1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements ELF object file writer information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/MC/MCAsmBackend.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCAsmLayout.h"
24 #include "llvm/MC/MCAssembler.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCELFObjectWriter.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixup.h"
29 #include "llvm/MC/MCFixupKindInfo.h"
30 #include "llvm/MC/MCFragment.h"
31 #include "llvm/MC/MCObjectFileInfo.h"
32 #include "llvm/MC/MCObjectWriter.h"
33 #include "llvm/MC/MCSection.h"
34 #include "llvm/MC/MCSectionELF.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/MC/MCSymbolELF.h"
37 #include "llvm/MC/MCValue.h"
38 #include "llvm/MC/StringTableBuilder.h"
39 #include "llvm/Support/Alignment.h"
40 #include "llvm/Support/Allocator.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compression.h"
43 #include "llvm/Support/Endian.h"
44 #include "llvm/Support/Error.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Host.h"
47 #include "llvm/Support/LEB128.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/SMLoc.h"
50 #include "llvm/Support/StringSaver.h"
51 #include "llvm/Support/SwapByteOrder.h"
52 #include "llvm/Support/raw_ostream.h"
66 #define DEBUG_TYPE "reloc-info"
70 using SectionIndexMapTy
= DenseMap
<const MCSectionELF
*, uint32_t>;
72 class ELFObjectWriter
;
75 bool isDwoSection(const MCSectionELF
&Sec
) {
76 return Sec
.getSectionName().endswith(".dwo");
79 class SymbolTableWriter
{
83 // indexes we are going to write to .symtab_shndx.
84 std::vector
<uint32_t> ShndxIndexes
;
86 // The numbel of symbols written so far.
89 void createSymtabShndx();
91 template <typename T
> void write(T Value
);
94 SymbolTableWriter(ELFWriter
&EWriter
, bool Is64Bit
);
96 void writeSymbol(uint32_t name
, uint8_t info
, uint64_t value
, uint64_t size
,
97 uint8_t other
, uint32_t shndx
, bool Reserved
);
99 ArrayRef
<uint32_t> getShndxIndexes() const { return ShndxIndexes
; }
103 ELFObjectWriter
&OWriter
;
104 support::endian::Writer W
;
112 static uint64_t SymbolValue(const MCSymbol
&Sym
, const MCAsmLayout
&Layout
);
113 static bool isInSymtab(const MCAsmLayout
&Layout
, const MCSymbolELF
&Symbol
,
114 bool Used
, bool Renamed
);
116 /// Helper struct for containing some precomputed information on symbols.
117 struct ELFSymbolData
{
118 const MCSymbolELF
*Symbol
;
119 uint32_t SectionIndex
;
122 // Support lexicographic sorting.
123 bool operator<(const ELFSymbolData
&RHS
) const {
124 unsigned LHSType
= Symbol
->getType();
125 unsigned RHSType
= RHS
.Symbol
->getType();
126 if (LHSType
== ELF::STT_SECTION
&& RHSType
!= ELF::STT_SECTION
)
128 if (LHSType
!= ELF::STT_SECTION
&& RHSType
== ELF::STT_SECTION
)
130 if (LHSType
== ELF::STT_SECTION
&& RHSType
== ELF::STT_SECTION
)
131 return SectionIndex
< RHS
.SectionIndex
;
132 return Name
< RHS
.Name
;
137 /// @name Symbol Table Data
140 StringTableBuilder StrTabBuilder
{StringTableBuilder::ELF
};
144 // This holds the symbol table index of the last local symbol.
145 unsigned LastLocalSymbolIndex
;
146 // This holds the .strtab section index.
147 unsigned StringTableIndex
;
148 // This holds the .symtab section index.
149 unsigned SymbolTableIndex
;
151 // Sections in the order they are to be output in the section table.
152 std::vector
<const MCSectionELF
*> SectionTable
;
153 unsigned addToSectionTable(const MCSectionELF
*Sec
);
155 // TargetObjectWriter wrappers.
156 bool is64Bit() const;
157 bool hasRelocationAddend() const;
159 void align(unsigned Alignment
);
161 bool maybeWriteCompression(uint64_t Size
,
162 SmallVectorImpl
<char> &CompressedContents
,
163 bool ZLibStyle
, unsigned Alignment
);
166 ELFWriter(ELFObjectWriter
&OWriter
, raw_pwrite_stream
&OS
,
167 bool IsLittleEndian
, DwoMode Mode
)
169 W(OS
, IsLittleEndian
? support::little
: support::big
), Mode(Mode
) {}
171 void WriteWord(uint64_t Word
) {
173 W
.write
<uint64_t>(Word
);
175 W
.write
<uint32_t>(Word
);
178 template <typename T
> void write(T Val
) {
182 void writeHeader(const MCAssembler
&Asm
);
184 void writeSymbol(SymbolTableWriter
&Writer
, uint32_t StringIndex
,
185 ELFSymbolData
&MSD
, const MCAsmLayout
&Layout
);
187 // Start and end offset of each section
188 using SectionOffsetsTy
=
189 std::map
<const MCSectionELF
*, std::pair
<uint64_t, uint64_t>>;
191 // Map from a signature symbol to the group section index
192 using RevGroupMapTy
= DenseMap
<const MCSymbol
*, unsigned>;
194 /// Compute the symbol table data
196 /// \param Asm - The assembler.
197 /// \param SectionIndexMap - Maps a section to its index.
198 /// \param RevGroupMap - Maps a signature symbol to the group section.
199 void computeSymbolTable(MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
200 const SectionIndexMapTy
&SectionIndexMap
,
201 const RevGroupMapTy
&RevGroupMap
,
202 SectionOffsetsTy
&SectionOffsets
);
204 void writeAddrsigSection();
206 MCSectionELF
*createRelocationSection(MCContext
&Ctx
,
207 const MCSectionELF
&Sec
);
209 const MCSectionELF
*createStringTable(MCContext
&Ctx
);
211 void writeSectionHeader(const MCAsmLayout
&Layout
,
212 const SectionIndexMapTy
&SectionIndexMap
,
213 const SectionOffsetsTy
&SectionOffsets
);
215 void writeSectionData(const MCAssembler
&Asm
, MCSection
&Sec
,
216 const MCAsmLayout
&Layout
);
218 void WriteSecHdrEntry(uint32_t Name
, uint32_t Type
, uint64_t Flags
,
219 uint64_t Address
, uint64_t Offset
, uint64_t Size
,
220 uint32_t Link
, uint32_t Info
, uint64_t Alignment
,
223 void writeRelocations(const MCAssembler
&Asm
, const MCSectionELF
&Sec
);
225 uint64_t writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
);
226 void writeSection(const SectionIndexMapTy
&SectionIndexMap
,
227 uint32_t GroupSymbolIndex
, uint64_t Offset
, uint64_t Size
,
228 const MCSectionELF
&Section
);
231 class ELFObjectWriter
: public MCObjectWriter
{
232 /// The target specific ELF writer instance.
233 std::unique_ptr
<MCELFObjectTargetWriter
> TargetObjectWriter
;
235 DenseMap
<const MCSectionELF
*, std::vector
<ELFRelocationEntry
>> Relocations
;
237 DenseMap
<const MCSymbolELF
*, const MCSymbolELF
*> Renames
;
239 bool EmitAddrsigSection
= false;
240 std::vector
<const MCSymbol
*> AddrsigSyms
;
242 bool hasRelocationAddend() const;
244 bool shouldRelocateWithSymbol(const MCAssembler
&Asm
,
245 const MCSymbolRefExpr
*RefA
,
246 const MCSymbolELF
*Sym
, uint64_t C
,
247 unsigned Type
) const;
250 ELFObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
)
251 : TargetObjectWriter(std::move(MOTW
)) {}
253 void reset() override
{
256 MCObjectWriter::reset();
259 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler
&Asm
,
260 const MCSymbol
&SymA
,
261 const MCFragment
&FB
, bool InSet
,
262 bool IsPCRel
) const override
;
264 virtual bool checkRelocation(MCContext
&Ctx
, SMLoc Loc
,
265 const MCSectionELF
*From
,
266 const MCSectionELF
*To
) {
270 void recordRelocation(MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
271 const MCFragment
*Fragment
, const MCFixup
&Fixup
,
272 MCValue Target
, uint64_t &FixedValue
) override
;
274 void executePostLayoutBinding(MCAssembler
&Asm
,
275 const MCAsmLayout
&Layout
) override
;
277 void emitAddrsigSection() override
{ EmitAddrsigSection
= true; }
278 void addAddrsigSymbol(const MCSymbol
*Sym
) override
{
279 AddrsigSyms
.push_back(Sym
);
282 friend struct ELFWriter
;
285 class ELFSingleObjectWriter
: public ELFObjectWriter
{
286 raw_pwrite_stream
&OS
;
290 ELFSingleObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
291 raw_pwrite_stream
&OS
, bool IsLittleEndian
)
292 : ELFObjectWriter(std::move(MOTW
)), OS(OS
),
293 IsLittleEndian(IsLittleEndian
) {}
295 uint64_t writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
) override
{
296 return ELFWriter(*this, OS
, IsLittleEndian
, ELFWriter::AllSections
)
297 .writeObject(Asm
, Layout
);
300 friend struct ELFWriter
;
303 class ELFDwoObjectWriter
: public ELFObjectWriter
{
304 raw_pwrite_stream
&OS
, &DwoOS
;
308 ELFDwoObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
309 raw_pwrite_stream
&OS
, raw_pwrite_stream
&DwoOS
,
311 : ELFObjectWriter(std::move(MOTW
)), OS(OS
), DwoOS(DwoOS
),
312 IsLittleEndian(IsLittleEndian
) {}
314 virtual bool checkRelocation(MCContext
&Ctx
, SMLoc Loc
,
315 const MCSectionELF
*From
,
316 const MCSectionELF
*To
) override
{
317 if (isDwoSection(*From
)) {
318 Ctx
.reportError(Loc
, "A dwo section may not contain relocations");
321 if (To
&& isDwoSection(*To
)) {
322 Ctx
.reportError(Loc
, "A relocation may not refer to a dwo section");
328 uint64_t writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
) override
{
329 uint64_t Size
= ELFWriter(*this, OS
, IsLittleEndian
, ELFWriter::NonDwoOnly
)
330 .writeObject(Asm
, Layout
);
331 Size
+= ELFWriter(*this, DwoOS
, IsLittleEndian
, ELFWriter::DwoOnly
)
332 .writeObject(Asm
, Layout
);
337 } // end anonymous namespace
339 void ELFWriter::align(unsigned Alignment
) {
340 uint64_t Padding
= offsetToAlignment(W
.OS
.tell(), Align(Alignment
));
341 W
.OS
.write_zeros(Padding
);
344 unsigned ELFWriter::addToSectionTable(const MCSectionELF
*Sec
) {
345 SectionTable
.push_back(Sec
);
346 StrTabBuilder
.add(Sec
->getSectionName());
347 return SectionTable
.size();
350 void SymbolTableWriter::createSymtabShndx() {
351 if (!ShndxIndexes
.empty())
354 ShndxIndexes
.resize(NumWritten
);
357 template <typename T
> void SymbolTableWriter::write(T Value
) {
358 EWriter
.write(Value
);
361 SymbolTableWriter::SymbolTableWriter(ELFWriter
&EWriter
, bool Is64Bit
)
362 : EWriter(EWriter
), Is64Bit(Is64Bit
), NumWritten(0) {}
364 void SymbolTableWriter::writeSymbol(uint32_t name
, uint8_t info
, uint64_t value
,
365 uint64_t size
, uint8_t other
,
366 uint32_t shndx
, bool Reserved
) {
367 bool LargeIndex
= shndx
>= ELF::SHN_LORESERVE
&& !Reserved
;
372 if (!ShndxIndexes
.empty()) {
374 ShndxIndexes
.push_back(shndx
);
376 ShndxIndexes
.push_back(0);
379 uint16_t Index
= LargeIndex
? uint16_t(ELF::SHN_XINDEX
) : shndx
;
382 write(name
); // st_name
383 write(info
); // st_info
384 write(other
); // st_other
385 write(Index
); // st_shndx
386 write(value
); // st_value
387 write(size
); // st_size
389 write(name
); // st_name
390 write(uint32_t(value
)); // st_value
391 write(uint32_t(size
)); // st_size
392 write(info
); // st_info
393 write(other
); // st_other
394 write(Index
); // st_shndx
400 bool ELFWriter::is64Bit() const {
401 return OWriter
.TargetObjectWriter
->is64Bit();
404 bool ELFWriter::hasRelocationAddend() const {
405 return OWriter
.hasRelocationAddend();
408 // Emit the ELF header.
409 void ELFWriter::writeHeader(const MCAssembler
&Asm
) {
415 // emitWord method behaves differently for ELF32 and ELF64, writing
416 // 4 bytes in the former and 8 in the latter.
418 W
.OS
<< ELF::ElfMagic
; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
420 W
.OS
<< char(is64Bit() ? ELF::ELFCLASS64
: ELF::ELFCLASS32
); // e_ident[EI_CLASS]
423 W
.OS
<< char(W
.Endian
== support::little
? ELF::ELFDATA2LSB
426 W
.OS
<< char(ELF::EV_CURRENT
); // e_ident[EI_VERSION]
428 W
.OS
<< char(OWriter
.TargetObjectWriter
->getOSABI());
429 // e_ident[EI_ABIVERSION]
430 W
.OS
<< char(OWriter
.TargetObjectWriter
->getABIVersion());
432 W
.OS
.write_zeros(ELF::EI_NIDENT
- ELF::EI_PAD
);
434 W
.write
<uint16_t>(ELF::ET_REL
); // e_type
436 W
.write
<uint16_t>(OWriter
.TargetObjectWriter
->getEMachine()); // e_machine = target
438 W
.write
<uint32_t>(ELF::EV_CURRENT
); // e_version
439 WriteWord(0); // e_entry, no entry point in .o file
440 WriteWord(0); // e_phoff, no program header for .o
441 WriteWord(0); // e_shoff = sec hdr table off in bytes
443 // e_flags = whatever the target wants
444 W
.write
<uint32_t>(Asm
.getELFHeaderEFlags());
446 // e_ehsize = ELF header size
447 W
.write
<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr
)
448 : sizeof(ELF::Elf32_Ehdr
));
450 W
.write
<uint16_t>(0); // e_phentsize = prog header entry size
451 W
.write
<uint16_t>(0); // e_phnum = # prog header entries = 0
453 // e_shentsize = Section header entry size
454 W
.write
<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr
)
455 : sizeof(ELF::Elf32_Shdr
));
457 // e_shnum = # of section header ents
458 W
.write
<uint16_t>(0);
460 // e_shstrndx = Section # of '.shstrtab'
461 assert(StringTableIndex
< ELF::SHN_LORESERVE
);
462 W
.write
<uint16_t>(StringTableIndex
);
465 uint64_t ELFWriter::SymbolValue(const MCSymbol
&Sym
,
466 const MCAsmLayout
&Layout
) {
467 if (Sym
.isCommon() && (Sym
.isTargetCommon() || Sym
.isExternal()))
468 return Sym
.getCommonAlignment();
471 if (!Layout
.getSymbolOffset(Sym
, Res
))
474 if (Layout
.getAssembler().isThumbFunc(&Sym
))
480 static uint8_t mergeTypeForSet(uint8_t origType
, uint8_t newType
) {
481 uint8_t Type
= newType
;
483 // Propagation rules:
484 // IFUNC > FUNC > OBJECT > NOTYPE
485 // TLS_OBJECT > OBJECT > NOTYPE
487 // dont let the new type degrade the old type
491 case ELF::STT_GNU_IFUNC
:
492 if (Type
== ELF::STT_FUNC
|| Type
== ELF::STT_OBJECT
||
493 Type
== ELF::STT_NOTYPE
|| Type
== ELF::STT_TLS
)
494 Type
= ELF::STT_GNU_IFUNC
;
497 if (Type
== ELF::STT_OBJECT
|| Type
== ELF::STT_NOTYPE
||
498 Type
== ELF::STT_TLS
)
499 Type
= ELF::STT_FUNC
;
501 case ELF::STT_OBJECT
:
502 if (Type
== ELF::STT_NOTYPE
)
503 Type
= ELF::STT_OBJECT
;
506 if (Type
== ELF::STT_OBJECT
|| Type
== ELF::STT_NOTYPE
||
507 Type
== ELF::STT_GNU_IFUNC
|| Type
== ELF::STT_FUNC
)
515 static bool isIFunc(const MCSymbolELF
*Symbol
) {
516 while (Symbol
->getType() != ELF::STT_GNU_IFUNC
) {
517 const MCSymbolRefExpr
*Value
;
518 if (!Symbol
->isVariable() ||
519 !(Value
= dyn_cast
<MCSymbolRefExpr
>(Symbol
->getVariableValue())) ||
520 Value
->getKind() != MCSymbolRefExpr::VK_None
||
521 mergeTypeForSet(Symbol
->getType(), ELF::STT_GNU_IFUNC
) != ELF::STT_GNU_IFUNC
)
523 Symbol
= &cast
<MCSymbolELF
>(Value
->getSymbol());
528 void ELFWriter::writeSymbol(SymbolTableWriter
&Writer
, uint32_t StringIndex
,
529 ELFSymbolData
&MSD
, const MCAsmLayout
&Layout
) {
530 const auto &Symbol
= cast
<MCSymbolELF
>(*MSD
.Symbol
);
531 const MCSymbolELF
*Base
=
532 cast_or_null
<MCSymbolELF
>(Layout
.getBaseSymbol(Symbol
));
534 // This has to be in sync with when computeSymbolTable uses SHN_ABS or
536 bool IsReserved
= !Base
|| Symbol
.isCommon();
538 // Binding and Type share the same byte as upper and lower nibbles
539 uint8_t Binding
= Symbol
.getBinding();
540 uint8_t Type
= Symbol
.getType();
541 if (isIFunc(&Symbol
))
542 Type
= ELF::STT_GNU_IFUNC
;
544 Type
= mergeTypeForSet(Type
, Base
->getType());
546 uint8_t Info
= (Binding
<< 4) | Type
;
548 // Other and Visibility share the same byte with Visibility using the lower
550 uint8_t Visibility
= Symbol
.getVisibility();
551 uint8_t Other
= Symbol
.getOther() | Visibility
;
553 uint64_t Value
= SymbolValue(*MSD
.Symbol
, Layout
);
556 const MCExpr
*ESize
= MSD
.Symbol
->getSize();
558 ESize
= Base
->getSize();
562 if (!ESize
->evaluateKnownAbsolute(Res
, Layout
))
563 report_fatal_error("Size expression must be absolute.");
567 // Write out the symbol table entry
568 Writer
.writeSymbol(StringIndex
, Info
, Value
, Size
, Other
, MSD
.SectionIndex
,
572 // True if the assembler knows nothing about the final value of the symbol.
573 // This doesn't cover the comdat issues, since in those cases the assembler
574 // can at least know that all symbols in the section will move together.
575 static bool isWeak(const MCSymbolELF
&Sym
) {
576 if (Sym
.getType() == ELF::STT_GNU_IFUNC
)
579 switch (Sym
.getBinding()) {
581 llvm_unreachable("Unknown binding");
584 case ELF::STB_GLOBAL
:
587 case ELF::STB_GNU_UNIQUE
:
592 bool ELFWriter::isInSymtab(const MCAsmLayout
&Layout
, const MCSymbolELF
&Symbol
,
593 bool Used
, bool Renamed
) {
594 if (Symbol
.isVariable()) {
595 const MCExpr
*Expr
= Symbol
.getVariableValue();
596 // Target Expressions that are always inlined do not appear in the symtab
597 if (const auto *T
= dyn_cast
<MCTargetExpr
>(Expr
))
598 if (T
->inlineAssignedExpr())
600 if (const MCSymbolRefExpr
*Ref
= dyn_cast
<MCSymbolRefExpr
>(Expr
)) {
601 if (Ref
->getKind() == MCSymbolRefExpr::VK_WEAKREF
)
612 if (Symbol
.isVariable() && Symbol
.isUndefined()) {
613 // FIXME: this is here just to diagnose the case of a var = commmon_sym.
614 Layout
.getBaseSymbol(Symbol
);
618 if (Symbol
.isUndefined() && !Symbol
.isBindingSet())
621 if (Symbol
.isTemporary())
624 if (Symbol
.getType() == ELF::STT_SECTION
)
630 void ELFWriter::computeSymbolTable(
631 MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
632 const SectionIndexMapTy
&SectionIndexMap
, const RevGroupMapTy
&RevGroupMap
,
633 SectionOffsetsTy
&SectionOffsets
) {
634 MCContext
&Ctx
= Asm
.getContext();
635 SymbolTableWriter
Writer(*this, is64Bit());
638 unsigned EntrySize
= is64Bit() ? ELF::SYMENTRY_SIZE64
: ELF::SYMENTRY_SIZE32
;
639 MCSectionELF
*SymtabSection
=
640 Ctx
.getELFSection(".symtab", ELF::SHT_SYMTAB
, 0, EntrySize
, "");
641 SymtabSection
->setAlignment(is64Bit() ? Align(8) : Align(4));
642 SymbolTableIndex
= addToSectionTable(SymtabSection
);
644 align(SymtabSection
->getAlignment());
645 uint64_t SecStart
= W
.OS
.tell();
647 // The first entry is the undefined symbol entry.
648 Writer
.writeSymbol(0, 0, 0, 0, 0, 0, false);
650 std::vector
<ELFSymbolData
> LocalSymbolData
;
651 std::vector
<ELFSymbolData
> ExternalSymbolData
;
653 // Add the data for the symbols.
654 bool HasLargeSectionIndex
= false;
655 for (const MCSymbol
&S
: Asm
.symbols()) {
656 const auto &Symbol
= cast
<MCSymbolELF
>(S
);
657 bool Used
= Symbol
.isUsedInReloc();
658 bool WeakrefUsed
= Symbol
.isWeakrefUsedInReloc();
659 bool isSignature
= Symbol
.isSignature();
661 if (!isInSymtab(Layout
, Symbol
, Used
|| WeakrefUsed
|| isSignature
,
662 OWriter
.Renames
.count(&Symbol
)))
665 if (Symbol
.isTemporary() && Symbol
.isUndefined()) {
666 Ctx
.reportError(SMLoc(), "Undefined temporary symbol");
671 MSD
.Symbol
= cast
<MCSymbolELF
>(&Symbol
);
673 bool Local
= Symbol
.getBinding() == ELF::STB_LOCAL
;
674 assert(Local
|| !Symbol
.isTemporary());
676 if (Symbol
.isAbsolute()) {
677 MSD
.SectionIndex
= ELF::SHN_ABS
;
678 } else if (Symbol
.isCommon()) {
679 if (Symbol
.isTargetCommon()) {
680 MSD
.SectionIndex
= Symbol
.getIndex();
683 MSD
.SectionIndex
= ELF::SHN_COMMON
;
685 } else if (Symbol
.isUndefined()) {
686 if (isSignature
&& !Used
) {
687 MSD
.SectionIndex
= RevGroupMap
.lookup(&Symbol
);
688 if (MSD
.SectionIndex
>= ELF::SHN_LORESERVE
)
689 HasLargeSectionIndex
= true;
691 MSD
.SectionIndex
= ELF::SHN_UNDEF
;
694 const MCSectionELF
&Section
=
695 static_cast<const MCSectionELF
&>(Symbol
.getSection());
697 // We may end up with a situation when section symbol is technically
698 // defined, but should not be. That happens because we explicitly
699 // pre-create few .debug_* sections to have accessors.
700 // And if these sections were not really defined in the code, but were
701 // referenced, we simply error out.
702 if (!Section
.isRegistered()) {
703 assert(static_cast<const MCSymbolELF
&>(Symbol
).getType() ==
705 Ctx
.reportError(SMLoc(),
706 "Undefined section reference: " + Symbol
.getName());
710 if (Mode
== NonDwoOnly
&& isDwoSection(Section
))
712 MSD
.SectionIndex
= SectionIndexMap
.lookup(&Section
);
713 assert(MSD
.SectionIndex
&& "Invalid section index!");
714 if (MSD
.SectionIndex
>= ELF::SHN_LORESERVE
)
715 HasLargeSectionIndex
= true;
718 StringRef Name
= Symbol
.getName();
720 // Sections have their own string table
721 if (Symbol
.getType() != ELF::STT_SECTION
) {
723 StrTabBuilder
.add(Name
);
727 LocalSymbolData
.push_back(MSD
);
729 ExternalSymbolData
.push_back(MSD
);
732 // This holds the .symtab_shndx section index.
733 unsigned SymtabShndxSectionIndex
= 0;
735 if (HasLargeSectionIndex
) {
736 MCSectionELF
*SymtabShndxSection
=
737 Ctx
.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX
, 0, 4, "");
738 SymtabShndxSectionIndex
= addToSectionTable(SymtabShndxSection
);
739 SymtabShndxSection
->setAlignment(Align(4));
742 ArrayRef
<std::string
> FileNames
= Asm
.getFileNames();
743 for (const std::string
&Name
: FileNames
)
744 StrTabBuilder
.add(Name
);
746 StrTabBuilder
.finalize();
748 // File symbols are emitted first and handled separately from normal symbols,
749 // i.e. a non-STT_FILE symbol with the same name may appear.
750 for (const std::string
&Name
: FileNames
)
751 Writer
.writeSymbol(StrTabBuilder
.getOffset(Name
),
752 ELF::STT_FILE
| ELF::STB_LOCAL
, 0, 0, ELF::STV_DEFAULT
,
755 // Symbols are required to be in lexicographic order.
756 array_pod_sort(LocalSymbolData
.begin(), LocalSymbolData
.end());
757 array_pod_sort(ExternalSymbolData
.begin(), ExternalSymbolData
.end());
759 // Set the symbol indices. Local symbols must come before all other
760 // symbols with non-local bindings.
761 unsigned Index
= FileNames
.size() + 1;
763 for (ELFSymbolData
&MSD
: LocalSymbolData
) {
764 unsigned StringIndex
= MSD
.Symbol
->getType() == ELF::STT_SECTION
766 : StrTabBuilder
.getOffset(MSD
.Name
);
767 MSD
.Symbol
->setIndex(Index
++);
768 writeSymbol(Writer
, StringIndex
, MSD
, Layout
);
771 // Write the symbol table entries.
772 LastLocalSymbolIndex
= Index
;
774 for (ELFSymbolData
&MSD
: ExternalSymbolData
) {
775 unsigned StringIndex
= StrTabBuilder
.getOffset(MSD
.Name
);
776 MSD
.Symbol
->setIndex(Index
++);
777 writeSymbol(Writer
, StringIndex
, MSD
, Layout
);
778 assert(MSD
.Symbol
->getBinding() != ELF::STB_LOCAL
);
781 uint64_t SecEnd
= W
.OS
.tell();
782 SectionOffsets
[SymtabSection
] = std::make_pair(SecStart
, SecEnd
);
784 ArrayRef
<uint32_t> ShndxIndexes
= Writer
.getShndxIndexes();
785 if (ShndxIndexes
.empty()) {
786 assert(SymtabShndxSectionIndex
== 0);
789 assert(SymtabShndxSectionIndex
!= 0);
791 SecStart
= W
.OS
.tell();
792 const MCSectionELF
*SymtabShndxSection
=
793 SectionTable
[SymtabShndxSectionIndex
- 1];
794 for (uint32_t Index
: ShndxIndexes
)
796 SecEnd
= W
.OS
.tell();
797 SectionOffsets
[SymtabShndxSection
] = std::make_pair(SecStart
, SecEnd
);
800 void ELFWriter::writeAddrsigSection() {
801 for (const MCSymbol
*Sym
: OWriter
.AddrsigSyms
)
802 encodeULEB128(Sym
->getIndex(), W
.OS
);
805 MCSectionELF
*ELFWriter::createRelocationSection(MCContext
&Ctx
,
806 const MCSectionELF
&Sec
) {
807 if (OWriter
.Relocations
[&Sec
].empty())
810 const StringRef SectionName
= Sec
.getSectionName();
811 std::string RelaSectionName
= hasRelocationAddend() ? ".rela" : ".rel";
812 RelaSectionName
+= SectionName
;
815 if (hasRelocationAddend())
816 EntrySize
= is64Bit() ? sizeof(ELF::Elf64_Rela
) : sizeof(ELF::Elf32_Rela
);
818 EntrySize
= is64Bit() ? sizeof(ELF::Elf64_Rel
) : sizeof(ELF::Elf32_Rel
);
821 if (Sec
.getFlags() & ELF::SHF_GROUP
)
822 Flags
= ELF::SHF_GROUP
;
824 MCSectionELF
*RelaSection
= Ctx
.createELFRelSection(
825 RelaSectionName
, hasRelocationAddend() ? ELF::SHT_RELA
: ELF::SHT_REL
,
826 Flags
, EntrySize
, Sec
.getGroup(), &Sec
);
827 RelaSection
->setAlignment(is64Bit() ? Align(8) : Align(4));
831 // Include the debug info compression header.
832 bool ELFWriter::maybeWriteCompression(
833 uint64_t Size
, SmallVectorImpl
<char> &CompressedContents
, bool ZLibStyle
,
834 unsigned Alignment
) {
837 is64Bit() ? sizeof(ELF::Elf32_Chdr
) : sizeof(ELF::Elf64_Chdr
);
838 if (Size
<= HdrSize
+ CompressedContents
.size())
840 // Platform specific header is followed by compressed data.
842 // Write Elf64_Chdr header.
843 write(static_cast<ELF::Elf64_Word
>(ELF::ELFCOMPRESS_ZLIB
));
844 write(static_cast<ELF::Elf64_Word
>(0)); // ch_reserved field.
845 write(static_cast<ELF::Elf64_Xword
>(Size
));
846 write(static_cast<ELF::Elf64_Xword
>(Alignment
));
848 // Write Elf32_Chdr header otherwise.
849 write(static_cast<ELF::Elf32_Word
>(ELF::ELFCOMPRESS_ZLIB
));
850 write(static_cast<ELF::Elf32_Word
>(Size
));
851 write(static_cast<ELF::Elf32_Word
>(Alignment
));
856 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
857 // useful for consumers to preallocate a buffer to decompress into.
858 const StringRef Magic
= "ZLIB";
859 if (Size
<= Magic
.size() + sizeof(Size
) + CompressedContents
.size())
862 support::endian::write(W
.OS
, Size
, support::big
);
866 void ELFWriter::writeSectionData(const MCAssembler
&Asm
, MCSection
&Sec
,
867 const MCAsmLayout
&Layout
) {
868 MCSectionELF
&Section
= static_cast<MCSectionELF
&>(Sec
);
869 StringRef SectionName
= Section
.getSectionName();
871 auto &MC
= Asm
.getContext();
872 const auto &MAI
= MC
.getAsmInfo();
874 // Compressing debug_frame requires handling alignment fragments which is
875 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
876 // for writing to arbitrary buffers) for little benefit.
877 bool CompressionEnabled
=
878 MAI
->compressDebugSections() != DebugCompressionType::None
;
879 if (!CompressionEnabled
|| !SectionName
.startswith(".debug_") ||
880 SectionName
== ".debug_frame") {
881 Asm
.writeSectionData(W
.OS
, &Section
, Layout
);
885 assert((MAI
->compressDebugSections() == DebugCompressionType::Z
||
886 MAI
->compressDebugSections() == DebugCompressionType::GNU
) &&
887 "expected zlib or zlib-gnu style compression");
889 SmallVector
<char, 128> UncompressedData
;
890 raw_svector_ostream
VecOS(UncompressedData
);
891 Asm
.writeSectionData(VecOS
, &Section
, Layout
);
893 SmallVector
<char, 128> CompressedContents
;
894 if (Error E
= zlib::compress(
895 StringRef(UncompressedData
.data(), UncompressedData
.size()),
896 CompressedContents
)) {
897 consumeError(std::move(E
));
898 W
.OS
<< UncompressedData
;
902 bool ZlibStyle
= MAI
->compressDebugSections() == DebugCompressionType::Z
;
903 if (!maybeWriteCompression(UncompressedData
.size(), CompressedContents
,
904 ZlibStyle
, Sec
.getAlignment())) {
905 W
.OS
<< UncompressedData
;
910 // Set the compressed flag. That is zlib style.
911 Section
.setFlags(Section
.getFlags() | ELF::SHF_COMPRESSED
);
912 // Alignment field should reflect the requirements of
913 // the compressed section header.
914 Section
.setAlignment(is64Bit() ? Align(8) : Align(4));
916 // Add "z" prefix to section name. This is zlib-gnu style.
917 MC
.renameELFSection(&Section
, (".z" + SectionName
.drop_front(1)).str());
919 W
.OS
<< CompressedContents
;
922 void ELFWriter::WriteSecHdrEntry(uint32_t Name
, uint32_t Type
, uint64_t Flags
,
923 uint64_t Address
, uint64_t Offset
,
924 uint64_t Size
, uint32_t Link
, uint32_t Info
,
925 uint64_t Alignment
, uint64_t EntrySize
) {
926 W
.write
<uint32_t>(Name
); // sh_name: index into string table
927 W
.write
<uint32_t>(Type
); // sh_type
928 WriteWord(Flags
); // sh_flags
929 WriteWord(Address
); // sh_addr
930 WriteWord(Offset
); // sh_offset
931 WriteWord(Size
); // sh_size
932 W
.write
<uint32_t>(Link
); // sh_link
933 W
.write
<uint32_t>(Info
); // sh_info
934 WriteWord(Alignment
); // sh_addralign
935 WriteWord(EntrySize
); // sh_entsize
938 void ELFWriter::writeRelocations(const MCAssembler
&Asm
,
939 const MCSectionELF
&Sec
) {
940 std::vector
<ELFRelocationEntry
> &Relocs
= OWriter
.Relocations
[&Sec
];
942 // We record relocations by pushing to the end of a vector. Reverse the vector
943 // to get the relocations in the order they were created.
944 // In most cases that is not important, but it can be for special sections
945 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
946 std::reverse(Relocs
.begin(), Relocs
.end());
948 // Sort the relocation entries. MIPS needs this.
949 OWriter
.TargetObjectWriter
->sortRelocs(Asm
, Relocs
);
951 for (unsigned i
= 0, e
= Relocs
.size(); i
!= e
; ++i
) {
952 const ELFRelocationEntry
&Entry
= Relocs
[e
- i
- 1];
953 unsigned Index
= Entry
.Symbol
? Entry
.Symbol
->getIndex() : 0;
957 if (OWriter
.TargetObjectWriter
->getEMachine() == ELF::EM_MIPS
) {
958 write(uint32_t(Index
));
960 write(OWriter
.TargetObjectWriter
->getRSsym(Entry
.Type
));
961 write(OWriter
.TargetObjectWriter
->getRType3(Entry
.Type
));
962 write(OWriter
.TargetObjectWriter
->getRType2(Entry
.Type
));
963 write(OWriter
.TargetObjectWriter
->getRType(Entry
.Type
));
965 struct ELF::Elf64_Rela ERE64
;
966 ERE64
.setSymbolAndType(Index
, Entry
.Type
);
969 if (hasRelocationAddend())
972 write(uint32_t(Entry
.Offset
));
974 struct ELF::Elf32_Rela ERE32
;
975 ERE32
.setSymbolAndType(Index
, Entry
.Type
);
978 if (hasRelocationAddend())
979 write(uint32_t(Entry
.Addend
));
981 if (OWriter
.TargetObjectWriter
->getEMachine() == ELF::EM_MIPS
) {
983 OWriter
.TargetObjectWriter
->getRType2(Entry
.Type
)) {
984 write(uint32_t(Entry
.Offset
));
986 ERE32
.setSymbolAndType(0, RType
);
991 OWriter
.TargetObjectWriter
->getRType3(Entry
.Type
)) {
992 write(uint32_t(Entry
.Offset
));
994 ERE32
.setSymbolAndType(0, RType
);
1003 const MCSectionELF
*ELFWriter::createStringTable(MCContext
&Ctx
) {
1004 const MCSectionELF
*StrtabSection
= SectionTable
[StringTableIndex
- 1];
1005 StrTabBuilder
.write(W
.OS
);
1006 return StrtabSection
;
1009 void ELFWriter::writeSection(const SectionIndexMapTy
&SectionIndexMap
,
1010 uint32_t GroupSymbolIndex
, uint64_t Offset
,
1011 uint64_t Size
, const MCSectionELF
&Section
) {
1012 uint64_t sh_link
= 0;
1013 uint64_t sh_info
= 0;
1015 switch(Section
.getType()) {
1020 case ELF::SHT_DYNAMIC
:
1021 llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1024 case ELF::SHT_RELA
: {
1025 sh_link
= SymbolTableIndex
;
1026 assert(sh_link
&& ".symtab not found");
1027 const MCSection
*InfoSection
= Section
.getAssociatedSection();
1028 sh_info
= SectionIndexMap
.lookup(cast
<MCSectionELF
>(InfoSection
));
1032 case ELF::SHT_SYMTAB
:
1033 sh_link
= StringTableIndex
;
1034 sh_info
= LastLocalSymbolIndex
;
1037 case ELF::SHT_SYMTAB_SHNDX
:
1038 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE
:
1039 case ELF::SHT_LLVM_ADDRSIG
:
1040 sh_link
= SymbolTableIndex
;
1043 case ELF::SHT_GROUP
:
1044 sh_link
= SymbolTableIndex
;
1045 sh_info
= GroupSymbolIndex
;
1049 if (Section
.getFlags() & ELF::SHF_LINK_ORDER
) {
1050 const MCSymbol
*Sym
= Section
.getAssociatedSymbol();
1051 const MCSectionELF
*Sec
= cast
<MCSectionELF
>(&Sym
->getSection());
1052 sh_link
= SectionIndexMap
.lookup(Sec
);
1055 WriteSecHdrEntry(StrTabBuilder
.getOffset(Section
.getSectionName()),
1056 Section
.getType(), Section
.getFlags(), 0, Offset
, Size
,
1057 sh_link
, sh_info
, Section
.getAlignment(),
1058 Section
.getEntrySize());
1061 void ELFWriter::writeSectionHeader(
1062 const MCAsmLayout
&Layout
, const SectionIndexMapTy
&SectionIndexMap
,
1063 const SectionOffsetsTy
&SectionOffsets
) {
1064 const unsigned NumSections
= SectionTable
.size();
1066 // Null section first.
1067 uint64_t FirstSectionSize
=
1068 (NumSections
+ 1) >= ELF::SHN_LORESERVE
? NumSections
+ 1 : 0;
1069 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize
, 0, 0, 0, 0);
1071 for (const MCSectionELF
*Section
: SectionTable
) {
1072 uint32_t GroupSymbolIndex
;
1073 unsigned Type
= Section
->getType();
1074 if (Type
!= ELF::SHT_GROUP
)
1075 GroupSymbolIndex
= 0;
1077 GroupSymbolIndex
= Section
->getGroup()->getIndex();
1079 const std::pair
<uint64_t, uint64_t> &Offsets
=
1080 SectionOffsets
.find(Section
)->second
;
1082 if (Type
== ELF::SHT_NOBITS
)
1083 Size
= Layout
.getSectionAddressSize(Section
);
1085 Size
= Offsets
.second
- Offsets
.first
;
1087 writeSection(SectionIndexMap
, GroupSymbolIndex
, Offsets
.first
, Size
,
1092 uint64_t ELFWriter::writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
) {
1093 uint64_t StartOffset
= W
.OS
.tell();
1095 MCContext
&Ctx
= Asm
.getContext();
1096 MCSectionELF
*StrtabSection
=
1097 Ctx
.getELFSection(".strtab", ELF::SHT_STRTAB
, 0);
1098 StringTableIndex
= addToSectionTable(StrtabSection
);
1100 RevGroupMapTy RevGroupMap
;
1101 SectionIndexMapTy SectionIndexMap
;
1103 std::map
<const MCSymbol
*, std::vector
<const MCSectionELF
*>> GroupMembers
;
1105 // Write out the ELF header ...
1108 // ... then the sections ...
1109 SectionOffsetsTy SectionOffsets
;
1110 std::vector
<MCSectionELF
*> Groups
;
1111 std::vector
<MCSectionELF
*> Relocations
;
1112 for (MCSection
&Sec
: Asm
) {
1113 MCSectionELF
&Section
= static_cast<MCSectionELF
&>(Sec
);
1114 if (Mode
== NonDwoOnly
&& isDwoSection(Section
))
1116 if (Mode
== DwoOnly
&& !isDwoSection(Section
))
1119 align(Section
.getAlignment());
1121 // Remember the offset into the file for this section.
1122 uint64_t SecStart
= W
.OS
.tell();
1124 const MCSymbolELF
*SignatureSymbol
= Section
.getGroup();
1125 writeSectionData(Asm
, Section
, Layout
);
1127 uint64_t SecEnd
= W
.OS
.tell();
1128 SectionOffsets
[&Section
] = std::make_pair(SecStart
, SecEnd
);
1130 MCSectionELF
*RelSection
= createRelocationSection(Ctx
, Section
);
1132 if (SignatureSymbol
) {
1133 Asm
.registerSymbol(*SignatureSymbol
);
1134 unsigned &GroupIdx
= RevGroupMap
[SignatureSymbol
];
1136 MCSectionELF
*Group
= Ctx
.createELFGroupSection(SignatureSymbol
);
1137 GroupIdx
= addToSectionTable(Group
);
1138 Group
->setAlignment(Align(4));
1139 Groups
.push_back(Group
);
1141 std::vector
<const MCSectionELF
*> &Members
=
1142 GroupMembers
[SignatureSymbol
];
1143 Members
.push_back(&Section
);
1145 Members
.push_back(RelSection
);
1148 SectionIndexMap
[&Section
] = addToSectionTable(&Section
);
1150 SectionIndexMap
[RelSection
] = addToSectionTable(RelSection
);
1151 Relocations
.push_back(RelSection
);
1154 OWriter
.TargetObjectWriter
->addTargetSectionFlags(Ctx
, Section
);
1157 MCSectionELF
*CGProfileSection
= nullptr;
1158 if (!Asm
.CGProfile
.empty()) {
1159 CGProfileSection
= Ctx
.getELFSection(".llvm.call-graph-profile",
1160 ELF::SHT_LLVM_CALL_GRAPH_PROFILE
,
1161 ELF::SHF_EXCLUDE
, 16, "");
1162 SectionIndexMap
[CGProfileSection
] = addToSectionTable(CGProfileSection
);
1165 for (MCSectionELF
*Group
: Groups
) {
1166 align(Group
->getAlignment());
1168 // Remember the offset into the file for this section.
1169 uint64_t SecStart
= W
.OS
.tell();
1171 const MCSymbol
*SignatureSymbol
= Group
->getGroup();
1172 assert(SignatureSymbol
);
1173 write(uint32_t(ELF::GRP_COMDAT
));
1174 for (const MCSectionELF
*Member
: GroupMembers
[SignatureSymbol
]) {
1175 uint32_t SecIndex
= SectionIndexMap
.lookup(Member
);
1179 uint64_t SecEnd
= W
.OS
.tell();
1180 SectionOffsets
[Group
] = std::make_pair(SecStart
, SecEnd
);
1183 if (Mode
== DwoOnly
) {
1184 // dwo files don't have symbol tables or relocations, but they do have
1186 StrTabBuilder
.finalize();
1188 MCSectionELF
*AddrsigSection
;
1189 if (OWriter
.EmitAddrsigSection
) {
1190 AddrsigSection
= Ctx
.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG
,
1192 addToSectionTable(AddrsigSection
);
1195 // Compute symbol table information.
1196 computeSymbolTable(Asm
, Layout
, SectionIndexMap
, RevGroupMap
,
1199 for (MCSectionELF
*RelSection
: Relocations
) {
1200 align(RelSection
->getAlignment());
1202 // Remember the offset into the file for this section.
1203 uint64_t SecStart
= W
.OS
.tell();
1205 writeRelocations(Asm
,
1206 cast
<MCSectionELF
>(*RelSection
->getAssociatedSection()));
1208 uint64_t SecEnd
= W
.OS
.tell();
1209 SectionOffsets
[RelSection
] = std::make_pair(SecStart
, SecEnd
);
1212 if (OWriter
.EmitAddrsigSection
) {
1213 uint64_t SecStart
= W
.OS
.tell();
1214 writeAddrsigSection();
1215 uint64_t SecEnd
= W
.OS
.tell();
1216 SectionOffsets
[AddrsigSection
] = std::make_pair(SecStart
, SecEnd
);
1220 if (CGProfileSection
) {
1221 uint64_t SecStart
= W
.OS
.tell();
1222 for (const MCAssembler::CGProfileEntry
&CGPE
: Asm
.CGProfile
) {
1223 W
.write
<uint32_t>(CGPE
.From
->getSymbol().getIndex());
1224 W
.write
<uint32_t>(CGPE
.To
->getSymbol().getIndex());
1225 W
.write
<uint64_t>(CGPE
.Count
);
1227 uint64_t SecEnd
= W
.OS
.tell();
1228 SectionOffsets
[CGProfileSection
] = std::make_pair(SecStart
, SecEnd
);
1232 uint64_t SecStart
= W
.OS
.tell();
1233 const MCSectionELF
*Sec
= createStringTable(Ctx
);
1234 uint64_t SecEnd
= W
.OS
.tell();
1235 SectionOffsets
[Sec
] = std::make_pair(SecStart
, SecEnd
);
1238 uint64_t NaturalAlignment
= is64Bit() ? 8 : 4;
1239 align(NaturalAlignment
);
1241 const uint64_t SectionHeaderOffset
= W
.OS
.tell();
1243 // ... then the section header table ...
1244 writeSectionHeader(Layout
, SectionIndexMap
, SectionOffsets
);
1246 uint16_t NumSections
= support::endian::byte_swap
<uint16_t>(
1247 (SectionTable
.size() + 1 >= ELF::SHN_LORESERVE
) ? (uint16_t)ELF::SHN_UNDEF
1248 : SectionTable
.size() + 1,
1250 unsigned NumSectionsOffset
;
1252 auto &Stream
= static_cast<raw_pwrite_stream
&>(W
.OS
);
1255 support::endian::byte_swap
<uint64_t>(SectionHeaderOffset
, W
.Endian
);
1256 Stream
.pwrite(reinterpret_cast<char *>(&Val
), sizeof(Val
),
1257 offsetof(ELF::Elf64_Ehdr
, e_shoff
));
1258 NumSectionsOffset
= offsetof(ELF::Elf64_Ehdr
, e_shnum
);
1261 support::endian::byte_swap
<uint32_t>(SectionHeaderOffset
, W
.Endian
);
1262 Stream
.pwrite(reinterpret_cast<char *>(&Val
), sizeof(Val
),
1263 offsetof(ELF::Elf32_Ehdr
, e_shoff
));
1264 NumSectionsOffset
= offsetof(ELF::Elf32_Ehdr
, e_shnum
);
1266 Stream
.pwrite(reinterpret_cast<char *>(&NumSections
), sizeof(NumSections
),
1269 return W
.OS
.tell() - StartOffset
;
1272 bool ELFObjectWriter::hasRelocationAddend() const {
1273 return TargetObjectWriter
->hasRelocationAddend();
1276 void ELFObjectWriter::executePostLayoutBinding(MCAssembler
&Asm
,
1277 const MCAsmLayout
&Layout
) {
1278 // The presence of symbol versions causes undefined symbols and
1279 // versions declared with @@@ to be renamed.
1280 for (const std::pair
<StringRef
, const MCSymbol
*> &P
: Asm
.Symvers
) {
1281 StringRef AliasName
= P
.first
;
1282 const auto &Symbol
= cast
<MCSymbolELF
>(*P
.second
);
1283 size_t Pos
= AliasName
.find('@');
1284 assert(Pos
!= StringRef::npos
);
1286 StringRef Prefix
= AliasName
.substr(0, Pos
);
1287 StringRef Rest
= AliasName
.substr(Pos
);
1288 StringRef Tail
= Rest
;
1289 if (Rest
.startswith("@@@"))
1290 Tail
= Rest
.substr(Symbol
.isUndefined() ? 2 : 1);
1293 cast
<MCSymbolELF
>(Asm
.getContext().getOrCreateSymbol(Prefix
+ Tail
));
1294 Asm
.registerSymbol(*Alias
);
1295 const MCExpr
*Value
= MCSymbolRefExpr::create(&Symbol
, Asm
.getContext());
1296 Alias
->setVariableValue(Value
);
1298 // Aliases defined with .symvar copy the binding from the symbol they alias.
1299 // This is the first place we are able to copy this information.
1300 Alias
->setExternal(Symbol
.isExternal());
1301 Alias
->setBinding(Symbol
.getBinding());
1302 Alias
->setOther(Symbol
.getOther());
1304 if (!Symbol
.isUndefined() && !Rest
.startswith("@@@"))
1307 // FIXME: Get source locations for these errors or diagnose them earlier.
1308 if (Symbol
.isUndefined() && Rest
.startswith("@@") &&
1309 !Rest
.startswith("@@@")) {
1310 Asm
.getContext().reportError(SMLoc(), "versioned symbol " + AliasName
+
1311 " must be defined");
1315 if (Renames
.count(&Symbol
) && Renames
[&Symbol
] != Alias
) {
1316 Asm
.getContext().reportError(
1317 SMLoc(), llvm::Twine("multiple symbol versions defined for ") +
1322 Renames
.insert(std::make_pair(&Symbol
, Alias
));
1325 for (const MCSymbol
*&Sym
: AddrsigSyms
) {
1326 if (const MCSymbol
*R
= Renames
.lookup(cast
<MCSymbolELF
>(Sym
)))
1328 if (Sym
->isInSection() && Sym
->getName().startswith(".L"))
1329 Sym
= Sym
->getSection().getBeginSymbol();
1330 Sym
->setUsedInReloc();
1334 // It is always valid to create a relocation with a symbol. It is preferable
1335 // to use a relocation with a section if that is possible. Using the section
1336 // allows us to omit some local symbols from the symbol table.
1337 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler
&Asm
,
1338 const MCSymbolRefExpr
*RefA
,
1339 const MCSymbolELF
*Sym
,
1341 unsigned Type
) const {
1342 // A PCRel relocation to an absolute value has no symbol (or section). We
1343 // represent that with a relocation to a null section.
1347 MCSymbolRefExpr::VariantKind Kind
= RefA
->getKind();
1351 // The .odp creation emits a relocation against the symbol ".TOC." which
1352 // create a R_PPC64_TOC relocation. However the relocation symbol name
1353 // in final object creation should be NULL, since the symbol does not
1354 // really exist, it is just the reference to TOC base for the current
1355 // object file. Since the symbol is undefined, returning false results
1356 // in a relocation with a null section which is the desired result.
1357 case MCSymbolRefExpr::VK_PPC_TOCBASE
:
1360 // These VariantKind cause the relocation to refer to something other than
1361 // the symbol itself, like a linker generated table. Since the address of
1362 // symbol is not relevant, we cannot replace the symbol with the
1363 // section and patch the difference in the addend.
1364 case MCSymbolRefExpr::VK_GOT
:
1365 case MCSymbolRefExpr::VK_PLT
:
1366 case MCSymbolRefExpr::VK_GOTPCREL
:
1367 case MCSymbolRefExpr::VK_PPC_GOT_LO
:
1368 case MCSymbolRefExpr::VK_PPC_GOT_HI
:
1369 case MCSymbolRefExpr::VK_PPC_GOT_HA
:
1373 // An undefined symbol is not in any section, so the relocation has to point
1374 // to the symbol itself.
1375 assert(Sym
&& "Expected a symbol");
1376 if (Sym
->isUndefined())
1379 unsigned Binding
= Sym
->getBinding();
1382 llvm_unreachable("Invalid Binding");
1383 case ELF::STB_LOCAL
:
1386 // If the symbol is weak, it might be overridden by a symbol in another
1387 // file. The relocation has to point to the symbol so that the linker
1390 case ELF::STB_GLOBAL
:
1391 // Global ELF symbols can be preempted by the dynamic linker. The relocation
1392 // has to point to the symbol for a reason analogous to the STB_WEAK case.
1396 // Keep symbol type for a local ifunc because it may result in an IRELATIVE
1397 // reloc that the dynamic loader will use to resolve the address at startup
1399 if (Sym
->getType() == ELF::STT_GNU_IFUNC
)
1402 // If a relocation points to a mergeable section, we have to be careful.
1403 // If the offset is zero, a relocation with the section will encode the
1404 // same information. With a non-zero offset, the situation is different.
1405 // For example, a relocation can point 42 bytes past the end of a string.
1406 // If we change such a relocation to use the section, the linker would think
1407 // that it pointed to another string and subtracting 42 at runtime will
1408 // produce the wrong value.
1409 if (Sym
->isInSection()) {
1410 auto &Sec
= cast
<MCSectionELF
>(Sym
->getSection());
1411 unsigned Flags
= Sec
.getFlags();
1412 if (Flags
& ELF::SHF_MERGE
) {
1416 // It looks like gold has a bug (http://sourceware.org/PR16794) and can
1417 // only handle section relocations to mergeable sections if using RELA.
1418 if (!hasRelocationAddend())
1422 // Most TLS relocations use a got, so they need the symbol. Even those that
1423 // are just an offset (@tpoff), require a symbol in gold versions before
1424 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1425 // http://sourceware.org/PR16773.
1426 if (Flags
& ELF::SHF_TLS
)
1430 // If the symbol is a thumb function the final relocation must set the lowest
1431 // bit. With a symbol that is done by just having the symbol have that bit
1432 // set, so we would lose the bit if we relocated with the section.
1433 // FIXME: We could use the section but add the bit to the relocation value.
1434 if (Asm
.isThumbFunc(Sym
))
1437 if (TargetObjectWriter
->needsRelocateWithSymbol(*Sym
, Type
))
1442 void ELFObjectWriter::recordRelocation(MCAssembler
&Asm
,
1443 const MCAsmLayout
&Layout
,
1444 const MCFragment
*Fragment
,
1445 const MCFixup
&Fixup
, MCValue Target
,
1446 uint64_t &FixedValue
) {
1447 MCAsmBackend
&Backend
= Asm
.getBackend();
1448 bool IsPCRel
= Backend
.getFixupKindInfo(Fixup
.getKind()).Flags
&
1449 MCFixupKindInfo::FKF_IsPCRel
;
1450 const MCSectionELF
&FixupSection
= cast
<MCSectionELF
>(*Fragment
->getParent());
1451 uint64_t C
= Target
.getConstant();
1452 uint64_t FixupOffset
= Layout
.getFragmentOffset(Fragment
) + Fixup
.getOffset();
1453 MCContext
&Ctx
= Asm
.getContext();
1455 if (const MCSymbolRefExpr
*RefB
= Target
.getSymB()) {
1456 const auto &SymB
= cast
<MCSymbolELF
>(RefB
->getSymbol());
1457 if (SymB
.isUndefined()) {
1458 Ctx
.reportError(Fixup
.getLoc(),
1459 Twine("symbol '") + SymB
.getName() +
1460 "' can not be undefined in a subtraction expression");
1464 assert(!SymB
.isAbsolute() && "Should have been folded");
1465 const MCSection
&SecB
= SymB
.getSection();
1466 if (&SecB
!= &FixupSection
) {
1467 Ctx
.reportError(Fixup
.getLoc(),
1468 "Cannot represent a difference across sections");
1472 assert(!IsPCRel
&& "should have been folded");
1474 C
+= FixupOffset
- Layout
.getSymbolOffset(SymB
);
1477 // We either rejected the fixup or folded B into C at this point.
1478 const MCSymbolRefExpr
*RefA
= Target
.getSymA();
1479 const auto *SymA
= RefA
? cast
<MCSymbolELF
>(&RefA
->getSymbol()) : nullptr;
1481 bool ViaWeakRef
= false;
1482 if (SymA
&& SymA
->isVariable()) {
1483 const MCExpr
*Expr
= SymA
->getVariableValue();
1484 if (const auto *Inner
= dyn_cast
<MCSymbolRefExpr
>(Expr
)) {
1485 if (Inner
->getKind() == MCSymbolRefExpr::VK_WEAKREF
) {
1486 SymA
= cast
<MCSymbolELF
>(&Inner
->getSymbol());
1492 const MCSectionELF
*SecA
= (SymA
&& SymA
->isInSection())
1493 ? cast
<MCSectionELF
>(&SymA
->getSection())
1495 if (!checkRelocation(Ctx
, Fixup
.getLoc(), &FixupSection
, SecA
))
1498 unsigned Type
= TargetObjectWriter
->getRelocType(Ctx
, Target
, Fixup
, IsPCRel
);
1499 bool RelocateWithSymbol
= shouldRelocateWithSymbol(Asm
, RefA
, SymA
, C
, Type
);
1500 uint64_t Addend
= 0;
1502 FixedValue
= !RelocateWithSymbol
&& SymA
&& !SymA
->isUndefined()
1503 ? C
+ Layout
.getSymbolOffset(*SymA
)
1505 if (hasRelocationAddend()) {
1506 Addend
= FixedValue
;
1510 if (!RelocateWithSymbol
) {
1511 const auto *SectionSymbol
=
1512 SecA
? cast
<MCSymbolELF
>(SecA
->getBeginSymbol()) : nullptr;
1514 SectionSymbol
->setUsedInReloc();
1515 ELFRelocationEntry
Rec(FixupOffset
, SectionSymbol
, Type
, Addend
, SymA
, C
);
1516 Relocations
[&FixupSection
].push_back(Rec
);
1520 const MCSymbolELF
*RenamedSymA
= SymA
;
1522 if (const MCSymbolELF
*R
= Renames
.lookup(SymA
))
1526 RenamedSymA
->setIsWeakrefUsedInReloc();
1528 RenamedSymA
->setUsedInReloc();
1530 ELFRelocationEntry
Rec(FixupOffset
, RenamedSymA
, Type
, Addend
, SymA
, C
);
1531 Relocations
[&FixupSection
].push_back(Rec
);
1534 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1535 const MCAssembler
&Asm
, const MCSymbol
&SA
, const MCFragment
&FB
,
1536 bool InSet
, bool IsPCRel
) const {
1537 const auto &SymA
= cast
<MCSymbolELF
>(SA
);
1543 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm
, SymA
, FB
,
1547 std::unique_ptr
<MCObjectWriter
>
1548 llvm::createELFObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
1549 raw_pwrite_stream
&OS
, bool IsLittleEndian
) {
1550 return std::make_unique
<ELFSingleObjectWriter
>(std::move(MOTW
), OS
,
1554 std::unique_ptr
<MCObjectWriter
>
1555 llvm::createELFDwoObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
1556 raw_pwrite_stream
&OS
, raw_pwrite_stream
&DwoOS
,
1557 bool IsLittleEndian
) {
1558 return std::make_unique
<ELFDwoObjectWriter
>(std::move(MOTW
), OS
, DwoOS
,