Revert r64616 which worked around http://gcc.gnu.org/PR42757 , we just didn't
[llvm.git] / lib / CodeGen / VirtRegRewriter.cpp
blobac001948e9ebf13be13d74d6d8ad1dd9e8885686
1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "VirtRegMap.h"
13 #include "llvm/Function.h"
14 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/ADT/DepthFirstIterator.h"
25 #include "llvm/ADT/Statistic.h"
26 #include <algorithm>
27 using namespace llvm;
29 STATISTIC(NumDSE , "Number of dead stores elided");
30 STATISTIC(NumDSS , "Number of dead spill slots removed");
31 STATISTIC(NumCommutes, "Number of instructions commuted");
32 STATISTIC(NumDRM , "Number of re-materializable defs elided");
33 STATISTIC(NumStores , "Number of stores added");
34 STATISTIC(NumPSpills , "Number of physical register spills");
35 STATISTIC(NumOmitted , "Number of reloads omited");
36 STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
37 STATISTIC(NumCopified, "Number of available reloads turned into copies");
38 STATISTIC(NumReMats , "Number of re-materialization");
39 STATISTIC(NumLoads , "Number of loads added");
40 STATISTIC(NumReused , "Number of values reused");
41 STATISTIC(NumDCE , "Number of copies elided");
42 STATISTIC(NumSUnfold , "Number of stores unfolded");
43 STATISTIC(NumModRefUnfold, "Number of modref unfolded");
45 namespace {
46 enum RewriterName { local, trivial };
49 static cl::opt<RewriterName>
50 RewriterOpt("rewriter",
51 cl::desc("Rewriter to use (default=local)"),
52 cl::Prefix,
53 cl::values(clEnumVal(local, "local rewriter"),
54 clEnumVal(trivial, "trivial rewriter"),
55 clEnumValEnd),
56 cl::init(local));
58 static cl::opt<bool>
59 ScheduleSpills("schedule-spills",
60 cl::desc("Schedule spill code"),
61 cl::init(false));
63 VirtRegRewriter::~VirtRegRewriter() {}
65 /// substitutePhysReg - Replace virtual register in MachineOperand with a
66 /// physical register. Do the right thing with the sub-register index.
67 /// Note that operands may be added, so the MO reference is no longer valid.
68 static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
69 const TargetRegisterInfo &TRI) {
70 if (unsigned SubIdx = MO.getSubReg()) {
71 // Insert the physical subreg and reset the subreg field.
72 MO.setReg(TRI.getSubReg(Reg, SubIdx));
73 MO.setSubReg(0);
75 // Any def, dead, and kill flags apply to the full virtual register, so they
76 // also apply to the full physical register. Add imp-def/dead and imp-kill
77 // as needed.
78 MachineInstr &MI = *MO.getParent();
79 if (MO.isDef())
80 if (MO.isDead())
81 MI.addRegisterDead(Reg, &TRI, /*AddIfNotFound=*/ true);
82 else
83 MI.addRegisterDefined(Reg, &TRI);
84 else if (!MO.isUndef() &&
85 (MO.isKill() ||
86 MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
87 MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
88 } else {
89 MO.setReg(Reg);
93 namespace {
95 /// This class is intended for use with the new spilling framework only. It
96 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
97 /// spill code.
98 struct TrivialRewriter : public VirtRegRewriter {
100 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
101 LiveIntervals* LIs) {
102 DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
103 DEBUG(dbgs() << "********** Function: "
104 << MF.getFunction()->getName() << '\n');
105 DEBUG(dbgs() << "**** Machine Instrs"
106 << "(NOTE! Does not include spills and reloads!) ****\n");
107 DEBUG(MF.dump());
109 MachineRegisterInfo *mri = &MF.getRegInfo();
110 const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
112 bool changed = false;
114 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
115 liItr != liEnd; ++liItr) {
117 const LiveInterval *li = liItr->second;
118 unsigned reg = li->reg;
120 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
121 if (!li->empty())
122 mri->setPhysRegUsed(reg);
124 else {
125 if (!VRM.hasPhys(reg))
126 continue;
127 unsigned pReg = VRM.getPhys(reg);
128 mri->setPhysRegUsed(pReg);
129 // Copy the register use-list before traversing it.
130 SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
131 for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
132 E = mri->reg_end(); I != E; ++I)
133 reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
134 for (unsigned N=0; N != reglist.size(); ++N)
135 substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
136 pReg, *tri);
137 changed |= !reglist.empty();
141 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
142 DEBUG(MF.dump());
144 return changed;
151 // ************************************************************************ //
153 namespace {
155 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
156 /// from top down, keep track of which spill slots or remat are available in
157 /// each register.
159 /// Note that not all physregs are created equal here. In particular, some
160 /// physregs are reloads that we are allowed to clobber or ignore at any time.
161 /// Other physregs are values that the register allocated program is using
162 /// that we cannot CHANGE, but we can read if we like. We keep track of this
163 /// on a per-stack-slot / remat id basis as the low bit in the value of the
164 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
165 /// this bit and addAvailable sets it if.
166 class AvailableSpills {
167 const TargetRegisterInfo *TRI;
168 const TargetInstrInfo *TII;
170 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
171 // or remat'ed virtual register values that are still available, due to
172 // being loaded or stored to, but not invalidated yet.
173 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
175 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
176 // indicating which stack slot values are currently held by a physreg. This
177 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
178 // physreg is modified.
179 std::multimap<unsigned, int> PhysRegsAvailable;
181 void disallowClobberPhysRegOnly(unsigned PhysReg);
183 void ClobberPhysRegOnly(unsigned PhysReg);
184 public:
185 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
186 : TRI(tri), TII(tii) {
189 /// clear - Reset the state.
190 void clear() {
191 SpillSlotsOrReMatsAvailable.clear();
192 PhysRegsAvailable.clear();
195 const TargetRegisterInfo *getRegInfo() const { return TRI; }
197 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
198 /// available in a physical register, return that PhysReg, otherwise
199 /// return 0.
200 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
201 std::map<int, unsigned>::const_iterator I =
202 SpillSlotsOrReMatsAvailable.find(Slot);
203 if (I != SpillSlotsOrReMatsAvailable.end()) {
204 return I->second >> 1; // Remove the CanClobber bit.
206 return 0;
209 /// addAvailable - Mark that the specified stack slot / remat is available
210 /// in the specified physreg. If CanClobber is true, the physreg can be
211 /// modified at any time without changing the semantics of the program.
212 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
213 // If this stack slot is thought to be available in some other physreg,
214 // remove its record.
215 ModifyStackSlotOrReMat(SlotOrReMat);
217 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
218 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
219 (unsigned)CanClobber;
221 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
222 DEBUG(dbgs() << "Remembering RM#"
223 << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
224 else
225 DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
226 DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n");
229 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
230 /// the value of the specified stackslot register if it desires. The
231 /// specified stack slot must be available in a physreg for this query to
232 /// make sense.
233 bool canClobberPhysRegForSS(int SlotOrReMat) const {
234 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
235 "Value not available!");
236 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
239 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
240 /// physical register where values for some stack slot(s) might be
241 /// available.
242 bool canClobberPhysReg(unsigned PhysReg) const {
243 std::multimap<unsigned, int>::const_iterator I =
244 PhysRegsAvailable.lower_bound(PhysReg);
245 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
246 int SlotOrReMat = I->second;
247 I++;
248 if (!canClobberPhysRegForSS(SlotOrReMat))
249 return false;
251 return true;
254 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
255 /// stackslot register. The register is still available but is no longer
256 /// allowed to be modifed.
257 void disallowClobberPhysReg(unsigned PhysReg);
259 /// ClobberPhysReg - This is called when the specified physreg changes
260 /// value. We use this to invalidate any info about stuff that lives in
261 /// it and any of its aliases.
262 void ClobberPhysReg(unsigned PhysReg);
264 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
265 /// slot changes. This removes information about which register the
266 /// previous value for this slot lives in (as the previous value is dead
267 /// now).
268 void ModifyStackSlotOrReMat(int SlotOrReMat);
270 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
271 /// into the specified MBB. Add available physical registers as potential
272 /// live-in's. If they are reused in the MBB, they will be added to the
273 /// live-in set to make register scavenger and post-allocation scheduler.
274 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
275 std::vector<MachineOperand*> &KillOps);
280 // ************************************************************************ //
282 // Given a location where a reload of a spilled register or a remat of
283 // a constant is to be inserted, attempt to find a safe location to
284 // insert the load at an earlier point in the basic-block, to hide
285 // latency of the load and to avoid address-generation interlock
286 // issues.
287 static MachineBasicBlock::iterator
288 ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
289 MachineBasicBlock::iterator const Begin,
290 unsigned PhysReg,
291 const TargetRegisterInfo *TRI,
292 bool DoReMat,
293 int SSorRMId,
294 const TargetInstrInfo *TII,
295 const MachineFunction &MF)
297 if (!ScheduleSpills)
298 return InsertLoc;
300 // Spill backscheduling is of primary interest to addresses, so
301 // don't do anything if the register isn't in the register class
302 // used for pointers.
304 const TargetLowering *TL = MF.getTarget().getTargetLowering();
306 if (!TL->isTypeLegal(TL->getPointerTy()))
307 // Believe it or not, this is true on PIC16.
308 return InsertLoc;
310 const TargetRegisterClass *ptrRegClass =
311 TL->getRegClassFor(TL->getPointerTy());
312 if (!ptrRegClass->contains(PhysReg))
313 return InsertLoc;
315 // Scan upwards through the preceding instructions. If an instruction doesn't
316 // reference the stack slot or the register we're loading, we can
317 // backschedule the reload up past it.
318 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
319 while (NewInsertLoc != Begin) {
320 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
321 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
322 MachineOperand &Op = Prev->getOperand(i);
323 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
324 goto stop;
326 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
327 Prev->findRegisterDefOperand(PhysReg))
328 goto stop;
329 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
330 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
331 Prev->findRegisterDefOperand(*Alias))
332 goto stop;
333 NewInsertLoc = Prev;
335 stop:;
337 // If we made it to the beginning of the block, turn around and move back
338 // down just past any existing reloads. They're likely to be reloads/remats
339 // for instructions earlier than what our current reload/remat is for, so
340 // they should be scheduled earlier.
341 if (NewInsertLoc == Begin) {
342 int FrameIdx;
343 while (InsertLoc != NewInsertLoc &&
344 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
345 TII->isTriviallyReMaterializable(NewInsertLoc)))
346 ++NewInsertLoc;
349 return NewInsertLoc;
352 namespace {
354 // ReusedOp - For each reused operand, we keep track of a bit of information,
355 // in case we need to rollback upon processing a new operand. See comments
356 // below.
357 struct ReusedOp {
358 // The MachineInstr operand that reused an available value.
359 unsigned Operand;
361 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
362 unsigned StackSlotOrReMat;
364 // PhysRegReused - The physical register the value was available in.
365 unsigned PhysRegReused;
367 // AssignedPhysReg - The physreg that was assigned for use by the reload.
368 unsigned AssignedPhysReg;
370 // VirtReg - The virtual register itself.
371 unsigned VirtReg;
373 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
374 unsigned vreg)
375 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
376 AssignedPhysReg(apr), VirtReg(vreg) {}
379 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
380 /// is reused instead of reloaded.
381 class ReuseInfo {
382 MachineInstr &MI;
383 std::vector<ReusedOp> Reuses;
384 BitVector PhysRegsClobbered;
385 public:
386 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
387 PhysRegsClobbered.resize(tri->getNumRegs());
390 bool hasReuses() const {
391 return !Reuses.empty();
394 /// addReuse - If we choose to reuse a virtual register that is already
395 /// available instead of reloading it, remember that we did so.
396 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
397 unsigned PhysRegReused, unsigned AssignedPhysReg,
398 unsigned VirtReg) {
399 // If the reload is to the assigned register anyway, no undo will be
400 // required.
401 if (PhysRegReused == AssignedPhysReg) return;
403 // Otherwise, remember this.
404 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
405 AssignedPhysReg, VirtReg));
408 void markClobbered(unsigned PhysReg) {
409 PhysRegsClobbered.set(PhysReg);
412 bool isClobbered(unsigned PhysReg) const {
413 return PhysRegsClobbered.test(PhysReg);
416 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
417 /// is some other operand that is using the specified register, either pick
418 /// a new register to use, or evict the previous reload and use this reg.
419 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
420 MachineFunction &MF, MachineInstr *MI,
421 AvailableSpills &Spills,
422 std::vector<MachineInstr*> &MaybeDeadStores,
423 SmallSet<unsigned, 8> &Rejected,
424 BitVector &RegKills,
425 std::vector<MachineOperand*> &KillOps,
426 VirtRegMap &VRM);
428 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
429 /// 'Rejected' set to remember which registers have been considered and
430 /// rejected for the reload. This avoids infinite looping in case like
431 /// this:
432 /// t1 := op t2, t3
433 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
434 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
435 /// t1 <- desires r1
436 /// sees r1 is taken by t2, tries t2's reload register r0
437 /// sees r0 is taken by t3, tries t3's reload register r1
438 /// sees r1 is taken by t2, tries t2's reload register r0 ...
439 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
440 AvailableSpills &Spills,
441 std::vector<MachineInstr*> &MaybeDeadStores,
442 BitVector &RegKills,
443 std::vector<MachineOperand*> &KillOps,
444 VirtRegMap &VRM) {
445 SmallSet<unsigned, 8> Rejected;
446 MachineFunction &MF = *MI->getParent()->getParent();
447 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
448 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
449 Rejected, RegKills, KillOps, VRM);
455 // ****************** //
456 // Utility Functions //
457 // ****************** //
459 /// findSinglePredSuccessor - Return via reference a vector of machine basic
460 /// blocks each of which is a successor of the specified BB and has no other
461 /// predecessor.
462 static void findSinglePredSuccessor(MachineBasicBlock *MBB,
463 SmallVectorImpl<MachineBasicBlock *> &Succs) {
464 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
465 SE = MBB->succ_end(); SI != SE; ++SI) {
466 MachineBasicBlock *SuccMBB = *SI;
467 if (SuccMBB->pred_size() == 1)
468 Succs.push_back(SuccMBB);
472 /// InvalidateKill - Invalidate register kill information for a specific
473 /// register. This also unsets the kills marker on the last kill operand.
474 static void InvalidateKill(unsigned Reg,
475 const TargetRegisterInfo* TRI,
476 BitVector &RegKills,
477 std::vector<MachineOperand*> &KillOps) {
478 if (RegKills[Reg]) {
479 KillOps[Reg]->setIsKill(false);
480 // KillOps[Reg] might be a def of a super-register.
481 unsigned KReg = KillOps[Reg]->getReg();
482 KillOps[KReg] = NULL;
483 RegKills.reset(KReg);
484 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
485 if (RegKills[*SR]) {
486 KillOps[*SR]->setIsKill(false);
487 KillOps[*SR] = NULL;
488 RegKills.reset(*SR);
494 /// InvalidateKills - MI is going to be deleted. If any of its operands are
495 /// marked kill, then invalidate the information.
496 static void InvalidateKills(MachineInstr &MI,
497 const TargetRegisterInfo* TRI,
498 BitVector &RegKills,
499 std::vector<MachineOperand*> &KillOps,
500 SmallVector<unsigned, 2> *KillRegs = NULL) {
501 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
502 MachineOperand &MO = MI.getOperand(i);
503 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
504 continue;
505 unsigned Reg = MO.getReg();
506 if (TargetRegisterInfo::isVirtualRegister(Reg))
507 continue;
508 if (KillRegs)
509 KillRegs->push_back(Reg);
510 assert(Reg < KillOps.size());
511 if (KillOps[Reg] == &MO) {
512 KillOps[Reg] = NULL;
513 RegKills.reset(Reg);
514 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
515 if (RegKills[*SR]) {
516 KillOps[*SR] = NULL;
517 RegKills.reset(*SR);
524 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
525 /// (since its spill instruction is removed), mark it isDead. Also checks if
526 /// the def MI has other definition operands that are not dead. Returns it by
527 /// reference.
528 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
529 MachineInstr &NewDef, unsigned Reg,
530 bool &HasLiveDef,
531 const TargetRegisterInfo *TRI) {
532 // Due to remat, it's possible this reg isn't being reused. That is,
533 // the def of this reg (by prev MI) is now dead.
534 MachineInstr *DefMI = I;
535 MachineOperand *DefOp = NULL;
536 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
537 MachineOperand &MO = DefMI->getOperand(i);
538 if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
539 continue;
540 if (MO.getReg() == Reg)
541 DefOp = &MO;
542 else if (!MO.isDead())
543 HasLiveDef = true;
545 if (!DefOp)
546 return false;
548 bool FoundUse = false, Done = false;
549 MachineBasicBlock::iterator E = &NewDef;
550 ++I; ++E;
551 for (; !Done && I != E; ++I) {
552 MachineInstr *NMI = I;
553 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
554 MachineOperand &MO = NMI->getOperand(j);
555 if (!MO.isReg() || MO.getReg() == 0 ||
556 (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
557 continue;
558 if (MO.isUse())
559 FoundUse = true;
560 Done = true; // Stop after scanning all the operands of this MI.
563 if (!FoundUse) {
564 // Def is dead!
565 DefOp->setIsDead();
566 return true;
568 return false;
571 /// UpdateKills - Track and update kill info. If a MI reads a register that is
572 /// marked kill, then it must be due to register reuse. Transfer the kill info
573 /// over.
574 static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
575 BitVector &RegKills,
576 std::vector<MachineOperand*> &KillOps) {
577 // These do not affect kill info at all.
578 if (MI.isDebugValue())
579 return;
580 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
581 MachineOperand &MO = MI.getOperand(i);
582 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
583 continue;
584 unsigned Reg = MO.getReg();
585 if (Reg == 0)
586 continue;
588 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
589 // That can't be right. Register is killed but not re-defined and it's
590 // being reused. Let's fix that.
591 KillOps[Reg]->setIsKill(false);
592 // KillOps[Reg] might be a def of a super-register.
593 unsigned KReg = KillOps[Reg]->getReg();
594 KillOps[KReg] = NULL;
595 RegKills.reset(KReg);
597 // Must be a def of a super-register. Its other sub-regsters are no
598 // longer killed as well.
599 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
600 KillOps[*SR] = NULL;
601 RegKills.reset(*SR);
603 } else {
604 // Check for subreg kills as well.
605 // d4 =
606 // store d4, fi#0
607 // ...
608 // = s8<kill>
609 // ...
610 // = d4 <avoiding reload>
611 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
612 unsigned SReg = *SR;
613 if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) {
614 KillOps[SReg]->setIsKill(false);
615 unsigned KReg = KillOps[SReg]->getReg();
616 KillOps[KReg] = NULL;
617 RegKills.reset(KReg);
619 for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) {
620 KillOps[*SSR] = NULL;
621 RegKills.reset(*SSR);
627 if (MO.isKill()) {
628 RegKills.set(Reg);
629 KillOps[Reg] = &MO;
630 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
631 RegKills.set(*SR);
632 KillOps[*SR] = &MO;
637 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
638 const MachineOperand &MO = MI.getOperand(i);
639 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
640 continue;
641 unsigned Reg = MO.getReg();
642 RegKills.reset(Reg);
643 KillOps[Reg] = NULL;
644 // It also defines (or partially define) aliases.
645 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
646 RegKills.reset(*SR);
647 KillOps[*SR] = NULL;
649 for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
650 RegKills.reset(*SR);
651 KillOps[*SR] = NULL;
656 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
658 static void ReMaterialize(MachineBasicBlock &MBB,
659 MachineBasicBlock::iterator &MII,
660 unsigned DestReg, unsigned Reg,
661 const TargetInstrInfo *TII,
662 const TargetRegisterInfo *TRI,
663 VirtRegMap &VRM) {
664 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
665 #ifndef NDEBUG
666 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
667 assert(TID.getNumDefs() == 1 &&
668 "Don't know how to remat instructions that define > 1 values!");
669 #endif
670 TII->reMaterialize(MBB, MII, DestReg,
671 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI, TRI);
672 MachineInstr *NewMI = prior(MII);
673 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
674 MachineOperand &MO = NewMI->getOperand(i);
675 if (!MO.isReg() || MO.getReg() == 0)
676 continue;
677 unsigned VirtReg = MO.getReg();
678 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
679 continue;
680 assert(MO.isUse());
681 unsigned Phys = VRM.getPhys(VirtReg);
682 assert(Phys && "Virtual register is not assigned a register?");
683 substitutePhysReg(MO, Phys, *TRI);
685 ++NumReMats;
688 /// findSuperReg - Find the SubReg's super-register of given register class
689 /// where its SubIdx sub-register is SubReg.
690 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
691 unsigned SubIdx, const TargetRegisterInfo *TRI) {
692 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
693 I != E; ++I) {
694 unsigned Reg = *I;
695 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
696 return Reg;
698 return 0;
701 // ******************************** //
702 // Available Spills Implementation //
703 // ******************************** //
705 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
706 /// stackslot register. The register is still available but is no longer
707 /// allowed to be modifed.
708 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
709 std::multimap<unsigned, int>::iterator I =
710 PhysRegsAvailable.lower_bound(PhysReg);
711 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
712 int SlotOrReMat = I->second;
713 I++;
714 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
715 "Bidirectional map mismatch!");
716 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
717 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
718 << " copied, it is available for use but can no longer be modified\n");
722 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
723 /// stackslot register and its aliases. The register and its aliases may
724 /// still available but is no longer allowed to be modifed.
725 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
726 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
727 disallowClobberPhysRegOnly(*AS);
728 disallowClobberPhysRegOnly(PhysReg);
731 /// ClobberPhysRegOnly - This is called when the specified physreg changes
732 /// value. We use this to invalidate any info about stuff we thing lives in it.
733 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
734 std::multimap<unsigned, int>::iterator I =
735 PhysRegsAvailable.lower_bound(PhysReg);
736 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
737 int SlotOrReMat = I->second;
738 PhysRegsAvailable.erase(I++);
739 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
740 "Bidirectional map mismatch!");
741 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
742 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
743 << " clobbered, invalidating ");
744 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
745 DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
746 else
747 DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
751 /// ClobberPhysReg - This is called when the specified physreg changes
752 /// value. We use this to invalidate any info about stuff we thing lives in
753 /// it and any of its aliases.
754 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
755 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
756 ClobberPhysRegOnly(*AS);
757 ClobberPhysRegOnly(PhysReg);
760 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
761 /// into the specified MBB. Add available physical registers as potential
762 /// live-in's. If they are reused in the MBB, they will be added to the
763 /// live-in set to make register scavenger and post-allocation scheduler.
764 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
765 BitVector &RegKills,
766 std::vector<MachineOperand*> &KillOps) {
767 std::set<unsigned> NotAvailable;
768 for (std::multimap<unsigned, int>::iterator
769 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
770 I != E; ++I) {
771 unsigned Reg = I->first;
772 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
773 // FIXME: A temporary workaround. We can't reuse available value if it's
774 // not safe to move the def of the virtual register's class. e.g.
775 // X86::RFP* register classes. Do not add it as a live-in.
776 if (!TII->isSafeToMoveRegClassDefs(RC))
777 // This is no longer available.
778 NotAvailable.insert(Reg);
779 else {
780 MBB.addLiveIn(Reg);
781 InvalidateKill(Reg, TRI, RegKills, KillOps);
784 // Skip over the same register.
785 std::multimap<unsigned, int>::iterator NI = llvm::next(I);
786 while (NI != E && NI->first == Reg) {
787 ++I;
788 ++NI;
792 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
793 E = NotAvailable.end(); I != E; ++I) {
794 ClobberPhysReg(*I);
795 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
796 *SubRegs; ++SubRegs)
797 ClobberPhysReg(*SubRegs);
801 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
802 /// slot changes. This removes information about which register the previous
803 /// value for this slot lives in (as the previous value is dead now).
804 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
805 std::map<int, unsigned>::iterator It =
806 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
807 if (It == SpillSlotsOrReMatsAvailable.end()) return;
808 unsigned Reg = It->second >> 1;
809 SpillSlotsOrReMatsAvailable.erase(It);
811 // This register may hold the value of multiple stack slots, only remove this
812 // stack slot from the set of values the register contains.
813 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
814 for (; ; ++I) {
815 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
816 "Map inverse broken!");
817 if (I->second == SlotOrReMat) break;
819 PhysRegsAvailable.erase(I);
822 // ************************** //
823 // Reuse Info Implementation //
824 // ************************** //
826 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
827 /// is some other operand that is using the specified register, either pick
828 /// a new register to use, or evict the previous reload and use this reg.
829 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
830 unsigned PhysReg,
831 MachineFunction &MF,
832 MachineInstr *MI, AvailableSpills &Spills,
833 std::vector<MachineInstr*> &MaybeDeadStores,
834 SmallSet<unsigned, 8> &Rejected,
835 BitVector &RegKills,
836 std::vector<MachineOperand*> &KillOps,
837 VirtRegMap &VRM) {
838 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
839 const TargetRegisterInfo *TRI = Spills.getRegInfo();
841 if (Reuses.empty()) return PhysReg; // This is most often empty.
843 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
844 ReusedOp &Op = Reuses[ro];
845 // If we find some other reuse that was supposed to use this register
846 // exactly for its reload, we can change this reload to use ITS reload
847 // register. That is, unless its reload register has already been
848 // considered and subsequently rejected because it has also been reused
849 // by another operand.
850 if (Op.PhysRegReused == PhysReg &&
851 Rejected.count(Op.AssignedPhysReg) == 0 &&
852 RC->contains(Op.AssignedPhysReg)) {
853 // Yup, use the reload register that we didn't use before.
854 unsigned NewReg = Op.AssignedPhysReg;
855 Rejected.insert(PhysReg);
856 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
857 RegKills, KillOps, VRM);
858 } else {
859 // Otherwise, we might also have a problem if a previously reused
860 // value aliases the new register. If so, codegen the previous reload
861 // and use this one.
862 unsigned PRRU = Op.PhysRegReused;
863 if (TRI->regsOverlap(PRRU, PhysReg)) {
864 // Okay, we found out that an alias of a reused register
865 // was used. This isn't good because it means we have
866 // to undo a previous reuse.
867 MachineBasicBlock *MBB = MI->getParent();
868 const TargetRegisterClass *AliasRC =
869 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
871 // Copy Op out of the vector and remove it, we're going to insert an
872 // explicit load for it.
873 ReusedOp NewOp = Op;
874 Reuses.erase(Reuses.begin()+ro);
876 // MI may be using only a sub-register of PhysRegUsed.
877 unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
878 unsigned SubIdx = 0;
879 assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
880 "A reuse cannot be a virtual register");
881 if (PRRU != RealPhysRegUsed) {
882 // What was the sub-register index?
883 SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
884 assert(SubIdx &&
885 "Operand physreg is not a sub-register of PhysRegUsed");
888 // Ok, we're going to try to reload the assigned physreg into the
889 // slot that we were supposed to in the first place. However, that
890 // register could hold a reuse. Check to see if it conflicts or
891 // would prefer us to use a different register.
892 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
893 MF, MI, Spills, MaybeDeadStores,
894 Rejected, RegKills, KillOps, VRM);
896 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
897 int SSorRMId = DoReMat
898 ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;
900 // Back-schedule reloads and remats.
901 MachineBasicBlock::iterator InsertLoc =
902 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
903 DoReMat, SSorRMId, TII, MF);
905 if (DoReMat) {
906 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
907 TRI, VRM);
908 } else {
909 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
910 NewOp.StackSlotOrReMat, AliasRC);
911 MachineInstr *LoadMI = prior(InsertLoc);
912 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
913 // Any stores to this stack slot are not dead anymore.
914 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
915 ++NumLoads;
917 Spills.ClobberPhysReg(NewPhysReg);
918 Spills.ClobberPhysReg(NewOp.PhysRegReused);
920 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
921 MI->getOperand(NewOp.Operand).setReg(RReg);
922 MI->getOperand(NewOp.Operand).setSubReg(0);
924 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
925 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
926 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
928 DEBUG(dbgs() << "Reuse undone!\n");
929 --NumReused;
931 // Finally, PhysReg is now available, go ahead and use it.
932 return PhysReg;
936 return PhysReg;
939 // ************************************************************************ //
941 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
942 /// stack slot mod/ref. It also checks if it's possible to unfold the
943 /// instruction by having it define a specified physical register instead.
944 static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
945 const TargetInstrInfo *TII,
946 const TargetRegisterInfo *TRI,
947 VirtRegMap &VRM) {
948 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
949 return false;
951 bool Found = false;
952 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
953 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
954 unsigned VirtReg = I->second.first;
955 VirtRegMap::ModRef MR = I->second.second;
956 if (MR & VirtRegMap::isModRef)
957 if (VRM.getStackSlot(VirtReg) == SS) {
958 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
959 break;
962 if (!Found)
963 return false;
965 // Does the instruction uses a register that overlaps the scratch register?
966 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
967 MachineOperand &MO = MI.getOperand(i);
968 if (!MO.isReg() || MO.getReg() == 0)
969 continue;
970 unsigned Reg = MO.getReg();
971 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
972 if (!VRM.hasPhys(Reg))
973 continue;
974 Reg = VRM.getPhys(Reg);
976 if (TRI->regsOverlap(PhysReg, Reg))
977 return false;
979 return true;
982 /// FindFreeRegister - Find a free register of a given register class by looking
983 /// at (at most) the last two machine instructions.
984 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
985 MachineBasicBlock &MBB,
986 const TargetRegisterClass *RC,
987 const TargetRegisterInfo *TRI,
988 BitVector &AllocatableRegs) {
989 BitVector Defs(TRI->getNumRegs());
990 BitVector Uses(TRI->getNumRegs());
991 SmallVector<unsigned, 4> LocalUses;
992 SmallVector<unsigned, 4> Kills;
994 // Take a look at 2 instructions at most.
995 unsigned Count = 0;
996 while (Count < 2) {
997 if (MII == MBB.begin())
998 break;
999 MachineInstr *PrevMI = prior(MII);
1000 MII = PrevMI;
1002 if (PrevMI->isDebugValue())
1003 continue; // Skip over dbg_value instructions.
1004 ++Count;
1006 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
1007 MachineOperand &MO = PrevMI->getOperand(i);
1008 if (!MO.isReg() || MO.getReg() == 0)
1009 continue;
1010 unsigned Reg = MO.getReg();
1011 if (MO.isDef()) {
1012 Defs.set(Reg);
1013 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1014 Defs.set(*AS);
1015 } else {
1016 LocalUses.push_back(Reg);
1017 if (MO.isKill() && AllocatableRegs[Reg])
1018 Kills.push_back(Reg);
1022 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
1023 unsigned Kill = Kills[i];
1024 if (!Defs[Kill] && !Uses[Kill] &&
1025 TRI->getPhysicalRegisterRegClass(Kill) == RC)
1026 return Kill;
1028 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
1029 unsigned Reg = LocalUses[i];
1030 Uses.set(Reg);
1031 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1032 Uses.set(*AS);
1036 return 0;
1039 static
1040 void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
1041 const TargetRegisterInfo &TRI) {
1042 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1043 MachineOperand &MO = MI->getOperand(i);
1044 if (MO.isReg() && MO.getReg() == VirtReg)
1045 substitutePhysReg(MO, PhysReg, TRI);
1049 namespace {
1051 struct RefSorter {
1052 bool operator()(const std::pair<MachineInstr*, int> &A,
1053 const std::pair<MachineInstr*, int> &B) {
1054 return A.second < B.second;
1058 // ***************************** //
1059 // Local Spiller Implementation //
1060 // ***************************** //
1062 class LocalRewriter : public VirtRegRewriter {
1063 MachineRegisterInfo *MRI;
1064 const TargetRegisterInfo *TRI;
1065 const TargetInstrInfo *TII;
1066 VirtRegMap *VRM;
1067 BitVector AllocatableRegs;
1068 DenseMap<MachineInstr*, unsigned> DistanceMap;
1070 MachineBasicBlock *MBB; // Basic block currently being processed.
1072 public:
1074 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
1075 LiveIntervals* LIs);
1077 private:
1079 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1080 MachineBasicBlock::iterator &MII,
1081 std::vector<MachineInstr*> &MaybeDeadStores,
1082 AvailableSpills &Spills,
1083 BitVector &RegKills,
1084 std::vector<MachineOperand*> &KillOps);
1086 bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
1087 std::vector<MachineInstr*> &MaybeDeadStores,
1088 AvailableSpills &Spills,
1089 BitVector &RegKills,
1090 std::vector<MachineOperand*> &KillOps);
1092 bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
1093 unsigned VirtReg, unsigned SrcReg, int SS,
1094 AvailableSpills &Spills,
1095 BitVector &RegKills,
1096 std::vector<MachineOperand*> &KillOps,
1097 const TargetRegisterInfo *TRI);
1099 void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
1100 int Idx, unsigned PhysReg, int StackSlot,
1101 const TargetRegisterClass *RC,
1102 bool isAvailable, MachineInstr *&LastStore,
1103 AvailableSpills &Spills,
1104 SmallSet<MachineInstr*, 4> &ReMatDefs,
1105 BitVector &RegKills,
1106 std::vector<MachineOperand*> &KillOps);
1108 void TransferDeadness(unsigned Reg, BitVector &RegKills,
1109 std::vector<MachineOperand*> &KillOps);
1111 bool InsertEmergencySpills(MachineInstr *MI);
1113 bool InsertRestores(MachineInstr *MI,
1114 AvailableSpills &Spills,
1115 BitVector &RegKills,
1116 std::vector<MachineOperand*> &KillOps);
1118 bool InsertSpills(MachineInstr *MI);
1120 void RewriteMBB(LiveIntervals *LIs,
1121 AvailableSpills &Spills, BitVector &RegKills,
1122 std::vector<MachineOperand*> &KillOps);
1126 bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
1127 LiveIntervals* LIs) {
1128 MRI = &MF.getRegInfo();
1129 TRI = MF.getTarget().getRegisterInfo();
1130 TII = MF.getTarget().getInstrInfo();
1131 VRM = &vrm;
1132 AllocatableRegs = TRI->getAllocatableSet(MF);
1133 DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
1134 << MF.getFunction()->getName() << "':\n");
1135 DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
1136 " reloads!) ****\n");
1137 DEBUG(MF.dump());
1139 // Spills - Keep track of which spilled values are available in physregs
1140 // so that we can choose to reuse the physregs instead of emitting
1141 // reloads. This is usually refreshed per basic block.
1142 AvailableSpills Spills(TRI, TII);
1144 // Keep track of kill information.
1145 BitVector RegKills(TRI->getNumRegs());
1146 std::vector<MachineOperand*> KillOps;
1147 KillOps.resize(TRI->getNumRegs(), NULL);
1149 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1150 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1151 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1153 // Traverse the basic blocks depth first.
1154 MachineBasicBlock *Entry = MF.begin();
1155 SmallPtrSet<MachineBasicBlock*,16> Visited;
1156 for (df_ext_iterator<MachineBasicBlock*,
1157 SmallPtrSet<MachineBasicBlock*,16> >
1158 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1159 DFI != E; ++DFI) {
1160 MBB = *DFI;
1161 if (!EarlyVisited.count(MBB))
1162 RewriteMBB(LIs, Spills, RegKills, KillOps);
1164 // If this MBB is the only predecessor of a successor. Keep the
1165 // availability information and visit it next.
1166 do {
1167 // Keep visiting single predecessor successor as long as possible.
1168 SinglePredSuccs.clear();
1169 findSinglePredSuccessor(MBB, SinglePredSuccs);
1170 if (SinglePredSuccs.empty())
1171 MBB = 0;
1172 else {
1173 // FIXME: More than one successors, each of which has MBB has
1174 // the only predecessor.
1175 MBB = SinglePredSuccs[0];
1176 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1177 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1178 RewriteMBB(LIs, Spills, RegKills, KillOps);
1181 } while (MBB);
1183 // Clear the availability info.
1184 Spills.clear();
1187 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
1188 DEBUG(MF.dump());
1190 // Mark unused spill slots.
1191 MachineFrameInfo *MFI = MF.getFrameInfo();
1192 int SS = VRM->getLowSpillSlot();
1193 if (SS != VirtRegMap::NO_STACK_SLOT)
1194 for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS)
1195 if (!VRM->isSpillSlotUsed(SS)) {
1196 MFI->RemoveStackObject(SS);
1197 ++NumDSS;
1200 return true;
1203 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1204 /// a scratch register is available.
1205 /// xorq %r12<kill>, %r13
1206 /// addq %rax, -184(%rbp)
1207 /// addq %r13, -184(%rbp)
1208 /// ==>
1209 /// xorq %r12<kill>, %r13
1210 /// movq -184(%rbp), %r12
1211 /// addq %rax, %r12
1212 /// addq %r13, %r12
1213 /// movq %r12, -184(%rbp)
1214 bool LocalRewriter::
1215 OptimizeByUnfold2(unsigned VirtReg, int SS,
1216 MachineBasicBlock::iterator &MII,
1217 std::vector<MachineInstr*> &MaybeDeadStores,
1218 AvailableSpills &Spills,
1219 BitVector &RegKills,
1220 std::vector<MachineOperand*> &KillOps) {
1222 MachineBasicBlock::iterator NextMII = llvm::next(MII);
1223 // Skip over dbg_value instructions.
1224 while (NextMII != MBB->end() && NextMII->isDebugValue())
1225 NextMII = llvm::next(NextMII);
1226 if (NextMII == MBB->end())
1227 return false;
1229 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1230 return false;
1232 // Now let's see if the last couple of instructions happens to have freed up
1233 // a register.
1234 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1235 unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
1236 if (!PhysReg)
1237 return false;
1239 MachineFunction &MF = *MBB->getParent();
1240 TRI = MF.getTarget().getRegisterInfo();
1241 MachineInstr &MI = *MII;
1242 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
1243 return false;
1245 // If the next instruction also folds the same SS modref and can be unfoled,
1246 // then it's worthwhile to issue a load from SS into the free register and
1247 // then unfold these instructions.
1248 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
1249 return false;
1251 // Back-schedule reloads and remats.
1252 ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
1254 // Load from SS to the spare physical register.
1255 TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC);
1256 // This invalidates Phys.
1257 Spills.ClobberPhysReg(PhysReg);
1258 // Remember it's available.
1259 Spills.addAvailable(SS, PhysReg);
1260 MaybeDeadStores[SS] = NULL;
1262 // Unfold current MI.
1263 SmallVector<MachineInstr*, 4> NewMIs;
1264 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1265 llvm_unreachable("Unable unfold the load / store folding instruction!");
1266 assert(NewMIs.size() == 1);
1267 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1268 VRM->transferRestorePts(&MI, NewMIs[0]);
1269 MII = MBB->insert(MII, NewMIs[0]);
1270 InvalidateKills(MI, TRI, RegKills, KillOps);
1271 VRM->RemoveMachineInstrFromMaps(&MI);
1272 MBB->erase(&MI);
1273 ++NumModRefUnfold;
1275 // Unfold next instructions that fold the same SS.
1276 do {
1277 MachineInstr &NextMI = *NextMII;
1278 NextMII = llvm::next(NextMII);
1279 NewMIs.clear();
1280 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1281 llvm_unreachable("Unable unfold the load / store folding instruction!");
1282 assert(NewMIs.size() == 1);
1283 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1284 VRM->transferRestorePts(&NextMI, NewMIs[0]);
1285 MBB->insert(NextMII, NewMIs[0]);
1286 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1287 VRM->RemoveMachineInstrFromMaps(&NextMI);
1288 MBB->erase(&NextMI);
1289 ++NumModRefUnfold;
1290 // Skip over dbg_value instructions.
1291 while (NextMII != MBB->end() && NextMII->isDebugValue())
1292 NextMII = llvm::next(NextMII);
1293 if (NextMII == MBB->end())
1294 break;
1295 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
1297 // Store the value back into SS.
1298 TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC);
1299 MachineInstr *StoreMI = prior(NextMII);
1300 VRM->addSpillSlotUse(SS, StoreMI);
1301 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1303 return true;
1306 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1307 /// instruction. e.g.
1308 /// xorl %edi, %eax
1309 /// movl %eax, -32(%ebp)
1310 /// movl -36(%ebp), %eax
1311 /// orl %eax, -32(%ebp)
1312 /// ==>
1313 /// xorl %edi, %eax
1314 /// orl -36(%ebp), %eax
1315 /// mov %eax, -32(%ebp)
1316 /// This enables unfolding optimization for a subsequent instruction which will
1317 /// also eliminate the newly introduced store instruction.
1318 bool LocalRewriter::
1319 OptimizeByUnfold(MachineBasicBlock::iterator &MII,
1320 std::vector<MachineInstr*> &MaybeDeadStores,
1321 AvailableSpills &Spills,
1322 BitVector &RegKills,
1323 std::vector<MachineOperand*> &KillOps) {
1324 MachineFunction &MF = *MBB->getParent();
1325 MachineInstr &MI = *MII;
1326 unsigned UnfoldedOpc = 0;
1327 unsigned UnfoldPR = 0;
1328 unsigned UnfoldVR = 0;
1329 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1330 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1331 for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
1332 // Only transform a MI that folds a single register.
1333 if (UnfoldedOpc)
1334 return false;
1335 UnfoldVR = I->second.first;
1336 VirtRegMap::ModRef MR = I->second.second;
1337 // MI2VirtMap be can updated which invalidate the iterator.
1338 // Increment the iterator first.
1339 ++I;
1340 if (VRM->isAssignedReg(UnfoldVR))
1341 continue;
1342 // If this reference is not a use, any previous store is now dead.
1343 // Otherwise, the store to this stack slot is not dead anymore.
1344 FoldedSS = VRM->getStackSlot(UnfoldVR);
1345 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1346 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1347 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1348 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1349 continue;
1350 UnfoldPR = PhysReg;
1351 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1352 false, true);
1356 if (!UnfoldedOpc) {
1357 if (!UnfoldVR)
1358 return false;
1360 // Look for other unfolding opportunities.
1361 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
1362 RegKills, KillOps);
1365 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1366 MachineOperand &MO = MI.getOperand(i);
1367 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1368 continue;
1369 unsigned VirtReg = MO.getReg();
1370 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1371 continue;
1372 if (VRM->isAssignedReg(VirtReg)) {
1373 unsigned PhysReg = VRM->getPhys(VirtReg);
1374 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1375 return false;
1376 } else if (VRM->isReMaterialized(VirtReg))
1377 continue;
1378 int SS = VRM->getStackSlot(VirtReg);
1379 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1380 if (PhysReg) {
1381 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1382 return false;
1383 continue;
1385 if (VRM->hasPhys(VirtReg)) {
1386 PhysReg = VRM->getPhys(VirtReg);
1387 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1388 continue;
1391 // Ok, we'll need to reload the value into a register which makes
1392 // it impossible to perform the store unfolding optimization later.
1393 // Let's see if it is possible to fold the load if the store is
1394 // unfolded. This allows us to perform the store unfolding
1395 // optimization.
1396 SmallVector<MachineInstr*, 4> NewMIs;
1397 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1398 assert(NewMIs.size() == 1);
1399 MachineInstr *NewMI = NewMIs.back();
1400 NewMIs.clear();
1401 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1402 assert(Idx != -1);
1403 SmallVector<unsigned, 1> Ops;
1404 Ops.push_back(Idx);
1405 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1406 if (FoldedMI) {
1407 VRM->addSpillSlotUse(SS, FoldedMI);
1408 if (!VRM->hasPhys(UnfoldVR))
1409 VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
1410 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1411 MII = MBB->insert(MII, FoldedMI);
1412 InvalidateKills(MI, TRI, RegKills, KillOps);
1413 VRM->RemoveMachineInstrFromMaps(&MI);
1414 MBB->erase(&MI);
1415 MF.DeleteMachineInstr(NewMI);
1416 return true;
1418 MF.DeleteMachineInstr(NewMI);
1422 return false;
1425 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1426 /// where SrcReg is r1 and it is tied to r0. Return true if after
1427 /// commuting this instruction it will be r0 = op r2, r1.
1428 static bool CommuteChangesDestination(MachineInstr *DefMI,
1429 const TargetInstrDesc &TID,
1430 unsigned SrcReg,
1431 const TargetInstrInfo *TII,
1432 unsigned &DstIdx) {
1433 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1434 return false;
1435 if (!DefMI->getOperand(1).isReg() ||
1436 DefMI->getOperand(1).getReg() != SrcReg)
1437 return false;
1438 unsigned DefIdx;
1439 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1440 return false;
1441 unsigned SrcIdx1, SrcIdx2;
1442 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1443 return false;
1444 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1445 DstIdx = 2;
1446 return true;
1448 return false;
1451 /// CommuteToFoldReload -
1452 /// Look for
1453 /// r1 = load fi#1
1454 /// r1 = op r1, r2<kill>
1455 /// store r1, fi#1
1457 /// If op is commutable and r2 is killed, then we can xform these to
1458 /// r2 = op r2, fi#1
1459 /// store r2, fi#1
1460 bool LocalRewriter::
1461 CommuteToFoldReload(MachineBasicBlock::iterator &MII,
1462 unsigned VirtReg, unsigned SrcReg, int SS,
1463 AvailableSpills &Spills,
1464 BitVector &RegKills,
1465 std::vector<MachineOperand*> &KillOps,
1466 const TargetRegisterInfo *TRI) {
1467 if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
1468 return false;
1470 MachineFunction &MF = *MBB->getParent();
1471 MachineInstr &MI = *MII;
1472 MachineBasicBlock::iterator DefMII = prior(MII);
1473 MachineInstr *DefMI = DefMII;
1474 const TargetInstrDesc &TID = DefMI->getDesc();
1475 unsigned NewDstIdx;
1476 if (DefMII != MBB->begin() &&
1477 TID.isCommutable() &&
1478 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1479 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1480 unsigned NewReg = NewDstMO.getReg();
1481 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1482 return false;
1483 MachineInstr *ReloadMI = prior(DefMII);
1484 int FrameIdx;
1485 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1486 if (DestReg != SrcReg || FrameIdx != SS)
1487 return false;
1488 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1489 if (UseIdx == -1)
1490 return false;
1491 unsigned DefIdx;
1492 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1493 return false;
1494 assert(DefMI->getOperand(DefIdx).isReg() &&
1495 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1497 // Now commute def instruction.
1498 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1499 if (!CommutedMI)
1500 return false;
1501 SmallVector<unsigned, 1> Ops;
1502 Ops.push_back(NewDstIdx);
1503 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1504 // Not needed since foldMemoryOperand returns new MI.
1505 MF.DeleteMachineInstr(CommutedMI);
1506 if (!FoldedMI)
1507 return false;
1509 VRM->addSpillSlotUse(SS, FoldedMI);
1510 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1511 // Insert new def MI and spill MI.
1512 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1513 TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC);
1514 MII = prior(MII);
1515 MachineInstr *StoreMI = MII;
1516 VRM->addSpillSlotUse(SS, StoreMI);
1517 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1518 MII = MBB->insert(MII, FoldedMI); // Update MII to backtrack.
1520 // Delete all 3 old instructions.
1521 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1522 VRM->RemoveMachineInstrFromMaps(ReloadMI);
1523 MBB->erase(ReloadMI);
1524 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1525 VRM->RemoveMachineInstrFromMaps(DefMI);
1526 MBB->erase(DefMI);
1527 InvalidateKills(MI, TRI, RegKills, KillOps);
1528 VRM->RemoveMachineInstrFromMaps(&MI);
1529 MBB->erase(&MI);
1531 // If NewReg was previously holding value of some SS, it's now clobbered.
1532 // This has to be done now because it's a physical register. When this
1533 // instruction is re-visited, it's ignored.
1534 Spills.ClobberPhysReg(NewReg);
1536 ++NumCommutes;
1537 return true;
1540 return false;
1543 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1544 /// the last store to the same slot is now dead. If so, remove the last store.
1545 void LocalRewriter::
1546 SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
1547 int Idx, unsigned PhysReg, int StackSlot,
1548 const TargetRegisterClass *RC,
1549 bool isAvailable, MachineInstr *&LastStore,
1550 AvailableSpills &Spills,
1551 SmallSet<MachineInstr*, 4> &ReMatDefs,
1552 BitVector &RegKills,
1553 std::vector<MachineOperand*> &KillOps) {
1555 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1556 TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC);
1557 MachineInstr *StoreMI = prior(oldNextMII);
1558 VRM->addSpillSlotUse(StackSlot, StoreMI);
1559 DEBUG(dbgs() << "Store:\t" << *StoreMI);
1561 // If there is a dead store to this stack slot, nuke it now.
1562 if (LastStore) {
1563 DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
1564 ++NumDSE;
1565 SmallVector<unsigned, 2> KillRegs;
1566 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1567 MachineBasicBlock::iterator PrevMII = LastStore;
1568 bool CheckDef = PrevMII != MBB->begin();
1569 if (CheckDef)
1570 --PrevMII;
1571 VRM->RemoveMachineInstrFromMaps(LastStore);
1572 MBB->erase(LastStore);
1573 if (CheckDef) {
1574 // Look at defs of killed registers on the store. Mark the defs
1575 // as dead since the store has been deleted and they aren't
1576 // being reused.
1577 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1578 bool HasOtherDef = false;
1579 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
1580 MachineInstr *DeadDef = PrevMII;
1581 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1582 // FIXME: This assumes a remat def does not have side effects.
1583 VRM->RemoveMachineInstrFromMaps(DeadDef);
1584 MBB->erase(DeadDef);
1585 ++NumDRM;
1592 // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
1593 // the last of multiple instructions is the actual store.
1594 LastStore = prior(oldNextMII);
1596 // If the stack slot value was previously available in some other
1597 // register, change it now. Otherwise, make the register available,
1598 // in PhysReg.
1599 Spills.ModifyStackSlotOrReMat(StackSlot);
1600 Spills.ClobberPhysReg(PhysReg);
1601 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1602 ++NumStores;
1605 /// isSafeToDelete - Return true if this instruction doesn't produce any side
1606 /// effect and all of its defs are dead.
1607 static bool isSafeToDelete(MachineInstr &MI) {
1608 const TargetInstrDesc &TID = MI.getDesc();
1609 if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
1610 TID.isCall() || TID.isBarrier() || TID.isReturn() ||
1611 TID.hasUnmodeledSideEffects())
1612 return false;
1613 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1614 MachineOperand &MO = MI.getOperand(i);
1615 if (!MO.isReg() || !MO.getReg())
1616 continue;
1617 if (MO.isDef() && !MO.isDead())
1618 return false;
1619 if (MO.isUse() && MO.isKill())
1620 // FIXME: We can't remove kill markers or else the scavenger will assert.
1621 // An alternative is to add a ADD pseudo instruction to replace kill
1622 // markers.
1623 return false;
1625 return true;
1628 /// TransferDeadness - A identity copy definition is dead and it's being
1629 /// removed. Find the last def or use and mark it as dead / kill.
1630 void LocalRewriter::
1631 TransferDeadness(unsigned Reg, BitVector &RegKills,
1632 std::vector<MachineOperand*> &KillOps) {
1633 SmallPtrSet<MachineInstr*, 4> Seens;
1634 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1635 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
1636 RE = MRI->reg_end(); RI != RE; ++RI) {
1637 MachineInstr *UDMI = &*RI;
1638 if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
1639 continue;
1640 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1641 if (DI == DistanceMap.end())
1642 continue;
1643 if (Seens.insert(UDMI))
1644 Refs.push_back(std::make_pair(UDMI, DI->second));
1647 if (Refs.empty())
1648 return;
1649 std::sort(Refs.begin(), Refs.end(), RefSorter());
1651 while (!Refs.empty()) {
1652 MachineInstr *LastUDMI = Refs.back().first;
1653 Refs.pop_back();
1655 MachineOperand *LastUD = NULL;
1656 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1657 MachineOperand &MO = LastUDMI->getOperand(i);
1658 if (!MO.isReg() || MO.getReg() != Reg)
1659 continue;
1660 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1661 LastUD = &MO;
1662 if (LastUDMI->isRegTiedToDefOperand(i))
1663 break;
1665 if (LastUD->isDef()) {
1666 // If the instruction has no side effect, delete it and propagate
1667 // backward further. Otherwise, mark is dead and we are done.
1668 if (!isSafeToDelete(*LastUDMI)) {
1669 LastUD->setIsDead();
1670 break;
1672 VRM->RemoveMachineInstrFromMaps(LastUDMI);
1673 MBB->erase(LastUDMI);
1674 } else {
1675 LastUD->setIsKill();
1676 RegKills.set(Reg);
1677 KillOps[Reg] = LastUD;
1678 break;
1683 /// InsertEmergencySpills - Insert emergency spills before MI if requested by
1684 /// VRM. Return true if spills were inserted.
1685 bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
1686 if (!VRM->hasEmergencySpills(MI))
1687 return false;
1688 MachineBasicBlock::iterator MII = MI;
1689 SmallSet<int, 4> UsedSS;
1690 std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
1691 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1692 unsigned PhysReg = EmSpills[i];
1693 const TargetRegisterClass *RC = TRI->getPhysicalRegisterRegClass(PhysReg);
1694 assert(RC && "Unable to determine register class!");
1695 int SS = VRM->getEmergencySpillSlot(RC);
1696 if (UsedSS.count(SS))
1697 llvm_unreachable("Need to spill more than one physical registers!");
1698 UsedSS.insert(SS);
1699 TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC);
1700 MachineInstr *StoreMI = prior(MII);
1701 VRM->addSpillSlotUse(SS, StoreMI);
1703 // Back-schedule reloads and remats.
1704 MachineBasicBlock::iterator InsertLoc =
1705 ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
1706 TII, *MBB->getParent());
1708 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC);
1710 MachineInstr *LoadMI = prior(InsertLoc);
1711 VRM->addSpillSlotUse(SS, LoadMI);
1712 ++NumPSpills;
1713 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
1715 return true;
1718 /// InsertRestores - Restore registers before MI is requested by VRM. Return
1719 /// true is any instructions were inserted.
1720 bool LocalRewriter::InsertRestores(MachineInstr *MI,
1721 AvailableSpills &Spills,
1722 BitVector &RegKills,
1723 std::vector<MachineOperand*> &KillOps) {
1724 if (!VRM->isRestorePt(MI))
1725 return false;
1726 MachineBasicBlock::iterator MII = MI;
1727 std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
1728 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1729 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1730 if (!VRM->getPreSplitReg(VirtReg))
1731 continue; // Split interval spilled again.
1732 unsigned Phys = VRM->getPhys(VirtReg);
1733 MRI->setPhysRegUsed(Phys);
1735 // Check if the value being restored if available. If so, it must be
1736 // from a predecessor BB that fallthrough into this BB. We do not
1737 // expect:
1738 // BB1:
1739 // r1 = load fi#1
1740 // ...
1741 // = r1<kill>
1742 // ... # r1 not clobbered
1743 // ...
1744 // = load fi#1
1745 bool DoReMat = VRM->isReMaterialized(VirtReg);
1746 int SSorRMId = DoReMat
1747 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
1748 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1749 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1750 if (InReg == Phys) {
1751 // If the value is already available in the expected register, save
1752 // a reload / remat.
1753 if (SSorRMId)
1754 DEBUG(dbgs() << "Reusing RM#"
1755 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1756 else
1757 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1758 DEBUG(dbgs() << " from physreg "
1759 << TRI->getName(InReg) << " for vreg"
1760 << VirtReg <<" instead of reloading into physreg "
1761 << TRI->getName(Phys) << '\n');
1762 ++NumOmitted;
1763 continue;
1764 } else if (InReg && InReg != Phys) {
1765 if (SSorRMId)
1766 DEBUG(dbgs() << "Reusing RM#"
1767 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1768 else
1769 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1770 DEBUG(dbgs() << " from physreg "
1771 << TRI->getName(InReg) << " for vreg"
1772 << VirtReg <<" by copying it into physreg "
1773 << TRI->getName(Phys) << '\n');
1775 // If the reloaded / remat value is available in another register,
1776 // copy it to the desired register.
1778 // Back-schedule reloads and remats.
1779 MachineBasicBlock::iterator InsertLoc =
1780 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
1781 *MBB->getParent());
1783 TII->copyRegToReg(*MBB, InsertLoc, Phys, InReg, RC, RC);
1785 // This invalidates Phys.
1786 Spills.ClobberPhysReg(Phys);
1787 // Remember it's available.
1788 Spills.addAvailable(SSorRMId, Phys);
1790 // Mark is killed.
1791 MachineInstr *CopyMI = prior(InsertLoc);
1792 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
1793 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1794 KillOpnd->setIsKill();
1795 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1797 DEBUG(dbgs() << '\t' << *CopyMI);
1798 ++NumCopified;
1799 continue;
1802 // Back-schedule reloads and remats.
1803 MachineBasicBlock::iterator InsertLoc =
1804 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
1805 *MBB->getParent());
1807 if (VRM->isReMaterialized(VirtReg)) {
1808 ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
1809 } else {
1810 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1811 TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC);
1812 MachineInstr *LoadMI = prior(InsertLoc);
1813 VRM->addSpillSlotUse(SSorRMId, LoadMI);
1814 ++NumLoads;
1815 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
1818 // This invalidates Phys.
1819 Spills.ClobberPhysReg(Phys);
1820 // Remember it's available.
1821 Spills.addAvailable(SSorRMId, Phys);
1823 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1824 DEBUG(dbgs() << '\t' << *prior(MII));
1826 return true;
1829 /// InsertEmergencySpills - Insert spills after MI if requested by VRM. Return
1830 /// true if spills were inserted.
1831 bool LocalRewriter::InsertSpills(MachineInstr *MI) {
1832 if (!VRM->isSpillPt(MI))
1833 return false;
1834 MachineBasicBlock::iterator MII = MI;
1835 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1836 VRM->getSpillPtSpills(MI);
1837 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1838 unsigned VirtReg = SpillRegs[i].first;
1839 bool isKill = SpillRegs[i].second;
1840 if (!VRM->getPreSplitReg(VirtReg))
1841 continue; // Split interval spilled again.
1842 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
1843 unsigned Phys = VRM->getPhys(VirtReg);
1844 int StackSlot = VRM->getStackSlot(VirtReg);
1845 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1846 TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
1847 RC);
1848 MachineInstr *StoreMI = prior(oldNextMII);
1849 VRM->addSpillSlotUse(StackSlot, StoreMI);
1850 DEBUG(dbgs() << "Store:\t" << *StoreMI);
1851 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1853 return true;
1857 /// rewriteMBB - Keep track of which spills are available even after the
1858 /// register allocator is done with them. If possible, avid reloading vregs.
1859 void
1860 LocalRewriter::RewriteMBB(LiveIntervals *LIs,
1861 AvailableSpills &Spills, BitVector &RegKills,
1862 std::vector<MachineOperand*> &KillOps) {
1864 DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
1865 << MBB->getName() << "':\n");
1867 MachineFunction &MF = *MBB->getParent();
1869 // MaybeDeadStores - When we need to write a value back into a stack slot,
1870 // keep track of the inserted store. If the stack slot value is never read
1871 // (because the value was used from some available register, for example), and
1872 // subsequently stored to, the original store is dead. This map keeps track
1873 // of inserted stores that are not used. If we see a subsequent store to the
1874 // same stack slot, the original store is deleted.
1875 std::vector<MachineInstr*> MaybeDeadStores;
1876 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1878 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1879 SmallSet<MachineInstr*, 4> ReMatDefs;
1881 // Clear kill info.
1882 SmallSet<unsigned, 2> KilledMIRegs;
1883 RegKills.reset();
1884 KillOps.clear();
1885 KillOps.resize(TRI->getNumRegs(), NULL);
1887 DistanceMap.clear();
1888 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1889 MII != E; ) {
1890 MachineBasicBlock::iterator NextMII = llvm::next(MII);
1892 if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
1893 NextMII = llvm::next(MII);
1895 if (InsertEmergencySpills(MII))
1896 NextMII = llvm::next(MII);
1898 InsertRestores(MII, Spills, RegKills, KillOps);
1900 if (InsertSpills(MII))
1901 NextMII = llvm::next(MII);
1903 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1904 bool Erased = false;
1905 bool BackTracked = false;
1906 MachineInstr &MI = *MII;
1908 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1909 /// reuse.
1910 ReuseInfo ReusedOperands(MI, TRI);
1911 SmallVector<unsigned, 4> VirtUseOps;
1912 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1913 MachineOperand &MO = MI.getOperand(i);
1914 if (!MO.isReg() || MO.getReg() == 0)
1915 continue; // Ignore non-register operands.
1917 unsigned VirtReg = MO.getReg();
1918 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1919 // Ignore physregs for spilling, but remember that it is used by this
1920 // function.
1921 MRI->setPhysRegUsed(VirtReg);
1922 continue;
1925 // We want to process implicit virtual register uses first.
1926 if (MO.isImplicit())
1927 // If the virtual register is implicitly defined, emit a implicit_def
1928 // before so scavenger knows it's "defined".
1929 // FIXME: This is a horrible hack done the by register allocator to
1930 // remat a definition with virtual register operand.
1931 VirtUseOps.insert(VirtUseOps.begin(), i);
1932 else
1933 VirtUseOps.push_back(i);
1936 // Process all of the spilled uses and all non spilled reg references.
1937 SmallVector<int, 2> PotentialDeadStoreSlots;
1938 KilledMIRegs.clear();
1939 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1940 unsigned i = VirtUseOps[j];
1941 unsigned VirtReg = MI.getOperand(i).getReg();
1942 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1943 "Not a virtual register?");
1945 unsigned SubIdx = MI.getOperand(i).getSubReg();
1946 if (VRM->isAssignedReg(VirtReg)) {
1947 // This virtual register was assigned a physreg!
1948 unsigned Phys = VRM->getPhys(VirtReg);
1949 MRI->setPhysRegUsed(Phys);
1950 if (MI.getOperand(i).isDef())
1951 ReusedOperands.markClobbered(Phys);
1952 substitutePhysReg(MI.getOperand(i), Phys, *TRI);
1953 if (VRM->isImplicitlyDefined(VirtReg))
1954 // FIXME: Is this needed?
1955 BuildMI(*MBB, &MI, MI.getDebugLoc(),
1956 TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
1957 continue;
1960 // This virtual register is now known to be a spilled value.
1961 if (!MI.getOperand(i).isUse())
1962 continue; // Handle defs in the loop below (handle use&def here though)
1964 bool AvoidReload = MI.getOperand(i).isUndef();
1965 // Check if it is defined by an implicit def. It should not be spilled.
1966 // Note, this is for correctness reason. e.g.
1967 // 8 %reg1024<def> = IMPLICIT_DEF
1968 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1969 // The live range [12, 14) are not part of the r1024 live interval since
1970 // it's defined by an implicit def. It will not conflicts with live
1971 // interval of r1025. Now suppose both registers are spilled, you can
1972 // easily see a situation where both registers are reloaded before
1973 // the INSERT_SUBREG and both target registers that would overlap.
1974 bool DoReMat = VRM->isReMaterialized(VirtReg);
1975 int SSorRMId = DoReMat
1976 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
1977 int ReuseSlot = SSorRMId;
1979 // Check to see if this stack slot is available.
1980 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1982 // If this is a sub-register use, make sure the reuse register is in the
1983 // right register class. For example, for x86 not all of the 32-bit
1984 // registers have accessible sub-registers.
1985 // Similarly so for EXTRACT_SUBREG. Consider this:
1986 // EDI = op
1987 // MOV32_mr fi#1, EDI
1988 // ...
1989 // = EXTRACT_SUBREG fi#1
1990 // fi#1 is available in EDI, but it cannot be reused because it's not in
1991 // the right register file.
1992 if (PhysReg && !AvoidReload && (SubIdx || MI.isExtractSubreg())) {
1993 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1994 if (!RC->contains(PhysReg))
1995 PhysReg = 0;
1998 if (PhysReg && !AvoidReload) {
1999 // This spilled operand might be part of a two-address operand. If this
2000 // is the case, then changing it will necessarily require changing the
2001 // def part of the instruction as well. However, in some cases, we
2002 // aren't allowed to modify the reused register. If none of these cases
2003 // apply, reuse it.
2004 bool CanReuse = true;
2005 bool isTied = MI.isRegTiedToDefOperand(i);
2006 if (isTied) {
2007 // Okay, we have a two address operand. We can reuse this physreg as
2008 // long as we are allowed to clobber the value and there isn't an
2009 // earlier def that has already clobbered the physreg.
2010 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
2011 Spills.canClobberPhysReg(PhysReg);
2014 if (CanReuse) {
2015 // If this stack slot value is already available, reuse it!
2016 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
2017 DEBUG(dbgs() << "Reusing RM#"
2018 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
2019 else
2020 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
2021 DEBUG(dbgs() << " from physreg "
2022 << TRI->getName(PhysReg) << " for vreg"
2023 << VirtReg <<" instead of reloading into physreg "
2024 << TRI->getName(VRM->getPhys(VirtReg)) << '\n');
2025 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2026 MI.getOperand(i).setReg(RReg);
2027 MI.getOperand(i).setSubReg(0);
2029 // The only technical detail we have is that we don't know that
2030 // PhysReg won't be clobbered by a reloaded stack slot that occurs
2031 // later in the instruction. In particular, consider 'op V1, V2'.
2032 // If V1 is available in physreg R0, we would choose to reuse it
2033 // here, instead of reloading it into the register the allocator
2034 // indicated (say R1). However, V2 might have to be reloaded
2035 // later, and it might indicate that it needs to live in R0. When
2036 // this occurs, we need to have information available that
2037 // indicates it is safe to use R1 for the reload instead of R0.
2039 // To further complicate matters, we might conflict with an alias,
2040 // or R0 and R1 might not be compatible with each other. In this
2041 // case, we actually insert a reload for V1 in R1, ensuring that
2042 // we can get at R0 or its alias.
2043 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
2044 VRM->getPhys(VirtReg), VirtReg);
2045 if (isTied)
2046 // Only mark it clobbered if this is a use&def operand.
2047 ReusedOperands.markClobbered(PhysReg);
2048 ++NumReused;
2050 if (MI.getOperand(i).isKill() &&
2051 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
2053 // The store of this spilled value is potentially dead, but we
2054 // won't know for certain until we've confirmed that the re-use
2055 // above is valid, which means waiting until the other operands
2056 // are processed. For now we just track the spill slot, we'll
2057 // remove it after the other operands are processed if valid.
2059 PotentialDeadStoreSlots.push_back(ReuseSlot);
2062 // Mark is isKill if it's there no other uses of the same virtual
2063 // register and it's not a two-address operand. IsKill will be
2064 // unset if reg is reused.
2065 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
2066 MI.getOperand(i).setIsKill();
2067 KilledMIRegs.insert(VirtReg);
2070 continue;
2071 } // CanReuse
2073 // Otherwise we have a situation where we have a two-address instruction
2074 // whose mod/ref operand needs to be reloaded. This reload is already
2075 // available in some register "PhysReg", but if we used PhysReg as the
2076 // operand to our 2-addr instruction, the instruction would modify
2077 // PhysReg. This isn't cool if something later uses PhysReg and expects
2078 // to get its initial value.
2080 // To avoid this problem, and to avoid doing a load right after a store,
2081 // we emit a copy from PhysReg into the designated register for this
2082 // operand.
2083 unsigned DesignatedReg = VRM->getPhys(VirtReg);
2084 assert(DesignatedReg && "Must map virtreg to physreg!");
2086 // Note that, if we reused a register for a previous operand, the
2087 // register we want to reload into might not actually be
2088 // available. If this occurs, use the register indicated by the
2089 // reuser.
2090 if (ReusedOperands.hasReuses())
2091 DesignatedReg = ReusedOperands.
2092 GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
2093 MaybeDeadStores, RegKills, KillOps, *VRM);
2095 // If the mapped designated register is actually the physreg we have
2096 // incoming, we don't need to inserted a dead copy.
2097 if (DesignatedReg == PhysReg) {
2098 // If this stack slot value is already available, reuse it!
2099 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
2100 DEBUG(dbgs() << "Reusing RM#"
2101 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
2102 else
2103 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
2104 DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
2105 << " for vreg" << VirtReg
2106 << " instead of reloading into same physreg.\n");
2107 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2108 MI.getOperand(i).setReg(RReg);
2109 MI.getOperand(i).setSubReg(0);
2110 ReusedOperands.markClobbered(RReg);
2111 ++NumReused;
2112 continue;
2115 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
2116 MRI->setPhysRegUsed(DesignatedReg);
2117 ReusedOperands.markClobbered(DesignatedReg);
2119 // Back-schedule reloads and remats.
2120 MachineBasicBlock::iterator InsertLoc =
2121 ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
2122 SSorRMId, TII, MF);
2124 TII->copyRegToReg(*MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
2126 MachineInstr *CopyMI = prior(InsertLoc);
2127 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2128 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
2130 // This invalidates DesignatedReg.
2131 Spills.ClobberPhysReg(DesignatedReg);
2133 Spills.addAvailable(ReuseSlot, DesignatedReg);
2134 unsigned RReg =
2135 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
2136 MI.getOperand(i).setReg(RReg);
2137 MI.getOperand(i).setSubReg(0);
2138 DEBUG(dbgs() << '\t' << *prior(MII));
2139 ++NumReused;
2140 continue;
2141 } // if (PhysReg)
2143 // Otherwise, reload it and remember that we have it.
2144 PhysReg = VRM->getPhys(VirtReg);
2145 assert(PhysReg && "Must map virtreg to physreg!");
2147 // Note that, if we reused a register for a previous operand, the
2148 // register we want to reload into might not actually be
2149 // available. If this occurs, use the register indicated by the
2150 // reuser.
2151 if (ReusedOperands.hasReuses())
2152 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2153 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2155 MRI->setPhysRegUsed(PhysReg);
2156 ReusedOperands.markClobbered(PhysReg);
2157 if (AvoidReload)
2158 ++NumAvoided;
2159 else {
2160 // Back-schedule reloads and remats.
2161 MachineBasicBlock::iterator InsertLoc =
2162 ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, DoReMat,
2163 SSorRMId, TII, MF);
2165 if (DoReMat) {
2166 ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
2167 } else {
2168 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
2169 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC);
2170 MachineInstr *LoadMI = prior(InsertLoc);
2171 VRM->addSpillSlotUse(SSorRMId, LoadMI);
2172 ++NumLoads;
2173 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
2175 // This invalidates PhysReg.
2176 Spills.ClobberPhysReg(PhysReg);
2178 // Any stores to this stack slot are not dead anymore.
2179 if (!DoReMat)
2180 MaybeDeadStores[SSorRMId] = NULL;
2181 Spills.addAvailable(SSorRMId, PhysReg);
2182 // Assumes this is the last use. IsKill will be unset if reg is reused
2183 // unless it's a two-address operand.
2184 if (!MI.isRegTiedToDefOperand(i) &&
2185 KilledMIRegs.count(VirtReg) == 0) {
2186 MI.getOperand(i).setIsKill();
2187 KilledMIRegs.insert(VirtReg);
2190 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
2191 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
2193 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2194 MI.getOperand(i).setReg(RReg);
2195 MI.getOperand(i).setSubReg(0);
2198 // Ok - now we can remove stores that have been confirmed dead.
2199 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2200 // This was the last use and the spilled value is still available
2201 // for reuse. That means the spill was unnecessary!
2202 int PDSSlot = PotentialDeadStoreSlots[j];
2203 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2204 if (DeadStore) {
2205 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2206 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2207 VRM->RemoveMachineInstrFromMaps(DeadStore);
2208 MBB->erase(DeadStore);
2209 MaybeDeadStores[PDSSlot] = NULL;
2210 ++NumDSE;
2215 DEBUG(dbgs() << '\t' << MI);
2218 // If we have folded references to memory operands, make sure we clear all
2219 // physical registers that may contain the value of the spilled virtual
2220 // register
2221 SmallSet<int, 2> FoldedSS;
2222 for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
2223 unsigned VirtReg = I->second.first;
2224 VirtRegMap::ModRef MR = I->second.second;
2225 DEBUG(dbgs() << "Folded vreg: " << VirtReg << " MR: " << MR);
2227 // MI2VirtMap be can updated which invalidate the iterator.
2228 // Increment the iterator first.
2229 ++I;
2230 int SS = VRM->getStackSlot(VirtReg);
2231 if (SS == VirtRegMap::NO_STACK_SLOT)
2232 continue;
2233 FoldedSS.insert(SS);
2234 DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
2236 // If this folded instruction is just a use, check to see if it's a
2237 // straight load from the virt reg slot.
2238 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2239 int FrameIdx;
2240 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2241 if (DestReg && FrameIdx == SS) {
2242 // If this spill slot is available, turn it into a copy (or nothing)
2243 // instead of leaving it as a load!
2244 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2245 DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
2246 if (DestReg != InReg) {
2247 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
2248 TII->copyRegToReg(*MBB, &MI, DestReg, InReg, RC, RC);
2249 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2250 unsigned SubIdx = DefMO->getSubReg();
2251 // Revisit the copy so we make sure to notice the effects of the
2252 // operation on the destreg (either needing to RA it if it's
2253 // virtual or needing to clobber any values if it's physical).
2254 NextMII = &MI;
2255 --NextMII; // backtrack to the copy.
2256 NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2257 // Propagate the sub-register index over.
2258 if (SubIdx) {
2259 DefMO = NextMII->findRegisterDefOperand(DestReg);
2260 DefMO->setSubReg(SubIdx);
2263 // Mark is killed.
2264 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2265 KillOpnd->setIsKill();
2267 BackTracked = true;
2268 } else {
2269 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2270 // Unset last kill since it's being reused.
2271 InvalidateKill(InReg, TRI, RegKills, KillOps);
2272 Spills.disallowClobberPhysReg(InReg);
2275 InvalidateKills(MI, TRI, RegKills, KillOps);
2276 VRM->RemoveMachineInstrFromMaps(&MI);
2277 MBB->erase(&MI);
2278 Erased = true;
2279 goto ProcessNextInst;
2281 } else {
2282 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2283 SmallVector<MachineInstr*, 4> NewMIs;
2284 if (PhysReg &&
2285 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2286 MBB->insert(MII, NewMIs[0]);
2287 InvalidateKills(MI, TRI, RegKills, KillOps);
2288 VRM->RemoveMachineInstrFromMaps(&MI);
2289 MBB->erase(&MI);
2290 Erased = true;
2291 --NextMII; // backtrack to the unfolded instruction.
2292 BackTracked = true;
2293 goto ProcessNextInst;
2298 // If this reference is not a use, any previous store is now dead.
2299 // Otherwise, the store to this stack slot is not dead anymore.
2300 MachineInstr* DeadStore = MaybeDeadStores[SS];
2301 if (DeadStore) {
2302 bool isDead = !(MR & VirtRegMap::isRef);
2303 MachineInstr *NewStore = NULL;
2304 if (MR & VirtRegMap::isModRef) {
2305 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2306 SmallVector<MachineInstr*, 4> NewMIs;
2307 // We can reuse this physreg as long as we are allowed to clobber
2308 // the value and there isn't an earlier def that has already clobbered
2309 // the physreg.
2310 if (PhysReg &&
2311 !ReusedOperands.isClobbered(PhysReg) &&
2312 Spills.canClobberPhysReg(PhysReg) &&
2313 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2314 MachineOperand *KillOpnd =
2315 DeadStore->findRegisterUseOperand(PhysReg, true);
2316 // Note, if the store is storing a sub-register, it's possible the
2317 // super-register is needed below.
2318 if (KillOpnd && !KillOpnd->getSubReg() &&
2319 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2320 MBB->insert(MII, NewMIs[0]);
2321 NewStore = NewMIs[1];
2322 MBB->insert(MII, NewStore);
2323 VRM->addSpillSlotUse(SS, NewStore);
2324 InvalidateKills(MI, TRI, RegKills, KillOps);
2325 VRM->RemoveMachineInstrFromMaps(&MI);
2326 MBB->erase(&MI);
2327 Erased = true;
2328 --NextMII;
2329 --NextMII; // backtrack to the unfolded instruction.
2330 BackTracked = true;
2331 isDead = true;
2332 ++NumSUnfold;
2337 if (isDead) { // Previous store is dead.
2338 // If we get here, the store is dead, nuke it now.
2339 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2340 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2341 VRM->RemoveMachineInstrFromMaps(DeadStore);
2342 MBB->erase(DeadStore);
2343 if (!NewStore)
2344 ++NumDSE;
2347 MaybeDeadStores[SS] = NULL;
2348 if (NewStore) {
2349 // Treat this store as a spill merged into a copy. That makes the
2350 // stack slot value available.
2351 VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2352 goto ProcessNextInst;
2356 // If the spill slot value is available, and this is a new definition of
2357 // the value, the value is not available anymore.
2358 if (MR & VirtRegMap::isMod) {
2359 // Notice that the value in this stack slot has been modified.
2360 Spills.ModifyStackSlotOrReMat(SS);
2362 // If this is *just* a mod of the value, check to see if this is just a
2363 // store to the spill slot (i.e. the spill got merged into the copy). If
2364 // so, realize that the vreg is available now, and add the store to the
2365 // MaybeDeadStore info.
2366 int StackSlot;
2367 if (!(MR & VirtRegMap::isRef)) {
2368 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2369 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2370 "Src hasn't been allocated yet?");
2372 if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
2373 Spills, RegKills, KillOps, TRI)) {
2374 NextMII = llvm::next(MII);
2375 BackTracked = true;
2376 goto ProcessNextInst;
2379 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2380 // this as a potentially dead store in case there is a subsequent
2381 // store into the stack slot without a read from it.
2382 MaybeDeadStores[StackSlot] = &MI;
2384 // If the stack slot value was previously available in some other
2385 // register, change it now. Otherwise, make the register
2386 // available in PhysReg.
2387 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2393 // Process all of the spilled defs.
2394 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2395 MachineOperand &MO = MI.getOperand(i);
2396 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2397 continue;
2399 unsigned VirtReg = MO.getReg();
2400 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2401 // Check to see if this is a noop copy. If so, eliminate the
2402 // instruction before considering the dest reg to be changed.
2403 // Also check if it's copying from an "undef", if so, we can't
2404 // eliminate this or else the undef marker is lost and it will
2405 // confuses the scavenger. This is extremely rare.
2406 unsigned Src, Dst, SrcSR, DstSR;
2407 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2408 !MI.findRegisterUseOperand(Src)->isUndef()) {
2409 ++NumDCE;
2410 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2411 SmallVector<unsigned, 2> KillRegs;
2412 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2413 if (MO.isDead() && !KillRegs.empty()) {
2414 // Source register or an implicit super/sub-register use is killed.
2415 assert(KillRegs[0] == Dst ||
2416 TRI->isSubRegister(KillRegs[0], Dst) ||
2417 TRI->isSuperRegister(KillRegs[0], Dst));
2418 // Last def is now dead.
2419 TransferDeadness(Src, RegKills, KillOps);
2421 VRM->RemoveMachineInstrFromMaps(&MI);
2422 MBB->erase(&MI);
2423 Erased = true;
2424 Spills.disallowClobberPhysReg(VirtReg);
2425 goto ProcessNextInst;
2428 // If it's not a no-op copy, it clobbers the value in the destreg.
2429 Spills.ClobberPhysReg(VirtReg);
2430 ReusedOperands.markClobbered(VirtReg);
2432 // Check to see if this instruction is a load from a stack slot into
2433 // a register. If so, this provides the stack slot value in the reg.
2434 int FrameIdx;
2435 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2436 assert(DestReg == VirtReg && "Unknown load situation!");
2438 // If it is a folded reference, then it's not safe to clobber.
2439 bool Folded = FoldedSS.count(FrameIdx);
2440 // Otherwise, if it wasn't available, remember that it is now!
2441 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2442 goto ProcessNextInst;
2445 continue;
2448 unsigned SubIdx = MO.getSubReg();
2449 bool DoReMat = VRM->isReMaterialized(VirtReg);
2450 if (DoReMat)
2451 ReMatDefs.insert(&MI);
2453 // The only vregs left are stack slot definitions.
2454 int StackSlot = VRM->getStackSlot(VirtReg);
2455 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
2457 // If this def is part of a two-address operand, make sure to execute
2458 // the store from the correct physical register.
2459 unsigned PhysReg;
2460 unsigned TiedOp;
2461 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2462 PhysReg = MI.getOperand(TiedOp).getReg();
2463 if (SubIdx) {
2464 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2465 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2466 "Can't find corresponding super-register!");
2467 PhysReg = SuperReg;
2469 } else {
2470 PhysReg = VRM->getPhys(VirtReg);
2471 if (ReusedOperands.isClobbered(PhysReg)) {
2472 // Another def has taken the assigned physreg. It must have been a
2473 // use&def which got it due to reuse. Undo the reuse!
2474 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2475 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2479 assert(PhysReg && "VR not assigned a physical register?");
2480 MRI->setPhysRegUsed(PhysReg);
2481 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2482 ReusedOperands.markClobbered(RReg);
2483 MI.getOperand(i).setReg(RReg);
2484 MI.getOperand(i).setSubReg(0);
2486 if (!MO.isDead()) {
2487 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2488 SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
2489 LastStore, Spills, ReMatDefs, RegKills, KillOps);
2490 NextMII = llvm::next(MII);
2492 // Check to see if this is a noop copy. If so, eliminate the
2493 // instruction before considering the dest reg to be changed.
2495 unsigned Src, Dst, SrcSR, DstSR;
2496 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2497 ++NumDCE;
2498 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2499 InvalidateKills(MI, TRI, RegKills, KillOps);
2500 VRM->RemoveMachineInstrFromMaps(&MI);
2501 MBB->erase(&MI);
2502 Erased = true;
2503 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2504 goto ProcessNextInst;
2509 ProcessNextInst:
2510 // Delete dead instructions without side effects.
2511 if (!Erased && !BackTracked && isSafeToDelete(MI)) {
2512 InvalidateKills(MI, TRI, RegKills, KillOps);
2513 VRM->RemoveMachineInstrFromMaps(&MI);
2514 MBB->erase(&MI);
2515 Erased = true;
2517 if (!Erased)
2518 DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
2519 if (!Erased && !BackTracked) {
2520 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2521 UpdateKills(*II, TRI, RegKills, KillOps);
2523 MII = NextMII;
2528 llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2529 switch (RewriterOpt) {
2530 default: llvm_unreachable("Unreachable!");
2531 case local:
2532 return new LocalRewriter();
2533 case trivial:
2534 return new TrivialRewriter();