[ARM] Add support for MVE pre and post inc loads and stores
[llvm-core.git] / lib / MC / ELFObjectWriter.cpp
blob2c68723a12f89f1b9b908b0a27147c712a9f82d5
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements ELF object file writer information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/MC/MCAsmBackend.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCAsmLayout.h"
24 #include "llvm/MC/MCAssembler.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCELFObjectWriter.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixup.h"
29 #include "llvm/MC/MCFixupKindInfo.h"
30 #include "llvm/MC/MCFragment.h"
31 #include "llvm/MC/MCObjectFileInfo.h"
32 #include "llvm/MC/MCObjectWriter.h"
33 #include "llvm/MC/MCSection.h"
34 #include "llvm/MC/MCSectionELF.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/MC/MCSymbolELF.h"
37 #include "llvm/MC/MCValue.h"
38 #include "llvm/MC/StringTableBuilder.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compression.h"
42 #include "llvm/Support/Endian.h"
43 #include "llvm/Support/Error.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Host.h"
46 #include "llvm/Support/LEB128.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/SMLoc.h"
49 #include "llvm/Support/StringSaver.h"
50 #include "llvm/Support/SwapByteOrder.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstddef>
55 #include <cstdint>
56 #include <map>
57 #include <memory>
58 #include <string>
59 #include <utility>
60 #include <vector>
62 using namespace llvm;
64 #undef DEBUG_TYPE
65 #define DEBUG_TYPE "reloc-info"
67 namespace {
69 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
71 class ELFObjectWriter;
72 struct ELFWriter;
74 bool isDwoSection(const MCSectionELF &Sec) {
75 return Sec.getSectionName().endswith(".dwo");
78 class SymbolTableWriter {
79 ELFWriter &EWriter;
80 bool Is64Bit;
82 // indexes we are going to write to .symtab_shndx.
83 std::vector<uint32_t> ShndxIndexes;
85 // The numbel of symbols written so far.
86 unsigned NumWritten;
88 void createSymtabShndx();
90 template <typename T> void write(T Value);
92 public:
93 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
95 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
96 uint8_t other, uint32_t shndx, bool Reserved);
98 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
101 struct ELFWriter {
102 ELFObjectWriter &OWriter;
103 support::endian::Writer W;
105 enum DwoMode {
106 AllSections,
107 NonDwoOnly,
108 DwoOnly,
109 } Mode;
111 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
112 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
113 bool Used, bool Renamed);
115 /// Helper struct for containing some precomputed information on symbols.
116 struct ELFSymbolData {
117 const MCSymbolELF *Symbol;
118 uint32_t SectionIndex;
119 StringRef Name;
121 // Support lexicographic sorting.
122 bool operator<(const ELFSymbolData &RHS) const {
123 unsigned LHSType = Symbol->getType();
124 unsigned RHSType = RHS.Symbol->getType();
125 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
126 return false;
127 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
128 return true;
129 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
130 return SectionIndex < RHS.SectionIndex;
131 return Name < RHS.Name;
135 /// @}
136 /// @name Symbol Table Data
137 /// @{
139 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
141 /// @}
143 // This holds the symbol table index of the last local symbol.
144 unsigned LastLocalSymbolIndex;
145 // This holds the .strtab section index.
146 unsigned StringTableIndex;
147 // This holds the .symtab section index.
148 unsigned SymbolTableIndex;
150 // Sections in the order they are to be output in the section table.
151 std::vector<const MCSectionELF *> SectionTable;
152 unsigned addToSectionTable(const MCSectionELF *Sec);
154 // TargetObjectWriter wrappers.
155 bool is64Bit() const;
156 bool hasRelocationAddend() const;
158 void align(unsigned Alignment);
160 bool maybeWriteCompression(uint64_t Size,
161 SmallVectorImpl<char> &CompressedContents,
162 bool ZLibStyle, unsigned Alignment);
164 public:
165 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
166 bool IsLittleEndian, DwoMode Mode)
167 : OWriter(OWriter),
168 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {}
170 void WriteWord(uint64_t Word) {
171 if (is64Bit())
172 W.write<uint64_t>(Word);
173 else
174 W.write<uint32_t>(Word);
177 template <typename T> void write(T Val) {
178 W.write(Val);
181 void writeHeader(const MCAssembler &Asm);
183 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
184 ELFSymbolData &MSD, const MCAsmLayout &Layout);
186 // Start and end offset of each section
187 using SectionOffsetsTy =
188 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
190 // Map from a signature symbol to the group section index
191 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
193 /// Compute the symbol table data
195 /// \param Asm - The assembler.
196 /// \param SectionIndexMap - Maps a section to its index.
197 /// \param RevGroupMap - Maps a signature symbol to the group section.
198 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
199 const SectionIndexMapTy &SectionIndexMap,
200 const RevGroupMapTy &RevGroupMap,
201 SectionOffsetsTy &SectionOffsets);
203 void writeAddrsigSection();
205 MCSectionELF *createRelocationSection(MCContext &Ctx,
206 const MCSectionELF &Sec);
208 const MCSectionELF *createStringTable(MCContext &Ctx);
210 void writeSectionHeader(const MCAsmLayout &Layout,
211 const SectionIndexMapTy &SectionIndexMap,
212 const SectionOffsetsTy &SectionOffsets);
214 void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
215 const MCAsmLayout &Layout);
217 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
218 uint64_t Address, uint64_t Offset, uint64_t Size,
219 uint32_t Link, uint32_t Info, uint64_t Alignment,
220 uint64_t EntrySize);
222 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
224 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
225 void writeSection(const SectionIndexMapTy &SectionIndexMap,
226 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
227 const MCSectionELF &Section);
230 class ELFObjectWriter : public MCObjectWriter {
231 /// The target specific ELF writer instance.
232 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
234 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
236 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
238 bool EmitAddrsigSection = false;
239 std::vector<const MCSymbol *> AddrsigSyms;
241 bool hasRelocationAddend() const;
243 bool shouldRelocateWithSymbol(const MCAssembler &Asm,
244 const MCSymbolRefExpr *RefA,
245 const MCSymbolELF *Sym, uint64_t C,
246 unsigned Type) const;
248 public:
249 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW)
250 : TargetObjectWriter(std::move(MOTW)) {}
252 void reset() override {
253 Relocations.clear();
254 Renames.clear();
255 MCObjectWriter::reset();
258 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
259 const MCSymbol &SymA,
260 const MCFragment &FB, bool InSet,
261 bool IsPCRel) const override;
263 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
264 const MCSectionELF *From,
265 const MCSectionELF *To) {
266 return true;
269 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
270 const MCFragment *Fragment, const MCFixup &Fixup,
271 MCValue Target, uint64_t &FixedValue) override;
273 void executePostLayoutBinding(MCAssembler &Asm,
274 const MCAsmLayout &Layout) override;
276 void emitAddrsigSection() override { EmitAddrsigSection = true; }
277 void addAddrsigSymbol(const MCSymbol *Sym) override {
278 AddrsigSyms.push_back(Sym);
281 friend struct ELFWriter;
284 class ELFSingleObjectWriter : public ELFObjectWriter {
285 raw_pwrite_stream &OS;
286 bool IsLittleEndian;
288 public:
289 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
290 raw_pwrite_stream &OS, bool IsLittleEndian)
291 : ELFObjectWriter(std::move(MOTW)), OS(OS),
292 IsLittleEndian(IsLittleEndian) {}
294 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
295 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections)
296 .writeObject(Asm, Layout);
299 friend struct ELFWriter;
302 class ELFDwoObjectWriter : public ELFObjectWriter {
303 raw_pwrite_stream &OS, &DwoOS;
304 bool IsLittleEndian;
306 public:
307 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
308 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
309 bool IsLittleEndian)
310 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS),
311 IsLittleEndian(IsLittleEndian) {}
313 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
314 const MCSectionELF *From,
315 const MCSectionELF *To) override {
316 if (isDwoSection(*From)) {
317 Ctx.reportError(Loc, "A dwo section may not contain relocations");
318 return false;
320 if (To && isDwoSection(*To)) {
321 Ctx.reportError(Loc, "A relocation may not refer to a dwo section");
322 return false;
324 return true;
327 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
328 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly)
329 .writeObject(Asm, Layout);
330 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly)
331 .writeObject(Asm, Layout);
332 return Size;
336 } // end anonymous namespace
338 void ELFWriter::align(unsigned Alignment) {
339 uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment);
340 W.OS.write_zeros(Padding);
343 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
344 SectionTable.push_back(Sec);
345 StrTabBuilder.add(Sec->getSectionName());
346 return SectionTable.size();
349 void SymbolTableWriter::createSymtabShndx() {
350 if (!ShndxIndexes.empty())
351 return;
353 ShndxIndexes.resize(NumWritten);
356 template <typename T> void SymbolTableWriter::write(T Value) {
357 EWriter.write(Value);
360 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
361 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
363 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
364 uint64_t size, uint8_t other,
365 uint32_t shndx, bool Reserved) {
366 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
368 if (LargeIndex)
369 createSymtabShndx();
371 if (!ShndxIndexes.empty()) {
372 if (LargeIndex)
373 ShndxIndexes.push_back(shndx);
374 else
375 ShndxIndexes.push_back(0);
378 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
380 if (Is64Bit) {
381 write(name); // st_name
382 write(info); // st_info
383 write(other); // st_other
384 write(Index); // st_shndx
385 write(value); // st_value
386 write(size); // st_size
387 } else {
388 write(name); // st_name
389 write(uint32_t(value)); // st_value
390 write(uint32_t(size)); // st_size
391 write(info); // st_info
392 write(other); // st_other
393 write(Index); // st_shndx
396 ++NumWritten;
399 bool ELFWriter::is64Bit() const {
400 return OWriter.TargetObjectWriter->is64Bit();
403 bool ELFWriter::hasRelocationAddend() const {
404 return OWriter.hasRelocationAddend();
407 // Emit the ELF header.
408 void ELFWriter::writeHeader(const MCAssembler &Asm) {
409 // ELF Header
410 // ----------
412 // Note
413 // ----
414 // emitWord method behaves differently for ELF32 and ELF64, writing
415 // 4 bytes in the former and 8 in the latter.
417 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
419 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
421 // e_ident[EI_DATA]
422 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB
423 : ELF::ELFDATA2MSB);
425 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION]
426 // e_ident[EI_OSABI]
427 W.OS << char(OWriter.TargetObjectWriter->getOSABI());
428 // e_ident[EI_ABIVERSION]
429 W.OS << char(OWriter.TargetObjectWriter->getABIVersion());
431 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
433 W.write<uint16_t>(ELF::ET_REL); // e_type
435 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
437 W.write<uint32_t>(ELF::EV_CURRENT); // e_version
438 WriteWord(0); // e_entry, no entry point in .o file
439 WriteWord(0); // e_phoff, no program header for .o
440 WriteWord(0); // e_shoff = sec hdr table off in bytes
442 // e_flags = whatever the target wants
443 W.write<uint32_t>(Asm.getELFHeaderEFlags());
445 // e_ehsize = ELF header size
446 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr)
447 : sizeof(ELF::Elf32_Ehdr));
449 W.write<uint16_t>(0); // e_phentsize = prog header entry size
450 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0
452 // e_shentsize = Section header entry size
453 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr)
454 : sizeof(ELF::Elf32_Shdr));
456 // e_shnum = # of section header ents
457 W.write<uint16_t>(0);
459 // e_shstrndx = Section # of '.shstrtab'
460 assert(StringTableIndex < ELF::SHN_LORESERVE);
461 W.write<uint16_t>(StringTableIndex);
464 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
465 const MCAsmLayout &Layout) {
466 if (Sym.isCommon() && (Sym.isTargetCommon() || Sym.isExternal()))
467 return Sym.getCommonAlignment();
469 uint64_t Res;
470 if (!Layout.getSymbolOffset(Sym, Res))
471 return 0;
473 if (Layout.getAssembler().isThumbFunc(&Sym))
474 Res |= 1;
476 return Res;
479 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
480 uint8_t Type = newType;
482 // Propagation rules:
483 // IFUNC > FUNC > OBJECT > NOTYPE
484 // TLS_OBJECT > OBJECT > NOTYPE
486 // dont let the new type degrade the old type
487 switch (origType) {
488 default:
489 break;
490 case ELF::STT_GNU_IFUNC:
491 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
492 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
493 Type = ELF::STT_GNU_IFUNC;
494 break;
495 case ELF::STT_FUNC:
496 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
497 Type == ELF::STT_TLS)
498 Type = ELF::STT_FUNC;
499 break;
500 case ELF::STT_OBJECT:
501 if (Type == ELF::STT_NOTYPE)
502 Type = ELF::STT_OBJECT;
503 break;
504 case ELF::STT_TLS:
505 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
506 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
507 Type = ELF::STT_TLS;
508 break;
511 return Type;
514 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
515 ELFSymbolData &MSD, const MCAsmLayout &Layout) {
516 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
517 const MCSymbolELF *Base =
518 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
520 // This has to be in sync with when computeSymbolTable uses SHN_ABS or
521 // SHN_COMMON.
522 bool IsReserved = !Base || Symbol.isCommon();
524 // Binding and Type share the same byte as upper and lower nibbles
525 uint8_t Binding = Symbol.getBinding();
526 uint8_t Type = Symbol.getType();
527 if (Base) {
528 Type = mergeTypeForSet(Type, Base->getType());
530 uint8_t Info = (Binding << 4) | Type;
532 // Other and Visibility share the same byte with Visibility using the lower
533 // 2 bits
534 uint8_t Visibility = Symbol.getVisibility();
535 uint8_t Other = Symbol.getOther() | Visibility;
537 uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
538 uint64_t Size = 0;
540 const MCExpr *ESize = MSD.Symbol->getSize();
541 if (!ESize && Base)
542 ESize = Base->getSize();
544 if (ESize) {
545 int64_t Res;
546 if (!ESize->evaluateKnownAbsolute(Res, Layout))
547 report_fatal_error("Size expression must be absolute.");
548 Size = Res;
551 // Write out the symbol table entry
552 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
553 IsReserved);
556 // True if the assembler knows nothing about the final value of the symbol.
557 // This doesn't cover the comdat issues, since in those cases the assembler
558 // can at least know that all symbols in the section will move together.
559 static bool isWeak(const MCSymbolELF &Sym) {
560 if (Sym.getType() == ELF::STT_GNU_IFUNC)
561 return true;
563 switch (Sym.getBinding()) {
564 default:
565 llvm_unreachable("Unknown binding");
566 case ELF::STB_LOCAL:
567 return false;
568 case ELF::STB_GLOBAL:
569 return false;
570 case ELF::STB_WEAK:
571 case ELF::STB_GNU_UNIQUE:
572 return true;
576 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
577 bool Used, bool Renamed) {
578 if (Symbol.isVariable()) {
579 const MCExpr *Expr = Symbol.getVariableValue();
580 // Target Expressions that are always inlined do not appear in the symtab
581 if (const auto *T = dyn_cast<MCTargetExpr>(Expr))
582 if (T->inlineAssignedExpr())
583 return false;
584 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
585 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
586 return false;
590 if (Used)
591 return true;
593 if (Renamed)
594 return false;
596 if (Symbol.isVariable() && Symbol.isUndefined()) {
597 // FIXME: this is here just to diagnose the case of a var = commmon_sym.
598 Layout.getBaseSymbol(Symbol);
599 return false;
602 if (Symbol.isUndefined() && !Symbol.isBindingSet())
603 return false;
605 if (Symbol.isTemporary())
606 return false;
608 if (Symbol.getType() == ELF::STT_SECTION)
609 return false;
611 return true;
614 void ELFWriter::computeSymbolTable(
615 MCAssembler &Asm, const MCAsmLayout &Layout,
616 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
617 SectionOffsetsTy &SectionOffsets) {
618 MCContext &Ctx = Asm.getContext();
619 SymbolTableWriter Writer(*this, is64Bit());
621 // Symbol table
622 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
623 MCSectionELF *SymtabSection =
624 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
625 SymtabSection->setAlignment(is64Bit() ? 8 : 4);
626 SymbolTableIndex = addToSectionTable(SymtabSection);
628 align(SymtabSection->getAlignment());
629 uint64_t SecStart = W.OS.tell();
631 // The first entry is the undefined symbol entry.
632 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
634 std::vector<ELFSymbolData> LocalSymbolData;
635 std::vector<ELFSymbolData> ExternalSymbolData;
637 // Add the data for the symbols.
638 bool HasLargeSectionIndex = false;
639 for (const MCSymbol &S : Asm.symbols()) {
640 const auto &Symbol = cast<MCSymbolELF>(S);
641 bool Used = Symbol.isUsedInReloc();
642 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
643 bool isSignature = Symbol.isSignature();
645 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
646 OWriter.Renames.count(&Symbol)))
647 continue;
649 if (Symbol.isTemporary() && Symbol.isUndefined()) {
650 Ctx.reportError(SMLoc(), "Undefined temporary symbol");
651 continue;
654 ELFSymbolData MSD;
655 MSD.Symbol = cast<MCSymbolELF>(&Symbol);
657 bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
658 assert(Local || !Symbol.isTemporary());
660 if (Symbol.isAbsolute()) {
661 MSD.SectionIndex = ELF::SHN_ABS;
662 } else if (Symbol.isCommon()) {
663 if (Symbol.isTargetCommon()) {
664 MSD.SectionIndex = Symbol.getIndex();
665 } else {
666 assert(!Local);
667 MSD.SectionIndex = ELF::SHN_COMMON;
669 } else if (Symbol.isUndefined()) {
670 if (isSignature && !Used) {
671 MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
672 if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
673 HasLargeSectionIndex = true;
674 } else {
675 MSD.SectionIndex = ELF::SHN_UNDEF;
677 } else {
678 const MCSectionELF &Section =
679 static_cast<const MCSectionELF &>(Symbol.getSection());
681 // We may end up with a situation when section symbol is technically
682 // defined, but should not be. That happens because we explicitly
683 // pre-create few .debug_* sections to have accessors.
684 // And if these sections were not really defined in the code, but were
685 // referenced, we simply error out.
686 if (!Section.isRegistered()) {
687 assert(static_cast<const MCSymbolELF &>(Symbol).getType() ==
688 ELF::STT_SECTION);
689 Ctx.reportError(SMLoc(),
690 "Undefined section reference: " + Symbol.getName());
691 continue;
694 if (Mode == NonDwoOnly && isDwoSection(Section))
695 continue;
696 MSD.SectionIndex = SectionIndexMap.lookup(&Section);
697 assert(MSD.SectionIndex && "Invalid section index!");
698 if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
699 HasLargeSectionIndex = true;
702 StringRef Name = Symbol.getName();
704 // Sections have their own string table
705 if (Symbol.getType() != ELF::STT_SECTION) {
706 MSD.Name = Name;
707 StrTabBuilder.add(Name);
710 if (Local)
711 LocalSymbolData.push_back(MSD);
712 else
713 ExternalSymbolData.push_back(MSD);
716 // This holds the .symtab_shndx section index.
717 unsigned SymtabShndxSectionIndex = 0;
719 if (HasLargeSectionIndex) {
720 MCSectionELF *SymtabShndxSection =
721 Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
722 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
723 SymtabShndxSection->setAlignment(4);
726 ArrayRef<std::string> FileNames = Asm.getFileNames();
727 for (const std::string &Name : FileNames)
728 StrTabBuilder.add(Name);
730 StrTabBuilder.finalize();
732 // File symbols are emitted first and handled separately from normal symbols,
733 // i.e. a non-STT_FILE symbol with the same name may appear.
734 for (const std::string &Name : FileNames)
735 Writer.writeSymbol(StrTabBuilder.getOffset(Name),
736 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
737 ELF::SHN_ABS, true);
739 // Symbols are required to be in lexicographic order.
740 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
741 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
743 // Set the symbol indices. Local symbols must come before all other
744 // symbols with non-local bindings.
745 unsigned Index = FileNames.size() + 1;
747 for (ELFSymbolData &MSD : LocalSymbolData) {
748 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
750 : StrTabBuilder.getOffset(MSD.Name);
751 MSD.Symbol->setIndex(Index++);
752 writeSymbol(Writer, StringIndex, MSD, Layout);
755 // Write the symbol table entries.
756 LastLocalSymbolIndex = Index;
758 for (ELFSymbolData &MSD : ExternalSymbolData) {
759 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
760 MSD.Symbol->setIndex(Index++);
761 writeSymbol(Writer, StringIndex, MSD, Layout);
762 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
765 uint64_t SecEnd = W.OS.tell();
766 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
768 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
769 if (ShndxIndexes.empty()) {
770 assert(SymtabShndxSectionIndex == 0);
771 return;
773 assert(SymtabShndxSectionIndex != 0);
775 SecStart = W.OS.tell();
776 const MCSectionELF *SymtabShndxSection =
777 SectionTable[SymtabShndxSectionIndex - 1];
778 for (uint32_t Index : ShndxIndexes)
779 write(Index);
780 SecEnd = W.OS.tell();
781 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
784 void ELFWriter::writeAddrsigSection() {
785 for (const MCSymbol *Sym : OWriter.AddrsigSyms)
786 encodeULEB128(Sym->getIndex(), W.OS);
789 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
790 const MCSectionELF &Sec) {
791 if (OWriter.Relocations[&Sec].empty())
792 return nullptr;
794 const StringRef SectionName = Sec.getSectionName();
795 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
796 RelaSectionName += SectionName;
798 unsigned EntrySize;
799 if (hasRelocationAddend())
800 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
801 else
802 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
804 unsigned Flags = 0;
805 if (Sec.getFlags() & ELF::SHF_GROUP)
806 Flags = ELF::SHF_GROUP;
808 MCSectionELF *RelaSection = Ctx.createELFRelSection(
809 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
810 Flags, EntrySize, Sec.getGroup(), &Sec);
811 RelaSection->setAlignment(is64Bit() ? 8 : 4);
812 return RelaSection;
815 // Include the debug info compression header.
816 bool ELFWriter::maybeWriteCompression(
817 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
818 unsigned Alignment) {
819 if (ZLibStyle) {
820 uint64_t HdrSize =
821 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
822 if (Size <= HdrSize + CompressedContents.size())
823 return false;
824 // Platform specific header is followed by compressed data.
825 if (is64Bit()) {
826 // Write Elf64_Chdr header.
827 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
828 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
829 write(static_cast<ELF::Elf64_Xword>(Size));
830 write(static_cast<ELF::Elf64_Xword>(Alignment));
831 } else {
832 // Write Elf32_Chdr header otherwise.
833 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
834 write(static_cast<ELF::Elf32_Word>(Size));
835 write(static_cast<ELF::Elf32_Word>(Alignment));
837 return true;
840 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
841 // useful for consumers to preallocate a buffer to decompress into.
842 const StringRef Magic = "ZLIB";
843 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
844 return false;
845 W.OS << Magic;
846 support::endian::write(W.OS, Size, support::big);
847 return true;
850 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
851 const MCAsmLayout &Layout) {
852 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
853 StringRef SectionName = Section.getSectionName();
855 auto &MC = Asm.getContext();
856 const auto &MAI = MC.getAsmInfo();
858 // Compressing debug_frame requires handling alignment fragments which is
859 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
860 // for writing to arbitrary buffers) for little benefit.
861 bool CompressionEnabled =
862 MAI->compressDebugSections() != DebugCompressionType::None;
863 if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
864 SectionName == ".debug_frame") {
865 Asm.writeSectionData(W.OS, &Section, Layout);
866 return;
869 assert((MAI->compressDebugSections() == DebugCompressionType::Z ||
870 MAI->compressDebugSections() == DebugCompressionType::GNU) &&
871 "expected zlib or zlib-gnu style compression");
873 SmallVector<char, 128> UncompressedData;
874 raw_svector_ostream VecOS(UncompressedData);
875 Asm.writeSectionData(VecOS, &Section, Layout);
877 SmallVector<char, 128> CompressedContents;
878 if (Error E = zlib::compress(
879 StringRef(UncompressedData.data(), UncompressedData.size()),
880 CompressedContents)) {
881 consumeError(std::move(E));
882 W.OS << UncompressedData;
883 return;
886 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z;
887 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
888 ZlibStyle, Sec.getAlignment())) {
889 W.OS << UncompressedData;
890 return;
893 if (ZlibStyle) {
894 // Set the compressed flag. That is zlib style.
895 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
896 // Alignment field should reflect the requirements of
897 // the compressed section header.
898 Section.setAlignment(is64Bit() ? 8 : 4);
899 } else {
900 // Add "z" prefix to section name. This is zlib-gnu style.
901 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str());
903 W.OS << CompressedContents;
906 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
907 uint64_t Address, uint64_t Offset,
908 uint64_t Size, uint32_t Link, uint32_t Info,
909 uint64_t Alignment, uint64_t EntrySize) {
910 W.write<uint32_t>(Name); // sh_name: index into string table
911 W.write<uint32_t>(Type); // sh_type
912 WriteWord(Flags); // sh_flags
913 WriteWord(Address); // sh_addr
914 WriteWord(Offset); // sh_offset
915 WriteWord(Size); // sh_size
916 W.write<uint32_t>(Link); // sh_link
917 W.write<uint32_t>(Info); // sh_info
918 WriteWord(Alignment); // sh_addralign
919 WriteWord(EntrySize); // sh_entsize
922 void ELFWriter::writeRelocations(const MCAssembler &Asm,
923 const MCSectionELF &Sec) {
924 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
926 // We record relocations by pushing to the end of a vector. Reverse the vector
927 // to get the relocations in the order they were created.
928 // In most cases that is not important, but it can be for special sections
929 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
930 std::reverse(Relocs.begin(), Relocs.end());
932 // Sort the relocation entries. MIPS needs this.
933 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
935 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
936 const ELFRelocationEntry &Entry = Relocs[e - i - 1];
937 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
939 if (is64Bit()) {
940 write(Entry.Offset);
941 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
942 write(uint32_t(Index));
944 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
945 write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
946 write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
947 write(OWriter.TargetObjectWriter->getRType(Entry.Type));
948 } else {
949 struct ELF::Elf64_Rela ERE64;
950 ERE64.setSymbolAndType(Index, Entry.Type);
951 write(ERE64.r_info);
953 if (hasRelocationAddend())
954 write(Entry.Addend);
955 } else {
956 write(uint32_t(Entry.Offset));
958 struct ELF::Elf32_Rela ERE32;
959 ERE32.setSymbolAndType(Index, Entry.Type);
960 write(ERE32.r_info);
962 if (hasRelocationAddend())
963 write(uint32_t(Entry.Addend));
965 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
966 if (uint32_t RType =
967 OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
968 write(uint32_t(Entry.Offset));
970 ERE32.setSymbolAndType(0, RType);
971 write(ERE32.r_info);
972 write(uint32_t(0));
974 if (uint32_t RType =
975 OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
976 write(uint32_t(Entry.Offset));
978 ERE32.setSymbolAndType(0, RType);
979 write(ERE32.r_info);
980 write(uint32_t(0));
987 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) {
988 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
989 StrTabBuilder.write(W.OS);
990 return StrtabSection;
993 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
994 uint32_t GroupSymbolIndex, uint64_t Offset,
995 uint64_t Size, const MCSectionELF &Section) {
996 uint64_t sh_link = 0;
997 uint64_t sh_info = 0;
999 switch(Section.getType()) {
1000 default:
1001 // Nothing to do.
1002 break;
1004 case ELF::SHT_DYNAMIC:
1005 llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1007 case ELF::SHT_REL:
1008 case ELF::SHT_RELA: {
1009 sh_link = SymbolTableIndex;
1010 assert(sh_link && ".symtab not found");
1011 const MCSection *InfoSection = Section.getAssociatedSection();
1012 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
1013 break;
1016 case ELF::SHT_SYMTAB:
1017 sh_link = StringTableIndex;
1018 sh_info = LastLocalSymbolIndex;
1019 break;
1021 case ELF::SHT_SYMTAB_SHNDX:
1022 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1023 case ELF::SHT_LLVM_ADDRSIG:
1024 sh_link = SymbolTableIndex;
1025 break;
1027 case ELF::SHT_GROUP:
1028 sh_link = SymbolTableIndex;
1029 sh_info = GroupSymbolIndex;
1030 break;
1033 if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1034 const MCSymbol *Sym = Section.getAssociatedSymbol();
1035 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1036 sh_link = SectionIndexMap.lookup(Sec);
1039 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1040 Section.getType(), Section.getFlags(), 0, Offset, Size,
1041 sh_link, sh_info, Section.getAlignment(),
1042 Section.getEntrySize());
1045 void ELFWriter::writeSectionHeader(
1046 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1047 const SectionOffsetsTy &SectionOffsets) {
1048 const unsigned NumSections = SectionTable.size();
1050 // Null section first.
1051 uint64_t FirstSectionSize =
1052 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1053 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1055 for (const MCSectionELF *Section : SectionTable) {
1056 uint32_t GroupSymbolIndex;
1057 unsigned Type = Section->getType();
1058 if (Type != ELF::SHT_GROUP)
1059 GroupSymbolIndex = 0;
1060 else
1061 GroupSymbolIndex = Section->getGroup()->getIndex();
1063 const std::pair<uint64_t, uint64_t> &Offsets =
1064 SectionOffsets.find(Section)->second;
1065 uint64_t Size;
1066 if (Type == ELF::SHT_NOBITS)
1067 Size = Layout.getSectionAddressSize(Section);
1068 else
1069 Size = Offsets.second - Offsets.first;
1071 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1072 *Section);
1076 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
1077 uint64_t StartOffset = W.OS.tell();
1079 MCContext &Ctx = Asm.getContext();
1080 MCSectionELF *StrtabSection =
1081 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1082 StringTableIndex = addToSectionTable(StrtabSection);
1084 RevGroupMapTy RevGroupMap;
1085 SectionIndexMapTy SectionIndexMap;
1087 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1089 // Write out the ELF header ...
1090 writeHeader(Asm);
1092 // ... then the sections ...
1093 SectionOffsetsTy SectionOffsets;
1094 std::vector<MCSectionELF *> Groups;
1095 std::vector<MCSectionELF *> Relocations;
1096 for (MCSection &Sec : Asm) {
1097 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1098 if (Mode == NonDwoOnly && isDwoSection(Section))
1099 continue;
1100 if (Mode == DwoOnly && !isDwoSection(Section))
1101 continue;
1103 align(Section.getAlignment());
1105 // Remember the offset into the file for this section.
1106 uint64_t SecStart = W.OS.tell();
1108 const MCSymbolELF *SignatureSymbol = Section.getGroup();
1109 writeSectionData(Asm, Section, Layout);
1111 uint64_t SecEnd = W.OS.tell();
1112 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1114 MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1116 if (SignatureSymbol) {
1117 Asm.registerSymbol(*SignatureSymbol);
1118 unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1119 if (!GroupIdx) {
1120 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1121 GroupIdx = addToSectionTable(Group);
1122 Group->setAlignment(4);
1123 Groups.push_back(Group);
1125 std::vector<const MCSectionELF *> &Members =
1126 GroupMembers[SignatureSymbol];
1127 Members.push_back(&Section);
1128 if (RelSection)
1129 Members.push_back(RelSection);
1132 SectionIndexMap[&Section] = addToSectionTable(&Section);
1133 if (RelSection) {
1134 SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1135 Relocations.push_back(RelSection);
1138 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section);
1141 MCSectionELF *CGProfileSection = nullptr;
1142 if (!Asm.CGProfile.empty()) {
1143 CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile",
1144 ELF::SHT_LLVM_CALL_GRAPH_PROFILE,
1145 ELF::SHF_EXCLUDE, 16, "");
1146 SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection);
1149 for (MCSectionELF *Group : Groups) {
1150 align(Group->getAlignment());
1152 // Remember the offset into the file for this section.
1153 uint64_t SecStart = W.OS.tell();
1155 const MCSymbol *SignatureSymbol = Group->getGroup();
1156 assert(SignatureSymbol);
1157 write(uint32_t(ELF::GRP_COMDAT));
1158 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1159 uint32_t SecIndex = SectionIndexMap.lookup(Member);
1160 write(SecIndex);
1163 uint64_t SecEnd = W.OS.tell();
1164 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1167 if (Mode == DwoOnly) {
1168 // dwo files don't have symbol tables or relocations, but they do have
1169 // string tables.
1170 StrTabBuilder.finalize();
1171 } else {
1172 MCSectionELF *AddrsigSection;
1173 if (OWriter.EmitAddrsigSection) {
1174 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG,
1175 ELF::SHF_EXCLUDE);
1176 addToSectionTable(AddrsigSection);
1179 // Compute symbol table information.
1180 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
1181 SectionOffsets);
1183 for (MCSectionELF *RelSection : Relocations) {
1184 align(RelSection->getAlignment());
1186 // Remember the offset into the file for this section.
1187 uint64_t SecStart = W.OS.tell();
1189 writeRelocations(Asm,
1190 cast<MCSectionELF>(*RelSection->getAssociatedSection()));
1192 uint64_t SecEnd = W.OS.tell();
1193 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1196 if (OWriter.EmitAddrsigSection) {
1197 uint64_t SecStart = W.OS.tell();
1198 writeAddrsigSection();
1199 uint64_t SecEnd = W.OS.tell();
1200 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd);
1204 if (CGProfileSection) {
1205 uint64_t SecStart = W.OS.tell();
1206 for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) {
1207 W.write<uint32_t>(CGPE.From->getSymbol().getIndex());
1208 W.write<uint32_t>(CGPE.To->getSymbol().getIndex());
1209 W.write<uint64_t>(CGPE.Count);
1211 uint64_t SecEnd = W.OS.tell();
1212 SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd);
1216 uint64_t SecStart = W.OS.tell();
1217 const MCSectionELF *Sec = createStringTable(Ctx);
1218 uint64_t SecEnd = W.OS.tell();
1219 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1222 uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1223 align(NaturalAlignment);
1225 const uint64_t SectionHeaderOffset = W.OS.tell();
1227 // ... then the section header table ...
1228 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1230 uint16_t NumSections = support::endian::byte_swap<uint16_t>(
1231 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF
1232 : SectionTable.size() + 1,
1233 W.Endian);
1234 unsigned NumSectionsOffset;
1236 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS);
1237 if (is64Bit()) {
1238 uint64_t Val =
1239 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian);
1240 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1241 offsetof(ELF::Elf64_Ehdr, e_shoff));
1242 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1243 } else {
1244 uint32_t Val =
1245 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian);
1246 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1247 offsetof(ELF::Elf32_Ehdr, e_shoff));
1248 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1250 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
1251 NumSectionsOffset);
1253 return W.OS.tell() - StartOffset;
1256 bool ELFObjectWriter::hasRelocationAddend() const {
1257 return TargetObjectWriter->hasRelocationAddend();
1260 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
1261 const MCAsmLayout &Layout) {
1262 // The presence of symbol versions causes undefined symbols and
1263 // versions declared with @@@ to be renamed.
1264 for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) {
1265 StringRef AliasName = P.first;
1266 const auto &Symbol = cast<MCSymbolELF>(*P.second);
1267 size_t Pos = AliasName.find('@');
1268 assert(Pos != StringRef::npos);
1270 StringRef Prefix = AliasName.substr(0, Pos);
1271 StringRef Rest = AliasName.substr(Pos);
1272 StringRef Tail = Rest;
1273 if (Rest.startswith("@@@"))
1274 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
1276 auto *Alias =
1277 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
1278 Asm.registerSymbol(*Alias);
1279 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
1280 Alias->setVariableValue(Value);
1282 // Aliases defined with .symvar copy the binding from the symbol they alias.
1283 // This is the first place we are able to copy this information.
1284 Alias->setExternal(Symbol.isExternal());
1285 Alias->setBinding(Symbol.getBinding());
1286 Alias->setOther(Symbol.getOther());
1288 if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
1289 continue;
1291 // FIXME: Get source locations for these errors or diagnose them earlier.
1292 if (Symbol.isUndefined() && Rest.startswith("@@") &&
1293 !Rest.startswith("@@@")) {
1294 Asm.getContext().reportError(SMLoc(), "versioned symbol " + AliasName +
1295 " must be defined");
1296 continue;
1299 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) {
1300 Asm.getContext().reportError(
1301 SMLoc(), llvm::Twine("multiple symbol versions defined for ") +
1302 Symbol.getName());
1303 continue;
1306 Renames.insert(std::make_pair(&Symbol, Alias));
1309 for (const MCSymbol *&Sym : AddrsigSyms) {
1310 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym)))
1311 Sym = R;
1312 if (Sym->isInSection() && Sym->getName().startswith(".L"))
1313 Sym = Sym->getSection().getBeginSymbol();
1314 Sym->setUsedInReloc();
1318 // It is always valid to create a relocation with a symbol. It is preferable
1319 // to use a relocation with a section if that is possible. Using the section
1320 // allows us to omit some local symbols from the symbol table.
1321 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
1322 const MCSymbolRefExpr *RefA,
1323 const MCSymbolELF *Sym,
1324 uint64_t C,
1325 unsigned Type) const {
1326 // A PCRel relocation to an absolute value has no symbol (or section). We
1327 // represent that with a relocation to a null section.
1328 if (!RefA)
1329 return false;
1331 MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
1332 switch (Kind) {
1333 default:
1334 break;
1335 // The .odp creation emits a relocation against the symbol ".TOC." which
1336 // create a R_PPC64_TOC relocation. However the relocation symbol name
1337 // in final object creation should be NULL, since the symbol does not
1338 // really exist, it is just the reference to TOC base for the current
1339 // object file. Since the symbol is undefined, returning false results
1340 // in a relocation with a null section which is the desired result.
1341 case MCSymbolRefExpr::VK_PPC_TOCBASE:
1342 return false;
1344 // These VariantKind cause the relocation to refer to something other than
1345 // the symbol itself, like a linker generated table. Since the address of
1346 // symbol is not relevant, we cannot replace the symbol with the
1347 // section and patch the difference in the addend.
1348 case MCSymbolRefExpr::VK_GOT:
1349 case MCSymbolRefExpr::VK_PLT:
1350 case MCSymbolRefExpr::VK_GOTPCREL:
1351 case MCSymbolRefExpr::VK_PPC_GOT_LO:
1352 case MCSymbolRefExpr::VK_PPC_GOT_HI:
1353 case MCSymbolRefExpr::VK_PPC_GOT_HA:
1354 return true;
1357 // An undefined symbol is not in any section, so the relocation has to point
1358 // to the symbol itself.
1359 assert(Sym && "Expected a symbol");
1360 if (Sym->isUndefined())
1361 return true;
1363 unsigned Binding = Sym->getBinding();
1364 switch(Binding) {
1365 default:
1366 llvm_unreachable("Invalid Binding");
1367 case ELF::STB_LOCAL:
1368 break;
1369 case ELF::STB_WEAK:
1370 // If the symbol is weak, it might be overridden by a symbol in another
1371 // file. The relocation has to point to the symbol so that the linker
1372 // can update it.
1373 return true;
1374 case ELF::STB_GLOBAL:
1375 // Global ELF symbols can be preempted by the dynamic linker. The relocation
1376 // has to point to the symbol for a reason analogous to the STB_WEAK case.
1377 return true;
1380 // Keep symbol type for a local ifunc because it may result in an IRELATIVE
1381 // reloc that the dynamic loader will use to resolve the address at startup
1382 // time.
1383 if (Sym->getType() == ELF::STT_GNU_IFUNC)
1384 return true;
1386 // If a relocation points to a mergeable section, we have to be careful.
1387 // If the offset is zero, a relocation with the section will encode the
1388 // same information. With a non-zero offset, the situation is different.
1389 // For example, a relocation can point 42 bytes past the end of a string.
1390 // If we change such a relocation to use the section, the linker would think
1391 // that it pointed to another string and subtracting 42 at runtime will
1392 // produce the wrong value.
1393 if (Sym->isInSection()) {
1394 auto &Sec = cast<MCSectionELF>(Sym->getSection());
1395 unsigned Flags = Sec.getFlags();
1396 if (Flags & ELF::SHF_MERGE) {
1397 if (C != 0)
1398 return true;
1400 // It looks like gold has a bug (http://sourceware.org/PR16794) and can
1401 // only handle section relocations to mergeable sections if using RELA.
1402 if (!hasRelocationAddend())
1403 return true;
1406 // Most TLS relocations use a got, so they need the symbol. Even those that
1407 // are just an offset (@tpoff), require a symbol in gold versions before
1408 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1409 // http://sourceware.org/PR16773.
1410 if (Flags & ELF::SHF_TLS)
1411 return true;
1414 // If the symbol is a thumb function the final relocation must set the lowest
1415 // bit. With a symbol that is done by just having the symbol have that bit
1416 // set, so we would lose the bit if we relocated with the section.
1417 // FIXME: We could use the section but add the bit to the relocation value.
1418 if (Asm.isThumbFunc(Sym))
1419 return true;
1421 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
1422 return true;
1423 return false;
1426 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
1427 const MCAsmLayout &Layout,
1428 const MCFragment *Fragment,
1429 const MCFixup &Fixup, MCValue Target,
1430 uint64_t &FixedValue) {
1431 MCAsmBackend &Backend = Asm.getBackend();
1432 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
1433 MCFixupKindInfo::FKF_IsPCRel;
1434 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
1435 uint64_t C = Target.getConstant();
1436 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
1437 MCContext &Ctx = Asm.getContext();
1439 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
1440 // Let A, B and C being the components of Target and R be the location of
1441 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
1442 // If it is pcrel, we want to compute (A - B + C - R).
1444 // In general, ELF has no relocations for -B. It can only represent (A + C)
1445 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
1446 // replace B to implement it: (A - R - K + C)
1447 if (IsPCRel) {
1448 Ctx.reportError(
1449 Fixup.getLoc(),
1450 "No relocation available to represent this relative expression");
1451 return;
1454 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
1456 if (SymB.isUndefined()) {
1457 Ctx.reportError(Fixup.getLoc(),
1458 Twine("symbol '") + SymB.getName() +
1459 "' can not be undefined in a subtraction expression");
1460 return;
1463 assert(!SymB.isAbsolute() && "Should have been folded");
1464 const MCSection &SecB = SymB.getSection();
1465 if (&SecB != &FixupSection) {
1466 Ctx.reportError(Fixup.getLoc(),
1467 "Cannot represent a difference across sections");
1468 return;
1471 uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
1472 uint64_t K = SymBOffset - FixupOffset;
1473 IsPCRel = true;
1474 C -= K;
1477 // We either rejected the fixup or folded B into C at this point.
1478 const MCSymbolRefExpr *RefA = Target.getSymA();
1479 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
1481 bool ViaWeakRef = false;
1482 if (SymA && SymA->isVariable()) {
1483 const MCExpr *Expr = SymA->getVariableValue();
1484 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
1485 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
1486 SymA = cast<MCSymbolELF>(&Inner->getSymbol());
1487 ViaWeakRef = true;
1492 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
1493 uint64_t OriginalC = C;
1494 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
1495 if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
1496 C += Layout.getSymbolOffset(*SymA);
1498 uint64_t Addend = 0;
1499 if (hasRelocationAddend()) {
1500 Addend = C;
1501 C = 0;
1504 FixedValue = C;
1506 const MCSectionELF *SecA = (SymA && SymA->isInSection())
1507 ? cast<MCSectionELF>(&SymA->getSection())
1508 : nullptr;
1509 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA))
1510 return;
1512 if (!RelocateWithSymbol) {
1513 const auto *SectionSymbol =
1514 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
1515 if (SectionSymbol)
1516 SectionSymbol->setUsedInReloc();
1517 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
1518 OriginalC);
1519 Relocations[&FixupSection].push_back(Rec);
1520 return;
1523 const auto *RenamedSymA = SymA;
1524 if (SymA) {
1525 if (const MCSymbolELF *R = Renames.lookup(SymA))
1526 RenamedSymA = R;
1528 if (ViaWeakRef)
1529 RenamedSymA->setIsWeakrefUsedInReloc();
1530 else
1531 RenamedSymA->setUsedInReloc();
1533 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
1534 OriginalC);
1535 Relocations[&FixupSection].push_back(Rec);
1538 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1539 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1540 bool InSet, bool IsPCRel) const {
1541 const auto &SymA = cast<MCSymbolELF>(SA);
1542 if (IsPCRel) {
1543 assert(!InSet);
1544 if (isWeak(SymA))
1545 return false;
1547 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1548 InSet, IsPCRel);
1551 std::unique_ptr<MCObjectWriter>
1552 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1553 raw_pwrite_stream &OS, bool IsLittleEndian) {
1554 return llvm::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS,
1555 IsLittleEndian);
1558 std::unique_ptr<MCObjectWriter>
1559 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1560 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
1561 bool IsLittleEndian) {
1562 return llvm::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS,
1563 IsLittleEndian);