2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock
);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node
);
81 EXPORT_PER_CPU_SYMBOL(numa_node
);
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
91 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
93 int _node_numa_mem_
[MAX_NUMNODES
];
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex
);
98 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy
;
102 EXPORT_SYMBOL(latent_entropy
);
106 * Array of node states.
108 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
109 [N_POSSIBLE
] = NODE_MASK_ALL
,
110 [N_ONLINE
] = { { [0] = 1UL } },
112 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
116 #ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY
] = { { [0] = 1UL } },
119 [N_CPU
] = { { [0] = 1UL } },
122 EXPORT_SYMBOL(node_states
);
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock
);
127 unsigned long totalram_pages __read_mostly
;
128 unsigned long totalreserve_pages __read_mostly
;
129 unsigned long totalcma_pages __read_mostly
;
131 int percpu_pagelist_fraction
;
132 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
142 static inline int get_pcppage_migratetype(struct page
*page
)
147 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
149 page
->index
= migratetype
;
152 #ifdef CONFIG_PM_SLEEP
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
162 static gfp_t saved_gfp_mask
;
164 void pm_restore_gfp_mask(void)
166 WARN_ON(!mutex_is_locked(&pm_mutex
));
167 if (saved_gfp_mask
) {
168 gfp_allowed_mask
= saved_gfp_mask
;
173 void pm_restrict_gfp_mask(void)
175 WARN_ON(!mutex_is_locked(&pm_mutex
));
176 WARN_ON(saved_gfp_mask
);
177 saved_gfp_mask
= gfp_allowed_mask
;
178 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
181 bool pm_suspended_storage(void)
183 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
187 #endif /* CONFIG_PM_SLEEP */
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly
;
193 static void __free_pages_ok(struct page
*page
, unsigned int order
);
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
206 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
207 #ifdef CONFIG_ZONE_DMA
210 #ifdef CONFIG_ZONE_DMA32
213 #ifdef CONFIG_HIGHMEM
219 EXPORT_SYMBOL(totalram_pages
);
221 static char * const zone_names
[MAX_NR_ZONES
] = {
222 #ifdef CONFIG_ZONE_DMA
225 #ifdef CONFIG_ZONE_DMA32
229 #ifdef CONFIG_HIGHMEM
233 #ifdef CONFIG_ZONE_DEVICE
238 char * const migratetype_names
[MIGRATE_TYPES
] = {
246 #ifdef CONFIG_MEMORY_ISOLATION
251 compound_page_dtor
* const compound_page_dtors
[] = {
254 #ifdef CONFIG_HUGETLB_PAGE
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
262 int min_free_kbytes
= 1024;
263 int user_min_free_kbytes
= -1;
264 int watermark_scale_factor
= 10;
266 static unsigned long __meminitdata nr_kernel_pages
;
267 static unsigned long __meminitdata nr_all_pages
;
268 static unsigned long __meminitdata dma_reserve
;
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
273 static unsigned long __initdata required_kernelcore
;
274 static unsigned long __initdata required_movablecore
;
275 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
276 static bool mirrored_kernelcore
;
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 EXPORT_SYMBOL(movable_zone
);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
285 int nr_online_nodes __read_mostly
= 1;
286 EXPORT_SYMBOL(nr_node_ids
);
287 EXPORT_SYMBOL(nr_online_nodes
);
290 int page_group_by_mobility_disabled __read_mostly
;
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
295 pgdat
->first_deferred_pfn
= ULONG_MAX
;
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
301 int nid
= early_pfn_to_nid(pfn
);
303 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
310 * Returns false when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
313 static inline bool update_defer_init(pg_data_t
*pgdat
,
314 unsigned long pfn
, unsigned long zone_end
,
315 unsigned long *nr_initialised
)
317 unsigned long max_initialise
;
319 /* Always populate low zones for address-contrained allocations */
320 if (zone_end
< pgdat_end_pfn(pgdat
))
323 * Initialise at least 2G of a node but also take into account that
324 * two large system hashes that can take up 1GB for 0.25TB/node.
326 max_initialise
= max(2UL << (30 - PAGE_SHIFT
),
327 (pgdat
->node_spanned_pages
>> 8));
330 if ((*nr_initialised
> max_initialise
) &&
331 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
332 pgdat
->first_deferred_pfn
= pfn
;
339 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
343 static inline bool early_page_uninitialised(unsigned long pfn
)
348 static inline bool update_defer_init(pg_data_t
*pgdat
,
349 unsigned long pfn
, unsigned long zone_end
,
350 unsigned long *nr_initialised
)
356 /* Return a pointer to the bitmap storing bits affecting a block of pages */
357 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
360 #ifdef CONFIG_SPARSEMEM
361 return __pfn_to_section(pfn
)->pageblock_flags
;
363 return page_zone(page
)->pageblock_flags
;
364 #endif /* CONFIG_SPARSEMEM */
367 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
369 #ifdef CONFIG_SPARSEMEM
370 pfn
&= (PAGES_PER_SECTION
-1);
371 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
373 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
374 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
375 #endif /* CONFIG_SPARSEMEM */
379 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
380 * @page: The page within the block of interest
381 * @pfn: The target page frame number
382 * @end_bitidx: The last bit of interest to retrieve
383 * @mask: mask of bits that the caller is interested in
385 * Return: pageblock_bits flags
387 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
389 unsigned long end_bitidx
,
392 unsigned long *bitmap
;
393 unsigned long bitidx
, word_bitidx
;
396 bitmap
= get_pageblock_bitmap(page
, pfn
);
397 bitidx
= pfn_to_bitidx(page
, pfn
);
398 word_bitidx
= bitidx
/ BITS_PER_LONG
;
399 bitidx
&= (BITS_PER_LONG
-1);
401 word
= bitmap
[word_bitidx
];
402 bitidx
+= end_bitidx
;
403 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
406 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
407 unsigned long end_bitidx
,
410 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
413 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
415 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
419 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
420 * @page: The page within the block of interest
421 * @flags: The flags to set
422 * @pfn: The target page frame number
423 * @end_bitidx: The last bit of interest
424 * @mask: mask of bits that the caller is interested in
426 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
428 unsigned long end_bitidx
,
431 unsigned long *bitmap
;
432 unsigned long bitidx
, word_bitidx
;
433 unsigned long old_word
, word
;
435 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
437 bitmap
= get_pageblock_bitmap(page
, pfn
);
438 bitidx
= pfn_to_bitidx(page
, pfn
);
439 word_bitidx
= bitidx
/ BITS_PER_LONG
;
440 bitidx
&= (BITS_PER_LONG
-1);
442 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
444 bitidx
+= end_bitidx
;
445 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
446 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
448 word
= READ_ONCE(bitmap
[word_bitidx
]);
450 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
451 if (word
== old_word
)
457 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
459 if (unlikely(page_group_by_mobility_disabled
&&
460 migratetype
< MIGRATE_PCPTYPES
))
461 migratetype
= MIGRATE_UNMOVABLE
;
463 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
464 PB_migrate
, PB_migrate_end
);
467 #ifdef CONFIG_DEBUG_VM
468 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
472 unsigned long pfn
= page_to_pfn(page
);
473 unsigned long sp
, start_pfn
;
476 seq
= zone_span_seqbegin(zone
);
477 start_pfn
= zone
->zone_start_pfn
;
478 sp
= zone
->spanned_pages
;
479 if (!zone_spans_pfn(zone
, pfn
))
481 } while (zone_span_seqretry(zone
, seq
));
484 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
485 pfn
, zone_to_nid(zone
), zone
->name
,
486 start_pfn
, start_pfn
+ sp
);
491 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
493 if (!pfn_valid_within(page_to_pfn(page
)))
495 if (zone
!= page_zone(page
))
501 * Temporary debugging check for pages not lying within a given zone.
503 static int bad_range(struct zone
*zone
, struct page
*page
)
505 if (page_outside_zone_boundaries(zone
, page
))
507 if (!page_is_consistent(zone
, page
))
513 static inline int bad_range(struct zone
*zone
, struct page
*page
)
519 static void bad_page(struct page
*page
, const char *reason
,
520 unsigned long bad_flags
)
522 static unsigned long resume
;
523 static unsigned long nr_shown
;
524 static unsigned long nr_unshown
;
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
530 if (nr_shown
== 60) {
531 if (time_before(jiffies
, resume
)) {
537 "BUG: Bad page state: %lu messages suppressed\n",
544 resume
= jiffies
+ 60 * HZ
;
546 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
547 current
->comm
, page_to_pfn(page
));
548 __dump_page(page
, reason
);
549 bad_flags
&= page
->flags
;
551 pr_alert("bad because of flags: %#lx(%pGp)\n",
552 bad_flags
, &bad_flags
);
553 dump_page_owner(page
);
558 /* Leave bad fields for debug, except PageBuddy could make trouble */
559 page_mapcount_reset(page
); /* remove PageBuddy */
560 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
564 * Higher-order pages are called "compound pages". They are structured thusly:
566 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
568 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
569 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
571 * The first tail page's ->compound_dtor holds the offset in array of compound
572 * page destructors. See compound_page_dtors.
574 * The first tail page's ->compound_order holds the order of allocation.
575 * This usage means that zero-order pages may not be compound.
578 void free_compound_page(struct page
*page
)
580 __free_pages_ok(page
, compound_order(page
));
583 void prep_compound_page(struct page
*page
, unsigned int order
)
586 int nr_pages
= 1 << order
;
588 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
589 set_compound_order(page
, order
);
591 for (i
= 1; i
< nr_pages
; i
++) {
592 struct page
*p
= page
+ i
;
593 set_page_count(p
, 0);
594 p
->mapping
= TAIL_MAPPING
;
595 set_compound_head(p
, page
);
597 atomic_set(compound_mapcount_ptr(page
), -1);
600 #ifdef CONFIG_DEBUG_PAGEALLOC
601 unsigned int _debug_guardpage_minorder
;
602 bool _debug_pagealloc_enabled __read_mostly
603 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
604 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
605 bool _debug_guardpage_enabled __read_mostly
;
607 static int __init
early_debug_pagealloc(char *buf
)
611 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
613 early_param("debug_pagealloc", early_debug_pagealloc
);
615 static bool need_debug_guardpage(void)
617 /* If we don't use debug_pagealloc, we don't need guard page */
618 if (!debug_pagealloc_enabled())
621 if (!debug_guardpage_minorder())
627 static void init_debug_guardpage(void)
629 if (!debug_pagealloc_enabled())
632 if (!debug_guardpage_minorder())
635 _debug_guardpage_enabled
= true;
638 struct page_ext_operations debug_guardpage_ops
= {
639 .need
= need_debug_guardpage
,
640 .init
= init_debug_guardpage
,
643 static int __init
debug_guardpage_minorder_setup(char *buf
)
647 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
648 pr_err("Bad debug_guardpage_minorder value\n");
651 _debug_guardpage_minorder
= res
;
652 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
655 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
657 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
658 unsigned int order
, int migratetype
)
660 struct page_ext
*page_ext
;
662 if (!debug_guardpage_enabled())
665 if (order
>= debug_guardpage_minorder())
668 page_ext
= lookup_page_ext(page
);
669 if (unlikely(!page_ext
))
672 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
674 INIT_LIST_HEAD(&page
->lru
);
675 set_page_private(page
, order
);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
682 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
683 unsigned int order
, int migratetype
)
685 struct page_ext
*page_ext
;
687 if (!debug_guardpage_enabled())
690 page_ext
= lookup_page_ext(page
);
691 if (unlikely(!page_ext
))
694 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
696 set_page_private(page
, 0);
697 if (!is_migrate_isolate(migratetype
))
698 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
701 struct page_ext_operations debug_guardpage_ops
;
702 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
703 unsigned int order
, int migratetype
) { return false; }
704 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
705 unsigned int order
, int migratetype
) {}
708 static inline void set_page_order(struct page
*page
, unsigned int order
)
710 set_page_private(page
, order
);
711 __SetPageBuddy(page
);
714 static inline void rmv_page_order(struct page
*page
)
716 __ClearPageBuddy(page
);
717 set_page_private(page
, 0);
721 * This function checks whether a page is free && is the buddy
722 * we can do coalesce a page and its buddy if
723 * (a) the buddy is not in a hole (check before calling!) &&
724 * (b) the buddy is in the buddy system &&
725 * (c) a page and its buddy have the same order &&
726 * (d) a page and its buddy are in the same zone.
728 * For recording whether a page is in the buddy system, we set ->_mapcount
729 * PAGE_BUDDY_MAPCOUNT_VALUE.
730 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
731 * serialized by zone->lock.
733 * For recording page's order, we use page_private(page).
735 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
738 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
739 if (page_zone_id(page
) != page_zone_id(buddy
))
742 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
747 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
749 * zone check is done late to avoid uselessly
750 * calculating zone/node ids for pages that could
753 if (page_zone_id(page
) != page_zone_id(buddy
))
756 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
764 * Freeing function for a buddy system allocator.
766 * The concept of a buddy system is to maintain direct-mapped table
767 * (containing bit values) for memory blocks of various "orders".
768 * The bottom level table contains the map for the smallest allocatable
769 * units of memory (here, pages), and each level above it describes
770 * pairs of units from the levels below, hence, "buddies".
771 * At a high level, all that happens here is marking the table entry
772 * at the bottom level available, and propagating the changes upward
773 * as necessary, plus some accounting needed to play nicely with other
774 * parts of the VM system.
775 * At each level, we keep a list of pages, which are heads of continuous
776 * free pages of length of (1 << order) and marked with _mapcount
777 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
779 * So when we are allocating or freeing one, we can derive the state of the
780 * other. That is, if we allocate a small block, and both were
781 * free, the remainder of the region must be split into blocks.
782 * If a block is freed, and its buddy is also free, then this
783 * triggers coalescing into a block of larger size.
788 static inline void __free_one_page(struct page
*page
,
790 struct zone
*zone
, unsigned int order
,
793 unsigned long combined_pfn
;
794 unsigned long uninitialized_var(buddy_pfn
);
796 unsigned int max_order
;
798 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
800 VM_BUG_ON(!zone_is_initialized(zone
));
801 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
803 VM_BUG_ON(migratetype
== -1);
804 if (likely(!is_migrate_isolate(migratetype
)))
805 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
807 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
808 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
811 while (order
< max_order
- 1) {
812 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
813 buddy
= page
+ (buddy_pfn
- pfn
);
815 if (!pfn_valid_within(buddy_pfn
))
817 if (!page_is_buddy(page
, buddy
, order
))
820 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 * merge with it and move up one order.
823 if (page_is_guard(buddy
)) {
824 clear_page_guard(zone
, buddy
, order
, migratetype
);
826 list_del(&buddy
->lru
);
827 zone
->free_area
[order
].nr_free
--;
828 rmv_page_order(buddy
);
830 combined_pfn
= buddy_pfn
& pfn
;
831 page
= page
+ (combined_pfn
- pfn
);
835 if (max_order
< MAX_ORDER
) {
836 /* If we are here, it means order is >= pageblock_order.
837 * We want to prevent merge between freepages on isolate
838 * pageblock and normal pageblock. Without this, pageblock
839 * isolation could cause incorrect freepage or CMA accounting.
841 * We don't want to hit this code for the more frequent
844 if (unlikely(has_isolate_pageblock(zone
))) {
847 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
848 buddy
= page
+ (buddy_pfn
- pfn
);
849 buddy_mt
= get_pageblock_migratetype(buddy
);
851 if (migratetype
!= buddy_mt
852 && (is_migrate_isolate(migratetype
) ||
853 is_migrate_isolate(buddy_mt
)))
857 goto continue_merging
;
861 set_page_order(page
, order
);
864 * If this is not the largest possible page, check if the buddy
865 * of the next-highest order is free. If it is, it's possible
866 * that pages are being freed that will coalesce soon. In case,
867 * that is happening, add the free page to the tail of the list
868 * so it's less likely to be used soon and more likely to be merged
869 * as a higher order page
871 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
872 struct page
*higher_page
, *higher_buddy
;
873 combined_pfn
= buddy_pfn
& pfn
;
874 higher_page
= page
+ (combined_pfn
- pfn
);
875 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
876 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
877 if (pfn_valid_within(buddy_pfn
) &&
878 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
879 list_add_tail(&page
->lru
,
880 &zone
->free_area
[order
].free_list
[migratetype
]);
885 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
887 zone
->free_area
[order
].nr_free
++;
891 * A bad page could be due to a number of fields. Instead of multiple branches,
892 * try and check multiple fields with one check. The caller must do a detailed
893 * check if necessary.
895 static inline bool page_expected_state(struct page
*page
,
896 unsigned long check_flags
)
898 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
901 if (unlikely((unsigned long)page
->mapping
|
902 page_ref_count(page
) |
904 (unsigned long)page
->mem_cgroup
|
906 (page
->flags
& check_flags
)))
912 static void free_pages_check_bad(struct page
*page
)
914 const char *bad_reason
;
915 unsigned long bad_flags
;
920 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
921 bad_reason
= "nonzero mapcount";
922 if (unlikely(page
->mapping
!= NULL
))
923 bad_reason
= "non-NULL mapping";
924 if (unlikely(page_ref_count(page
) != 0))
925 bad_reason
= "nonzero _refcount";
926 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
927 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
928 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
931 if (unlikely(page
->mem_cgroup
))
932 bad_reason
= "page still charged to cgroup";
934 bad_page(page
, bad_reason
, bad_flags
);
937 static inline int free_pages_check(struct page
*page
)
939 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
942 /* Something has gone sideways, find it */
943 free_pages_check_bad(page
);
947 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
952 * We rely page->lru.next never has bit 0 set, unless the page
953 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
955 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
957 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
961 switch (page
- head_page
) {
963 /* the first tail page: ->mapping is compound_mapcount() */
964 if (unlikely(compound_mapcount(page
))) {
965 bad_page(page
, "nonzero compound_mapcount", 0);
971 * the second tail page: ->mapping is
972 * page_deferred_list().next -- ignore value.
976 if (page
->mapping
!= TAIL_MAPPING
) {
977 bad_page(page
, "corrupted mapping in tail page", 0);
982 if (unlikely(!PageTail(page
))) {
983 bad_page(page
, "PageTail not set", 0);
986 if (unlikely(compound_head(page
) != head_page
)) {
987 bad_page(page
, "compound_head not consistent", 0);
992 page
->mapping
= NULL
;
993 clear_compound_head(page
);
997 static __always_inline
bool free_pages_prepare(struct page
*page
,
998 unsigned int order
, bool check_free
)
1002 VM_BUG_ON_PAGE(PageTail(page
), page
);
1004 trace_mm_page_free(page
, order
);
1005 kmemcheck_free_shadow(page
, order
);
1008 * Check tail pages before head page information is cleared to
1009 * avoid checking PageCompound for order-0 pages.
1011 if (unlikely(order
)) {
1012 bool compound
= PageCompound(page
);
1015 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1018 ClearPageDoubleMap(page
);
1019 for (i
= 1; i
< (1 << order
); i
++) {
1021 bad
+= free_tail_pages_check(page
, page
+ i
);
1022 if (unlikely(free_pages_check(page
+ i
))) {
1026 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1029 if (PageMappingFlags(page
))
1030 page
->mapping
= NULL
;
1031 if (memcg_kmem_enabled() && PageKmemcg(page
))
1032 memcg_kmem_uncharge(page
, order
);
1034 bad
+= free_pages_check(page
);
1038 page_cpupid_reset_last(page
);
1039 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1040 reset_page_owner(page
, order
);
1042 if (!PageHighMem(page
)) {
1043 debug_check_no_locks_freed(page_address(page
),
1044 PAGE_SIZE
<< order
);
1045 debug_check_no_obj_freed(page_address(page
),
1046 PAGE_SIZE
<< order
);
1048 arch_free_page(page
, order
);
1049 kernel_poison_pages(page
, 1 << order
, 0);
1050 kernel_map_pages(page
, 1 << order
, 0);
1051 kasan_free_pages(page
, order
);
1056 #ifdef CONFIG_DEBUG_VM
1057 static inline bool free_pcp_prepare(struct page
*page
)
1059 return free_pages_prepare(page
, 0, true);
1062 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1067 static bool free_pcp_prepare(struct page
*page
)
1069 return free_pages_prepare(page
, 0, false);
1072 static bool bulkfree_pcp_prepare(struct page
*page
)
1074 return free_pages_check(page
);
1076 #endif /* CONFIG_DEBUG_VM */
1079 * Frees a number of pages from the PCP lists
1080 * Assumes all pages on list are in same zone, and of same order.
1081 * count is the number of pages to free.
1083 * If the zone was previously in an "all pages pinned" state then look to
1084 * see if this freeing clears that state.
1086 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1087 * pinned" detection logic.
1089 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1090 struct per_cpu_pages
*pcp
)
1092 int migratetype
= 0;
1094 bool isolated_pageblocks
;
1096 spin_lock(&zone
->lock
);
1097 isolated_pageblocks
= has_isolate_pageblock(zone
);
1101 struct list_head
*list
;
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1112 if (++migratetype
== MIGRATE_PCPTYPES
)
1114 list
= &pcp
->lists
[migratetype
];
1115 } while (list_empty(list
));
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free
== MIGRATE_PCPTYPES
)
1122 int mt
; /* migratetype of the to-be-freed page */
1124 page
= list_last_entry(list
, struct page
, lru
);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page
->lru
);
1128 mt
= get_pcppage_migratetype(page
);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks
))
1133 mt
= get_pageblock_migratetype(page
);
1135 if (bulkfree_pcp_prepare(page
))
1138 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1139 trace_mm_page_pcpu_drain(page
, 0, mt
);
1140 } while (--count
&& --batch_free
&& !list_empty(list
));
1142 spin_unlock(&zone
->lock
);
1145 static void free_one_page(struct zone
*zone
,
1146 struct page
*page
, unsigned long pfn
,
1150 spin_lock(&zone
->lock
);
1151 if (unlikely(has_isolate_pageblock(zone
) ||
1152 is_migrate_isolate(migratetype
))) {
1153 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1155 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1156 spin_unlock(&zone
->lock
);
1159 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1160 unsigned long zone
, int nid
)
1162 set_page_links(page
, zone
, nid
, pfn
);
1163 init_page_count(page
);
1164 page_mapcount_reset(page
);
1165 page_cpupid_reset_last(page
);
1167 INIT_LIST_HEAD(&page
->lru
);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone
))
1171 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1175 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1178 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn
)
1187 if (!early_page_uninitialised(pfn
))
1190 nid
= early_pfn_to_nid(pfn
);
1191 pgdat
= NODE_DATA(nid
);
1193 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1194 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1196 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1199 __init_single_pfn(pfn
, zid
, nid
);
1202 static inline void init_reserved_page(unsigned long pfn
)
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1213 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1215 unsigned long start_pfn
= PFN_DOWN(start
);
1216 unsigned long end_pfn
= PFN_UP(end
);
1218 for (; start_pfn
< end_pfn
; start_pfn
++) {
1219 if (pfn_valid(start_pfn
)) {
1220 struct page
*page
= pfn_to_page(start_pfn
);
1222 init_reserved_page(start_pfn
);
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page
->lru
);
1227 SetPageReserved(page
);
1232 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1234 unsigned long flags
;
1236 unsigned long pfn
= page_to_pfn(page
);
1238 if (!free_pages_prepare(page
, order
, true))
1241 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1242 local_irq_save(flags
);
1243 __count_vm_events(PGFREE
, 1 << order
);
1244 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1245 local_irq_restore(flags
);
1248 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1250 unsigned int nr_pages
= 1 << order
;
1251 struct page
*p
= page
;
1255 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1257 __ClearPageReserved(p
);
1258 set_page_count(p
, 0);
1260 __ClearPageReserved(p
);
1261 set_page_count(p
, 0);
1263 page_zone(page
)->managed_pages
+= nr_pages
;
1264 set_page_refcounted(page
);
1265 __free_pages(page
, order
);
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1273 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1275 static DEFINE_SPINLOCK(early_pfn_lock
);
1278 spin_lock(&early_pfn_lock
);
1279 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1281 nid
= first_online_node
;
1282 spin_unlock(&early_pfn_lock
);
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1290 struct mminit_pfnnid_cache
*state
)
1294 nid
= __early_pfn_to_nid(pfn
, state
);
1295 if (nid
>= 0 && nid
!= node
)
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1303 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1308 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1312 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1313 struct mminit_pfnnid_cache
*state
)
1320 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1323 if (early_page_uninitialised(pfn
))
1325 return __free_pages_boot_core(page
, order
);
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1345 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1346 unsigned long end_pfn
, struct zone
*zone
)
1348 struct page
*start_page
;
1349 struct page
*end_page
;
1351 /* end_pfn is one past the range we are checking */
1354 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1357 start_page
= pfn_to_page(start_pfn
);
1359 if (page_zone(start_page
) != zone
)
1362 end_page
= pfn_to_page(end_pfn
);
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1371 void set_zone_contiguous(struct zone
*zone
)
1373 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1374 unsigned long block_end_pfn
;
1376 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1377 for (; block_start_pfn
< zone_end_pfn(zone
);
1378 block_start_pfn
= block_end_pfn
,
1379 block_end_pfn
+= pageblock_nr_pages
) {
1381 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1383 if (!__pageblock_pfn_to_page(block_start_pfn
,
1384 block_end_pfn
, zone
))
1388 /* We confirm that there is no hole */
1389 zone
->contiguous
= true;
1392 void clear_zone_contiguous(struct zone
*zone
)
1394 zone
->contiguous
= false;
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init
deferred_free_range(struct page
*page
,
1399 unsigned long pfn
, int nr_pages
)
1406 /* Free a large naturally-aligned chunk if possible */
1407 if (nr_pages
== pageblock_nr_pages
&&
1408 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1409 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1410 __free_pages_boot_core(page
, pageblock_order
);
1414 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1415 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1416 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1417 __free_pages_boot_core(page
, 0);
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata
;
1423 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1425 static inline void __init
pgdat_init_report_one_done(void)
1427 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1428 complete(&pgdat_init_all_done_comp
);
1431 /* Initialise remaining memory on a node */
1432 static int __init
deferred_init_memmap(void *data
)
1434 pg_data_t
*pgdat
= data
;
1435 int nid
= pgdat
->node_id
;
1436 struct mminit_pfnnid_cache nid_init_state
= { };
1437 unsigned long start
= jiffies
;
1438 unsigned long nr_pages
= 0;
1439 unsigned long walk_start
, walk_end
;
1442 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1443 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1445 if (first_init_pfn
== ULONG_MAX
) {
1446 pgdat_init_report_one_done();
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask
))
1452 set_cpus_allowed_ptr(current
, cpumask
);
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1456 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1457 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1459 /* Only the highest zone is deferred so find it */
1460 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1461 zone
= pgdat
->node_zones
+ zid
;
1462 if (first_init_pfn
< zone_end_pfn(zone
))
1466 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1467 unsigned long pfn
, end_pfn
;
1468 struct page
*page
= NULL
;
1469 struct page
*free_base_page
= NULL
;
1470 unsigned long free_base_pfn
= 0;
1473 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1474 pfn
= first_init_pfn
;
1475 if (pfn
< walk_start
)
1477 if (pfn
< zone
->zone_start_pfn
)
1478 pfn
= zone
->zone_start_pfn
;
1480 for (; pfn
< end_pfn
; pfn
++) {
1481 if (!pfn_valid_within(pfn
))
1485 * Ensure pfn_valid is checked every
1486 * pageblock_nr_pages for memory holes
1488 if ((pfn
& (pageblock_nr_pages
- 1)) == 0) {
1489 if (!pfn_valid(pfn
)) {
1495 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1500 /* Minimise pfn page lookups and scheduler checks */
1501 if (page
&& (pfn
& (pageblock_nr_pages
- 1)) != 0) {
1504 nr_pages
+= nr_to_free
;
1505 deferred_free_range(free_base_page
,
1506 free_base_pfn
, nr_to_free
);
1507 free_base_page
= NULL
;
1508 free_base_pfn
= nr_to_free
= 0;
1510 page
= pfn_to_page(pfn
);
1515 VM_BUG_ON(page_zone(page
) != zone
);
1519 __init_single_page(page
, pfn
, zid
, nid
);
1520 if (!free_base_page
) {
1521 free_base_page
= page
;
1522 free_base_pfn
= pfn
;
1527 /* Where possible, batch up pages for a single free */
1530 /* Free the current block of pages to allocator */
1531 nr_pages
+= nr_to_free
;
1532 deferred_free_range(free_base_page
, free_base_pfn
,
1534 free_base_page
= NULL
;
1535 free_base_pfn
= nr_to_free
= 0;
1537 /* Free the last block of pages to allocator */
1538 nr_pages
+= nr_to_free
;
1539 deferred_free_range(free_base_page
, free_base_pfn
, nr_to_free
);
1541 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1547 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1548 jiffies_to_msecs(jiffies
- start
));
1550 pgdat_init_report_one_done();
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1555 void __init
page_alloc_init_late(void)
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1564 for_each_node_state(nid
, N_MEMORY
) {
1565 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1568 /* Block until all are initialised */
1569 wait_for_completion(&pgdat_init_all_done_comp
);
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
1575 for_each_populated_zone(zone
)
1576 set_zone_contiguous(zone
);
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init
init_cma_reserved_pageblock(struct page
*page
)
1583 unsigned i
= pageblock_nr_pages
;
1584 struct page
*p
= page
;
1587 __ClearPageReserved(p
);
1588 set_page_count(p
, 0);
1591 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1593 if (pageblock_order
>= MAX_ORDER
) {
1594 i
= pageblock_nr_pages
;
1597 set_page_refcounted(p
);
1598 __free_pages(p
, MAX_ORDER
- 1);
1599 p
+= MAX_ORDER_NR_PAGES
;
1600 } while (i
-= MAX_ORDER_NR_PAGES
);
1602 set_page_refcounted(page
);
1603 __free_pages(page
, pageblock_order
);
1606 adjust_managed_page_count(page
, pageblock_nr_pages
);
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1624 static inline void expand(struct zone
*zone
, struct page
*page
,
1625 int low
, int high
, struct free_area
*area
,
1628 unsigned long size
= 1 << high
;
1630 while (high
> low
) {
1634 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1642 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1645 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1647 set_page_order(&page
[size
], high
);
1651 static void check_new_page_bad(struct page
*page
)
1653 const char *bad_reason
= NULL
;
1654 unsigned long bad_flags
= 0;
1656 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1657 bad_reason
= "nonzero mapcount";
1658 if (unlikely(page
->mapping
!= NULL
))
1659 bad_reason
= "non-NULL mapping";
1660 if (unlikely(page_ref_count(page
) != 0))
1661 bad_reason
= "nonzero _count";
1662 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1663 bad_reason
= "HWPoisoned (hardware-corrupted)";
1664 bad_flags
= __PG_HWPOISON
;
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page
); /* remove PageBuddy */
1669 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1670 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1674 if (unlikely(page
->mem_cgroup
))
1675 bad_reason
= "page still charged to cgroup";
1677 bad_page(page
, bad_reason
, bad_flags
);
1681 * This page is about to be returned from the page allocator
1683 static inline int check_new_page(struct page
*page
)
1685 if (likely(page_expected_state(page
,
1686 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1689 check_new_page_bad(page
);
1693 static inline bool free_pages_prezeroed(void)
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1696 page_poisoning_enabled();
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page
*page
)
1705 static bool check_new_pcp(struct page
*page
)
1707 return check_new_page(page
);
1710 static bool check_pcp_refill(struct page
*page
)
1712 return check_new_page(page
);
1714 static bool check_new_pcp(struct page
*page
)
1718 #endif /* CONFIG_DEBUG_VM */
1720 static bool check_new_pages(struct page
*page
, unsigned int order
)
1723 for (i
= 0; i
< (1 << order
); i
++) {
1724 struct page
*p
= page
+ i
;
1726 if (unlikely(check_new_page(p
)))
1733 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1736 set_page_private(page
, 0);
1737 set_page_refcounted(page
);
1739 arch_alloc_page(page
, order
);
1740 kernel_map_pages(page
, 1 << order
, 1);
1741 kernel_poison_pages(page
, 1 << order
, 1);
1742 kasan_alloc_pages(page
, order
);
1743 set_page_owner(page
, order
, gfp_flags
);
1746 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1747 unsigned int alloc_flags
)
1751 post_alloc_hook(page
, order
, gfp_flags
);
1753 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1754 for (i
= 0; i
< (1 << order
); i
++)
1755 clear_highpage(page
+ i
);
1757 if (order
&& (gfp_flags
& __GFP_COMP
))
1758 prep_compound_page(page
, order
);
1761 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1762 * allocate the page. The expectation is that the caller is taking
1763 * steps that will free more memory. The caller should avoid the page
1764 * being used for !PFMEMALLOC purposes.
1766 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1767 set_page_pfmemalloc(page
);
1769 clear_page_pfmemalloc(page
);
1773 * Go through the free lists for the given migratetype and remove
1774 * the smallest available page from the freelists
1777 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1780 unsigned int current_order
;
1781 struct free_area
*area
;
1784 /* Find a page of the appropriate size in the preferred list */
1785 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1786 area
= &(zone
->free_area
[current_order
]);
1787 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1791 list_del(&page
->lru
);
1792 rmv_page_order(page
);
1794 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1795 set_pcppage_migratetype(page
, migratetype
);
1804 * This array describes the order lists are fallen back to when
1805 * the free lists for the desirable migrate type are depleted
1807 static int fallbacks
[MIGRATE_TYPES
][4] = {
1808 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1809 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1810 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1812 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1814 #ifdef CONFIG_MEMORY_ISOLATION
1815 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1820 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1823 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1826 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1827 unsigned int order
) { return NULL
; }
1831 * Move the free pages in a range to the free lists of the requested type.
1832 * Note that start_page and end_pages are not aligned on a pageblock
1833 * boundary. If alignment is required, use move_freepages_block()
1835 static int move_freepages(struct zone
*zone
,
1836 struct page
*start_page
, struct page
*end_page
,
1837 int migratetype
, int *num_movable
)
1841 int pages_moved
= 0;
1843 #ifndef CONFIG_HOLES_IN_ZONE
1845 * page_zone is not safe to call in this context when
1846 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1847 * anyway as we check zone boundaries in move_freepages_block().
1848 * Remove at a later date when no bug reports exist related to
1849 * grouping pages by mobility
1851 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1857 for (page
= start_page
; page
<= end_page
;) {
1858 if (!pfn_valid_within(page_to_pfn(page
))) {
1863 /* Make sure we are not inadvertently changing nodes */
1864 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1866 if (!PageBuddy(page
)) {
1868 * We assume that pages that could be isolated for
1869 * migration are movable. But we don't actually try
1870 * isolating, as that would be expensive.
1873 (PageLRU(page
) || __PageMovable(page
)))
1880 order
= page_order(page
);
1881 list_move(&page
->lru
,
1882 &zone
->free_area
[order
].free_list
[migratetype
]);
1884 pages_moved
+= 1 << order
;
1890 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1891 int migratetype
, int *num_movable
)
1893 unsigned long start_pfn
, end_pfn
;
1894 struct page
*start_page
, *end_page
;
1896 start_pfn
= page_to_pfn(page
);
1897 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1898 start_page
= pfn_to_page(start_pfn
);
1899 end_page
= start_page
+ pageblock_nr_pages
- 1;
1900 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone
, start_pfn
))
1905 if (!zone_spans_pfn(zone
, end_pfn
))
1908 return move_freepages(zone
, start_page
, end_page
, migratetype
,
1912 static void change_pageblock_range(struct page
*pageblock_page
,
1913 int start_order
, int migratetype
)
1915 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1917 while (nr_pageblocks
--) {
1918 set_pageblock_migratetype(pageblock_page
, migratetype
);
1919 pageblock_page
+= pageblock_nr_pages
;
1924 * When we are falling back to another migratetype during allocation, try to
1925 * steal extra free pages from the same pageblocks to satisfy further
1926 * allocations, instead of polluting multiple pageblocks.
1928 * If we are stealing a relatively large buddy page, it is likely there will
1929 * be more free pages in the pageblock, so try to steal them all. For
1930 * reclaimable and unmovable allocations, we steal regardless of page size,
1931 * as fragmentation caused by those allocations polluting movable pageblocks
1932 * is worse than movable allocations stealing from unmovable and reclaimable
1935 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1938 * Leaving this order check is intended, although there is
1939 * relaxed order check in next check. The reason is that
1940 * we can actually steal whole pageblock if this condition met,
1941 * but, below check doesn't guarantee it and that is just heuristic
1942 * so could be changed anytime.
1944 if (order
>= pageblock_order
)
1947 if (order
>= pageblock_order
/ 2 ||
1948 start_mt
== MIGRATE_RECLAIMABLE
||
1949 start_mt
== MIGRATE_UNMOVABLE
||
1950 page_group_by_mobility_disabled
)
1957 * This function implements actual steal behaviour. If order is large enough,
1958 * we can steal whole pageblock. If not, we first move freepages in this
1959 * pageblock to our migratetype and determine how many already-allocated pages
1960 * are there in the pageblock with a compatible migratetype. If at least half
1961 * of pages are free or compatible, we can change migratetype of the pageblock
1962 * itself, so pages freed in the future will be put on the correct free list.
1964 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1965 int start_type
, bool whole_block
)
1967 unsigned int current_order
= page_order(page
);
1968 struct free_area
*area
;
1969 int free_pages
, movable_pages
, alike_pages
;
1972 old_block_type
= get_pageblock_migratetype(page
);
1975 * This can happen due to races and we want to prevent broken
1976 * highatomic accounting.
1978 if (is_migrate_highatomic(old_block_type
))
1981 /* Take ownership for orders >= pageblock_order */
1982 if (current_order
>= pageblock_order
) {
1983 change_pageblock_range(page
, current_order
, start_type
);
1987 /* We are not allowed to try stealing from the whole block */
1991 free_pages
= move_freepages_block(zone
, page
, start_type
,
1994 * Determine how many pages are compatible with our allocation.
1995 * For movable allocation, it's the number of movable pages which
1996 * we just obtained. For other types it's a bit more tricky.
1998 if (start_type
== MIGRATE_MOVABLE
) {
1999 alike_pages
= movable_pages
;
2002 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2003 * to MOVABLE pageblock, consider all non-movable pages as
2004 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2005 * vice versa, be conservative since we can't distinguish the
2006 * exact migratetype of non-movable pages.
2008 if (old_block_type
== MIGRATE_MOVABLE
)
2009 alike_pages
= pageblock_nr_pages
2010 - (free_pages
+ movable_pages
);
2015 /* moving whole block can fail due to zone boundary conditions */
2020 * If a sufficient number of pages in the block are either free or of
2021 * comparable migratability as our allocation, claim the whole block.
2023 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2024 page_group_by_mobility_disabled
)
2025 set_pageblock_migratetype(page
, start_type
);
2030 area
= &zone
->free_area
[current_order
];
2031 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2035 * Check whether there is a suitable fallback freepage with requested order.
2036 * If only_stealable is true, this function returns fallback_mt only if
2037 * we can steal other freepages all together. This would help to reduce
2038 * fragmentation due to mixed migratetype pages in one pageblock.
2040 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2041 int migratetype
, bool only_stealable
, bool *can_steal
)
2046 if (area
->nr_free
== 0)
2051 fallback_mt
= fallbacks
[migratetype
][i
];
2052 if (fallback_mt
== MIGRATE_TYPES
)
2055 if (list_empty(&area
->free_list
[fallback_mt
]))
2058 if (can_steal_fallback(order
, migratetype
))
2061 if (!only_stealable
)
2072 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2073 * there are no empty page blocks that contain a page with a suitable order
2075 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2076 unsigned int alloc_order
)
2079 unsigned long max_managed
, flags
;
2082 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2083 * Check is race-prone but harmless.
2085 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2086 if (zone
->nr_reserved_highatomic
>= max_managed
)
2089 spin_lock_irqsave(&zone
->lock
, flags
);
2091 /* Recheck the nr_reserved_highatomic limit under the lock */
2092 if (zone
->nr_reserved_highatomic
>= max_managed
)
2096 mt
= get_pageblock_migratetype(page
);
2097 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2098 && !is_migrate_cma(mt
)) {
2099 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2100 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2101 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2105 spin_unlock_irqrestore(&zone
->lock
, flags
);
2109 * Used when an allocation is about to fail under memory pressure. This
2110 * potentially hurts the reliability of high-order allocations when under
2111 * intense memory pressure but failed atomic allocations should be easier
2112 * to recover from than an OOM.
2114 * If @force is true, try to unreserve a pageblock even though highatomic
2115 * pageblock is exhausted.
2117 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2120 struct zonelist
*zonelist
= ac
->zonelist
;
2121 unsigned long flags
;
2128 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2131 * Preserve at least one pageblock unless memory pressure
2134 if (!force
&& zone
->nr_reserved_highatomic
<=
2138 spin_lock_irqsave(&zone
->lock
, flags
);
2139 for (order
= 0; order
< MAX_ORDER
; order
++) {
2140 struct free_area
*area
= &(zone
->free_area
[order
]);
2142 page
= list_first_entry_or_null(
2143 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2149 * In page freeing path, migratetype change is racy so
2150 * we can counter several free pages in a pageblock
2151 * in this loop althoug we changed the pageblock type
2152 * from highatomic to ac->migratetype. So we should
2153 * adjust the count once.
2155 if (is_migrate_highatomic_page(page
)) {
2157 * It should never happen but changes to
2158 * locking could inadvertently allow a per-cpu
2159 * drain to add pages to MIGRATE_HIGHATOMIC
2160 * while unreserving so be safe and watch for
2163 zone
->nr_reserved_highatomic
-= min(
2165 zone
->nr_reserved_highatomic
);
2169 * Convert to ac->migratetype and avoid the normal
2170 * pageblock stealing heuristics. Minimally, the caller
2171 * is doing the work and needs the pages. More
2172 * importantly, if the block was always converted to
2173 * MIGRATE_UNMOVABLE or another type then the number
2174 * of pageblocks that cannot be completely freed
2177 set_pageblock_migratetype(page
, ac
->migratetype
);
2178 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2181 spin_unlock_irqrestore(&zone
->lock
, flags
);
2185 spin_unlock_irqrestore(&zone
->lock
, flags
);
2192 * Try finding a free buddy page on the fallback list and put it on the free
2193 * list of requested migratetype, possibly along with other pages from the same
2194 * block, depending on fragmentation avoidance heuristics. Returns true if
2195 * fallback was found so that __rmqueue_smallest() can grab it.
2198 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
2200 struct free_area
*area
;
2201 unsigned int current_order
;
2206 /* Find the largest possible block of pages in the other list */
2207 for (current_order
= MAX_ORDER
-1;
2208 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
2210 area
= &(zone
->free_area
[current_order
]);
2211 fallback_mt
= find_suitable_fallback(area
, current_order
,
2212 start_migratetype
, false, &can_steal
);
2213 if (fallback_mt
== -1)
2216 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2219 steal_suitable_fallback(zone
, page
, start_migratetype
,
2222 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2223 start_migratetype
, fallback_mt
);
2232 * Do the hard work of removing an element from the buddy allocator.
2233 * Call me with the zone->lock already held.
2235 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2241 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2242 if (unlikely(!page
)) {
2243 if (migratetype
== MIGRATE_MOVABLE
)
2244 page
= __rmqueue_cma_fallback(zone
, order
);
2246 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2250 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2255 * Obtain a specified number of elements from the buddy allocator, all under
2256 * a single hold of the lock, for efficiency. Add them to the supplied list.
2257 * Returns the number of new pages which were placed at *list.
2259 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2260 unsigned long count
, struct list_head
*list
,
2261 int migratetype
, bool cold
)
2265 spin_lock(&zone
->lock
);
2266 for (i
= 0; i
< count
; ++i
) {
2267 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2268 if (unlikely(page
== NULL
))
2271 if (unlikely(check_pcp_refill(page
)))
2275 * Split buddy pages returned by expand() are received here
2276 * in physical page order. The page is added to the callers and
2277 * list and the list head then moves forward. From the callers
2278 * perspective, the linked list is ordered by page number in
2279 * some conditions. This is useful for IO devices that can
2280 * merge IO requests if the physical pages are ordered
2284 list_add(&page
->lru
, list
);
2286 list_add_tail(&page
->lru
, list
);
2289 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2290 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2295 * i pages were removed from the buddy list even if some leak due
2296 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2297 * on i. Do not confuse with 'alloced' which is the number of
2298 * pages added to the pcp list.
2300 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2301 spin_unlock(&zone
->lock
);
2307 * Called from the vmstat counter updater to drain pagesets of this
2308 * currently executing processor on remote nodes after they have
2311 * Note that this function must be called with the thread pinned to
2312 * a single processor.
2314 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2316 unsigned long flags
;
2317 int to_drain
, batch
;
2319 local_irq_save(flags
);
2320 batch
= READ_ONCE(pcp
->batch
);
2321 to_drain
= min(pcp
->count
, batch
);
2323 free_pcppages_bulk(zone
, to_drain
, pcp
);
2324 pcp
->count
-= to_drain
;
2326 local_irq_restore(flags
);
2331 * Drain pcplists of the indicated processor and zone.
2333 * The processor must either be the current processor and the
2334 * thread pinned to the current processor or a processor that
2337 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2339 unsigned long flags
;
2340 struct per_cpu_pageset
*pset
;
2341 struct per_cpu_pages
*pcp
;
2343 local_irq_save(flags
);
2344 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2348 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2351 local_irq_restore(flags
);
2355 * Drain pcplists of all zones on the indicated processor.
2357 * The processor must either be the current processor and the
2358 * thread pinned to the current processor or a processor that
2361 static void drain_pages(unsigned int cpu
)
2365 for_each_populated_zone(zone
) {
2366 drain_pages_zone(cpu
, zone
);
2371 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2373 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2374 * the single zone's pages.
2376 void drain_local_pages(struct zone
*zone
)
2378 int cpu
= smp_processor_id();
2381 drain_pages_zone(cpu
, zone
);
2386 static void drain_local_pages_wq(struct work_struct
*work
)
2389 * drain_all_pages doesn't use proper cpu hotplug protection so
2390 * we can race with cpu offline when the WQ can move this from
2391 * a cpu pinned worker to an unbound one. We can operate on a different
2392 * cpu which is allright but we also have to make sure to not move to
2396 drain_local_pages(NULL
);
2401 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2403 * When zone parameter is non-NULL, spill just the single zone's pages.
2405 * Note that this can be extremely slow as the draining happens in a workqueue.
2407 void drain_all_pages(struct zone
*zone
)
2412 * Allocate in the BSS so we wont require allocation in
2413 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2415 static cpumask_t cpus_with_pcps
;
2418 * Make sure nobody triggers this path before mm_percpu_wq is fully
2421 if (WARN_ON_ONCE(!mm_percpu_wq
))
2424 /* Workqueues cannot recurse */
2425 if (current
->flags
& PF_WQ_WORKER
)
2429 * Do not drain if one is already in progress unless it's specific to
2430 * a zone. Such callers are primarily CMA and memory hotplug and need
2431 * the drain to be complete when the call returns.
2433 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2436 mutex_lock(&pcpu_drain_mutex
);
2440 * We don't care about racing with CPU hotplug event
2441 * as offline notification will cause the notified
2442 * cpu to drain that CPU pcps and on_each_cpu_mask
2443 * disables preemption as part of its processing
2445 for_each_online_cpu(cpu
) {
2446 struct per_cpu_pageset
*pcp
;
2448 bool has_pcps
= false;
2451 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2455 for_each_populated_zone(z
) {
2456 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2457 if (pcp
->pcp
.count
) {
2465 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2467 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2470 for_each_cpu(cpu
, &cpus_with_pcps
) {
2471 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2472 INIT_WORK(work
, drain_local_pages_wq
);
2473 queue_work_on(cpu
, mm_percpu_wq
, work
);
2475 for_each_cpu(cpu
, &cpus_with_pcps
)
2476 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2478 mutex_unlock(&pcpu_drain_mutex
);
2481 #ifdef CONFIG_HIBERNATION
2483 void mark_free_pages(struct zone
*zone
)
2485 unsigned long pfn
, max_zone_pfn
;
2486 unsigned long flags
;
2487 unsigned int order
, t
;
2490 if (zone_is_empty(zone
))
2493 spin_lock_irqsave(&zone
->lock
, flags
);
2495 max_zone_pfn
= zone_end_pfn(zone
);
2496 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2497 if (pfn_valid(pfn
)) {
2498 page
= pfn_to_page(pfn
);
2500 if (page_zone(page
) != zone
)
2503 if (!swsusp_page_is_forbidden(page
))
2504 swsusp_unset_page_free(page
);
2507 for_each_migratetype_order(order
, t
) {
2508 list_for_each_entry(page
,
2509 &zone
->free_area
[order
].free_list
[t
], lru
) {
2512 pfn
= page_to_pfn(page
);
2513 for (i
= 0; i
< (1UL << order
); i
++)
2514 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2517 spin_unlock_irqrestore(&zone
->lock
, flags
);
2519 #endif /* CONFIG_PM */
2522 * Free a 0-order page
2523 * cold == true ? free a cold page : free a hot page
2525 void free_hot_cold_page(struct page
*page
, bool cold
)
2527 struct zone
*zone
= page_zone(page
);
2528 struct per_cpu_pages
*pcp
;
2529 unsigned long flags
;
2530 unsigned long pfn
= page_to_pfn(page
);
2533 if (!free_pcp_prepare(page
))
2536 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2537 set_pcppage_migratetype(page
, migratetype
);
2538 local_irq_save(flags
);
2539 __count_vm_event(PGFREE
);
2542 * We only track unmovable, reclaimable and movable on pcp lists.
2543 * Free ISOLATE pages back to the allocator because they are being
2544 * offlined but treat HIGHATOMIC as movable pages so we can get those
2545 * areas back if necessary. Otherwise, we may have to free
2546 * excessively into the page allocator
2548 if (migratetype
>= MIGRATE_PCPTYPES
) {
2549 if (unlikely(is_migrate_isolate(migratetype
))) {
2550 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2553 migratetype
= MIGRATE_MOVABLE
;
2556 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2558 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2560 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2562 if (pcp
->count
>= pcp
->high
) {
2563 unsigned long batch
= READ_ONCE(pcp
->batch
);
2564 free_pcppages_bulk(zone
, batch
, pcp
);
2565 pcp
->count
-= batch
;
2569 local_irq_restore(flags
);
2573 * Free a list of 0-order pages
2575 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2577 struct page
*page
, *next
;
2579 list_for_each_entry_safe(page
, next
, list
, lru
) {
2580 trace_mm_page_free_batched(page
, cold
);
2581 free_hot_cold_page(page
, cold
);
2586 * split_page takes a non-compound higher-order page, and splits it into
2587 * n (1<<order) sub-pages: page[0..n]
2588 * Each sub-page must be freed individually.
2590 * Note: this is probably too low level an operation for use in drivers.
2591 * Please consult with lkml before using this in your driver.
2593 void split_page(struct page
*page
, unsigned int order
)
2597 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2598 VM_BUG_ON_PAGE(!page_count(page
), page
);
2600 #ifdef CONFIG_KMEMCHECK
2602 * Split shadow pages too, because free(page[0]) would
2603 * otherwise free the whole shadow.
2605 if (kmemcheck_page_is_tracked(page
))
2606 split_page(virt_to_page(page
[0].shadow
), order
);
2609 for (i
= 1; i
< (1 << order
); i
++)
2610 set_page_refcounted(page
+ i
);
2611 split_page_owner(page
, order
);
2613 EXPORT_SYMBOL_GPL(split_page
);
2615 int __isolate_free_page(struct page
*page
, unsigned int order
)
2617 unsigned long watermark
;
2621 BUG_ON(!PageBuddy(page
));
2623 zone
= page_zone(page
);
2624 mt
= get_pageblock_migratetype(page
);
2626 if (!is_migrate_isolate(mt
)) {
2628 * Obey watermarks as if the page was being allocated. We can
2629 * emulate a high-order watermark check with a raised order-0
2630 * watermark, because we already know our high-order page
2633 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2634 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2637 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2640 /* Remove page from free list */
2641 list_del(&page
->lru
);
2642 zone
->free_area
[order
].nr_free
--;
2643 rmv_page_order(page
);
2646 * Set the pageblock if the isolated page is at least half of a
2649 if (order
>= pageblock_order
- 1) {
2650 struct page
*endpage
= page
+ (1 << order
) - 1;
2651 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2652 int mt
= get_pageblock_migratetype(page
);
2653 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2654 && !is_migrate_highatomic(mt
))
2655 set_pageblock_migratetype(page
,
2661 return 1UL << order
;
2665 * Update NUMA hit/miss statistics
2667 * Must be called with interrupts disabled.
2669 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2672 enum zone_stat_item local_stat
= NUMA_LOCAL
;
2674 if (z
->node
!= numa_node_id())
2675 local_stat
= NUMA_OTHER
;
2677 if (z
->node
== preferred_zone
->node
)
2678 __inc_zone_state(z
, NUMA_HIT
);
2680 __inc_zone_state(z
, NUMA_MISS
);
2681 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
2683 __inc_zone_state(z
, local_stat
);
2687 /* Remove page from the per-cpu list, caller must protect the list */
2688 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2689 bool cold
, struct per_cpu_pages
*pcp
,
2690 struct list_head
*list
)
2695 if (list_empty(list
)) {
2696 pcp
->count
+= rmqueue_bulk(zone
, 0,
2699 if (unlikely(list_empty(list
)))
2704 page
= list_last_entry(list
, struct page
, lru
);
2706 page
= list_first_entry(list
, struct page
, lru
);
2708 list_del(&page
->lru
);
2710 } while (check_new_pcp(page
));
2715 /* Lock and remove page from the per-cpu list */
2716 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2717 struct zone
*zone
, unsigned int order
,
2718 gfp_t gfp_flags
, int migratetype
)
2720 struct per_cpu_pages
*pcp
;
2721 struct list_head
*list
;
2722 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2724 unsigned long flags
;
2726 local_irq_save(flags
);
2727 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2728 list
= &pcp
->lists
[migratetype
];
2729 page
= __rmqueue_pcplist(zone
, migratetype
, cold
, pcp
, list
);
2731 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2732 zone_statistics(preferred_zone
, zone
);
2734 local_irq_restore(flags
);
2739 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2742 struct page
*rmqueue(struct zone
*preferred_zone
,
2743 struct zone
*zone
, unsigned int order
,
2744 gfp_t gfp_flags
, unsigned int alloc_flags
,
2747 unsigned long flags
;
2750 if (likely(order
== 0)) {
2751 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2752 gfp_flags
, migratetype
);
2757 * We most definitely don't want callers attempting to
2758 * allocate greater than order-1 page units with __GFP_NOFAIL.
2760 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2761 spin_lock_irqsave(&zone
->lock
, flags
);
2765 if (alloc_flags
& ALLOC_HARDER
) {
2766 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2768 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2771 page
= __rmqueue(zone
, order
, migratetype
);
2772 } while (page
&& check_new_pages(page
, order
));
2773 spin_unlock(&zone
->lock
);
2776 __mod_zone_freepage_state(zone
, -(1 << order
),
2777 get_pcppage_migratetype(page
));
2779 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2780 zone_statistics(preferred_zone
, zone
);
2781 local_irq_restore(flags
);
2784 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
2788 local_irq_restore(flags
);
2792 #ifdef CONFIG_FAIL_PAGE_ALLOC
2795 struct fault_attr attr
;
2797 bool ignore_gfp_highmem
;
2798 bool ignore_gfp_reclaim
;
2800 } fail_page_alloc
= {
2801 .attr
= FAULT_ATTR_INITIALIZER
,
2802 .ignore_gfp_reclaim
= true,
2803 .ignore_gfp_highmem
= true,
2807 static int __init
setup_fail_page_alloc(char *str
)
2809 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2811 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2813 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2815 if (order
< fail_page_alloc
.min_order
)
2817 if (gfp_mask
& __GFP_NOFAIL
)
2819 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2821 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2822 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2825 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2828 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2830 static int __init
fail_page_alloc_debugfs(void)
2832 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2835 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2836 &fail_page_alloc
.attr
);
2838 return PTR_ERR(dir
);
2840 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2841 &fail_page_alloc
.ignore_gfp_reclaim
))
2843 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2844 &fail_page_alloc
.ignore_gfp_highmem
))
2846 if (!debugfs_create_u32("min-order", mode
, dir
,
2847 &fail_page_alloc
.min_order
))
2852 debugfs_remove_recursive(dir
);
2857 late_initcall(fail_page_alloc_debugfs
);
2859 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2861 #else /* CONFIG_FAIL_PAGE_ALLOC */
2863 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2868 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2871 * Return true if free base pages are above 'mark'. For high-order checks it
2872 * will return true of the order-0 watermark is reached and there is at least
2873 * one free page of a suitable size. Checking now avoids taking the zone lock
2874 * to check in the allocation paths if no pages are free.
2876 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2877 int classzone_idx
, unsigned int alloc_flags
,
2882 const bool alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2884 /* free_pages may go negative - that's OK */
2885 free_pages
-= (1 << order
) - 1;
2887 if (alloc_flags
& ALLOC_HIGH
)
2891 * If the caller does not have rights to ALLOC_HARDER then subtract
2892 * the high-atomic reserves. This will over-estimate the size of the
2893 * atomic reserve but it avoids a search.
2895 if (likely(!alloc_harder
))
2896 free_pages
-= z
->nr_reserved_highatomic
;
2901 /* If allocation can't use CMA areas don't use free CMA pages */
2902 if (!(alloc_flags
& ALLOC_CMA
))
2903 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2907 * Check watermarks for an order-0 allocation request. If these
2908 * are not met, then a high-order request also cannot go ahead
2909 * even if a suitable page happened to be free.
2911 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2914 /* If this is an order-0 request then the watermark is fine */
2918 /* For a high-order request, check at least one suitable page is free */
2919 for (o
= order
; o
< MAX_ORDER
; o
++) {
2920 struct free_area
*area
= &z
->free_area
[o
];
2929 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2930 if (!list_empty(&area
->free_list
[mt
]))
2935 if ((alloc_flags
& ALLOC_CMA
) &&
2936 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2944 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2945 int classzone_idx
, unsigned int alloc_flags
)
2947 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2948 zone_page_state(z
, NR_FREE_PAGES
));
2951 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
2952 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
2954 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2958 /* If allocation can't use CMA areas don't use free CMA pages */
2959 if (!(alloc_flags
& ALLOC_CMA
))
2960 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2964 * Fast check for order-0 only. If this fails then the reserves
2965 * need to be calculated. There is a corner case where the check
2966 * passes but only the high-order atomic reserve are free. If
2967 * the caller is !atomic then it'll uselessly search the free
2968 * list. That corner case is then slower but it is harmless.
2970 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
2973 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2977 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2978 unsigned long mark
, int classzone_idx
)
2980 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2982 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2983 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2985 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2990 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2992 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
2995 #else /* CONFIG_NUMA */
2996 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3000 #endif /* CONFIG_NUMA */
3003 * get_page_from_freelist goes through the zonelist trying to allocate
3006 static struct page
*
3007 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3008 const struct alloc_context
*ac
)
3010 struct zoneref
*z
= ac
->preferred_zoneref
;
3012 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3015 * Scan zonelist, looking for a zone with enough free.
3016 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3018 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3023 if (cpusets_enabled() &&
3024 (alloc_flags
& ALLOC_CPUSET
) &&
3025 !__cpuset_zone_allowed(zone
, gfp_mask
))
3028 * When allocating a page cache page for writing, we
3029 * want to get it from a node that is within its dirty
3030 * limit, such that no single node holds more than its
3031 * proportional share of globally allowed dirty pages.
3032 * The dirty limits take into account the node's
3033 * lowmem reserves and high watermark so that kswapd
3034 * should be able to balance it without having to
3035 * write pages from its LRU list.
3037 * XXX: For now, allow allocations to potentially
3038 * exceed the per-node dirty limit in the slowpath
3039 * (spread_dirty_pages unset) before going into reclaim,
3040 * which is important when on a NUMA setup the allowed
3041 * nodes are together not big enough to reach the
3042 * global limit. The proper fix for these situations
3043 * will require awareness of nodes in the
3044 * dirty-throttling and the flusher threads.
3046 if (ac
->spread_dirty_pages
) {
3047 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3050 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3051 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3056 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3057 if (!zone_watermark_fast(zone
, order
, mark
,
3058 ac_classzone_idx(ac
), alloc_flags
)) {
3061 /* Checked here to keep the fast path fast */
3062 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3063 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3066 if (node_reclaim_mode
== 0 ||
3067 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3070 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3072 case NODE_RECLAIM_NOSCAN
:
3075 case NODE_RECLAIM_FULL
:
3076 /* scanned but unreclaimable */
3079 /* did we reclaim enough */
3080 if (zone_watermark_ok(zone
, order
, mark
,
3081 ac_classzone_idx(ac
), alloc_flags
))
3089 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3090 gfp_mask
, alloc_flags
, ac
->migratetype
);
3092 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3095 * If this is a high-order atomic allocation then check
3096 * if the pageblock should be reserved for the future
3098 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3099 reserve_highatomic_pageblock(page
, zone
, order
);
3109 * Large machines with many possible nodes should not always dump per-node
3110 * meminfo in irq context.
3112 static inline bool should_suppress_show_mem(void)
3117 ret
= in_interrupt();
3122 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3124 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3125 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3127 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3131 * This documents exceptions given to allocations in certain
3132 * contexts that are allowed to allocate outside current's set
3135 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3136 if (test_thread_flag(TIF_MEMDIE
) ||
3137 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3138 filter
&= ~SHOW_MEM_FILTER_NODES
;
3139 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3140 filter
&= ~SHOW_MEM_FILTER_NODES
;
3142 show_mem(filter
, nodemask
);
3145 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3147 struct va_format vaf
;
3149 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3150 DEFAULT_RATELIMIT_BURST
);
3152 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3155 pr_warn("%s: ", current
->comm
);
3157 va_start(args
, fmt
);
3160 pr_cont("%pV", &vaf
);
3163 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask
, &gfp_mask
);
3165 pr_cont("%*pbl\n", nodemask_pr_args(nodemask
));
3167 pr_cont("(null)\n");
3169 cpuset_print_current_mems_allowed();
3172 warn_alloc_show_mem(gfp_mask
, nodemask
);
3175 static inline struct page
*
3176 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3177 unsigned int alloc_flags
,
3178 const struct alloc_context
*ac
)
3182 page
= get_page_from_freelist(gfp_mask
, order
,
3183 alloc_flags
|ALLOC_CPUSET
, ac
);
3185 * fallback to ignore cpuset restriction if our nodes
3189 page
= get_page_from_freelist(gfp_mask
, order
,
3195 static inline struct page
*
3196 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3197 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3199 struct oom_control oc
= {
3200 .zonelist
= ac
->zonelist
,
3201 .nodemask
= ac
->nodemask
,
3203 .gfp_mask
= gfp_mask
,
3208 *did_some_progress
= 0;
3211 * Acquire the oom lock. If that fails, somebody else is
3212 * making progress for us.
3214 if (!mutex_trylock(&oom_lock
)) {
3215 *did_some_progress
= 1;
3216 schedule_timeout_uninterruptible(1);
3221 * Go through the zonelist yet one more time, keep very high watermark
3222 * here, this is only to catch a parallel oom killing, we must fail if
3223 * we're still under heavy pressure.
3225 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
3226 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3230 /* Coredumps can quickly deplete all memory reserves */
3231 if (current
->flags
& PF_DUMPCORE
)
3233 /* The OOM killer will not help higher order allocs */
3234 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3236 /* The OOM killer does not needlessly kill tasks for lowmem */
3237 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3239 if (pm_suspended_storage())
3242 * XXX: GFP_NOFS allocations should rather fail than rely on
3243 * other request to make a forward progress.
3244 * We are in an unfortunate situation where out_of_memory cannot
3245 * do much for this context but let's try it to at least get
3246 * access to memory reserved if the current task is killed (see
3247 * out_of_memory). Once filesystems are ready to handle allocation
3248 * failures more gracefully we should just bail out here.
3251 /* The OOM killer may not free memory on a specific node */
3252 if (gfp_mask
& __GFP_THISNODE
)
3255 /* Exhausted what can be done so it's blamo time */
3256 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3257 *did_some_progress
= 1;
3260 * Help non-failing allocations by giving them access to memory
3263 if (gfp_mask
& __GFP_NOFAIL
)
3264 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3265 ALLOC_NO_WATERMARKS
, ac
);
3268 mutex_unlock(&oom_lock
);
3273 * Maximum number of compaction retries wit a progress before OOM
3274 * killer is consider as the only way to move forward.
3276 #define MAX_COMPACT_RETRIES 16
3278 #ifdef CONFIG_COMPACTION
3279 /* Try memory compaction for high-order allocations before reclaim */
3280 static struct page
*
3281 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3282 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3283 enum compact_priority prio
, enum compact_result
*compact_result
)
3286 unsigned int noreclaim_flag
;
3291 noreclaim_flag
= memalloc_noreclaim_save();
3292 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3294 memalloc_noreclaim_restore(noreclaim_flag
);
3296 if (*compact_result
<= COMPACT_INACTIVE
)
3300 * At least in one zone compaction wasn't deferred or skipped, so let's
3301 * count a compaction stall
3303 count_vm_event(COMPACTSTALL
);
3305 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3308 struct zone
*zone
= page_zone(page
);
3310 zone
->compact_blockskip_flush
= false;
3311 compaction_defer_reset(zone
, order
, true);
3312 count_vm_event(COMPACTSUCCESS
);
3317 * It's bad if compaction run occurs and fails. The most likely reason
3318 * is that pages exist, but not enough to satisfy watermarks.
3320 count_vm_event(COMPACTFAIL
);
3328 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3329 enum compact_result compact_result
,
3330 enum compact_priority
*compact_priority
,
3331 int *compaction_retries
)
3333 int max_retries
= MAX_COMPACT_RETRIES
;
3336 int retries
= *compaction_retries
;
3337 enum compact_priority priority
= *compact_priority
;
3342 if (compaction_made_progress(compact_result
))
3343 (*compaction_retries
)++;
3346 * compaction considers all the zone as desperately out of memory
3347 * so it doesn't really make much sense to retry except when the
3348 * failure could be caused by insufficient priority
3350 if (compaction_failed(compact_result
))
3351 goto check_priority
;
3354 * make sure the compaction wasn't deferred or didn't bail out early
3355 * due to locks contention before we declare that we should give up.
3356 * But do not retry if the given zonelist is not suitable for
3359 if (compaction_withdrawn(compact_result
)) {
3360 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3365 * !costly requests are much more important than __GFP_REPEAT
3366 * costly ones because they are de facto nofail and invoke OOM
3367 * killer to move on while costly can fail and users are ready
3368 * to cope with that. 1/4 retries is rather arbitrary but we
3369 * would need much more detailed feedback from compaction to
3370 * make a better decision.
3372 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3374 if (*compaction_retries
<= max_retries
) {
3380 * Make sure there are attempts at the highest priority if we exhausted
3381 * all retries or failed at the lower priorities.
3384 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3385 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3387 if (*compact_priority
> min_priority
) {
3388 (*compact_priority
)--;
3389 *compaction_retries
= 0;
3393 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3397 static inline struct page
*
3398 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3399 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3400 enum compact_priority prio
, enum compact_result
*compact_result
)
3402 *compact_result
= COMPACT_SKIPPED
;
3407 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3408 enum compact_result compact_result
,
3409 enum compact_priority
*compact_priority
,
3410 int *compaction_retries
)
3415 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3419 * There are setups with compaction disabled which would prefer to loop
3420 * inside the allocator rather than hit the oom killer prematurely.
3421 * Let's give them a good hope and keep retrying while the order-0
3422 * watermarks are OK.
3424 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3426 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3427 ac_classzone_idx(ac
), alloc_flags
))
3432 #endif /* CONFIG_COMPACTION */
3434 /* Perform direct synchronous page reclaim */
3436 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3437 const struct alloc_context
*ac
)
3439 struct reclaim_state reclaim_state
;
3441 unsigned int noreclaim_flag
;
3445 /* We now go into synchronous reclaim */
3446 cpuset_memory_pressure_bump();
3447 noreclaim_flag
= memalloc_noreclaim_save();
3448 lockdep_set_current_reclaim_state(gfp_mask
);
3449 reclaim_state
.reclaimed_slab
= 0;
3450 current
->reclaim_state
= &reclaim_state
;
3452 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3455 current
->reclaim_state
= NULL
;
3456 lockdep_clear_current_reclaim_state();
3457 memalloc_noreclaim_restore(noreclaim_flag
);
3464 /* The really slow allocator path where we enter direct reclaim */
3465 static inline struct page
*
3466 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3467 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3468 unsigned long *did_some_progress
)
3470 struct page
*page
= NULL
;
3471 bool drained
= false;
3473 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3474 if (unlikely(!(*did_some_progress
)))
3478 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3481 * If an allocation failed after direct reclaim, it could be because
3482 * pages are pinned on the per-cpu lists or in high alloc reserves.
3483 * Shrink them them and try again
3485 if (!page
&& !drained
) {
3486 unreserve_highatomic_pageblock(ac
, false);
3487 drain_all_pages(NULL
);
3495 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3499 pg_data_t
*last_pgdat
= NULL
;
3501 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3502 ac
->high_zoneidx
, ac
->nodemask
) {
3503 if (last_pgdat
!= zone
->zone_pgdat
)
3504 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3505 last_pgdat
= zone
->zone_pgdat
;
3509 static inline unsigned int
3510 gfp_to_alloc_flags(gfp_t gfp_mask
)
3512 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3514 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3515 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3518 * The caller may dip into page reserves a bit more if the caller
3519 * cannot run direct reclaim, or if the caller has realtime scheduling
3520 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3521 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3523 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3525 if (gfp_mask
& __GFP_ATOMIC
) {
3527 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3528 * if it can't schedule.
3530 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3531 alloc_flags
|= ALLOC_HARDER
;
3533 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3534 * comment for __cpuset_node_allowed().
3536 alloc_flags
&= ~ALLOC_CPUSET
;
3537 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3538 alloc_flags
|= ALLOC_HARDER
;
3541 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3542 alloc_flags
|= ALLOC_CMA
;
3547 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3549 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3552 if (gfp_mask
& __GFP_MEMALLOC
)
3554 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3556 if (!in_interrupt() &&
3557 ((current
->flags
& PF_MEMALLOC
) ||
3558 unlikely(test_thread_flag(TIF_MEMDIE
))))
3565 * Checks whether it makes sense to retry the reclaim to make a forward progress
3566 * for the given allocation request.
3568 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3569 * without success, or when we couldn't even meet the watermark if we
3570 * reclaimed all remaining pages on the LRU lists.
3572 * Returns true if a retry is viable or false to enter the oom path.
3575 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3576 struct alloc_context
*ac
, int alloc_flags
,
3577 bool did_some_progress
, int *no_progress_loops
)
3583 * Costly allocations might have made a progress but this doesn't mean
3584 * their order will become available due to high fragmentation so
3585 * always increment the no progress counter for them
3587 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3588 *no_progress_loops
= 0;
3590 (*no_progress_loops
)++;
3593 * Make sure we converge to OOM if we cannot make any progress
3594 * several times in the row.
3596 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3597 /* Before OOM, exhaust highatomic_reserve */
3598 return unreserve_highatomic_pageblock(ac
, true);
3602 * Keep reclaiming pages while there is a chance this will lead
3603 * somewhere. If none of the target zones can satisfy our allocation
3604 * request even if all reclaimable pages are considered then we are
3605 * screwed and have to go OOM.
3607 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3609 unsigned long available
;
3610 unsigned long reclaimable
;
3611 unsigned long min_wmark
= min_wmark_pages(zone
);
3614 available
= reclaimable
= zone_reclaimable_pages(zone
);
3615 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3618 * Would the allocation succeed if we reclaimed all
3619 * reclaimable pages?
3621 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3622 ac_classzone_idx(ac
), alloc_flags
, available
);
3623 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3624 available
, min_wmark
, *no_progress_loops
, wmark
);
3627 * If we didn't make any progress and have a lot of
3628 * dirty + writeback pages then we should wait for
3629 * an IO to complete to slow down the reclaim and
3630 * prevent from pre mature OOM
3632 if (!did_some_progress
) {
3633 unsigned long write_pending
;
3635 write_pending
= zone_page_state_snapshot(zone
,
3636 NR_ZONE_WRITE_PENDING
);
3638 if (2 * write_pending
> reclaimable
) {
3639 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3645 * Memory allocation/reclaim might be called from a WQ
3646 * context and the current implementation of the WQ
3647 * concurrency control doesn't recognize that
3648 * a particular WQ is congested if the worker thread is
3649 * looping without ever sleeping. Therefore we have to
3650 * do a short sleep here rather than calling
3653 if (current
->flags
& PF_WQ_WORKER
)
3654 schedule_timeout_uninterruptible(1);
3665 static inline struct page
*
3666 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3667 struct alloc_context
*ac
)
3669 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3670 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
3671 struct page
*page
= NULL
;
3672 unsigned int alloc_flags
;
3673 unsigned long did_some_progress
;
3674 enum compact_priority compact_priority
;
3675 enum compact_result compact_result
;
3676 int compaction_retries
;
3677 int no_progress_loops
;
3678 unsigned long alloc_start
= jiffies
;
3679 unsigned int stall_timeout
= 10 * HZ
;
3680 unsigned int cpuset_mems_cookie
;
3683 * In the slowpath, we sanity check order to avoid ever trying to
3684 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3685 * be using allocators in order of preference for an area that is
3688 if (order
>= MAX_ORDER
) {
3689 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3694 * We also sanity check to catch abuse of atomic reserves being used by
3695 * callers that are not in atomic context.
3697 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3698 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3699 gfp_mask
&= ~__GFP_ATOMIC
;
3702 compaction_retries
= 0;
3703 no_progress_loops
= 0;
3704 compact_priority
= DEF_COMPACT_PRIORITY
;
3705 cpuset_mems_cookie
= read_mems_allowed_begin();
3708 * The fast path uses conservative alloc_flags to succeed only until
3709 * kswapd needs to be woken up, and to avoid the cost of setting up
3710 * alloc_flags precisely. So we do that now.
3712 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3715 * We need to recalculate the starting point for the zonelist iterator
3716 * because we might have used different nodemask in the fast path, or
3717 * there was a cpuset modification and we are retrying - otherwise we
3718 * could end up iterating over non-eligible zones endlessly.
3720 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3721 ac
->high_zoneidx
, ac
->nodemask
);
3722 if (!ac
->preferred_zoneref
->zone
)
3725 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3726 wake_all_kswapds(order
, ac
);
3729 * The adjusted alloc_flags might result in immediate success, so try
3732 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3737 * For costly allocations, try direct compaction first, as it's likely
3738 * that we have enough base pages and don't need to reclaim. For non-
3739 * movable high-order allocations, do that as well, as compaction will
3740 * try prevent permanent fragmentation by migrating from blocks of the
3742 * Don't try this for allocations that are allowed to ignore
3743 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3745 if (can_direct_reclaim
&&
3747 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
3748 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
3749 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3751 INIT_COMPACT_PRIORITY
,
3757 * Checks for costly allocations with __GFP_NORETRY, which
3758 * includes THP page fault allocations
3760 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
3762 * If compaction is deferred for high-order allocations,
3763 * it is because sync compaction recently failed. If
3764 * this is the case and the caller requested a THP
3765 * allocation, we do not want to heavily disrupt the
3766 * system, so we fail the allocation instead of entering
3769 if (compact_result
== COMPACT_DEFERRED
)
3773 * Looks like reclaim/compaction is worth trying, but
3774 * sync compaction could be very expensive, so keep
3775 * using async compaction.
3777 compact_priority
= INIT_COMPACT_PRIORITY
;
3782 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3783 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3784 wake_all_kswapds(order
, ac
);
3786 if (gfp_pfmemalloc_allowed(gfp_mask
))
3787 alloc_flags
= ALLOC_NO_WATERMARKS
;
3790 * Reset the zonelist iterators if memory policies can be ignored.
3791 * These allocations are high priority and system rather than user
3794 if (!(alloc_flags
& ALLOC_CPUSET
) || (alloc_flags
& ALLOC_NO_WATERMARKS
)) {
3795 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3796 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3797 ac
->high_zoneidx
, ac
->nodemask
);
3800 /* Attempt with potentially adjusted zonelist and alloc_flags */
3801 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3805 /* Caller is not willing to reclaim, we can't balance anything */
3806 if (!can_direct_reclaim
)
3809 /* Make sure we know about allocations which stall for too long */
3810 if (time_after(jiffies
, alloc_start
+ stall_timeout
)) {
3811 warn_alloc(gfp_mask
& ~__GFP_NOWARN
, ac
->nodemask
,
3812 "page allocation stalls for %ums, order:%u",
3813 jiffies_to_msecs(jiffies
-alloc_start
), order
);
3814 stall_timeout
+= 10 * HZ
;
3817 /* Avoid recursion of direct reclaim */
3818 if (current
->flags
& PF_MEMALLOC
)
3821 /* Try direct reclaim and then allocating */
3822 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3823 &did_some_progress
);
3827 /* Try direct compaction and then allocating */
3828 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3829 compact_priority
, &compact_result
);
3833 /* Do not loop if specifically requested */
3834 if (gfp_mask
& __GFP_NORETRY
)
3838 * Do not retry costly high order allocations unless they are
3841 if (costly_order
&& !(gfp_mask
& __GFP_REPEAT
))
3844 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
3845 did_some_progress
> 0, &no_progress_loops
))
3849 * It doesn't make any sense to retry for the compaction if the order-0
3850 * reclaim is not able to make any progress because the current
3851 * implementation of the compaction depends on the sufficient amount
3852 * of free memory (see __compaction_suitable)
3854 if (did_some_progress
> 0 &&
3855 should_compact_retry(ac
, order
, alloc_flags
,
3856 compact_result
, &compact_priority
,
3857 &compaction_retries
))
3861 * It's possible we raced with cpuset update so the OOM would be
3862 * premature (see below the nopage: label for full explanation).
3864 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3867 /* Reclaim has failed us, start killing things */
3868 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3872 /* Avoid allocations with no watermarks from looping endlessly */
3873 if (test_thread_flag(TIF_MEMDIE
))
3876 /* Retry as long as the OOM killer is making progress */
3877 if (did_some_progress
) {
3878 no_progress_loops
= 0;
3884 * When updating a task's mems_allowed or mempolicy nodemask, it is
3885 * possible to race with parallel threads in such a way that our
3886 * allocation can fail while the mask is being updated. If we are about
3887 * to fail, check if the cpuset changed during allocation and if so,
3890 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3894 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3897 if (gfp_mask
& __GFP_NOFAIL
) {
3899 * All existing users of the __GFP_NOFAIL are blockable, so warn
3900 * of any new users that actually require GFP_NOWAIT
3902 if (WARN_ON_ONCE(!can_direct_reclaim
))
3906 * PF_MEMALLOC request from this context is rather bizarre
3907 * because we cannot reclaim anything and only can loop waiting
3908 * for somebody to do a work for us
3910 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
3913 * non failing costly orders are a hard requirement which we
3914 * are not prepared for much so let's warn about these users
3915 * so that we can identify them and convert them to something
3918 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
3921 * Help non-failing allocations by giving them access to memory
3922 * reserves but do not use ALLOC_NO_WATERMARKS because this
3923 * could deplete whole memory reserves which would just make
3924 * the situation worse
3926 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
3934 warn_alloc(gfp_mask
, ac
->nodemask
,
3935 "page allocation failure: order:%u", order
);
3940 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
3941 struct zonelist
*zonelist
, nodemask_t
*nodemask
,
3942 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
3943 unsigned int *alloc_flags
)
3945 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
3946 ac
->zonelist
= zonelist
;
3947 ac
->nodemask
= nodemask
;
3948 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
3950 if (cpusets_enabled()) {
3951 *alloc_mask
|= __GFP_HARDWALL
;
3953 ac
->nodemask
= &cpuset_current_mems_allowed
;
3955 *alloc_flags
|= ALLOC_CPUSET
;
3958 lockdep_trace_alloc(gfp_mask
);
3960 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3962 if (should_fail_alloc_page(gfp_mask
, order
))
3965 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
3966 *alloc_flags
|= ALLOC_CMA
;
3971 /* Determine whether to spread dirty pages and what the first usable zone */
3972 static inline void finalise_ac(gfp_t gfp_mask
,
3973 unsigned int order
, struct alloc_context
*ac
)
3975 /* Dirty zone balancing only done in the fast path */
3976 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3979 * The preferred zone is used for statistics but crucially it is
3980 * also used as the starting point for the zonelist iterator. It
3981 * may get reset for allocations that ignore memory policies.
3983 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3984 ac
->high_zoneidx
, ac
->nodemask
);
3988 * This is the 'heart' of the zoned buddy allocator.
3991 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3992 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3995 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
3996 gfp_t alloc_mask
= gfp_mask
; /* The gfp_t that was actually used for allocation */
3997 struct alloc_context ac
= { };
3999 gfp_mask
&= gfp_allowed_mask
;
4000 if (!prepare_alloc_pages(gfp_mask
, order
, zonelist
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4003 finalise_ac(gfp_mask
, order
, &ac
);
4005 /* First allocation attempt */
4006 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4011 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4012 * resp. GFP_NOIO which has to be inherited for all allocation requests
4013 * from a particular context which has been marked by
4014 * memalloc_no{fs,io}_{save,restore}.
4016 alloc_mask
= current_gfp_context(gfp_mask
);
4017 ac
.spread_dirty_pages
= false;
4020 * Restore the original nodemask if it was potentially replaced with
4021 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4023 if (unlikely(ac
.nodemask
!= nodemask
))
4024 ac
.nodemask
= nodemask
;
4026 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4029 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4030 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4031 __free_pages(page
, order
);
4035 if (kmemcheck_enabled
&& page
)
4036 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
4038 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4042 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4045 * Common helper functions.
4047 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4052 * __get_free_pages() returns a 32-bit address, which cannot represent
4055 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
4057 page
= alloc_pages(gfp_mask
, order
);
4060 return (unsigned long) page_address(page
);
4062 EXPORT_SYMBOL(__get_free_pages
);
4064 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4066 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4068 EXPORT_SYMBOL(get_zeroed_page
);
4070 void __free_pages(struct page
*page
, unsigned int order
)
4072 if (put_page_testzero(page
)) {
4074 free_hot_cold_page(page
, false);
4076 __free_pages_ok(page
, order
);
4080 EXPORT_SYMBOL(__free_pages
);
4082 void free_pages(unsigned long addr
, unsigned int order
)
4085 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4086 __free_pages(virt_to_page((void *)addr
), order
);
4090 EXPORT_SYMBOL(free_pages
);
4094 * An arbitrary-length arbitrary-offset area of memory which resides
4095 * within a 0 or higher order page. Multiple fragments within that page
4096 * are individually refcounted, in the page's reference counter.
4098 * The page_frag functions below provide a simple allocation framework for
4099 * page fragments. This is used by the network stack and network device
4100 * drivers to provide a backing region of memory for use as either an
4101 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4103 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4106 struct page
*page
= NULL
;
4107 gfp_t gfp
= gfp_mask
;
4109 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4110 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4112 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4113 PAGE_FRAG_CACHE_MAX_ORDER
);
4114 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4116 if (unlikely(!page
))
4117 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4119 nc
->va
= page
? page_address(page
) : NULL
;
4124 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4126 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4128 if (page_ref_sub_and_test(page
, count
)) {
4129 unsigned int order
= compound_order(page
);
4132 free_hot_cold_page(page
, false);
4134 __free_pages_ok(page
, order
);
4137 EXPORT_SYMBOL(__page_frag_cache_drain
);
4139 void *page_frag_alloc(struct page_frag_cache
*nc
,
4140 unsigned int fragsz
, gfp_t gfp_mask
)
4142 unsigned int size
= PAGE_SIZE
;
4146 if (unlikely(!nc
->va
)) {
4148 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4152 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4153 /* if size can vary use size else just use PAGE_SIZE */
4156 /* Even if we own the page, we do not use atomic_set().
4157 * This would break get_page_unless_zero() users.
4159 page_ref_add(page
, size
- 1);
4161 /* reset page count bias and offset to start of new frag */
4162 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4163 nc
->pagecnt_bias
= size
;
4167 offset
= nc
->offset
- fragsz
;
4168 if (unlikely(offset
< 0)) {
4169 page
= virt_to_page(nc
->va
);
4171 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4174 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4175 /* if size can vary use size else just use PAGE_SIZE */
4178 /* OK, page count is 0, we can safely set it */
4179 set_page_count(page
, size
);
4181 /* reset page count bias and offset to start of new frag */
4182 nc
->pagecnt_bias
= size
;
4183 offset
= size
- fragsz
;
4187 nc
->offset
= offset
;
4189 return nc
->va
+ offset
;
4191 EXPORT_SYMBOL(page_frag_alloc
);
4194 * Frees a page fragment allocated out of either a compound or order 0 page.
4196 void page_frag_free(void *addr
)
4198 struct page
*page
= virt_to_head_page(addr
);
4200 if (unlikely(put_page_testzero(page
)))
4201 __free_pages_ok(page
, compound_order(page
));
4203 EXPORT_SYMBOL(page_frag_free
);
4205 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4209 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4210 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4212 split_page(virt_to_page((void *)addr
), order
);
4213 while (used
< alloc_end
) {
4218 return (void *)addr
;
4222 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4223 * @size: the number of bytes to allocate
4224 * @gfp_mask: GFP flags for the allocation
4226 * This function is similar to alloc_pages(), except that it allocates the
4227 * minimum number of pages to satisfy the request. alloc_pages() can only
4228 * allocate memory in power-of-two pages.
4230 * This function is also limited by MAX_ORDER.
4232 * Memory allocated by this function must be released by free_pages_exact().
4234 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4236 unsigned int order
= get_order(size
);
4239 addr
= __get_free_pages(gfp_mask
, order
);
4240 return make_alloc_exact(addr
, order
, size
);
4242 EXPORT_SYMBOL(alloc_pages_exact
);
4245 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4247 * @nid: the preferred node ID where memory should be allocated
4248 * @size: the number of bytes to allocate
4249 * @gfp_mask: GFP flags for the allocation
4251 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4254 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4256 unsigned int order
= get_order(size
);
4257 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4260 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4264 * free_pages_exact - release memory allocated via alloc_pages_exact()
4265 * @virt: the value returned by alloc_pages_exact.
4266 * @size: size of allocation, same value as passed to alloc_pages_exact().
4268 * Release the memory allocated by a previous call to alloc_pages_exact.
4270 void free_pages_exact(void *virt
, size_t size
)
4272 unsigned long addr
= (unsigned long)virt
;
4273 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4275 while (addr
< end
) {
4280 EXPORT_SYMBOL(free_pages_exact
);
4283 * nr_free_zone_pages - count number of pages beyond high watermark
4284 * @offset: The zone index of the highest zone
4286 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4287 * high watermark within all zones at or below a given zone index. For each
4288 * zone, the number of pages is calculated as:
4290 * nr_free_zone_pages = managed_pages - high_pages
4292 static unsigned long nr_free_zone_pages(int offset
)
4297 /* Just pick one node, since fallback list is circular */
4298 unsigned long sum
= 0;
4300 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4302 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4303 unsigned long size
= zone
->managed_pages
;
4304 unsigned long high
= high_wmark_pages(zone
);
4313 * nr_free_buffer_pages - count number of pages beyond high watermark
4315 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4316 * watermark within ZONE_DMA and ZONE_NORMAL.
4318 unsigned long nr_free_buffer_pages(void)
4320 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4322 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4325 * nr_free_pagecache_pages - count number of pages beyond high watermark
4327 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4328 * high watermark within all zones.
4330 unsigned long nr_free_pagecache_pages(void)
4332 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4335 static inline void show_node(struct zone
*zone
)
4337 if (IS_ENABLED(CONFIG_NUMA
))
4338 printk("Node %d ", zone_to_nid(zone
));
4341 long si_mem_available(void)
4344 unsigned long pagecache
;
4345 unsigned long wmark_low
= 0;
4346 unsigned long pages
[NR_LRU_LISTS
];
4350 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4351 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4354 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4357 * Estimate the amount of memory available for userspace allocations,
4358 * without causing swapping.
4360 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4363 * Not all the page cache can be freed, otherwise the system will
4364 * start swapping. Assume at least half of the page cache, or the
4365 * low watermark worth of cache, needs to stay.
4367 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4368 pagecache
-= min(pagecache
/ 2, wmark_low
);
4369 available
+= pagecache
;
4372 * Part of the reclaimable slab consists of items that are in use,
4373 * and cannot be freed. Cap this estimate at the low watermark.
4375 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
4376 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
4382 EXPORT_SYMBOL_GPL(si_mem_available
);
4384 void si_meminfo(struct sysinfo
*val
)
4386 val
->totalram
= totalram_pages
;
4387 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4388 val
->freeram
= global_page_state(NR_FREE_PAGES
);
4389 val
->bufferram
= nr_blockdev_pages();
4390 val
->totalhigh
= totalhigh_pages
;
4391 val
->freehigh
= nr_free_highpages();
4392 val
->mem_unit
= PAGE_SIZE
;
4395 EXPORT_SYMBOL(si_meminfo
);
4398 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4400 int zone_type
; /* needs to be signed */
4401 unsigned long managed_pages
= 0;
4402 unsigned long managed_highpages
= 0;
4403 unsigned long free_highpages
= 0;
4404 pg_data_t
*pgdat
= NODE_DATA(nid
);
4406 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4407 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4408 val
->totalram
= managed_pages
;
4409 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4410 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4411 #ifdef CONFIG_HIGHMEM
4412 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4413 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4415 if (is_highmem(zone
)) {
4416 managed_highpages
+= zone
->managed_pages
;
4417 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4420 val
->totalhigh
= managed_highpages
;
4421 val
->freehigh
= free_highpages
;
4423 val
->totalhigh
= managed_highpages
;
4424 val
->freehigh
= free_highpages
;
4426 val
->mem_unit
= PAGE_SIZE
;
4431 * Determine whether the node should be displayed or not, depending on whether
4432 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4434 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4436 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4440 * no node mask - aka implicit memory numa policy. Do not bother with
4441 * the synchronization - read_mems_allowed_begin - because we do not
4442 * have to be precise here.
4445 nodemask
= &cpuset_current_mems_allowed
;
4447 return !node_isset(nid
, *nodemask
);
4450 #define K(x) ((x) << (PAGE_SHIFT-10))
4452 static void show_migration_types(unsigned char type
)
4454 static const char types
[MIGRATE_TYPES
] = {
4455 [MIGRATE_UNMOVABLE
] = 'U',
4456 [MIGRATE_MOVABLE
] = 'M',
4457 [MIGRATE_RECLAIMABLE
] = 'E',
4458 [MIGRATE_HIGHATOMIC
] = 'H',
4460 [MIGRATE_CMA
] = 'C',
4462 #ifdef CONFIG_MEMORY_ISOLATION
4463 [MIGRATE_ISOLATE
] = 'I',
4466 char tmp
[MIGRATE_TYPES
+ 1];
4470 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4471 if (type
& (1 << i
))
4476 printk(KERN_CONT
"(%s) ", tmp
);
4480 * Show free area list (used inside shift_scroll-lock stuff)
4481 * We also calculate the percentage fragmentation. We do this by counting the
4482 * memory on each free list with the exception of the first item on the list.
4485 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4488 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4490 unsigned long free_pcp
= 0;
4495 for_each_populated_zone(zone
) {
4496 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4499 for_each_online_cpu(cpu
)
4500 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4503 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4504 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4505 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4506 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4507 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4508 " free:%lu free_pcp:%lu free_cma:%lu\n",
4509 global_node_page_state(NR_ACTIVE_ANON
),
4510 global_node_page_state(NR_INACTIVE_ANON
),
4511 global_node_page_state(NR_ISOLATED_ANON
),
4512 global_node_page_state(NR_ACTIVE_FILE
),
4513 global_node_page_state(NR_INACTIVE_FILE
),
4514 global_node_page_state(NR_ISOLATED_FILE
),
4515 global_node_page_state(NR_UNEVICTABLE
),
4516 global_node_page_state(NR_FILE_DIRTY
),
4517 global_node_page_state(NR_WRITEBACK
),
4518 global_node_page_state(NR_UNSTABLE_NFS
),
4519 global_page_state(NR_SLAB_RECLAIMABLE
),
4520 global_page_state(NR_SLAB_UNRECLAIMABLE
),
4521 global_node_page_state(NR_FILE_MAPPED
),
4522 global_node_page_state(NR_SHMEM
),
4523 global_page_state(NR_PAGETABLE
),
4524 global_page_state(NR_BOUNCE
),
4525 global_page_state(NR_FREE_PAGES
),
4527 global_page_state(NR_FREE_CMA_PAGES
));
4529 for_each_online_pgdat(pgdat
) {
4530 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4534 " active_anon:%lukB"
4535 " inactive_anon:%lukB"
4536 " active_file:%lukB"
4537 " inactive_file:%lukB"
4538 " unevictable:%lukB"
4539 " isolated(anon):%lukB"
4540 " isolated(file):%lukB"
4545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4547 " shmem_pmdmapped: %lukB"
4550 " writeback_tmp:%lukB"
4552 " all_unreclaimable? %s"
4555 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4556 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4557 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4558 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4559 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4560 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4561 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4562 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4563 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4564 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4565 K(node_page_state(pgdat
, NR_SHMEM
)),
4566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4567 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4568 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4570 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4572 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4573 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4574 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4578 for_each_populated_zone(zone
) {
4581 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4585 for_each_online_cpu(cpu
)
4586 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4595 " active_anon:%lukB"
4596 " inactive_anon:%lukB"
4597 " active_file:%lukB"
4598 " inactive_file:%lukB"
4599 " unevictable:%lukB"
4600 " writepending:%lukB"
4604 " slab_reclaimable:%lukB"
4605 " slab_unreclaimable:%lukB"
4606 " kernel_stack:%lukB"
4614 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4615 K(min_wmark_pages(zone
)),
4616 K(low_wmark_pages(zone
)),
4617 K(high_wmark_pages(zone
)),
4618 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4619 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4620 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4621 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4622 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4623 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4624 K(zone
->present_pages
),
4625 K(zone
->managed_pages
),
4626 K(zone_page_state(zone
, NR_MLOCK
)),
4627 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
4628 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
4629 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4630 K(zone_page_state(zone
, NR_PAGETABLE
)),
4631 K(zone_page_state(zone
, NR_BOUNCE
)),
4633 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4634 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4635 printk("lowmem_reserve[]:");
4636 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4637 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4638 printk(KERN_CONT
"\n");
4641 for_each_populated_zone(zone
) {
4643 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4644 unsigned char types
[MAX_ORDER
];
4646 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4649 printk(KERN_CONT
"%s: ", zone
->name
);
4651 spin_lock_irqsave(&zone
->lock
, flags
);
4652 for (order
= 0; order
< MAX_ORDER
; order
++) {
4653 struct free_area
*area
= &zone
->free_area
[order
];
4656 nr
[order
] = area
->nr_free
;
4657 total
+= nr
[order
] << order
;
4660 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4661 if (!list_empty(&area
->free_list
[type
]))
4662 types
[order
] |= 1 << type
;
4665 spin_unlock_irqrestore(&zone
->lock
, flags
);
4666 for (order
= 0; order
< MAX_ORDER
; order
++) {
4667 printk(KERN_CONT
"%lu*%lukB ",
4668 nr
[order
], K(1UL) << order
);
4670 show_migration_types(types
[order
]);
4672 printk(KERN_CONT
"= %lukB\n", K(total
));
4675 hugetlb_show_meminfo();
4677 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4679 show_swap_cache_info();
4682 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4684 zoneref
->zone
= zone
;
4685 zoneref
->zone_idx
= zone_idx(zone
);
4689 * Builds allocation fallback zone lists.
4691 * Add all populated zones of a node to the zonelist.
4693 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
4697 enum zone_type zone_type
= MAX_NR_ZONES
;
4701 zone
= pgdat
->node_zones
+ zone_type
;
4702 if (managed_zone(zone
)) {
4703 zoneref_set_zone(zone
,
4704 &zonelist
->_zonerefs
[nr_zones
++]);
4705 check_highest_zone(zone_type
);
4707 } while (zone_type
);
4715 * 0 = automatic detection of better ordering.
4716 * 1 = order by ([node] distance, -zonetype)
4717 * 2 = order by (-zonetype, [node] distance)
4719 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4720 * the same zonelist. So only NUMA can configure this param.
4722 #define ZONELIST_ORDER_DEFAULT 0
4723 #define ZONELIST_ORDER_NODE 1
4724 #define ZONELIST_ORDER_ZONE 2
4726 /* zonelist order in the kernel.
4727 * set_zonelist_order() will set this to NODE or ZONE.
4729 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4730 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4734 /* The value user specified ....changed by config */
4735 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4736 /* string for sysctl */
4737 #define NUMA_ZONELIST_ORDER_LEN 16
4738 char numa_zonelist_order
[16] = "default";
4741 * interface for configure zonelist ordering.
4742 * command line option "numa_zonelist_order"
4743 * = "[dD]efault - default, automatic configuration.
4744 * = "[nN]ode - order by node locality, then by zone within node
4745 * = "[zZ]one - order by zone, then by locality within zone
4748 static int __parse_numa_zonelist_order(char *s
)
4750 if (*s
== 'd' || *s
== 'D') {
4751 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4752 } else if (*s
== 'n' || *s
== 'N') {
4753 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4754 } else if (*s
== 'z' || *s
== 'Z') {
4755 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4757 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s
);
4763 static __init
int setup_numa_zonelist_order(char *s
)
4770 ret
= __parse_numa_zonelist_order(s
);
4772 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4776 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4779 * sysctl handler for numa_zonelist_order
4781 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4782 void __user
*buffer
, size_t *length
,
4785 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4787 static DEFINE_MUTEX(zl_order_mutex
);
4789 mutex_lock(&zl_order_mutex
);
4791 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4795 strcpy(saved_string
, (char *)table
->data
);
4797 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4801 int oldval
= user_zonelist_order
;
4803 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4806 * bogus value. restore saved string
4808 strncpy((char *)table
->data
, saved_string
,
4809 NUMA_ZONELIST_ORDER_LEN
);
4810 user_zonelist_order
= oldval
;
4811 } else if (oldval
!= user_zonelist_order
) {
4812 mutex_lock(&zonelists_mutex
);
4813 build_all_zonelists(NULL
, NULL
);
4814 mutex_unlock(&zonelists_mutex
);
4818 mutex_unlock(&zl_order_mutex
);
4823 #define MAX_NODE_LOAD (nr_online_nodes)
4824 static int node_load
[MAX_NUMNODES
];
4827 * find_next_best_node - find the next node that should appear in a given node's fallback list
4828 * @node: node whose fallback list we're appending
4829 * @used_node_mask: nodemask_t of already used nodes
4831 * We use a number of factors to determine which is the next node that should
4832 * appear on a given node's fallback list. The node should not have appeared
4833 * already in @node's fallback list, and it should be the next closest node
4834 * according to the distance array (which contains arbitrary distance values
4835 * from each node to each node in the system), and should also prefer nodes
4836 * with no CPUs, since presumably they'll have very little allocation pressure
4837 * on them otherwise.
4838 * It returns -1 if no node is found.
4840 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4843 int min_val
= INT_MAX
;
4844 int best_node
= NUMA_NO_NODE
;
4845 const struct cpumask
*tmp
= cpumask_of_node(0);
4847 /* Use the local node if we haven't already */
4848 if (!node_isset(node
, *used_node_mask
)) {
4849 node_set(node
, *used_node_mask
);
4853 for_each_node_state(n
, N_MEMORY
) {
4855 /* Don't want a node to appear more than once */
4856 if (node_isset(n
, *used_node_mask
))
4859 /* Use the distance array to find the distance */
4860 val
= node_distance(node
, n
);
4862 /* Penalize nodes under us ("prefer the next node") */
4865 /* Give preference to headless and unused nodes */
4866 tmp
= cpumask_of_node(n
);
4867 if (!cpumask_empty(tmp
))
4868 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4870 /* Slight preference for less loaded node */
4871 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4872 val
+= node_load
[n
];
4874 if (val
< min_val
) {
4881 node_set(best_node
, *used_node_mask
);
4888 * Build zonelists ordered by node and zones within node.
4889 * This results in maximum locality--normal zone overflows into local
4890 * DMA zone, if any--but risks exhausting DMA zone.
4892 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4895 struct zonelist
*zonelist
;
4897 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4898 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4900 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4901 zonelist
->_zonerefs
[j
].zone
= NULL
;
4902 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4906 * Build gfp_thisnode zonelists
4908 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4911 struct zonelist
*zonelist
;
4913 zonelist
= &pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
];
4914 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4915 zonelist
->_zonerefs
[j
].zone
= NULL
;
4916 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4920 * Build zonelists ordered by zone and nodes within zones.
4921 * This results in conserving DMA zone[s] until all Normal memory is
4922 * exhausted, but results in overflowing to remote node while memory
4923 * may still exist in local DMA zone.
4925 static int node_order
[MAX_NUMNODES
];
4927 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4930 int zone_type
; /* needs to be signed */
4932 struct zonelist
*zonelist
;
4934 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4936 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4937 for (j
= 0; j
< nr_nodes
; j
++) {
4938 node
= node_order
[j
];
4939 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4940 if (managed_zone(z
)) {
4942 &zonelist
->_zonerefs
[pos
++]);
4943 check_highest_zone(zone_type
);
4947 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4948 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4951 #if defined(CONFIG_64BIT)
4953 * Devices that require DMA32/DMA are relatively rare and do not justify a
4954 * penalty to every machine in case the specialised case applies. Default
4955 * to Node-ordering on 64-bit NUMA machines
4957 static int default_zonelist_order(void)
4959 return ZONELIST_ORDER_NODE
;
4963 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4964 * by the kernel. If processes running on node 0 deplete the low memory zone
4965 * then reclaim will occur more frequency increasing stalls and potentially
4966 * be easier to OOM if a large percentage of the zone is under writeback or
4967 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4968 * Hence, default to zone ordering on 32-bit.
4970 static int default_zonelist_order(void)
4972 return ZONELIST_ORDER_ZONE
;
4974 #endif /* CONFIG_64BIT */
4976 static void set_zonelist_order(void)
4978 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4979 current_zonelist_order
= default_zonelist_order();
4981 current_zonelist_order
= user_zonelist_order
;
4984 static void build_zonelists(pg_data_t
*pgdat
)
4987 nodemask_t used_mask
;
4988 int local_node
, prev_node
;
4989 struct zonelist
*zonelist
;
4990 unsigned int order
= current_zonelist_order
;
4992 /* initialize zonelists */
4993 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4994 zonelist
= pgdat
->node_zonelists
+ i
;
4995 zonelist
->_zonerefs
[0].zone
= NULL
;
4996 zonelist
->_zonerefs
[0].zone_idx
= 0;
4999 /* NUMA-aware ordering of nodes */
5000 local_node
= pgdat
->node_id
;
5001 load
= nr_online_nodes
;
5002 prev_node
= local_node
;
5003 nodes_clear(used_mask
);
5005 memset(node_order
, 0, sizeof(node_order
));
5008 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5010 * We don't want to pressure a particular node.
5011 * So adding penalty to the first node in same
5012 * distance group to make it round-robin.
5014 if (node_distance(local_node
, node
) !=
5015 node_distance(local_node
, prev_node
))
5016 node_load
[node
] = load
;
5020 if (order
== ZONELIST_ORDER_NODE
)
5021 build_zonelists_in_node_order(pgdat
, node
);
5023 node_order
[i
++] = node
; /* remember order */
5026 if (order
== ZONELIST_ORDER_ZONE
) {
5027 /* calculate node order -- i.e., DMA last! */
5028 build_zonelists_in_zone_order(pgdat
, i
);
5031 build_thisnode_zonelists(pgdat
);
5034 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5036 * Return node id of node used for "local" allocations.
5037 * I.e., first node id of first zone in arg node's generic zonelist.
5038 * Used for initializing percpu 'numa_mem', which is used primarily
5039 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5041 int local_memory_node(int node
)
5045 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5046 gfp_zone(GFP_KERNEL
),
5048 return z
->zone
->node
;
5052 static void setup_min_unmapped_ratio(void);
5053 static void setup_min_slab_ratio(void);
5054 #else /* CONFIG_NUMA */
5056 static void set_zonelist_order(void)
5058 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
5061 static void build_zonelists(pg_data_t
*pgdat
)
5063 int node
, local_node
;
5065 struct zonelist
*zonelist
;
5067 local_node
= pgdat
->node_id
;
5069 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
5070 j
= build_zonelists_node(pgdat
, zonelist
, 0);
5073 * Now we build the zonelist so that it contains the zones
5074 * of all the other nodes.
5075 * We don't want to pressure a particular node, so when
5076 * building the zones for node N, we make sure that the
5077 * zones coming right after the local ones are those from
5078 * node N+1 (modulo N)
5080 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5081 if (!node_online(node
))
5083 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
5085 for (node
= 0; node
< local_node
; node
++) {
5086 if (!node_online(node
))
5088 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
5091 zonelist
->_zonerefs
[j
].zone
= NULL
;
5092 zonelist
->_zonerefs
[j
].zone_idx
= 0;
5095 #endif /* CONFIG_NUMA */
5098 * Boot pageset table. One per cpu which is going to be used for all
5099 * zones and all nodes. The parameters will be set in such a way
5100 * that an item put on a list will immediately be handed over to
5101 * the buddy list. This is safe since pageset manipulation is done
5102 * with interrupts disabled.
5104 * The boot_pagesets must be kept even after bootup is complete for
5105 * unused processors and/or zones. They do play a role for bootstrapping
5106 * hotplugged processors.
5108 * zoneinfo_show() and maybe other functions do
5109 * not check if the processor is online before following the pageset pointer.
5110 * Other parts of the kernel may not check if the zone is available.
5112 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5113 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5114 static void setup_zone_pageset(struct zone
*zone
);
5117 * Global mutex to protect against size modification of zonelists
5118 * as well as to serialize pageset setup for the new populated zone.
5120 DEFINE_MUTEX(zonelists_mutex
);
5122 /* return values int ....just for stop_machine() */
5123 static int __build_all_zonelists(void *data
)
5127 pg_data_t
*self
= data
;
5130 memset(node_load
, 0, sizeof(node_load
));
5133 if (self
&& !node_online(self
->node_id
)) {
5134 build_zonelists(self
);
5137 for_each_online_node(nid
) {
5138 pg_data_t
*pgdat
= NODE_DATA(nid
);
5140 build_zonelists(pgdat
);
5144 * Initialize the boot_pagesets that are going to be used
5145 * for bootstrapping processors. The real pagesets for
5146 * each zone will be allocated later when the per cpu
5147 * allocator is available.
5149 * boot_pagesets are used also for bootstrapping offline
5150 * cpus if the system is already booted because the pagesets
5151 * are needed to initialize allocators on a specific cpu too.
5152 * F.e. the percpu allocator needs the page allocator which
5153 * needs the percpu allocator in order to allocate its pagesets
5154 * (a chicken-egg dilemma).
5156 for_each_possible_cpu(cpu
) {
5157 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5159 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5161 * We now know the "local memory node" for each node--
5162 * i.e., the node of the first zone in the generic zonelist.
5163 * Set up numa_mem percpu variable for on-line cpus. During
5164 * boot, only the boot cpu should be on-line; we'll init the
5165 * secondary cpus' numa_mem as they come on-line. During
5166 * node/memory hotplug, we'll fixup all on-line cpus.
5168 if (cpu_online(cpu
))
5169 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5176 static noinline
void __init
5177 build_all_zonelists_init(void)
5179 __build_all_zonelists(NULL
);
5180 mminit_verify_zonelist();
5181 cpuset_init_current_mems_allowed();
5185 * Called with zonelists_mutex held always
5186 * unless system_state == SYSTEM_BOOTING.
5188 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5189 * [we're only called with non-NULL zone through __meminit paths] and
5190 * (2) call of __init annotated helper build_all_zonelists_init
5191 * [protected by SYSTEM_BOOTING].
5193 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
5195 set_zonelist_order();
5197 if (system_state
== SYSTEM_BOOTING
) {
5198 build_all_zonelists_init();
5200 #ifdef CONFIG_MEMORY_HOTPLUG
5202 setup_zone_pageset(zone
);
5204 /* we have to stop all cpus to guarantee there is no user
5206 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
5207 /* cpuset refresh routine should be here */
5209 vm_total_pages
= nr_free_pagecache_pages();
5211 * Disable grouping by mobility if the number of pages in the
5212 * system is too low to allow the mechanism to work. It would be
5213 * more accurate, but expensive to check per-zone. This check is
5214 * made on memory-hotadd so a system can start with mobility
5215 * disabled and enable it later
5217 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5218 page_group_by_mobility_disabled
= 1;
5220 page_group_by_mobility_disabled
= 0;
5222 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5224 zonelist_order_name
[current_zonelist_order
],
5225 page_group_by_mobility_disabled
? "off" : "on",
5228 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5233 * Initially all pages are reserved - free ones are freed
5234 * up by free_all_bootmem() once the early boot process is
5235 * done. Non-atomic initialization, single-pass.
5237 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5238 unsigned long start_pfn
, enum memmap_context context
)
5240 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5241 unsigned long end_pfn
= start_pfn
+ size
;
5242 pg_data_t
*pgdat
= NODE_DATA(nid
);
5244 unsigned long nr_initialised
= 0;
5245 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5246 struct memblock_region
*r
= NULL
, *tmp
;
5249 if (highest_memmap_pfn
< end_pfn
- 1)
5250 highest_memmap_pfn
= end_pfn
- 1;
5253 * Honor reservation requested by the driver for this ZONE_DEVICE
5256 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5257 start_pfn
+= altmap
->reserve
;
5259 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5261 * There can be holes in boot-time mem_map[]s handed to this
5262 * function. They do not exist on hotplugged memory.
5264 if (context
!= MEMMAP_EARLY
)
5267 if (!early_pfn_valid(pfn
)) {
5268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5270 * Skip to the pfn preceding the next valid one (or
5271 * end_pfn), such that we hit a valid pfn (or end_pfn)
5272 * on our next iteration of the loop.
5274 pfn
= memblock_next_valid_pfn(pfn
, end_pfn
) - 1;
5278 if (!early_pfn_in_nid(pfn
, nid
))
5280 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5283 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5285 * Check given memblock attribute by firmware which can affect
5286 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5287 * mirrored, it's an overlapped memmap init. skip it.
5289 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5290 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5291 for_each_memblock(memory
, tmp
)
5292 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5296 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5297 memblock_is_mirror(r
)) {
5298 /* already initialized as NORMAL */
5299 pfn
= memblock_region_memory_end_pfn(r
);
5307 * Mark the block movable so that blocks are reserved for
5308 * movable at startup. This will force kernel allocations
5309 * to reserve their blocks rather than leaking throughout
5310 * the address space during boot when many long-lived
5311 * kernel allocations are made.
5313 * bitmap is created for zone's valid pfn range. but memmap
5314 * can be created for invalid pages (for alignment)
5315 * check here not to call set_pageblock_migratetype() against
5318 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5319 struct page
*page
= pfn_to_page(pfn
);
5321 __init_single_page(page
, pfn
, zone
, nid
);
5322 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5324 __init_single_pfn(pfn
, zone
, nid
);
5329 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5331 unsigned int order
, t
;
5332 for_each_migratetype_order(order
, t
) {
5333 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5334 zone
->free_area
[order
].nr_free
= 0;
5338 #ifndef __HAVE_ARCH_MEMMAP_INIT
5339 #define memmap_init(size, nid, zone, start_pfn) \
5340 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5343 static int zone_batchsize(struct zone
*zone
)
5349 * The per-cpu-pages pools are set to around 1000th of the
5350 * size of the zone. But no more than 1/2 of a meg.
5352 * OK, so we don't know how big the cache is. So guess.
5354 batch
= zone
->managed_pages
/ 1024;
5355 if (batch
* PAGE_SIZE
> 512 * 1024)
5356 batch
= (512 * 1024) / PAGE_SIZE
;
5357 batch
/= 4; /* We effectively *= 4 below */
5362 * Clamp the batch to a 2^n - 1 value. Having a power
5363 * of 2 value was found to be more likely to have
5364 * suboptimal cache aliasing properties in some cases.
5366 * For example if 2 tasks are alternately allocating
5367 * batches of pages, one task can end up with a lot
5368 * of pages of one half of the possible page colors
5369 * and the other with pages of the other colors.
5371 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5376 /* The deferral and batching of frees should be suppressed under NOMMU
5379 * The problem is that NOMMU needs to be able to allocate large chunks
5380 * of contiguous memory as there's no hardware page translation to
5381 * assemble apparent contiguous memory from discontiguous pages.
5383 * Queueing large contiguous runs of pages for batching, however,
5384 * causes the pages to actually be freed in smaller chunks. As there
5385 * can be a significant delay between the individual batches being
5386 * recycled, this leads to the once large chunks of space being
5387 * fragmented and becoming unavailable for high-order allocations.
5394 * pcp->high and pcp->batch values are related and dependent on one another:
5395 * ->batch must never be higher then ->high.
5396 * The following function updates them in a safe manner without read side
5399 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5400 * those fields changing asynchronously (acording the the above rule).
5402 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5403 * outside of boot time (or some other assurance that no concurrent updaters
5406 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5407 unsigned long batch
)
5409 /* start with a fail safe value for batch */
5413 /* Update high, then batch, in order */
5420 /* a companion to pageset_set_high() */
5421 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5423 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5426 static void pageset_init(struct per_cpu_pageset
*p
)
5428 struct per_cpu_pages
*pcp
;
5431 memset(p
, 0, sizeof(*p
));
5435 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5436 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5439 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5442 pageset_set_batch(p
, batch
);
5446 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5447 * to the value high for the pageset p.
5449 static void pageset_set_high(struct per_cpu_pageset
*p
,
5452 unsigned long batch
= max(1UL, high
/ 4);
5453 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5454 batch
= PAGE_SHIFT
* 8;
5456 pageset_update(&p
->pcp
, high
, batch
);
5459 static void pageset_set_high_and_batch(struct zone
*zone
,
5460 struct per_cpu_pageset
*pcp
)
5462 if (percpu_pagelist_fraction
)
5463 pageset_set_high(pcp
,
5464 (zone
->managed_pages
/
5465 percpu_pagelist_fraction
));
5467 pageset_set_batch(pcp
, zone_batchsize(zone
));
5470 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5472 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5475 pageset_set_high_and_batch(zone
, pcp
);
5478 static void __meminit
setup_zone_pageset(struct zone
*zone
)
5481 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5482 for_each_possible_cpu(cpu
)
5483 zone_pageset_init(zone
, cpu
);
5487 * Allocate per cpu pagesets and initialize them.
5488 * Before this call only boot pagesets were available.
5490 void __init
setup_per_cpu_pageset(void)
5492 struct pglist_data
*pgdat
;
5495 for_each_populated_zone(zone
)
5496 setup_zone_pageset(zone
);
5498 for_each_online_pgdat(pgdat
)
5499 pgdat
->per_cpu_nodestats
=
5500 alloc_percpu(struct per_cpu_nodestat
);
5503 static __meminit
void zone_pcp_init(struct zone
*zone
)
5506 * per cpu subsystem is not up at this point. The following code
5507 * relies on the ability of the linker to provide the
5508 * offset of a (static) per cpu variable into the per cpu area.
5510 zone
->pageset
= &boot_pageset
;
5512 if (populated_zone(zone
))
5513 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5514 zone
->name
, zone
->present_pages
,
5515 zone_batchsize(zone
));
5518 int __meminit
init_currently_empty_zone(struct zone
*zone
,
5519 unsigned long zone_start_pfn
,
5522 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5524 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5526 zone
->zone_start_pfn
= zone_start_pfn
;
5528 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5529 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5531 (unsigned long)zone_idx(zone
),
5532 zone_start_pfn
, (zone_start_pfn
+ size
));
5534 zone_init_free_lists(zone
);
5535 zone
->initialized
= 1;
5540 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5541 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5544 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5546 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5547 struct mminit_pfnnid_cache
*state
)
5549 unsigned long start_pfn
, end_pfn
;
5552 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5553 return state
->last_nid
;
5555 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5557 state
->last_start
= start_pfn
;
5558 state
->last_end
= end_pfn
;
5559 state
->last_nid
= nid
;
5564 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5567 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5568 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5569 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5571 * If an architecture guarantees that all ranges registered contain no holes
5572 * and may be freed, this this function may be used instead of calling
5573 * memblock_free_early_nid() manually.
5575 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5577 unsigned long start_pfn
, end_pfn
;
5580 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5581 start_pfn
= min(start_pfn
, max_low_pfn
);
5582 end_pfn
= min(end_pfn
, max_low_pfn
);
5584 if (start_pfn
< end_pfn
)
5585 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5586 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5592 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5593 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5595 * If an architecture guarantees that all ranges registered contain no holes and may
5596 * be freed, this function may be used instead of calling memory_present() manually.
5598 void __init
sparse_memory_present_with_active_regions(int nid
)
5600 unsigned long start_pfn
, end_pfn
;
5603 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5604 memory_present(this_nid
, start_pfn
, end_pfn
);
5608 * get_pfn_range_for_nid - Return the start and end page frames for a node
5609 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5610 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5611 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5613 * It returns the start and end page frame of a node based on information
5614 * provided by memblock_set_node(). If called for a node
5615 * with no available memory, a warning is printed and the start and end
5618 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5619 unsigned long *start_pfn
, unsigned long *end_pfn
)
5621 unsigned long this_start_pfn
, this_end_pfn
;
5627 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5628 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5629 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5632 if (*start_pfn
== -1UL)
5637 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5638 * assumption is made that zones within a node are ordered in monotonic
5639 * increasing memory addresses so that the "highest" populated zone is used
5641 static void __init
find_usable_zone_for_movable(void)
5644 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5645 if (zone_index
== ZONE_MOVABLE
)
5648 if (arch_zone_highest_possible_pfn
[zone_index
] >
5649 arch_zone_lowest_possible_pfn
[zone_index
])
5653 VM_BUG_ON(zone_index
== -1);
5654 movable_zone
= zone_index
;
5658 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5659 * because it is sized independent of architecture. Unlike the other zones,
5660 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5661 * in each node depending on the size of each node and how evenly kernelcore
5662 * is distributed. This helper function adjusts the zone ranges
5663 * provided by the architecture for a given node by using the end of the
5664 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5665 * zones within a node are in order of monotonic increases memory addresses
5667 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5668 unsigned long zone_type
,
5669 unsigned long node_start_pfn
,
5670 unsigned long node_end_pfn
,
5671 unsigned long *zone_start_pfn
,
5672 unsigned long *zone_end_pfn
)
5674 /* Only adjust if ZONE_MOVABLE is on this node */
5675 if (zone_movable_pfn
[nid
]) {
5676 /* Size ZONE_MOVABLE */
5677 if (zone_type
== ZONE_MOVABLE
) {
5678 *zone_start_pfn
= zone_movable_pfn
[nid
];
5679 *zone_end_pfn
= min(node_end_pfn
,
5680 arch_zone_highest_possible_pfn
[movable_zone
]);
5682 /* Adjust for ZONE_MOVABLE starting within this range */
5683 } else if (!mirrored_kernelcore
&&
5684 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5685 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5686 *zone_end_pfn
= zone_movable_pfn
[nid
];
5688 /* Check if this whole range is within ZONE_MOVABLE */
5689 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5690 *zone_start_pfn
= *zone_end_pfn
;
5695 * Return the number of pages a zone spans in a node, including holes
5696 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5698 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5699 unsigned long zone_type
,
5700 unsigned long node_start_pfn
,
5701 unsigned long node_end_pfn
,
5702 unsigned long *zone_start_pfn
,
5703 unsigned long *zone_end_pfn
,
5704 unsigned long *ignored
)
5706 /* When hotadd a new node from cpu_up(), the node should be empty */
5707 if (!node_start_pfn
&& !node_end_pfn
)
5710 /* Get the start and end of the zone */
5711 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5712 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5713 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5714 node_start_pfn
, node_end_pfn
,
5715 zone_start_pfn
, zone_end_pfn
);
5717 /* Check that this node has pages within the zone's required range */
5718 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5721 /* Move the zone boundaries inside the node if necessary */
5722 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5723 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5725 /* Return the spanned pages */
5726 return *zone_end_pfn
- *zone_start_pfn
;
5730 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5731 * then all holes in the requested range will be accounted for.
5733 unsigned long __meminit
__absent_pages_in_range(int nid
,
5734 unsigned long range_start_pfn
,
5735 unsigned long range_end_pfn
)
5737 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5738 unsigned long start_pfn
, end_pfn
;
5741 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5742 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5743 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5744 nr_absent
-= end_pfn
- start_pfn
;
5750 * absent_pages_in_range - Return number of page frames in holes within a range
5751 * @start_pfn: The start PFN to start searching for holes
5752 * @end_pfn: The end PFN to stop searching for holes
5754 * It returns the number of pages frames in memory holes within a range.
5756 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5757 unsigned long end_pfn
)
5759 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5762 /* Return the number of page frames in holes in a zone on a node */
5763 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5764 unsigned long zone_type
,
5765 unsigned long node_start_pfn
,
5766 unsigned long node_end_pfn
,
5767 unsigned long *ignored
)
5769 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5770 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5771 unsigned long zone_start_pfn
, zone_end_pfn
;
5772 unsigned long nr_absent
;
5774 /* When hotadd a new node from cpu_up(), the node should be empty */
5775 if (!node_start_pfn
&& !node_end_pfn
)
5778 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5779 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5781 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5782 node_start_pfn
, node_end_pfn
,
5783 &zone_start_pfn
, &zone_end_pfn
);
5784 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5787 * ZONE_MOVABLE handling.
5788 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5791 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5792 unsigned long start_pfn
, end_pfn
;
5793 struct memblock_region
*r
;
5795 for_each_memblock(memory
, r
) {
5796 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5797 zone_start_pfn
, zone_end_pfn
);
5798 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5799 zone_start_pfn
, zone_end_pfn
);
5801 if (zone_type
== ZONE_MOVABLE
&&
5802 memblock_is_mirror(r
))
5803 nr_absent
+= end_pfn
- start_pfn
;
5805 if (zone_type
== ZONE_NORMAL
&&
5806 !memblock_is_mirror(r
))
5807 nr_absent
+= end_pfn
- start_pfn
;
5814 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5815 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5816 unsigned long zone_type
,
5817 unsigned long node_start_pfn
,
5818 unsigned long node_end_pfn
,
5819 unsigned long *zone_start_pfn
,
5820 unsigned long *zone_end_pfn
,
5821 unsigned long *zones_size
)
5825 *zone_start_pfn
= node_start_pfn
;
5826 for (zone
= 0; zone
< zone_type
; zone
++)
5827 *zone_start_pfn
+= zones_size
[zone
];
5829 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5831 return zones_size
[zone_type
];
5834 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5835 unsigned long zone_type
,
5836 unsigned long node_start_pfn
,
5837 unsigned long node_end_pfn
,
5838 unsigned long *zholes_size
)
5843 return zholes_size
[zone_type
];
5846 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5848 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5849 unsigned long node_start_pfn
,
5850 unsigned long node_end_pfn
,
5851 unsigned long *zones_size
,
5852 unsigned long *zholes_size
)
5854 unsigned long realtotalpages
= 0, totalpages
= 0;
5857 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5858 struct zone
*zone
= pgdat
->node_zones
+ i
;
5859 unsigned long zone_start_pfn
, zone_end_pfn
;
5860 unsigned long size
, real_size
;
5862 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5868 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5869 node_start_pfn
, node_end_pfn
,
5872 zone
->zone_start_pfn
= zone_start_pfn
;
5874 zone
->zone_start_pfn
= 0;
5875 zone
->spanned_pages
= size
;
5876 zone
->present_pages
= real_size
;
5879 realtotalpages
+= real_size
;
5882 pgdat
->node_spanned_pages
= totalpages
;
5883 pgdat
->node_present_pages
= realtotalpages
;
5884 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5888 #ifndef CONFIG_SPARSEMEM
5890 * Calculate the size of the zone->blockflags rounded to an unsigned long
5891 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5892 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5893 * round what is now in bits to nearest long in bits, then return it in
5896 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5898 unsigned long usemapsize
;
5900 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5901 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5902 usemapsize
= usemapsize
>> pageblock_order
;
5903 usemapsize
*= NR_PAGEBLOCK_BITS
;
5904 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5906 return usemapsize
/ 8;
5909 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5911 unsigned long zone_start_pfn
,
5912 unsigned long zonesize
)
5914 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5915 zone
->pageblock_flags
= NULL
;
5917 zone
->pageblock_flags
=
5918 memblock_virt_alloc_node_nopanic(usemapsize
,
5922 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5923 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5924 #endif /* CONFIG_SPARSEMEM */
5926 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5928 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5929 void __paginginit
set_pageblock_order(void)
5933 /* Check that pageblock_nr_pages has not already been setup */
5934 if (pageblock_order
)
5937 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5938 order
= HUGETLB_PAGE_ORDER
;
5940 order
= MAX_ORDER
- 1;
5943 * Assume the largest contiguous order of interest is a huge page.
5944 * This value may be variable depending on boot parameters on IA64 and
5947 pageblock_order
= order
;
5949 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5952 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5953 * is unused as pageblock_order is set at compile-time. See
5954 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5957 void __paginginit
set_pageblock_order(void)
5961 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5963 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5964 unsigned long present_pages
)
5966 unsigned long pages
= spanned_pages
;
5969 * Provide a more accurate estimation if there are holes within
5970 * the zone and SPARSEMEM is in use. If there are holes within the
5971 * zone, each populated memory region may cost us one or two extra
5972 * memmap pages due to alignment because memmap pages for each
5973 * populated regions may not be naturally aligned on page boundary.
5974 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5976 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5977 IS_ENABLED(CONFIG_SPARSEMEM
))
5978 pages
= present_pages
;
5980 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5984 * Set up the zone data structures:
5985 * - mark all pages reserved
5986 * - mark all memory queues empty
5987 * - clear the memory bitmaps
5989 * NOTE: pgdat should get zeroed by caller.
5991 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5994 int nid
= pgdat
->node_id
;
5997 pgdat_resize_init(pgdat
);
5998 #ifdef CONFIG_NUMA_BALANCING
5999 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6000 pgdat
->numabalancing_migrate_nr_pages
= 0;
6001 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6004 spin_lock_init(&pgdat
->split_queue_lock
);
6005 INIT_LIST_HEAD(&pgdat
->split_queue
);
6006 pgdat
->split_queue_len
= 0;
6008 init_waitqueue_head(&pgdat
->kswapd_wait
);
6009 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6010 #ifdef CONFIG_COMPACTION
6011 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6013 pgdat_page_ext_init(pgdat
);
6014 spin_lock_init(&pgdat
->lru_lock
);
6015 lruvec_init(node_lruvec(pgdat
));
6017 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6018 struct zone
*zone
= pgdat
->node_zones
+ j
;
6019 unsigned long size
, realsize
, freesize
, memmap_pages
;
6020 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6022 size
= zone
->spanned_pages
;
6023 realsize
= freesize
= zone
->present_pages
;
6026 * Adjust freesize so that it accounts for how much memory
6027 * is used by this zone for memmap. This affects the watermark
6028 * and per-cpu initialisations
6030 memmap_pages
= calc_memmap_size(size
, realsize
);
6031 if (!is_highmem_idx(j
)) {
6032 if (freesize
>= memmap_pages
) {
6033 freesize
-= memmap_pages
;
6036 " %s zone: %lu pages used for memmap\n",
6037 zone_names
[j
], memmap_pages
);
6039 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6040 zone_names
[j
], memmap_pages
, freesize
);
6043 /* Account for reserved pages */
6044 if (j
== 0 && freesize
> dma_reserve
) {
6045 freesize
-= dma_reserve
;
6046 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6047 zone_names
[0], dma_reserve
);
6050 if (!is_highmem_idx(j
))
6051 nr_kernel_pages
+= freesize
;
6052 /* Charge for highmem memmap if there are enough kernel pages */
6053 else if (nr_kernel_pages
> memmap_pages
* 2)
6054 nr_kernel_pages
-= memmap_pages
;
6055 nr_all_pages
+= freesize
;
6058 * Set an approximate value for lowmem here, it will be adjusted
6059 * when the bootmem allocator frees pages into the buddy system.
6060 * And all highmem pages will be managed by the buddy system.
6062 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6066 zone
->name
= zone_names
[j
];
6067 zone
->zone_pgdat
= pgdat
;
6068 spin_lock_init(&zone
->lock
);
6069 zone_seqlock_init(zone
);
6070 zone_pcp_init(zone
);
6075 set_pageblock_order();
6076 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6077 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6079 memmap_init(size
, nid
, j
, zone_start_pfn
);
6083 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6085 unsigned long __maybe_unused start
= 0;
6086 unsigned long __maybe_unused offset
= 0;
6088 /* Skip empty nodes */
6089 if (!pgdat
->node_spanned_pages
)
6092 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6093 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6094 offset
= pgdat
->node_start_pfn
- start
;
6095 /* ia64 gets its own node_mem_map, before this, without bootmem */
6096 if (!pgdat
->node_mem_map
) {
6097 unsigned long size
, end
;
6101 * The zone's endpoints aren't required to be MAX_ORDER
6102 * aligned but the node_mem_map endpoints must be in order
6103 * for the buddy allocator to function correctly.
6105 end
= pgdat_end_pfn(pgdat
);
6106 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6107 size
= (end
- start
) * sizeof(struct page
);
6108 map
= alloc_remap(pgdat
->node_id
, size
);
6110 map
= memblock_virt_alloc_node_nopanic(size
,
6112 pgdat
->node_mem_map
= map
+ offset
;
6114 #ifndef CONFIG_NEED_MULTIPLE_NODES
6116 * With no DISCONTIG, the global mem_map is just set as node 0's
6118 if (pgdat
== NODE_DATA(0)) {
6119 mem_map
= NODE_DATA(0)->node_mem_map
;
6120 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6121 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6123 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6126 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6129 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6130 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6132 pg_data_t
*pgdat
= NODE_DATA(nid
);
6133 unsigned long start_pfn
= 0;
6134 unsigned long end_pfn
= 0;
6136 /* pg_data_t should be reset to zero when it's allocated */
6137 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6139 reset_deferred_meminit(pgdat
);
6140 pgdat
->node_id
= nid
;
6141 pgdat
->node_start_pfn
= node_start_pfn
;
6142 pgdat
->per_cpu_nodestats
= NULL
;
6143 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6144 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6145 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6146 (u64
)start_pfn
<< PAGE_SHIFT
,
6147 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6149 start_pfn
= node_start_pfn
;
6151 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6152 zones_size
, zholes_size
);
6154 alloc_node_mem_map(pgdat
);
6155 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6156 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6157 nid
, (unsigned long)pgdat
,
6158 (unsigned long)pgdat
->node_mem_map
);
6161 free_area_init_core(pgdat
);
6164 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6166 #if MAX_NUMNODES > 1
6168 * Figure out the number of possible node ids.
6170 void __init
setup_nr_node_ids(void)
6172 unsigned int highest
;
6174 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6175 nr_node_ids
= highest
+ 1;
6180 * node_map_pfn_alignment - determine the maximum internode alignment
6182 * This function should be called after node map is populated and sorted.
6183 * It calculates the maximum power of two alignment which can distinguish
6186 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6187 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6188 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6189 * shifted, 1GiB is enough and this function will indicate so.
6191 * This is used to test whether pfn -> nid mapping of the chosen memory
6192 * model has fine enough granularity to avoid incorrect mapping for the
6193 * populated node map.
6195 * Returns the determined alignment in pfn's. 0 if there is no alignment
6196 * requirement (single node).
6198 unsigned long __init
node_map_pfn_alignment(void)
6200 unsigned long accl_mask
= 0, last_end
= 0;
6201 unsigned long start
, end
, mask
;
6205 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6206 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6213 * Start with a mask granular enough to pin-point to the
6214 * start pfn and tick off bits one-by-one until it becomes
6215 * too coarse to separate the current node from the last.
6217 mask
= ~((1 << __ffs(start
)) - 1);
6218 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6221 /* accumulate all internode masks */
6225 /* convert mask to number of pages */
6226 return ~accl_mask
+ 1;
6229 /* Find the lowest pfn for a node */
6230 static unsigned long __init
find_min_pfn_for_node(int nid
)
6232 unsigned long min_pfn
= ULONG_MAX
;
6233 unsigned long start_pfn
;
6236 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6237 min_pfn
= min(min_pfn
, start_pfn
);
6239 if (min_pfn
== ULONG_MAX
) {
6240 pr_warn("Could not find start_pfn for node %d\n", nid
);
6248 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6250 * It returns the minimum PFN based on information provided via
6251 * memblock_set_node().
6253 unsigned long __init
find_min_pfn_with_active_regions(void)
6255 return find_min_pfn_for_node(MAX_NUMNODES
);
6259 * early_calculate_totalpages()
6260 * Sum pages in active regions for movable zone.
6261 * Populate N_MEMORY for calculating usable_nodes.
6263 static unsigned long __init
early_calculate_totalpages(void)
6265 unsigned long totalpages
= 0;
6266 unsigned long start_pfn
, end_pfn
;
6269 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6270 unsigned long pages
= end_pfn
- start_pfn
;
6272 totalpages
+= pages
;
6274 node_set_state(nid
, N_MEMORY
);
6280 * Find the PFN the Movable zone begins in each node. Kernel memory
6281 * is spread evenly between nodes as long as the nodes have enough
6282 * memory. When they don't, some nodes will have more kernelcore than
6285 static void __init
find_zone_movable_pfns_for_nodes(void)
6288 unsigned long usable_startpfn
;
6289 unsigned long kernelcore_node
, kernelcore_remaining
;
6290 /* save the state before borrow the nodemask */
6291 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6292 unsigned long totalpages
= early_calculate_totalpages();
6293 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6294 struct memblock_region
*r
;
6296 /* Need to find movable_zone earlier when movable_node is specified. */
6297 find_usable_zone_for_movable();
6300 * If movable_node is specified, ignore kernelcore and movablecore
6303 if (movable_node_is_enabled()) {
6304 for_each_memblock(memory
, r
) {
6305 if (!memblock_is_hotpluggable(r
))
6310 usable_startpfn
= PFN_DOWN(r
->base
);
6311 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6312 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6320 * If kernelcore=mirror is specified, ignore movablecore option
6322 if (mirrored_kernelcore
) {
6323 bool mem_below_4gb_not_mirrored
= false;
6325 for_each_memblock(memory
, r
) {
6326 if (memblock_is_mirror(r
))
6331 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6333 if (usable_startpfn
< 0x100000) {
6334 mem_below_4gb_not_mirrored
= true;
6338 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6339 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6343 if (mem_below_4gb_not_mirrored
)
6344 pr_warn("This configuration results in unmirrored kernel memory.");
6350 * If movablecore=nn[KMG] was specified, calculate what size of
6351 * kernelcore that corresponds so that memory usable for
6352 * any allocation type is evenly spread. If both kernelcore
6353 * and movablecore are specified, then the value of kernelcore
6354 * will be used for required_kernelcore if it's greater than
6355 * what movablecore would have allowed.
6357 if (required_movablecore
) {
6358 unsigned long corepages
;
6361 * Round-up so that ZONE_MOVABLE is at least as large as what
6362 * was requested by the user
6364 required_movablecore
=
6365 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6366 required_movablecore
= min(totalpages
, required_movablecore
);
6367 corepages
= totalpages
- required_movablecore
;
6369 required_kernelcore
= max(required_kernelcore
, corepages
);
6373 * If kernelcore was not specified or kernelcore size is larger
6374 * than totalpages, there is no ZONE_MOVABLE.
6376 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6379 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6380 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6383 /* Spread kernelcore memory as evenly as possible throughout nodes */
6384 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6385 for_each_node_state(nid
, N_MEMORY
) {
6386 unsigned long start_pfn
, end_pfn
;
6389 * Recalculate kernelcore_node if the division per node
6390 * now exceeds what is necessary to satisfy the requested
6391 * amount of memory for the kernel
6393 if (required_kernelcore
< kernelcore_node
)
6394 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6397 * As the map is walked, we track how much memory is usable
6398 * by the kernel using kernelcore_remaining. When it is
6399 * 0, the rest of the node is usable by ZONE_MOVABLE
6401 kernelcore_remaining
= kernelcore_node
;
6403 /* Go through each range of PFNs within this node */
6404 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6405 unsigned long size_pages
;
6407 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6408 if (start_pfn
>= end_pfn
)
6411 /* Account for what is only usable for kernelcore */
6412 if (start_pfn
< usable_startpfn
) {
6413 unsigned long kernel_pages
;
6414 kernel_pages
= min(end_pfn
, usable_startpfn
)
6417 kernelcore_remaining
-= min(kernel_pages
,
6418 kernelcore_remaining
);
6419 required_kernelcore
-= min(kernel_pages
,
6420 required_kernelcore
);
6422 /* Continue if range is now fully accounted */
6423 if (end_pfn
<= usable_startpfn
) {
6426 * Push zone_movable_pfn to the end so
6427 * that if we have to rebalance
6428 * kernelcore across nodes, we will
6429 * not double account here
6431 zone_movable_pfn
[nid
] = end_pfn
;
6434 start_pfn
= usable_startpfn
;
6438 * The usable PFN range for ZONE_MOVABLE is from
6439 * start_pfn->end_pfn. Calculate size_pages as the
6440 * number of pages used as kernelcore
6442 size_pages
= end_pfn
- start_pfn
;
6443 if (size_pages
> kernelcore_remaining
)
6444 size_pages
= kernelcore_remaining
;
6445 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6448 * Some kernelcore has been met, update counts and
6449 * break if the kernelcore for this node has been
6452 required_kernelcore
-= min(required_kernelcore
,
6454 kernelcore_remaining
-= size_pages
;
6455 if (!kernelcore_remaining
)
6461 * If there is still required_kernelcore, we do another pass with one
6462 * less node in the count. This will push zone_movable_pfn[nid] further
6463 * along on the nodes that still have memory until kernelcore is
6467 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6471 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6472 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6473 zone_movable_pfn
[nid
] =
6474 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6477 /* restore the node_state */
6478 node_states
[N_MEMORY
] = saved_node_state
;
6481 /* Any regular or high memory on that node ? */
6482 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6484 enum zone_type zone_type
;
6486 if (N_MEMORY
== N_NORMAL_MEMORY
)
6489 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6490 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6491 if (populated_zone(zone
)) {
6492 node_set_state(nid
, N_HIGH_MEMORY
);
6493 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6494 zone_type
<= ZONE_NORMAL
)
6495 node_set_state(nid
, N_NORMAL_MEMORY
);
6502 * free_area_init_nodes - Initialise all pg_data_t and zone data
6503 * @max_zone_pfn: an array of max PFNs for each zone
6505 * This will call free_area_init_node() for each active node in the system.
6506 * Using the page ranges provided by memblock_set_node(), the size of each
6507 * zone in each node and their holes is calculated. If the maximum PFN
6508 * between two adjacent zones match, it is assumed that the zone is empty.
6509 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6510 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6511 * starts where the previous one ended. For example, ZONE_DMA32 starts
6512 * at arch_max_dma_pfn.
6514 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6516 unsigned long start_pfn
, end_pfn
;
6519 /* Record where the zone boundaries are */
6520 memset(arch_zone_lowest_possible_pfn
, 0,
6521 sizeof(arch_zone_lowest_possible_pfn
));
6522 memset(arch_zone_highest_possible_pfn
, 0,
6523 sizeof(arch_zone_highest_possible_pfn
));
6525 start_pfn
= find_min_pfn_with_active_regions();
6527 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6528 if (i
== ZONE_MOVABLE
)
6531 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6532 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6533 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6535 start_pfn
= end_pfn
;
6538 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6539 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6540 find_zone_movable_pfns_for_nodes();
6542 /* Print out the zone ranges */
6543 pr_info("Zone ranges:\n");
6544 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6545 if (i
== ZONE_MOVABLE
)
6547 pr_info(" %-8s ", zone_names
[i
]);
6548 if (arch_zone_lowest_possible_pfn
[i
] ==
6549 arch_zone_highest_possible_pfn
[i
])
6552 pr_cont("[mem %#018Lx-%#018Lx]\n",
6553 (u64
)arch_zone_lowest_possible_pfn
[i
]
6555 ((u64
)arch_zone_highest_possible_pfn
[i
]
6556 << PAGE_SHIFT
) - 1);
6559 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6560 pr_info("Movable zone start for each node\n");
6561 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6562 if (zone_movable_pfn
[i
])
6563 pr_info(" Node %d: %#018Lx\n", i
,
6564 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6567 /* Print out the early node map */
6568 pr_info("Early memory node ranges\n");
6569 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6570 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6571 (u64
)start_pfn
<< PAGE_SHIFT
,
6572 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6574 /* Initialise every node */
6575 mminit_verify_pageflags_layout();
6576 setup_nr_node_ids();
6577 for_each_online_node(nid
) {
6578 pg_data_t
*pgdat
= NODE_DATA(nid
);
6579 free_area_init_node(nid
, NULL
,
6580 find_min_pfn_for_node(nid
), NULL
);
6582 /* Any memory on that node */
6583 if (pgdat
->node_present_pages
)
6584 node_set_state(nid
, N_MEMORY
);
6585 check_for_memory(pgdat
, nid
);
6589 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6591 unsigned long long coremem
;
6595 coremem
= memparse(p
, &p
);
6596 *core
= coremem
>> PAGE_SHIFT
;
6598 /* Paranoid check that UL is enough for the coremem value */
6599 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6605 * kernelcore=size sets the amount of memory for use for allocations that
6606 * cannot be reclaimed or migrated.
6608 static int __init
cmdline_parse_kernelcore(char *p
)
6610 /* parse kernelcore=mirror */
6611 if (parse_option_str(p
, "mirror")) {
6612 mirrored_kernelcore
= true;
6616 return cmdline_parse_core(p
, &required_kernelcore
);
6620 * movablecore=size sets the amount of memory for use for allocations that
6621 * can be reclaimed or migrated.
6623 static int __init
cmdline_parse_movablecore(char *p
)
6625 return cmdline_parse_core(p
, &required_movablecore
);
6628 early_param("kernelcore", cmdline_parse_kernelcore
);
6629 early_param("movablecore", cmdline_parse_movablecore
);
6631 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6633 void adjust_managed_page_count(struct page
*page
, long count
)
6635 spin_lock(&managed_page_count_lock
);
6636 page_zone(page
)->managed_pages
+= count
;
6637 totalram_pages
+= count
;
6638 #ifdef CONFIG_HIGHMEM
6639 if (PageHighMem(page
))
6640 totalhigh_pages
+= count
;
6642 spin_unlock(&managed_page_count_lock
);
6644 EXPORT_SYMBOL(adjust_managed_page_count
);
6646 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6649 unsigned long pages
= 0;
6651 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6652 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6653 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6654 if ((unsigned int)poison
<= 0xFF)
6655 memset(pos
, poison
, PAGE_SIZE
);
6656 free_reserved_page(virt_to_page(pos
));
6660 pr_info("Freeing %s memory: %ldK\n",
6661 s
, pages
<< (PAGE_SHIFT
- 10));
6665 EXPORT_SYMBOL(free_reserved_area
);
6667 #ifdef CONFIG_HIGHMEM
6668 void free_highmem_page(struct page
*page
)
6670 __free_reserved_page(page
);
6672 page_zone(page
)->managed_pages
++;
6678 void __init
mem_init_print_info(const char *str
)
6680 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6681 unsigned long init_code_size
, init_data_size
;
6683 physpages
= get_num_physpages();
6684 codesize
= _etext
- _stext
;
6685 datasize
= _edata
- _sdata
;
6686 rosize
= __end_rodata
- __start_rodata
;
6687 bss_size
= __bss_stop
- __bss_start
;
6688 init_data_size
= __init_end
- __init_begin
;
6689 init_code_size
= _einittext
- _sinittext
;
6692 * Detect special cases and adjust section sizes accordingly:
6693 * 1) .init.* may be embedded into .data sections
6694 * 2) .init.text.* may be out of [__init_begin, __init_end],
6695 * please refer to arch/tile/kernel/vmlinux.lds.S.
6696 * 3) .rodata.* may be embedded into .text or .data sections.
6698 #define adj_init_size(start, end, size, pos, adj) \
6700 if (start <= pos && pos < end && size > adj) \
6704 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6705 _sinittext
, init_code_size
);
6706 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6707 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6708 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6709 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6711 #undef adj_init_size
6713 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6714 #ifdef CONFIG_HIGHMEM
6718 nr_free_pages() << (PAGE_SHIFT
- 10),
6719 physpages
<< (PAGE_SHIFT
- 10),
6720 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6721 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6722 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6723 totalcma_pages
<< (PAGE_SHIFT
- 10),
6724 #ifdef CONFIG_HIGHMEM
6725 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6727 str
? ", " : "", str
? str
: "");
6731 * set_dma_reserve - set the specified number of pages reserved in the first zone
6732 * @new_dma_reserve: The number of pages to mark reserved
6734 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6735 * In the DMA zone, a significant percentage may be consumed by kernel image
6736 * and other unfreeable allocations which can skew the watermarks badly. This
6737 * function may optionally be used to account for unfreeable pages in the
6738 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6739 * smaller per-cpu batchsize.
6741 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6743 dma_reserve
= new_dma_reserve
;
6746 void __init
free_area_init(unsigned long *zones_size
)
6748 free_area_init_node(0, zones_size
,
6749 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6752 static int page_alloc_cpu_dead(unsigned int cpu
)
6755 lru_add_drain_cpu(cpu
);
6759 * Spill the event counters of the dead processor
6760 * into the current processors event counters.
6761 * This artificially elevates the count of the current
6764 vm_events_fold_cpu(cpu
);
6767 * Zero the differential counters of the dead processor
6768 * so that the vm statistics are consistent.
6770 * This is only okay since the processor is dead and cannot
6771 * race with what we are doing.
6773 cpu_vm_stats_fold(cpu
);
6777 void __init
page_alloc_init(void)
6781 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
6782 "mm/page_alloc:dead", NULL
,
6783 page_alloc_cpu_dead
);
6788 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6789 * or min_free_kbytes changes.
6791 static void calculate_totalreserve_pages(void)
6793 struct pglist_data
*pgdat
;
6794 unsigned long reserve_pages
= 0;
6795 enum zone_type i
, j
;
6797 for_each_online_pgdat(pgdat
) {
6799 pgdat
->totalreserve_pages
= 0;
6801 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6802 struct zone
*zone
= pgdat
->node_zones
+ i
;
6805 /* Find valid and maximum lowmem_reserve in the zone */
6806 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6807 if (zone
->lowmem_reserve
[j
] > max
)
6808 max
= zone
->lowmem_reserve
[j
];
6811 /* we treat the high watermark as reserved pages. */
6812 max
+= high_wmark_pages(zone
);
6814 if (max
> zone
->managed_pages
)
6815 max
= zone
->managed_pages
;
6817 pgdat
->totalreserve_pages
+= max
;
6819 reserve_pages
+= max
;
6822 totalreserve_pages
= reserve_pages
;
6826 * setup_per_zone_lowmem_reserve - called whenever
6827 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6828 * has a correct pages reserved value, so an adequate number of
6829 * pages are left in the zone after a successful __alloc_pages().
6831 static void setup_per_zone_lowmem_reserve(void)
6833 struct pglist_data
*pgdat
;
6834 enum zone_type j
, idx
;
6836 for_each_online_pgdat(pgdat
) {
6837 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6838 struct zone
*zone
= pgdat
->node_zones
+ j
;
6839 unsigned long managed_pages
= zone
->managed_pages
;
6841 zone
->lowmem_reserve
[j
] = 0;
6845 struct zone
*lower_zone
;
6849 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6850 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6852 lower_zone
= pgdat
->node_zones
+ idx
;
6853 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6854 sysctl_lowmem_reserve_ratio
[idx
];
6855 managed_pages
+= lower_zone
->managed_pages
;
6860 /* update totalreserve_pages */
6861 calculate_totalreserve_pages();
6864 static void __setup_per_zone_wmarks(void)
6866 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6867 unsigned long lowmem_pages
= 0;
6869 unsigned long flags
;
6871 /* Calculate total number of !ZONE_HIGHMEM pages */
6872 for_each_zone(zone
) {
6873 if (!is_highmem(zone
))
6874 lowmem_pages
+= zone
->managed_pages
;
6877 for_each_zone(zone
) {
6880 spin_lock_irqsave(&zone
->lock
, flags
);
6881 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6882 do_div(tmp
, lowmem_pages
);
6883 if (is_highmem(zone
)) {
6885 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6886 * need highmem pages, so cap pages_min to a small
6889 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6890 * deltas control asynch page reclaim, and so should
6891 * not be capped for highmem.
6893 unsigned long min_pages
;
6895 min_pages
= zone
->managed_pages
/ 1024;
6896 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6897 zone
->watermark
[WMARK_MIN
] = min_pages
;
6900 * If it's a lowmem zone, reserve a number of pages
6901 * proportionate to the zone's size.
6903 zone
->watermark
[WMARK_MIN
] = tmp
;
6907 * Set the kswapd watermarks distance according to the
6908 * scale factor in proportion to available memory, but
6909 * ensure a minimum size on small systems.
6911 tmp
= max_t(u64
, tmp
>> 2,
6912 mult_frac(zone
->managed_pages
,
6913 watermark_scale_factor
, 10000));
6915 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6916 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6918 spin_unlock_irqrestore(&zone
->lock
, flags
);
6921 /* update totalreserve_pages */
6922 calculate_totalreserve_pages();
6926 * setup_per_zone_wmarks - called when min_free_kbytes changes
6927 * or when memory is hot-{added|removed}
6929 * Ensures that the watermark[min,low,high] values for each zone are set
6930 * correctly with respect to min_free_kbytes.
6932 void setup_per_zone_wmarks(void)
6934 mutex_lock(&zonelists_mutex
);
6935 __setup_per_zone_wmarks();
6936 mutex_unlock(&zonelists_mutex
);
6940 * Initialise min_free_kbytes.
6942 * For small machines we want it small (128k min). For large machines
6943 * we want it large (64MB max). But it is not linear, because network
6944 * bandwidth does not increase linearly with machine size. We use
6946 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6947 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6963 int __meminit
init_per_zone_wmark_min(void)
6965 unsigned long lowmem_kbytes
;
6966 int new_min_free_kbytes
;
6968 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6969 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6971 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6972 min_free_kbytes
= new_min_free_kbytes
;
6973 if (min_free_kbytes
< 128)
6974 min_free_kbytes
= 128;
6975 if (min_free_kbytes
> 65536)
6976 min_free_kbytes
= 65536;
6978 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6979 new_min_free_kbytes
, user_min_free_kbytes
);
6981 setup_per_zone_wmarks();
6982 refresh_zone_stat_thresholds();
6983 setup_per_zone_lowmem_reserve();
6986 setup_min_unmapped_ratio();
6987 setup_min_slab_ratio();
6992 core_initcall(init_per_zone_wmark_min
)
6995 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6996 * that we can call two helper functions whenever min_free_kbytes
6999 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7000 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7004 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7009 user_min_free_kbytes
= min_free_kbytes
;
7010 setup_per_zone_wmarks();
7015 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7016 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7020 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7025 setup_per_zone_wmarks();
7031 static void setup_min_unmapped_ratio(void)
7036 for_each_online_pgdat(pgdat
)
7037 pgdat
->min_unmapped_pages
= 0;
7040 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7041 sysctl_min_unmapped_ratio
) / 100;
7045 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7046 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7050 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7054 setup_min_unmapped_ratio();
7059 static void setup_min_slab_ratio(void)
7064 for_each_online_pgdat(pgdat
)
7065 pgdat
->min_slab_pages
= 0;
7068 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7069 sysctl_min_slab_ratio
) / 100;
7072 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7073 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7077 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7081 setup_min_slab_ratio();
7088 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7089 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7090 * whenever sysctl_lowmem_reserve_ratio changes.
7092 * The reserve ratio obviously has absolutely no relation with the
7093 * minimum watermarks. The lowmem reserve ratio can only make sense
7094 * if in function of the boot time zone sizes.
7096 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7097 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7099 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7100 setup_per_zone_lowmem_reserve();
7105 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7106 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7107 * pagelist can have before it gets flushed back to buddy allocator.
7109 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7110 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7113 int old_percpu_pagelist_fraction
;
7116 mutex_lock(&pcp_batch_high_lock
);
7117 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7119 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7120 if (!write
|| ret
< 0)
7123 /* Sanity checking to avoid pcp imbalance */
7124 if (percpu_pagelist_fraction
&&
7125 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7126 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7132 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7135 for_each_populated_zone(zone
) {
7138 for_each_possible_cpu(cpu
)
7139 pageset_set_high_and_batch(zone
,
7140 per_cpu_ptr(zone
->pageset
, cpu
));
7143 mutex_unlock(&pcp_batch_high_lock
);
7148 int hashdist
= HASHDIST_DEFAULT
;
7150 static int __init
set_hashdist(char *str
)
7154 hashdist
= simple_strtoul(str
, &str
, 0);
7157 __setup("hashdist=", set_hashdist
);
7160 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7162 * Returns the number of pages that arch has reserved but
7163 * is not known to alloc_large_system_hash().
7165 static unsigned long __init
arch_reserved_kernel_pages(void)
7172 * allocate a large system hash table from bootmem
7173 * - it is assumed that the hash table must contain an exact power-of-2
7174 * quantity of entries
7175 * - limit is the number of hash buckets, not the total allocation size
7177 void *__init
alloc_large_system_hash(const char *tablename
,
7178 unsigned long bucketsize
,
7179 unsigned long numentries
,
7182 unsigned int *_hash_shift
,
7183 unsigned int *_hash_mask
,
7184 unsigned long low_limit
,
7185 unsigned long high_limit
)
7187 unsigned long long max
= high_limit
;
7188 unsigned long log2qty
, size
;
7191 /* allow the kernel cmdline to have a say */
7193 /* round applicable memory size up to nearest megabyte */
7194 numentries
= nr_kernel_pages
;
7195 numentries
-= arch_reserved_kernel_pages();
7197 /* It isn't necessary when PAGE_SIZE >= 1MB */
7198 if (PAGE_SHIFT
< 20)
7199 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7201 /* limit to 1 bucket per 2^scale bytes of low memory */
7202 if (scale
> PAGE_SHIFT
)
7203 numentries
>>= (scale
- PAGE_SHIFT
);
7205 numentries
<<= (PAGE_SHIFT
- scale
);
7207 /* Make sure we've got at least a 0-order allocation.. */
7208 if (unlikely(flags
& HASH_SMALL
)) {
7209 /* Makes no sense without HASH_EARLY */
7210 WARN_ON(!(flags
& HASH_EARLY
));
7211 if (!(numentries
>> *_hash_shift
)) {
7212 numentries
= 1UL << *_hash_shift
;
7213 BUG_ON(!numentries
);
7215 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7216 numentries
= PAGE_SIZE
/ bucketsize
;
7218 numentries
= roundup_pow_of_two(numentries
);
7220 /* limit allocation size to 1/16 total memory by default */
7222 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7223 do_div(max
, bucketsize
);
7225 max
= min(max
, 0x80000000ULL
);
7227 if (numentries
< low_limit
)
7228 numentries
= low_limit
;
7229 if (numentries
> max
)
7232 log2qty
= ilog2(numentries
);
7235 size
= bucketsize
<< log2qty
;
7236 if (flags
& HASH_EARLY
)
7237 table
= memblock_virt_alloc_nopanic(size
, 0);
7239 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
7242 * If bucketsize is not a power-of-two, we may free
7243 * some pages at the end of hash table which
7244 * alloc_pages_exact() automatically does
7246 if (get_order(size
) < MAX_ORDER
) {
7247 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
7248 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
7251 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7254 panic("Failed to allocate %s hash table\n", tablename
);
7256 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7257 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7260 *_hash_shift
= log2qty
;
7262 *_hash_mask
= (1 << log2qty
) - 1;
7268 * This function checks whether pageblock includes unmovable pages or not.
7269 * If @count is not zero, it is okay to include less @count unmovable pages
7271 * PageLRU check without isolation or lru_lock could race so that
7272 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7273 * check without lock_page also may miss some movable non-lru pages at
7274 * race condition. So you can't expect this function should be exact.
7276 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7277 bool skip_hwpoisoned_pages
)
7279 unsigned long pfn
, iter
, found
;
7283 * For avoiding noise data, lru_add_drain_all() should be called
7284 * If ZONE_MOVABLE, the zone never contains unmovable pages
7286 if (zone_idx(zone
) == ZONE_MOVABLE
)
7288 mt
= get_pageblock_migratetype(page
);
7289 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7292 pfn
= page_to_pfn(page
);
7293 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7294 unsigned long check
= pfn
+ iter
;
7296 if (!pfn_valid_within(check
))
7299 page
= pfn_to_page(check
);
7302 * Hugepages are not in LRU lists, but they're movable.
7303 * We need not scan over tail pages bacause we don't
7304 * handle each tail page individually in migration.
7306 if (PageHuge(page
)) {
7307 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7312 * We can't use page_count without pin a page
7313 * because another CPU can free compound page.
7314 * This check already skips compound tails of THP
7315 * because their page->_refcount is zero at all time.
7317 if (!page_ref_count(page
)) {
7318 if (PageBuddy(page
))
7319 iter
+= (1 << page_order(page
)) - 1;
7324 * The HWPoisoned page may be not in buddy system, and
7325 * page_count() is not 0.
7327 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7330 if (__PageMovable(page
))
7336 * If there are RECLAIMABLE pages, we need to check
7337 * it. But now, memory offline itself doesn't call
7338 * shrink_node_slabs() and it still to be fixed.
7341 * If the page is not RAM, page_count()should be 0.
7342 * we don't need more check. This is an _used_ not-movable page.
7344 * The problematic thing here is PG_reserved pages. PG_reserved
7345 * is set to both of a memory hole page and a _used_ kernel
7354 bool is_pageblock_removable_nolock(struct page
*page
)
7360 * We have to be careful here because we are iterating over memory
7361 * sections which are not zone aware so we might end up outside of
7362 * the zone but still within the section.
7363 * We have to take care about the node as well. If the node is offline
7364 * its NODE_DATA will be NULL - see page_zone.
7366 if (!node_online(page_to_nid(page
)))
7369 zone
= page_zone(page
);
7370 pfn
= page_to_pfn(page
);
7371 if (!zone_spans_pfn(zone
, pfn
))
7374 return !has_unmovable_pages(zone
, page
, 0, true);
7377 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7379 static unsigned long pfn_max_align_down(unsigned long pfn
)
7381 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7382 pageblock_nr_pages
) - 1);
7385 static unsigned long pfn_max_align_up(unsigned long pfn
)
7387 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7388 pageblock_nr_pages
));
7391 /* [start, end) must belong to a single zone. */
7392 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7393 unsigned long start
, unsigned long end
)
7395 /* This function is based on compact_zone() from compaction.c. */
7396 unsigned long nr_reclaimed
;
7397 unsigned long pfn
= start
;
7398 unsigned int tries
= 0;
7403 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7404 if (fatal_signal_pending(current
)) {
7409 if (list_empty(&cc
->migratepages
)) {
7410 cc
->nr_migratepages
= 0;
7411 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7417 } else if (++tries
== 5) {
7418 ret
= ret
< 0 ? ret
: -EBUSY
;
7422 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7424 cc
->nr_migratepages
-= nr_reclaimed
;
7426 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7427 NULL
, 0, cc
->mode
, MR_CMA
);
7430 putback_movable_pages(&cc
->migratepages
);
7437 * alloc_contig_range() -- tries to allocate given range of pages
7438 * @start: start PFN to allocate
7439 * @end: one-past-the-last PFN to allocate
7440 * @migratetype: migratetype of the underlaying pageblocks (either
7441 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7442 * in range must have the same migratetype and it must
7443 * be either of the two.
7444 * @gfp_mask: GFP mask to use during compaction
7446 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7447 * aligned, however it's the caller's responsibility to guarantee that
7448 * we are the only thread that changes migrate type of pageblocks the
7451 * The PFN range must belong to a single zone.
7453 * Returns zero on success or negative error code. On success all
7454 * pages which PFN is in [start, end) are allocated for the caller and
7455 * need to be freed with free_contig_range().
7457 int alloc_contig_range(unsigned long start
, unsigned long end
,
7458 unsigned migratetype
, gfp_t gfp_mask
)
7460 unsigned long outer_start
, outer_end
;
7464 struct compact_control cc
= {
7465 .nr_migratepages
= 0,
7467 .zone
= page_zone(pfn_to_page(start
)),
7468 .mode
= MIGRATE_SYNC
,
7469 .ignore_skip_hint
= true,
7470 .gfp_mask
= current_gfp_context(gfp_mask
),
7472 INIT_LIST_HEAD(&cc
.migratepages
);
7475 * What we do here is we mark all pageblocks in range as
7476 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7477 * have different sizes, and due to the way page allocator
7478 * work, we align the range to biggest of the two pages so
7479 * that page allocator won't try to merge buddies from
7480 * different pageblocks and change MIGRATE_ISOLATE to some
7481 * other migration type.
7483 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7484 * migrate the pages from an unaligned range (ie. pages that
7485 * we are interested in). This will put all the pages in
7486 * range back to page allocator as MIGRATE_ISOLATE.
7488 * When this is done, we take the pages in range from page
7489 * allocator removing them from the buddy system. This way
7490 * page allocator will never consider using them.
7492 * This lets us mark the pageblocks back as
7493 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7494 * aligned range but not in the unaligned, original range are
7495 * put back to page allocator so that buddy can use them.
7498 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7499 pfn_max_align_up(end
), migratetype
,
7505 * In case of -EBUSY, we'd like to know which page causes problem.
7506 * So, just fall through. We will check it in test_pages_isolated().
7508 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7509 if (ret
&& ret
!= -EBUSY
)
7513 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7514 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7515 * more, all pages in [start, end) are free in page allocator.
7516 * What we are going to do is to allocate all pages from
7517 * [start, end) (that is remove them from page allocator).
7519 * The only problem is that pages at the beginning and at the
7520 * end of interesting range may be not aligned with pages that
7521 * page allocator holds, ie. they can be part of higher order
7522 * pages. Because of this, we reserve the bigger range and
7523 * once this is done free the pages we are not interested in.
7525 * We don't have to hold zone->lock here because the pages are
7526 * isolated thus they won't get removed from buddy.
7529 lru_add_drain_all();
7530 drain_all_pages(cc
.zone
);
7533 outer_start
= start
;
7534 while (!PageBuddy(pfn_to_page(outer_start
))) {
7535 if (++order
>= MAX_ORDER
) {
7536 outer_start
= start
;
7539 outer_start
&= ~0UL << order
;
7542 if (outer_start
!= start
) {
7543 order
= page_order(pfn_to_page(outer_start
));
7546 * outer_start page could be small order buddy page and
7547 * it doesn't include start page. Adjust outer_start
7548 * in this case to report failed page properly
7549 * on tracepoint in test_pages_isolated()
7551 if (outer_start
+ (1UL << order
) <= start
)
7552 outer_start
= start
;
7555 /* Make sure the range is really isolated. */
7556 if (test_pages_isolated(outer_start
, end
, false)) {
7557 pr_info("%s: [%lx, %lx) PFNs busy\n",
7558 __func__
, outer_start
, end
);
7563 /* Grab isolated pages from freelists. */
7564 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7570 /* Free head and tail (if any) */
7571 if (start
!= outer_start
)
7572 free_contig_range(outer_start
, start
- outer_start
);
7573 if (end
!= outer_end
)
7574 free_contig_range(end
, outer_end
- end
);
7577 undo_isolate_page_range(pfn_max_align_down(start
),
7578 pfn_max_align_up(end
), migratetype
);
7582 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7584 unsigned int count
= 0;
7586 for (; nr_pages
--; pfn
++) {
7587 struct page
*page
= pfn_to_page(pfn
);
7589 count
+= page_count(page
) != 1;
7592 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7596 #ifdef CONFIG_MEMORY_HOTPLUG
7598 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7599 * page high values need to be recalulated.
7601 void __meminit
zone_pcp_update(struct zone
*zone
)
7604 mutex_lock(&pcp_batch_high_lock
);
7605 for_each_possible_cpu(cpu
)
7606 pageset_set_high_and_batch(zone
,
7607 per_cpu_ptr(zone
->pageset
, cpu
));
7608 mutex_unlock(&pcp_batch_high_lock
);
7612 void zone_pcp_reset(struct zone
*zone
)
7614 unsigned long flags
;
7616 struct per_cpu_pageset
*pset
;
7618 /* avoid races with drain_pages() */
7619 local_irq_save(flags
);
7620 if (zone
->pageset
!= &boot_pageset
) {
7621 for_each_online_cpu(cpu
) {
7622 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7623 drain_zonestat(zone
, pset
);
7625 free_percpu(zone
->pageset
);
7626 zone
->pageset
= &boot_pageset
;
7628 local_irq_restore(flags
);
7631 #ifdef CONFIG_MEMORY_HOTREMOVE
7633 * All pages in the range must be in a single zone and isolated
7634 * before calling this.
7637 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7641 unsigned int order
, i
;
7643 unsigned long flags
;
7644 /* find the first valid pfn */
7645 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7650 zone
= page_zone(pfn_to_page(pfn
));
7651 spin_lock_irqsave(&zone
->lock
, flags
);
7653 while (pfn
< end_pfn
) {
7654 if (!pfn_valid(pfn
)) {
7658 page
= pfn_to_page(pfn
);
7660 * The HWPoisoned page may be not in buddy system, and
7661 * page_count() is not 0.
7663 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7665 SetPageReserved(page
);
7669 BUG_ON(page_count(page
));
7670 BUG_ON(!PageBuddy(page
));
7671 order
= page_order(page
);
7672 #ifdef CONFIG_DEBUG_VM
7673 pr_info("remove from free list %lx %d %lx\n",
7674 pfn
, 1 << order
, end_pfn
);
7676 list_del(&page
->lru
);
7677 rmv_page_order(page
);
7678 zone
->free_area
[order
].nr_free
--;
7679 for (i
= 0; i
< (1 << order
); i
++)
7680 SetPageReserved((page
+i
));
7681 pfn
+= (1 << order
);
7683 spin_unlock_irqrestore(&zone
->lock
, flags
);
7687 bool is_free_buddy_page(struct page
*page
)
7689 struct zone
*zone
= page_zone(page
);
7690 unsigned long pfn
= page_to_pfn(page
);
7691 unsigned long flags
;
7694 spin_lock_irqsave(&zone
->lock
, flags
);
7695 for (order
= 0; order
< MAX_ORDER
; order
++) {
7696 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7698 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7701 spin_unlock_irqrestore(&zone
->lock
, flags
);
7703 return order
< MAX_ORDER
;