When removing a function from the function set and adding it to deferred, we
[llvm.git] / lib / CodeGen / VirtRegRewriter.cpp
blob1d0404efb5708325a88b031c88e81ae523a2faff
1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "VirtRegMap.h"
13 #include "llvm/Function.h"
14 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/ADT/DepthFirstIterator.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/Statistic.h"
27 using namespace llvm;
29 STATISTIC(NumDSE , "Number of dead stores elided");
30 STATISTIC(NumDSS , "Number of dead spill slots removed");
31 STATISTIC(NumCommutes, "Number of instructions commuted");
32 STATISTIC(NumDRM , "Number of re-materializable defs elided");
33 STATISTIC(NumStores , "Number of stores added");
34 STATISTIC(NumPSpills , "Number of physical register spills");
35 STATISTIC(NumOmitted , "Number of reloads omited");
36 STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
37 STATISTIC(NumCopified, "Number of available reloads turned into copies");
38 STATISTIC(NumReMats , "Number of re-materialization");
39 STATISTIC(NumLoads , "Number of loads added");
40 STATISTIC(NumReused , "Number of values reused");
41 STATISTIC(NumDCE , "Number of copies elided");
42 STATISTIC(NumSUnfold , "Number of stores unfolded");
43 STATISTIC(NumModRefUnfold, "Number of modref unfolded");
45 namespace {
46 enum RewriterName { local, trivial };
49 static cl::opt<RewriterName>
50 RewriterOpt("rewriter",
51 cl::desc("Rewriter to use (default=local)"),
52 cl::Prefix,
53 cl::values(clEnumVal(local, "local rewriter"),
54 clEnumVal(trivial, "trivial rewriter"),
55 clEnumValEnd),
56 cl::init(local));
58 static cl::opt<bool>
59 ScheduleSpills("schedule-spills",
60 cl::desc("Schedule spill code"),
61 cl::init(false));
63 VirtRegRewriter::~VirtRegRewriter() {}
65 /// substitutePhysReg - Replace virtual register in MachineOperand with a
66 /// physical register. Do the right thing with the sub-register index.
67 /// Note that operands may be added, so the MO reference is no longer valid.
68 static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
69 const TargetRegisterInfo &TRI) {
70 if (MO.getSubReg()) {
71 MO.substPhysReg(Reg, TRI);
73 // Any kill flags apply to the full virtual register, so they also apply to
74 // the full physical register.
75 // We assume that partial defs have already been decorated with a super-reg
76 // <imp-def> operand by LiveIntervals.
77 MachineInstr &MI = *MO.getParent();
78 if (MO.isUse() && !MO.isUndef() &&
79 (MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
80 MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
81 } else {
82 MO.setReg(Reg);
86 namespace {
88 /// This class is intended for use with the new spilling framework only. It
89 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
90 /// spill code.
91 struct TrivialRewriter : public VirtRegRewriter {
93 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
94 LiveIntervals* LIs) {
95 DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
96 DEBUG(dbgs() << "********** Function: "
97 << MF.getFunction()->getName() << '\n');
98 DEBUG(dbgs() << "**** Machine Instrs"
99 << "(NOTE! Does not include spills and reloads!) ****\n");
100 DEBUG(MF.dump());
102 MachineRegisterInfo *mri = &MF.getRegInfo();
103 const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
105 bool changed = false;
107 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
108 liItr != liEnd; ++liItr) {
110 const LiveInterval *li = liItr->second;
111 unsigned reg = li->reg;
113 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
114 if (!li->empty())
115 mri->setPhysRegUsed(reg);
117 else {
118 if (!VRM.hasPhys(reg))
119 continue;
120 unsigned pReg = VRM.getPhys(reg);
121 mri->setPhysRegUsed(pReg);
122 // Copy the register use-list before traversing it.
123 SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
124 for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
125 E = mri->reg_end(); I != E; ++I)
126 reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
127 for (unsigned N=0; N != reglist.size(); ++N)
128 substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
129 pReg, *tri);
130 changed |= !reglist.empty();
134 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
135 DEBUG(MF.dump());
137 return changed;
144 // ************************************************************************ //
146 namespace {
148 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
149 /// from top down, keep track of which spill slots or remat are available in
150 /// each register.
152 /// Note that not all physregs are created equal here. In particular, some
153 /// physregs are reloads that we are allowed to clobber or ignore at any time.
154 /// Other physregs are values that the register allocated program is using
155 /// that we cannot CHANGE, but we can read if we like. We keep track of this
156 /// on a per-stack-slot / remat id basis as the low bit in the value of the
157 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
158 /// this bit and addAvailable sets it if.
159 class AvailableSpills {
160 const TargetRegisterInfo *TRI;
161 const TargetInstrInfo *TII;
163 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
164 // or remat'ed virtual register values that are still available, due to
165 // being loaded or stored to, but not invalidated yet.
166 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
168 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
169 // indicating which stack slot values are currently held by a physreg. This
170 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
171 // physreg is modified.
172 std::multimap<unsigned, int> PhysRegsAvailable;
174 void disallowClobberPhysRegOnly(unsigned PhysReg);
176 void ClobberPhysRegOnly(unsigned PhysReg);
177 public:
178 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
179 : TRI(tri), TII(tii) {
182 /// clear - Reset the state.
183 void clear() {
184 SpillSlotsOrReMatsAvailable.clear();
185 PhysRegsAvailable.clear();
188 const TargetRegisterInfo *getRegInfo() const { return TRI; }
190 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
191 /// available in a physical register, return that PhysReg, otherwise
192 /// return 0.
193 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
194 std::map<int, unsigned>::const_iterator I =
195 SpillSlotsOrReMatsAvailable.find(Slot);
196 if (I != SpillSlotsOrReMatsAvailable.end()) {
197 return I->second >> 1; // Remove the CanClobber bit.
199 return 0;
202 /// addAvailable - Mark that the specified stack slot / remat is available
203 /// in the specified physreg. If CanClobber is true, the physreg can be
204 /// modified at any time without changing the semantics of the program.
205 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
206 // If this stack slot is thought to be available in some other physreg,
207 // remove its record.
208 ModifyStackSlotOrReMat(SlotOrReMat);
210 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
211 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
212 (unsigned)CanClobber;
214 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
215 DEBUG(dbgs() << "Remembering RM#"
216 << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
217 else
218 DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
219 DEBUG(dbgs() << " in physreg " << TRI->getName(Reg)
220 << (CanClobber ? " canclobber" : "") << "\n");
223 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
224 /// the value of the specified stackslot register if it desires. The
225 /// specified stack slot must be available in a physreg for this query to
226 /// make sense.
227 bool canClobberPhysRegForSS(int SlotOrReMat) const {
228 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
229 "Value not available!");
230 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
233 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
234 /// physical register where values for some stack slot(s) might be
235 /// available.
236 bool canClobberPhysReg(unsigned PhysReg) const {
237 std::multimap<unsigned, int>::const_iterator I =
238 PhysRegsAvailable.lower_bound(PhysReg);
239 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
240 int SlotOrReMat = I->second;
241 I++;
242 if (!canClobberPhysRegForSS(SlotOrReMat))
243 return false;
245 return true;
248 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
249 /// stackslot register. The register is still available but is no longer
250 /// allowed to be modifed.
251 void disallowClobberPhysReg(unsigned PhysReg);
253 /// ClobberPhysReg - This is called when the specified physreg changes
254 /// value. We use this to invalidate any info about stuff that lives in
255 /// it and any of its aliases.
256 void ClobberPhysReg(unsigned PhysReg);
258 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
259 /// slot changes. This removes information about which register the
260 /// previous value for this slot lives in (as the previous value is dead
261 /// now).
262 void ModifyStackSlotOrReMat(int SlotOrReMat);
264 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
265 /// into the specified MBB. Add available physical registers as potential
266 /// live-in's. If they are reused in the MBB, they will be added to the
267 /// live-in set to make register scavenger and post-allocation scheduler.
268 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
269 std::vector<MachineOperand*> &KillOps);
274 // ************************************************************************ //
276 // Given a location where a reload of a spilled register or a remat of
277 // a constant is to be inserted, attempt to find a safe location to
278 // insert the load at an earlier point in the basic-block, to hide
279 // latency of the load and to avoid address-generation interlock
280 // issues.
281 static MachineBasicBlock::iterator
282 ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
283 MachineBasicBlock::iterator const Begin,
284 unsigned PhysReg,
285 const TargetRegisterInfo *TRI,
286 bool DoReMat,
287 int SSorRMId,
288 const TargetInstrInfo *TII,
289 const MachineFunction &MF)
291 if (!ScheduleSpills)
292 return InsertLoc;
294 // Spill backscheduling is of primary interest to addresses, so
295 // don't do anything if the register isn't in the register class
296 // used for pointers.
298 const TargetLowering *TL = MF.getTarget().getTargetLowering();
300 if (!TL->isTypeLegal(TL->getPointerTy()))
301 // Believe it or not, this is true on 16-bit targets like PIC16.
302 return InsertLoc;
304 const TargetRegisterClass *ptrRegClass =
305 TL->getRegClassFor(TL->getPointerTy());
306 if (!ptrRegClass->contains(PhysReg))
307 return InsertLoc;
309 // Scan upwards through the preceding instructions. If an instruction doesn't
310 // reference the stack slot or the register we're loading, we can
311 // backschedule the reload up past it.
312 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
313 while (NewInsertLoc != Begin) {
314 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
315 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
316 MachineOperand &Op = Prev->getOperand(i);
317 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
318 goto stop;
320 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
321 Prev->findRegisterDefOperand(PhysReg))
322 goto stop;
323 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
324 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
325 Prev->findRegisterDefOperand(*Alias))
326 goto stop;
327 NewInsertLoc = Prev;
329 stop:;
331 // If we made it to the beginning of the block, turn around and move back
332 // down just past any existing reloads. They're likely to be reloads/remats
333 // for instructions earlier than what our current reload/remat is for, so
334 // they should be scheduled earlier.
335 if (NewInsertLoc == Begin) {
336 int FrameIdx;
337 while (InsertLoc != NewInsertLoc &&
338 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
339 TII->isTriviallyReMaterializable(NewInsertLoc)))
340 ++NewInsertLoc;
343 return NewInsertLoc;
346 namespace {
348 // ReusedOp - For each reused operand, we keep track of a bit of information,
349 // in case we need to rollback upon processing a new operand. See comments
350 // below.
351 struct ReusedOp {
352 // The MachineInstr operand that reused an available value.
353 unsigned Operand;
355 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
356 unsigned StackSlotOrReMat;
358 // PhysRegReused - The physical register the value was available in.
359 unsigned PhysRegReused;
361 // AssignedPhysReg - The physreg that was assigned for use by the reload.
362 unsigned AssignedPhysReg;
364 // VirtReg - The virtual register itself.
365 unsigned VirtReg;
367 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
368 unsigned vreg)
369 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
370 AssignedPhysReg(apr), VirtReg(vreg) {}
373 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
374 /// is reused instead of reloaded.
375 class ReuseInfo {
376 MachineInstr &MI;
377 std::vector<ReusedOp> Reuses;
378 BitVector PhysRegsClobbered;
379 public:
380 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
381 PhysRegsClobbered.resize(tri->getNumRegs());
384 bool hasReuses() const {
385 return !Reuses.empty();
388 /// addReuse - If we choose to reuse a virtual register that is already
389 /// available instead of reloading it, remember that we did so.
390 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
391 unsigned PhysRegReused, unsigned AssignedPhysReg,
392 unsigned VirtReg) {
393 // If the reload is to the assigned register anyway, no undo will be
394 // required.
395 if (PhysRegReused == AssignedPhysReg) return;
397 // Otherwise, remember this.
398 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
399 AssignedPhysReg, VirtReg));
402 void markClobbered(unsigned PhysReg) {
403 PhysRegsClobbered.set(PhysReg);
406 bool isClobbered(unsigned PhysReg) const {
407 return PhysRegsClobbered.test(PhysReg);
410 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
411 /// is some other operand that is using the specified register, either pick
412 /// a new register to use, or evict the previous reload and use this reg.
413 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
414 MachineFunction &MF, MachineInstr *MI,
415 AvailableSpills &Spills,
416 std::vector<MachineInstr*> &MaybeDeadStores,
417 SmallSet<unsigned, 8> &Rejected,
418 BitVector &RegKills,
419 std::vector<MachineOperand*> &KillOps,
420 VirtRegMap &VRM);
422 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
423 /// 'Rejected' set to remember which registers have been considered and
424 /// rejected for the reload. This avoids infinite looping in case like
425 /// this:
426 /// t1 := op t2, t3
427 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
428 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
429 /// t1 <- desires r1
430 /// sees r1 is taken by t2, tries t2's reload register r0
431 /// sees r0 is taken by t3, tries t3's reload register r1
432 /// sees r1 is taken by t2, tries t2's reload register r0 ...
433 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
434 AvailableSpills &Spills,
435 std::vector<MachineInstr*> &MaybeDeadStores,
436 BitVector &RegKills,
437 std::vector<MachineOperand*> &KillOps,
438 VirtRegMap &VRM) {
439 SmallSet<unsigned, 8> Rejected;
440 MachineFunction &MF = *MI->getParent()->getParent();
441 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
442 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
443 Rejected, RegKills, KillOps, VRM);
449 // ****************** //
450 // Utility Functions //
451 // ****************** //
453 /// findSinglePredSuccessor - Return via reference a vector of machine basic
454 /// blocks each of which is a successor of the specified BB and has no other
455 /// predecessor.
456 static void findSinglePredSuccessor(MachineBasicBlock *MBB,
457 SmallVectorImpl<MachineBasicBlock *> &Succs){
458 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
459 SE = MBB->succ_end(); SI != SE; ++SI) {
460 MachineBasicBlock *SuccMBB = *SI;
461 if (SuccMBB->pred_size() == 1)
462 Succs.push_back(SuccMBB);
466 /// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed
467 /// but not re-defined and it's being reused. Remove the kill flag for the
468 /// register and unset the kill's marker and last kill operand.
469 static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI,
470 BitVector &RegKills,
471 std::vector<MachineOperand*> &KillOps) {
472 DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n");
474 MachineOperand *KillOp = KillOps[Reg];
475 KillOp->setIsKill(false);
476 // KillOps[Reg] might be a def of a super-register.
477 unsigned KReg = KillOp->getReg();
478 if (!RegKills[KReg])
479 return;
481 assert(KillOps[KReg] == KillOp && "invalid superreg kill flags");
482 KillOps[KReg] = NULL;
483 RegKills.reset(KReg);
485 // If it's a def of a super-register. Its other sub-regsters are no
486 // longer killed as well.
487 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
488 DEBUG(dbgs() << " Resurrect subreg " << TRI->getName(*SR) << "\n");
490 assert(KillOps[*SR] == KillOp && "invalid subreg kill flags");
491 KillOps[*SR] = NULL;
492 RegKills.reset(*SR);
496 /// ResurrectKill - Invalidate kill info associated with a previous MI. An
497 /// optimization may have decided that it's safe to reuse a previously killed
498 /// register. If we fail to erase the invalid kill flags, then the register
499 /// scavenger may later clobber the register used by this MI. Note that this
500 /// must be done even if this MI is being deleted! Consider:
502 /// USE $r1 (vreg1) <kill>
503 /// ...
504 /// $r1(vreg3) = COPY $r1 (vreg2)
506 /// RegAlloc has smartly assigned all three vregs to the same physreg. Initially
507 /// vreg1's only use is a kill. The rewriter doesn't know it should be live
508 /// until it rewrites vreg2. At that points it sees that the copy is dead and
509 /// deletes it. However, deleting the copy implicitly forwards liveness of $r1
510 /// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at
511 /// vreg1 before deleting the copy.
512 static void ResurrectKill(MachineInstr &MI, unsigned Reg,
513 const TargetRegisterInfo* TRI, BitVector &RegKills,
514 std::vector<MachineOperand*> &KillOps) {
515 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
516 ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
517 return;
519 // No previous kill for this reg. Check for subreg kills as well.
520 // d4 =
521 // store d4, fi#0
522 // ...
523 // = s8<kill>
524 // ...
525 // = d4 <avoiding reload>
526 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
527 unsigned SReg = *SR;
528 if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI)
529 ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps);
533 /// InvalidateKills - MI is going to be deleted. If any of its operands are
534 /// marked kill, then invalidate the information.
535 static void InvalidateKills(MachineInstr &MI,
536 const TargetRegisterInfo* TRI,
537 BitVector &RegKills,
538 std::vector<MachineOperand*> &KillOps,
539 SmallVector<unsigned, 2> *KillRegs = NULL) {
540 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
541 MachineOperand &MO = MI.getOperand(i);
542 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
543 continue;
544 unsigned Reg = MO.getReg();
545 if (TargetRegisterInfo::isVirtualRegister(Reg))
546 continue;
547 if (KillRegs)
548 KillRegs->push_back(Reg);
549 assert(Reg < KillOps.size());
550 if (KillOps[Reg] == &MO) {
551 // This operand was the kill, now no longer.
552 KillOps[Reg] = NULL;
553 RegKills.reset(Reg);
554 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
555 if (RegKills[*SR]) {
556 assert(KillOps[*SR] == &MO && "bad subreg kill flags");
557 KillOps[*SR] = NULL;
558 RegKills.reset(*SR);
562 else {
563 // This operand may have reused a previously killed reg. Keep it live in
564 // case it continues to be used after erasing this instruction.
565 ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
570 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
571 /// (since its spill instruction is removed), mark it isDead. Also checks if
572 /// the def MI has other definition operands that are not dead. Returns it by
573 /// reference.
574 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
575 MachineInstr &NewDef, unsigned Reg,
576 bool &HasLiveDef,
577 const TargetRegisterInfo *TRI) {
578 // Due to remat, it's possible this reg isn't being reused. That is,
579 // the def of this reg (by prev MI) is now dead.
580 MachineInstr *DefMI = I;
581 MachineOperand *DefOp = NULL;
582 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
583 MachineOperand &MO = DefMI->getOperand(i);
584 if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
585 continue;
586 if (MO.getReg() == Reg)
587 DefOp = &MO;
588 else if (!MO.isDead())
589 HasLiveDef = true;
591 if (!DefOp)
592 return false;
594 bool FoundUse = false, Done = false;
595 MachineBasicBlock::iterator E = &NewDef;
596 ++I; ++E;
597 for (; !Done && I != E; ++I) {
598 MachineInstr *NMI = I;
599 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
600 MachineOperand &MO = NMI->getOperand(j);
601 if (!MO.isReg() || MO.getReg() == 0 ||
602 (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
603 continue;
604 if (MO.isUse())
605 FoundUse = true;
606 Done = true; // Stop after scanning all the operands of this MI.
609 if (!FoundUse) {
610 // Def is dead!
611 DefOp->setIsDead();
612 return true;
614 return false;
617 /// UpdateKills - Track and update kill info. If a MI reads a register that is
618 /// marked kill, then it must be due to register reuse. Transfer the kill info
619 /// over.
620 static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
621 BitVector &RegKills,
622 std::vector<MachineOperand*> &KillOps) {
623 // These do not affect kill info at all.
624 if (MI.isDebugValue())
625 return;
626 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
627 MachineOperand &MO = MI.getOperand(i);
628 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
629 continue;
630 unsigned Reg = MO.getReg();
631 if (Reg == 0)
632 continue;
634 // This operand may have reused a previously killed reg. Keep it live.
635 ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
637 if (MO.isKill()) {
638 RegKills.set(Reg);
639 KillOps[Reg] = &MO;
640 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
641 RegKills.set(*SR);
642 KillOps[*SR] = &MO;
647 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
648 const MachineOperand &MO = MI.getOperand(i);
649 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
650 continue;
651 unsigned Reg = MO.getReg();
652 RegKills.reset(Reg);
653 KillOps[Reg] = NULL;
654 // It also defines (or partially define) aliases.
655 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
656 RegKills.reset(*SR);
657 KillOps[*SR] = NULL;
659 for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
660 RegKills.reset(*SR);
661 KillOps[*SR] = NULL;
666 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
668 static void ReMaterialize(MachineBasicBlock &MBB,
669 MachineBasicBlock::iterator &MII,
670 unsigned DestReg, unsigned Reg,
671 const TargetInstrInfo *TII,
672 const TargetRegisterInfo *TRI,
673 VirtRegMap &VRM) {
674 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
675 #ifndef NDEBUG
676 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
677 assert(TID.getNumDefs() == 1 &&
678 "Don't know how to remat instructions that define > 1 values!");
679 #endif
680 TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI);
681 MachineInstr *NewMI = prior(MII);
682 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
683 MachineOperand &MO = NewMI->getOperand(i);
684 if (!MO.isReg() || MO.getReg() == 0)
685 continue;
686 unsigned VirtReg = MO.getReg();
687 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
688 continue;
689 assert(MO.isUse());
690 unsigned Phys = VRM.getPhys(VirtReg);
691 assert(Phys && "Virtual register is not assigned a register?");
692 substitutePhysReg(MO, Phys, *TRI);
694 ++NumReMats;
697 /// findSuperReg - Find the SubReg's super-register of given register class
698 /// where its SubIdx sub-register is SubReg.
699 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
700 unsigned SubIdx, const TargetRegisterInfo *TRI) {
701 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
702 I != E; ++I) {
703 unsigned Reg = *I;
704 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
705 return Reg;
707 return 0;
710 // ******************************** //
711 // Available Spills Implementation //
712 // ******************************** //
714 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
715 /// stackslot register. The register is still available but is no longer
716 /// allowed to be modifed.
717 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
718 std::multimap<unsigned, int>::iterator I =
719 PhysRegsAvailable.lower_bound(PhysReg);
720 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
721 int SlotOrReMat = I->second;
722 I++;
723 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
724 "Bidirectional map mismatch!");
725 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
726 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
727 << " copied, it is available for use but can no longer be modified\n");
731 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
732 /// stackslot register and its aliases. The register and its aliases may
733 /// still available but is no longer allowed to be modifed.
734 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
735 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
736 disallowClobberPhysRegOnly(*AS);
737 disallowClobberPhysRegOnly(PhysReg);
740 /// ClobberPhysRegOnly - This is called when the specified physreg changes
741 /// value. We use this to invalidate any info about stuff we thing lives in it.
742 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
743 std::multimap<unsigned, int>::iterator I =
744 PhysRegsAvailable.lower_bound(PhysReg);
745 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
746 int SlotOrReMat = I->second;
747 PhysRegsAvailable.erase(I++);
748 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
749 "Bidirectional map mismatch!");
750 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
751 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
752 << " clobbered, invalidating ");
753 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
754 DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
755 else
756 DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
760 /// ClobberPhysReg - This is called when the specified physreg changes
761 /// value. We use this to invalidate any info about stuff we thing lives in
762 /// it and any of its aliases.
763 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
764 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
765 ClobberPhysRegOnly(*AS);
766 ClobberPhysRegOnly(PhysReg);
769 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
770 /// into the specified MBB. Add available physical registers as potential
771 /// live-in's. If they are reused in the MBB, they will be added to the
772 /// live-in set to make register scavenger and post-allocation scheduler.
773 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
774 BitVector &RegKills,
775 std::vector<MachineOperand*> &KillOps) {
776 std::set<unsigned> NotAvailable;
777 for (std::multimap<unsigned, int>::iterator
778 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
779 I != E; ++I) {
780 unsigned Reg = I->first;
781 const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg);
782 // FIXME: A temporary workaround. We can't reuse available value if it's
783 // not safe to move the def of the virtual register's class. e.g.
784 // X86::RFP* register classes. Do not add it as a live-in.
785 if (!TII->isSafeToMoveRegClassDefs(RC))
786 // This is no longer available.
787 NotAvailable.insert(Reg);
788 else {
789 MBB.addLiveIn(Reg);
790 if (RegKills[Reg])
791 ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
794 // Skip over the same register.
795 std::multimap<unsigned, int>::iterator NI = llvm::next(I);
796 while (NI != E && NI->first == Reg) {
797 ++I;
798 ++NI;
802 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
803 E = NotAvailable.end(); I != E; ++I) {
804 ClobberPhysReg(*I);
805 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
806 *SubRegs; ++SubRegs)
807 ClobberPhysReg(*SubRegs);
811 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
812 /// slot changes. This removes information about which register the previous
813 /// value for this slot lives in (as the previous value is dead now).
814 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
815 std::map<int, unsigned>::iterator It =
816 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
817 if (It == SpillSlotsOrReMatsAvailable.end()) return;
818 unsigned Reg = It->second >> 1;
819 SpillSlotsOrReMatsAvailable.erase(It);
821 // This register may hold the value of multiple stack slots, only remove this
822 // stack slot from the set of values the register contains.
823 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
824 for (; ; ++I) {
825 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
826 "Map inverse broken!");
827 if (I->second == SlotOrReMat) break;
829 PhysRegsAvailable.erase(I);
832 // ************************** //
833 // Reuse Info Implementation //
834 // ************************** //
836 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
837 /// is some other operand that is using the specified register, either pick
838 /// a new register to use, or evict the previous reload and use this reg.
839 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
840 unsigned PhysReg,
841 MachineFunction &MF,
842 MachineInstr *MI, AvailableSpills &Spills,
843 std::vector<MachineInstr*> &MaybeDeadStores,
844 SmallSet<unsigned, 8> &Rejected,
845 BitVector &RegKills,
846 std::vector<MachineOperand*> &KillOps,
847 VirtRegMap &VRM) {
848 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
849 const TargetRegisterInfo *TRI = Spills.getRegInfo();
851 if (Reuses.empty()) return PhysReg; // This is most often empty.
853 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
854 ReusedOp &Op = Reuses[ro];
855 // If we find some other reuse that was supposed to use this register
856 // exactly for its reload, we can change this reload to use ITS reload
857 // register. That is, unless its reload register has already been
858 // considered and subsequently rejected because it has also been reused
859 // by another operand.
860 if (Op.PhysRegReused == PhysReg &&
861 Rejected.count(Op.AssignedPhysReg) == 0 &&
862 RC->contains(Op.AssignedPhysReg)) {
863 // Yup, use the reload register that we didn't use before.
864 unsigned NewReg = Op.AssignedPhysReg;
865 Rejected.insert(PhysReg);
866 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores,
867 Rejected, RegKills, KillOps, VRM);
868 } else {
869 // Otherwise, we might also have a problem if a previously reused
870 // value aliases the new register. If so, codegen the previous reload
871 // and use this one.
872 unsigned PRRU = Op.PhysRegReused;
873 if (TRI->regsOverlap(PRRU, PhysReg)) {
874 // Okay, we found out that an alias of a reused register
875 // was used. This isn't good because it means we have
876 // to undo a previous reuse.
877 MachineBasicBlock *MBB = MI->getParent();
878 const TargetRegisterClass *AliasRC =
879 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
881 // Copy Op out of the vector and remove it, we're going to insert an
882 // explicit load for it.
883 ReusedOp NewOp = Op;
884 Reuses.erase(Reuses.begin()+ro);
886 // MI may be using only a sub-register of PhysRegUsed.
887 unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
888 unsigned SubIdx = 0;
889 assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
890 "A reuse cannot be a virtual register");
891 if (PRRU != RealPhysRegUsed) {
892 // What was the sub-register index?
893 SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
894 assert(SubIdx &&
895 "Operand physreg is not a sub-register of PhysRegUsed");
898 // Ok, we're going to try to reload the assigned physreg into the
899 // slot that we were supposed to in the first place. However, that
900 // register could hold a reuse. Check to see if it conflicts or
901 // would prefer us to use a different register.
902 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
903 MF, MI, Spills, MaybeDeadStores,
904 Rejected, RegKills, KillOps, VRM);
906 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
907 int SSorRMId = DoReMat
908 ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;
910 // Back-schedule reloads and remats.
911 MachineBasicBlock::iterator InsertLoc =
912 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
913 DoReMat, SSorRMId, TII, MF);
915 if (DoReMat) {
916 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
917 TRI, VRM);
918 } else {
919 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
920 NewOp.StackSlotOrReMat, AliasRC, TRI);
921 MachineInstr *LoadMI = prior(InsertLoc);
922 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
923 // Any stores to this stack slot are not dead anymore.
924 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
925 ++NumLoads;
927 Spills.ClobberPhysReg(NewPhysReg);
928 Spills.ClobberPhysReg(NewOp.PhysRegReused);
930 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
931 MI->getOperand(NewOp.Operand).setReg(RReg);
932 MI->getOperand(NewOp.Operand).setSubReg(0);
934 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
935 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
936 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
938 DEBUG(dbgs() << "Reuse undone!\n");
939 --NumReused;
941 // Finally, PhysReg is now available, go ahead and use it.
942 return PhysReg;
946 return PhysReg;
949 // ************************************************************************ //
951 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
952 /// stack slot mod/ref. It also checks if it's possible to unfold the
953 /// instruction by having it define a specified physical register instead.
954 static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
955 const TargetInstrInfo *TII,
956 const TargetRegisterInfo *TRI,
957 VirtRegMap &VRM) {
958 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
959 return false;
961 bool Found = false;
962 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
963 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
964 unsigned VirtReg = I->second.first;
965 VirtRegMap::ModRef MR = I->second.second;
966 if (MR & VirtRegMap::isModRef)
967 if (VRM.getStackSlot(VirtReg) == SS) {
968 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
969 break;
972 if (!Found)
973 return false;
975 // Does the instruction uses a register that overlaps the scratch register?
976 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
977 MachineOperand &MO = MI.getOperand(i);
978 if (!MO.isReg() || MO.getReg() == 0)
979 continue;
980 unsigned Reg = MO.getReg();
981 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
982 if (!VRM.hasPhys(Reg))
983 continue;
984 Reg = VRM.getPhys(Reg);
986 if (TRI->regsOverlap(PhysReg, Reg))
987 return false;
989 return true;
992 /// FindFreeRegister - Find a free register of a given register class by looking
993 /// at (at most) the last two machine instructions.
994 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
995 MachineBasicBlock &MBB,
996 const TargetRegisterClass *RC,
997 const TargetRegisterInfo *TRI,
998 BitVector &AllocatableRegs) {
999 BitVector Defs(TRI->getNumRegs());
1000 BitVector Uses(TRI->getNumRegs());
1001 SmallVector<unsigned, 4> LocalUses;
1002 SmallVector<unsigned, 4> Kills;
1004 // Take a look at 2 instructions at most.
1005 unsigned Count = 0;
1006 while (Count < 2) {
1007 if (MII == MBB.begin())
1008 break;
1009 MachineInstr *PrevMI = prior(MII);
1010 MII = PrevMI;
1012 if (PrevMI->isDebugValue())
1013 continue; // Skip over dbg_value instructions.
1014 ++Count;
1016 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
1017 MachineOperand &MO = PrevMI->getOperand(i);
1018 if (!MO.isReg() || MO.getReg() == 0)
1019 continue;
1020 unsigned Reg = MO.getReg();
1021 if (MO.isDef()) {
1022 Defs.set(Reg);
1023 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1024 Defs.set(*AS);
1025 } else {
1026 LocalUses.push_back(Reg);
1027 if (MO.isKill() && AllocatableRegs[Reg])
1028 Kills.push_back(Reg);
1032 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
1033 unsigned Kill = Kills[i];
1034 if (!Defs[Kill] && !Uses[Kill] &&
1035 RC->contains(Kill))
1036 return Kill;
1038 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
1039 unsigned Reg = LocalUses[i];
1040 Uses.set(Reg);
1041 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1042 Uses.set(*AS);
1046 return 0;
1049 static
1050 void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
1051 const TargetRegisterInfo &TRI) {
1052 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1053 MachineOperand &MO = MI->getOperand(i);
1054 if (MO.isReg() && MO.getReg() == VirtReg)
1055 substitutePhysReg(MO, PhysReg, TRI);
1059 namespace {
1061 struct RefSorter {
1062 bool operator()(const std::pair<MachineInstr*, int> &A,
1063 const std::pair<MachineInstr*, int> &B) {
1064 return A.second < B.second;
1068 // ***************************** //
1069 // Local Spiller Implementation //
1070 // ***************************** //
1072 class LocalRewriter : public VirtRegRewriter {
1073 MachineRegisterInfo *MRI;
1074 const TargetRegisterInfo *TRI;
1075 const TargetInstrInfo *TII;
1076 VirtRegMap *VRM;
1077 LiveIntervals *LIs;
1078 BitVector AllocatableRegs;
1079 DenseMap<MachineInstr*, unsigned> DistanceMap;
1080 DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;
1082 MachineBasicBlock *MBB; // Basic block currently being processed.
1084 public:
1086 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
1087 LiveIntervals* LIs);
1089 private:
1090 void EraseInstr(MachineInstr *MI) {
1091 VRM->RemoveMachineInstrFromMaps(MI);
1092 LIs->RemoveMachineInstrFromMaps(MI);
1093 MI->eraseFromParent();
1096 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1097 MachineBasicBlock::iterator &MII,
1098 std::vector<MachineInstr*> &MaybeDeadStores,
1099 AvailableSpills &Spills,
1100 BitVector &RegKills,
1101 std::vector<MachineOperand*> &KillOps);
1103 bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
1104 std::vector<MachineInstr*> &MaybeDeadStores,
1105 AvailableSpills &Spills,
1106 BitVector &RegKills,
1107 std::vector<MachineOperand*> &KillOps);
1109 bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
1110 unsigned VirtReg, unsigned SrcReg, int SS,
1111 AvailableSpills &Spills,
1112 BitVector &RegKills,
1113 std::vector<MachineOperand*> &KillOps,
1114 const TargetRegisterInfo *TRI);
1116 void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
1117 int Idx, unsigned PhysReg, int StackSlot,
1118 const TargetRegisterClass *RC,
1119 bool isAvailable, MachineInstr *&LastStore,
1120 AvailableSpills &Spills,
1121 SmallSet<MachineInstr*, 4> &ReMatDefs,
1122 BitVector &RegKills,
1123 std::vector<MachineOperand*> &KillOps);
1125 void TransferDeadness(unsigned Reg, BitVector &RegKills,
1126 std::vector<MachineOperand*> &KillOps);
1128 bool InsertEmergencySpills(MachineInstr *MI);
1130 bool InsertRestores(MachineInstr *MI,
1131 AvailableSpills &Spills,
1132 BitVector &RegKills,
1133 std::vector<MachineOperand*> &KillOps);
1135 bool InsertSpills(MachineInstr *MI);
1137 void ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
1138 std::vector<MachineInstr*> &MaybeDeadStores,
1139 BitVector &RegKills,
1140 ReuseInfo &ReusedOperands,
1141 std::vector<MachineOperand*> &KillOps);
1143 void RewriteMBB(LiveIntervals *LIs,
1144 AvailableSpills &Spills, BitVector &RegKills,
1145 std::vector<MachineOperand*> &KillOps);
1149 bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
1150 LiveIntervals* lis) {
1151 MRI = &MF.getRegInfo();
1152 TRI = MF.getTarget().getRegisterInfo();
1153 TII = MF.getTarget().getInstrInfo();
1154 VRM = &vrm;
1155 LIs = lis;
1156 AllocatableRegs = TRI->getAllocatableSet(MF);
1157 DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
1158 << MF.getFunction()->getName() << "':\n");
1159 DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
1160 " reloads!) ****\n");
1161 DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
1163 // Spills - Keep track of which spilled values are available in physregs
1164 // so that we can choose to reuse the physregs instead of emitting
1165 // reloads. This is usually refreshed per basic block.
1166 AvailableSpills Spills(TRI, TII);
1168 // Keep track of kill information.
1169 BitVector RegKills(TRI->getNumRegs());
1170 std::vector<MachineOperand*> KillOps;
1171 KillOps.resize(TRI->getNumRegs(), NULL);
1173 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1174 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1175 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1177 // Traverse the basic blocks depth first.
1178 MachineBasicBlock *Entry = MF.begin();
1179 SmallPtrSet<MachineBasicBlock*,16> Visited;
1180 for (df_ext_iterator<MachineBasicBlock*,
1181 SmallPtrSet<MachineBasicBlock*,16> >
1182 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1183 DFI != E; ++DFI) {
1184 MBB = *DFI;
1185 if (!EarlyVisited.count(MBB))
1186 RewriteMBB(LIs, Spills, RegKills, KillOps);
1188 // If this MBB is the only predecessor of a successor. Keep the
1189 // availability information and visit it next.
1190 do {
1191 // Keep visiting single predecessor successor as long as possible.
1192 SinglePredSuccs.clear();
1193 findSinglePredSuccessor(MBB, SinglePredSuccs);
1194 if (SinglePredSuccs.empty())
1195 MBB = 0;
1196 else {
1197 // FIXME: More than one successors, each of which has MBB has
1198 // the only predecessor.
1199 MBB = SinglePredSuccs[0];
1200 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1201 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1202 RewriteMBB(LIs, Spills, RegKills, KillOps);
1205 } while (MBB);
1207 // Clear the availability info.
1208 Spills.clear();
1211 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
1212 DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
1214 // Mark unused spill slots.
1215 MachineFrameInfo *MFI = MF.getFrameInfo();
1216 int SS = VRM->getLowSpillSlot();
1217 if (SS != VirtRegMap::NO_STACK_SLOT) {
1218 for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) {
1219 SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS];
1220 if (!VRM->isSpillSlotUsed(SS)) {
1221 MFI->RemoveStackObject(SS);
1222 for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
1223 MachineInstr *DVMI = DbgValues[j];
1224 DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
1225 EraseInstr(DVMI);
1227 ++NumDSS;
1229 DbgValues.clear();
1232 Slot2DbgValues.clear();
1234 return true;
1237 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1238 /// a scratch register is available.
1239 /// xorq %r12<kill>, %r13
1240 /// addq %rax, -184(%rbp)
1241 /// addq %r13, -184(%rbp)
1242 /// ==>
1243 /// xorq %r12<kill>, %r13
1244 /// movq -184(%rbp), %r12
1245 /// addq %rax, %r12
1246 /// addq %r13, %r12
1247 /// movq %r12, -184(%rbp)
1248 bool LocalRewriter::
1249 OptimizeByUnfold2(unsigned VirtReg, int SS,
1250 MachineBasicBlock::iterator &MII,
1251 std::vector<MachineInstr*> &MaybeDeadStores,
1252 AvailableSpills &Spills,
1253 BitVector &RegKills,
1254 std::vector<MachineOperand*> &KillOps) {
1256 MachineBasicBlock::iterator NextMII = llvm::next(MII);
1257 // Skip over dbg_value instructions.
1258 while (NextMII != MBB->end() && NextMII->isDebugValue())
1259 NextMII = llvm::next(NextMII);
1260 if (NextMII == MBB->end())
1261 return false;
1263 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1264 return false;
1266 // Now let's see if the last couple of instructions happens to have freed up
1267 // a register.
1268 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1269 unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
1270 if (!PhysReg)
1271 return false;
1273 MachineFunction &MF = *MBB->getParent();
1274 TRI = MF.getTarget().getRegisterInfo();
1275 MachineInstr &MI = *MII;
1276 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
1277 return false;
1279 // If the next instruction also folds the same SS modref and can be unfoled,
1280 // then it's worthwhile to issue a load from SS into the free register and
1281 // then unfold these instructions.
1282 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
1283 return false;
1285 // Back-schedule reloads and remats.
1286 ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
1288 // Load from SS to the spare physical register.
1289 TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI);
1290 // This invalidates Phys.
1291 Spills.ClobberPhysReg(PhysReg);
1292 // Remember it's available.
1293 Spills.addAvailable(SS, PhysReg);
1294 MaybeDeadStores[SS] = NULL;
1296 // Unfold current MI.
1297 SmallVector<MachineInstr*, 4> NewMIs;
1298 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1299 llvm_unreachable("Unable unfold the load / store folding instruction!");
1300 assert(NewMIs.size() == 1);
1301 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1302 VRM->transferRestorePts(&MI, NewMIs[0]);
1303 MII = MBB->insert(MII, NewMIs[0]);
1304 InvalidateKills(MI, TRI, RegKills, KillOps);
1305 EraseInstr(&MI);
1306 ++NumModRefUnfold;
1308 // Unfold next instructions that fold the same SS.
1309 do {
1310 MachineInstr &NextMI = *NextMII;
1311 NextMII = llvm::next(NextMII);
1312 NewMIs.clear();
1313 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1314 llvm_unreachable("Unable unfold the load / store folding instruction!");
1315 assert(NewMIs.size() == 1);
1316 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1317 VRM->transferRestorePts(&NextMI, NewMIs[0]);
1318 MBB->insert(NextMII, NewMIs[0]);
1319 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1320 EraseInstr(&NextMI);
1321 ++NumModRefUnfold;
1322 // Skip over dbg_value instructions.
1323 while (NextMII != MBB->end() && NextMII->isDebugValue())
1324 NextMII = llvm::next(NextMII);
1325 if (NextMII == MBB->end())
1326 break;
1327 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
1329 // Store the value back into SS.
1330 TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI);
1331 MachineInstr *StoreMI = prior(NextMII);
1332 VRM->addSpillSlotUse(SS, StoreMI);
1333 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1335 return true;
1338 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1339 /// instruction. e.g.
1340 /// xorl %edi, %eax
1341 /// movl %eax, -32(%ebp)
1342 /// movl -36(%ebp), %eax
1343 /// orl %eax, -32(%ebp)
1344 /// ==>
1345 /// xorl %edi, %eax
1346 /// orl -36(%ebp), %eax
1347 /// mov %eax, -32(%ebp)
1348 /// This enables unfolding optimization for a subsequent instruction which will
1349 /// also eliminate the newly introduced store instruction.
1350 bool LocalRewriter::
1351 OptimizeByUnfold(MachineBasicBlock::iterator &MII,
1352 std::vector<MachineInstr*> &MaybeDeadStores,
1353 AvailableSpills &Spills,
1354 BitVector &RegKills,
1355 std::vector<MachineOperand*> &KillOps) {
1356 MachineFunction &MF = *MBB->getParent();
1357 MachineInstr &MI = *MII;
1358 unsigned UnfoldedOpc = 0;
1359 unsigned UnfoldPR = 0;
1360 unsigned UnfoldVR = 0;
1361 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1362 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1363 for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
1364 // Only transform a MI that folds a single register.
1365 if (UnfoldedOpc)
1366 return false;
1367 UnfoldVR = I->second.first;
1368 VirtRegMap::ModRef MR = I->second.second;
1369 // MI2VirtMap be can updated which invalidate the iterator.
1370 // Increment the iterator first.
1371 ++I;
1372 if (VRM->isAssignedReg(UnfoldVR))
1373 continue;
1374 // If this reference is not a use, any previous store is now dead.
1375 // Otherwise, the store to this stack slot is not dead anymore.
1376 FoldedSS = VRM->getStackSlot(UnfoldVR);
1377 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1378 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1379 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1380 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1381 continue;
1382 UnfoldPR = PhysReg;
1383 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1384 false, true);
1388 if (!UnfoldedOpc) {
1389 if (!UnfoldVR)
1390 return false;
1392 // Look for other unfolding opportunities.
1393 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
1394 RegKills, KillOps);
1397 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1398 MachineOperand &MO = MI.getOperand(i);
1399 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1400 continue;
1401 unsigned VirtReg = MO.getReg();
1402 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1403 continue;
1404 if (VRM->isAssignedReg(VirtReg)) {
1405 unsigned PhysReg = VRM->getPhys(VirtReg);
1406 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1407 return false;
1408 } else if (VRM->isReMaterialized(VirtReg))
1409 continue;
1410 int SS = VRM->getStackSlot(VirtReg);
1411 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1412 if (PhysReg) {
1413 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1414 return false;
1415 continue;
1417 if (VRM->hasPhys(VirtReg)) {
1418 PhysReg = VRM->getPhys(VirtReg);
1419 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1420 continue;
1423 // Ok, we'll need to reload the value into a register which makes
1424 // it impossible to perform the store unfolding optimization later.
1425 // Let's see if it is possible to fold the load if the store is
1426 // unfolded. This allows us to perform the store unfolding
1427 // optimization.
1428 SmallVector<MachineInstr*, 4> NewMIs;
1429 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1430 assert(NewMIs.size() == 1);
1431 MachineInstr *NewMI = NewMIs.back();
1432 MBB->insert(MII, NewMI);
1433 NewMIs.clear();
1434 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1435 assert(Idx != -1);
1436 SmallVector<unsigned, 1> Ops;
1437 Ops.push_back(Idx);
1438 MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS);
1439 NewMI->eraseFromParent();
1440 if (FoldedMI) {
1441 VRM->addSpillSlotUse(SS, FoldedMI);
1442 if (!VRM->hasPhys(UnfoldVR))
1443 VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
1444 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1445 MII = FoldedMI;
1446 InvalidateKills(MI, TRI, RegKills, KillOps);
1447 EraseInstr(&MI);
1448 return true;
1453 return false;
1456 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1457 /// where SrcReg is r1 and it is tied to r0. Return true if after
1458 /// commuting this instruction it will be r0 = op r2, r1.
1459 static bool CommuteChangesDestination(MachineInstr *DefMI,
1460 const TargetInstrDesc &TID,
1461 unsigned SrcReg,
1462 const TargetInstrInfo *TII,
1463 unsigned &DstIdx) {
1464 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1465 return false;
1466 if (!DefMI->getOperand(1).isReg() ||
1467 DefMI->getOperand(1).getReg() != SrcReg)
1468 return false;
1469 unsigned DefIdx;
1470 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1471 return false;
1472 unsigned SrcIdx1, SrcIdx2;
1473 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1474 return false;
1475 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1476 DstIdx = 2;
1477 return true;
1479 return false;
1482 /// CommuteToFoldReload -
1483 /// Look for
1484 /// r1 = load fi#1
1485 /// r1 = op r1, r2<kill>
1486 /// store r1, fi#1
1488 /// If op is commutable and r2 is killed, then we can xform these to
1489 /// r2 = op r2, fi#1
1490 /// store r2, fi#1
1491 bool LocalRewriter::
1492 CommuteToFoldReload(MachineBasicBlock::iterator &MII,
1493 unsigned VirtReg, unsigned SrcReg, int SS,
1494 AvailableSpills &Spills,
1495 BitVector &RegKills,
1496 std::vector<MachineOperand*> &KillOps,
1497 const TargetRegisterInfo *TRI) {
1498 if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
1499 return false;
1501 MachineInstr &MI = *MII;
1502 MachineBasicBlock::iterator DefMII = prior(MII);
1503 MachineInstr *DefMI = DefMII;
1504 const TargetInstrDesc &TID = DefMI->getDesc();
1505 unsigned NewDstIdx;
1506 if (DefMII != MBB->begin() &&
1507 TID.isCommutable() &&
1508 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1509 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1510 unsigned NewReg = NewDstMO.getReg();
1511 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1512 return false;
1513 MachineInstr *ReloadMI = prior(DefMII);
1514 int FrameIdx;
1515 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1516 if (DestReg != SrcReg || FrameIdx != SS)
1517 return false;
1518 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1519 if (UseIdx == -1)
1520 return false;
1521 unsigned DefIdx;
1522 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1523 return false;
1524 assert(DefMI->getOperand(DefIdx).isReg() &&
1525 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1527 // Now commute def instruction.
1528 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1529 if (!CommutedMI)
1530 return false;
1531 MBB->insert(MII, CommutedMI);
1532 SmallVector<unsigned, 1> Ops;
1533 Ops.push_back(NewDstIdx);
1534 MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS);
1535 // Not needed since foldMemoryOperand returns new MI.
1536 CommutedMI->eraseFromParent();
1537 if (!FoldedMI)
1538 return false;
1540 VRM->addSpillSlotUse(SS, FoldedMI);
1541 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1542 // Insert new def MI and spill MI.
1543 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1544 TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI);
1545 MII = prior(MII);
1546 MachineInstr *StoreMI = MII;
1547 VRM->addSpillSlotUse(SS, StoreMI);
1548 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1549 MII = FoldedMI; // Update MII to backtrack.
1551 // Delete all 3 old instructions.
1552 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1553 EraseInstr(ReloadMI);
1554 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1555 EraseInstr(DefMI);
1556 InvalidateKills(MI, TRI, RegKills, KillOps);
1557 EraseInstr(&MI);
1559 // If NewReg was previously holding value of some SS, it's now clobbered.
1560 // This has to be done now because it's a physical register. When this
1561 // instruction is re-visited, it's ignored.
1562 Spills.ClobberPhysReg(NewReg);
1564 ++NumCommutes;
1565 return true;
1568 return false;
1571 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1572 /// the last store to the same slot is now dead. If so, remove the last store.
1573 void LocalRewriter::
1574 SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
1575 int Idx, unsigned PhysReg, int StackSlot,
1576 const TargetRegisterClass *RC,
1577 bool isAvailable, MachineInstr *&LastStore,
1578 AvailableSpills &Spills,
1579 SmallSet<MachineInstr*, 4> &ReMatDefs,
1580 BitVector &RegKills,
1581 std::vector<MachineOperand*> &KillOps) {
1583 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1584 TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC,
1585 TRI);
1586 MachineInstr *StoreMI = prior(oldNextMII);
1587 VRM->addSpillSlotUse(StackSlot, StoreMI);
1588 DEBUG(dbgs() << "Store:\t" << *StoreMI);
1590 // If there is a dead store to this stack slot, nuke it now.
1591 if (LastStore) {
1592 DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
1593 ++NumDSE;
1594 SmallVector<unsigned, 2> KillRegs;
1595 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1596 MachineBasicBlock::iterator PrevMII = LastStore;
1597 bool CheckDef = PrevMII != MBB->begin();
1598 if (CheckDef)
1599 --PrevMII;
1600 EraseInstr(LastStore);
1601 if (CheckDef) {
1602 // Look at defs of killed registers on the store. Mark the defs
1603 // as dead since the store has been deleted and they aren't
1604 // being reused.
1605 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1606 bool HasOtherDef = false;
1607 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
1608 MachineInstr *DeadDef = PrevMII;
1609 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1610 // FIXME: This assumes a remat def does not have side effects.
1611 EraseInstr(DeadDef);
1612 ++NumDRM;
1619 // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
1620 // the last of multiple instructions is the actual store.
1621 LastStore = prior(oldNextMII);
1623 // If the stack slot value was previously available in some other
1624 // register, change it now. Otherwise, make the register available,
1625 // in PhysReg.
1626 Spills.ModifyStackSlotOrReMat(StackSlot);
1627 Spills.ClobberPhysReg(PhysReg);
1628 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1629 ++NumStores;
1632 /// isSafeToDelete - Return true if this instruction doesn't produce any side
1633 /// effect and all of its defs are dead.
1634 static bool isSafeToDelete(MachineInstr &MI) {
1635 const TargetInstrDesc &TID = MI.getDesc();
1636 if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
1637 TID.isCall() || TID.isBarrier() || TID.isReturn() ||
1638 MI.isLabel() || MI.isDebugValue() ||
1639 MI.hasUnmodeledSideEffects())
1640 return false;
1642 // Technically speaking inline asm without side effects and no defs can still
1643 // be deleted. But there is so much bad inline asm code out there, we should
1644 // let them be.
1645 if (MI.isInlineAsm())
1646 return false;
1648 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1649 MachineOperand &MO = MI.getOperand(i);
1650 if (!MO.isReg() || !MO.getReg())
1651 continue;
1652 if (MO.isDef() && !MO.isDead())
1653 return false;
1654 if (MO.isUse() && MO.isKill())
1655 // FIXME: We can't remove kill markers or else the scavenger will assert.
1656 // An alternative is to add a ADD pseudo instruction to replace kill
1657 // markers.
1658 return false;
1660 return true;
1663 /// TransferDeadness - A identity copy definition is dead and it's being
1664 /// removed. Find the last def or use and mark it as dead / kill.
1665 void LocalRewriter::
1666 TransferDeadness(unsigned Reg, BitVector &RegKills,
1667 std::vector<MachineOperand*> &KillOps) {
1668 SmallPtrSet<MachineInstr*, 4> Seens;
1669 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1670 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
1671 RE = MRI->reg_end(); RI != RE; ++RI) {
1672 MachineInstr *UDMI = &*RI;
1673 if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
1674 continue;
1675 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1676 if (DI == DistanceMap.end())
1677 continue;
1678 if (Seens.insert(UDMI))
1679 Refs.push_back(std::make_pair(UDMI, DI->second));
1682 if (Refs.empty())
1683 return;
1684 std::sort(Refs.begin(), Refs.end(), RefSorter());
1686 while (!Refs.empty()) {
1687 MachineInstr *LastUDMI = Refs.back().first;
1688 Refs.pop_back();
1690 MachineOperand *LastUD = NULL;
1691 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1692 MachineOperand &MO = LastUDMI->getOperand(i);
1693 if (!MO.isReg() || MO.getReg() != Reg)
1694 continue;
1695 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1696 LastUD = &MO;
1697 if (LastUDMI->isRegTiedToDefOperand(i))
1698 break;
1700 if (LastUD->isDef()) {
1701 // If the instruction has no side effect, delete it and propagate
1702 // backward further. Otherwise, mark is dead and we are done.
1703 if (!isSafeToDelete(*LastUDMI)) {
1704 LastUD->setIsDead();
1705 break;
1707 EraseInstr(LastUDMI);
1708 } else {
1709 LastUD->setIsKill();
1710 RegKills.set(Reg);
1711 KillOps[Reg] = LastUD;
1712 break;
1717 /// InsertEmergencySpills - Insert emergency spills before MI if requested by
1718 /// VRM. Return true if spills were inserted.
1719 bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
1720 if (!VRM->hasEmergencySpills(MI))
1721 return false;
1722 MachineBasicBlock::iterator MII = MI;
1723 SmallSet<int, 4> UsedSS;
1724 std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
1725 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1726 unsigned PhysReg = EmSpills[i];
1727 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg);
1728 assert(RC && "Unable to determine register class!");
1729 int SS = VRM->getEmergencySpillSlot(RC);
1730 if (UsedSS.count(SS))
1731 llvm_unreachable("Need to spill more than one physical registers!");
1732 UsedSS.insert(SS);
1733 TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI);
1734 MachineInstr *StoreMI = prior(MII);
1735 VRM->addSpillSlotUse(SS, StoreMI);
1737 // Back-schedule reloads and remats.
1738 MachineBasicBlock::iterator InsertLoc =
1739 ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
1740 TII, *MBB->getParent());
1742 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI);
1744 MachineInstr *LoadMI = prior(InsertLoc);
1745 VRM->addSpillSlotUse(SS, LoadMI);
1746 ++NumPSpills;
1747 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
1749 return true;
1752 /// InsertRestores - Restore registers before MI is requested by VRM. Return
1753 /// true is any instructions were inserted.
1754 bool LocalRewriter::InsertRestores(MachineInstr *MI,
1755 AvailableSpills &Spills,
1756 BitVector &RegKills,
1757 std::vector<MachineOperand*> &KillOps) {
1758 if (!VRM->isRestorePt(MI))
1759 return false;
1760 MachineBasicBlock::iterator MII = MI;
1761 std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
1762 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1763 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1764 if (!VRM->getPreSplitReg(VirtReg))
1765 continue; // Split interval spilled again.
1766 unsigned Phys = VRM->getPhys(VirtReg);
1767 MRI->setPhysRegUsed(Phys);
1769 // Check if the value being restored if available. If so, it must be
1770 // from a predecessor BB that fallthrough into this BB. We do not
1771 // expect:
1772 // BB1:
1773 // r1 = load fi#1
1774 // ...
1775 // = r1<kill>
1776 // ... # r1 not clobbered
1777 // ...
1778 // = load fi#1
1779 bool DoReMat = VRM->isReMaterialized(VirtReg);
1780 int SSorRMId = DoReMat
1781 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
1782 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1783 if (InReg == Phys) {
1784 // If the value is already available in the expected register, save
1785 // a reload / remat.
1786 if (SSorRMId)
1787 DEBUG(dbgs() << "Reusing RM#"
1788 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1789 else
1790 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1791 DEBUG(dbgs() << " from physreg "
1792 << TRI->getName(InReg) << " for vreg"
1793 << VirtReg <<" instead of reloading into physreg "
1794 << TRI->getName(Phys) << '\n');
1796 // Reusing a physreg may resurrect it. But we expect ProcessUses to update
1797 // the kill flags for the current instruction after processing it.
1799 ++NumOmitted;
1800 continue;
1801 } else if (InReg && InReg != Phys) {
1802 if (SSorRMId)
1803 DEBUG(dbgs() << "Reusing RM#"
1804 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1805 else
1806 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1807 DEBUG(dbgs() << " from physreg "
1808 << TRI->getName(InReg) << " for vreg"
1809 << VirtReg <<" by copying it into physreg "
1810 << TRI->getName(Phys) << '\n');
1812 // If the reloaded / remat value is available in another register,
1813 // copy it to the desired register.
1815 // Back-schedule reloads and remats.
1816 MachineBasicBlock::iterator InsertLoc =
1817 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
1818 *MBB->getParent());
1819 MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(),
1820 TII->get(TargetOpcode::COPY), Phys)
1821 .addReg(InReg, RegState::Kill);
1823 // This invalidates Phys.
1824 Spills.ClobberPhysReg(Phys);
1825 // Remember it's available.
1826 Spills.addAvailable(SSorRMId, Phys);
1828 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
1829 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1831 DEBUG(dbgs() << '\t' << *CopyMI);
1832 ++NumCopified;
1833 continue;
1836 // Back-schedule reloads and remats.
1837 MachineBasicBlock::iterator InsertLoc =
1838 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
1839 *MBB->getParent());
1841 if (VRM->isReMaterialized(VirtReg)) {
1842 ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
1843 } else {
1844 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1845 TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI);
1846 MachineInstr *LoadMI = prior(InsertLoc);
1847 VRM->addSpillSlotUse(SSorRMId, LoadMI);
1848 ++NumLoads;
1849 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
1852 // This invalidates Phys.
1853 Spills.ClobberPhysReg(Phys);
1854 // Remember it's available.
1855 Spills.addAvailable(SSorRMId, Phys);
1857 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1858 DEBUG(dbgs() << '\t' << *prior(MII));
1860 return true;
1863 /// InsertSpills - Insert spills after MI if requested by VRM. Return
1864 /// true if spills were inserted.
1865 bool LocalRewriter::InsertSpills(MachineInstr *MI) {
1866 if (!VRM->isSpillPt(MI))
1867 return false;
1868 MachineBasicBlock::iterator MII = MI;
1869 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1870 VRM->getSpillPtSpills(MI);
1871 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1872 unsigned VirtReg = SpillRegs[i].first;
1873 bool isKill = SpillRegs[i].second;
1874 if (!VRM->getPreSplitReg(VirtReg))
1875 continue; // Split interval spilled again.
1876 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
1877 unsigned Phys = VRM->getPhys(VirtReg);
1878 int StackSlot = VRM->getStackSlot(VirtReg);
1879 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1880 TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
1881 RC, TRI);
1882 MachineInstr *StoreMI = prior(oldNextMII);
1883 VRM->addSpillSlotUse(StackSlot, StoreMI);
1884 DEBUG(dbgs() << "Store:\t" << *StoreMI);
1885 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1887 return true;
1891 /// ProcessUses - Process all of MI's spilled operands and all available
1892 /// operands.
1893 void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
1894 std::vector<MachineInstr*> &MaybeDeadStores,
1895 BitVector &RegKills,
1896 ReuseInfo &ReusedOperands,
1897 std::vector<MachineOperand*> &KillOps) {
1898 // Clear kill info.
1899 SmallSet<unsigned, 2> KilledMIRegs;
1900 SmallVector<unsigned, 4> VirtUseOps;
1901 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1902 MachineOperand &MO = MI.getOperand(i);
1903 if (!MO.isReg() || MO.getReg() == 0)
1904 continue; // Ignore non-register operands.
1906 unsigned VirtReg = MO.getReg();
1908 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1909 // Ignore physregs for spilling, but remember that it is used by this
1910 // function.
1911 MRI->setPhysRegUsed(VirtReg);
1912 continue;
1915 // We want to process implicit virtual register uses first.
1916 if (MO.isImplicit())
1917 // If the virtual register is implicitly defined, emit a implicit_def
1918 // before so scavenger knows it's "defined".
1919 // FIXME: This is a horrible hack done the by register allocator to
1920 // remat a definition with virtual register operand.
1921 VirtUseOps.insert(VirtUseOps.begin(), i);
1922 else
1923 VirtUseOps.push_back(i);
1925 // A partial def causes problems because the same operand both reads and
1926 // writes the register. This rewriter is designed to rewrite uses and defs
1927 // separately, so a partial def would already have been rewritten to a
1928 // physreg by the time we get to processing defs.
1929 // Add an implicit use operand to model the partial def.
1930 if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) &&
1931 MI.findRegisterUseOperandIdx(VirtReg) == -1) {
1932 VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands());
1933 MI.addOperand(MachineOperand::CreateReg(VirtReg,
1934 false, // isDef
1935 true)); // isImplicit
1936 DEBUG(dbgs() << "Partial redef: " << MI);
1940 // Process all of the spilled uses and all non spilled reg references.
1941 SmallVector<int, 2> PotentialDeadStoreSlots;
1942 KilledMIRegs.clear();
1943 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1944 unsigned i = VirtUseOps[j];
1945 unsigned VirtReg = MI.getOperand(i).getReg();
1946 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1947 "Not a virtual register?");
1949 unsigned SubIdx = MI.getOperand(i).getSubReg();
1950 if (VRM->isAssignedReg(VirtReg)) {
1951 // This virtual register was assigned a physreg!
1952 unsigned Phys = VRM->getPhys(VirtReg);
1953 MRI->setPhysRegUsed(Phys);
1954 if (MI.getOperand(i).isDef())
1955 ReusedOperands.markClobbered(Phys);
1956 substitutePhysReg(MI.getOperand(i), Phys, *TRI);
1957 if (VRM->isImplicitlyDefined(VirtReg))
1958 // FIXME: Is this needed?
1959 BuildMI(*MBB, &MI, MI.getDebugLoc(),
1960 TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
1961 continue;
1964 // This virtual register is now known to be a spilled value.
1965 if (!MI.getOperand(i).isUse())
1966 continue; // Handle defs in the loop below (handle use&def here though)
1968 bool AvoidReload = MI.getOperand(i).isUndef();
1969 // Check if it is defined by an implicit def. It should not be spilled.
1970 // Note, this is for correctness reason. e.g.
1971 // 8 %reg1024<def> = IMPLICIT_DEF
1972 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1973 // The live range [12, 14) are not part of the r1024 live interval since
1974 // it's defined by an implicit def. It will not conflicts with live
1975 // interval of r1025. Now suppose both registers are spilled, you can
1976 // easily see a situation where both registers are reloaded before
1977 // the INSERT_SUBREG and both target registers that would overlap.
1978 bool DoReMat = VRM->isReMaterialized(VirtReg);
1979 int SSorRMId = DoReMat
1980 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
1981 int ReuseSlot = SSorRMId;
1983 // Check to see if this stack slot is available.
1984 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1986 // If this is a sub-register use, make sure the reuse register is in the
1987 // right register class. For example, for x86 not all of the 32-bit
1988 // registers have accessible sub-registers.
1989 // Similarly so for EXTRACT_SUBREG. Consider this:
1990 // EDI = op
1991 // MOV32_mr fi#1, EDI
1992 // ...
1993 // = EXTRACT_SUBREG fi#1
1994 // fi#1 is available in EDI, but it cannot be reused because it's not in
1995 // the right register file.
1996 if (PhysReg && !AvoidReload && SubIdx) {
1997 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1998 if (!RC->contains(PhysReg))
1999 PhysReg = 0;
2002 if (PhysReg && !AvoidReload) {
2003 // This spilled operand might be part of a two-address operand. If this
2004 // is the case, then changing it will necessarily require changing the
2005 // def part of the instruction as well. However, in some cases, we
2006 // aren't allowed to modify the reused register. If none of these cases
2007 // apply, reuse it.
2008 bool CanReuse = true;
2009 bool isTied = MI.isRegTiedToDefOperand(i);
2010 if (isTied) {
2011 // Okay, we have a two address operand. We can reuse this physreg as
2012 // long as we are allowed to clobber the value and there isn't an
2013 // earlier def that has already clobbered the physreg.
2014 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
2015 Spills.canClobberPhysReg(PhysReg);
2017 // If this is an asm, and a PhysReg alias is used elsewhere as an
2018 // earlyclobber operand, we can't also use it as an input.
2019 if (MI.isInlineAsm()) {
2020 for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
2021 MachineOperand &MOk = MI.getOperand(k);
2022 if (MOk.isReg() && MOk.isEarlyClobber() &&
2023 TRI->regsOverlap(MOk.getReg(), PhysReg)) {
2024 CanReuse = false;
2025 DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
2026 << " for vreg" << VirtReg << ": " << MOk << '\n');
2027 break;
2032 if (CanReuse) {
2033 // If this stack slot value is already available, reuse it!
2034 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
2035 DEBUG(dbgs() << "Reusing RM#"
2036 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
2037 else
2038 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
2039 DEBUG(dbgs() << " from physreg "
2040 << TRI->getName(PhysReg) << " for vreg"
2041 << VirtReg <<" instead of reloading into physreg "
2042 << TRI->getName(VRM->getPhys(VirtReg)) << '\n');
2043 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2044 MI.getOperand(i).setReg(RReg);
2045 MI.getOperand(i).setSubReg(0);
2047 // Reusing a physreg may resurrect it. But we expect ProcessUses to
2048 // update the kill flags for the current instr after processing it.
2050 // The only technical detail we have is that we don't know that
2051 // PhysReg won't be clobbered by a reloaded stack slot that occurs
2052 // later in the instruction. In particular, consider 'op V1, V2'.
2053 // If V1 is available in physreg R0, we would choose to reuse it
2054 // here, instead of reloading it into the register the allocator
2055 // indicated (say R1). However, V2 might have to be reloaded
2056 // later, and it might indicate that it needs to live in R0. When
2057 // this occurs, we need to have information available that
2058 // indicates it is safe to use R1 for the reload instead of R0.
2060 // To further complicate matters, we might conflict with an alias,
2061 // or R0 and R1 might not be compatible with each other. In this
2062 // case, we actually insert a reload for V1 in R1, ensuring that
2063 // we can get at R0 or its alias.
2064 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
2065 VRM->getPhys(VirtReg), VirtReg);
2066 if (isTied)
2067 // Only mark it clobbered if this is a use&def operand.
2068 ReusedOperands.markClobbered(PhysReg);
2069 ++NumReused;
2071 if (MI.getOperand(i).isKill() &&
2072 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
2074 // The store of this spilled value is potentially dead, but we
2075 // won't know for certain until we've confirmed that the re-use
2076 // above is valid, which means waiting until the other operands
2077 // are processed. For now we just track the spill slot, we'll
2078 // remove it after the other operands are processed if valid.
2080 PotentialDeadStoreSlots.push_back(ReuseSlot);
2083 // Mark is isKill if it's there no other uses of the same virtual
2084 // register and it's not a two-address operand. IsKill will be
2085 // unset if reg is reused.
2086 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
2087 MI.getOperand(i).setIsKill();
2088 KilledMIRegs.insert(VirtReg);
2090 continue;
2091 } // CanReuse
2093 // Otherwise we have a situation where we have a two-address instruction
2094 // whose mod/ref operand needs to be reloaded. This reload is already
2095 // available in some register "PhysReg", but if we used PhysReg as the
2096 // operand to our 2-addr instruction, the instruction would modify
2097 // PhysReg. This isn't cool if something later uses PhysReg and expects
2098 // to get its initial value.
2100 // To avoid this problem, and to avoid doing a load right after a store,
2101 // we emit a copy from PhysReg into the designated register for this
2102 // operand.
2104 // This case also applies to an earlyclobber'd PhysReg.
2105 unsigned DesignatedReg = VRM->getPhys(VirtReg);
2106 assert(DesignatedReg && "Must map virtreg to physreg!");
2108 // Note that, if we reused a register for a previous operand, the
2109 // register we want to reload into might not actually be
2110 // available. If this occurs, use the register indicated by the
2111 // reuser.
2112 if (ReusedOperands.hasReuses())
2113 DesignatedReg = ReusedOperands.
2114 GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
2115 MaybeDeadStores, RegKills, KillOps, *VRM);
2117 // If the mapped designated register is actually the physreg we have
2118 // incoming, we don't need to inserted a dead copy.
2119 if (DesignatedReg == PhysReg) {
2120 // If this stack slot value is already available, reuse it!
2121 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
2122 DEBUG(dbgs() << "Reusing RM#"
2123 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
2124 else
2125 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
2126 DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
2127 << " for vreg" << VirtReg
2128 << " instead of reloading into same physreg.\n");
2129 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2130 MI.getOperand(i).setReg(RReg);
2131 MI.getOperand(i).setSubReg(0);
2132 ReusedOperands.markClobbered(RReg);
2133 ++NumReused;
2134 continue;
2137 MRI->setPhysRegUsed(DesignatedReg);
2138 ReusedOperands.markClobbered(DesignatedReg);
2140 // Back-schedule reloads and remats.
2141 MachineBasicBlock::iterator InsertLoc =
2142 ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
2143 SSorRMId, TII, *MBB->getParent());
2144 MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
2145 TII->get(TargetOpcode::COPY),
2146 DesignatedReg).addReg(PhysReg);
2147 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2148 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
2150 // This invalidates DesignatedReg.
2151 Spills.ClobberPhysReg(DesignatedReg);
2153 Spills.addAvailable(ReuseSlot, DesignatedReg);
2154 unsigned RReg =
2155 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
2156 MI.getOperand(i).setReg(RReg);
2157 MI.getOperand(i).setSubReg(0);
2158 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
2159 ++NumReused;
2160 continue;
2161 } // if (PhysReg)
2163 // Otherwise, reload it and remember that we have it.
2164 PhysReg = VRM->getPhys(VirtReg);
2165 assert(PhysReg && "Must map virtreg to physreg!");
2167 // Note that, if we reused a register for a previous operand, the
2168 // register we want to reload into might not actually be
2169 // available. If this occurs, use the register indicated by the
2170 // reuser.
2171 if (ReusedOperands.hasReuses())
2172 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2173 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2175 MRI->setPhysRegUsed(PhysReg);
2176 ReusedOperands.markClobbered(PhysReg);
2177 if (AvoidReload)
2178 ++NumAvoided;
2179 else {
2180 // Back-schedule reloads and remats.
2181 MachineBasicBlock::iterator InsertLoc =
2182 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat,
2183 SSorRMId, TII, *MBB->getParent());
2185 if (DoReMat) {
2186 ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
2187 } else {
2188 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
2189 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
2190 MachineInstr *LoadMI = prior(InsertLoc);
2191 VRM->addSpillSlotUse(SSorRMId, LoadMI);
2192 ++NumLoads;
2193 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
2195 // This invalidates PhysReg.
2196 Spills.ClobberPhysReg(PhysReg);
2198 // Any stores to this stack slot are not dead anymore.
2199 if (!DoReMat)
2200 MaybeDeadStores[SSorRMId] = NULL;
2201 Spills.addAvailable(SSorRMId, PhysReg);
2202 // Assumes this is the last use. IsKill will be unset if reg is reused
2203 // unless it's a two-address operand.
2204 if (!MI.isRegTiedToDefOperand(i) &&
2205 KilledMIRegs.count(VirtReg) == 0) {
2206 MI.getOperand(i).setIsKill();
2207 KilledMIRegs.insert(VirtReg);
2210 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
2211 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
2213 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2214 MI.getOperand(i).setReg(RReg);
2215 MI.getOperand(i).setSubReg(0);
2218 // Ok - now we can remove stores that have been confirmed dead.
2219 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2220 // This was the last use and the spilled value is still available
2221 // for reuse. That means the spill was unnecessary!
2222 int PDSSlot = PotentialDeadStoreSlots[j];
2223 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2224 if (DeadStore) {
2225 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2226 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2227 EraseInstr(DeadStore);
2228 MaybeDeadStores[PDSSlot] = NULL;
2229 ++NumDSE;
2234 /// rewriteMBB - Keep track of which spills are available even after the
2235 /// register allocator is done with them. If possible, avoid reloading vregs.
2236 void
2237 LocalRewriter::RewriteMBB(LiveIntervals *LIs,
2238 AvailableSpills &Spills, BitVector &RegKills,
2239 std::vector<MachineOperand*> &KillOps) {
2241 DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
2242 << MBB->getName() << "':\n");
2244 MachineFunction &MF = *MBB->getParent();
2246 // MaybeDeadStores - When we need to write a value back into a stack slot,
2247 // keep track of the inserted store. If the stack slot value is never read
2248 // (because the value was used from some available register, for example), and
2249 // subsequently stored to, the original store is dead. This map keeps track
2250 // of inserted stores that are not used. If we see a subsequent store to the
2251 // same stack slot, the original store is deleted.
2252 std::vector<MachineInstr*> MaybeDeadStores;
2253 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
2255 // ReMatDefs - These are rematerializable def MIs which are not deleted.
2256 SmallSet<MachineInstr*, 4> ReMatDefs;
2258 // Keep track of the registers we have already spilled in case there are
2259 // multiple defs of the same register in MI.
2260 SmallSet<unsigned, 8> SpilledMIRegs;
2262 RegKills.reset();
2263 KillOps.clear();
2264 KillOps.resize(TRI->getNumRegs(), NULL);
2266 DistanceMap.clear();
2267 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2268 MII != E; ) {
2269 MachineBasicBlock::iterator NextMII = llvm::next(MII);
2271 if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
2272 NextMII = llvm::next(MII);
2274 if (InsertEmergencySpills(MII))
2275 NextMII = llvm::next(MII);
2277 InsertRestores(MII, Spills, RegKills, KillOps);
2279 if (InsertSpills(MII))
2280 NextMII = llvm::next(MII);
2282 bool Erased = false;
2283 bool BackTracked = false;
2284 MachineInstr &MI = *MII;
2286 // Remember DbgValue's which reference stack slots.
2287 if (MI.isDebugValue() && MI.getOperand(0).isFI())
2288 Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);
2290 /// ReusedOperands - Keep track of operand reuse in case we need to undo
2291 /// reuse.
2292 ReuseInfo ReusedOperands(MI, TRI);
2294 ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps);
2296 DEBUG(dbgs() << '\t' << MI);
2299 // If we have folded references to memory operands, make sure we clear all
2300 // physical registers that may contain the value of the spilled virtual
2301 // register
2303 // Copy the folded virts to a small vector, we may change MI2VirtMap.
2304 SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts;
2305 // C++0x FTW!
2306 for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator,
2307 VirtRegMap::MI2VirtMapTy::const_iterator> FVRange =
2308 VRM->getFoldedVirts(&MI);
2309 FVRange.first != FVRange.second; ++FVRange.first)
2310 FoldedVirts.push_back(FVRange.first->second);
2312 SmallSet<int, 2> FoldedSS;
2313 for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) {
2314 unsigned VirtReg = FoldedVirts[FVI].first;
2315 VirtRegMap::ModRef MR = FoldedVirts[FVI].second;
2316 DEBUG(dbgs() << "Folded vreg: " << VirtReg << " MR: " << MR);
2318 int SS = VRM->getStackSlot(VirtReg);
2319 if (SS == VirtRegMap::NO_STACK_SLOT)
2320 continue;
2321 FoldedSS.insert(SS);
2322 DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
2324 // If this folded instruction is just a use, check to see if it's a
2325 // straight load from the virt reg slot.
2326 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2327 int FrameIdx;
2328 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2329 if (DestReg && FrameIdx == SS) {
2330 // If this spill slot is available, turn it into a copy (or nothing)
2331 // instead of leaving it as a load!
2332 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2333 DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
2334 if (DestReg != InReg) {
2335 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2336 MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(),
2337 TII->get(TargetOpcode::COPY))
2338 .addReg(DestReg, RegState::Define, DefMO->getSubReg())
2339 .addReg(InReg, RegState::Kill);
2340 // Revisit the copy so we make sure to notice the effects of the
2341 // operation on the destreg (either needing to RA it if it's
2342 // virtual or needing to clobber any values if it's physical).
2343 NextMII = CopyMI;
2344 NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2345 BackTracked = true;
2346 } else {
2347 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2348 // InvalidateKills resurrects any prior kill of the copy's source
2349 // allowing the source reg to be reused in place of the copy.
2350 Spills.disallowClobberPhysReg(InReg);
2353 InvalidateKills(MI, TRI, RegKills, KillOps);
2354 EraseInstr(&MI);
2355 Erased = true;
2356 goto ProcessNextInst;
2358 } else {
2359 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2360 SmallVector<MachineInstr*, 4> NewMIs;
2361 if (PhysReg &&
2362 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
2363 MBB->insert(MII, NewMIs[0]);
2364 InvalidateKills(MI, TRI, RegKills, KillOps);
2365 EraseInstr(&MI);
2366 Erased = true;
2367 --NextMII; // backtrack to the unfolded instruction.
2368 BackTracked = true;
2369 goto ProcessNextInst;
2374 // If this reference is not a use, any previous store is now dead.
2375 // Otherwise, the store to this stack slot is not dead anymore.
2376 MachineInstr* DeadStore = MaybeDeadStores[SS];
2377 if (DeadStore) {
2378 bool isDead = !(MR & VirtRegMap::isRef);
2379 MachineInstr *NewStore = NULL;
2380 if (MR & VirtRegMap::isModRef) {
2381 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2382 SmallVector<MachineInstr*, 4> NewMIs;
2383 // We can reuse this physreg as long as we are allowed to clobber
2384 // the value and there isn't an earlier def that has already clobbered
2385 // the physreg.
2386 if (PhysReg &&
2387 !ReusedOperands.isClobbered(PhysReg) &&
2388 Spills.canClobberPhysReg(PhysReg) &&
2389 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2390 MachineOperand *KillOpnd =
2391 DeadStore->findRegisterUseOperand(PhysReg, true);
2392 // Note, if the store is storing a sub-register, it's possible the
2393 // super-register is needed below.
2394 if (KillOpnd && !KillOpnd->getSubReg() &&
2395 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2396 MBB->insert(MII, NewMIs[0]);
2397 NewStore = NewMIs[1];
2398 MBB->insert(MII, NewStore);
2399 VRM->addSpillSlotUse(SS, NewStore);
2400 InvalidateKills(MI, TRI, RegKills, KillOps);
2401 EraseInstr(&MI);
2402 Erased = true;
2403 --NextMII;
2404 --NextMII; // backtrack to the unfolded instruction.
2405 BackTracked = true;
2406 isDead = true;
2407 ++NumSUnfold;
2412 if (isDead) { // Previous store is dead.
2413 // If we get here, the store is dead, nuke it now.
2414 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2415 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2416 EraseInstr(DeadStore);
2417 if (!NewStore)
2418 ++NumDSE;
2421 MaybeDeadStores[SS] = NULL;
2422 if (NewStore) {
2423 // Treat this store as a spill merged into a copy. That makes the
2424 // stack slot value available.
2425 VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2426 goto ProcessNextInst;
2430 // If the spill slot value is available, and this is a new definition of
2431 // the value, the value is not available anymore.
2432 if (MR & VirtRegMap::isMod) {
2433 // Notice that the value in this stack slot has been modified.
2434 Spills.ModifyStackSlotOrReMat(SS);
2436 // If this is *just* a mod of the value, check to see if this is just a
2437 // store to the spill slot (i.e. the spill got merged into the copy). If
2438 // so, realize that the vreg is available now, and add the store to the
2439 // MaybeDeadStore info.
2440 int StackSlot;
2441 if (!(MR & VirtRegMap::isRef)) {
2442 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2443 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2444 "Src hasn't been allocated yet?");
2446 if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
2447 Spills, RegKills, KillOps, TRI)) {
2448 NextMII = llvm::next(MII);
2449 BackTracked = true;
2450 goto ProcessNextInst;
2453 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2454 // this as a potentially dead store in case there is a subsequent
2455 // store into the stack slot without a read from it.
2456 MaybeDeadStores[StackSlot] = &MI;
2458 // If the stack slot value was previously available in some other
2459 // register, change it now. Otherwise, make the register
2460 // available in PhysReg.
2461 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2467 // Process all of the spilled defs.
2468 SpilledMIRegs.clear();
2469 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2470 MachineOperand &MO = MI.getOperand(i);
2471 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2472 continue;
2474 unsigned VirtReg = MO.getReg();
2475 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2476 // Check to see if this is a noop copy. If so, eliminate the
2477 // instruction before considering the dest reg to be changed.
2478 // Also check if it's copying from an "undef", if so, we can't
2479 // eliminate this or else the undef marker is lost and it will
2480 // confuses the scavenger. This is extremely rare.
2481 if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() &&
2482 MI.getNumOperands() == 2) {
2483 ++NumDCE;
2484 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2485 SmallVector<unsigned, 2> KillRegs;
2486 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2487 if (MO.isDead() && !KillRegs.empty()) {
2488 // Source register or an implicit super/sub-register use is killed.
2489 assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg()));
2490 // Last def is now dead.
2491 TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
2493 EraseInstr(&MI);
2494 Erased = true;
2495 Spills.disallowClobberPhysReg(VirtReg);
2496 goto ProcessNextInst;
2499 // If it's not a no-op copy, it clobbers the value in the destreg.
2500 Spills.ClobberPhysReg(VirtReg);
2501 ReusedOperands.markClobbered(VirtReg);
2503 // Check to see if this instruction is a load from a stack slot into
2504 // a register. If so, this provides the stack slot value in the reg.
2505 int FrameIdx;
2506 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2507 assert(DestReg == VirtReg && "Unknown load situation!");
2509 // If it is a folded reference, then it's not safe to clobber.
2510 bool Folded = FoldedSS.count(FrameIdx);
2511 // Otherwise, if it wasn't available, remember that it is now!
2512 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2513 goto ProcessNextInst;
2516 continue;
2519 unsigned SubIdx = MO.getSubReg();
2520 bool DoReMat = VRM->isReMaterialized(VirtReg);
2521 if (DoReMat)
2522 ReMatDefs.insert(&MI);
2524 // The only vregs left are stack slot definitions.
2525 int StackSlot = VRM->getStackSlot(VirtReg);
2526 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
2528 // If this def is part of a two-address operand, make sure to execute
2529 // the store from the correct physical register.
2530 unsigned PhysReg;
2531 unsigned TiedOp;
2532 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2533 PhysReg = MI.getOperand(TiedOp).getReg();
2534 if (SubIdx) {
2535 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2536 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2537 "Can't find corresponding super-register!");
2538 PhysReg = SuperReg;
2540 } else {
2541 PhysReg = VRM->getPhys(VirtReg);
2542 if (ReusedOperands.isClobbered(PhysReg)) {
2543 // Another def has taken the assigned physreg. It must have been a
2544 // use&def which got it due to reuse. Undo the reuse!
2545 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2546 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2550 assert(PhysReg && "VR not assigned a physical register?");
2551 MRI->setPhysRegUsed(PhysReg);
2552 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2553 ReusedOperands.markClobbered(RReg);
2554 MI.getOperand(i).setReg(RReg);
2555 MI.getOperand(i).setSubReg(0);
2557 if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
2558 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2559 SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
2560 LastStore, Spills, ReMatDefs, RegKills, KillOps);
2561 NextMII = llvm::next(MII);
2563 // Check to see if this is a noop copy. If so, eliminate the
2564 // instruction before considering the dest reg to be changed.
2565 if (MI.isIdentityCopy()) {
2566 ++NumDCE;
2567 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2568 InvalidateKills(MI, TRI, RegKills, KillOps);
2569 EraseInstr(&MI);
2570 Erased = true;
2571 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2572 goto ProcessNextInst;
2576 ProcessNextInst:
2577 // Delete dead instructions without side effects.
2578 if (!Erased && !BackTracked && isSafeToDelete(MI)) {
2579 InvalidateKills(MI, TRI, RegKills, KillOps);
2580 EraseInstr(&MI);
2581 Erased = true;
2583 if (!Erased)
2584 DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
2585 if (!Erased && !BackTracked) {
2586 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2587 UpdateKills(*II, TRI, RegKills, KillOps);
2589 MII = NextMII;
2594 llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2595 switch (RewriterOpt) {
2596 default: llvm_unreachable("Unreachable!");
2597 case local:
2598 return new LocalRewriter();
2599 case trivial:
2600 return new TrivialRewriter();