configure: enable additional code cleanliness warnings
[nasm.git] / nasm.h
blobff2acfe713c8676950021de4d3fbebbfe2e53805
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2016 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directiv.h" /* For enum directive */
49 #include "opflags.h"
50 #include "regs.h"
52 #define NO_SEG -1L /* null segment value */
53 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
55 #ifndef FILENAME_MAX
56 #define FILENAME_MAX 256
57 #endif
59 #ifndef PREFIX_MAX
60 #define PREFIX_MAX 10
61 #endif
63 #ifndef POSTFIX_MAX
64 #define POSTFIX_MAX 10
65 #endif
67 #define IDLEN_MAX 4096
68 #define DECOLEN_MAX 32
71 * Name pollution problems: <time.h> on Digital UNIX pulls in some
72 * strange hardware header file which sees fit to define R_SP. We
73 * undefine it here so as not to break the enum below.
75 #ifdef R_SP
76 #undef R_SP
77 #endif
80 * We must declare the existence of this structure type up here,
81 * since we have to reference it before we define it...
83 struct ofmt;
86 * Values for the `type' parameter to an output function.
88 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
89 * which will be a relative jump. For this we need to know the
90 * distance in bytes from the start of the relocated record until
91 * the end of the containing instruction. _This_ is what is stored
92 * in the size part of the parameter, in this case.
94 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
95 * and the contents of the "data" parameter is irrelevant.
97 * The "data" parameter for the output function points to a "int32_t",
98 * containing the address in question, unless the type is
99 * OUT_RAWDATA, in which case it points to an "uint8_t"
100 * array.
102 enum out_type {
103 OUT_RAWDATA, /* Plain bytes */
104 OUT_ADDRESS, /* An address (symbol value) */
105 OUT_RESERVE, /* Reserved bytes (RESB et al) */
106 OUT_REL1ADR, /* 1-byte relative address */
107 OUT_REL2ADR, /* 2-byte relative address */
108 OUT_REL4ADR, /* 4-byte relative address */
109 OUT_REL8ADR /* 8-byte relative address */
113 * A label-lookup function.
115 typedef bool (*lfunc)(char *label, int32_t *segment, int64_t *offset);
118 * And a label-definition function. The boolean parameter
119 * `is_norm' states whether the label is a `normal' label (which
120 * should affect the local-label system), or something odder like
121 * an EQU or a segment-base symbol, which shouldn't.
123 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
124 char *special, bool is_norm, bool isextrn);
126 void define_label(char *label, int32_t segment, int64_t offset,
127 char *special, bool is_norm, bool isextrn);
130 * List-file generators should look like this:
132 typedef struct {
134 * Called to initialize the listing file generator. Before this
135 * is called, the other routines will silently do nothing when
136 * called. The `char *' parameter is the file name to write the
137 * listing to.
139 void (*init)(const char *fname);
142 * Called to clear stuff up and close the listing file.
144 void (*cleanup)(void);
147 * Called to output binary data. Parameters are: the offset;
148 * the data; the data type. Data types are similar to the
149 * output-format interface, only OUT_ADDRESS will _always_ be
150 * displayed as if it's relocatable, so ensure that any non-
151 * relocatable address has been converted to OUT_RAWDATA by
152 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
153 * dummy call used to give the listing generator an offset to
154 * work with when doing things like uplevel(LIST_TIMES) or
155 * uplevel(LIST_INCBIN).
157 void (*output)(int32_t offset, const void *data, enum out_type type, uint64_t size);
160 * Called to send a text line to the listing generator. The
161 * `int' parameter is LIST_READ or LIST_MACRO depending on
162 * whether the line came directly from an input file or is the
163 * result of a multi-line macro expansion.
165 void (*line)(int type, char *line);
168 * Called to change one of the various levelled mechanisms in
169 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
170 * used to increase the nesting level of include files and
171 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
172 * two binary-output-suppression mechanisms for large-scale
173 * pseudo-instructions.
175 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
176 * it indicates the beginning of the expansion of a `nolist'
177 * macro, so anything under that level won't be expanded unless
178 * it includes another file.
180 void (*uplevel)(int type);
183 * Reverse the effects of uplevel.
185 void (*downlevel)(int type);
188 * Called on a warning or error, with the error message.
190 void (*error)(int severity, const char *pfx, const char *msg);
191 } ListGen;
193 extern const ListGen *nasmlist;
196 * Token types returned by the scanner, in addition to ordinary
197 * ASCII character values, and zero for end-of-string.
199 enum token_type { /* token types, other than chars */
200 TOKEN_INVALID = -1, /* a placeholder value */
201 TOKEN_EOS = 0, /* end of string */
202 TOKEN_EQ = '=',
203 TOKEN_GT = '>',
204 TOKEN_LT = '<', /* aliases */
205 TOKEN_ID = 256, /* identifier */
206 TOKEN_NUM, /* numeric constant */
207 TOKEN_ERRNUM, /* malformed numeric constant */
208 TOKEN_STR, /* string constant */
209 TOKEN_ERRSTR, /* unterminated string constant */
210 TOKEN_FLOAT, /* floating-point constant */
211 TOKEN_REG, /* register name */
212 TOKEN_INSN, /* instruction name */
213 TOKEN_HERE, /* $ */
214 TOKEN_BASE, /* $$ */
215 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
216 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
217 TOKEN_SHL, /* << */
218 TOKEN_SHR, /* >> */
219 TOKEN_SDIV, /* // */
220 TOKEN_SMOD, /* %% */
221 TOKEN_GE, /* >= */
222 TOKEN_LE, /* <= */
223 TOKEN_NE, /* <> (!= is same as <>) */
224 TOKEN_DBL_AND, /* && */
225 TOKEN_DBL_OR, /* || */
226 TOKEN_DBL_XOR, /* ^^ */
227 TOKEN_SEG, /* SEG */
228 TOKEN_WRT, /* WRT */
229 TOKEN_FLOATIZE, /* __floatX__ */
230 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
231 TOKEN_IFUNC, /* __ilog2*__ */
232 TOKEN_DECORATOR, /* decorators such as {...} */
233 TOKEN_OPMASK /* translated token for opmask registers */
236 enum floatize {
237 FLOAT_8,
238 FLOAT_16,
239 FLOAT_32,
240 FLOAT_64,
241 FLOAT_80M,
242 FLOAT_80E,
243 FLOAT_128L,
244 FLOAT_128H
247 /* Must match the list in string_transform(), in strfunc.c */
248 enum strfunc {
249 STRFUNC_UTF16,
250 STRFUNC_UTF16LE,
251 STRFUNC_UTF16BE,
252 STRFUNC_UTF32,
253 STRFUNC_UTF32LE,
254 STRFUNC_UTF32BE
257 enum ifunc {
258 IFUNC_ILOG2E,
259 IFUNC_ILOG2W,
260 IFUNC_ILOG2F,
261 IFUNC_ILOG2C
264 size_t string_transform(char *, size_t, char **, enum strfunc);
267 * The expression evaluator must be passed a scanner function; a
268 * standard scanner is provided as part of nasmlib.c. The
269 * preprocessor will use a different one. Scanners, and the
270 * token-value structures they return, look like this.
272 * The return value from the scanner is always a copy of the
273 * `t_type' field in the structure.
275 struct tokenval {
276 char *t_charptr;
277 int64_t t_integer;
278 int64_t t_inttwo;
279 enum token_type t_type;
280 int8_t t_flag;
282 typedef int (*scanner)(void *private_data, struct tokenval *tv);
284 struct location {
285 int64_t offset;
286 int32_t segment;
287 int known;
291 * Expression-evaluator datatype. Expressions, within the
292 * evaluator, are stored as an array of these beasts, terminated by
293 * a record with type==0. Mostly, it's a vector type: each type
294 * denotes some kind of a component, and the value denotes the
295 * multiple of that component present in the expression. The
296 * exception is the WRT type, whose `value' field denotes the
297 * segment to which the expression is relative. These segments will
298 * be segment-base types, i.e. either odd segment values or SEG_ABS
299 * types. So it is still valid to assume that anything with a
300 * `value' field of zero is insignificant.
302 typedef struct {
303 int32_t type; /* a register, or EXPR_xxx */
304 int64_t value; /* must be >= 32 bits */
305 } expr;
308 * Library routines to manipulate expression data types.
310 int is_reloc(expr *vect);
311 int is_simple(expr *vect);
312 int is_really_simple(expr *vect);
313 int is_unknown(expr *vect);
314 int is_just_unknown(expr *vect);
315 int64_t reloc_value(expr *vect);
316 int32_t reloc_seg(expr *vect);
317 int32_t reloc_wrt(expr *vect);
320 * The evaluator can also return hints about which of two registers
321 * used in an expression should be the base register. See also the
322 * `operand' structure.
324 struct eval_hints {
325 int64_t base;
326 int type;
330 * The actual expression evaluator function looks like this. When
331 * called, it expects the first token of its expression to already
332 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
333 * it will start by calling the scanner.
335 * If a forward reference happens during evaluation, the evaluator
336 * must set `*fwref' to true if `fwref' is non-NULL.
338 * `critical' is non-zero if the expression may not contain forward
339 * references. The evaluator will report its own error if this
340 * occurs; if `critical' is 1, the error will be "symbol not
341 * defined before use", whereas if `critical' is 2, the error will
342 * be "symbol undefined".
344 * If `critical' has bit 8 set (in addition to its main value: 0x101
345 * and 0x102 correspond to 1 and 2) then an extended expression
346 * syntax is recognised, in which relational operators such as =, <
347 * and >= are accepted, as well as low-precedence logical operators
348 * &&, ^^ and ||.
350 * If `hints' is non-NULL, it gets filled in with some hints as to
351 * the base register in complex effective addresses.
353 #define CRITICAL 0x100
354 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
355 struct tokenval *tv, int *fwref, int critical,
356 struct eval_hints *hints);
359 * Special values for expr->type.
360 * These come after EXPR_REG_END as defined in regs.h.
361 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
362 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
364 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
365 #define EXPR_SIMPLE (EXPR_REG_END+2)
366 #define EXPR_WRT (EXPR_REG_END+3)
367 #define EXPR_RDSAE (EXPR_REG_END+4)
368 #define EXPR_SEGBASE (EXPR_REG_END+5)
371 * Linked list of strings
373 typedef struct string_list {
374 struct string_list *next;
375 char str[1];
376 } StrList;
379 * preprocessors ought to look like this:
381 struct preproc_ops {
383 * Called at the start of a pass; given a file name, the number
384 * of the pass, an error reporting function, an evaluator
385 * function, and a listing generator to talk to.
387 void (*reset)(char *file, int pass, StrList **deplist);
390 * Called to fetch a line of preprocessed source. The line
391 * returned has been malloc'ed, and so should be freed after
392 * use.
394 char *(*getline)(void);
396 /* Called at the end of a pass */
397 void (*cleanup)(int pass);
399 /* Additional macros specific to output format */
400 void (*extra_stdmac)(macros_t *macros);
402 /* Early definitions and undefinitions for macros */
403 void (*pre_define)(char *definition);
404 void (*pre_undefine)(char *definition);
406 /* Include file from command line */
407 void (*pre_include)(char *fname);
409 /* Include path from command line */
410 void (*include_path)(char *path);
413 extern struct preproc_ops nasmpp;
414 extern struct preproc_ops preproc_nop;
417 * Some lexical properties of the NASM source language, included
418 * here because they are shared between the parser and preprocessor.
422 * isidstart matches any character that may start an identifier, and isidchar
423 * matches any character that may appear at places other than the start of an
424 * identifier. E.g. a period may only appear at the start of an identifier
425 * (for local labels), whereas a number may appear anywhere *but* at the
426 * start.
427 * isbrcchar matches any character that may placed inside curly braces as a
428 * decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
431 #define isidstart(c) (nasm_isalpha(c) || \
432 (c) == '_' || \
433 (c) == '.' || \
434 (c) == '?' || \
435 (c) == '@')
437 #define isidchar(c) (isidstart(c) || \
438 nasm_isdigit(c) || \
439 (c) == '$' || \
440 (c) == '#' || \
441 (c) == '~')
443 #define isbrcchar(c) (isidchar(c) || \
444 (c) == '-')
446 /* Ditto for numeric constants. */
448 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
449 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
452 * Data-type flags that get passed to listing-file routines.
454 enum {
455 LIST_READ,
456 LIST_MACRO,
457 LIST_MACRO_NOLIST,
458 LIST_INCLUDE,
459 LIST_INCBIN,
460 LIST_TIMES
464 * -----------------------------------------------------------
465 * Format of the `insn' structure returned from `parser.c' and
466 * passed into `assemble.c'
467 * -----------------------------------------------------------
470 /* Verify value to be a valid register */
471 static inline bool is_register(int reg)
473 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
476 enum ccode { /* condition code names */
477 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
478 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
479 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
480 C_none = -1
484 * token flags
486 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
487 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
488 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
489 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
491 static inline uint8_t get_cond_opcode(enum ccode c)
493 static const uint8_t ccode_opcodes[] = {
494 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
495 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
496 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
499 return ccode_opcodes[(int)c];
503 * REX flags
505 #define REX_MASK 0x4f /* Actual REX prefix bits */
506 #define REX_B 0x01 /* ModRM r/m extension */
507 #define REX_X 0x02 /* SIB index extension */
508 #define REX_R 0x04 /* ModRM reg extension */
509 #define REX_W 0x08 /* 64-bit operand size */
510 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
511 #define REX_P 0x40 /* REX prefix present/required */
512 #define REX_H 0x80 /* High register present, REX forbidden */
513 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
514 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
515 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
518 * EVEX bit field
520 #define EVEX_P0MM 0x03 /* EVEX P[1:0] : Legacy escape */
521 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
522 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
523 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
524 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
525 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
526 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
527 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
528 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
529 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
530 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
531 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
534 * REX_V "classes" (prefixes which behave like VEX)
536 enum vex_class {
537 RV_VEX = 0, /* C4/C5 */
538 RV_XOP = 1, /* 8F */
539 RV_EVEX = 2 /* 62 */
543 * Note that because segment registers may be used as instruction
544 * prefixes, we must ensure the enumerations for prefixes and
545 * register names do not overlap.
547 enum prefixes { /* instruction prefixes */
548 P_none = 0,
549 PREFIX_ENUM_START = REG_ENUM_LIMIT,
550 P_A16 = PREFIX_ENUM_START,
551 P_A32,
552 P_A64,
553 P_ASP,
554 P_LOCK,
555 P_O16,
556 P_O32,
557 P_O64,
558 P_OSP,
559 P_REP,
560 P_REPE,
561 P_REPNE,
562 P_REPNZ,
563 P_REPZ,
564 P_TIMES,
565 P_WAIT,
566 P_XACQUIRE,
567 P_XRELEASE,
568 P_BND,
569 P_NOBND,
570 P_EVEX,
571 P_VEX3,
572 P_VEX2,
573 PREFIX_ENUM_LIMIT
576 enum extop_type { /* extended operand types */
577 EOT_NOTHING,
578 EOT_DB_STRING, /* Byte string */
579 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
580 EOT_DB_NUMBER /* Integer */
583 enum ea_flags { /* special EA flags */
584 EAF_BYTEOFFS = 1, /* force offset part to byte size */
585 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
586 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
587 EAF_REL = 8, /* IP-relative addressing */
588 EAF_ABS = 16, /* non-IP-relative addressing */
589 EAF_FSGS = 32, /* fs/gs segment override present */
590 EAF_MIB = 64 /* mib operand */
593 enum eval_hint { /* values for `hinttype' */
594 EAH_NOHINT = 0, /* no hint at all - our discretion */
595 EAH_MAKEBASE = 1, /* try to make given reg the base */
596 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
597 EAH_SUMMED = 3 /* base and index are summed into index */
600 typedef struct operand { /* operand to an instruction */
601 opflags_t type; /* type of operand */
602 int disp_size; /* 0 means default; 16; 32; 64 */
603 enum reg_enum basereg;
604 enum reg_enum indexreg; /* address registers */
605 int scale; /* index scale */
606 int hintbase;
607 enum eval_hint hinttype; /* hint as to real base register */
608 int32_t segment; /* immediate segment, if needed */
609 int64_t offset; /* any immediate number */
610 int32_t wrt; /* segment base it's relative to */
611 int eaflags; /* special EA flags */
612 int opflags; /* see OPFLAG_* defines below */
613 decoflags_t decoflags; /* decorator flags such as {...} */
614 } operand;
616 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
617 #define OPFLAG_EXTERN 2 /* operand is an external reference */
618 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
619 * (always a forward reference also)
622 typedef struct extop { /* extended operand */
623 struct extop *next; /* linked list */
624 char *stringval; /* if it's a string, then here it is */
625 size_t stringlen; /* ... and here's how long it is */
626 int64_t offset; /* ... it's given here ... */
627 int32_t segment; /* if it's a number/address, then... */
628 int32_t wrt; /* ... and here */
629 enum extop_type type; /* defined above */
630 } extop;
632 enum ea_type {
633 EA_INVALID, /* Not a valid EA at all */
634 EA_SCALAR, /* Scalar EA */
635 EA_XMMVSIB, /* XMM vector EA */
636 EA_YMMVSIB, /* YMM vector EA */
637 EA_ZMMVSIB /* ZMM vector EA */
641 * Prefix positions: each type of prefix goes in a specific slot.
642 * This affects the final ordering of the assembled output, which
643 * shouldn't matter to the processor, but if you have stylistic
644 * preferences, you can change this. REX prefixes are handled
645 * differently for the time being.
647 * LOCK and REP used to be one slot; this is no longer the case since
648 * the introduction of HLE.
650 enum prefix_pos {
651 PPS_WAIT, /* WAIT (technically not a prefix!) */
652 PPS_REP, /* REP/HLE prefix */
653 PPS_LOCK, /* LOCK prefix */
654 PPS_SEG, /* Segment override prefix */
655 PPS_OSIZE, /* Operand size prefix */
656 PPS_ASIZE, /* Address size prefix */
657 PPS_VEX, /* VEX type */
658 MAXPREFIX /* Total number of prefix slots */
662 * Tuple types that are used when determining Disp8*N eligibility
663 * The order must match with a hash %tuple_codes in insns.pl
665 enum ttypes {
666 FV = 001,
667 HV = 002,
668 FVM = 003,
669 T1S8 = 004,
670 T1S16 = 005,
671 T1S = 006,
672 T1F32 = 007,
673 T1F64 = 010,
674 T2 = 011,
675 T4 = 012,
676 T8 = 013,
677 HVM = 014,
678 QVM = 015,
679 OVM = 016,
680 M128 = 017,
681 DUP = 020
684 /* EVEX.L'L : Vector length on vector insns */
685 enum vectlens {
686 VL128 = 0,
687 VL256 = 1,
688 VL512 = 2,
689 VLMAX = 3
692 /* If you need to change this, also change it in insns.pl */
693 #define MAX_OPERANDS 5
695 typedef struct insn { /* an instruction itself */
696 char *label; /* the label defined, or NULL */
697 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
698 enum opcode opcode; /* the opcode - not just the string */
699 enum ccode condition; /* the condition code, if Jcc/SETcc */
700 int operands; /* how many operands? 0-3 (more if db et al) */
701 int addr_size; /* address size */
702 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
703 extop *eops; /* extended operands */
704 int eops_float; /* true if DD and floating */
705 int32_t times; /* repeat count (TIMES prefix) */
706 bool forw_ref; /* is there a forward reference? */
707 bool rex_done; /* REX prefix emitted? */
708 int rex; /* Special REX Prefix */
709 int vexreg; /* Register encoded in VEX prefix */
710 int vex_cm; /* Class and M field for VEX prefix */
711 int vex_wlp; /* W, P and L information for VEX prefix */
712 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
713 /* EVEX.P2: [z,L'L,b,V',aaa] */
714 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
715 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
716 int8_t evex_brerop; /* BR/ER/SAE operand position */
717 } insn;
719 enum geninfo { GI_SWITCH };
721 /* Instruction flags type: IF_* flags are defined in insns.h */
722 typedef uint64_t iflags_t;
725 * The data structure defining an output format driver, and the
726 * interfaces to the functions therein.
728 struct ofmt {
730 * This is a short (one-liner) description of the type of
731 * output generated by the driver.
733 const char *fullname;
736 * This is a single keyword used to select the driver.
738 const char *shortname;
741 * Output format flags.
743 #define OFMT_TEXT 1 /* Text file format */
744 unsigned int flags;
746 int maxbits; /* Maximum segment bits supported */
749 * this is a pointer to the first element of the debug information
751 struct dfmt **debug_formats;
754 * and a pointer to the element that is being used
755 * note: this is set to the default at compile time and changed if the
756 * -F option is selected. If developing a set of new debug formats for
757 * an output format, be sure to set this to whatever default you want
760 const struct dfmt *current_dfmt;
763 * This, if non-NULL, is a NULL-terminated list of `char *'s
764 * pointing to extra standard macros supplied by the object
765 * format (e.g. a sensible initial default value of __SECT__,
766 * and user-level equivalents for any format-specific
767 * directives).
769 macros_t *stdmac;
772 * This procedure is called at the start of an output session to set
773 * up internal parameters.
775 void (*init)(void);
778 * This procedure is called to pass generic information to the
779 * object file. The first parameter gives the information type
780 * (currently only command line switches)
781 * and the second parameter gives the value. This function returns
782 * 1 if recognized, 0 if unrecognized
784 int (*setinfo)(enum geninfo type, char **string);
787 * This procedure is called by assemble() to write actual
788 * generated code or data to the object file. Typically it
789 * doesn't have to actually _write_ it, just store it for
790 * later.
792 * The `type' argument specifies the type of output data, and
793 * usually the size as well: its contents are described below.
795 void (*output)(int32_t segto, const void *data,
796 enum out_type type, uint64_t size,
797 int32_t segment, int32_t wrt);
800 * This procedure is called once for every symbol defined in
801 * the module being assembled. It gives the name and value of
802 * the symbol, in NASM's terms, and indicates whether it has
803 * been declared to be global. Note that the parameter "name",
804 * when passed, will point to a piece of static storage
805 * allocated inside the label manager - it's safe to keep using
806 * that pointer, because the label manager doesn't clean up
807 * until after the output driver has.
809 * Values of `is_global' are: 0 means the symbol is local; 1
810 * means the symbol is global; 2 means the symbol is common (in
811 * which case `offset' holds the _size_ of the variable).
812 * Anything else is available for the output driver to use
813 * internally.
815 * This routine explicitly _is_ allowed to call the label
816 * manager to define further symbols, if it wants to, even
817 * though it's been called _from_ the label manager. That much
818 * re-entrancy is guaranteed in the label manager. However, the
819 * label manager will in turn call this routine, so it should
820 * be prepared to be re-entrant itself.
822 * The `special' parameter contains special information passed
823 * through from the command that defined the label: it may have
824 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
825 * be obvious to the output format from the other parameters.
827 void (*symdef)(char *name, int32_t segment, int64_t offset,
828 int is_global, char *special);
831 * This procedure is called when the source code requests a
832 * segment change. It should return the corresponding segment
833 * _number_ for the name, or NO_SEG if the name is not a valid
834 * segment name.
836 * It may also be called with NULL, in which case it is to
837 * return the _default_ section number for starting assembly in.
839 * It is allowed to modify the string it is given a pointer to.
841 * It is also allowed to specify a default instruction size for
842 * the segment, by setting `*bits' to 16 or 32. Or, if it
843 * doesn't wish to define a default, it can leave `bits' alone.
845 int32_t (*section)(char *name, int pass, int *bits);
848 * This procedure is called to modify section alignment,
849 * note there is a trick, the alignment can only increase
851 void (*sectalign)(int32_t seg, unsigned int value);
854 * This procedure is called to modify the segment base values
855 * returned from the SEG operator. It is given a segment base
856 * value (i.e. a segment value with the low bit set), and is
857 * required to produce in return a segment value which may be
858 * different. It can map segment bases to absolute numbers by
859 * means of returning SEG_ABS types.
861 * It should return NO_SEG if the segment base cannot be
862 * determined; the evaluator (which calls this routine) is
863 * responsible for throwing an error condition if that occurs
864 * in pass two or in a critical expression.
866 int32_t (*segbase)(int32_t segment);
869 * This procedure is called to allow the output driver to
870 * process its own specific directives. When called, it has the
871 * directive word in `directive' and the parameter string in
872 * `value'. It is called in both assembly passes, and `pass'
873 * will be either 1 or 2.
875 * This procedure should return zero if it does not _recognise_
876 * the directive, so that the main program can report an error.
877 * If it recognises the directive but then has its own errors,
878 * it should report them itself and then return non-zero. It
879 * should also return non-zero if it correctly processes the
880 * directive.
882 int (*directive)(enum directives directive, char *value, int pass);
885 * This procedure is called before anything else - even before
886 * the "init" routine - and is passed the name of the input
887 * file from which this output file is being generated. It
888 * should return its preferred name for the output file in
889 * `outname', if outname[0] is not '\0', and do nothing to
890 * `outname' otherwise. Since it is called before the driver is
891 * properly initialized, it has to be passed its error handler
892 * separately.
894 * This procedure may also take its own copy of the input file
895 * name for use in writing the output file: it is _guaranteed_
896 * that it will be called before the "init" routine.
898 * The parameter `outname' points to an area of storage
899 * guaranteed to be at least FILENAME_MAX in size.
901 void (*filename)(char *inname, char *outname);
904 * This procedure is called after assembly finishes, to allow
905 * the output driver to clean itself up and free its memory.
906 * Typically, it will also be the point at which the object
907 * file actually gets _written_.
909 * One thing the cleanup routine should always do is to close
910 * the output file pointer.
912 void (*cleanup)(int debuginfo);
916 * Output format driver alias
918 struct ofmt_alias {
919 const char *shortname;
920 const char *fullname;
921 struct ofmt *ofmt;
924 extern struct ofmt *ofmt;
925 extern FILE *ofile;
928 * ------------------------------------------------------------
929 * The data structure defining a debug format driver, and the
930 * interfaces to the functions therein.
931 * ------------------------------------------------------------
934 struct dfmt {
936 * This is a short (one-liner) description of the type of
937 * output generated by the driver.
939 const char *fullname;
942 * This is a single keyword used to select the driver.
944 const char *shortname;
947 * init - called initially to set up local pointer to object format.
949 void (*init)(void);
952 * linenum - called any time there is output with a change of
953 * line number or file.
955 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
958 * debug_deflabel - called whenever a label is defined. Parameters
959 * are the same as to 'symdef()' in the output format. This function
960 * would be called before the output format version.
963 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
964 int is_global, char *special);
966 * debug_directive - called whenever a DEBUG directive other than 'LINE'
967 * is encountered. 'directive' contains the first parameter to the
968 * DEBUG directive, and params contains the rest. For example,
969 * 'DEBUG VAR _somevar:int' would translate to a call to this
970 * function with 'directive' equal to "VAR" and 'params' equal to
971 * "_somevar:int".
973 void (*debug_directive)(const char *directive, const char *params);
976 * typevalue - called whenever the assembler wishes to register a type
977 * for the last defined label. This routine MUST detect if a type was
978 * already registered and not re-register it.
980 void (*debug_typevalue)(int32_t type);
983 * debug_output - called whenever output is required
984 * 'type' is the type of info required, and this is format-specific
986 void (*debug_output)(int type, void *param);
989 * cleanup - called after processing of file is complete
991 void (*cleanup)(void);
994 extern const struct dfmt *dfmt;
997 * The type definition macros
998 * for debugging
1000 * low 3 bits: reserved
1001 * next 5 bits: type
1002 * next 24 bits: number of elements for arrays (0 for labels)
1005 #define TY_UNKNOWN 0x00
1006 #define TY_LABEL 0x08
1007 #define TY_BYTE 0x10
1008 #define TY_WORD 0x18
1009 #define TY_DWORD 0x20
1010 #define TY_FLOAT 0x28
1011 #define TY_QWORD 0x30
1012 #define TY_TBYTE 0x38
1013 #define TY_OWORD 0x40
1014 #define TY_YWORD 0x48
1015 #define TY_COMMON 0xE0
1016 #define TY_SEG 0xE8
1017 #define TY_EXTERN 0xF0
1018 #define TY_EQU 0xF8
1020 #define TYM_TYPE(x) ((x) & 0xF8)
1021 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1023 #define TYS_ELEMENTS(x) ((x) << 8)
1025 enum special_tokens {
1026 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1027 S_ABS = SPECIAL_ENUM_START,
1028 S_BYTE,
1029 S_DWORD,
1030 S_FAR,
1031 S_LONG,
1032 S_NEAR,
1033 S_NOSPLIT,
1034 S_OWORD,
1035 S_QWORD,
1036 S_REL,
1037 S_SHORT,
1038 S_STRICT,
1039 S_TO,
1040 S_TWORD,
1041 S_WORD,
1042 S_YWORD,
1043 S_ZWORD,
1044 SPECIAL_ENUM_LIMIT
1047 enum decorator_tokens {
1048 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
1049 BRC_1TO2 = DECORATOR_ENUM_START,
1050 BRC_1TO4,
1051 BRC_1TO8,
1052 BRC_1TO16,
1053 BRC_RN,
1054 BRC_RD,
1055 BRC_RU,
1056 BRC_RZ,
1057 BRC_SAE,
1058 BRC_Z,
1059 DECORATOR_ENUM_LIMIT
1063 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1064 * 3 2 1
1065 * 10987654321098765432109876543210
1067 * | word boundary
1068 * ............................1111 opmask
1069 * ...........................1.... zeroing / merging
1070 * ..........................1..... broadcast
1071 * .........................1...... static rounding
1072 * ........................1....... SAE
1073 * ......................11........ broadcast element size
1074 * ....................11.......... number of broadcast elements
1076 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1079 * Opmask register number
1080 * identical to EVEX.aaa
1082 * Bits: 0 - 3
1084 #define OPMASK_SHIFT (0)
1085 #define OPMASK_BITS (4)
1086 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1087 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1088 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1091 * zeroing / merging control available
1092 * matching to EVEX.z
1094 * Bits: 4
1096 #define Z_SHIFT (4)
1097 #define Z_BITS (1)
1098 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1099 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1102 * broadcast - Whether this operand can be broadcasted
1104 * Bits: 5
1106 #define BRDCAST_SHIFT (5)
1107 #define BRDCAST_BITS (1)
1108 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1109 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1112 * Whether this instruction can have a static rounding mode.
1113 * It goes with the last simd operand because the static rounding mode
1114 * decorator is located between the last simd operand and imm8 (if any).
1116 * Bits: 6
1118 #define STATICRND_SHIFT (6)
1119 #define STATICRND_BITS (1)
1120 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1121 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1124 * SAE(Suppress all exception) available
1126 * Bits: 7
1128 #define SAE_SHIFT (7)
1129 #define SAE_BITS (1)
1130 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1131 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1134 * Broadcasting element size.
1136 * Bits: 8 - 9
1138 #define BRSIZE_SHIFT (8)
1139 #define BRSIZE_BITS (2)
1140 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1141 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1143 #define BR_BITS32 GEN_BRSIZE(0)
1144 #define BR_BITS64 GEN_BRSIZE(1)
1147 * Number of broadcasting elements
1149 * Bits: 10 - 11
1151 #define BRNUM_SHIFT (10)
1152 #define BRNUM_BITS (2)
1153 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1154 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1156 #define BR_1TO2 VAL_BRNUM(0)
1157 #define BR_1TO4 VAL_BRNUM(1)
1158 #define BR_1TO8 VAL_BRNUM(2)
1159 #define BR_1TO16 VAL_BRNUM(3)
1161 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1162 #define Z Z_MASK
1163 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1164 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1165 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1166 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1169 * Global modes
1173 * This declaration passes the "pass" number to all other modules
1174 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1175 * where 0 = optimizing pass
1176 * 1 = pass 1
1177 * 2 = pass 2
1180 extern int pass0;
1181 extern int passn; /* Actual pass number */
1183 extern bool tasm_compatible_mode;
1184 extern int optimizing;
1185 extern int globalbits; /* 16, 32 or 64-bit mode */
1186 extern int globalrel; /* default to relative addressing? */
1187 extern int globalbnd; /* default to using bnd prefix? */
1190 * NASM version strings, defined in ver.c
1192 extern const char nasm_version[];
1193 extern const char nasm_date[];
1194 extern const char nasm_compile_options[];
1195 extern const char nasm_comment[];
1196 extern const char nasm_signature[];
1198 #endif