MC: Add section layout order indices to MCSectionData.
[llvm.git] / lib / MC / MCAssembler.cpp
blobf41b25f15d3cd564ce6712950ae13d290971c9d4
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/MC/MCAsmLayout.h"
13 #include "llvm/MC/MCCodeEmitter.h"
14 #include "llvm/MC/MCExpr.h"
15 #include "llvm/MC/MCObjectWriter.h"
16 #include "llvm/MC/MCSymbol.h"
17 #include "llvm/MC/MCValue.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetRegistry.h"
26 #include "llvm/Target/TargetAsmBackend.h"
28 #include <vector>
29 using namespace llvm;
31 namespace {
32 namespace stats {
33 STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
34 STATISTIC(EvaluateFixup, "Number of evaluated fixups");
35 STATISTIC(FragmentLayouts, "Number of fragment layouts");
36 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
37 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
38 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
39 STATISTIC(SectionLayouts, "Number of section layouts");
43 // FIXME FIXME FIXME: There are number of places in this file where we convert
44 // what is a 64-bit assembler value used for computation into a value in the
45 // object file, which may truncate it. We should detect that truncation where
46 // invalid and report errors back.
48 /* *** */
50 MCAsmLayout::MCAsmLayout(MCAssembler &Asm) : Assembler(Asm) {
51 // Compute the section layout order. Virtual sections must go last.
52 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
53 if (!Asm.getBackend().isVirtualSection(it->getSection()))
54 SectionOrder.push_back(&*it);
55 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
56 if (Asm.getBackend().isVirtualSection(it->getSection()))
57 SectionOrder.push_back(&*it);
60 void MCAsmLayout::UpdateForSlide(MCFragment *F, int SlideAmount) {
61 // We shouldn't have to do anything special to support negative slides, and it
62 // is a perfectly valid thing to do as long as other parts of the system can
63 // guarantee convergence.
64 assert(SlideAmount >= 0 && "Negative slides not yet supported");
66 // Update the layout by simply recomputing the layout for the entire
67 // file. This is trivially correct, but very slow.
69 // FIXME-PERF: This is O(N^2), but will be eliminated once we get smarter.
71 // Layout the sections in order.
72 for (unsigned i = 0, e = getSectionOrder().size(); i != e; ++i)
73 getAssembler().LayoutSection(*this, i);
76 void MCAsmLayout::FragmentReplaced(MCFragment *Src, MCFragment *Dst) {
77 Dst->Offset = Src->Offset;
78 Dst->EffectiveSize = Src->EffectiveSize;
81 uint64_t MCAsmLayout::getFragmentAddress(const MCFragment *F) const {
82 assert(F->getParent() && "Missing section()!");
83 return getSectionAddress(F->getParent()) + getFragmentOffset(F);
86 uint64_t MCAsmLayout::getFragmentEffectiveSize(const MCFragment *F) const {
87 assert(F->EffectiveSize != ~UINT64_C(0) && "Address not set!");
88 return F->EffectiveSize;
91 void MCAsmLayout::setFragmentEffectiveSize(MCFragment *F, uint64_t Value) {
92 F->EffectiveSize = Value;
95 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
96 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
97 return F->Offset;
100 void MCAsmLayout::setFragmentOffset(MCFragment *F, uint64_t Value) {
101 F->Offset = Value;
104 uint64_t MCAsmLayout::getSymbolAddress(const MCSymbolData *SD) const {
105 assert(SD->getFragment() && "Invalid getAddress() on undefined symbol!");
106 return getFragmentAddress(SD->getFragment()) + SD->getOffset();
109 uint64_t MCAsmLayout::getSectionAddress(const MCSectionData *SD) const {
110 assert(SD->Address != ~UINT64_C(0) && "Address not set!");
111 return SD->Address;
114 void MCAsmLayout::setSectionAddress(MCSectionData *SD, uint64_t Value) {
115 SD->Address = Value;
118 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
119 // Otherwise, the size is the last fragment's end offset.
120 const MCFragment &F = SD->getFragmentList().back();
121 return getFragmentOffset(&F) + getFragmentEffectiveSize(&F);
124 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
125 // Virtual sections have no file size.
126 if (getAssembler().getBackend().isVirtualSection(SD->getSection()))
127 return 0;
129 // Otherwise, the file size is the same as the address space size.
130 return getSectionAddressSize(SD);
133 uint64_t MCAsmLayout::getSectionSize(const MCSectionData *SD) const {
134 // The logical size is the address space size minus any tail padding.
135 uint64_t Size = getSectionAddressSize(SD);
136 const MCAlignFragment *AF =
137 dyn_cast<MCAlignFragment>(&(SD->getFragmentList().back()));
138 if (AF && AF->hasOnlyAlignAddress())
139 Size -= getFragmentEffectiveSize(AF);
141 return Size;
144 /* *** */
146 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
149 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
150 : Kind(_Kind), Parent(_Parent), Atom(0), EffectiveSize(~UINT64_C(0))
152 if (Parent)
153 Parent->getFragmentList().push_back(this);
156 MCFragment::~MCFragment() {
159 /* *** */
161 MCSectionData::MCSectionData() : Section(0) {}
163 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
164 : Section(&_Section),
165 Alignment(1),
166 Address(~UINT64_C(0)),
167 HasInstructions(false)
169 if (A)
170 A->getSectionList().push_back(this);
173 /* *** */
175 MCSymbolData::MCSymbolData() : Symbol(0) {}
177 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
178 uint64_t _Offset, MCAssembler *A)
179 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
180 IsExternal(false), IsPrivateExtern(false),
181 CommonSize(0), CommonAlign(0), Flags(0), Index(0)
183 if (A)
184 A->getSymbolList().push_back(this);
187 /* *** */
189 MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
190 MCCodeEmitter &_Emitter, raw_ostream &_OS)
191 : Context(_Context), Backend(_Backend), Emitter(_Emitter),
192 OS(_OS), RelaxAll(false), SubsectionsViaSymbols(false)
196 MCAssembler::~MCAssembler() {
199 static bool isScatteredFixupFullyResolvedSimple(const MCAssembler &Asm,
200 const MCAsmFixup &Fixup,
201 const MCValue Target,
202 const MCSection *BaseSection) {
203 // The effective fixup address is
204 // addr(atom(A)) + offset(A)
205 // - addr(atom(B)) - offset(B)
206 // - addr(<base symbol>) + <fixup offset from base symbol>
207 // and the offsets are not relocatable, so the fixup is fully resolved when
208 // addr(atom(A)) - addr(atom(B)) - addr(<base symbol>)) == 0.
210 // The simple (Darwin, except on x86_64) way of dealing with this was to
211 // assume that any reference to a temporary symbol *must* be a temporary
212 // symbol in the same atom, unless the sections differ. Therefore, any PCrel
213 // relocation to a temporary symbol (in the same section) is fully
214 // resolved. This also works in conjunction with absolutized .set, which
215 // requires the compiler to use .set to absolutize the differences between
216 // symbols which the compiler knows to be assembly time constants, so we don't
217 // need to worry about considering symbol differences fully resolved.
219 // Non-relative fixups are only resolved if constant.
220 if (!BaseSection)
221 return Target.isAbsolute();
223 // Otherwise, relative fixups are only resolved if not a difference and the
224 // target is a temporary in the same section.
225 if (Target.isAbsolute() || Target.getSymB())
226 return false;
228 const MCSymbol *A = &Target.getSymA()->getSymbol();
229 if (!A->isTemporary() || !A->isInSection() ||
230 &A->getSection() != BaseSection)
231 return false;
233 return true;
236 static bool isScatteredFixupFullyResolved(const MCAssembler &Asm,
237 const MCAsmLayout &Layout,
238 const MCAsmFixup &Fixup,
239 const MCValue Target,
240 const MCSymbolData *BaseSymbol) {
241 // The effective fixup address is
242 // addr(atom(A)) + offset(A)
243 // - addr(atom(B)) - offset(B)
244 // - addr(BaseSymbol) + <fixup offset from base symbol>
245 // and the offsets are not relocatable, so the fixup is fully resolved when
246 // addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0.
248 // Note that "false" is almost always conservatively correct (it means we emit
249 // a relocation which is unnecessary), except when it would force us to emit a
250 // relocation which the target cannot encode.
252 const MCSymbolData *A_Base = 0, *B_Base = 0;
253 if (const MCSymbolRefExpr *A = Target.getSymA()) {
254 // Modified symbol references cannot be resolved.
255 if (A->getKind() != MCSymbolRefExpr::VK_None)
256 return false;
258 A_Base = Asm.getAtom(Layout, &Asm.getSymbolData(A->getSymbol()));
259 if (!A_Base)
260 return false;
263 if (const MCSymbolRefExpr *B = Target.getSymB()) {
264 // Modified symbol references cannot be resolved.
265 if (B->getKind() != MCSymbolRefExpr::VK_None)
266 return false;
268 B_Base = Asm.getAtom(Layout, &Asm.getSymbolData(B->getSymbol()));
269 if (!B_Base)
270 return false;
273 // If there is no base, A and B have to be the same atom for this fixup to be
274 // fully resolved.
275 if (!BaseSymbol)
276 return A_Base == B_Base;
278 // Otherwise, B must be missing and A must be the base.
279 return !B_Base && BaseSymbol == A_Base;
282 bool MCAssembler::isSymbolLinkerVisible(const MCSymbolData *SD) const {
283 // Non-temporary labels should always be visible to the linker.
284 if (!SD->getSymbol().isTemporary())
285 return true;
287 // Absolute temporary labels are never visible.
288 if (!SD->getFragment())
289 return false;
291 // Otherwise, check if the section requires symbols even for temporary labels.
292 return getBackend().doesSectionRequireSymbols(
293 SD->getFragment()->getParent()->getSection());
296 const MCSymbolData *MCAssembler::getAtom(const MCAsmLayout &Layout,
297 const MCSymbolData *SD) const {
298 // Linker visible symbols define atoms.
299 if (isSymbolLinkerVisible(SD))
300 return SD;
302 // Absolute and undefined symbols have no defining atom.
303 if (!SD->getFragment())
304 return 0;
306 // Non-linker visible symbols in sections which can't be atomized have no
307 // defining atom.
308 if (!getBackend().isSectionAtomizable(
309 SD->getFragment()->getParent()->getSection()))
310 return 0;
312 // Otherwise, return the atom for the containing fragment.
313 return SD->getFragment()->getAtom();
316 bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout,
317 const MCAsmFixup &Fixup, const MCFragment *DF,
318 MCValue &Target, uint64_t &Value) const {
319 ++stats::EvaluateFixup;
321 if (!Fixup.Value->EvaluateAsRelocatable(Target, &Layout))
322 report_fatal_error("expected relocatable expression");
324 // FIXME: How do non-scattered symbols work in ELF? I presume the linker
325 // doesn't support small relocations, but then under what criteria does the
326 // assembler allow symbol differences?
328 Value = Target.getConstant();
330 bool IsPCRel =
331 Emitter.getFixupKindInfo(Fixup.Kind).Flags & MCFixupKindInfo::FKF_IsPCRel;
332 bool IsResolved = true;
333 if (const MCSymbolRefExpr *A = Target.getSymA()) {
334 if (A->getSymbol().isDefined())
335 Value += Layout.getSymbolAddress(&getSymbolData(A->getSymbol()));
336 else
337 IsResolved = false;
339 if (const MCSymbolRefExpr *B = Target.getSymB()) {
340 if (B->getSymbol().isDefined())
341 Value -= Layout.getSymbolAddress(&getSymbolData(B->getSymbol()));
342 else
343 IsResolved = false;
346 // If we are using scattered symbols, determine whether this value is actually
347 // resolved; scattering may cause atoms to move.
348 if (IsResolved && getBackend().hasScatteredSymbols()) {
349 if (getBackend().hasReliableSymbolDifference()) {
350 // If this is a PCrel relocation, find the base atom (identified by its
351 // symbol) that the fixup value is relative to.
352 const MCSymbolData *BaseSymbol = 0;
353 if (IsPCRel) {
354 BaseSymbol = DF->getAtom();
355 if (!BaseSymbol)
356 IsResolved = false;
359 if (IsResolved)
360 IsResolved = isScatteredFixupFullyResolved(*this, Layout, Fixup, Target,
361 BaseSymbol);
362 } else {
363 const MCSection *BaseSection = 0;
364 if (IsPCRel)
365 BaseSection = &DF->getParent()->getSection();
367 IsResolved = isScatteredFixupFullyResolvedSimple(*this, Fixup, Target,
368 BaseSection);
372 if (IsPCRel)
373 Value -= Layout.getFragmentAddress(DF) + Fixup.Offset;
375 return IsResolved;
378 void MCAssembler::LayoutFragment(MCAsmLayout &Layout, MCFragment &F) {
379 uint64_t StartAddress = Layout.getSectionAddress(F.getParent());
381 // Get the fragment start address.
382 uint64_t Address = StartAddress;
383 MCSectionData::iterator it = &F;
384 if (MCFragment *Prev = F.getPrevNode())
385 Address = (StartAddress + Layout.getFragmentOffset(Prev) +
386 Layout.getFragmentEffectiveSize(Prev));
388 ++stats::FragmentLayouts;
390 uint64_t FragmentOffset = Address - StartAddress;
391 Layout.setFragmentOffset(&F, FragmentOffset);
393 // Evaluate fragment size.
394 uint64_t EffectiveSize = 0;
395 switch (F.getKind()) {
396 case MCFragment::FT_Align: {
397 MCAlignFragment &AF = cast<MCAlignFragment>(F);
399 assert((!AF.hasOnlyAlignAddress() || !AF.getNextNode()) &&
400 "Invalid OnlyAlignAddress bit, not the last fragment!");
402 EffectiveSize = OffsetToAlignment(Address, AF.getAlignment());
403 if (EffectiveSize > AF.getMaxBytesToEmit())
404 EffectiveSize = 0;
405 break;
408 case MCFragment::FT_Data:
409 EffectiveSize = cast<MCDataFragment>(F).getContents().size();
410 break;
412 case MCFragment::FT_Fill: {
413 EffectiveSize = cast<MCFillFragment>(F).getSize();
414 break;
417 case MCFragment::FT_Inst:
418 EffectiveSize = cast<MCInstFragment>(F).getInstSize();
419 break;
421 case MCFragment::FT_Org: {
422 MCOrgFragment &OF = cast<MCOrgFragment>(F);
424 int64_t TargetLocation;
425 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout))
426 report_fatal_error("expected assembly-time absolute expression");
428 // FIXME: We need a way to communicate this error.
429 int64_t Offset = TargetLocation - FragmentOffset;
430 if (Offset < 0)
431 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
432 "' (at offset '" + Twine(FragmentOffset) + "'");
434 EffectiveSize = Offset;
435 break;
439 Layout.setFragmentEffectiveSize(&F, EffectiveSize);
442 void MCAssembler::LayoutSection(MCAsmLayout &Layout,
443 unsigned SectionOrderIndex) {
444 MCSectionData &SD = *Layout.getSectionOrder()[SectionOrderIndex];
446 ++stats::SectionLayouts;
448 // Compute the section start address.
449 uint64_t StartAddress = 0;
450 if (SectionOrderIndex) {
451 MCSectionData *Prev = Layout.getSectionOrder()[SectionOrderIndex - 1];
452 StartAddress = (Layout.getSectionAddress(Prev) +
453 Layout.getSectionAddressSize(Prev));
456 // Honor the section alignment requirements.
457 StartAddress = RoundUpToAlignment(StartAddress, SD.getAlignment());
459 // Set the section address.
460 Layout.setSectionAddress(&SD, StartAddress);
462 for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it)
463 LayoutFragment(Layout, *it);
466 /// WriteFragmentData - Write the \arg F data to the output file.
467 static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
468 const MCFragment &F, MCObjectWriter *OW) {
469 uint64_t Start = OW->getStream().tell();
470 (void) Start;
472 ++stats::EmittedFragments;
474 // FIXME: Embed in fragments instead?
475 uint64_t FragmentSize = Layout.getFragmentEffectiveSize(&F);
476 switch (F.getKind()) {
477 case MCFragment::FT_Align: {
478 MCAlignFragment &AF = cast<MCAlignFragment>(F);
479 uint64_t Count = FragmentSize / AF.getValueSize();
481 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
483 // FIXME: This error shouldn't actually occur (the front end should emit
484 // multiple .align directives to enforce the semantics it wants), but is
485 // severe enough that we want to report it. How to handle this?
486 if (Count * AF.getValueSize() != FragmentSize)
487 report_fatal_error("undefined .align directive, value size '" +
488 Twine(AF.getValueSize()) +
489 "' is not a divisor of padding size '" +
490 Twine(FragmentSize) + "'");
492 // See if we are aligning with nops, and if so do that first to try to fill
493 // the Count bytes. Then if that did not fill any bytes or there are any
494 // bytes left to fill use the the Value and ValueSize to fill the rest.
495 // If we are aligning with nops, ask that target to emit the right data.
496 if (AF.hasEmitNops()) {
497 if (!Asm.getBackend().WriteNopData(Count, OW))
498 report_fatal_error("unable to write nop sequence of " +
499 Twine(Count) + " bytes");
500 break;
503 // Otherwise, write out in multiples of the value size.
504 for (uint64_t i = 0; i != Count; ++i) {
505 switch (AF.getValueSize()) {
506 default:
507 assert(0 && "Invalid size!");
508 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
509 case 2: OW->Write16(uint16_t(AF.getValue())); break;
510 case 4: OW->Write32(uint32_t(AF.getValue())); break;
511 case 8: OW->Write64(uint64_t(AF.getValue())); break;
514 break;
517 case MCFragment::FT_Data: {
518 MCDataFragment &DF = cast<MCDataFragment>(F);
519 assert(FragmentSize == DF.getContents().size() && "Invalid size!");
520 OW->WriteBytes(DF.getContents().str());
521 break;
524 case MCFragment::FT_Fill: {
525 MCFillFragment &FF = cast<MCFillFragment>(F);
527 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
529 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
530 switch (FF.getValueSize()) {
531 default:
532 assert(0 && "Invalid size!");
533 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
534 case 2: OW->Write16(uint16_t(FF.getValue())); break;
535 case 4: OW->Write32(uint32_t(FF.getValue())); break;
536 case 8: OW->Write64(uint64_t(FF.getValue())); break;
539 break;
542 case MCFragment::FT_Inst:
543 llvm_unreachable("unexpected inst fragment after lowering");
544 break;
546 case MCFragment::FT_Org: {
547 MCOrgFragment &OF = cast<MCOrgFragment>(F);
549 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
550 OW->Write8(uint8_t(OF.getValue()));
552 break;
556 assert(OW->getStream().tell() - Start == FragmentSize);
559 void MCAssembler::WriteSectionData(const MCSectionData *SD,
560 const MCAsmLayout &Layout,
561 MCObjectWriter *OW) const {
562 // Ignore virtual sections.
563 if (getBackend().isVirtualSection(SD->getSection())) {
564 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
566 // Check that contents are only things legal inside a virtual section.
567 for (MCSectionData::const_iterator it = SD->begin(),
568 ie = SD->end(); it != ie; ++it) {
569 switch (it->getKind()) {
570 default:
571 assert(0 && "Invalid fragment in virtual section!");
572 case MCFragment::FT_Align:
573 assert(!cast<MCAlignFragment>(it)->getValueSize() &&
574 "Invalid align in virtual section!");
575 break;
576 case MCFragment::FT_Fill:
577 assert(!cast<MCFillFragment>(it)->getValueSize() &&
578 "Invalid fill in virtual section!");
579 break;
583 return;
586 uint64_t Start = OW->getStream().tell();
587 (void) Start;
589 for (MCSectionData::const_iterator it = SD->begin(),
590 ie = SD->end(); it != ie; ++it)
591 WriteFragmentData(*this, Layout, *it, OW);
593 assert(OW->getStream().tell() - Start == Layout.getSectionFileSize(SD));
596 void MCAssembler::Finish() {
597 DEBUG_WITH_TYPE("mc-dump", {
598 llvm::errs() << "assembler backend - pre-layout\n--\n";
599 dump(); });
601 // Create the layout object.
602 MCAsmLayout Layout(*this);
604 // Assign layout order indices.
605 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i)
606 Layout.getSectionOrder()[i]->setLayoutOrder(i);
608 // Insert additional align fragments for concrete sections to explicitly pad
609 // the previous section to match their alignment requirements. This is for
610 // 'gas' compatibility, it shouldn't strictly be necessary.
612 // FIXME: This may be Mach-O specific.
613 for (unsigned i = 1, e = Layout.getSectionOrder().size(); i < e; ++i) {
614 MCSectionData *SD = Layout.getSectionOrder()[i];
616 // Ignore sections without alignment requirements.
617 unsigned Align = SD->getAlignment();
618 if (Align <= 1)
619 continue;
621 // Ignore virtual sections, they don't cause file size modifications.
622 if (getBackend().isVirtualSection(SD->getSection()))
623 continue;
625 // Otherwise, create a new align fragment at the end of the previous
626 // section.
627 MCAlignFragment *AF = new MCAlignFragment(Align, 0, 1, Align,
628 Layout.getSectionOrder()[i - 1]);
629 AF->setOnlyAlignAddress(true);
632 // Assign section and fragment ordinals, all subsequent backend code is
633 // responsible for updating these in place.
634 unsigned SectionIndex = 0;
635 unsigned FragmentIndex = 0;
636 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
637 // Create dummy fragments to eliminate any empty sections, this simplifies
638 // layout.
639 if (it->getFragmentList().empty()) {
640 unsigned ValueSize = 1;
641 if (getBackend().isVirtualSection(it->getSection()))
642 ValueSize = 1;
643 new MCFillFragment(0, 1, 0, it);
646 it->setOrdinal(SectionIndex++);
648 for (MCSectionData::iterator it2 = it->begin(),
649 ie2 = it->end(); it2 != ie2; ++it2)
650 it2->setOrdinal(FragmentIndex++);
653 // Layout until everything fits.
654 while (LayoutOnce(Layout))
655 continue;
657 DEBUG_WITH_TYPE("mc-dump", {
658 llvm::errs() << "assembler backend - post-relaxation\n--\n";
659 dump(); });
661 // Finalize the layout, including fragment lowering.
662 FinishLayout(Layout);
664 DEBUG_WITH_TYPE("mc-dump", {
665 llvm::errs() << "assembler backend - final-layout\n--\n";
666 dump(); });
668 uint64_t StartOffset = OS.tell();
669 llvm::OwningPtr<MCObjectWriter> Writer(getBackend().createObjectWriter(OS));
670 if (!Writer)
671 report_fatal_error("unable to create object writer!");
673 // Allow the object writer a chance to perform post-layout binding (for
674 // example, to set the index fields in the symbol data).
675 Writer->ExecutePostLayoutBinding(*this);
677 // Evaluate and apply the fixups, generating relocation entries as necessary.
678 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
679 for (MCSectionData::iterator it2 = it->begin(),
680 ie2 = it->end(); it2 != ie2; ++it2) {
681 MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
682 if (!DF)
683 continue;
685 for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
686 ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
687 MCAsmFixup &Fixup = *it3;
689 // Evaluate the fixup.
690 MCValue Target;
691 uint64_t FixedValue;
692 if (!EvaluateFixup(Layout, Fixup, DF, Target, FixedValue)) {
693 // The fixup was unresolved, we need a relocation. Inform the object
694 // writer of the relocation, and give it an opportunity to adjust the
695 // fixup value if need be.
696 Writer->RecordRelocation(*this, Layout, DF, Fixup, Target,FixedValue);
699 getBackend().ApplyFixup(Fixup, *DF, FixedValue);
704 // Write the object file.
705 Writer->WriteObject(*this, Layout);
706 OS.flush();
708 stats::ObjectBytes += OS.tell() - StartOffset;
711 bool MCAssembler::FixupNeedsRelaxation(const MCAsmFixup &Fixup,
712 const MCFragment *DF,
713 const MCAsmLayout &Layout) const {
714 if (getRelaxAll())
715 return true;
717 // If we cannot resolve the fixup value, it requires relaxation.
718 MCValue Target;
719 uint64_t Value;
720 if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
721 return true;
723 // Otherwise, relax if the value is too big for a (signed) i8.
725 // FIXME: This is target dependent!
726 return int64_t(Value) != int64_t(int8_t(Value));
729 bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF,
730 const MCAsmLayout &Layout) const {
731 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
732 // are intentionally pushing out inst fragments, or because we relaxed a
733 // previous instruction to one that doesn't need relaxation.
734 if (!getBackend().MayNeedRelaxation(IF->getInst(), IF->getFixups()))
735 return false;
737 for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
738 ie = IF->fixup_end(); it != ie; ++it)
739 if (FixupNeedsRelaxation(*it, IF, Layout))
740 return true;
742 return false;
745 bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
746 ++stats::RelaxationSteps;
748 // Layout the sections in order.
749 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i)
750 LayoutSection(Layout, i);
752 // Scan for fragments that need relaxation.
753 bool WasRelaxed = false;
754 for (iterator it = begin(), ie = end(); it != ie; ++it) {
755 MCSectionData &SD = *it;
757 for (MCSectionData::iterator it2 = SD.begin(),
758 ie2 = SD.end(); it2 != ie2; ++it2) {
759 // Check if this is an instruction fragment that needs relaxation.
760 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
761 if (!IF || !FragmentNeedsRelaxation(IF, Layout))
762 continue;
764 ++stats::RelaxedInstructions;
766 // FIXME-PERF: We could immediately lower out instructions if we can tell
767 // they are fully resolved, to avoid retesting on later passes.
769 // Relax the fragment.
771 MCInst Relaxed;
772 getBackend().RelaxInstruction(IF, Relaxed);
774 // Encode the new instruction.
776 // FIXME-PERF: If it matters, we could let the target do this. It can
777 // probably do so more efficiently in many cases.
778 SmallVector<MCFixup, 4> Fixups;
779 SmallString<256> Code;
780 raw_svector_ostream VecOS(Code);
781 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
782 VecOS.flush();
784 // Update the instruction fragment.
785 int SlideAmount = Code.size() - IF->getInstSize();
786 IF->setInst(Relaxed);
787 IF->getCode() = Code;
788 IF->getFixups().clear();
789 for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
790 MCFixup &F = Fixups[i];
791 IF->getFixups().push_back(MCAsmFixup(F.getOffset(), *F.getValue(),
792 F.getKind()));
795 // Update the layout, and remember that we relaxed. If we are relaxing
796 // everything, we can skip this step since nothing will depend on updating
797 // the values.
798 if (!getRelaxAll())
799 Layout.UpdateForSlide(IF, SlideAmount);
800 WasRelaxed = true;
804 return WasRelaxed;
807 void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
808 // Lower out any instruction fragments, to simplify the fixup application and
809 // output.
811 // FIXME-PERF: We don't have to do this, but the assumption is that it is
812 // cheap (we will mostly end up eliminating fragments and appending on to data
813 // fragments), so the extra complexity downstream isn't worth it. Evaluate
814 // this assumption.
815 for (iterator it = begin(), ie = end(); it != ie; ++it) {
816 MCSectionData &SD = *it;
818 for (MCSectionData::iterator it2 = SD.begin(),
819 ie2 = SD.end(); it2 != ie2; ++it2) {
820 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
821 if (!IF)
822 continue;
824 // Create a new data fragment for the instruction.
826 // FIXME-PERF: Reuse previous data fragment if possible.
827 MCDataFragment *DF = new MCDataFragment();
828 SD.getFragmentList().insert(it2, DF);
830 // Update the data fragments layout data.
831 DF->setParent(IF->getParent());
832 DF->setAtom(IF->getAtom());
833 DF->setOrdinal(IF->getOrdinal());
834 Layout.FragmentReplaced(IF, DF);
836 // Copy in the data and the fixups.
837 DF->getContents().append(IF->getCode().begin(), IF->getCode().end());
838 for (unsigned i = 0, e = IF->getFixups().size(); i != e; ++i)
839 DF->getFixups().push_back(IF->getFixups()[i]);
841 // Delete the instruction fragment and update the iterator.
842 SD.getFragmentList().erase(IF);
843 it2 = DF;
848 // Debugging methods
850 namespace llvm {
852 raw_ostream &operator<<(raw_ostream &OS, const MCAsmFixup &AF) {
853 OS << "<MCAsmFixup" << " Offset:" << AF.Offset << " Value:" << *AF.Value
854 << " Kind:" << AF.Kind << ">";
855 return OS;
860 void MCFragment::dump() {
861 raw_ostream &OS = llvm::errs();
863 OS << "<MCFragment " << (void*) this << " Offset:" << Offset
864 << " EffectiveSize:" << EffectiveSize << ">";
867 void MCAlignFragment::dump() {
868 raw_ostream &OS = llvm::errs();
870 OS << "<MCAlignFragment ";
871 this->MCFragment::dump();
872 if (hasEmitNops())
873 OS << " (emit nops)";
874 if (hasOnlyAlignAddress())
875 OS << " (only align section)";
876 OS << "\n ";
877 OS << " Alignment:" << getAlignment()
878 << " Value:" << getValue() << " ValueSize:" << getValueSize()
879 << " MaxBytesToEmit:" << getMaxBytesToEmit() << ">";
882 void MCDataFragment::dump() {
883 raw_ostream &OS = llvm::errs();
885 OS << "<MCDataFragment ";
886 this->MCFragment::dump();
887 OS << "\n ";
888 OS << " Contents:[";
889 for (unsigned i = 0, e = getContents().size(); i != e; ++i) {
890 if (i) OS << ",";
891 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
893 OS << "] (" << getContents().size() << " bytes)";
895 if (!getFixups().empty()) {
896 OS << ",\n ";
897 OS << " Fixups:[";
898 for (fixup_iterator it = fixup_begin(), ie = fixup_end(); it != ie; ++it) {
899 if (it != fixup_begin()) OS << ",\n ";
900 OS << *it;
902 OS << "]";
905 OS << ">";
908 void MCFillFragment::dump() {
909 raw_ostream &OS = llvm::errs();
911 OS << "<MCFillFragment ";
912 this->MCFragment::dump();
913 OS << "\n ";
914 OS << " Value:" << getValue() << " ValueSize:" << getValueSize()
915 << " Size:" << getSize() << ">";
918 void MCInstFragment::dump() {
919 raw_ostream &OS = llvm::errs();
921 OS << "<MCInstFragment ";
922 this->MCFragment::dump();
923 OS << "\n ";
924 OS << " Inst:";
925 getInst().dump_pretty(OS);
926 OS << ">";
929 void MCOrgFragment::dump() {
930 raw_ostream &OS = llvm::errs();
932 OS << "<MCOrgFragment ";
933 this->MCFragment::dump();
934 OS << "\n ";
935 OS << " Offset:" << getOffset() << " Value:" << getValue() << ">";
938 void MCSectionData::dump() {
939 raw_ostream &OS = llvm::errs();
941 OS << "<MCSectionData";
942 OS << " Alignment:" << getAlignment() << " Address:" << Address
943 << " Fragments:[\n ";
944 for (iterator it = begin(), ie = end(); it != ie; ++it) {
945 if (it != begin()) OS << ",\n ";
946 it->dump();
948 OS << "]>";
951 void MCSymbolData::dump() {
952 raw_ostream &OS = llvm::errs();
954 OS << "<MCSymbolData Symbol:" << getSymbol()
955 << " Fragment:" << getFragment() << " Offset:" << getOffset()
956 << " Flags:" << getFlags() << " Index:" << getIndex();
957 if (isCommon())
958 OS << " (common, size:" << getCommonSize()
959 << " align: " << getCommonAlignment() << ")";
960 if (isExternal())
961 OS << " (external)";
962 if (isPrivateExtern())
963 OS << " (private extern)";
964 OS << ">";
967 void MCAssembler::dump() {
968 raw_ostream &OS = llvm::errs();
970 OS << "<MCAssembler\n";
971 OS << " Sections:[\n ";
972 for (iterator it = begin(), ie = end(); it != ie; ++it) {
973 if (it != begin()) OS << ",\n ";
974 it->dump();
976 OS << "],\n";
977 OS << " Symbols:[";
979 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
980 if (it != symbol_begin()) OS << ",\n ";
981 it->dump();
983 OS << "]>\n";