When removing a function from the function set and adding it to deferred, we
[llvm.git] / lib / MC / MCAssembler.cpp
blob587068aee5f5de8e15b17f83ca499b33aea2c718
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/MC/MCAsmLayout.h"
13 #include "llvm/MC/MCCodeEmitter.h"
14 #include "llvm/MC/MCContext.h"
15 #include "llvm/MC/MCExpr.h"
16 #include "llvm/MC/MCObjectWriter.h"
17 #include "llvm/MC/MCSection.h"
18 #include "llvm/MC/MCSymbol.h"
19 #include "llvm/MC/MCValue.h"
20 #include "llvm/MC/MCDwarf.h"
21 #include "llvm/ADT/OwningPtr.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetRegistry.h"
29 #include "llvm/Target/TargetAsmBackend.h"
31 #include <vector>
32 using namespace llvm;
34 namespace {
35 namespace stats {
36 STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
37 STATISTIC(EvaluateFixup, "Number of evaluated fixups");
38 STATISTIC(FragmentLayouts, "Number of fragment layouts");
39 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
40 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
41 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
45 // FIXME FIXME FIXME: There are number of places in this file where we convert
46 // what is a 64-bit assembler value used for computation into a value in the
47 // object file, which may truncate it. We should detect that truncation where
48 // invalid and report errors back.
50 /* *** */
52 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
53 : Assembler(Asm), LastValidFragment()
55 // Compute the section layout order. Virtual sections must go last.
56 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
57 if (!it->getSection().isVirtualSection())
58 SectionOrder.push_back(&*it);
59 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
60 if (it->getSection().isVirtualSection())
61 SectionOrder.push_back(&*it);
64 bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const {
65 const MCSectionData &SD = *F->getParent();
66 const MCFragment *LastValid = LastValidFragment.lookup(&SD);
67 if (!LastValid)
68 return false;
69 assert(LastValid->getParent() == F->getParent());
70 return F->getLayoutOrder() <= LastValid->getLayoutOrder();
73 void MCAsmLayout::Invalidate(MCFragment *F) {
74 // If this fragment wasn't already up-to-date, we don't need to do anything.
75 if (!isFragmentUpToDate(F))
76 return;
78 // Otherwise, reset the last valid fragment to this fragment.
79 const MCSectionData &SD = *F->getParent();
80 LastValidFragment[&SD] = F;
83 void MCAsmLayout::EnsureValid(const MCFragment *F) const {
84 MCSectionData &SD = *F->getParent();
86 MCFragment *Cur = LastValidFragment[&SD];
87 if (!Cur)
88 Cur = &*SD.begin();
89 else
90 Cur = Cur->getNextNode();
92 // Advance the layout position until the fragment is up-to-date.
93 while (!isFragmentUpToDate(F)) {
94 const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur);
95 Cur = Cur->getNextNode();
99 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
100 EnsureValid(F);
101 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
102 return F->Offset;
105 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
106 assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
107 return getFragmentOffset(SD->getFragment()) + SD->getOffset();
110 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
111 // The size is the last fragment's end offset.
112 const MCFragment &F = SD->getFragmentList().back();
113 return getFragmentOffset(&F) + getAssembler().ComputeFragmentSize(*this, F);
116 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
117 // Virtual sections have no file size.
118 if (SD->getSection().isVirtualSection())
119 return 0;
121 // Otherwise, the file size is the same as the address space size.
122 return getSectionAddressSize(SD);
125 /* *** */
127 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
130 MCFragment::~MCFragment() {
133 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
134 : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0))
136 if (Parent)
137 Parent->getFragmentList().push_back(this);
140 /* *** */
142 MCSectionData::MCSectionData() : Section(0) {}
144 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
145 : Section(&_Section),
146 Ordinal(~UINT32_C(0)),
147 Alignment(1),
148 HasInstructions(false)
150 if (A)
151 A->getSectionList().push_back(this);
154 /* *** */
156 MCSymbolData::MCSymbolData() : Symbol(0) {}
158 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
159 uint64_t _Offset, MCAssembler *A)
160 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
161 IsExternal(false), IsPrivateExtern(false),
162 CommonSize(0), SymbolSize(0), CommonAlign(0),
163 Flags(0), Index(0)
165 if (A)
166 A->getSymbolList().push_back(this);
169 /* *** */
171 MCAssembler::MCAssembler(MCContext &Context_, TargetAsmBackend &Backend_,
172 MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
173 raw_ostream &OS_)
174 : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
175 OS(OS_), RelaxAll(false), NoExecStack(false), SubsectionsViaSymbols(false)
179 MCAssembler::~MCAssembler() {
182 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
183 // Non-temporary labels should always be visible to the linker.
184 if (!Symbol.isTemporary())
185 return true;
187 // Absolute temporary labels are never visible.
188 if (!Symbol.isInSection())
189 return false;
191 // Otherwise, check if the section requires symbols even for temporary labels.
192 return getBackend().doesSectionRequireSymbols(Symbol.getSection());
195 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
196 // Linker visible symbols define atoms.
197 if (isSymbolLinkerVisible(SD->getSymbol()))
198 return SD;
200 // Absolute and undefined symbols have no defining atom.
201 if (!SD->getFragment())
202 return 0;
204 // Non-linker visible symbols in sections which can't be atomized have no
205 // defining atom.
206 if (!getBackend().isSectionAtomizable(
207 SD->getFragment()->getParent()->getSection()))
208 return 0;
210 // Otherwise, return the atom for the containing fragment.
211 return SD->getFragment()->getAtom();
214 bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout,
215 const MCFixup &Fixup, const MCFragment *DF,
216 MCValue &Target, uint64_t &Value) const {
217 ++stats::EvaluateFixup;
219 if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
220 report_fatal_error("expected relocatable expression");
222 bool IsPCRel = Backend.getFixupKindInfo(
223 Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
225 bool IsResolved;
226 if (IsPCRel) {
227 if (Target.getSymB()) {
228 IsResolved = false;
229 } else if (!Target.getSymA()) {
230 IsResolved = false;
231 } else {
232 const MCSymbol &SA = Target.getSymA()->getSymbol();
233 if (SA.AliasedSymbol().isUndefined()) {
234 IsResolved = false;
235 } else {
236 const MCSymbolData &DataA = getSymbolData(SA);
237 IsResolved =
238 getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
239 *DF, false, true);
242 } else {
243 IsResolved = Target.isAbsolute();
246 Value = Target.getConstant();
248 bool IsThumb = false;
249 if (const MCSymbolRefExpr *A = Target.getSymA()) {
250 const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
251 if (Sym.isDefined())
252 Value += Layout.getSymbolOffset(&getSymbolData(Sym));
253 if (isThumbFunc(&Sym))
254 IsThumb = true;
256 if (const MCSymbolRefExpr *B = Target.getSymB()) {
257 const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
258 if (Sym.isDefined())
259 Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
263 bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
264 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
265 assert((ShouldAlignPC ? IsPCRel : true) &&
266 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
268 if (IsPCRel) {
269 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
271 // A number of ARM fixups in Thumb mode require that the effective PC
272 // address be determined as the 32-bit aligned version of the actual offset.
273 if (ShouldAlignPC) Offset &= ~0x3;
274 Value -= Offset;
277 // ARM fixups based from a thumb function address need to have the low
278 // bit set. The actual value is always at least 16-bit aligned, so the
279 // low bit is normally clear and available for use as an ISA flag for
280 // interworking.
281 if (IsThumb)
282 Value |= 1;
284 return IsResolved;
287 uint64_t MCAssembler::ComputeFragmentSize(const MCAsmLayout &Layout,
288 const MCFragment &F) const {
289 switch (F.getKind()) {
290 case MCFragment::FT_Data:
291 return cast<MCDataFragment>(F).getContents().size();
292 case MCFragment::FT_Fill:
293 return cast<MCFillFragment>(F).getSize();
294 case MCFragment::FT_Inst:
295 return cast<MCInstFragment>(F).getInstSize();
297 case MCFragment::FT_LEB:
298 return cast<MCLEBFragment>(F).getContents().size();
300 case MCFragment::FT_Align: {
301 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
302 unsigned Offset = Layout.getFragmentOffset(&AF);
303 unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
304 if (Size > AF.getMaxBytesToEmit())
305 return 0;
306 return Size;
309 case MCFragment::FT_Org: {
310 MCOrgFragment &OF = cast<MCOrgFragment>(F);
311 int64_t TargetLocation;
312 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
313 report_fatal_error("expected assembly-time absolute expression");
315 // FIXME: We need a way to communicate this error.
316 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
317 int64_t Size = TargetLocation - FragmentOffset;
318 if (Size < 0 || Size >= 0x40000000)
319 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
320 "' (at offset '" + Twine(FragmentOffset) + "')");
321 return Size;
324 case MCFragment::FT_Dwarf:
325 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
326 case MCFragment::FT_DwarfFrame:
327 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
330 assert(0 && "invalid fragment kind");
331 return 0;
334 void MCAsmLayout::LayoutFragment(MCFragment *F) {
335 MCFragment *Prev = F->getPrevNode();
337 // We should never try to recompute something which is up-to-date.
338 assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!");
339 // We should never try to compute the fragment layout if it's predecessor
340 // isn't up-to-date.
341 assert((!Prev || isFragmentUpToDate(Prev)) &&
342 "Attempt to compute fragment before it's predecessor!");
344 ++stats::FragmentLayouts;
346 // Compute fragment offset and size.
347 uint64_t Offset = 0;
348 if (Prev)
349 Offset += Prev->Offset + getAssembler().ComputeFragmentSize(*this, *Prev);
351 F->Offset = Offset;
352 LastValidFragment[F->getParent()] = F;
355 /// WriteFragmentData - Write the \arg F data to the output file.
356 static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
357 const MCFragment &F) {
358 MCObjectWriter *OW = &Asm.getWriter();
359 uint64_t Start = OW->getStream().tell();
360 (void) Start;
362 ++stats::EmittedFragments;
364 // FIXME: Embed in fragments instead?
365 uint64_t FragmentSize = Asm.ComputeFragmentSize(Layout, F);
366 switch (F.getKind()) {
367 case MCFragment::FT_Align: {
368 MCAlignFragment &AF = cast<MCAlignFragment>(F);
369 uint64_t Count = FragmentSize / AF.getValueSize();
371 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
373 // FIXME: This error shouldn't actually occur (the front end should emit
374 // multiple .align directives to enforce the semantics it wants), but is
375 // severe enough that we want to report it. How to handle this?
376 if (Count * AF.getValueSize() != FragmentSize)
377 report_fatal_error("undefined .align directive, value size '" +
378 Twine(AF.getValueSize()) +
379 "' is not a divisor of padding size '" +
380 Twine(FragmentSize) + "'");
382 // See if we are aligning with nops, and if so do that first to try to fill
383 // the Count bytes. Then if that did not fill any bytes or there are any
384 // bytes left to fill use the the Value and ValueSize to fill the rest.
385 // If we are aligning with nops, ask that target to emit the right data.
386 if (AF.hasEmitNops()) {
387 if (!Asm.getBackend().WriteNopData(Count, OW))
388 report_fatal_error("unable to write nop sequence of " +
389 Twine(Count) + " bytes");
390 break;
393 // Otherwise, write out in multiples of the value size.
394 for (uint64_t i = 0; i != Count; ++i) {
395 switch (AF.getValueSize()) {
396 default:
397 assert(0 && "Invalid size!");
398 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
399 case 2: OW->Write16(uint16_t(AF.getValue())); break;
400 case 4: OW->Write32(uint32_t(AF.getValue())); break;
401 case 8: OW->Write64(uint64_t(AF.getValue())); break;
404 break;
407 case MCFragment::FT_Data: {
408 MCDataFragment &DF = cast<MCDataFragment>(F);
409 assert(FragmentSize == DF.getContents().size() && "Invalid size!");
410 OW->WriteBytes(DF.getContents().str());
411 break;
414 case MCFragment::FT_Fill: {
415 MCFillFragment &FF = cast<MCFillFragment>(F);
417 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
419 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
420 switch (FF.getValueSize()) {
421 default:
422 assert(0 && "Invalid size!");
423 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
424 case 2: OW->Write16(uint16_t(FF.getValue())); break;
425 case 4: OW->Write32(uint32_t(FF.getValue())); break;
426 case 8: OW->Write64(uint64_t(FF.getValue())); break;
429 break;
432 case MCFragment::FT_Inst: {
433 MCInstFragment &IF = cast<MCInstFragment>(F);
434 OW->WriteBytes(StringRef(IF.getCode().begin(), IF.getCode().size()));
435 break;
438 case MCFragment::FT_LEB: {
439 MCLEBFragment &LF = cast<MCLEBFragment>(F);
440 OW->WriteBytes(LF.getContents().str());
441 break;
444 case MCFragment::FT_Org: {
445 MCOrgFragment &OF = cast<MCOrgFragment>(F);
447 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
448 OW->Write8(uint8_t(OF.getValue()));
450 break;
453 case MCFragment::FT_Dwarf: {
454 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
455 OW->WriteBytes(OF.getContents().str());
456 break;
458 case MCFragment::FT_DwarfFrame: {
459 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
460 OW->WriteBytes(CF.getContents().str());
461 break;
465 assert(OW->getStream().tell() - Start == FragmentSize);
468 void MCAssembler::WriteSectionData(const MCSectionData *SD,
469 const MCAsmLayout &Layout) const {
470 // Ignore virtual sections.
471 if (SD->getSection().isVirtualSection()) {
472 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
474 // Check that contents are only things legal inside a virtual section.
475 for (MCSectionData::const_iterator it = SD->begin(),
476 ie = SD->end(); it != ie; ++it) {
477 switch (it->getKind()) {
478 default:
479 assert(0 && "Invalid fragment in virtual section!");
480 case MCFragment::FT_Data: {
481 // Check that we aren't trying to write a non-zero contents (or fixups)
482 // into a virtual section. This is to support clients which use standard
483 // directives to fill the contents of virtual sections.
484 MCDataFragment &DF = cast<MCDataFragment>(*it);
485 assert(DF.fixup_begin() == DF.fixup_end() &&
486 "Cannot have fixups in virtual section!");
487 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
488 assert(DF.getContents()[i] == 0 &&
489 "Invalid data value for virtual section!");
490 break;
492 case MCFragment::FT_Align:
493 // Check that we aren't trying to write a non-zero value into a virtual
494 // section.
495 assert((!cast<MCAlignFragment>(it)->getValueSize() ||
496 !cast<MCAlignFragment>(it)->getValue()) &&
497 "Invalid align in virtual section!");
498 break;
499 case MCFragment::FT_Fill:
500 assert(!cast<MCFillFragment>(it)->getValueSize() &&
501 "Invalid fill in virtual section!");
502 break;
506 return;
509 uint64_t Start = getWriter().getStream().tell();
510 (void) Start;
512 for (MCSectionData::const_iterator it = SD->begin(),
513 ie = SD->end(); it != ie; ++it)
514 WriteFragmentData(*this, Layout, *it);
516 assert(getWriter().getStream().tell() - Start ==
517 Layout.getSectionAddressSize(SD));
521 uint64_t MCAssembler::HandleFixup(const MCAsmLayout &Layout,
522 MCFragment &F,
523 const MCFixup &Fixup) {
524 // Evaluate the fixup.
525 MCValue Target;
526 uint64_t FixedValue;
527 if (!EvaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
528 // The fixup was unresolved, we need a relocation. Inform the object
529 // writer of the relocation, and give it an opportunity to adjust the
530 // fixup value if need be.
531 getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
533 return FixedValue;
536 void MCAssembler::Finish() {
537 DEBUG_WITH_TYPE("mc-dump", {
538 llvm::errs() << "assembler backend - pre-layout\n--\n";
539 dump(); });
541 // Create the layout object.
542 MCAsmLayout Layout(*this);
544 // Create dummy fragments and assign section ordinals.
545 unsigned SectionIndex = 0;
546 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
547 // Create dummy fragments to eliminate any empty sections, this simplifies
548 // layout.
549 if (it->getFragmentList().empty())
550 new MCDataFragment(it);
552 it->setOrdinal(SectionIndex++);
555 // Assign layout order indices to sections and fragments.
556 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
557 MCSectionData *SD = Layout.getSectionOrder()[i];
558 SD->setLayoutOrder(i);
560 unsigned FragmentIndex = 0;
561 for (MCSectionData::iterator it2 = SD->begin(),
562 ie2 = SD->end(); it2 != ie2; ++it2)
563 it2->setLayoutOrder(FragmentIndex++);
566 // Layout until everything fits.
567 while (LayoutOnce(Layout))
568 continue;
570 DEBUG_WITH_TYPE("mc-dump", {
571 llvm::errs() << "assembler backend - post-relaxation\n--\n";
572 dump(); });
574 // Finalize the layout, including fragment lowering.
575 FinishLayout(Layout);
577 DEBUG_WITH_TYPE("mc-dump", {
578 llvm::errs() << "assembler backend - final-layout\n--\n";
579 dump(); });
581 uint64_t StartOffset = OS.tell();
583 // Allow the object writer a chance to perform post-layout binding (for
584 // example, to set the index fields in the symbol data).
585 getWriter().ExecutePostLayoutBinding(*this, Layout);
587 // Evaluate and apply the fixups, generating relocation entries as necessary.
588 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
589 for (MCSectionData::iterator it2 = it->begin(),
590 ie2 = it->end(); it2 != ie2; ++it2) {
591 MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
592 if (DF) {
593 for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
594 ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
595 MCFixup &Fixup = *it3;
596 uint64_t FixedValue = HandleFixup(Layout, *DF, Fixup);
597 getBackend().ApplyFixup(Fixup, DF->getContents().data(),
598 DF->getContents().size(), FixedValue);
601 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
602 if (IF) {
603 for (MCInstFragment::fixup_iterator it3 = IF->fixup_begin(),
604 ie3 = IF->fixup_end(); it3 != ie3; ++it3) {
605 MCFixup &Fixup = *it3;
606 uint64_t FixedValue = HandleFixup(Layout, *IF, Fixup);
607 getBackend().ApplyFixup(Fixup, IF->getCode().data(),
608 IF->getCode().size(), FixedValue);
614 // Write the object file.
615 getWriter().WriteObject(*this, Layout);
617 stats::ObjectBytes += OS.tell() - StartOffset;
620 bool MCAssembler::FixupNeedsRelaxation(const MCFixup &Fixup,
621 const MCFragment *DF,
622 const MCAsmLayout &Layout) const {
623 if (getRelaxAll())
624 return true;
626 // If we cannot resolve the fixup value, it requires relaxation.
627 MCValue Target;
628 uint64_t Value;
629 if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
630 return true;
632 // Otherwise, relax if the value is too big for a (signed) i8.
634 // FIXME: This is target dependent!
635 return int64_t(Value) != int64_t(int8_t(Value));
638 bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF,
639 const MCAsmLayout &Layout) const {
640 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
641 // are intentionally pushing out inst fragments, or because we relaxed a
642 // previous instruction to one that doesn't need relaxation.
643 if (!getBackend().MayNeedRelaxation(IF->getInst()))
644 return false;
646 for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
647 ie = IF->fixup_end(); it != ie; ++it)
648 if (FixupNeedsRelaxation(*it, IF, Layout))
649 return true;
651 return false;
654 bool MCAssembler::RelaxInstruction(MCAsmLayout &Layout,
655 MCInstFragment &IF) {
656 if (!FragmentNeedsRelaxation(&IF, Layout))
657 return false;
659 ++stats::RelaxedInstructions;
661 // FIXME-PERF: We could immediately lower out instructions if we can tell
662 // they are fully resolved, to avoid retesting on later passes.
664 // Relax the fragment.
666 MCInst Relaxed;
667 getBackend().RelaxInstruction(IF.getInst(), Relaxed);
669 // Encode the new instruction.
671 // FIXME-PERF: If it matters, we could let the target do this. It can
672 // probably do so more efficiently in many cases.
673 SmallVector<MCFixup, 4> Fixups;
674 SmallString<256> Code;
675 raw_svector_ostream VecOS(Code);
676 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
677 VecOS.flush();
679 // Update the instruction fragment.
680 IF.setInst(Relaxed);
681 IF.getCode() = Code;
682 IF.getFixups().clear();
683 // FIXME: Eliminate copy.
684 for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
685 IF.getFixups().push_back(Fixups[i]);
687 return true;
690 bool MCAssembler::RelaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
691 int64_t Value = 0;
692 uint64_t OldSize = LF.getContents().size();
693 LF.getValue().EvaluateAsAbsolute(Value, Layout);
694 SmallString<8> &Data = LF.getContents();
695 Data.clear();
696 raw_svector_ostream OSE(Data);
697 if (LF.isSigned())
698 MCObjectWriter::EncodeSLEB128(Value, OSE);
699 else
700 MCObjectWriter::EncodeULEB128(Value, OSE);
701 OSE.flush();
702 return OldSize != LF.getContents().size();
705 bool MCAssembler::RelaxDwarfLineAddr(MCAsmLayout &Layout,
706 MCDwarfLineAddrFragment &DF) {
707 int64_t AddrDelta = 0;
708 uint64_t OldSize = DF.getContents().size();
709 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
710 (void)IsAbs;
711 assert(IsAbs);
712 int64_t LineDelta;
713 LineDelta = DF.getLineDelta();
714 SmallString<8> &Data = DF.getContents();
715 Data.clear();
716 raw_svector_ostream OSE(Data);
717 MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE);
718 OSE.flush();
719 return OldSize != Data.size();
722 bool MCAssembler::RelaxDwarfCallFrameFragment(MCAsmLayout &Layout,
723 MCDwarfCallFrameFragment &DF) {
724 int64_t AddrDelta = 0;
725 uint64_t OldSize = DF.getContents().size();
726 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
727 (void)IsAbs;
728 assert(IsAbs);
729 SmallString<8> &Data = DF.getContents();
730 Data.clear();
731 raw_svector_ostream OSE(Data);
732 MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE);
733 OSE.flush();
734 return OldSize != Data.size();
737 bool MCAssembler::LayoutSectionOnce(MCAsmLayout &Layout,
738 MCSectionData &SD) {
739 MCFragment *FirstInvalidFragment = NULL;
740 // Scan for fragments that need relaxation.
741 for (MCSectionData::iterator it2 = SD.begin(),
742 ie2 = SD.end(); it2 != ie2; ++it2) {
743 // Check if this is an fragment that needs relaxation.
744 bool relaxedFrag = false;
745 switch(it2->getKind()) {
746 default:
747 break;
748 case MCFragment::FT_Inst:
749 relaxedFrag = RelaxInstruction(Layout, *cast<MCInstFragment>(it2));
750 break;
751 case MCFragment::FT_Dwarf:
752 relaxedFrag = RelaxDwarfLineAddr(Layout,
753 *cast<MCDwarfLineAddrFragment>(it2));
754 break;
755 case MCFragment::FT_DwarfFrame:
756 relaxedFrag =
757 RelaxDwarfCallFrameFragment(Layout,
758 *cast<MCDwarfCallFrameFragment>(it2));
759 break;
760 case MCFragment::FT_LEB:
761 relaxedFrag = RelaxLEB(Layout, *cast<MCLEBFragment>(it2));
762 break;
764 // Update the layout, and remember that we relaxed.
765 if (relaxedFrag && !FirstInvalidFragment)
766 FirstInvalidFragment = it2;
768 if (FirstInvalidFragment) {
769 Layout.Invalidate(FirstInvalidFragment);
770 return true;
772 return false;
775 bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
776 ++stats::RelaxationSteps;
778 bool WasRelaxed = false;
779 for (iterator it = begin(), ie = end(); it != ie; ++it) {
780 MCSectionData &SD = *it;
781 while(LayoutSectionOnce(Layout, SD))
782 WasRelaxed = true;
785 return WasRelaxed;
788 void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
789 // The layout is done. Mark every fragment as valid.
790 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
791 Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
795 // Debugging methods
797 namespace llvm {
799 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
800 OS << "<MCFixup" << " Offset:" << AF.getOffset()
801 << " Value:" << *AF.getValue()
802 << " Kind:" << AF.getKind() << ">";
803 return OS;
808 void MCFragment::dump() {
809 raw_ostream &OS = llvm::errs();
811 OS << "<";
812 switch (getKind()) {
813 case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
814 case MCFragment::FT_Data: OS << "MCDataFragment"; break;
815 case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
816 case MCFragment::FT_Inst: OS << "MCInstFragment"; break;
817 case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
818 case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
819 case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
820 case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
823 OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
824 << " Offset:" << Offset << ">";
826 switch (getKind()) {
827 case MCFragment::FT_Align: {
828 const MCAlignFragment *AF = cast<MCAlignFragment>(this);
829 if (AF->hasEmitNops())
830 OS << " (emit nops)";
831 OS << "\n ";
832 OS << " Alignment:" << AF->getAlignment()
833 << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
834 << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
835 break;
837 case MCFragment::FT_Data: {
838 const MCDataFragment *DF = cast<MCDataFragment>(this);
839 OS << "\n ";
840 OS << " Contents:[";
841 const SmallVectorImpl<char> &Contents = DF->getContents();
842 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
843 if (i) OS << ",";
844 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
846 OS << "] (" << Contents.size() << " bytes)";
848 if (!DF->getFixups().empty()) {
849 OS << ",\n ";
850 OS << " Fixups:[";
851 for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
852 ie = DF->fixup_end(); it != ie; ++it) {
853 if (it != DF->fixup_begin()) OS << ",\n ";
854 OS << *it;
856 OS << "]";
858 break;
860 case MCFragment::FT_Fill: {
861 const MCFillFragment *FF = cast<MCFillFragment>(this);
862 OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
863 << " Size:" << FF->getSize();
864 break;
866 case MCFragment::FT_Inst: {
867 const MCInstFragment *IF = cast<MCInstFragment>(this);
868 OS << "\n ";
869 OS << " Inst:";
870 IF->getInst().dump_pretty(OS);
871 break;
873 case MCFragment::FT_Org: {
874 const MCOrgFragment *OF = cast<MCOrgFragment>(this);
875 OS << "\n ";
876 OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
877 break;
879 case MCFragment::FT_Dwarf: {
880 const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
881 OS << "\n ";
882 OS << " AddrDelta:" << OF->getAddrDelta()
883 << " LineDelta:" << OF->getLineDelta();
884 break;
886 case MCFragment::FT_DwarfFrame: {
887 const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
888 OS << "\n ";
889 OS << " AddrDelta:" << CF->getAddrDelta();
890 break;
892 case MCFragment::FT_LEB: {
893 const MCLEBFragment *LF = cast<MCLEBFragment>(this);
894 OS << "\n ";
895 OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
896 break;
899 OS << ">";
902 void MCSectionData::dump() {
903 raw_ostream &OS = llvm::errs();
905 OS << "<MCSectionData";
906 OS << " Alignment:" << getAlignment() << " Fragments:[\n ";
907 for (iterator it = begin(), ie = end(); it != ie; ++it) {
908 if (it != begin()) OS << ",\n ";
909 it->dump();
911 OS << "]>";
914 void MCSymbolData::dump() {
915 raw_ostream &OS = llvm::errs();
917 OS << "<MCSymbolData Symbol:" << getSymbol()
918 << " Fragment:" << getFragment() << " Offset:" << getOffset()
919 << " Flags:" << getFlags() << " Index:" << getIndex();
920 if (isCommon())
921 OS << " (common, size:" << getCommonSize()
922 << " align: " << getCommonAlignment() << ")";
923 if (isExternal())
924 OS << " (external)";
925 if (isPrivateExtern())
926 OS << " (private extern)";
927 OS << ">";
930 void MCAssembler::dump() {
931 raw_ostream &OS = llvm::errs();
933 OS << "<MCAssembler\n";
934 OS << " Sections:[\n ";
935 for (iterator it = begin(), ie = end(); it != ie; ++it) {
936 if (it != begin()) OS << ",\n ";
937 it->dump();
939 OS << "],\n";
940 OS << " Symbols:[";
942 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
943 if (it != symbol_begin()) OS << ",\n ";
944 it->dump();
946 OS << "]>\n";