Fix -Asserts warning.
[llvm.git] / lib / MC / MCAssembler.cpp
blobe62296f35d10bf4646c1661ea9725686fd62853c
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/MC/MCAsmLayout.h"
13 #include "llvm/MC/MCCodeEmitter.h"
14 #include "llvm/MC/MCExpr.h"
15 #include "llvm/MC/MCObjectWriter.h"
16 #include "llvm/MC/MCSymbol.h"
17 #include "llvm/MC/MCValue.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetRegistry.h"
26 #include "llvm/Target/TargetAsmBackend.h"
28 #include <vector>
29 using namespace llvm;
31 namespace {
32 namespace stats {
33 STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
34 STATISTIC(EvaluateFixup, "Number of evaluated fixups");
35 STATISTIC(FragmentLayouts, "Number of fragment layouts");
36 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
37 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
38 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
39 STATISTIC(SectionLayouts, "Number of section layouts");
43 // FIXME FIXME FIXME: There are number of places in this file where we convert
44 // what is a 64-bit assembler value used for computation into a value in the
45 // object file, which may truncate it. We should detect that truncation where
46 // invalid and report errors back.
48 /* *** */
50 MCAsmLayout::MCAsmLayout(MCAssembler &Asm) : Assembler(Asm) {
51 // Compute the section layout order. Virtual sections must go last.
52 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
53 if (!Asm.getBackend().isVirtualSection(it->getSection()))
54 SectionOrder.push_back(&*it);
55 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
56 if (Asm.getBackend().isVirtualSection(it->getSection()))
57 SectionOrder.push_back(&*it);
60 void MCAsmLayout::UpdateForSlide(MCFragment *F, int SlideAmount) {
61 // We shouldn't have to do anything special to support negative slides, and it
62 // is a perfectly valid thing to do as long as other parts of the system can
63 // guarantee convergence.
64 assert(SlideAmount >= 0 && "Negative slides not yet supported");
66 // Update the layout by simply recomputing the layout for the entire
67 // file. This is trivially correct, but very slow.
69 // FIXME-PERF: This is O(N^2), but will be eliminated once we get smarter.
71 // Layout the sections in order.
72 for (unsigned i = 0, e = getSectionOrder().size(); i != e; ++i)
73 getAssembler().LayoutSection(*this, i);
76 uint64_t MCAsmLayout::getFragmentAddress(const MCFragment *F) const {
77 assert(F->getParent() && "Missing section()!");
78 return getSectionAddress(F->getParent()) + getFragmentOffset(F);
81 uint64_t MCAsmLayout::getFragmentEffectiveSize(const MCFragment *F) const {
82 assert(F->EffectiveSize != ~UINT64_C(0) && "Address not set!");
83 return F->EffectiveSize;
86 void MCAsmLayout::setFragmentEffectiveSize(MCFragment *F, uint64_t Value) {
87 F->EffectiveSize = Value;
90 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
91 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
92 return F->Offset;
95 void MCAsmLayout::setFragmentOffset(MCFragment *F, uint64_t Value) {
96 F->Offset = Value;
99 uint64_t MCAsmLayout::getSymbolAddress(const MCSymbolData *SD) const {
100 assert(SD->getFragment() && "Invalid getAddress() on undefined symbol!");
101 return getFragmentAddress(SD->getFragment()) + SD->getOffset();
104 uint64_t MCAsmLayout::getSectionAddress(const MCSectionData *SD) const {
105 assert(SD->Address != ~UINT64_C(0) && "Address not set!");
106 return SD->Address;
109 void MCAsmLayout::setSectionAddress(MCSectionData *SD, uint64_t Value) {
110 SD->Address = Value;
113 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
114 // Empty sections have no size.
115 if (SD->getFragmentList().empty())
116 return 0;
118 // Otherwise, the size is the last fragment's end offset.
119 const MCFragment &F = SD->getFragmentList().back();
120 return getFragmentOffset(&F) + getFragmentEffectiveSize(&F);
123 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
124 // Virtual sections have no file size.
125 if (getAssembler().getBackend().isVirtualSection(SD->getSection()))
126 return 0;
128 // Otherwise, the file size is the same as the address space size.
129 return getSectionAddressSize(SD);
132 uint64_t MCAsmLayout::getSectionSize(const MCSectionData *SD) const {
133 // Empty sections have no size.
134 if (SD->getFragmentList().empty())
135 return 0;
137 // The logical size is the address space size minus any tail padding.
138 uint64_t Size = getSectionAddressSize(SD);
139 const MCAlignFragment *AF =
140 dyn_cast<MCAlignFragment>(&(SD->getFragmentList().back()));
141 if (AF && AF->hasOnlyAlignAddress())
142 Size -= getFragmentEffectiveSize(AF);
144 return Size;
147 /* *** */
149 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
152 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
153 : Kind(_Kind), Parent(_Parent), Atom(0), EffectiveSize(~UINT64_C(0))
155 if (Parent)
156 Parent->getFragmentList().push_back(this);
159 MCFragment::~MCFragment() {
162 /* *** */
164 MCSectionData::MCSectionData() : Section(0) {}
166 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
167 : Section(&_Section),
168 Alignment(1),
169 Address(~UINT64_C(0)),
170 HasInstructions(false)
172 if (A)
173 A->getSectionList().push_back(this);
176 /* *** */
178 MCSymbolData::MCSymbolData() : Symbol(0) {}
180 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
181 uint64_t _Offset, MCAssembler *A)
182 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
183 IsExternal(false), IsPrivateExtern(false),
184 CommonSize(0), CommonAlign(0), Flags(0), Index(0)
186 if (A)
187 A->getSymbolList().push_back(this);
190 /* *** */
192 MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
193 MCCodeEmitter &_Emitter, raw_ostream &_OS)
194 : Context(_Context), Backend(_Backend), Emitter(_Emitter),
195 OS(_OS), RelaxAll(false), SubsectionsViaSymbols(false)
199 MCAssembler::~MCAssembler() {
202 static bool isScatteredFixupFullyResolvedSimple(const MCAssembler &Asm,
203 const MCAsmFixup &Fixup,
204 const MCValue Target,
205 const MCSection *BaseSection) {
206 // The effective fixup address is
207 // addr(atom(A)) + offset(A)
208 // - addr(atom(B)) - offset(B)
209 // - addr(<base symbol>) + <fixup offset from base symbol>
210 // and the offsets are not relocatable, so the fixup is fully resolved when
211 // addr(atom(A)) - addr(atom(B)) - addr(<base symbol>)) == 0.
213 // The simple (Darwin, except on x86_64) way of dealing with this was to
214 // assume that any reference to a temporary symbol *must* be a temporary
215 // symbol in the same atom, unless the sections differ. Therefore, any PCrel
216 // relocation to a temporary symbol (in the same section) is fully
217 // resolved. This also works in conjunction with absolutized .set, which
218 // requires the compiler to use .set to absolutize the differences between
219 // symbols which the compiler knows to be assembly time constants, so we don't
220 // need to worry about considering symbol differences fully resolved.
222 // Non-relative fixups are only resolved if constant.
223 if (!BaseSection)
224 return Target.isAbsolute();
226 // Otherwise, relative fixups are only resolved if not a difference and the
227 // target is a temporary in the same section.
228 if (Target.isAbsolute() || Target.getSymB())
229 return false;
231 const MCSymbol *A = &Target.getSymA()->getSymbol();
232 if (!A->isTemporary() || !A->isInSection() ||
233 &A->getSection() != BaseSection)
234 return false;
236 return true;
239 static bool isScatteredFixupFullyResolved(const MCAssembler &Asm,
240 const MCAsmLayout &Layout,
241 const MCAsmFixup &Fixup,
242 const MCValue Target,
243 const MCSymbolData *BaseSymbol) {
244 // The effective fixup address is
245 // addr(atom(A)) + offset(A)
246 // - addr(atom(B)) - offset(B)
247 // - addr(BaseSymbol) + <fixup offset from base symbol>
248 // and the offsets are not relocatable, so the fixup is fully resolved when
249 // addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0.
251 // Note that "false" is almost always conservatively correct (it means we emit
252 // a relocation which is unnecessary), except when it would force us to emit a
253 // relocation which the target cannot encode.
255 const MCSymbolData *A_Base = 0, *B_Base = 0;
256 if (const MCSymbolRefExpr *A = Target.getSymA()) {
257 // Modified symbol references cannot be resolved.
258 if (A->getKind() != MCSymbolRefExpr::VK_None)
259 return false;
261 A_Base = Asm.getAtom(Layout, &Asm.getSymbolData(A->getSymbol()));
262 if (!A_Base)
263 return false;
266 if (const MCSymbolRefExpr *B = Target.getSymB()) {
267 // Modified symbol references cannot be resolved.
268 if (B->getKind() != MCSymbolRefExpr::VK_None)
269 return false;
271 B_Base = Asm.getAtom(Layout, &Asm.getSymbolData(B->getSymbol()));
272 if (!B_Base)
273 return false;
276 // If there is no base, A and B have to be the same atom for this fixup to be
277 // fully resolved.
278 if (!BaseSymbol)
279 return A_Base == B_Base;
281 // Otherwise, B must be missing and A must be the base.
282 return !B_Base && BaseSymbol == A_Base;
285 bool MCAssembler::isSymbolLinkerVisible(const MCSymbolData *SD) const {
286 // Non-temporary labels should always be visible to the linker.
287 if (!SD->getSymbol().isTemporary())
288 return true;
290 // Absolute temporary labels are never visible.
291 if (!SD->getFragment())
292 return false;
294 // Otherwise, check if the section requires symbols even for temporary labels.
295 return getBackend().doesSectionRequireSymbols(
296 SD->getFragment()->getParent()->getSection());
299 const MCSymbolData *MCAssembler::getAtom(const MCAsmLayout &Layout,
300 const MCSymbolData *SD) const {
301 // Linker visible symbols define atoms.
302 if (isSymbolLinkerVisible(SD))
303 return SD;
305 // Absolute and undefined symbols have no defining atom.
306 if (!SD->getFragment())
307 return 0;
309 // Non-linker visible symbols in sections which can't be atomized have no
310 // defining atom.
311 if (!getBackend().isSectionAtomizable(
312 SD->getFragment()->getParent()->getSection()))
313 return 0;
315 // Otherwise, return the atom for the containing fragment.
316 return SD->getFragment()->getAtom();
319 bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout,
320 const MCAsmFixup &Fixup, const MCFragment *DF,
321 MCValue &Target, uint64_t &Value) const {
322 ++stats::EvaluateFixup;
324 if (!Fixup.Value->EvaluateAsRelocatable(Target, &Layout))
325 report_fatal_error("expected relocatable expression");
327 // FIXME: How do non-scattered symbols work in ELF? I presume the linker
328 // doesn't support small relocations, but then under what criteria does the
329 // assembler allow symbol differences?
331 Value = Target.getConstant();
333 bool IsPCRel =
334 Emitter.getFixupKindInfo(Fixup.Kind).Flags & MCFixupKindInfo::FKF_IsPCRel;
335 bool IsResolved = true;
336 if (const MCSymbolRefExpr *A = Target.getSymA()) {
337 if (A->getSymbol().isDefined())
338 Value += Layout.getSymbolAddress(&getSymbolData(A->getSymbol()));
339 else
340 IsResolved = false;
342 if (const MCSymbolRefExpr *B = Target.getSymB()) {
343 if (B->getSymbol().isDefined())
344 Value -= Layout.getSymbolAddress(&getSymbolData(B->getSymbol()));
345 else
346 IsResolved = false;
349 // If we are using scattered symbols, determine whether this value is actually
350 // resolved; scattering may cause atoms to move.
351 if (IsResolved && getBackend().hasScatteredSymbols()) {
352 if (getBackend().hasReliableSymbolDifference()) {
353 // If this is a PCrel relocation, find the base atom (identified by its
354 // symbol) that the fixup value is relative to.
355 const MCSymbolData *BaseSymbol = 0;
356 if (IsPCRel) {
357 BaseSymbol = DF->getAtom();
358 if (!BaseSymbol)
359 IsResolved = false;
362 if (IsResolved)
363 IsResolved = isScatteredFixupFullyResolved(*this, Layout, Fixup, Target,
364 BaseSymbol);
365 } else {
366 const MCSection *BaseSection = 0;
367 if (IsPCRel)
368 BaseSection = &DF->getParent()->getSection();
370 IsResolved = isScatteredFixupFullyResolvedSimple(*this, Fixup, Target,
371 BaseSection);
375 if (IsPCRel)
376 Value -= Layout.getFragmentAddress(DF) + Fixup.Offset;
378 return IsResolved;
381 void MCAssembler::LayoutFragment(MCAsmLayout &Layout, MCFragment &F) {
382 uint64_t StartAddress = Layout.getSectionAddress(F.getParent());
384 // Get the fragment start address.
385 uint64_t Address = StartAddress;
386 MCSectionData::iterator it = &F;
387 if (MCFragment *Prev = F.getPrevNode())
388 Address = (StartAddress + Layout.getFragmentOffset(Prev) +
389 Layout.getFragmentEffectiveSize(Prev));
391 ++stats::FragmentLayouts;
393 uint64_t FragmentOffset = Address - StartAddress;
394 Layout.setFragmentOffset(&F, FragmentOffset);
396 // Evaluate fragment size.
397 uint64_t EffectiveSize = 0;
398 switch (F.getKind()) {
399 case MCFragment::FT_Align: {
400 MCAlignFragment &AF = cast<MCAlignFragment>(F);
402 assert((!AF.hasOnlyAlignAddress() || !AF.getNextNode()) &&
403 "Invalid OnlyAlignAddress bit, not the last fragment!");
405 EffectiveSize = OffsetToAlignment(Address, AF.getAlignment());
406 if (EffectiveSize > AF.getMaxBytesToEmit())
407 EffectiveSize = 0;
408 break;
411 case MCFragment::FT_Data:
412 EffectiveSize = cast<MCDataFragment>(F).getContents().size();
413 break;
415 case MCFragment::FT_Fill: {
416 EffectiveSize = cast<MCFillFragment>(F).getSize();
417 break;
420 case MCFragment::FT_Inst:
421 EffectiveSize = cast<MCInstFragment>(F).getInstSize();
422 break;
424 case MCFragment::FT_Org: {
425 MCOrgFragment &OF = cast<MCOrgFragment>(F);
427 int64_t TargetLocation;
428 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout))
429 report_fatal_error("expected assembly-time absolute expression");
431 // FIXME: We need a way to communicate this error.
432 int64_t Offset = TargetLocation - FragmentOffset;
433 if (Offset < 0)
434 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
435 "' (at offset '" + Twine(FragmentOffset) + "'");
437 EffectiveSize = Offset;
438 break;
442 Layout.setFragmentEffectiveSize(&F, EffectiveSize);
445 void MCAssembler::LayoutSection(MCAsmLayout &Layout,
446 unsigned SectionOrderIndex) {
447 MCSectionData &SD = *Layout.getSectionOrder()[SectionOrderIndex];
449 ++stats::SectionLayouts;
451 // Compute the section start address.
452 uint64_t StartAddress = 0;
453 if (SectionOrderIndex) {
454 MCSectionData *Prev = Layout.getSectionOrder()[SectionOrderIndex - 1];
455 StartAddress = (Layout.getSectionAddress(Prev) +
456 Layout.getSectionAddressSize(Prev));
459 // Honor the section alignment requirements.
460 StartAddress = RoundUpToAlignment(StartAddress, SD.getAlignment());
462 // Set the section address.
463 Layout.setSectionAddress(&SD, StartAddress);
465 for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it)
466 LayoutFragment(Layout, *it);
469 /// WriteFragmentData - Write the \arg F data to the output file.
470 static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
471 const MCFragment &F, MCObjectWriter *OW) {
472 uint64_t Start = OW->getStream().tell();
473 (void) Start;
475 ++stats::EmittedFragments;
477 // FIXME: Embed in fragments instead?
478 uint64_t FragmentSize = Layout.getFragmentEffectiveSize(&F);
479 switch (F.getKind()) {
480 case MCFragment::FT_Align: {
481 MCAlignFragment &AF = cast<MCAlignFragment>(F);
482 uint64_t Count = FragmentSize / AF.getValueSize();
484 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
486 // FIXME: This error shouldn't actually occur (the front end should emit
487 // multiple .align directives to enforce the semantics it wants), but is
488 // severe enough that we want to report it. How to handle this?
489 if (Count * AF.getValueSize() != FragmentSize)
490 report_fatal_error("undefined .align directive, value size '" +
491 Twine(AF.getValueSize()) +
492 "' is not a divisor of padding size '" +
493 Twine(FragmentSize) + "'");
495 // See if we are aligning with nops, and if so do that first to try to fill
496 // the Count bytes. Then if that did not fill any bytes or there are any
497 // bytes left to fill use the the Value and ValueSize to fill the rest.
498 // If we are aligning with nops, ask that target to emit the right data.
499 if (AF.hasEmitNops()) {
500 if (!Asm.getBackend().WriteNopData(Count, OW))
501 report_fatal_error("unable to write nop sequence of " +
502 Twine(Count) + " bytes");
503 break;
506 // Otherwise, write out in multiples of the value size.
507 for (uint64_t i = 0; i != Count; ++i) {
508 switch (AF.getValueSize()) {
509 default:
510 assert(0 && "Invalid size!");
511 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
512 case 2: OW->Write16(uint16_t(AF.getValue())); break;
513 case 4: OW->Write32(uint32_t(AF.getValue())); break;
514 case 8: OW->Write64(uint64_t(AF.getValue())); break;
517 break;
520 case MCFragment::FT_Data: {
521 MCDataFragment &DF = cast<MCDataFragment>(F);
522 assert(FragmentSize == DF.getContents().size() && "Invalid size!");
523 OW->WriteBytes(DF.getContents().str());
524 break;
527 case MCFragment::FT_Fill: {
528 MCFillFragment &FF = cast<MCFillFragment>(F);
530 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
532 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
533 switch (FF.getValueSize()) {
534 default:
535 assert(0 && "Invalid size!");
536 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
537 case 2: OW->Write16(uint16_t(FF.getValue())); break;
538 case 4: OW->Write32(uint32_t(FF.getValue())); break;
539 case 8: OW->Write64(uint64_t(FF.getValue())); break;
542 break;
545 case MCFragment::FT_Inst:
546 llvm_unreachable("unexpected inst fragment after lowering");
547 break;
549 case MCFragment::FT_Org: {
550 MCOrgFragment &OF = cast<MCOrgFragment>(F);
552 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
553 OW->Write8(uint8_t(OF.getValue()));
555 break;
559 assert(OW->getStream().tell() - Start == FragmentSize);
562 void MCAssembler::WriteSectionData(const MCSectionData *SD,
563 const MCAsmLayout &Layout,
564 MCObjectWriter *OW) const {
565 // Ignore virtual sections.
566 if (getBackend().isVirtualSection(SD->getSection())) {
567 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
569 // Check that contents are only things legal inside a virtual section.
570 for (MCSectionData::const_iterator it = SD->begin(),
571 ie = SD->end(); it != ie; ++it) {
572 switch (it->getKind()) {
573 default:
574 assert(0 && "Invalid fragment in virtual section!");
575 case MCFragment::FT_Align:
576 assert(!cast<MCAlignFragment>(it)->getValueSize() &&
577 "Invalid align in virtual section!");
578 break;
579 case MCFragment::FT_Fill:
580 assert(!cast<MCFillFragment>(it)->getValueSize() &&
581 "Invalid fill in virtual section!");
582 break;
586 return;
589 uint64_t Start = OW->getStream().tell();
590 (void) Start;
592 for (MCSectionData::const_iterator it = SD->begin(),
593 ie = SD->end(); it != ie; ++it)
594 WriteFragmentData(*this, Layout, *it, OW);
596 assert(OW->getStream().tell() - Start == Layout.getSectionFileSize(SD));
599 void MCAssembler::Finish() {
600 DEBUG_WITH_TYPE("mc-dump", {
601 llvm::errs() << "assembler backend - pre-layout\n--\n";
602 dump(); });
604 // Assign section and fragment ordinals, all subsequent backend code is
605 // responsible for updating these in place.
606 unsigned SectionIndex = 0;
607 unsigned FragmentIndex = 0;
608 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
609 it->setOrdinal(SectionIndex++);
611 for (MCSectionData::iterator it2 = it->begin(),
612 ie2 = it->end(); it2 != ie2; ++it2)
613 it2->setOrdinal(FragmentIndex++);
616 // Create the layout object.
617 MCAsmLayout Layout(*this);
619 // Insert additional align fragments for concrete sections to explicitly pad
620 // the previous section to match their alignment requirements. This is for
621 // 'gas' compatibility, it shouldn't strictly be necessary.
623 // FIXME: This may be Mach-O specific.
624 for (unsigned i = 1, e = Layout.getSectionOrder().size(); i < e; ++i) {
625 MCSectionData *SD = Layout.getSectionOrder()[i];
627 // Ignore sections without alignment requirements.
628 unsigned Align = SD->getAlignment();
629 if (Align <= 1)
630 continue;
632 // Ignore virtual sections, they don't cause file size modifications.
633 if (getBackend().isVirtualSection(SD->getSection()))
634 continue;
636 // Otherwise, create a new align fragment at the end of the previous
637 // section.
638 MCAlignFragment *AF = new MCAlignFragment(Align, 0, 1, Align,
639 Layout.getSectionOrder()[i - 1]);
640 AF->setOnlyAlignAddress(true);
643 // Layout until everything fits.
644 while (LayoutOnce(Layout))
645 continue;
647 DEBUG_WITH_TYPE("mc-dump", {
648 llvm::errs() << "assembler backend - post-relaxation\n--\n";
649 dump(); });
651 // Finalize the layout, including fragment lowering.
652 FinishLayout(Layout);
654 DEBUG_WITH_TYPE("mc-dump", {
655 llvm::errs() << "assembler backend - final-layout\n--\n";
656 dump(); });
658 uint64_t StartOffset = OS.tell();
659 llvm::OwningPtr<MCObjectWriter> Writer(getBackend().createObjectWriter(OS));
660 if (!Writer)
661 report_fatal_error("unable to create object writer!");
663 // Allow the object writer a chance to perform post-layout binding (for
664 // example, to set the index fields in the symbol data).
665 Writer->ExecutePostLayoutBinding(*this);
667 // Evaluate and apply the fixups, generating relocation entries as necessary.
668 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
669 for (MCSectionData::iterator it2 = it->begin(),
670 ie2 = it->end(); it2 != ie2; ++it2) {
671 MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
672 if (!DF)
673 continue;
675 for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
676 ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
677 MCAsmFixup &Fixup = *it3;
679 // Evaluate the fixup.
680 MCValue Target;
681 uint64_t FixedValue;
682 if (!EvaluateFixup(Layout, Fixup, DF, Target, FixedValue)) {
683 // The fixup was unresolved, we need a relocation. Inform the object
684 // writer of the relocation, and give it an opportunity to adjust the
685 // fixup value if need be.
686 Writer->RecordRelocation(*this, Layout, DF, Fixup, Target,FixedValue);
689 getBackend().ApplyFixup(Fixup, *DF, FixedValue);
694 // Write the object file.
695 Writer->WriteObject(*this, Layout);
696 OS.flush();
698 stats::ObjectBytes += OS.tell() - StartOffset;
701 bool MCAssembler::FixupNeedsRelaxation(const MCAsmFixup &Fixup,
702 const MCFragment *DF,
703 const MCAsmLayout &Layout) const {
704 if (getRelaxAll())
705 return true;
707 // If we cannot resolve the fixup value, it requires relaxation.
708 MCValue Target;
709 uint64_t Value;
710 if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
711 return true;
713 // Otherwise, relax if the value is too big for a (signed) i8.
715 // FIXME: This is target dependent!
716 return int64_t(Value) != int64_t(int8_t(Value));
719 bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF,
720 const MCAsmLayout &Layout) const {
721 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
722 // are intentionally pushing out inst fragments, or because we relaxed a
723 // previous instruction to one that doesn't need relaxation.
724 if (!getBackend().MayNeedRelaxation(IF->getInst(), IF->getFixups()))
725 return false;
727 for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
728 ie = IF->fixup_end(); it != ie; ++it)
729 if (FixupNeedsRelaxation(*it, IF, Layout))
730 return true;
732 return false;
735 bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
736 ++stats::RelaxationSteps;
738 // Layout the sections in order.
739 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i)
740 LayoutSection(Layout, i);
742 // Scan for fragments that need relaxation.
743 bool WasRelaxed = false;
744 for (iterator it = begin(), ie = end(); it != ie; ++it) {
745 MCSectionData &SD = *it;
747 for (MCSectionData::iterator it2 = SD.begin(),
748 ie2 = SD.end(); it2 != ie2; ++it2) {
749 // Check if this is an instruction fragment that needs relaxation.
750 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
751 if (!IF || !FragmentNeedsRelaxation(IF, Layout))
752 continue;
754 ++stats::RelaxedInstructions;
756 // FIXME-PERF: We could immediately lower out instructions if we can tell
757 // they are fully resolved, to avoid retesting on later passes.
759 // Relax the fragment.
761 MCInst Relaxed;
762 getBackend().RelaxInstruction(IF, Relaxed);
764 // Encode the new instruction.
766 // FIXME-PERF: If it matters, we could let the target do this. It can
767 // probably do so more efficiently in many cases.
768 SmallVector<MCFixup, 4> Fixups;
769 SmallString<256> Code;
770 raw_svector_ostream VecOS(Code);
771 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
772 VecOS.flush();
774 // Update the instruction fragment.
775 int SlideAmount = Code.size() - IF->getInstSize();
776 IF->setInst(Relaxed);
777 IF->getCode() = Code;
778 IF->getFixups().clear();
779 for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
780 MCFixup &F = Fixups[i];
781 IF->getFixups().push_back(MCAsmFixup(F.getOffset(), *F.getValue(),
782 F.getKind()));
785 // Update the layout, and remember that we relaxed. If we are relaxing
786 // everything, we can skip this step since nothing will depend on updating
787 // the values.
788 if (!getRelaxAll())
789 Layout.UpdateForSlide(IF, SlideAmount);
790 WasRelaxed = true;
794 return WasRelaxed;
797 void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
798 // Lower out any instruction fragments, to simplify the fixup application and
799 // output.
801 // FIXME-PERF: We don't have to do this, but the assumption is that it is
802 // cheap (we will mostly end up eliminating fragments and appending on to data
803 // fragments), so the extra complexity downstream isn't worth it. Evaluate
804 // this assumption.
805 for (iterator it = begin(), ie = end(); it != ie; ++it) {
806 MCSectionData &SD = *it;
808 for (MCSectionData::iterator it2 = SD.begin(),
809 ie2 = SD.end(); it2 != ie2; ++it2) {
810 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
811 if (!IF)
812 continue;
814 // Create a new data fragment for the instruction.
816 // FIXME-PERF: Reuse previous data fragment if possible.
817 MCDataFragment *DF = new MCDataFragment();
818 SD.getFragmentList().insert(it2, DF);
820 // Update the data fragments layout data.
822 // FIXME: Add MCAsmLayout utility for this.
823 DF->setParent(IF->getParent());
824 DF->setAtom(IF->getAtom());
825 DF->setOrdinal(IF->getOrdinal());
826 Layout.setFragmentOffset(DF, Layout.getFragmentOffset(IF));
827 Layout.setFragmentEffectiveSize(DF, Layout.getFragmentEffectiveSize(IF));
829 // Copy in the data and the fixups.
830 DF->getContents().append(IF->getCode().begin(), IF->getCode().end());
831 for (unsigned i = 0, e = IF->getFixups().size(); i != e; ++i)
832 DF->getFixups().push_back(IF->getFixups()[i]);
834 // Delete the instruction fragment and update the iterator.
835 SD.getFragmentList().erase(IF);
836 it2 = DF;
841 // Debugging methods
843 namespace llvm {
845 raw_ostream &operator<<(raw_ostream &OS, const MCAsmFixup &AF) {
846 OS << "<MCAsmFixup" << " Offset:" << AF.Offset << " Value:" << *AF.Value
847 << " Kind:" << AF.Kind << ">";
848 return OS;
853 void MCFragment::dump() {
854 raw_ostream &OS = llvm::errs();
856 OS << "<MCFragment " << (void*) this << " Offset:" << Offset
857 << " EffectiveSize:" << EffectiveSize << ">";
860 void MCAlignFragment::dump() {
861 raw_ostream &OS = llvm::errs();
863 OS << "<MCAlignFragment ";
864 this->MCFragment::dump();
865 if (hasEmitNops())
866 OS << " (emit nops)";
867 if (hasOnlyAlignAddress())
868 OS << " (only align section)";
869 OS << "\n ";
870 OS << " Alignment:" << getAlignment()
871 << " Value:" << getValue() << " ValueSize:" << getValueSize()
872 << " MaxBytesToEmit:" << getMaxBytesToEmit() << ">";
875 void MCDataFragment::dump() {
876 raw_ostream &OS = llvm::errs();
878 OS << "<MCDataFragment ";
879 this->MCFragment::dump();
880 OS << "\n ";
881 OS << " Contents:[";
882 for (unsigned i = 0, e = getContents().size(); i != e; ++i) {
883 if (i) OS << ",";
884 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
886 OS << "] (" << getContents().size() << " bytes)";
888 if (!getFixups().empty()) {
889 OS << ",\n ";
890 OS << " Fixups:[";
891 for (fixup_iterator it = fixup_begin(), ie = fixup_end(); it != ie; ++it) {
892 if (it != fixup_begin()) OS << ",\n ";
893 OS << *it;
895 OS << "]";
898 OS << ">";
901 void MCFillFragment::dump() {
902 raw_ostream &OS = llvm::errs();
904 OS << "<MCFillFragment ";
905 this->MCFragment::dump();
906 OS << "\n ";
907 OS << " Value:" << getValue() << " ValueSize:" << getValueSize()
908 << " Size:" << getSize() << ">";
911 void MCInstFragment::dump() {
912 raw_ostream &OS = llvm::errs();
914 OS << "<MCInstFragment ";
915 this->MCFragment::dump();
916 OS << "\n ";
917 OS << " Inst:";
918 getInst().dump_pretty(OS);
919 OS << ">";
922 void MCOrgFragment::dump() {
923 raw_ostream &OS = llvm::errs();
925 OS << "<MCOrgFragment ";
926 this->MCFragment::dump();
927 OS << "\n ";
928 OS << " Offset:" << getOffset() << " Value:" << getValue() << ">";
931 void MCSectionData::dump() {
932 raw_ostream &OS = llvm::errs();
934 OS << "<MCSectionData";
935 OS << " Alignment:" << getAlignment() << " Address:" << Address
936 << " Fragments:[\n ";
937 for (iterator it = begin(), ie = end(); it != ie; ++it) {
938 if (it != begin()) OS << ",\n ";
939 it->dump();
941 OS << "]>";
944 void MCSymbolData::dump() {
945 raw_ostream &OS = llvm::errs();
947 OS << "<MCSymbolData Symbol:" << getSymbol()
948 << " Fragment:" << getFragment() << " Offset:" << getOffset()
949 << " Flags:" << getFlags() << " Index:" << getIndex();
950 if (isCommon())
951 OS << " (common, size:" << getCommonSize()
952 << " align: " << getCommonAlignment() << ")";
953 if (isExternal())
954 OS << " (external)";
955 if (isPrivateExtern())
956 OS << " (private extern)";
957 OS << ">";
960 void MCAssembler::dump() {
961 raw_ostream &OS = llvm::errs();
963 OS << "<MCAssembler\n";
964 OS << " Sections:[\n ";
965 for (iterator it = begin(), ie = end(); it != ie; ++it) {
966 if (it != begin()) OS << ",\n ";
967 it->dump();
969 OS << "],\n";
970 OS << " Symbols:[";
972 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
973 if (it != symbol_begin()) OS << ",\n ";
974 it->dump();
976 OS << "]>\n";