;
246 * Expression-evaluator datatype. Expressions, within the
247 * evaluator, are stored as an array of these beasts, terminated by
248 * a record with type==0. Mostly, it's a vector type: each type
249 * denotes some kind of a component, and the value denotes the
250 * multiple of that component present in the expression. The
251 * exception is the WRT type, whose `value' field denotes the
252 * segment to which the expression is relative. These segments will
253 * be segment-base types, i.e. either odd segment values or SEG_ABS
254 * types. So it is still valid to assume that anything with a
255 * `value' field of zero is insignificant.
257 typedef struct {
258 int32_t type; /* a register, or EXPR_xxx */
259 int64_t value; /* must be >= 32 bits */
260 } expr;
263 * Library routines to manipulate expression data types.
265 bool is_reloc(const expr *vect);
266 bool is_simple(const expr *vect);
267 bool is_really_simple(const expr *vect);
268 bool is_unknown(const expr *vect);
269 bool is_just_unknown(const expr *vect);
270 int64_t reloc_value(const expr *vect);
271 int32_t reloc_seg(const expr *vect);
272 int32_t reloc_wrt(const expr *vect);
273 bool is_self_relative(const expr *vect);
274 void dump_expr(const expr *vect);
277 * The evaluator can also return hints about which of two registers
278 * used in an expression should be the base register. See also the
279 * `operand' structure.
281 struct eval_hints {
282 int64_t base;
283 int type;
287 * The actual expression evaluator function looks like this. When
288 * called, it expects the first token of its expression to already
289 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
290 * it will start by calling the scanner.
292 * If a forward reference happens during evaluation, the evaluator
293 * must set `*fwref' to true if `fwref' is non-NULL.
295 * `critical' is non-zero if the expression may not contain forward
296 * references. The evaluator will report its own error if this
297 * occurs; if `critical' is 1, the error will be "symbol not
298 * defined before use", whereas if `critical' is 2, the error will
299 * be "symbol undefined".
301 * If `critical' has bit 8 set (in addition to its main value: 0x101
302 * and 0x102 correspond to 1 and 2) then an extended expression
303 * syntax is recognised, in which relational operators such as =, <
304 * and >= are accepted, as well as low-precedence logical operators
305 * &&, ^^ and ||.
307 * If `hints' is non-NULL, it gets filled in with some hints as to
308 * the base register in complex effective addresses.
310 #define CRITICAL 0x100
311 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
312 struct tokenval *tv, int *fwref, int critical,
313 struct eval_hints *hints);
316 * Special values for expr->type.
317 * These come after EXPR_REG_END as defined in regs.h.
318 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
319 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
321 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
322 #define EXPR_SIMPLE (EXPR_REG_END+2)
323 #define EXPR_WRT (EXPR_REG_END+3)
324 #define EXPR_RDSAE (EXPR_REG_END+4)
325 #define EXPR_SEGBASE (EXPR_REG_END+5)
328 * preprocessors ought to look like this:
330 struct preproc_ops {
332 * Called once at the very start of assembly.
334 void (*init)(void);
337 * Called at the start of a pass; given a file name, the number
338 * of the pass, an error reporting function, an evaluator
339 * function, and a listing generator to talk to.
341 void (*reset)(const char *file, int pass, struct strlist *deplist);
344 * Called to fetch a line of preprocessed source. The line
345 * returned has been malloc'ed, and so should be freed after
346 * use.
348 char *(*getline)(void);
350 /* Called at the end of a pass */
351 void (*cleanup)(int pass);
353 /* Additional macros specific to output format */
354 void (*extra_stdmac)(macros_t *macros);
356 /* Early definitions and undefinitions for macros */
357 void (*pre_define)(char *definition);
358 void (*pre_undefine)(char *definition);
360 /* Include file from command line */
361 void (*pre_include)(char *fname);
363 /* Add a command from the command line */
364 void (*pre_command)(const char *what, char *str);
366 /* Include path from command line */
367 void (*include_path)(struct strlist *ipath);
369 /* Unwind the macro stack when printing an error message */
370 void (*error_list_macros)(int severity);
373 extern const struct preproc_ops nasmpp;
374 extern const struct preproc_ops preproc_nop;
376 /* List of dependency files */
377 extern struct strlist *depend_list;
379 /* TASM mode changes some properties */
380 extern bool tasm_compatible_mode;
383 * inline function to skip past an identifier; returns the first character past
384 * the identifier if valid, otherwise NULL.
386 static inline char *nasm_skip_identifier(const char *str)
388 const char *p = str;
390 if (!nasm_isidstart(*p++)) {
391 p = NULL;
392 } else {
393 while (nasm_isidchar(*p++))
396 return (char *)p;
400 * Data-type flags that get passed to listing-file routines.
402 enum {
403 LIST_READ,
404 LIST_MACRO,
405 LIST_MACRO_NOLIST,
406 LIST_INCLUDE,
407 LIST_INCBIN,
408 LIST_TIMES
412 * -----------------------------------------------------------
413 * Format of the `insn' structure returned from `parser.c' and
414 * passed into `assemble.c'
415 * -----------------------------------------------------------
418 /* Verify value to be a valid register */
419 static inline bool is_register(int reg)
421 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
424 enum ccode { /* condition code names */
425 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
426 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
427 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
428 C_none = -1
432 * token flags
434 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
435 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
436 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
437 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
438 #define TFLAG_WARN (1 << 3) /* warning only, treat as ID */
440 static inline uint8_t get_cond_opcode(enum ccode c)
442 static const uint8_t ccode_opcodes[] = {
443 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
444 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
445 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
448 return ccode_opcodes[(int)c];
452 * REX flags
454 #define REX_MASK 0x4f /* Actual REX prefix bits */
455 #define REX_B 0x01 /* ModRM r/m extension */
456 #define REX_X 0x02 /* SIB index extension */
457 #define REX_R 0x04 /* ModRM reg extension */
458 #define REX_W 0x08 /* 64-bit operand size */
459 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
460 #define REX_P 0x40 /* REX prefix present/required */
461 #define REX_H 0x80 /* High register present, REX forbidden */
462 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
463 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
464 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
467 * EVEX bit field
469 #define EVEX_P0MM 0x0f /* EVEX P[3:0] : Opcode map */
470 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
471 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
472 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
473 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
474 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
475 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
476 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
477 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
478 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
479 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
480 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
483 * REX_V "classes" (prefixes which behave like VEX)
485 enum vex_class {
486 RV_VEX = 0, /* C4/C5 */
487 RV_XOP = 1, /* 8F */
488 RV_EVEX = 2 /* 62 */
492 * Note that because segment registers may be used as instruction
493 * prefixes, we must ensure the enumerations for prefixes and
494 * register names do not overlap.
496 enum prefixes { /* instruction prefixes */
497 P_none = 0,
498 PREFIX_ENUM_START = REG_ENUM_LIMIT,
499 P_A16 = PREFIX_ENUM_START,
500 P_A32,
501 P_A64,
502 P_ASP,
503 P_LOCK,
504 P_O16,
505 P_O32,
506 P_O64,
507 P_OSP,
508 P_REP,
509 P_REPE,
510 P_REPNE,
511 P_REPNZ,
512 P_REPZ,
513 P_TIMES,
514 P_WAIT,
515 P_XACQUIRE,
516 P_XRELEASE,
517 P_BND,
518 P_NOBND,
519 P_EVEX,
520 P_VEX3,
521 P_VEX2,
522 PREFIX_ENUM_LIMIT
525 enum extop_type { /* extended operand types */
526 EOT_NOTHING,
527 EOT_DB_STRING, /* Byte string */
528 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
529 EOT_DB_NUMBER /* Integer */
532 enum ea_flags { /* special EA flags */
533 EAF_BYTEOFFS = 1, /* force offset part to byte size */
534 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
535 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
536 EAF_REL = 8, /* IP-relative addressing */
537 EAF_ABS = 16, /* non-IP-relative addressing */
538 EAF_FSGS = 32, /* fs/gs segment override present */
539 EAF_MIB = 64 /* mib operand */
542 enum eval_hint { /* values for `hinttype' */
543 EAH_NOHINT = 0, /* no hint at all - our discretion */
544 EAH_MAKEBASE = 1, /* try to make given reg the base */
545 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
546 EAH_SUMMED = 3 /* base and index are summed into index */
549 typedef struct operand { /* operand to an instruction */
550 opflags_t type; /* type of operand */
551 int disp_size; /* 0 means default; 16; 32; 64 */
552 enum reg_enum basereg;
553 enum reg_enum indexreg; /* address registers */
554 int scale; /* index scale */
555 int hintbase;
556 enum eval_hint hinttype; /* hint as to real base register */
557 int32_t segment; /* immediate segment, if needed */
558 int64_t offset; /* any immediate number */
559 int32_t wrt; /* segment base it's relative to */
560 int eaflags; /* special EA flags */
561 int opflags; /* see OPFLAG_* defines below */
562 decoflags_t decoflags; /* decorator flags such as {...} */
563 } operand;
565 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
566 #define OPFLAG_EXTERN 2 /* operand is an external reference */
567 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
568 (always a forward reference also) */
569 #define OPFLAG_RELATIVE 8 /* operand is self-relative, e.g. [foo - $]
570 where foo is not in the current segment */
572 typedef struct extop { /* extended operand */
573 struct extop *next; /* linked list */
574 char *stringval; /* if it's a string, then here it is */
575 size_t stringlen; /* ... and here's how long it is */
576 int64_t offset; /* ... it's given here ... */
577 int32_t segment; /* if it's a number/address, then... */
578 int32_t wrt; /* ... and here */
579 bool relative; /* self-relative expression */
580 enum extop_type type; /* defined above */
581 } extop;
583 enum ea_type {
584 EA_INVALID, /* Not a valid EA at all */
585 EA_SCALAR, /* Scalar EA */
586 EA_XMMVSIB, /* XMM vector EA */
587 EA_YMMVSIB, /* YMM vector EA */
588 EA_ZMMVSIB /* ZMM vector EA */
592 * Prefix positions: each type of prefix goes in a specific slot.
593 * This affects the final ordering of the assembled output, which
594 * shouldn't matter to the processor, but if you have stylistic
595 * preferences, you can change this. REX prefixes are handled
596 * differently for the time being.
598 * LOCK and REP used to be one slot; this is no longer the case since
599 * the introduction of HLE.
601 enum prefix_pos {
602 PPS_WAIT, /* WAIT (technically not a prefix!) */
603 PPS_REP, /* REP/HLE prefix */
604 PPS_LOCK, /* LOCK prefix */
605 PPS_SEG, /* Segment override prefix */
606 PPS_OSIZE, /* Operand size prefix */
607 PPS_ASIZE, /* Address size prefix */
608 PPS_VEX, /* VEX type */
609 MAXPREFIX /* Total number of prefix slots */
613 * Tuple types that are used when determining Disp8*N eligibility
614 * The order must match with a hash %tuple_codes in insns.pl
616 enum ttypes {
617 FV = 001,
618 HV = 002,
619 FVM = 003,
620 T1S8 = 004,
621 T1S16 = 005,
622 T1S = 006,
623 T1F32 = 007,
624 T1F64 = 010,
625 T2 = 011,
626 T4 = 012,
627 T8 = 013,
628 HVM = 014,
629 QVM = 015,
630 OVM = 016,
631 M128 = 017,
632 DUP = 020
635 /* EVEX.L'L : Vector length on vector insns */
636 enum vectlens {
637 VL128 = 0,
638 VL256 = 1,
639 VL512 = 2,
640 VLMAX = 3
643 /* If you need to change this, also change it in insns.pl */
644 #define MAX_OPERANDS 5
646 typedef struct insn { /* an instruction itself */
647 char *label; /* the label defined, or NULL */
648 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
649 enum opcode opcode; /* the opcode - not just the string */
650 enum ccode condition; /* the condition code, if Jcc/SETcc */
651 int operands; /* how many operands? 0-3 (more if db et al) */
652 int addr_size; /* address size */
653 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
654 extop *eops; /* extended operands */
655 int eops_float; /* true if DD and floating */
656 int32_t times; /* repeat count (TIMES prefix) */
657 bool forw_ref; /* is there a forward reference? */
658 bool rex_done; /* REX prefix emitted? */
659 int rex; /* Special REX Prefix */
660 int vexreg; /* Register encoded in VEX prefix */
661 int vex_cm; /* Class and M field for VEX prefix */
662 int vex_wlp; /* W, P and L information for VEX prefix */
663 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
664 /* EVEX.P2: [z,L'L,b,V',aaa] */
665 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
666 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
667 int8_t evex_brerop; /* BR/ER/SAE operand position */
668 } insn;
670 /* Instruction flags type: IF_* flags are defined in insns.h */
671 typedef uint64_t iflags_t;
674 * What to return from a directive- or pragma-handling function.
675 * Currently DIRR_OK and DIRR_ERROR are treated the same way;
676 * in both cases the backend is expected to produce the appropriate
677 * error message on its own.
679 * DIRR_BADPARAM causes a generic error message to be printed. Note
680 * that it is an error, not a warning, even in the case of pragmas;
681 * don't use it where forward compatiblity would be compromised
682 * (instead consider adding a DIRR_WARNPARAM.)
684 enum directive_result {
685 DIRR_UNKNOWN, /* Directive not handled by backend */
686 DIRR_OK, /* Directive processed */
687 DIRR_ERROR, /* Directive processed unsuccessfully */
688 DIRR_BADPARAM /* Print bad argument error message */
692 * A pragma facility: this structure is used to request passing a
693 * parsed pragma directive for a specific facility. If the handler is
694 * NULL then this pragma facility is recognized but ignored; pragma
695 * processing stops at that point.
697 * Note that the handler is passed a pointer to the facility structure
698 * as part of the struct pragma.
700 struct pragma;
701 typedef enum directive_result (*pragma_handler)(const struct pragma *);
703 struct pragma_facility {
704 const char *name;
705 pragma_handler handler;
709 * This structure defines how a pragma directive is passed to a
710 * facility. This structure may be augmented in the future.
712 * Any facility MAY, but is not required to, add its operations
713 * keywords or a subset thereof into asm/directiv.dat, in which case
714 * the "opcode" field will be set to the corresponding D_ constant
715 * from directiv.h; otherwise it will be D_unknown.
717 struct pragma {
718 const struct pragma_facility *facility;
719 const char *facility_name; /* Facility name exactly as entered by user */
720 const char *opname; /* First word after the facility name */
721 const char *tail; /* Anything after the operation */
722 enum directive opcode; /* Operation as a D_ directives constant */
726 * These are semi-arbitrary limits to keep the assembler from going
727 * into a black hole on certain kinds of bugs. They can be overridden
728 * by command-line options or %pragma.
730 enum nasm_limit {
731 LIMIT_PASSES,
732 LIMIT_STALLED,
733 LIMIT_MACROS,
734 LIMIT_REP,
735 LIMIT_EVAL,
736 LIMIT_LINES
738 #define LIMIT_MAX LIMIT_LINES
739 extern int64_t nasm_limit[LIMIT_MAX+1];
740 extern enum directive_result nasm_set_limit(const char *, const char *);
743 * The data structure defining an output format driver, and the
744 * interfaces to the functions therein.
746 struct ofmt {
748 * This is a short (one-liner) description of the type of
749 * output generated by the driver.
751 const char *fullname;
754 * This is a single keyword used to select the driver.
756 const char *shortname;
759 * Default output filename extension, or a null string
761 const char *extension;
764 * Output format flags.
766 #define OFMT_TEXT 1 /* Text file format */
767 #define OFMT_KEEP_ADDR 2 /* Keep addr; no conversion to data */
769 unsigned int flags;
771 int maxbits; /* Maximum segment bits supported */
774 * this is a pointer to the first element of the debug information
776 const struct dfmt * const *debug_formats;
779 * the default debugging format if -F is not specified
781 const struct dfmt *default_dfmt;
784 * This, if non-NULL, is a NULL-terminated list of `char *'s
785 * pointing to extra standard macros supplied by the object
786 * format (e.g. a sensible initial default value of __SECT__,
787 * and user-level equivalents for any format-specific
788 * directives).
790 macros_t *stdmac;
793 * This procedure is called at the start of an output session to set
794 * up internal parameters.
796 void (*init)(void);
799 * This procedure is called at the start of each pass.
801 void (*reset)(void);
804 * This is the modern output function, which gets passed
805 * a struct out_data with much more information. See the
806 * definition of struct out_data.
808 void (*output)(const struct out_data *data);
811 * This procedure is called by assemble() to write actual
812 * generated code or data to the object file. Typically it
813 * doesn't have to actually _write_ it, just store it for
814 * later.
816 * The `type' argument specifies the type of output data, and
817 * usually the size as well: its contents are described below.
819 * This is used for backends which have not yet been ported to
820 * the new interface, and should be NULL on ported backends.
821 * To use this entry point, set the output pointer to
822 * nasm_do_legacy_output.
824 void (*legacy_output)(int32_t segto, const void *data,
825 enum out_type type, uint64_t size,
826 int32_t segment, int32_t wrt);
829 * This procedure is called once for every symbol defined in
830 * the module being assembled. It gives the name and value of
831 * the symbol, in NASM's terms, and indicates whether it has
832 * been declared to be global. Note that the parameter "name",
833 * when passed, will point to a piece of static storage
834 * allocated inside the label manager - it's safe to keep using
835 * that pointer, because the label manager doesn't clean up
836 * until after the output driver has.
838 * Values of `is_global' are: 0 means the symbol is local; 1
839 * means the symbol is global; 2 means the symbol is common (in
840 * which case `offset' holds the _size_ of the variable).
841 * Anything else is available for the output driver to use
842 * internally.
844 * This routine explicitly _is_ allowed to call the label
845 * manager to define further symbols, if it wants to, even
846 * though it's been called _from_ the label manager. That much
847 * re-entrancy is guaranteed in the label manager. However, the
848 * label manager will in turn call this routine, so it should
849 * be prepared to be re-entrant itself.
851 * The `special' parameter contains special information passed
852 * through from the command that defined the label: it may have
853 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
854 * be obvious to the output format from the other parameters.
856 void (*symdef)(char *name, int32_t segment, int64_t offset,
857 int is_global, char *special);
860 * This procedure is called when the source code requests a
861 * segment change. It should return the corresponding segment
862 * _number_ for the name, or NO_SEG if the name is not a valid
863 * segment name.
865 * It may also be called with NULL, in which case it is to
866 * return the _default_ section number for starting assembly in.
868 * It is allowed to modify the string it is given a pointer to.
870 * It is also allowed to specify a default instruction size for
871 * the segment, by setting `*bits' to 16 or 32. Or, if it
872 * doesn't wish to define a default, it can leave `bits' alone.
874 int32_t (*section)(char *name, int pass, int *bits);
877 * This function is called when a label is defined
878 * in the source code. It is allowed to change the section
879 * number as a result, but not the bits value.
880 * This is *only* called if the symbol defined is at the
881 * current offset, i.e. "foo:" or "foo equ $".
882 * The offset isn't passed; and may not be stable at this point.
883 * The subsection number is a field available for use by the
884 * backend. It is initialized to NO_SEG.
886 * If "copyoffset" is set by the backend then the offset is
887 * copied from the previous segment, otherwise the new segment
888 * is treated as a new segment the normal way.
890 int32_t (*herelabel)(const char *name, enum label_type type,
891 int32_t seg, int32_t *subsection,
892 bool *copyoffset);
895 * This procedure is called to modify section alignment,
896 * note there is a trick, the alignment can only increase
898 void (*sectalign)(int32_t seg, unsigned int value);
901 * This procedure is called to modify the segment base values
902 * returned from the SEG operator. It is given a segment base
903 * value (i.e. a segment value with the low bit set), and is
904 * required to produce in return a segment value which may be
905 * different. It can map segment bases to absolute numbers by
906 * means of returning SEG_ABS types.
908 * It should return NO_SEG if the segment base cannot be
909 * determined; the evaluator (which calls this routine) is
910 * responsible for throwing an error condition if that occurs
911 * in pass two or in a critical expression.
913 int32_t (*segbase)(int32_t segment);
916 * This procedure is called to allow the output driver to
917 * process its own specific directives. When called, it has the
918 * directive word in `directive' and the parameter string in
919 * `value'. It is called in both assembly passes, and `pass'
920 * will be either 1 or 2.
922 * The following values are (currently) possible for
923 * directive_result:
925 * 0 - DIRR_UNKNOWN - directive not recognized by backend
926 * 1 - DIRR_OK - directive processed ok
927 * 2 - DIRR_ERROR - backend printed its own error message
928 * 3 - DIRR_BADPARAM - print the generic message
929 * "invalid parameter to [*] directive"
931 enum directive_result
932 (*directive)(enum directive directive, char *value, int pass);
935 * This procedure is called after assembly finishes, to allow
936 * the output driver to clean itself up and free its memory.
937 * Typically, it will also be the point at which the object
938 * file actually gets _written_.
940 * One thing the cleanup routine should always do is to close
941 * the output file pointer.
943 void (*cleanup)(void);
946 * List of pragma facility names that apply to this backend.
948 const struct pragma_facility *pragmas;
952 * Output format driver alias
954 struct ofmt_alias {
955 const char *shortname;
956 const char *fullname;
957 const struct ofmt *ofmt;
960 extern const struct ofmt *ofmt;
961 extern FILE *ofile;
964 * ------------------------------------------------------------
965 * The data structure defining a debug format driver, and the
966 * interfaces to the functions therein.
967 * ------------------------------------------------------------
970 struct dfmt {
972 * This is a short (one-liner) description of the type of
973 * output generated by the driver.
975 const char *fullname;
978 * This is a single keyword used to select the driver.
980 const char *shortname;
983 * init - called initially to set up local pointer to object format.
985 void (*init)(void);
988 * linenum - called any time there is output with a change of
989 * line number or file.
991 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
994 * debug_deflabel - called whenever a label is defined. Parameters
995 * are the same as to 'symdef()' in the output format. This function
996 * is called after the output format version.
999 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
1000 int is_global, char *special);
1002 * debug_directive - called whenever a DEBUG directive other than 'LINE'
1003 * is encountered. 'directive' contains the first parameter to the
1004 * DEBUG directive, and params contains the rest. For example,
1005 * 'DEBUG VAR _somevar:int' would translate to a call to this
1006 * function with 'directive' equal to "VAR" and 'params' equal to
1007 * "_somevar:int".
1009 void (*debug_directive)(const char *directive, const char *params);
1012 * typevalue - called whenever the assembler wishes to register a type
1013 * for the last defined label. This routine MUST detect if a type was
1014 * already registered and not re-register it.
1016 void (*debug_typevalue)(int32_t type);
1019 * debug_output - called whenever output is required
1020 * 'type' is the type of info required, and this is format-specific
1022 void (*debug_output)(int type, void *param);
1025 * cleanup - called after processing of file is complete
1027 void (*cleanup)(void);
1030 * List of pragma facility names that apply to this backend.
1032 const struct pragma_facility *pragmas;
1035 extern const struct dfmt *dfmt;
1038 * The type definition macros
1039 * for debugging
1041 * low 3 bits: reserved
1042 * next 5 bits: type
1043 * next 24 bits: number of elements for arrays (0 for labels)
1046 #define TY_UNKNOWN 0x00
1047 #define TY_LABEL 0x08
1048 #define TY_BYTE 0x10
1049 #define TY_WORD 0x18
1050 #define TY_DWORD 0x20
1051 #define TY_FLOAT 0x28
1052 #define TY_QWORD 0x30
1053 #define TY_TBYTE 0x38
1054 #define TY_OWORD 0x40
1055 #define TY_YWORD 0x48
1056 #define TY_ZWORD 0x50
1057 #define TY_COMMON 0xE0
1058 #define TY_SEG 0xE8
1059 #define TY_EXTERN 0xF0
1060 #define TY_EQU 0xF8
1062 #define TYM_TYPE(x) ((x) & 0xF8)
1063 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1065 #define TYS_ELEMENTS(x) ((x) << 8)
1067 enum special_tokens {
1068 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1069 S_ABS = SPECIAL_ENUM_START,
1070 S_BYTE,
1071 S_DWORD,
1072 S_FAR,
1073 S_LONG,
1074 S_NEAR,
1075 S_NOSPLIT,
1076 S_OWORD,
1077 S_QWORD,
1078 S_REL,
1079 S_SHORT,
1080 S_STRICT,
1081 S_TO,
1082 S_TWORD,
1083 S_WORD,
1084 S_YWORD,
1085 S_ZWORD,
1086 SPECIAL_ENUM_LIMIT
1089 enum decorator_tokens {
1090 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
1091 BRC_1TO2 = DECORATOR_ENUM_START,
1092 BRC_1TO4,
1093 BRC_1TO8,
1094 BRC_1TO16,
1095 BRC_RN,
1096 BRC_RD,
1097 BRC_RU,
1098 BRC_RZ,
1099 BRC_SAE,
1100 BRC_Z,
1101 DECORATOR_ENUM_LIMIT
1105 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1106 * 3 2 1
1107 * 10987654321098765432109876543210
1109 * | word boundary
1110 * ............................1111 opmask
1111 * ...........................1.... zeroing / merging
1112 * ..........................1..... broadcast
1113 * .........................1...... static rounding
1114 * ........................1....... SAE
1115 * ......................11........ broadcast element size
1116 * ....................11.......... number of broadcast elements
1118 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1121 * Opmask register number
1122 * identical to EVEX.aaa
1124 * Bits: 0 - 3
1126 #define OPMASK_SHIFT (0)
1127 #define OPMASK_BITS (4)
1128 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1129 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1130 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1133 * zeroing / merging control available
1134 * matching to EVEX.z
1136 * Bits: 4
1138 #define Z_SHIFT (4)
1139 #define Z_BITS (1)
1140 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1141 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1144 * broadcast - Whether this operand can be broadcasted
1146 * Bits: 5
1148 #define BRDCAST_SHIFT (5)
1149 #define BRDCAST_BITS (1)
1150 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1151 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1154 * Whether this instruction can have a static rounding mode.
1155 * It goes with the last simd operand because the static rounding mode
1156 * decorator is located between the last simd operand and imm8 (if any).
1158 * Bits: 6
1160 #define STATICRND_SHIFT (6)
1161 #define STATICRND_BITS (1)
1162 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1163 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1166 * SAE(Suppress all exception) available
1168 * Bits: 7
1170 #define SAE_SHIFT (7)
1171 #define SAE_BITS (1)
1172 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1173 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1176 * Broadcasting element size.
1178 * Bits: 8 - 9
1180 #define BRSIZE_SHIFT (8)
1181 #define BRSIZE_BITS (2)
1182 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1183 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1185 #define BR_BITS32 GEN_BRSIZE(0)
1186 #define BR_BITS64 GEN_BRSIZE(1)
1189 * Number of broadcasting elements
1191 * Bits: 10 - 11
1193 #define BRNUM_SHIFT (10)
1194 #define BRNUM_BITS (2)
1195 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1196 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1198 #define BR_1TO2 VAL_BRNUM(0)
1199 #define BR_1TO4 VAL_BRNUM(1)
1200 #define BR_1TO8 VAL_BRNUM(2)
1201 #define BR_1TO16 VAL_BRNUM(3)
1203 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1204 #define Z Z_MASK
1205 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1206 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1207 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1208 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1211 * Global modes
1215 * This declaration passes the "pass" number to all other modules
1216 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1217 * where 0 = optimizing pass
1218 * 1 = pass 1
1219 * 2 = pass 2
1223 * flag to disable optimizations selectively
1224 * this is useful to turn-off certain optimizations
1226 enum optimization_disable_flag {
1227 OPTIM_ALL_ENABLED = 0,
1228 OPTIM_DISABLE_JMP_MATCH = 1
1231 struct optimization {
1232 int level;
1233 int flag;
1236 extern int pass0;
1237 extern int64_t passn; /* Actual pass number */
1239 extern struct optimization optimizing;
1240 extern int globalbits; /* 16, 32 or 64-bit mode */
1241 extern int globalrel; /* default to relative addressing? */
1242 extern int globalbnd; /* default to using bnd prefix? */
1244 extern const char *inname; /* primary input filename */
1245 extern const char *outname; /* output filename */
1248 * Switch to a different segment and return the current offset
1250 int64_t switch_segment(int32_t segment);
1252 #endif