Silence some -Asserts uninitialized variable warnings.
[llvm.git] / lib / MC / MCAssembler.cpp
blob2512a81cf4d0347b2215c89c7bb38a433a0cabf2
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/MC/MCAsmLayout.h"
13 #include "llvm/MC/MCCodeEmitter.h"
14 #include "llvm/MC/MCExpr.h"
15 #include "llvm/MC/MCObjectWriter.h"
16 #include "llvm/MC/MCSymbol.h"
17 #include "llvm/MC/MCValue.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetRegistry.h"
26 #include "llvm/Target/TargetAsmBackend.h"
28 #include <vector>
29 using namespace llvm;
31 namespace {
32 namespace stats {
33 STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
34 STATISTIC(EvaluateFixup, "Number of evaluated fixups");
35 STATISTIC(FragmentLayouts, "Number of fragment layouts");
36 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
37 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
38 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
39 STATISTIC(SectionLayouts, "Number of section layouts");
43 // FIXME FIXME FIXME: There are number of places in this file where we convert
44 // what is a 64-bit assembler value used for computation into a value in the
45 // object file, which may truncate it. We should detect that truncation where
46 // invalid and report errors back.
48 /* *** */
50 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
51 : Assembler(Asm), LastValidFragment(0)
53 // Compute the section layout order. Virtual sections must go last.
54 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
55 if (!Asm.getBackend().isVirtualSection(it->getSection()))
56 SectionOrder.push_back(&*it);
57 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
58 if (Asm.getBackend().isVirtualSection(it->getSection()))
59 SectionOrder.push_back(&*it);
62 bool MCAsmLayout::isSectionUpToDate(const MCSectionData *SD) const {
63 // The first section is always up-to-date.
64 unsigned Index = SD->getLayoutOrder();
65 if (!Index)
66 return true;
68 // Otherwise, sections are always implicitly computed when the preceeding
69 // fragment is layed out.
70 const MCSectionData *Prev = getSectionOrder()[Index - 1];
71 return isFragmentUpToDate(&(Prev->getFragmentList().back()));
74 bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const {
75 return (LastValidFragment &&
76 F->getLayoutOrder() <= LastValidFragment->getLayoutOrder());
79 void MCAsmLayout::UpdateForSlide(MCFragment *F, int SlideAmount) {
80 // If this fragment wasn't already up-to-date, we don't need to do anything.
81 if (!isFragmentUpToDate(F))
82 return;
84 // Otherwise, reset the last valid fragment to the predecessor of the
85 // invalidated fragment.
86 LastValidFragment = F->getPrevNode();
87 if (!LastValidFragment) {
88 unsigned Index = F->getParent()->getLayoutOrder();
89 if (Index != 0) {
90 MCSectionData *Prev = getSectionOrder()[Index - 1];
91 LastValidFragment = &(Prev->getFragmentList().back());
96 void MCAsmLayout::EnsureValid(const MCFragment *F) const {
97 // Advance the layout position until the fragment is up-to-date.
98 while (!isFragmentUpToDate(F)) {
99 // Advance to the next fragment.
100 MCFragment *Cur = LastValidFragment;
101 if (Cur)
102 Cur = Cur->getNextNode();
103 if (!Cur) {
104 unsigned NextIndex = 0;
105 if (LastValidFragment)
106 NextIndex = LastValidFragment->getParent()->getLayoutOrder() + 1;
107 Cur = SectionOrder[NextIndex]->begin();
110 const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur);
114 void MCAsmLayout::FragmentReplaced(MCFragment *Src, MCFragment *Dst) {
115 if (LastValidFragment == Src)
116 LastValidFragment = Dst;
118 Dst->Offset = Src->Offset;
119 Dst->EffectiveSize = Src->EffectiveSize;
122 uint64_t MCAsmLayout::getFragmentAddress(const MCFragment *F) const {
123 assert(F->getParent() && "Missing section()!");
124 return getSectionAddress(F->getParent()) + getFragmentOffset(F);
127 uint64_t MCAsmLayout::getFragmentEffectiveSize(const MCFragment *F) const {
128 EnsureValid(F);
129 assert(F->EffectiveSize != ~UINT64_C(0) && "Address not set!");
130 return F->EffectiveSize;
133 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
134 EnsureValid(F);
135 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
136 return F->Offset;
139 uint64_t MCAsmLayout::getSymbolAddress(const MCSymbolData *SD) const {
140 assert(SD->getFragment() && "Invalid getAddress() on undefined symbol!");
141 return getFragmentAddress(SD->getFragment()) + SD->getOffset();
144 uint64_t MCAsmLayout::getSectionAddress(const MCSectionData *SD) const {
145 EnsureValid(SD->begin());
146 assert(SD->Address != ~UINT64_C(0) && "Address not set!");
147 return SD->Address;
150 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
151 // The size is the last fragment's end offset.
152 const MCFragment &F = SD->getFragmentList().back();
153 return getFragmentOffset(&F) + getFragmentEffectiveSize(&F);
156 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
157 // Virtual sections have no file size.
158 if (getAssembler().getBackend().isVirtualSection(SD->getSection()))
159 return 0;
161 // Otherwise, the file size is the same as the address space size.
162 return getSectionAddressSize(SD);
165 uint64_t MCAsmLayout::getSectionSize(const MCSectionData *SD) const {
166 // The logical size is the address space size minus any tail padding.
167 uint64_t Size = getSectionAddressSize(SD);
168 const MCAlignFragment *AF =
169 dyn_cast<MCAlignFragment>(&(SD->getFragmentList().back()));
170 if (AF && AF->hasOnlyAlignAddress())
171 Size -= getFragmentEffectiveSize(AF);
173 return Size;
176 /* *** */
178 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
181 MCFragment::~MCFragment() {
184 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
185 : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0)),
186 EffectiveSize(~UINT64_C(0))
188 if (Parent)
189 Parent->getFragmentList().push_back(this);
192 /* *** */
194 MCSectionData::MCSectionData() : Section(0) {}
196 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
197 : Section(&_Section),
198 Alignment(1),
199 Address(~UINT64_C(0)),
200 HasInstructions(false)
202 if (A)
203 A->getSectionList().push_back(this);
206 /* *** */
208 MCSymbolData::MCSymbolData() : Symbol(0) {}
210 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
211 uint64_t _Offset, MCAssembler *A)
212 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
213 IsExternal(false), IsPrivateExtern(false),
214 CommonSize(0), CommonAlign(0), Flags(0), Index(0)
216 if (A)
217 A->getSymbolList().push_back(this);
220 /* *** */
222 MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
223 MCCodeEmitter &_Emitter, raw_ostream &_OS)
224 : Context(_Context), Backend(_Backend), Emitter(_Emitter),
225 OS(_OS), RelaxAll(false), SubsectionsViaSymbols(false)
229 MCAssembler::~MCAssembler() {
232 static bool isScatteredFixupFullyResolvedSimple(const MCAssembler &Asm,
233 const MCFixup &Fixup,
234 const MCValue Target,
235 const MCSection *BaseSection) {
236 // The effective fixup address is
237 // addr(atom(A)) + offset(A)
238 // - addr(atom(B)) - offset(B)
239 // - addr(<base symbol>) + <fixup offset from base symbol>
240 // and the offsets are not relocatable, so the fixup is fully resolved when
241 // addr(atom(A)) - addr(atom(B)) - addr(<base symbol>)) == 0.
243 // The simple (Darwin, except on x86_64) way of dealing with this was to
244 // assume that any reference to a temporary symbol *must* be a temporary
245 // symbol in the same atom, unless the sections differ. Therefore, any PCrel
246 // relocation to a temporary symbol (in the same section) is fully
247 // resolved. This also works in conjunction with absolutized .set, which
248 // requires the compiler to use .set to absolutize the differences between
249 // symbols which the compiler knows to be assembly time constants, so we don't
250 // need to worry about considering symbol differences fully resolved.
252 // Non-relative fixups are only resolved if constant.
253 if (!BaseSection)
254 return Target.isAbsolute();
256 // Otherwise, relative fixups are only resolved if not a difference and the
257 // target is a temporary in the same section.
258 if (Target.isAbsolute() || Target.getSymB())
259 return false;
261 const MCSymbol *A = &Target.getSymA()->getSymbol();
262 if (!A->isTemporary() || !A->isInSection() ||
263 &A->getSection() != BaseSection)
264 return false;
266 return true;
269 static bool isScatteredFixupFullyResolved(const MCAssembler &Asm,
270 const MCAsmLayout &Layout,
271 const MCFixup &Fixup,
272 const MCValue Target,
273 const MCSymbolData *BaseSymbol) {
274 // The effective fixup address is
275 // addr(atom(A)) + offset(A)
276 // - addr(atom(B)) - offset(B)
277 // - addr(BaseSymbol) + <fixup offset from base symbol>
278 // and the offsets are not relocatable, so the fixup is fully resolved when
279 // addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0.
281 // Note that "false" is almost always conservatively correct (it means we emit
282 // a relocation which is unnecessary), except when it would force us to emit a
283 // relocation which the target cannot encode.
285 const MCSymbolData *A_Base = 0, *B_Base = 0;
286 if (const MCSymbolRefExpr *A = Target.getSymA()) {
287 // Modified symbol references cannot be resolved.
288 if (A->getKind() != MCSymbolRefExpr::VK_None)
289 return false;
291 A_Base = Asm.getAtom(Layout, &Asm.getSymbolData(A->getSymbol()));
292 if (!A_Base)
293 return false;
296 if (const MCSymbolRefExpr *B = Target.getSymB()) {
297 // Modified symbol references cannot be resolved.
298 if (B->getKind() != MCSymbolRefExpr::VK_None)
299 return false;
301 B_Base = Asm.getAtom(Layout, &Asm.getSymbolData(B->getSymbol()));
302 if (!B_Base)
303 return false;
306 // If there is no base, A and B have to be the same atom for this fixup to be
307 // fully resolved.
308 if (!BaseSymbol)
309 return A_Base == B_Base;
311 // Otherwise, B must be missing and A must be the base.
312 return !B_Base && BaseSymbol == A_Base;
315 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
316 // Non-temporary labels should always be visible to the linker.
317 if (!Symbol.isTemporary())
318 return true;
320 // Absolute temporary labels are never visible.
321 if (!Symbol.isInSection())
322 return false;
324 // Otherwise, check if the section requires symbols even for temporary labels.
325 return getBackend().doesSectionRequireSymbols(Symbol.getSection());
328 const MCSymbolData *MCAssembler::getAtom(const MCAsmLayout &Layout,
329 const MCSymbolData *SD) const {
330 // Linker visible symbols define atoms.
331 if (isSymbolLinkerVisible(SD->getSymbol()))
332 return SD;
334 // Absolute and undefined symbols have no defining atom.
335 if (!SD->getFragment())
336 return 0;
338 // Non-linker visible symbols in sections which can't be atomized have no
339 // defining atom.
340 if (!getBackend().isSectionAtomizable(
341 SD->getFragment()->getParent()->getSection()))
342 return 0;
344 // Otherwise, return the atom for the containing fragment.
345 return SD->getFragment()->getAtom();
348 bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout,
349 const MCFixup &Fixup, const MCFragment *DF,
350 MCValue &Target, uint64_t &Value) const {
351 ++stats::EvaluateFixup;
353 if (!Fixup.getValue()->EvaluateAsRelocatable(Target, &Layout))
354 report_fatal_error("expected relocatable expression");
356 // FIXME: How do non-scattered symbols work in ELF? I presume the linker
357 // doesn't support small relocations, but then under what criteria does the
358 // assembler allow symbol differences?
360 Value = Target.getConstant();
362 bool IsPCRel = Emitter.getFixupKindInfo(
363 Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
364 bool IsResolved = true;
365 if (const MCSymbolRefExpr *A = Target.getSymA()) {
366 if (A->getSymbol().isDefined())
367 Value += Layout.getSymbolAddress(&getSymbolData(A->getSymbol()));
368 else
369 IsResolved = false;
371 if (const MCSymbolRefExpr *B = Target.getSymB()) {
372 if (B->getSymbol().isDefined())
373 Value -= Layout.getSymbolAddress(&getSymbolData(B->getSymbol()));
374 else
375 IsResolved = false;
378 // If we are using scattered symbols, determine whether this value is actually
379 // resolved; scattering may cause atoms to move.
380 if (IsResolved && getBackend().hasScatteredSymbols()) {
381 if (getBackend().hasReliableSymbolDifference()) {
382 // If this is a PCrel relocation, find the base atom (identified by its
383 // symbol) that the fixup value is relative to.
384 const MCSymbolData *BaseSymbol = 0;
385 if (IsPCRel) {
386 BaseSymbol = DF->getAtom();
387 if (!BaseSymbol)
388 IsResolved = false;
391 if (IsResolved)
392 IsResolved = isScatteredFixupFullyResolved(*this, Layout, Fixup, Target,
393 BaseSymbol);
394 } else {
395 const MCSection *BaseSection = 0;
396 if (IsPCRel)
397 BaseSection = &DF->getParent()->getSection();
399 IsResolved = isScatteredFixupFullyResolvedSimple(*this, Fixup, Target,
400 BaseSection);
404 if (IsPCRel)
405 Value -= Layout.getFragmentAddress(DF) + Fixup.getOffset();
407 return IsResolved;
410 uint64_t MCAssembler::ComputeFragmentSize(MCAsmLayout &Layout,
411 const MCFragment &F,
412 uint64_t SectionAddress,
413 uint64_t FragmentOffset) const {
414 switch (F.getKind()) {
415 case MCFragment::FT_Data:
416 return cast<MCDataFragment>(F).getContents().size();
417 case MCFragment::FT_Fill:
418 return cast<MCFillFragment>(F).getSize();
419 case MCFragment::FT_Inst:
420 return cast<MCInstFragment>(F).getInstSize();
422 case MCFragment::FT_Align: {
423 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
425 assert((!AF.hasOnlyAlignAddress() || !AF.getNextNode()) &&
426 "Invalid OnlyAlignAddress bit, not the last fragment!");
428 uint64_t Size = OffsetToAlignment(SectionAddress + FragmentOffset,
429 AF.getAlignment());
431 // Honor MaxBytesToEmit.
432 if (Size > AF.getMaxBytesToEmit())
433 return 0;
435 return Size;
438 case MCFragment::FT_Org: {
439 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
441 // FIXME: We should compute this sooner, we don't want to recurse here, and
442 // we would like to be more functional.
443 int64_t TargetLocation;
444 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout))
445 report_fatal_error("expected assembly-time absolute expression");
447 // FIXME: We need a way to communicate this error.
448 int64_t Offset = TargetLocation - FragmentOffset;
449 if (Offset < 0)
450 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
451 "' (at offset '" + Twine(FragmentOffset) + "'");
453 return Offset;
457 assert(0 && "invalid fragment kind");
458 return 0;
461 void MCAsmLayout::LayoutFile() {
462 // Initialize the first section and set the valid fragment layout point. All
463 // actual layout computations are done lazily.
464 LastValidFragment = 0;
465 if (!getSectionOrder().empty())
466 getSectionOrder().front()->Address = 0;
469 void MCAsmLayout::LayoutFragment(MCFragment *F) {
470 MCFragment *Prev = F->getPrevNode();
472 // We should never try to recompute something which is up-to-date.
473 assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!");
474 // We should never try to compute the fragment layout if the section isn't
475 // up-to-date.
476 assert(isSectionUpToDate(F->getParent()) &&
477 "Attempt to compute fragment before it's section!");
478 // We should never try to compute the fragment layout if it's predecessor
479 // isn't up-to-date.
480 assert((!Prev || isFragmentUpToDate(Prev)) &&
481 "Attempt to compute fragment before it's predecessor!");
483 ++stats::FragmentLayouts;
485 // Compute the fragment start address.
486 uint64_t StartAddress = F->getParent()->Address;
487 uint64_t Address = StartAddress;
488 if (Prev)
489 Address += Prev->Offset + Prev->EffectiveSize;
491 // Compute fragment offset and size.
492 F->Offset = Address - StartAddress;
493 F->EffectiveSize = getAssembler().ComputeFragmentSize(*this, *F, StartAddress,
494 F->Offset);
495 LastValidFragment = F;
497 // If this is the last fragment in a section, update the next section address.
498 if (!F->getNextNode()) {
499 unsigned NextIndex = F->getParent()->getLayoutOrder() + 1;
500 if (NextIndex != getSectionOrder().size())
501 LayoutSection(getSectionOrder()[NextIndex]);
505 void MCAsmLayout::LayoutSection(MCSectionData *SD) {
506 unsigned SectionOrderIndex = SD->getLayoutOrder();
508 ++stats::SectionLayouts;
510 // Compute the section start address.
511 uint64_t StartAddress = 0;
512 if (SectionOrderIndex) {
513 MCSectionData *Prev = getSectionOrder()[SectionOrderIndex - 1];
514 StartAddress = getSectionAddress(Prev) + getSectionAddressSize(Prev);
517 // Honor the section alignment requirements.
518 StartAddress = RoundUpToAlignment(StartAddress, SD->getAlignment());
520 // Set the section address.
521 SD->Address = StartAddress;
524 /// WriteFragmentData - Write the \arg F data to the output file.
525 static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
526 const MCFragment &F, MCObjectWriter *OW) {
527 uint64_t Start = OW->getStream().tell();
528 (void) Start;
530 ++stats::EmittedFragments;
532 // FIXME: Embed in fragments instead?
533 uint64_t FragmentSize = Layout.getFragmentEffectiveSize(&F);
534 switch (F.getKind()) {
535 case MCFragment::FT_Align: {
536 MCAlignFragment &AF = cast<MCAlignFragment>(F);
537 uint64_t Count = FragmentSize / AF.getValueSize();
539 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
541 // FIXME: This error shouldn't actually occur (the front end should emit
542 // multiple .align directives to enforce the semantics it wants), but is
543 // severe enough that we want to report it. How to handle this?
544 if (Count * AF.getValueSize() != FragmentSize)
545 report_fatal_error("undefined .align directive, value size '" +
546 Twine(AF.getValueSize()) +
547 "' is not a divisor of padding size '" +
548 Twine(FragmentSize) + "'");
550 // See if we are aligning with nops, and if so do that first to try to fill
551 // the Count bytes. Then if that did not fill any bytes or there are any
552 // bytes left to fill use the the Value and ValueSize to fill the rest.
553 // If we are aligning with nops, ask that target to emit the right data.
554 if (AF.hasEmitNops()) {
555 if (!Asm.getBackend().WriteNopData(Count, OW))
556 report_fatal_error("unable to write nop sequence of " +
557 Twine(Count) + " bytes");
558 break;
561 // Otherwise, write out in multiples of the value size.
562 for (uint64_t i = 0; i != Count; ++i) {
563 switch (AF.getValueSize()) {
564 default:
565 assert(0 && "Invalid size!");
566 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
567 case 2: OW->Write16(uint16_t(AF.getValue())); break;
568 case 4: OW->Write32(uint32_t(AF.getValue())); break;
569 case 8: OW->Write64(uint64_t(AF.getValue())); break;
572 break;
575 case MCFragment::FT_Data: {
576 MCDataFragment &DF = cast<MCDataFragment>(F);
577 assert(FragmentSize == DF.getContents().size() && "Invalid size!");
578 OW->WriteBytes(DF.getContents().str());
579 break;
582 case MCFragment::FT_Fill: {
583 MCFillFragment &FF = cast<MCFillFragment>(F);
585 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
587 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
588 switch (FF.getValueSize()) {
589 default:
590 assert(0 && "Invalid size!");
591 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
592 case 2: OW->Write16(uint16_t(FF.getValue())); break;
593 case 4: OW->Write32(uint32_t(FF.getValue())); break;
594 case 8: OW->Write64(uint64_t(FF.getValue())); break;
597 break;
600 case MCFragment::FT_Inst:
601 llvm_unreachable("unexpected inst fragment after lowering");
602 break;
604 case MCFragment::FT_Org: {
605 MCOrgFragment &OF = cast<MCOrgFragment>(F);
607 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
608 OW->Write8(uint8_t(OF.getValue()));
610 break;
614 assert(OW->getStream().tell() - Start == FragmentSize);
617 void MCAssembler::WriteSectionData(const MCSectionData *SD,
618 const MCAsmLayout &Layout,
619 MCObjectWriter *OW) const {
620 // Ignore virtual sections.
621 if (getBackend().isVirtualSection(SD->getSection())) {
622 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
624 // Check that contents are only things legal inside a virtual section.
625 for (MCSectionData::const_iterator it = SD->begin(),
626 ie = SD->end(); it != ie; ++it) {
627 switch (it->getKind()) {
628 default:
629 assert(0 && "Invalid fragment in virtual section!");
630 case MCFragment::FT_Align:
631 assert(!cast<MCAlignFragment>(it)->getValueSize() &&
632 "Invalid align in virtual section!");
633 break;
634 case MCFragment::FT_Fill:
635 assert(!cast<MCFillFragment>(it)->getValueSize() &&
636 "Invalid fill in virtual section!");
637 break;
641 return;
644 uint64_t Start = OW->getStream().tell();
645 (void) Start;
647 for (MCSectionData::const_iterator it = SD->begin(),
648 ie = SD->end(); it != ie; ++it)
649 WriteFragmentData(*this, Layout, *it, OW);
651 assert(OW->getStream().tell() - Start == Layout.getSectionFileSize(SD));
654 void MCAssembler::Finish(MCObjectWriter *Writer) {
655 DEBUG_WITH_TYPE("mc-dump", {
656 llvm::errs() << "assembler backend - pre-layout\n--\n";
657 dump(); });
659 // Create the layout object.
660 MCAsmLayout Layout(*this);
662 // Insert additional align fragments for concrete sections to explicitly pad
663 // the previous section to match their alignment requirements. This is for
664 // 'gas' compatibility, it shouldn't strictly be necessary.
666 // FIXME: This may be Mach-O specific.
667 for (unsigned i = 1, e = Layout.getSectionOrder().size(); i < e; ++i) {
668 MCSectionData *SD = Layout.getSectionOrder()[i];
670 // Ignore sections without alignment requirements.
671 unsigned Align = SD->getAlignment();
672 if (Align <= 1)
673 continue;
675 // Ignore virtual sections, they don't cause file size modifications.
676 if (getBackend().isVirtualSection(SD->getSection()))
677 continue;
679 // Otherwise, create a new align fragment at the end of the previous
680 // section.
681 MCAlignFragment *AF = new MCAlignFragment(Align, 0, 1, Align,
682 Layout.getSectionOrder()[i - 1]);
683 AF->setOnlyAlignAddress(true);
686 // Create dummy fragments and assign section ordinals.
687 unsigned SectionIndex = 0;
688 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
689 // Create dummy fragments to eliminate any empty sections, this simplifies
690 // layout.
691 if (it->getFragmentList().empty())
692 new MCFillFragment(0, 1, 0, it);
694 it->setOrdinal(SectionIndex++);
697 // Assign layout order indices to sections and fragments.
698 unsigned FragmentIndex = 0;
699 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
700 MCSectionData *SD = Layout.getSectionOrder()[i];
701 SD->setLayoutOrder(i);
703 for (MCSectionData::iterator it2 = SD->begin(),
704 ie2 = SD->end(); it2 != ie2; ++it2)
705 it2->setLayoutOrder(FragmentIndex++);
708 // Layout until everything fits.
709 while (LayoutOnce(Layout))
710 continue;
712 DEBUG_WITH_TYPE("mc-dump", {
713 llvm::errs() << "assembler backend - post-relaxation\n--\n";
714 dump(); });
716 // Finalize the layout, including fragment lowering.
717 FinishLayout(Layout);
719 DEBUG_WITH_TYPE("mc-dump", {
720 llvm::errs() << "assembler backend - final-layout\n--\n";
721 dump(); });
723 uint64_t StartOffset = OS.tell();
725 llvm::OwningPtr<MCObjectWriter> OwnWriter(0);
726 if (Writer == 0) {
727 //no custom Writer_ : create the default one life-managed by OwningPtr
728 OwnWriter.reset(getBackend().createObjectWriter(OS));
729 Writer = OwnWriter.get();
730 if (!Writer)
731 report_fatal_error("unable to create object writer!");
734 // Allow the object writer a chance to perform post-layout binding (for
735 // example, to set the index fields in the symbol data).
736 Writer->ExecutePostLayoutBinding(*this);
738 // Evaluate and apply the fixups, generating relocation entries as necessary.
739 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
740 for (MCSectionData::iterator it2 = it->begin(),
741 ie2 = it->end(); it2 != ie2; ++it2) {
742 MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
743 if (!DF)
744 continue;
746 for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
747 ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
748 MCFixup &Fixup = *it3;
750 // Evaluate the fixup.
751 MCValue Target;
752 uint64_t FixedValue;
753 if (!EvaluateFixup(Layout, Fixup, DF, Target, FixedValue)) {
754 // The fixup was unresolved, we need a relocation. Inform the object
755 // writer of the relocation, and give it an opportunity to adjust the
756 // fixup value if need be.
757 Writer->RecordRelocation(*this, Layout, DF, Fixup, Target,FixedValue);
760 getBackend().ApplyFixup(Fixup, *DF, FixedValue);
765 // Write the object file.
766 Writer->WriteObject(*this, Layout);
768 stats::ObjectBytes += OS.tell() - StartOffset;
771 bool MCAssembler::FixupNeedsRelaxation(const MCFixup &Fixup,
772 const MCFragment *DF,
773 const MCAsmLayout &Layout) const {
774 if (getRelaxAll())
775 return true;
777 // If we cannot resolve the fixup value, it requires relaxation.
778 MCValue Target;
779 uint64_t Value;
780 if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
781 return true;
783 // Otherwise, relax if the value is too big for a (signed) i8.
785 // FIXME: This is target dependent!
786 return int64_t(Value) != int64_t(int8_t(Value));
789 bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF,
790 const MCAsmLayout &Layout) const {
791 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
792 // are intentionally pushing out inst fragments, or because we relaxed a
793 // previous instruction to one that doesn't need relaxation.
794 if (!getBackend().MayNeedRelaxation(IF->getInst()))
795 return false;
797 for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
798 ie = IF->fixup_end(); it != ie; ++it)
799 if (FixupNeedsRelaxation(*it, IF, Layout))
800 return true;
802 return false;
805 bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
806 ++stats::RelaxationSteps;
808 // Layout the sections in order.
809 Layout.LayoutFile();
811 // Scan for fragments that need relaxation.
812 bool WasRelaxed = false;
813 for (iterator it = begin(), ie = end(); it != ie; ++it) {
814 MCSectionData &SD = *it;
816 for (MCSectionData::iterator it2 = SD.begin(),
817 ie2 = SD.end(); it2 != ie2; ++it2) {
818 // Check if this is an instruction fragment that needs relaxation.
819 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
820 if (!IF || !FragmentNeedsRelaxation(IF, Layout))
821 continue;
823 ++stats::RelaxedInstructions;
825 // FIXME-PERF: We could immediately lower out instructions if we can tell
826 // they are fully resolved, to avoid retesting on later passes.
828 // Relax the fragment.
830 MCInst Relaxed;
831 getBackend().RelaxInstruction(IF->getInst(), Relaxed);
833 // Encode the new instruction.
835 // FIXME-PERF: If it matters, we could let the target do this. It can
836 // probably do so more efficiently in many cases.
837 SmallVector<MCFixup, 4> Fixups;
838 SmallString<256> Code;
839 raw_svector_ostream VecOS(Code);
840 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
841 VecOS.flush();
843 // Update the instruction fragment.
844 int SlideAmount = Code.size() - IF->getInstSize();
845 IF->setInst(Relaxed);
846 IF->getCode() = Code;
847 IF->getFixups().clear();
848 // FIXME: Eliminate copy.
849 for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
850 IF->getFixups().push_back(Fixups[i]);
852 // Update the layout, and remember that we relaxed.
853 Layout.UpdateForSlide(IF, SlideAmount);
854 WasRelaxed = true;
858 return WasRelaxed;
861 void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
862 // Lower out any instruction fragments, to simplify the fixup application and
863 // output.
865 // FIXME-PERF: We don't have to do this, but the assumption is that it is
866 // cheap (we will mostly end up eliminating fragments and appending on to data
867 // fragments), so the extra complexity downstream isn't worth it. Evaluate
868 // this assumption.
869 for (iterator it = begin(), ie = end(); it != ie; ++it) {
870 MCSectionData &SD = *it;
872 for (MCSectionData::iterator it2 = SD.begin(),
873 ie2 = SD.end(); it2 != ie2; ++it2) {
874 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
875 if (!IF)
876 continue;
878 // Create a new data fragment for the instruction.
880 // FIXME-PERF: Reuse previous data fragment if possible.
881 MCDataFragment *DF = new MCDataFragment();
882 SD.getFragmentList().insert(it2, DF);
884 // Update the data fragments layout data.
885 DF->setParent(IF->getParent());
886 DF->setAtom(IF->getAtom());
887 DF->setLayoutOrder(IF->getLayoutOrder());
888 Layout.FragmentReplaced(IF, DF);
890 // Copy in the data and the fixups.
891 DF->getContents().append(IF->getCode().begin(), IF->getCode().end());
892 for (unsigned i = 0, e = IF->getFixups().size(); i != e; ++i)
893 DF->getFixups().push_back(IF->getFixups()[i]);
895 // Delete the instruction fragment and update the iterator.
896 SD.getFragmentList().erase(IF);
897 it2 = DF;
902 // Debugging methods
904 namespace llvm {
906 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
907 OS << "<MCFixup" << " Offset:" << AF.getOffset()
908 << " Value:" << *AF.getValue()
909 << " Kind:" << AF.getKind() << ">";
910 return OS;
915 void MCFragment::dump() {
916 raw_ostream &OS = llvm::errs();
918 OS << "<";
919 switch (getKind()) {
920 case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
921 case MCFragment::FT_Data: OS << "MCDataFragment"; break;
922 case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
923 case MCFragment::FT_Inst: OS << "MCInstFragment"; break;
924 case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
927 OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
928 << " Offset:" << Offset << " EffectiveSize:" << EffectiveSize << ">";
930 switch (getKind()) {
931 case MCFragment::FT_Align: {
932 const MCAlignFragment *AF = cast<MCAlignFragment>(this);
933 if (AF->hasEmitNops())
934 OS << " (emit nops)";
935 if (AF->hasOnlyAlignAddress())
936 OS << " (only align section)";
937 OS << "\n ";
938 OS << " Alignment:" << AF->getAlignment()
939 << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
940 << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
941 break;
943 case MCFragment::FT_Data: {
944 const MCDataFragment *DF = cast<MCDataFragment>(this);
945 OS << "\n ";
946 OS << " Contents:[";
947 const SmallVectorImpl<char> &Contents = DF->getContents();
948 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
949 if (i) OS << ",";
950 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
952 OS << "] (" << Contents.size() << " bytes)";
954 if (!DF->getFixups().empty()) {
955 OS << ",\n ";
956 OS << " Fixups:[";
957 for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
958 ie = DF->fixup_end(); it != ie; ++it) {
959 if (it != DF->fixup_begin()) OS << ",\n ";
960 OS << *it;
962 OS << "]";
964 break;
966 case MCFragment::FT_Fill: {
967 const MCFillFragment *FF = cast<MCFillFragment>(this);
968 OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
969 << " Size:" << FF->getSize();
970 break;
972 case MCFragment::FT_Inst: {
973 const MCInstFragment *IF = cast<MCInstFragment>(this);
974 OS << "\n ";
975 OS << " Inst:";
976 IF->getInst().dump_pretty(OS);
977 break;
979 case MCFragment::FT_Org: {
980 const MCOrgFragment *OF = cast<MCOrgFragment>(this);
981 OS << "\n ";
982 OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
983 break;
986 OS << ">";
989 void MCSectionData::dump() {
990 raw_ostream &OS = llvm::errs();
992 OS << "<MCSectionData";
993 OS << " Alignment:" << getAlignment() << " Address:" << Address
994 << " Fragments:[\n ";
995 for (iterator it = begin(), ie = end(); it != ie; ++it) {
996 if (it != begin()) OS << ",\n ";
997 it->dump();
999 OS << "]>";
1002 void MCSymbolData::dump() {
1003 raw_ostream &OS = llvm::errs();
1005 OS << "<MCSymbolData Symbol:" << getSymbol()
1006 << " Fragment:" << getFragment() << " Offset:" << getOffset()
1007 << " Flags:" << getFlags() << " Index:" << getIndex();
1008 if (isCommon())
1009 OS << " (common, size:" << getCommonSize()
1010 << " align: " << getCommonAlignment() << ")";
1011 if (isExternal())
1012 OS << " (external)";
1013 if (isPrivateExtern())
1014 OS << " (private extern)";
1015 OS << ">";
1018 void MCAssembler::dump() {
1019 raw_ostream &OS = llvm::errs();
1021 OS << "<MCAssembler\n";
1022 OS << " Sections:[\n ";
1023 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1024 if (it != begin()) OS << ",\n ";
1025 it->dump();
1027 OS << "],\n";
1028 OS << " Symbols:[";
1030 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1031 if (it != symbol_begin()) OS << ",\n ";
1032 it->dump();
1034 OS << "]>\n";