preproc.c - remove redundant assignment
[nasm.git] / nasm.h
blob9e233fce44614812d99d0fb4f98a1ecc87f0d0dc
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directives.h" /* For enum directive */
50 #define NO_SEG -1L /* null segment value */
51 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
53 #ifndef FILENAME_MAX
54 #define FILENAME_MAX 256
55 #endif
57 #ifndef PREFIX_MAX
58 #define PREFIX_MAX 10
59 #endif
61 #ifndef POSTFIX_MAX
62 #define POSTFIX_MAX 10
63 #endif
65 #define IDLEN_MAX 4096
68 * Name pollution problems: <time.h> on Digital UNIX pulls in some
69 * strange hardware header file which sees fit to define R_SP. We
70 * undefine it here so as not to break the enum below.
72 #ifdef R_SP
73 #undef R_SP
74 #endif
77 * We must declare the existence of this structure type up here,
78 * since we have to reference it before we define it...
80 struct ofmt;
83 * values for the `type' parameter to an output function.
85 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
86 * which will be a relative jump. For this we need to know the
87 * distance in bytes from the start of the relocated record until
88 * the end of the containing instruction. _This_ is what is stored
89 * in the size part of the parameter, in this case.
91 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
92 * and the contents of the "data" parameter is irrelevant.
94 * The "data" parameter for the output function points to a "int32_t",
95 * containing the address in question, unless the type is
96 * OUT_RAWDATA, in which case it points to an "uint8_t"
97 * array.
99 enum out_type {
100 OUT_RAWDATA, /* Plain bytes */
101 OUT_ADDRESS, /* An address (symbol value) */
102 OUT_RESERVE, /* Reserved bytes (RESB et al) */
103 OUT_REL2ADR, /* 2-byte relative address */
104 OUT_REL4ADR, /* 4-byte relative address */
105 OUT_REL8ADR, /* 8-byte relative address */
109 * -----------------------
110 * Other function typedefs
111 * -----------------------
115 * A label-lookup function should look like this.
117 typedef bool (*lfunc) (char *label, int32_t *segment, int64_t *offset);
120 * And a label-definition function like this. The boolean parameter
121 * `is_norm' states whether the label is a `normal' label (which
122 * should affect the local-label system), or something odder like
123 * an EQU or a segment-base symbol, which shouldn't.
125 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
126 char *special, bool is_norm, bool isextrn);
127 void define_label(char *label, int32_t segment, int64_t offset,
128 char *special, bool is_norm, bool isextrn);
131 * List-file generators should look like this:
133 typedef struct {
135 * Called to initialize the listing file generator. Before this
136 * is called, the other routines will silently do nothing when
137 * called. The `char *' parameter is the file name to write the
138 * listing to.
140 void (*init) (char *, efunc);
143 * Called to clear stuff up and close the listing file.
145 void (*cleanup) (void);
148 * Called to output binary data. Parameters are: the offset;
149 * the data; the data type. Data types are similar to the
150 * output-format interface, only OUT_ADDRESS will _always_ be
151 * displayed as if it's relocatable, so ensure that any non-
152 * relocatable address has been converted to OUT_RAWDATA by
153 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
154 * dummy call used to give the listing generator an offset to
155 * work with when doing things like uplevel(LIST_TIMES) or
156 * uplevel(LIST_INCBIN).
158 void (*output) (int32_t, const void *, enum out_type, uint64_t);
161 * Called to send a text line to the listing generator. The
162 * `int' parameter is LIST_READ or LIST_MACRO depending on
163 * whether the line came directly from an input file or is the
164 * result of a multi-line macro expansion.
166 void (*line) (int, char *);
169 * Called to change one of the various levelled mechanisms in
170 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
171 * used to increase the nesting level of include files and
172 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
173 * two binary-output-suppression mechanisms for large-scale
174 * pseudo-instructions.
176 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
177 * it indicates the beginning of the expansion of a `nolist'
178 * macro, so anything under that level won't be expanded unless
179 * it includes another file.
181 void (*uplevel) (int);
184 * Reverse the effects of uplevel.
186 void (*downlevel) (int);
189 * Called on a warning or error, with the error message.
191 void (*error)(int severity, const char *pfx, const char *msg);
192 } ListGen;
195 * Token types returned by the scanner, in addition to ordinary
196 * ASCII character values, and zero for end-of-string.
198 enum token_type { /* token types, other than chars */
199 TOKEN_INVALID = -1, /* a placeholder value */
200 TOKEN_EOS = 0, /* end of string */
201 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
202 TOKEN_ID = 256, /* identifier */
203 TOKEN_NUM, /* numeric constant */
204 TOKEN_ERRNUM, /* malformed numeric constant */
205 TOKEN_STR, /* string constant */
206 TOKEN_ERRSTR, /* unterminated string constant */
207 TOKEN_FLOAT, /* floating-point constant */
208 TOKEN_REG, /* register name */
209 TOKEN_INSN, /* instruction name */
210 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
211 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
212 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
213 TOKEN_SHL, TOKEN_SHR, /* << and >> */
214 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
215 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
216 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
217 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
218 TOKEN_FLOATIZE, /* __floatX__ */
219 TOKEN_STRFUNC, /* __utf16__, __utf32__ */
222 enum floatize {
223 FLOAT_8,
224 FLOAT_16,
225 FLOAT_32,
226 FLOAT_64,
227 FLOAT_80M,
228 FLOAT_80E,
229 FLOAT_128L,
230 FLOAT_128H,
233 /* Must match the list in string_transform(), in strfunc.c */
234 enum strfunc {
235 STRFUNC_UTF16,
236 STRFUNC_UTF32,
239 size_t string_transform(char *, size_t, char **, enum strfunc);
242 * The expression evaluator must be passed a scanner function; a
243 * standard scanner is provided as part of nasmlib.c. The
244 * preprocessor will use a different one. Scanners, and the
245 * token-value structures they return, look like this.
247 * The return value from the scanner is always a copy of the
248 * `t_type' field in the structure.
250 struct tokenval {
251 enum token_type t_type;
252 char *t_charptr;
253 int64_t t_integer, t_inttwo;
255 typedef int (*scanner) (void *private_data, struct tokenval * tv);
257 struct location {
258 int64_t offset;
259 int32_t segment;
260 int known;
264 * Expression-evaluator datatype. Expressions, within the
265 * evaluator, are stored as an array of these beasts, terminated by
266 * a record with type==0. Mostly, it's a vector type: each type
267 * denotes some kind of a component, and the value denotes the
268 * multiple of that component present in the expression. The
269 * exception is the WRT type, whose `value' field denotes the
270 * segment to which the expression is relative. These segments will
271 * be segment-base types, i.e. either odd segment values or SEG_ABS
272 * types. So it is still valid to assume that anything with a
273 * `value' field of zero is insignificant.
275 typedef struct {
276 int32_t type; /* a register, or EXPR_xxx */
277 int64_t value; /* must be >= 32 bits */
278 } expr;
281 * Library routines to manipulate expression data types.
283 int is_reloc(expr *);
284 int is_simple(expr *);
285 int is_really_simple(expr *);
286 int is_unknown(expr *);
287 int is_just_unknown(expr *);
288 int64_t reloc_value(expr *);
289 int32_t reloc_seg(expr *);
290 int32_t reloc_wrt(expr *);
293 * The evaluator can also return hints about which of two registers
294 * used in an expression should be the base register. See also the
295 * `operand' structure.
297 struct eval_hints {
298 int64_t base;
299 int type;
303 * The actual expression evaluator function looks like this. When
304 * called, it expects the first token of its expression to already
305 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
306 * it will start by calling the scanner.
308 * If a forward reference happens during evaluation, the evaluator
309 * must set `*fwref' to true if `fwref' is non-NULL.
311 * `critical' is non-zero if the expression may not contain forward
312 * references. The evaluator will report its own error if this
313 * occurs; if `critical' is 1, the error will be "symbol not
314 * defined before use", whereas if `critical' is 2, the error will
315 * be "symbol undefined".
317 * If `critical' has bit 8 set (in addition to its main value: 0x101
318 * and 0x102 correspond to 1 and 2) then an extended expression
319 * syntax is recognised, in which relational operators such as =, <
320 * and >= are accepted, as well as low-precedence logical operators
321 * &&, ^^ and ||.
323 * If `hints' is non-NULL, it gets filled in with some hints as to
324 * the base register in complex effective addresses.
326 #define CRITICAL 0x100
327 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
328 struct tokenval * tv, int *fwref, int critical,
329 efunc error, struct eval_hints * hints);
332 * Special values for expr->type. These come after EXPR_REG_END
333 * as defined in regs.h.
336 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
337 #define EXPR_SIMPLE (EXPR_REG_END+2)
338 #define EXPR_WRT (EXPR_REG_END+3)
339 #define EXPR_SEGBASE (EXPR_REG_END+4)
342 * Linked list of strings...
344 typedef struct string_list {
345 struct string_list *next;
346 char str[1];
347 } StrList;
350 * preprocessors ought to look like this:
352 typedef struct preproc_ops {
354 * Called at the start of a pass; given a file name, the number
355 * of the pass, an error reporting function, an evaluator
356 * function, and a listing generator to talk to.
358 void (*reset) (char *, int, ListGen *, StrList **);
361 * Called to fetch a line of preprocessed source. The line
362 * returned has been malloc'ed, and so should be freed after
363 * use.
365 char *(*getline) (void);
368 * Called at the end of a pass.
370 void (*cleanup) (int);
371 } Preproc;
373 extern Preproc nasmpp;
376 * ----------------------------------------------------------------
377 * Some lexical properties of the NASM source language, included
378 * here because they are shared between the parser and preprocessor
379 * ----------------------------------------------------------------
383 * isidstart matches any character that may start an identifier, and isidchar
384 * matches any character that may appear at places other than the start of an
385 * identifier. E.g. a period may only appear at the start of an identifier
386 * (for local labels), whereas a number may appear anywhere *but* at the
387 * start.
390 #define isidstart(c) ( nasm_isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
391 || (c)=='@' )
392 #define isidchar(c) ( isidstart(c) || nasm_isdigit(c) || \
393 (c)=='$' || (c)=='#' || (c)=='~' )
395 /* Ditto for numeric constants. */
397 #define isnumstart(c) ( nasm_isdigit(c) || (c)=='$' )
398 #define isnumchar(c) ( nasm_isalnum(c) || (c)=='_' )
400 /* This returns the numeric value of a given 'digit'. */
402 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
405 * Data-type flags that get passed to listing-file routines.
407 enum {
408 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
409 LIST_INCBIN, LIST_TIMES
413 * -----------------------------------------------------------
414 * Format of the `insn' structure returned from `parser.c' and
415 * passed into `assemble.c'
416 * -----------------------------------------------------------
420 * Here we define the operand types. These are implemented as bit
421 * masks, since some are subsets of others; e.g. AX in a MOV
422 * instruction is a special operand type, whereas AX in other
423 * contexts is just another 16-bit register. (Also, consider CL in
424 * shift instructions, DX in OUT, etc.)
426 * The basic concept here is that
427 * (class & ~operand) == 0
429 * if and only if "operand" belongs to class type "class".
431 * The bits are assigned as follows:
433 * Bits 0-7, 23, 29: sizes
434 * 0: 8 bits (BYTE)
435 * 1: 16 bits (WORD)
436 * 2: 32 bits (DWORD)
437 * 3: 64 bits (QWORD)
438 * 4: 80 bits (TWORD)
439 * 5: FAR
440 * 6: NEAR
441 * 7: SHORT
442 * 23: 256 bits (YWORD)
443 * 29: 128 bits (OWORD)
445 * Bits 8-11 modifiers
446 * 8: TO
447 * 9: COLON
448 * 10: STRICT
449 * 11: (reserved)
451 * Bits 12-15: type of operand
452 * 12: REGISTER
453 * 13: IMMEDIATE
454 * 14: MEMORY (always has REGMEM attribute as well)
455 * 15: REGMEM (valid EA operand)
457 * Bits 16-19, 28: subclasses
458 * With REG_CDT:
459 * 16: REG_CREG (CRx)
460 * 17: REG_DREG (DRx)
461 * 18: REG_TREG (TRx)
463 * With REG_GPR:
464 * 16: REG_ACCUM (AL, AX, EAX, RAX)
465 * 17: REG_COUNT (CL, CX, ECX, RCX)
466 * 18: REG_DATA (DL, DX, EDX, RDX)
467 * 19: REG_HIGH (AH, CH, DH, BH)
468 * 28: REG_NOTACC (not REG_ACCUM)
470 * With REG_SREG:
471 * 16: REG_CS
472 * 17: REG_DESS (DS, ES, SS)
473 * 18: REG_FSGS
474 * 19: REG_SEG67
476 * With FPUREG:
477 * 16: FPU0
479 * With XMMREG:
480 * 16: XMM0
482 * With YMMREG:
483 * 16: YMM0
485 * With MEMORY:
486 * 16: MEM_OFFS (this is a simple offset)
487 * 17: IP_REL (IP-relative offset)
489 * With IMMEDIATE:
490 * 16: UNITY (1)
491 * 17: BYTENESS16 (-128..127)
492 * 18: BYTENESS32 (-128..127)
493 * 19: BYTENESS64 (-128..127)
495 * Bits 20-22, 24-27: register classes
496 * 20: REG_CDT (CRx, DRx, TRx)
497 * 21: RM_GPR (REG_GPR) (integer register)
498 * 22: REG_SREG
499 * 24: FPUREG
500 * 25: RM_MMX (MMXREG)
501 * 26: RM_XMM (XMMREG)
502 * 27: RM_YMM (YMMREG)
504 * Bit 31 is currently unallocated.
506 * 30: SAME_AS
507 * Special flag only used in instruction patterns; means this operand
508 * has to be identical to another operand. Currently only supported
509 * for registers.
512 typedef uint32_t opflags_t;
514 /* Size, and other attributes, of the operand */
515 #define BITS8 0x00000001U
516 #define BITS16 0x00000002U
517 #define BITS32 0x00000004U
518 #define BITS64 0x00000008U /* x64 and FPU only */
519 #define BITS80 0x00000010U /* FPU only */
520 #define BITS128 0x20000000U
521 #define BITS256 0x00800000U
522 #define FAR 0x00000020U /* grotty: this means 16:16 or */
523 /* 16:32, like in CALL/JMP */
524 #define NEAR 0x00000040U
525 #define SHORT 0x00000080U /* and this means what it says :) */
527 #define SIZE_MASK 0x208000FFU /* all the size attributes */
529 /* Modifiers */
530 #define MODIFIER_MASK 0x00000f00U
531 #define TO 0x00000100U /* reverse effect in FADD, FSUB &c */
532 #define COLON 0x00000200U /* operand is followed by a colon */
533 #define STRICT 0x00000400U /* do not optimize this operand */
535 /* Type of operand: memory reference, register, etc. */
536 #define OPTYPE_MASK 0x0000f000U
537 #define REGISTER 0x00001000U /* register number in 'basereg' */
538 #define IMMEDIATE 0x00002000U
539 #define MEMORY 0x0000c000U
540 #define REGMEM 0x00008000U /* for r/m, ie EA, operands */
542 /* Register classes */
543 #define REG_EA 0x00009000U /* 'normal' reg, qualifies as EA */
544 #define RM_GPR 0x00208000U /* integer operand */
545 #define REG_GPR 0x00209000U /* integer register */
546 #define REG8 0x00209001U /* 8-bit GPR */
547 #define REG16 0x00209002U /* 16-bit GPR */
548 #define REG32 0x00209004U /* 32-bit GPR */
549 #define REG64 0x00209008U /* 64-bit GPR */
550 #define FPUREG 0x01001000U /* floating point stack registers */
551 #define FPU0 0x01011000U /* FPU stack register zero */
552 #define RM_MMX 0x02008000U /* MMX operand */
553 #define MMXREG 0x02009000U /* MMX register */
554 #define RM_XMM 0x04008000U /* XMM (SSE) operand */
555 #define XMMREG 0x04009000U /* XMM (SSE) register */
556 #define XMM0 0x04019000U /* XMM register zero */
557 #define RM_YMM 0x08008000U /* YMM (AVX) operand */
558 #define YMMREG 0x08009000U /* YMM (AVX) register */
559 #define YMM0 0x08019000U /* YMM register zero */
560 #define REG_CDT 0x00101004U /* CRn, DRn and TRn */
561 #define REG_CREG 0x00111004U /* CRn */
562 #define REG_DREG 0x00121004U /* DRn */
563 #define REG_TREG 0x00141004U /* TRn */
564 #define REG_SREG 0x00401002U /* any segment register */
565 #define REG_CS 0x00411002U /* CS */
566 #define REG_DESS 0x00421002U /* DS, ES, SS */
567 #define REG_FSGS 0x00441002U /* FS, GS */
568 #define REG_SEG67 0x00481002U /* Unimplemented segment registers */
570 #define REG_RIP 0x00801008U /* RIP relative addressing */
571 #define REG_EIP 0x00801004U /* EIP relative addressing */
573 /* Special GPRs */
574 #define REG_SMASK 0x100f0000U /* a mask for the following */
575 #define REG_ACCUM 0x00219000U /* accumulator: AL, AX, EAX, RAX */
576 #define REG_AL 0x00219001U
577 #define REG_AX 0x00219002U
578 #define REG_EAX 0x00219004U
579 #define REG_RAX 0x00219008U
580 #define REG_COUNT 0x10229000U /* counter: CL, CX, ECX, RCX */
581 #define REG_CL 0x10229001U
582 #define REG_CX 0x10229002U
583 #define REG_ECX 0x10229004U
584 #define REG_RCX 0x10229008U
585 #define REG_DL 0x10249001U /* data: DL, DX, EDX, RDX */
586 #define REG_DX 0x10249002U
587 #define REG_EDX 0x10249004U
588 #define REG_RDX 0x10249008U
589 #define REG_HIGH 0x10289001U /* high regs: AH, CH, DH, BH */
590 #define REG_NOTACC 0x10000000U /* non-accumulator register */
591 #define REG8NA 0x10209001U /* 8-bit non-acc GPR */
592 #define REG16NA 0x10209002U /* 16-bit non-acc GPR */
593 #define REG32NA 0x10209004U /* 32-bit non-acc GPR */
594 #define REG64NA 0x10209008U /* 64-bit non-acc GPR */
596 /* special types of EAs */
597 #define MEM_OFFS 0x0001c000U /* simple [address] offset - absolute! */
598 #define IP_REL 0x0002c000U /* IP-relative offset */
600 /* memory which matches any type of r/m operand */
601 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM|RM_YMM)
603 /* special type of immediate operand */
604 #define UNITY 0x00012000U /* for shift/rotate instructions */
605 #define SBYTE16 0x00022000U /* for op r16,immediate instrs. */
606 #define SBYTE32 0x00042000U /* for op r32,immediate instrs. */
607 #define SBYTE64 0x00082000U /* for op r64,immediate instrs. */
608 #define BYTENESS 0x000e0000U /* for testing for byteness */
610 /* special flags */
611 #define SAME_AS 0x40000000U
613 /* Register names automatically generated from regs.dat */
614 #include "regs.h"
616 enum ccode { /* condition code names */
617 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
618 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
619 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
620 C_none = -1
624 * REX flags
626 #define REX_REAL 0x4f /* Actual REX prefix bits */
627 #define REX_B 0x01 /* ModRM r/m extension */
628 #define REX_X 0x02 /* SIB index extension */
629 #define REX_R 0x04 /* ModRM reg extension */
630 #define REX_W 0x08 /* 64-bit operand size */
631 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
632 #define REX_P 0x40 /* REX prefix present/required */
633 #define REX_H 0x80 /* High register present, REX forbidden */
634 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
635 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
636 #define REX_V 0x0400 /* Instruction uses VEX/XOP instead of REX */
637 #define REX_NH 0x0800 /* Instruction which doesn't use high regs */
640 * REX_V "classes" (prefixes which behave like VEX)
642 enum vex_class {
643 RV_VEX = 0, /* C4/C5 */
644 RV_XOP = 1 /* 8F */
648 * Note that because segment registers may be used as instruction
649 * prefixes, we must ensure the enumerations for prefixes and
650 * register names do not overlap.
652 enum prefixes { /* instruction prefixes */
653 P_none = 0,
654 PREFIX_ENUM_START = REG_ENUM_LIMIT,
655 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
656 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
657 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
658 P_WAIT,
659 PREFIX_ENUM_LIMIT
662 enum extop_type { /* extended operand types */
663 EOT_NOTHING,
664 EOT_DB_STRING, /* Byte string */
665 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
666 EOT_DB_NUMBER, /* Integer */
669 enum ea_flags { /* special EA flags */
670 EAF_BYTEOFFS = 1, /* force offset part to byte size */
671 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
672 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
673 EAF_REL = 8, /* IP-relative addressing */
674 EAF_ABS = 16, /* non-IP-relative addressing */
675 EAF_FSGS = 32 /* fs/gs segment override present */
678 enum eval_hint { /* values for `hinttype' */
679 EAH_NOHINT = 0, /* no hint at all - our discretion */
680 EAH_MAKEBASE = 1, /* try to make given reg the base */
681 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
684 typedef struct operand { /* operand to an instruction */
685 int32_t type; /* type of operand */
686 int disp_size; /* 0 means default; 16; 32; 64 */
687 enum reg_enum basereg, indexreg; /* address registers */
688 int scale; /* index scale */
689 int hintbase;
690 enum eval_hint hinttype; /* hint as to real base register */
691 int32_t segment; /* immediate segment, if needed */
692 int64_t offset; /* any immediate number */
693 int32_t wrt; /* segment base it's relative to */
694 int eaflags; /* special EA flags */
695 int opflags; /* see OPFLAG_* defines below */
696 } operand;
698 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
699 #define OPFLAG_EXTERN 2 /* operand is an external reference */
700 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference */
701 /* (always a forward reference also) */
703 typedef struct extop { /* extended operand */
704 struct extop *next; /* linked list */
705 char *stringval; /* if it's a string, then here it is */
706 size_t stringlen; /* ... and here's how long it is */
707 int64_t offset; /* ... it's given here ... */
708 int32_t segment; /* if it's a number/address, then... */
709 int32_t wrt; /* ... and here */
710 enum extop_type type; /* defined above */
711 } extop;
713 /* Prefix positions: each type of prefix goes in a specific slot.
714 This affects the final ordering of the assembled output, which
715 shouldn't matter to the processor, but if you have stylistic
716 preferences, you can change this. REX prefixes are handled
717 differently for the time being.
719 Note that LOCK and REP are in the same slot. This is
720 an x86 architectural constraint. */
721 enum prefix_pos {
722 PPS_WAIT, /* WAIT (technically not a prefix!) */
723 PPS_LREP, /* Lock or REP prefix */
724 PPS_SEG, /* Segment override prefix */
725 PPS_OSIZE, /* Operand size prefix */
726 PPS_ASIZE, /* Address size prefix */
727 MAXPREFIX /* Total number of prefix slots */
730 /* If you need to change this, also change it in insns.pl */
731 #define MAX_OPERANDS 5
733 typedef struct insn { /* an instruction itself */
734 char *label; /* the label defined, or NULL */
735 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
736 enum opcode opcode; /* the opcode - not just the string */
737 enum ccode condition; /* the condition code, if Jcc/SETcc */
738 int operands; /* how many operands? 0-3
739 * (more if db et al) */
740 int addr_size; /* address size */
741 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
742 extop *eops; /* extended operands */
743 int eops_float; /* true if DD and floating */
744 int32_t times; /* repeat count (TIMES prefix) */
745 bool forw_ref; /* is there a forward reference? */
746 int rex; /* Special REX Prefix */
747 int drexdst; /* Destination register for DREX/VEX suffix */
748 int vex_cm; /* Class and M field for VEX prefix */
749 int vex_wlp; /* W, P and L information for VEX prefix */
750 } insn;
752 enum geninfo { GI_SWITCH };
754 * ------------------------------------------------------------
755 * The data structure defining an output format driver, and the
756 * interfaces to the functions therein.
757 * ------------------------------------------------------------
760 struct ofmt {
762 * This is a short (one-liner) description of the type of
763 * output generated by the driver.
765 const char *fullname;
768 * This is a single keyword used to select the driver.
770 const char *shortname;
773 * Output format flags.
775 #define OFMT_TEXT 1 /* Text file format */
776 unsigned int flags;
779 * this is a pointer to the first element of the debug information
781 struct dfmt **debug_formats;
784 * and a pointer to the element that is being used
785 * note: this is set to the default at compile time and changed if the
786 * -F option is selected. If developing a set of new debug formats for
787 * an output format, be sure to set this to whatever default you want
790 const struct dfmt *current_dfmt;
793 * This, if non-NULL, is a NULL-terminated list of `char *'s
794 * pointing to extra standard macros supplied by the object
795 * format (e.g. a sensible initial default value of __SECT__,
796 * and user-level equivalents for any format-specific
797 * directives).
799 macros_t *stdmac;
802 * This procedure is called at the start of an output session to set
803 * up internal parameters.
805 void (*init)(void);
808 * This procedure is called to pass generic information to the
809 * object file. The first parameter gives the information type
810 * (currently only command line switches)
811 * and the second parameter gives the value. This function returns
812 * 1 if recognized, 0 if unrecognized
814 int (*setinfo) (enum geninfo type, char **string);
817 * This procedure is called by assemble() to write actual
818 * generated code or data to the object file. Typically it
819 * doesn't have to actually _write_ it, just store it for
820 * later.
822 * The `type' argument specifies the type of output data, and
823 * usually the size as well: its contents are described below.
825 void (*output) (int32_t segto, const void *data,
826 enum out_type type, uint64_t size,
827 int32_t segment, int32_t wrt);
830 * This procedure is called once for every symbol defined in
831 * the module being assembled. It gives the name and value of
832 * the symbol, in NASM's terms, and indicates whether it has
833 * been declared to be global. Note that the parameter "name",
834 * when passed, will point to a piece of static storage
835 * allocated inside the label manager - it's safe to keep using
836 * that pointer, because the label manager doesn't clean up
837 * until after the output driver has.
839 * Values of `is_global' are: 0 means the symbol is local; 1
840 * means the symbol is global; 2 means the symbol is common (in
841 * which case `offset' holds the _size_ of the variable).
842 * Anything else is available for the output driver to use
843 * internally.
845 * This routine explicitly _is_ allowed to call the label
846 * manager to define further symbols, if it wants to, even
847 * though it's been called _from_ the label manager. That much
848 * re-entrancy is guaranteed in the label manager. However, the
849 * label manager will in turn call this routine, so it should
850 * be prepared to be re-entrant itself.
852 * The `special' parameter contains special information passed
853 * through from the command that defined the label: it may have
854 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
855 * be obvious to the output format from the other parameters.
857 void (*symdef) (char *name, int32_t segment, int64_t offset,
858 int is_global, char *special);
861 * This procedure is called when the source code requests a
862 * segment change. It should return the corresponding segment
863 * _number_ for the name, or NO_SEG if the name is not a valid
864 * segment name.
866 * It may also be called with NULL, in which case it is to
867 * return the _default_ section number for starting assembly in.
869 * It is allowed to modify the string it is given a pointer to.
871 * It is also allowed to specify a default instruction size for
872 * the segment, by setting `*bits' to 16 or 32. Or, if it
873 * doesn't wish to define a default, it can leave `bits' alone.
875 int32_t (*section) (char *name, int pass, int *bits);
878 * This procedure is called to modify the segment base values
879 * returned from the SEG operator. It is given a segment base
880 * value (i.e. a segment value with the low bit set), and is
881 * required to produce in return a segment value which may be
882 * different. It can map segment bases to absolute numbers by
883 * means of returning SEG_ABS types.
885 * It should return NO_SEG if the segment base cannot be
886 * determined; the evaluator (which calls this routine) is
887 * responsible for throwing an error condition if that occurs
888 * in pass two or in a critical expression.
890 int32_t (*segbase) (int32_t segment);
893 * This procedure is called to allow the output driver to
894 * process its own specific directives. When called, it has the
895 * directive word in `directive' and the parameter string in
896 * `value'. It is called in both assembly passes, and `pass'
897 * will be either 1 or 2.
899 * This procedure should return zero if it does not _recognise_
900 * the directive, so that the main program can report an error.
901 * If it recognises the directive but then has its own errors,
902 * it should report them itself and then return non-zero. It
903 * should also return non-zero if it correctly processes the
904 * directive.
906 int (*directive)(enum directives directive, char *value, int pass);
909 * This procedure is called before anything else - even before
910 * the "init" routine - and is passed the name of the input
911 * file from which this output file is being generated. It
912 * should return its preferred name for the output file in
913 * `outname', if outname[0] is not '\0', and do nothing to
914 * `outname' otherwise. Since it is called before the driver is
915 * properly initialized, it has to be passed its error handler
916 * separately.
918 * This procedure may also take its own copy of the input file
919 * name for use in writing the output file: it is _guaranteed_
920 * that it will be called before the "init" routine.
922 * The parameter `outname' points to an area of storage
923 * guaranteed to be at least FILENAME_MAX in size.
925 void (*filename) (char *inname, char *outname);
928 * This procedure is called after assembly finishes, to allow
929 * the output driver to clean itself up and free its memory.
930 * Typically, it will also be the point at which the object
931 * file actually gets _written_.
933 * One thing the cleanup routine should always do is to close
934 * the output file pointer.
936 void (*cleanup) (int debuginfo);
939 extern struct ofmt *ofmt;
940 extern FILE *ofile;
943 * ------------------------------------------------------------
944 * The data structure defining a debug format driver, and the
945 * interfaces to the functions therein.
946 * ------------------------------------------------------------
949 struct dfmt {
951 * This is a short (one-liner) description of the type of
952 * output generated by the driver.
954 const char *fullname;
957 * This is a single keyword used to select the driver.
959 const char *shortname;
962 * init - called initially to set up local pointer to object format.
964 void (*init)(void);
967 * linenum - called any time there is output with a change of
968 * line number or file.
970 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
973 * debug_deflabel - called whenever a label is defined. Parameters
974 * are the same as to 'symdef()' in the output format. This function
975 * would be called before the output format version.
978 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
979 int is_global, char *special);
981 * debug_directive - called whenever a DEBUG directive other than 'LINE'
982 * is encountered. 'directive' contains the first parameter to the
983 * DEBUG directive, and params contains the rest. For example,
984 * 'DEBUG VAR _somevar:int' would translate to a call to this
985 * function with 'directive' equal to "VAR" and 'params' equal to
986 * "_somevar:int".
988 void (*debug_directive)(const char *directive, const char *params);
991 * typevalue - called whenever the assembler wishes to register a type
992 * for the last defined label. This routine MUST detect if a type was
993 * already registered and not re-register it.
995 void (*debug_typevalue)(int32_t type);
998 * debug_output - called whenever output is required
999 * 'type' is the type of info required, and this is format-specific
1001 void (*debug_output)(int type, void *param);
1004 * cleanup - called after processing of file is complete
1006 void (*cleanup)(void);
1009 extern const struct dfmt *dfmt;
1012 * The type definition macros
1013 * for debugging
1015 * low 3 bits: reserved
1016 * next 5 bits: type
1017 * next 24 bits: number of elements for arrays (0 for labels)
1020 #define TY_UNKNOWN 0x00
1021 #define TY_LABEL 0x08
1022 #define TY_BYTE 0x10
1023 #define TY_WORD 0x18
1024 #define TY_DWORD 0x20
1025 #define TY_FLOAT 0x28
1026 #define TY_QWORD 0x30
1027 #define TY_TBYTE 0x38
1028 #define TY_OWORD 0x40
1029 #define TY_YWORD 0x48
1030 #define TY_COMMON 0xE0
1031 #define TY_SEG 0xE8
1032 #define TY_EXTERN 0xF0
1033 #define TY_EQU 0xF8
1035 #define TYM_TYPE(x) ((x) & 0xF8)
1036 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1038 #define TYS_ELEMENTS(x) ((x) << 8)
1041 * -----
1042 * Special tokens
1043 * -----
1046 enum special_tokens {
1047 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1048 S_ABS = SPECIAL_ENUM_START,
1049 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
1050 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD, S_YWORD,
1051 SPECIAL_ENUM_LIMIT
1055 * -----
1056 * Global modes
1057 * -----
1061 * This declaration passes the "pass" number to all other modules
1062 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1063 * where 0 = optimizing pass
1064 * 1 = pass 1
1065 * 2 = pass 2
1068 extern int pass0;
1069 extern int passn; /* Actual pass number */
1071 extern bool tasm_compatible_mode;
1072 extern int optimizing;
1073 extern int globalbits; /* 16, 32 or 64-bit mode */
1074 extern int globalrel; /* default to relative addressing? */
1075 extern int maxbits; /* max bits supported by output */
1078 * NASM version strings, defined in ver.c
1080 extern const char nasm_version[];
1081 extern const char nasm_date[];
1082 extern const char nasm_compile_options[];
1083 extern const char nasm_comment[];
1084 extern const char nasm_signature[];
1086 #endif