1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
61 #include "page_reporting.h"
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t
;
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock
);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
100 #define pcp_trylock_prepare(flags) do { } while (0)
101 #define pcp_trylock_finish(flag) do { } while (0)
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags) local_irq_save(flags)
106 #define pcp_trylock_finish(flags) local_irq_restore(flags)
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin() preempt_disable()
119 #define pcpu_task_unpin() preempt_enable()
121 #define pcpu_task_pin() migrate_disable()
122 #define pcpu_task_unpin() migrate_enable()
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
129 #define pcpu_spin_lock(type, member, ptr) \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
138 #define pcpu_spin_trylock(type, member, ptr) \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
150 #define pcpu_spin_unlock(member, ptr) \
152 spin_unlock(&ptr->member); \
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
160 #define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
163 #define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node
);
168 EXPORT_PER_CPU_SYMBOL(numa_node
);
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
180 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
184 static DEFINE_MUTEX(pcpu_drain_mutex
);
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy
;
188 EXPORT_SYMBOL(latent_entropy
);
192 * Array of node states.
194 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
195 [N_POSSIBLE
] = NODE_MASK_ALL
,
196 [N_ONLINE
] = { { [0] = 1UL } },
198 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
202 [N_MEMORY
] = { { [0] = 1UL } },
203 [N_CPU
] = { { [0] = 1UL } },
206 EXPORT_SYMBOL(node_states
);
208 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly
;
214 static void __free_pages_ok(struct page
*page
, unsigned int order
,
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
228 static int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
229 #ifdef CONFIG_ZONE_DMA
232 #ifdef CONFIG_ZONE_DMA32
236 #ifdef CONFIG_HIGHMEM
242 char * const zone_names
[MAX_NR_ZONES
] = {
243 #ifdef CONFIG_ZONE_DMA
246 #ifdef CONFIG_ZONE_DMA32
250 #ifdef CONFIG_HIGHMEM
254 #ifdef CONFIG_ZONE_DEVICE
259 const char * const migratetype_names
[MIGRATE_TYPES
] = {
267 #ifdef CONFIG_MEMORY_ISOLATION
272 int min_free_kbytes
= 1024;
273 int user_min_free_kbytes
= -1;
274 static int watermark_boost_factor __read_mostly
= 15000;
275 static int watermark_scale_factor
= 10;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 EXPORT_SYMBOL(movable_zone
);
282 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
283 unsigned int nr_online_nodes __read_mostly
= 1;
284 EXPORT_SYMBOL(nr_node_ids
);
285 EXPORT_SYMBOL(nr_online_nodes
);
288 static bool page_contains_unaccepted(struct page
*page
, unsigned int order
);
289 static bool cond_accept_memory(struct zone
*zone
, unsigned int order
);
290 static bool __free_unaccepted(struct page
*page
);
292 int page_group_by_mobility_disabled __read_mostly
;
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 * During boot we initialize deferred pages on-demand, as needed, but once
297 * page_alloc_init_late() has finished, the deferred pages are all initialized,
298 * and we can permanently disable that path.
300 DEFINE_STATIC_KEY_TRUE(deferred_pages
);
302 static inline bool deferred_pages_enabled(void)
304 return static_branch_unlikely(&deferred_pages
);
308 * deferred_grow_zone() is __init, but it is called from
309 * get_page_from_freelist() during early boot until deferred_pages permanently
310 * disables this call. This is why we have refdata wrapper to avoid warning,
311 * and to ensure that the function body gets unloaded.
314 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
316 return deferred_grow_zone(zone
, order
);
319 static inline bool deferred_pages_enabled(void)
324 static inline bool _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page
*page
,
334 #ifdef CONFIG_SPARSEMEM
335 return section_to_usemap(__pfn_to_section(pfn
));
337 return page_zone(page
)->pageblock_flags
;
338 #endif /* CONFIG_SPARSEMEM */
341 static inline int pfn_to_bitidx(const struct page
*page
, unsigned long pfn
)
343 #ifdef CONFIG_SPARSEMEM
344 pfn
&= (PAGES_PER_SECTION
-1);
346 pfn
= pfn
- pageblock_start_pfn(page_zone(page
)->zone_start_pfn
);
347 #endif /* CONFIG_SPARSEMEM */
348 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353 * @page: The page within the block of interest
354 * @pfn: The target page frame number
355 * @mask: mask of bits that the caller is interested in
357 * Return: pageblock_bits flags
359 unsigned long get_pfnblock_flags_mask(const struct page
*page
,
360 unsigned long pfn
, unsigned long mask
)
362 unsigned long *bitmap
;
363 unsigned long bitidx
, word_bitidx
;
366 bitmap
= get_pageblock_bitmap(page
, pfn
);
367 bitidx
= pfn_to_bitidx(page
, pfn
);
368 word_bitidx
= bitidx
/ BITS_PER_LONG
;
369 bitidx
&= (BITS_PER_LONG
-1);
371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 * a consistent read of the memory array, so that results, even though
373 * racy, are not corrupted.
375 word
= READ_ONCE(bitmap
[word_bitidx
]);
376 return (word
>> bitidx
) & mask
;
379 static __always_inline
int get_pfnblock_migratetype(const struct page
*page
,
382 return get_pfnblock_flags_mask(page
, pfn
, MIGRATETYPE_MASK
);
386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387 * @page: The page within the block of interest
388 * @flags: The flags to set
389 * @pfn: The target page frame number
390 * @mask: mask of bits that the caller is interested in
392 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
396 unsigned long *bitmap
;
397 unsigned long bitidx
, word_bitidx
;
400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
401 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
403 bitmap
= get_pageblock_bitmap(page
, pfn
);
404 bitidx
= pfn_to_bitidx(page
, pfn
);
405 word_bitidx
= bitidx
/ BITS_PER_LONG
;
406 bitidx
&= (BITS_PER_LONG
-1);
408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
413 word
= READ_ONCE(bitmap
[word_bitidx
]);
415 } while (!try_cmpxchg(&bitmap
[word_bitidx
], &word
, (word
& ~mask
) | flags
));
418 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
420 if (unlikely(page_group_by_mobility_disabled
&&
421 migratetype
< MIGRATE_PCPTYPES
))
422 migratetype
= MIGRATE_UNMOVABLE
;
424 set_pfnblock_flags_mask(page
, (unsigned long)migratetype
,
425 page_to_pfn(page
), MIGRATETYPE_MASK
);
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
433 unsigned long pfn
= page_to_pfn(page
);
434 unsigned long sp
, start_pfn
;
437 seq
= zone_span_seqbegin(zone
);
438 start_pfn
= zone
->zone_start_pfn
;
439 sp
= zone
->spanned_pages
;
440 ret
= !zone_spans_pfn(zone
, pfn
);
441 } while (zone_span_seqretry(zone
, seq
));
444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 pfn
, zone_to_nid(zone
), zone
->name
,
446 start_pfn
, start_pfn
+ sp
);
452 * Temporary debugging check for pages not lying within a given zone.
454 static bool __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
456 if (page_outside_zone_boundaries(zone
, page
))
458 if (zone
!= page_zone(page
))
464 static inline bool __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
470 static void bad_page(struct page
*page
, const char *reason
)
472 static unsigned long resume
;
473 static unsigned long nr_shown
;
474 static unsigned long nr_unshown
;
477 * Allow a burst of 60 reports, then keep quiet for that minute;
478 * or allow a steady drip of one report per second.
480 if (nr_shown
== 60) {
481 if (time_before(jiffies
, resume
)) {
487 "BUG: Bad page state: %lu messages suppressed\n",
494 resume
= jiffies
+ 60 * HZ
;
496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
497 current
->comm
, page_to_pfn(page
));
498 dump_page(page
, reason
);
503 /* Leave bad fields for debug, except PageBuddy could make trouble */
505 __ClearPageBuddy(page
);
506 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
509 static inline unsigned int order_to_pindex(int migratetype
, int order
)
511 bool __maybe_unused movable
;
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
515 VM_BUG_ON(order
!= HPAGE_PMD_ORDER
);
517 movable
= migratetype
== MIGRATE_MOVABLE
;
519 return NR_LOWORDER_PCP_LISTS
+ movable
;
522 VM_BUG_ON(order
> PAGE_ALLOC_COSTLY_ORDER
);
525 return (MIGRATE_PCPTYPES
* order
) + migratetype
;
528 static inline int pindex_to_order(unsigned int pindex
)
530 int order
= pindex
/ MIGRATE_PCPTYPES
;
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 if (pindex
>= NR_LOWORDER_PCP_LISTS
)
534 order
= HPAGE_PMD_ORDER
;
536 VM_BUG_ON(order
> PAGE_ALLOC_COSTLY_ORDER
);
542 static inline bool pcp_allowed_order(unsigned int order
)
544 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 if (order
== HPAGE_PMD_ORDER
)
554 * Higher-order pages are called "compound pages". They are structured thusly:
556 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
561 * The first tail page's ->compound_order holds the order of allocation.
562 * This usage means that zero-order pages may not be compound.
565 void prep_compound_page(struct page
*page
, unsigned int order
)
568 int nr_pages
= 1 << order
;
571 for (i
= 1; i
< nr_pages
; i
++)
572 prep_compound_tail(page
, i
);
574 prep_compound_head(page
, order
);
577 static inline void set_buddy_order(struct page
*page
, unsigned int order
)
579 set_page_private(page
, order
);
580 __SetPageBuddy(page
);
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control
*task_capc(struct zone
*zone
)
586 struct capture_control
*capc
= current
->capture_control
;
588 return unlikely(capc
) &&
589 !(current
->flags
& PF_KTHREAD
) &&
591 capc
->cc
->zone
== zone
? capc
: NULL
;
595 compaction_capture(struct capture_control
*capc
, struct page
*page
,
596 int order
, int migratetype
)
598 if (!capc
|| order
!= capc
->cc
->order
)
601 /* Do not accidentally pollute CMA or isolated regions*/
602 if (is_migrate_cma(migratetype
) ||
603 is_migrate_isolate(migratetype
))
607 * Do not let lower order allocations pollute a movable pageblock
608 * unless compaction is also requesting movable pages.
609 * This might let an unmovable request use a reclaimable pageblock
610 * and vice-versa but no more than normal fallback logic which can
611 * have trouble finding a high-order free page.
613 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
&&
614 capc
->cc
->migratetype
!= MIGRATE_MOVABLE
)
622 static inline struct capture_control
*task_capc(struct zone
*zone
)
628 compaction_capture(struct capture_control
*capc
, struct page
*page
,
629 int order
, int migratetype
)
633 #endif /* CONFIG_COMPACTION */
635 static inline void account_freepages(struct zone
*zone
, int nr_pages
,
638 lockdep_assert_held(&zone
->lock
);
640 if (is_migrate_isolate(migratetype
))
643 __mod_zone_page_state(zone
, NR_FREE_PAGES
, nr_pages
);
645 if (is_migrate_cma(migratetype
))
646 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, nr_pages
);
647 else if (is_migrate_highatomic(migratetype
))
648 WRITE_ONCE(zone
->nr_free_highatomic
,
649 zone
->nr_free_highatomic
+ nr_pages
);
652 /* Used for pages not on another list */
653 static inline void __add_to_free_list(struct page
*page
, struct zone
*zone
,
654 unsigned int order
, int migratetype
,
657 struct free_area
*area
= &zone
->free_area
[order
];
659 VM_WARN_ONCE(get_pageblock_migratetype(page
) != migratetype
,
660 "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 get_pageblock_migratetype(page
), migratetype
, 1 << order
);
664 list_add_tail(&page
->buddy_list
, &area
->free_list
[migratetype
]);
666 list_add(&page
->buddy_list
, &area
->free_list
[migratetype
]);
671 * Used for pages which are on another list. Move the pages to the tail
672 * of the list - so the moved pages won't immediately be considered for
673 * allocation again (e.g., optimization for memory onlining).
675 static inline void move_to_free_list(struct page
*page
, struct zone
*zone
,
676 unsigned int order
, int old_mt
, int new_mt
)
678 struct free_area
*area
= &zone
->free_area
[order
];
680 /* Free page moving can fail, so it happens before the type update */
681 VM_WARN_ONCE(get_pageblock_migratetype(page
) != old_mt
,
682 "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 get_pageblock_migratetype(page
), old_mt
, 1 << order
);
685 list_move_tail(&page
->buddy_list
, &area
->free_list
[new_mt
]);
687 account_freepages(zone
, -(1 << order
), old_mt
);
688 account_freepages(zone
, 1 << order
, new_mt
);
691 static inline void __del_page_from_free_list(struct page
*page
, struct zone
*zone
,
692 unsigned int order
, int migratetype
)
694 VM_WARN_ONCE(get_pageblock_migratetype(page
) != migratetype
,
695 "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 get_pageblock_migratetype(page
), migratetype
, 1 << order
);
698 /* clear reported state and update reported page count */
699 if (page_reported(page
))
700 __ClearPageReported(page
);
702 list_del(&page
->buddy_list
);
703 __ClearPageBuddy(page
);
704 set_page_private(page
, 0);
705 zone
->free_area
[order
].nr_free
--;
708 static inline void del_page_from_free_list(struct page
*page
, struct zone
*zone
,
709 unsigned int order
, int migratetype
)
711 __del_page_from_free_list(page
, zone
, order
, migratetype
);
712 account_freepages(zone
, -(1 << order
), migratetype
);
715 static inline struct page
*get_page_from_free_area(struct free_area
*area
,
718 return list_first_entry_or_null(&area
->free_list
[migratetype
],
719 struct page
, buddy_list
);
723 * If this is less than the 2nd largest possible page, check if the buddy
724 * of the next-higher order is free. If it is, it's possible
725 * that pages are being freed that will coalesce soon. In case,
726 * that is happening, add the free page to the tail of the list
727 * so it's less likely to be used soon and more likely to be merged
728 * as a 2-level higher order page
731 buddy_merge_likely(unsigned long pfn
, unsigned long buddy_pfn
,
732 struct page
*page
, unsigned int order
)
734 unsigned long higher_page_pfn
;
735 struct page
*higher_page
;
737 if (order
>= MAX_PAGE_ORDER
- 1)
740 higher_page_pfn
= buddy_pfn
& pfn
;
741 higher_page
= page
+ (higher_page_pfn
- pfn
);
743 return find_buddy_page_pfn(higher_page
, higher_page_pfn
, order
+ 1,
748 * Freeing function for a buddy system allocator.
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
762 * So when we are allocating or freeing one, we can derive the state of the
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
765 * If a block is freed, and its buddy is also free, then this
766 * triggers coalescing into a block of larger size.
771 static inline void __free_one_page(struct page
*page
,
773 struct zone
*zone
, unsigned int order
,
774 int migratetype
, fpi_t fpi_flags
)
776 struct capture_control
*capc
= task_capc(zone
);
777 unsigned long buddy_pfn
= 0;
778 unsigned long combined_pfn
;
782 VM_BUG_ON(!zone_is_initialized(zone
));
783 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
785 VM_BUG_ON(migratetype
== -1);
786 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
787 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
789 account_freepages(zone
, 1 << order
, migratetype
);
791 while (order
< MAX_PAGE_ORDER
) {
792 int buddy_mt
= migratetype
;
794 if (compaction_capture(capc
, page
, order
, migratetype
)) {
795 account_freepages(zone
, -(1 << order
), migratetype
);
799 buddy
= find_buddy_page_pfn(page
, pfn
, order
, &buddy_pfn
);
803 if (unlikely(order
>= pageblock_order
)) {
805 * We want to prevent merge between freepages on pageblock
806 * without fallbacks and normal pageblock. Without this,
807 * pageblock isolation could cause incorrect freepage or CMA
808 * accounting or HIGHATOMIC accounting.
810 buddy_mt
= get_pfnblock_migratetype(buddy
, buddy_pfn
);
812 if (migratetype
!= buddy_mt
&&
813 (!migratetype_is_mergeable(migratetype
) ||
814 !migratetype_is_mergeable(buddy_mt
)))
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
822 if (page_is_guard(buddy
))
823 clear_page_guard(zone
, buddy
, order
);
825 __del_page_from_free_list(buddy
, zone
, order
, buddy_mt
);
827 if (unlikely(buddy_mt
!= migratetype
)) {
829 * Match buddy type. This ensures that an
830 * expand() down the line puts the sub-blocks
831 * on the right freelists.
833 set_pageblock_migratetype(buddy
, migratetype
);
836 combined_pfn
= buddy_pfn
& pfn
;
837 page
= page
+ (combined_pfn
- pfn
);
843 set_buddy_order(page
, order
);
845 if (fpi_flags
& FPI_TO_TAIL
)
847 else if (is_shuffle_order(order
))
848 to_tail
= shuffle_pick_tail();
850 to_tail
= buddy_merge_likely(pfn
, buddy_pfn
, page
, order
);
852 __add_to_free_list(page
, zone
, order
, migratetype
, to_tail
);
854 /* Notify page reporting subsystem of freed page */
855 if (!(fpi_flags
& FPI_SKIP_REPORT_NOTIFY
))
856 page_reporting_notify_free(order
);
860 * A bad page could be due to a number of fields. Instead of multiple branches,
861 * try and check multiple fields with one check. The caller must do a detailed
862 * check if necessary.
864 static inline bool page_expected_state(struct page
*page
,
865 unsigned long check_flags
)
867 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
870 if (unlikely((unsigned long)page
->mapping
|
871 page_ref_count(page
) |
875 #ifdef CONFIG_PAGE_POOL
876 ((page
->pp_magic
& ~0x3UL
) == PP_SIGNATURE
) |
878 (page
->flags
& check_flags
)))
884 static const char *page_bad_reason(struct page
*page
, unsigned long flags
)
886 const char *bad_reason
= NULL
;
888 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
889 bad_reason
= "nonzero mapcount";
890 if (unlikely(page
->mapping
!= NULL
))
891 bad_reason
= "non-NULL mapping";
892 if (unlikely(page_ref_count(page
) != 0))
893 bad_reason
= "nonzero _refcount";
894 if (unlikely(page
->flags
& flags
)) {
895 if (flags
== PAGE_FLAGS_CHECK_AT_PREP
)
896 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
898 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
901 if (unlikely(page
->memcg_data
))
902 bad_reason
= "page still charged to cgroup";
904 #ifdef CONFIG_PAGE_POOL
905 if (unlikely((page
->pp_magic
& ~0x3UL
) == PP_SIGNATURE
))
906 bad_reason
= "page_pool leak";
911 static void free_page_is_bad_report(struct page
*page
)
914 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_FREE
));
917 static inline bool free_page_is_bad(struct page
*page
)
919 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
922 /* Something has gone sideways, find it */
923 free_page_is_bad_report(page
);
927 static inline bool is_check_pages_enabled(void)
929 return static_branch_unlikely(&check_pages_enabled
);
932 static int free_tail_page_prepare(struct page
*head_page
, struct page
*page
)
934 struct folio
*folio
= (struct folio
*)head_page
;
938 * We rely page->lru.next never has bit 0 set, unless the page
939 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
941 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
943 if (!is_check_pages_enabled()) {
947 switch (page
- head_page
) {
949 /* the first tail page: these may be in place of ->mapping */
950 if (unlikely(folio_entire_mapcount(folio
))) {
951 bad_page(page
, "nonzero entire_mapcount");
954 if (unlikely(folio_large_mapcount(folio
))) {
955 bad_page(page
, "nonzero large_mapcount");
958 if (unlikely(atomic_read(&folio
->_nr_pages_mapped
))) {
959 bad_page(page
, "nonzero nr_pages_mapped");
962 if (unlikely(atomic_read(&folio
->_pincount
))) {
963 bad_page(page
, "nonzero pincount");
968 /* the second tail page: deferred_list overlaps ->mapping */
969 if (unlikely(!list_empty(&folio
->_deferred_list
))) {
970 bad_page(page
, "on deferred list");
975 if (page
->mapping
!= TAIL_MAPPING
) {
976 bad_page(page
, "corrupted mapping in tail page");
981 if (unlikely(!PageTail(page
))) {
982 bad_page(page
, "PageTail not set");
985 if (unlikely(compound_head(page
) != head_page
)) {
986 bad_page(page
, "compound_head not consistent");
991 page
->mapping
= NULL
;
992 clear_compound_head(page
);
997 * Skip KASAN memory poisoning when either:
999 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1001 * using page tags instead (see below).
1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003 * that error detection is disabled for accesses via the page address.
1005 * Pages will have match-all tags in the following circumstances:
1007 * 1. Pages are being initialized for the first time, including during deferred
1008 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011 * 3. The allocation was excluded from being checked due to sampling,
1012 * see the call to kasan_unpoison_pages.
1014 * Poisoning pages during deferred memory init will greatly lengthen the
1015 * process and cause problem in large memory systems as the deferred pages
1016 * initialization is done with interrupt disabled.
1018 * Assuming that there will be no reference to those newly initialized
1019 * pages before they are ever allocated, this should have no effect on
1020 * KASAN memory tracking as the poison will be properly inserted at page
1021 * allocation time. The only corner case is when pages are allocated by
1022 * on-demand allocation and then freed again before the deferred pages
1023 * initialization is done, but this is not likely to happen.
1025 static inline bool should_skip_kasan_poison(struct page
*page
)
1027 if (IS_ENABLED(CONFIG_KASAN_GENERIC
))
1028 return deferred_pages_enabled();
1030 return page_kasan_tag(page
) == KASAN_TAG_KERNEL
;
1033 static void kernel_init_pages(struct page
*page
, int numpages
)
1037 /* s390's use of memset() could override KASAN redzones. */
1038 kasan_disable_current();
1039 for (i
= 0; i
< numpages
; i
++)
1040 clear_highpage_kasan_tagged(page
+ i
);
1041 kasan_enable_current();
1044 __always_inline
bool free_pages_prepare(struct page
*page
,
1048 bool skip_kasan_poison
= should_skip_kasan_poison(page
);
1049 bool init
= want_init_on_free();
1050 bool compound
= PageCompound(page
);
1052 VM_BUG_ON_PAGE(PageTail(page
), page
);
1054 trace_mm_page_free(page
, order
);
1055 kmsan_free_page(page
, order
);
1057 if (memcg_kmem_online() && PageMemcgKmem(page
))
1058 __memcg_kmem_uncharge_page(page
, order
);
1060 if (unlikely(PageHWPoison(page
)) && !order
) {
1061 /* Do not let hwpoison pages hit pcplists/buddy */
1062 reset_page_owner(page
, order
);
1063 page_table_check_free(page
, order
);
1064 pgalloc_tag_sub(page
, 1 << order
);
1067 * The page is isolated and accounted for.
1068 * Mark the codetag as empty to avoid accounting error
1069 * when the page is freed by unpoison_memory().
1071 clear_page_tag_ref(page
);
1075 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1078 * Check tail pages before head page information is cleared to
1079 * avoid checking PageCompound for order-0 pages.
1081 if (unlikely(order
)) {
1085 page
[1].flags
&= ~PAGE_FLAGS_SECOND
;
1086 for (i
= 1; i
< (1 << order
); i
++) {
1088 bad
+= free_tail_page_prepare(page
, page
+ i
);
1089 if (is_check_pages_enabled()) {
1090 if (free_page_is_bad(page
+ i
)) {
1095 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1098 if (PageMappingFlags(page
)) {
1100 mod_mthp_stat(order
, MTHP_STAT_NR_ANON
, -1);
1101 page
->mapping
= NULL
;
1103 if (is_check_pages_enabled()) {
1104 if (free_page_is_bad(page
))
1110 page_cpupid_reset_last(page
);
1111 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1112 reset_page_owner(page
, order
);
1113 page_table_check_free(page
, order
);
1114 pgalloc_tag_sub(page
, 1 << order
);
1116 if (!PageHighMem(page
)) {
1117 debug_check_no_locks_freed(page_address(page
),
1118 PAGE_SIZE
<< order
);
1119 debug_check_no_obj_freed(page_address(page
),
1120 PAGE_SIZE
<< order
);
1123 kernel_poison_pages(page
, 1 << order
);
1126 * As memory initialization might be integrated into KASAN,
1127 * KASAN poisoning and memory initialization code must be
1128 * kept together to avoid discrepancies in behavior.
1130 * With hardware tag-based KASAN, memory tags must be set before the
1131 * page becomes unavailable via debug_pagealloc or arch_free_page.
1133 if (!skip_kasan_poison
) {
1134 kasan_poison_pages(page
, order
, init
);
1136 /* Memory is already initialized if KASAN did it internally. */
1137 if (kasan_has_integrated_init())
1141 kernel_init_pages(page
, 1 << order
);
1144 * arch_free_page() can make the page's contents inaccessible. s390
1145 * does this. So nothing which can access the page's contents should
1146 * happen after this.
1148 arch_free_page(page
, order
);
1150 debug_pagealloc_unmap_pages(page
, 1 << order
);
1156 * Frees a number of pages from the PCP lists
1157 * Assumes all pages on list are in same zone.
1158 * count is the number of pages to free.
1160 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1161 struct per_cpu_pages
*pcp
,
1164 unsigned long flags
;
1169 * Ensure proper count is passed which otherwise would stuck in the
1170 * below while (list_empty(list)) loop.
1172 count
= min(pcp
->count
, count
);
1174 /* Ensure requested pindex is drained first. */
1175 pindex
= pindex
- 1;
1177 spin_lock_irqsave(&zone
->lock
, flags
);
1180 struct list_head
*list
;
1183 /* Remove pages from lists in a round-robin fashion. */
1185 if (++pindex
> NR_PCP_LISTS
- 1)
1187 list
= &pcp
->lists
[pindex
];
1188 } while (list_empty(list
));
1190 order
= pindex_to_order(pindex
);
1191 nr_pages
= 1 << order
;
1196 page
= list_last_entry(list
, struct page
, pcp_list
);
1197 pfn
= page_to_pfn(page
);
1198 mt
= get_pfnblock_migratetype(page
, pfn
);
1200 /* must delete to avoid corrupting pcp list */
1201 list_del(&page
->pcp_list
);
1203 pcp
->count
-= nr_pages
;
1205 __free_one_page(page
, pfn
, zone
, order
, mt
, FPI_NONE
);
1206 trace_mm_page_pcpu_drain(page
, order
, mt
);
1207 } while (count
> 0 && !list_empty(list
));
1210 spin_unlock_irqrestore(&zone
->lock
, flags
);
1213 /* Split a multi-block free page into its individual pageblocks. */
1214 static void split_large_buddy(struct zone
*zone
, struct page
*page
,
1215 unsigned long pfn
, int order
, fpi_t fpi
)
1217 unsigned long end
= pfn
+ (1 << order
);
1219 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn
, 1 << order
));
1220 /* Caller removed page from freelist, buddy info cleared! */
1221 VM_WARN_ON_ONCE(PageBuddy(page
));
1223 if (order
> pageblock_order
)
1224 order
= pageblock_order
;
1226 while (pfn
!= end
) {
1227 int mt
= get_pfnblock_migratetype(page
, pfn
);
1229 __free_one_page(page
, pfn
, zone
, order
, mt
, fpi
);
1231 page
= pfn_to_page(pfn
);
1235 static void free_one_page(struct zone
*zone
, struct page
*page
,
1236 unsigned long pfn
, unsigned int order
,
1239 unsigned long flags
;
1241 spin_lock_irqsave(&zone
->lock
, flags
);
1242 split_large_buddy(zone
, page
, pfn
, order
, fpi_flags
);
1243 spin_unlock_irqrestore(&zone
->lock
, flags
);
1245 __count_vm_events(PGFREE
, 1 << order
);
1248 static void __free_pages_ok(struct page
*page
, unsigned int order
,
1251 unsigned long pfn
= page_to_pfn(page
);
1252 struct zone
*zone
= page_zone(page
);
1254 if (free_pages_prepare(page
, order
))
1255 free_one_page(zone
, page
, pfn
, order
, fpi_flags
);
1258 void __meminit
__free_pages_core(struct page
*page
, unsigned int order
,
1259 enum meminit_context context
)
1261 unsigned int nr_pages
= 1 << order
;
1262 struct page
*p
= page
;
1266 * When initializing the memmap, __init_single_page() sets the refcount
1267 * of all pages to 1 ("allocated"/"not free"). We have to set the
1268 * refcount of all involved pages to 0.
1270 * Note that hotplugged memory pages are initialized to PageOffline().
1271 * Pages freed from memblock might be marked as reserved.
1273 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG
) &&
1274 unlikely(context
== MEMINIT_HOTPLUG
)) {
1275 for (loop
= 0; loop
< nr_pages
; loop
++, p
++) {
1276 VM_WARN_ON_ONCE(PageReserved(p
));
1277 __ClearPageOffline(p
);
1278 set_page_count(p
, 0);
1282 * Freeing the page with debug_pagealloc enabled will try to
1283 * unmap it; some archs don't like double-unmappings, so
1286 debug_pagealloc_map_pages(page
, nr_pages
);
1287 adjust_managed_page_count(page
, nr_pages
);
1289 for (loop
= 0; loop
< nr_pages
; loop
++, p
++) {
1290 __ClearPageReserved(p
);
1291 set_page_count(p
, 0);
1294 /* memblock adjusts totalram_pages() manually. */
1295 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1298 if (page_contains_unaccepted(page
, order
)) {
1299 if (order
== MAX_PAGE_ORDER
&& __free_unaccepted(page
))
1302 accept_memory(page_to_phys(page
), PAGE_SIZE
<< order
);
1306 * Bypass PCP and place fresh pages right to the tail, primarily
1307 * relevant for memory onlining.
1309 __free_pages_ok(page
, order
, FPI_TO_TAIL
);
1313 * Check that the whole (or subset of) a pageblock given by the interval of
1314 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1315 * with the migration of free compaction scanner.
1317 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1319 * It's possible on some configurations to have a setup like node0 node1 node0
1320 * i.e. it's possible that all pages within a zones range of pages do not
1321 * belong to a single zone. We assume that a border between node0 and node1
1322 * can occur within a single pageblock, but not a node0 node1 node0
1323 * interleaving within a single pageblock. It is therefore sufficient to check
1324 * the first and last page of a pageblock and avoid checking each individual
1325 * page in a pageblock.
1327 * Note: the function may return non-NULL struct page even for a page block
1328 * which contains a memory hole (i.e. there is no physical memory for a subset
1329 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1330 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1331 * even though the start pfn is online and valid. This should be safe most of
1332 * the time because struct pages are still initialized via init_unavailable_range()
1333 * and pfn walkers shouldn't touch any physical memory range for which they do
1334 * not recognize any specific metadata in struct pages.
1336 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1337 unsigned long end_pfn
, struct zone
*zone
)
1339 struct page
*start_page
;
1340 struct page
*end_page
;
1342 /* end_pfn is one past the range we are checking */
1345 if (!pfn_valid(end_pfn
))
1348 start_page
= pfn_to_online_page(start_pfn
);
1352 if (page_zone(start_page
) != zone
)
1355 end_page
= pfn_to_page(end_pfn
);
1357 /* This gives a shorter code than deriving page_zone(end_page) */
1358 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1365 * The order of subdivision here is critical for the IO subsystem.
1366 * Please do not alter this order without good reasons and regression
1367 * testing. Specifically, as large blocks of memory are subdivided,
1368 * the order in which smaller blocks are delivered depends on the order
1369 * they're subdivided in this function. This is the primary factor
1370 * influencing the order in which pages are delivered to the IO
1371 * subsystem according to empirical testing, and this is also justified
1372 * by considering the behavior of a buddy system containing a single
1373 * large block of memory acted on by a series of small allocations.
1374 * This behavior is a critical factor in sglist merging's success.
1378 static inline unsigned int expand(struct zone
*zone
, struct page
*page
, int low
,
1379 int high
, int migratetype
)
1381 unsigned int size
= 1 << high
;
1382 unsigned int nr_added
= 0;
1384 while (high
> low
) {
1387 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1390 * Mark as guard pages (or page), that will allow to
1391 * merge back to allocator when buddy will be freed.
1392 * Corresponding page table entries will not be touched,
1393 * pages will stay not present in virtual address space
1395 if (set_page_guard(zone
, &page
[size
], high
))
1398 __add_to_free_list(&page
[size
], zone
, high
, migratetype
, false);
1399 set_buddy_order(&page
[size
], high
);
1406 static __always_inline
void page_del_and_expand(struct zone
*zone
,
1407 struct page
*page
, int low
,
1408 int high
, int migratetype
)
1410 int nr_pages
= 1 << high
;
1412 __del_page_from_free_list(page
, zone
, high
, migratetype
);
1413 nr_pages
-= expand(zone
, page
, low
, high
, migratetype
);
1414 account_freepages(zone
, -nr_pages
, migratetype
);
1417 static void check_new_page_bad(struct page
*page
)
1419 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1420 /* Don't complain about hwpoisoned pages */
1421 if (PageBuddy(page
))
1422 __ClearPageBuddy(page
);
1427 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_PREP
));
1431 * This page is about to be returned from the page allocator
1433 static bool check_new_page(struct page
*page
)
1435 if (likely(page_expected_state(page
,
1436 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1439 check_new_page_bad(page
);
1443 static inline bool check_new_pages(struct page
*page
, unsigned int order
)
1445 if (is_check_pages_enabled()) {
1446 for (int i
= 0; i
< (1 << order
); i
++) {
1447 struct page
*p
= page
+ i
;
1449 if (check_new_page(p
))
1457 static inline bool should_skip_kasan_unpoison(gfp_t flags
)
1459 /* Don't skip if a software KASAN mode is enabled. */
1460 if (IS_ENABLED(CONFIG_KASAN_GENERIC
) ||
1461 IS_ENABLED(CONFIG_KASAN_SW_TAGS
))
1464 /* Skip, if hardware tag-based KASAN is not enabled. */
1465 if (!kasan_hw_tags_enabled())
1469 * With hardware tag-based KASAN enabled, skip if this has been
1470 * requested via __GFP_SKIP_KASAN.
1472 return flags
& __GFP_SKIP_KASAN
;
1475 static inline bool should_skip_init(gfp_t flags
)
1477 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1478 if (!kasan_hw_tags_enabled())
1481 /* For hardware tag-based KASAN, skip if requested. */
1482 return (flags
& __GFP_SKIP_ZERO
);
1485 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1488 bool init
= !want_init_on_free() && want_init_on_alloc(gfp_flags
) &&
1489 !should_skip_init(gfp_flags
);
1490 bool zero_tags
= init
&& (gfp_flags
& __GFP_ZEROTAGS
);
1493 set_page_private(page
, 0);
1494 set_page_refcounted(page
);
1496 arch_alloc_page(page
, order
);
1497 debug_pagealloc_map_pages(page
, 1 << order
);
1500 * Page unpoisoning must happen before memory initialization.
1501 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1502 * allocations and the page unpoisoning code will complain.
1504 kernel_unpoison_pages(page
, 1 << order
);
1507 * As memory initialization might be integrated into KASAN,
1508 * KASAN unpoisoning and memory initializion code must be
1509 * kept together to avoid discrepancies in behavior.
1513 * If memory tags should be zeroed
1514 * (which happens only when memory should be initialized as well).
1517 /* Initialize both memory and memory tags. */
1518 for (i
= 0; i
!= 1 << order
; ++i
)
1519 tag_clear_highpage(page
+ i
);
1521 /* Take note that memory was initialized by the loop above. */
1524 if (!should_skip_kasan_unpoison(gfp_flags
) &&
1525 kasan_unpoison_pages(page
, order
, init
)) {
1526 /* Take note that memory was initialized by KASAN. */
1527 if (kasan_has_integrated_init())
1531 * If memory tags have not been set by KASAN, reset the page
1532 * tags to ensure page_address() dereferencing does not fault.
1534 for (i
= 0; i
!= 1 << order
; ++i
)
1535 page_kasan_tag_reset(page
+ i
);
1537 /* If memory is still not initialized, initialize it now. */
1539 kernel_init_pages(page
, 1 << order
);
1541 set_page_owner(page
, order
, gfp_flags
);
1542 page_table_check_alloc(page
, order
);
1543 pgalloc_tag_add(page
, current
, 1 << order
);
1546 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1547 unsigned int alloc_flags
)
1549 post_alloc_hook(page
, order
, gfp_flags
);
1551 if (order
&& (gfp_flags
& __GFP_COMP
))
1552 prep_compound_page(page
, order
);
1555 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1556 * allocate the page. The expectation is that the caller is taking
1557 * steps that will free more memory. The caller should avoid the page
1558 * being used for !PFMEMALLOC purposes.
1560 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1561 set_page_pfmemalloc(page
);
1563 clear_page_pfmemalloc(page
);
1567 * Go through the free lists for the given migratetype and remove
1568 * the smallest available page from the freelists
1570 static __always_inline
1571 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1574 unsigned int current_order
;
1575 struct free_area
*area
;
1578 /* Find a page of the appropriate size in the preferred list */
1579 for (current_order
= order
; current_order
< NR_PAGE_ORDERS
; ++current_order
) {
1580 area
= &(zone
->free_area
[current_order
]);
1581 page
= get_page_from_free_area(area
, migratetype
);
1585 page_del_and_expand(zone
, page
, order
, current_order
,
1587 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
,
1588 pcp_allowed_order(order
) &&
1589 migratetype
< MIGRATE_PCPTYPES
);
1598 * This array describes the order lists are fallen back to when
1599 * the free lists for the desirable migrate type are depleted
1601 * The other migratetypes do not have fallbacks.
1603 static int fallbacks
[MIGRATE_PCPTYPES
][MIGRATE_PCPTYPES
- 1] = {
1604 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
},
1605 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
},
1606 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
},
1610 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1613 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1616 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1617 unsigned int order
) { return NULL
; }
1621 * Change the type of a block and move all its free pages to that
1624 static int __move_freepages_block(struct zone
*zone
, unsigned long start_pfn
,
1625 int old_mt
, int new_mt
)
1628 unsigned long pfn
, end_pfn
;
1630 int pages_moved
= 0;
1632 VM_WARN_ON(start_pfn
& (pageblock_nr_pages
- 1));
1633 end_pfn
= pageblock_end_pfn(start_pfn
);
1635 for (pfn
= start_pfn
; pfn
< end_pfn
;) {
1636 page
= pfn_to_page(pfn
);
1637 if (!PageBuddy(page
)) {
1642 /* Make sure we are not inadvertently changing nodes */
1643 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1644 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
1646 order
= buddy_order(page
);
1648 move_to_free_list(page
, zone
, order
, old_mt
, new_mt
);
1651 pages_moved
+= 1 << order
;
1654 set_pageblock_migratetype(pfn_to_page(start_pfn
), new_mt
);
1659 static bool prep_move_freepages_block(struct zone
*zone
, struct page
*page
,
1660 unsigned long *start_pfn
,
1661 int *num_free
, int *num_movable
)
1663 unsigned long pfn
, start
, end
;
1665 pfn
= page_to_pfn(page
);
1666 start
= pageblock_start_pfn(pfn
);
1667 end
= pageblock_end_pfn(pfn
);
1670 * The caller only has the lock for @zone, don't touch ranges
1671 * that straddle into other zones. While we could move part of
1672 * the range that's inside the zone, this call is usually
1673 * accompanied by other operations such as migratetype updates
1674 * which also should be locked.
1676 if (!zone_spans_pfn(zone
, start
))
1678 if (!zone_spans_pfn(zone
, end
- 1))
1686 for (pfn
= start
; pfn
< end
;) {
1687 page
= pfn_to_page(pfn
);
1688 if (PageBuddy(page
)) {
1689 int nr
= 1 << buddy_order(page
);
1696 * We assume that pages that could be isolated for
1697 * migration are movable. But we don't actually try
1698 * isolating, as that would be expensive.
1700 if (PageLRU(page
) || __PageMovable(page
))
1709 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
1710 int old_mt
, int new_mt
)
1712 unsigned long start_pfn
;
1714 if (!prep_move_freepages_block(zone
, page
, &start_pfn
, NULL
, NULL
))
1717 return __move_freepages_block(zone
, start_pfn
, old_mt
, new_mt
);
1720 #ifdef CONFIG_MEMORY_ISOLATION
1721 /* Look for a buddy that straddles start_pfn */
1722 static unsigned long find_large_buddy(unsigned long start_pfn
)
1726 unsigned long pfn
= start_pfn
;
1728 while (!PageBuddy(page
= pfn_to_page(pfn
))) {
1730 if (++order
> MAX_PAGE_ORDER
)
1732 pfn
&= ~0UL << order
;
1736 * Found a preceding buddy, but does it straddle?
1738 if (pfn
+ (1 << buddy_order(page
)) > start_pfn
)
1746 * move_freepages_block_isolate - move free pages in block for page isolation
1748 * @page: the pageblock page
1749 * @migratetype: migratetype to set on the pageblock
1751 * This is similar to move_freepages_block(), but handles the special
1752 * case encountered in page isolation, where the block of interest
1753 * might be part of a larger buddy spanning multiple pageblocks.
1755 * Unlike the regular page allocator path, which moves pages while
1756 * stealing buddies off the freelist, page isolation is interested in
1757 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1759 * This function handles that. Straddling buddies are split into
1760 * individual pageblocks. Only the block of interest is moved.
1762 * Returns %true if pages could be moved, %false otherwise.
1764 bool move_freepages_block_isolate(struct zone
*zone
, struct page
*page
,
1767 unsigned long start_pfn
, pfn
;
1769 if (!prep_move_freepages_block(zone
, page
, &start_pfn
, NULL
, NULL
))
1772 /* No splits needed if buddies can't span multiple blocks */
1773 if (pageblock_order
== MAX_PAGE_ORDER
)
1776 /* We're a tail block in a larger buddy */
1777 pfn
= find_large_buddy(start_pfn
);
1778 if (pfn
!= start_pfn
) {
1779 struct page
*buddy
= pfn_to_page(pfn
);
1780 int order
= buddy_order(buddy
);
1782 del_page_from_free_list(buddy
, zone
, order
,
1783 get_pfnblock_migratetype(buddy
, pfn
));
1784 set_pageblock_migratetype(page
, migratetype
);
1785 split_large_buddy(zone
, buddy
, pfn
, order
, FPI_NONE
);
1789 /* We're the starting block of a larger buddy */
1790 if (PageBuddy(page
) && buddy_order(page
) > pageblock_order
) {
1791 int order
= buddy_order(page
);
1793 del_page_from_free_list(page
, zone
, order
,
1794 get_pfnblock_migratetype(page
, pfn
));
1795 set_pageblock_migratetype(page
, migratetype
);
1796 split_large_buddy(zone
, page
, pfn
, order
, FPI_NONE
);
1800 __move_freepages_block(zone
, start_pfn
,
1801 get_pfnblock_migratetype(page
, start_pfn
),
1805 #endif /* CONFIG_MEMORY_ISOLATION */
1807 static void change_pageblock_range(struct page
*pageblock_page
,
1808 int start_order
, int migratetype
)
1810 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1812 while (nr_pageblocks
--) {
1813 set_pageblock_migratetype(pageblock_page
, migratetype
);
1814 pageblock_page
+= pageblock_nr_pages
;
1819 * When we are falling back to another migratetype during allocation, try to
1820 * steal extra free pages from the same pageblocks to satisfy further
1821 * allocations, instead of polluting multiple pageblocks.
1823 * If we are stealing a relatively large buddy page, it is likely there will
1824 * be more free pages in the pageblock, so try to steal them all. For
1825 * reclaimable and unmovable allocations, we steal regardless of page size,
1826 * as fragmentation caused by those allocations polluting movable pageblocks
1827 * is worse than movable allocations stealing from unmovable and reclaimable
1830 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1833 * Leaving this order check is intended, although there is
1834 * relaxed order check in next check. The reason is that
1835 * we can actually steal whole pageblock if this condition met,
1836 * but, below check doesn't guarantee it and that is just heuristic
1837 * so could be changed anytime.
1839 if (order
>= pageblock_order
)
1842 if (order
>= pageblock_order
/ 2 ||
1843 start_mt
== MIGRATE_RECLAIMABLE
||
1844 start_mt
== MIGRATE_UNMOVABLE
||
1845 page_group_by_mobility_disabled
)
1851 static inline bool boost_watermark(struct zone
*zone
)
1853 unsigned long max_boost
;
1855 if (!watermark_boost_factor
)
1858 * Don't bother in zones that are unlikely to produce results.
1859 * On small machines, including kdump capture kernels running
1860 * in a small area, boosting the watermark can cause an out of
1861 * memory situation immediately.
1863 if ((pageblock_nr_pages
* 4) > zone_managed_pages(zone
))
1866 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
1867 watermark_boost_factor
, 10000);
1870 * high watermark may be uninitialised if fragmentation occurs
1871 * very early in boot so do not boost. We do not fall
1872 * through and boost by pageblock_nr_pages as failing
1873 * allocations that early means that reclaim is not going
1874 * to help and it may even be impossible to reclaim the
1875 * boosted watermark resulting in a hang.
1880 max_boost
= max(pageblock_nr_pages
, max_boost
);
1882 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
1889 * This function implements actual steal behaviour. If order is large enough, we
1890 * can claim the whole pageblock for the requested migratetype. If not, we check
1891 * the pageblock for constituent pages; if at least half of the pages are free
1892 * or compatible, we can still claim the whole block, so pages freed in the
1893 * future will be put on the correct free list. Otherwise, we isolate exactly
1894 * the order we need from the fallback block and leave its migratetype alone.
1896 static struct page
*
1897 steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1898 int current_order
, int order
, int start_type
,
1899 unsigned int alloc_flags
, bool whole_block
)
1901 int free_pages
, movable_pages
, alike_pages
;
1902 unsigned long start_pfn
;
1905 block_type
= get_pageblock_migratetype(page
);
1908 * This can happen due to races and we want to prevent broken
1909 * highatomic accounting.
1911 if (is_migrate_highatomic(block_type
))
1914 /* Take ownership for orders >= pageblock_order */
1915 if (current_order
>= pageblock_order
) {
1916 unsigned int nr_added
;
1918 del_page_from_free_list(page
, zone
, current_order
, block_type
);
1919 change_pageblock_range(page
, current_order
, start_type
);
1920 nr_added
= expand(zone
, page
, order
, current_order
, start_type
);
1921 account_freepages(zone
, nr_added
, start_type
);
1926 * Boost watermarks to increase reclaim pressure to reduce the
1927 * likelihood of future fallbacks. Wake kswapd now as the node
1928 * may be balanced overall and kswapd will not wake naturally.
1930 if (boost_watermark(zone
) && (alloc_flags
& ALLOC_KSWAPD
))
1931 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
1933 /* We are not allowed to try stealing from the whole block */
1937 /* moving whole block can fail due to zone boundary conditions */
1938 if (!prep_move_freepages_block(zone
, page
, &start_pfn
, &free_pages
,
1943 * Determine how many pages are compatible with our allocation.
1944 * For movable allocation, it's the number of movable pages which
1945 * we just obtained. For other types it's a bit more tricky.
1947 if (start_type
== MIGRATE_MOVABLE
) {
1948 alike_pages
= movable_pages
;
1951 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1952 * to MOVABLE pageblock, consider all non-movable pages as
1953 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1954 * vice versa, be conservative since we can't distinguish the
1955 * exact migratetype of non-movable pages.
1957 if (block_type
== MIGRATE_MOVABLE
)
1958 alike_pages
= pageblock_nr_pages
1959 - (free_pages
+ movable_pages
);
1964 * If a sufficient number of pages in the block are either free or of
1965 * compatible migratability as our allocation, claim the whole block.
1967 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
1968 page_group_by_mobility_disabled
) {
1969 __move_freepages_block(zone
, start_pfn
, block_type
, start_type
);
1970 return __rmqueue_smallest(zone
, order
, start_type
);
1974 page_del_and_expand(zone
, page
, order
, current_order
, block_type
);
1979 * Check whether there is a suitable fallback freepage with requested order.
1980 * If only_stealable is true, this function returns fallback_mt only if
1981 * we can steal other freepages all together. This would help to reduce
1982 * fragmentation due to mixed migratetype pages in one pageblock.
1984 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1985 int migratetype
, bool only_stealable
, bool *can_steal
)
1990 if (area
->nr_free
== 0)
1994 for (i
= 0; i
< MIGRATE_PCPTYPES
- 1 ; i
++) {
1995 fallback_mt
= fallbacks
[migratetype
][i
];
1996 if (free_area_empty(area
, fallback_mt
))
1999 if (can_steal_fallback(order
, migratetype
))
2002 if (!only_stealable
)
2013 * Reserve the pageblock(s) surrounding an allocation request for
2014 * exclusive use of high-order atomic allocations if there are no
2015 * empty page blocks that contain a page with a suitable order
2017 static void reserve_highatomic_pageblock(struct page
*page
, int order
,
2021 unsigned long max_managed
, flags
;
2024 * The number reserved as: minimum is 1 pageblock, maximum is
2025 * roughly 1% of a zone. But if 1% of a zone falls below a
2026 * pageblock size, then don't reserve any pageblocks.
2027 * Check is race-prone but harmless.
2029 if ((zone_managed_pages(zone
) / 100) < pageblock_nr_pages
)
2031 max_managed
= ALIGN((zone_managed_pages(zone
) / 100), pageblock_nr_pages
);
2032 if (zone
->nr_reserved_highatomic
>= max_managed
)
2035 spin_lock_irqsave(&zone
->lock
, flags
);
2037 /* Recheck the nr_reserved_highatomic limit under the lock */
2038 if (zone
->nr_reserved_highatomic
>= max_managed
)
2042 mt
= get_pageblock_migratetype(page
);
2043 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2044 if (!migratetype_is_mergeable(mt
))
2047 if (order
< pageblock_order
) {
2048 if (move_freepages_block(zone
, page
, mt
, MIGRATE_HIGHATOMIC
) == -1)
2050 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2052 change_pageblock_range(page
, order
, MIGRATE_HIGHATOMIC
);
2053 zone
->nr_reserved_highatomic
+= 1 << order
;
2057 spin_unlock_irqrestore(&zone
->lock
, flags
);
2061 * Used when an allocation is about to fail under memory pressure. This
2062 * potentially hurts the reliability of high-order allocations when under
2063 * intense memory pressure but failed atomic allocations should be easier
2064 * to recover from than an OOM.
2066 * If @force is true, try to unreserve pageblocks even though highatomic
2067 * pageblock is exhausted.
2069 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2072 struct zonelist
*zonelist
= ac
->zonelist
;
2073 unsigned long flags
;
2080 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->highest_zoneidx
,
2083 * Preserve at least one pageblock unless memory pressure
2086 if (!force
&& zone
->nr_reserved_highatomic
<=
2090 spin_lock_irqsave(&zone
->lock
, flags
);
2091 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
2092 struct free_area
*area
= &(zone
->free_area
[order
]);
2095 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2099 mt
= get_pageblock_migratetype(page
);
2101 * In page freeing path, migratetype change is racy so
2102 * we can counter several free pages in a pageblock
2103 * in this loop although we changed the pageblock type
2104 * from highatomic to ac->migratetype. So we should
2105 * adjust the count once.
2107 if (is_migrate_highatomic(mt
)) {
2110 * It should never happen but changes to
2111 * locking could inadvertently allow a per-cpu
2112 * drain to add pages to MIGRATE_HIGHATOMIC
2113 * while unreserving so be safe and watch for
2116 size
= max(pageblock_nr_pages
, 1UL << order
);
2117 size
= min(size
, zone
->nr_reserved_highatomic
);
2118 zone
->nr_reserved_highatomic
-= size
;
2122 * Convert to ac->migratetype and avoid the normal
2123 * pageblock stealing heuristics. Minimally, the caller
2124 * is doing the work and needs the pages. More
2125 * importantly, if the block was always converted to
2126 * MIGRATE_UNMOVABLE or another type then the number
2127 * of pageblocks that cannot be completely freed
2130 if (order
< pageblock_order
)
2131 ret
= move_freepages_block(zone
, page
, mt
,
2134 move_to_free_list(page
, zone
, order
, mt
,
2136 change_pageblock_range(page
, order
,
2141 * Reserving the block(s) already succeeded,
2142 * so this should not fail on zone boundaries.
2144 WARN_ON_ONCE(ret
== -1);
2146 spin_unlock_irqrestore(&zone
->lock
, flags
);
2150 spin_unlock_irqrestore(&zone
->lock
, flags
);
2157 * Try finding a free buddy page on the fallback list and put it on the free
2158 * list of requested migratetype, possibly along with other pages from the same
2159 * block, depending on fragmentation avoidance heuristics. Returns true if
2160 * fallback was found so that __rmqueue_smallest() can grab it.
2162 * The use of signed ints for order and current_order is a deliberate
2163 * deviation from the rest of this file, to make the for loop
2164 * condition simpler.
2166 static __always_inline
struct page
*
2167 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2168 unsigned int alloc_flags
)
2170 struct free_area
*area
;
2172 int min_order
= order
;
2178 * Do not steal pages from freelists belonging to other pageblocks
2179 * i.e. orders < pageblock_order. If there are no local zones free,
2180 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2182 if (order
< pageblock_order
&& alloc_flags
& ALLOC_NOFRAGMENT
)
2183 min_order
= pageblock_order
;
2186 * Find the largest available free page in the other list. This roughly
2187 * approximates finding the pageblock with the most free pages, which
2188 * would be too costly to do exactly.
2190 for (current_order
= MAX_PAGE_ORDER
; current_order
>= min_order
;
2192 area
= &(zone
->free_area
[current_order
]);
2193 fallback_mt
= find_suitable_fallback(area
, current_order
,
2194 start_migratetype
, false, &can_steal
);
2195 if (fallback_mt
== -1)
2199 * We cannot steal all free pages from the pageblock and the
2200 * requested migratetype is movable. In that case it's better to
2201 * steal and split the smallest available page instead of the
2202 * largest available page, because even if the next movable
2203 * allocation falls back into a different pageblock than this
2204 * one, it won't cause permanent fragmentation.
2206 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2207 && current_order
> order
)
2216 for (current_order
= order
; current_order
< NR_PAGE_ORDERS
; current_order
++) {
2217 area
= &(zone
->free_area
[current_order
]);
2218 fallback_mt
= find_suitable_fallback(area
, current_order
,
2219 start_migratetype
, false, &can_steal
);
2220 if (fallback_mt
!= -1)
2225 * This should not happen - we already found a suitable fallback
2226 * when looking for the largest page.
2228 VM_BUG_ON(current_order
> MAX_PAGE_ORDER
);
2231 page
= get_page_from_free_area(area
, fallback_mt
);
2233 /* take off list, maybe claim block, expand remainder */
2234 page
= steal_suitable_fallback(zone
, page
, current_order
, order
,
2235 start_migratetype
, alloc_flags
, can_steal
);
2237 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2238 start_migratetype
, fallback_mt
);
2244 * Do the hard work of removing an element from the buddy allocator.
2245 * Call me with the zone->lock already held.
2247 static __always_inline
struct page
*
2248 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2249 unsigned int alloc_flags
)
2253 if (IS_ENABLED(CONFIG_CMA
)) {
2255 * Balance movable allocations between regular and CMA areas by
2256 * allocating from CMA when over half of the zone's free memory
2257 * is in the CMA area.
2259 if (alloc_flags
& ALLOC_CMA
&&
2260 zone_page_state(zone
, NR_FREE_CMA_PAGES
) >
2261 zone_page_state(zone
, NR_FREE_PAGES
) / 2) {
2262 page
= __rmqueue_cma_fallback(zone
, order
);
2268 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2269 if (unlikely(!page
)) {
2270 if (alloc_flags
& ALLOC_CMA
)
2271 page
= __rmqueue_cma_fallback(zone
, order
);
2274 page
= __rmqueue_fallback(zone
, order
, migratetype
,
2281 * Obtain a specified number of elements from the buddy allocator, all under
2282 * a single hold of the lock, for efficiency. Add them to the supplied list.
2283 * Returns the number of new pages which were placed at *list.
2285 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2286 unsigned long count
, struct list_head
*list
,
2287 int migratetype
, unsigned int alloc_flags
)
2289 unsigned long flags
;
2292 spin_lock_irqsave(&zone
->lock
, flags
);
2293 for (i
= 0; i
< count
; ++i
) {
2294 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2296 if (unlikely(page
== NULL
))
2300 * Split buddy pages returned by expand() are received here in
2301 * physical page order. The page is added to the tail of
2302 * caller's list. From the callers perspective, the linked list
2303 * is ordered by page number under some conditions. This is
2304 * useful for IO devices that can forward direction from the
2305 * head, thus also in the physical page order. This is useful
2306 * for IO devices that can merge IO requests if the physical
2307 * pages are ordered properly.
2309 list_add_tail(&page
->pcp_list
, list
);
2311 spin_unlock_irqrestore(&zone
->lock
, flags
);
2317 * Called from the vmstat counter updater to decay the PCP high.
2318 * Return whether there are addition works to do.
2320 int decay_pcp_high(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2322 int high_min
, to_drain
, batch
;
2325 high_min
= READ_ONCE(pcp
->high_min
);
2326 batch
= READ_ONCE(pcp
->batch
);
2328 * Decrease pcp->high periodically to try to free possible
2329 * idle PCP pages. And, avoid to free too many pages to
2330 * control latency. This caps pcp->high decrement too.
2332 if (pcp
->high
> high_min
) {
2333 pcp
->high
= max3(pcp
->count
- (batch
<< CONFIG_PCP_BATCH_SCALE_MAX
),
2334 pcp
->high
- (pcp
->high
>> 3), high_min
);
2335 if (pcp
->high
> high_min
)
2339 to_drain
= pcp
->count
- pcp
->high
;
2341 spin_lock(&pcp
->lock
);
2342 free_pcppages_bulk(zone
, to_drain
, pcp
, 0);
2343 spin_unlock(&pcp
->lock
);
2352 * Called from the vmstat counter updater to drain pagesets of this
2353 * currently executing processor on remote nodes after they have
2356 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2358 int to_drain
, batch
;
2360 batch
= READ_ONCE(pcp
->batch
);
2361 to_drain
= min(pcp
->count
, batch
);
2363 spin_lock(&pcp
->lock
);
2364 free_pcppages_bulk(zone
, to_drain
, pcp
, 0);
2365 spin_unlock(&pcp
->lock
);
2371 * Drain pcplists of the indicated processor and zone.
2373 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2375 struct per_cpu_pages
*pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
2379 spin_lock(&pcp
->lock
);
2382 int to_drain
= min(count
,
2383 pcp
->batch
<< CONFIG_PCP_BATCH_SCALE_MAX
);
2385 free_pcppages_bulk(zone
, to_drain
, pcp
, 0);
2388 spin_unlock(&pcp
->lock
);
2393 * Drain pcplists of all zones on the indicated processor.
2395 static void drain_pages(unsigned int cpu
)
2399 for_each_populated_zone(zone
) {
2400 drain_pages_zone(cpu
, zone
);
2405 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2407 void drain_local_pages(struct zone
*zone
)
2409 int cpu
= smp_processor_id();
2412 drain_pages_zone(cpu
, zone
);
2418 * The implementation of drain_all_pages(), exposing an extra parameter to
2419 * drain on all cpus.
2421 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2422 * not empty. The check for non-emptiness can however race with a free to
2423 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2424 * that need the guarantee that every CPU has drained can disable the
2425 * optimizing racy check.
2427 static void __drain_all_pages(struct zone
*zone
, bool force_all_cpus
)
2432 * Allocate in the BSS so we won't require allocation in
2433 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2435 static cpumask_t cpus_with_pcps
;
2438 * Do not drain if one is already in progress unless it's specific to
2439 * a zone. Such callers are primarily CMA and memory hotplug and need
2440 * the drain to be complete when the call returns.
2442 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2445 mutex_lock(&pcpu_drain_mutex
);
2449 * We don't care about racing with CPU hotplug event
2450 * as offline notification will cause the notified
2451 * cpu to drain that CPU pcps and on_each_cpu_mask
2452 * disables preemption as part of its processing
2454 for_each_online_cpu(cpu
) {
2455 struct per_cpu_pages
*pcp
;
2457 bool has_pcps
= false;
2459 if (force_all_cpus
) {
2461 * The pcp.count check is racy, some callers need a
2462 * guarantee that no cpu is missed.
2466 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
2470 for_each_populated_zone(z
) {
2471 pcp
= per_cpu_ptr(z
->per_cpu_pageset
, cpu
);
2480 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2482 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2485 for_each_cpu(cpu
, &cpus_with_pcps
) {
2487 drain_pages_zone(cpu
, zone
);
2492 mutex_unlock(&pcpu_drain_mutex
);
2496 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2498 * When zone parameter is non-NULL, spill just the single zone's pages.
2500 void drain_all_pages(struct zone
*zone
)
2502 __drain_all_pages(zone
, false);
2505 static int nr_pcp_free(struct per_cpu_pages
*pcp
, int batch
, int high
, bool free_high
)
2507 int min_nr_free
, max_nr_free
;
2509 /* Free as much as possible if batch freeing high-order pages. */
2510 if (unlikely(free_high
))
2511 return min(pcp
->count
, batch
<< CONFIG_PCP_BATCH_SCALE_MAX
);
2513 /* Check for PCP disabled or boot pageset */
2514 if (unlikely(high
< batch
))
2517 /* Leave at least pcp->batch pages on the list */
2518 min_nr_free
= batch
;
2519 max_nr_free
= high
- batch
;
2522 * Increase the batch number to the number of the consecutive
2523 * freed pages to reduce zone lock contention.
2525 batch
= clamp_t(int, pcp
->free_count
, min_nr_free
, max_nr_free
);
2530 static int nr_pcp_high(struct per_cpu_pages
*pcp
, struct zone
*zone
,
2531 int batch
, bool free_high
)
2533 int high
, high_min
, high_max
;
2535 high_min
= READ_ONCE(pcp
->high_min
);
2536 high_max
= READ_ONCE(pcp
->high_max
);
2537 high
= pcp
->high
= clamp(pcp
->high
, high_min
, high_max
);
2539 if (unlikely(!high
))
2542 if (unlikely(free_high
)) {
2543 pcp
->high
= max(high
- (batch
<< CONFIG_PCP_BATCH_SCALE_MAX
),
2549 * If reclaim is active, limit the number of pages that can be
2550 * stored on pcp lists
2552 if (test_bit(ZONE_RECLAIM_ACTIVE
, &zone
->flags
)) {
2553 int free_count
= max_t(int, pcp
->free_count
, batch
);
2555 pcp
->high
= max(high
- free_count
, high_min
);
2556 return min(batch
<< 2, pcp
->high
);
2559 if (high_min
== high_max
)
2562 if (test_bit(ZONE_BELOW_HIGH
, &zone
->flags
)) {
2563 int free_count
= max_t(int, pcp
->free_count
, batch
);
2565 pcp
->high
= max(high
- free_count
, high_min
);
2566 high
= max(pcp
->count
, high_min
);
2567 } else if (pcp
->count
>= high
) {
2568 int need_high
= pcp
->free_count
+ batch
;
2570 /* pcp->high should be large enough to hold batch freed pages */
2571 if (pcp
->high
< need_high
)
2572 pcp
->high
= clamp(need_high
, high_min
, high_max
);
2578 static void free_unref_page_commit(struct zone
*zone
, struct per_cpu_pages
*pcp
,
2579 struct page
*page
, int migratetype
,
2584 bool free_high
= false;
2587 * On freeing, reduce the number of pages that are batch allocated.
2588 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2591 pcp
->alloc_factor
>>= 1;
2592 __count_vm_events(PGFREE
, 1 << order
);
2593 pindex
= order_to_pindex(migratetype
, order
);
2594 list_add(&page
->pcp_list
, &pcp
->lists
[pindex
]);
2595 pcp
->count
+= 1 << order
;
2597 batch
= READ_ONCE(pcp
->batch
);
2599 * As high-order pages other than THP's stored on PCP can contribute
2600 * to fragmentation, limit the number stored when PCP is heavily
2601 * freeing without allocation. The remainder after bulk freeing
2602 * stops will be drained from vmstat refresh context.
2604 if (order
&& order
<= PAGE_ALLOC_COSTLY_ORDER
) {
2605 free_high
= (pcp
->free_count
>= batch
&&
2606 (pcp
->flags
& PCPF_PREV_FREE_HIGH_ORDER
) &&
2607 (!(pcp
->flags
& PCPF_FREE_HIGH_BATCH
) ||
2608 pcp
->count
>= READ_ONCE(batch
)));
2609 pcp
->flags
|= PCPF_PREV_FREE_HIGH_ORDER
;
2610 } else if (pcp
->flags
& PCPF_PREV_FREE_HIGH_ORDER
) {
2611 pcp
->flags
&= ~PCPF_PREV_FREE_HIGH_ORDER
;
2613 if (pcp
->free_count
< (batch
<< CONFIG_PCP_BATCH_SCALE_MAX
))
2614 pcp
->free_count
+= (1 << order
);
2615 high
= nr_pcp_high(pcp
, zone
, batch
, free_high
);
2616 if (pcp
->count
>= high
) {
2617 free_pcppages_bulk(zone
, nr_pcp_free(pcp
, batch
, high
, free_high
),
2619 if (test_bit(ZONE_BELOW_HIGH
, &zone
->flags
) &&
2620 zone_watermark_ok(zone
, 0, high_wmark_pages(zone
),
2622 clear_bit(ZONE_BELOW_HIGH
, &zone
->flags
);
2629 void free_unref_page(struct page
*page
, unsigned int order
)
2631 unsigned long __maybe_unused UP_flags
;
2632 struct per_cpu_pages
*pcp
;
2634 unsigned long pfn
= page_to_pfn(page
);
2637 if (!pcp_allowed_order(order
)) {
2638 __free_pages_ok(page
, order
, FPI_NONE
);
2642 if (!free_pages_prepare(page
, order
))
2646 * We only track unmovable, reclaimable and movable on pcp lists.
2647 * Place ISOLATE pages on the isolated list because they are being
2648 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2649 * get those areas back if necessary. Otherwise, we may have to free
2650 * excessively into the page allocator
2652 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2653 if (unlikely(migratetype
>= MIGRATE_PCPTYPES
)) {
2654 if (unlikely(is_migrate_isolate(migratetype
))) {
2655 free_one_page(page_zone(page
), page
, pfn
, order
, FPI_NONE
);
2658 migratetype
= MIGRATE_MOVABLE
;
2661 zone
= page_zone(page
);
2662 pcp_trylock_prepare(UP_flags
);
2663 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
2665 free_unref_page_commit(zone
, pcp
, page
, migratetype
, order
);
2666 pcp_spin_unlock(pcp
);
2668 free_one_page(zone
, page
, pfn
, order
, FPI_NONE
);
2670 pcp_trylock_finish(UP_flags
);
2674 * Free a batch of folios
2676 void free_unref_folios(struct folio_batch
*folios
)
2678 unsigned long __maybe_unused UP_flags
;
2679 struct per_cpu_pages
*pcp
= NULL
;
2680 struct zone
*locked_zone
= NULL
;
2683 /* Prepare folios for freeing */
2684 for (i
= 0, j
= 0; i
< folios
->nr
; i
++) {
2685 struct folio
*folio
= folios
->folios
[i
];
2686 unsigned long pfn
= folio_pfn(folio
);
2687 unsigned int order
= folio_order(folio
);
2689 if (!free_pages_prepare(&folio
->page
, order
))
2692 * Free orders not handled on the PCP directly to the
2695 if (!pcp_allowed_order(order
)) {
2696 free_one_page(folio_zone(folio
), &folio
->page
,
2697 pfn
, order
, FPI_NONE
);
2700 folio
->private = (void *)(unsigned long)order
;
2702 folios
->folios
[j
] = folio
;
2707 for (i
= 0; i
< folios
->nr
; i
++) {
2708 struct folio
*folio
= folios
->folios
[i
];
2709 struct zone
*zone
= folio_zone(folio
);
2710 unsigned long pfn
= folio_pfn(folio
);
2711 unsigned int order
= (unsigned long)folio
->private;
2714 folio
->private = NULL
;
2715 migratetype
= get_pfnblock_migratetype(&folio
->page
, pfn
);
2717 /* Different zone requires a different pcp lock */
2718 if (zone
!= locked_zone
||
2719 is_migrate_isolate(migratetype
)) {
2721 pcp_spin_unlock(pcp
);
2722 pcp_trylock_finish(UP_flags
);
2728 * Free isolated pages directly to the
2729 * allocator, see comment in free_unref_page.
2731 if (is_migrate_isolate(migratetype
)) {
2732 free_one_page(zone
, &folio
->page
, pfn
,
2738 * trylock is necessary as folios may be getting freed
2739 * from IRQ or SoftIRQ context after an IO completion.
2741 pcp_trylock_prepare(UP_flags
);
2742 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
2743 if (unlikely(!pcp
)) {
2744 pcp_trylock_finish(UP_flags
);
2745 free_one_page(zone
, &folio
->page
, pfn
,
2753 * Non-isolated types over MIGRATE_PCPTYPES get added
2754 * to the MIGRATE_MOVABLE pcp list.
2756 if (unlikely(migratetype
>= MIGRATE_PCPTYPES
))
2757 migratetype
= MIGRATE_MOVABLE
;
2759 trace_mm_page_free_batched(&folio
->page
);
2760 free_unref_page_commit(zone
, pcp
, &folio
->page
, migratetype
,
2765 pcp_spin_unlock(pcp
);
2766 pcp_trylock_finish(UP_flags
);
2768 folio_batch_reinit(folios
);
2772 * split_page takes a non-compound higher-order page, and splits it into
2773 * n (1<<order) sub-pages: page[0..n]
2774 * Each sub-page must be freed individually.
2776 * Note: this is probably too low level an operation for use in drivers.
2777 * Please consult with lkml before using this in your driver.
2779 void split_page(struct page
*page
, unsigned int order
)
2783 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2784 VM_BUG_ON_PAGE(!page_count(page
), page
);
2786 for (i
= 1; i
< (1 << order
); i
++)
2787 set_page_refcounted(page
+ i
);
2788 split_page_owner(page
, order
, 0);
2789 pgalloc_tag_split(page_folio(page
), order
, 0);
2790 split_page_memcg(page
, order
, 0);
2792 EXPORT_SYMBOL_GPL(split_page
);
2794 int __isolate_free_page(struct page
*page
, unsigned int order
)
2796 struct zone
*zone
= page_zone(page
);
2797 int mt
= get_pageblock_migratetype(page
);
2799 if (!is_migrate_isolate(mt
)) {
2800 unsigned long watermark
;
2802 * Obey watermarks as if the page was being allocated. We can
2803 * emulate a high-order watermark check with a raised order-0
2804 * watermark, because we already know our high-order page
2807 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
2808 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2812 del_page_from_free_list(page
, zone
, order
, mt
);
2815 * Set the pageblock if the isolated page is at least half of a
2818 if (order
>= pageblock_order
- 1) {
2819 struct page
*endpage
= page
+ (1 << order
) - 1;
2820 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2821 int mt
= get_pageblock_migratetype(page
);
2823 * Only change normal pageblocks (i.e., they can merge
2826 if (migratetype_is_mergeable(mt
))
2827 move_freepages_block(zone
, page
, mt
,
2832 return 1UL << order
;
2836 * __putback_isolated_page - Return a now-isolated page back where we got it
2837 * @page: Page that was isolated
2838 * @order: Order of the isolated page
2839 * @mt: The page's pageblock's migratetype
2841 * This function is meant to return a page pulled from the free lists via
2842 * __isolate_free_page back to the free lists they were pulled from.
2844 void __putback_isolated_page(struct page
*page
, unsigned int order
, int mt
)
2846 struct zone
*zone
= page_zone(page
);
2848 /* zone lock should be held when this function is called */
2849 lockdep_assert_held(&zone
->lock
);
2851 /* Return isolated page to tail of freelist. */
2852 __free_one_page(page
, page_to_pfn(page
), zone
, order
, mt
,
2853 FPI_SKIP_REPORT_NOTIFY
| FPI_TO_TAIL
);
2857 * Update NUMA hit/miss statistics
2859 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
,
2863 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2865 /* skip numa counters update if numa stats is disabled */
2866 if (!static_branch_likely(&vm_numa_stat_key
))
2869 if (zone_to_nid(z
) != numa_node_id())
2870 local_stat
= NUMA_OTHER
;
2872 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
2873 __count_numa_events(z
, NUMA_HIT
, nr_account
);
2875 __count_numa_events(z
, NUMA_MISS
, nr_account
);
2876 __count_numa_events(preferred_zone
, NUMA_FOREIGN
, nr_account
);
2878 __count_numa_events(z
, local_stat
, nr_account
);
2882 static __always_inline
2883 struct page
*rmqueue_buddy(struct zone
*preferred_zone
, struct zone
*zone
,
2884 unsigned int order
, unsigned int alloc_flags
,
2888 unsigned long flags
;
2892 spin_lock_irqsave(&zone
->lock
, flags
);
2893 if (alloc_flags
& ALLOC_HIGHATOMIC
)
2894 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2896 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
2899 * If the allocation fails, allow OOM handling and
2900 * order-0 (atomic) allocs access to HIGHATOMIC
2901 * reserves as failing now is worse than failing a
2902 * high-order atomic allocation in the future.
2904 if (!page
&& (alloc_flags
& (ALLOC_OOM
|ALLOC_NON_BLOCK
)))
2905 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2908 spin_unlock_irqrestore(&zone
->lock
, flags
);
2912 spin_unlock_irqrestore(&zone
->lock
, flags
);
2913 } while (check_new_pages(page
, order
));
2915 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2916 zone_statistics(preferred_zone
, zone
, 1);
2921 static int nr_pcp_alloc(struct per_cpu_pages
*pcp
, struct zone
*zone
, int order
)
2923 int high
, base_batch
, batch
, max_nr_alloc
;
2924 int high_max
, high_min
;
2926 base_batch
= READ_ONCE(pcp
->batch
);
2927 high_min
= READ_ONCE(pcp
->high_min
);
2928 high_max
= READ_ONCE(pcp
->high_max
);
2929 high
= pcp
->high
= clamp(pcp
->high
, high_min
, high_max
);
2931 /* Check for PCP disabled or boot pageset */
2932 if (unlikely(high
< base_batch
))
2938 batch
= (base_batch
<< pcp
->alloc_factor
);
2941 * If we had larger pcp->high, we could avoid to allocate from
2944 if (high_min
!= high_max
&& !test_bit(ZONE_BELOW_HIGH
, &zone
->flags
))
2945 high
= pcp
->high
= min(high
+ batch
, high_max
);
2948 max_nr_alloc
= max(high
- pcp
->count
- base_batch
, base_batch
);
2950 * Double the number of pages allocated each time there is
2951 * subsequent allocation of order-0 pages without any freeing.
2953 if (batch
<= max_nr_alloc
&&
2954 pcp
->alloc_factor
< CONFIG_PCP_BATCH_SCALE_MAX
)
2955 pcp
->alloc_factor
++;
2956 batch
= min(batch
, max_nr_alloc
);
2960 * Scale batch relative to order if batch implies free pages
2961 * can be stored on the PCP. Batch can be 1 for small zones or
2962 * for boot pagesets which should never store free pages as
2963 * the pages may belong to arbitrary zones.
2966 batch
= max(batch
>> order
, 2);
2971 /* Remove page from the per-cpu list, caller must protect the list */
2973 struct page
*__rmqueue_pcplist(struct zone
*zone
, unsigned int order
,
2975 unsigned int alloc_flags
,
2976 struct per_cpu_pages
*pcp
,
2977 struct list_head
*list
)
2982 if (list_empty(list
)) {
2983 int batch
= nr_pcp_alloc(pcp
, zone
, order
);
2986 alloced
= rmqueue_bulk(zone
, order
,
2988 migratetype
, alloc_flags
);
2990 pcp
->count
+= alloced
<< order
;
2991 if (unlikely(list_empty(list
)))
2995 page
= list_first_entry(list
, struct page
, pcp_list
);
2996 list_del(&page
->pcp_list
);
2997 pcp
->count
-= 1 << order
;
2998 } while (check_new_pages(page
, order
));
3003 /* Lock and remove page from the per-cpu list */
3004 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3005 struct zone
*zone
, unsigned int order
,
3006 int migratetype
, unsigned int alloc_flags
)
3008 struct per_cpu_pages
*pcp
;
3009 struct list_head
*list
;
3011 unsigned long __maybe_unused UP_flags
;
3013 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3014 pcp_trylock_prepare(UP_flags
);
3015 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
3017 pcp_trylock_finish(UP_flags
);
3022 * On allocation, reduce the number of pages that are batch freed.
3023 * See nr_pcp_free() where free_factor is increased for subsequent
3026 pcp
->free_count
>>= 1;
3027 list
= &pcp
->lists
[order_to_pindex(migratetype
, order
)];
3028 page
= __rmqueue_pcplist(zone
, order
, migratetype
, alloc_flags
, pcp
, list
);
3029 pcp_spin_unlock(pcp
);
3030 pcp_trylock_finish(UP_flags
);
3032 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3033 zone_statistics(preferred_zone
, zone
, 1);
3039 * Allocate a page from the given zone.
3040 * Use pcplists for THP or "cheap" high-order allocations.
3044 * Do not instrument rmqueue() with KMSAN. This function may call
3045 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3046 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3047 * may call rmqueue() again, which will result in a deadlock.
3049 __no_sanitize_memory
3051 struct page
*rmqueue(struct zone
*preferred_zone
,
3052 struct zone
*zone
, unsigned int order
,
3053 gfp_t gfp_flags
, unsigned int alloc_flags
,
3058 if (likely(pcp_allowed_order(order
))) {
3059 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
3060 migratetype
, alloc_flags
);
3065 page
= rmqueue_buddy(preferred_zone
, zone
, order
, alloc_flags
,
3069 /* Separate test+clear to avoid unnecessary atomics */
3070 if ((alloc_flags
& ALLOC_KSWAPD
) &&
3071 unlikely(test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
))) {
3072 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3073 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3076 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3080 static inline long __zone_watermark_unusable_free(struct zone
*z
,
3081 unsigned int order
, unsigned int alloc_flags
)
3083 long unusable_free
= (1 << order
) - 1;
3086 * If the caller does not have rights to reserves below the min
3087 * watermark then subtract the free pages reserved for highatomic.
3089 if (likely(!(alloc_flags
& ALLOC_RESERVES
)))
3090 unusable_free
+= READ_ONCE(z
->nr_free_highatomic
);
3093 /* If allocation can't use CMA areas don't use free CMA pages */
3094 if (!(alloc_flags
& ALLOC_CMA
))
3095 unusable_free
+= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3098 return unusable_free
;
3102 * Return true if free base pages are above 'mark'. For high-order checks it
3103 * will return true of the order-0 watermark is reached and there is at least
3104 * one free page of a suitable size. Checking now avoids taking the zone lock
3105 * to check in the allocation paths if no pages are free.
3107 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3108 int highest_zoneidx
, unsigned int alloc_flags
,
3114 /* free_pages may go negative - that's OK */
3115 free_pages
-= __zone_watermark_unusable_free(z
, order
, alloc_flags
);
3117 if (unlikely(alloc_flags
& ALLOC_RESERVES
)) {
3119 * __GFP_HIGH allows access to 50% of the min reserve as well
3122 if (alloc_flags
& ALLOC_MIN_RESERVE
) {
3126 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3127 * access more reserves than just __GFP_HIGH. Other
3128 * non-blocking allocations requests such as GFP_NOWAIT
3129 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3130 * access to the min reserve.
3132 if (alloc_flags
& ALLOC_NON_BLOCK
)
3137 * OOM victims can try even harder than the normal reserve
3138 * users on the grounds that it's definitely going to be in
3139 * the exit path shortly and free memory. Any allocation it
3140 * makes during the free path will be small and short-lived.
3142 if (alloc_flags
& ALLOC_OOM
)
3147 * Check watermarks for an order-0 allocation request. If these
3148 * are not met, then a high-order request also cannot go ahead
3149 * even if a suitable page happened to be free.
3151 if (free_pages
<= min
+ z
->lowmem_reserve
[highest_zoneidx
])
3154 /* If this is an order-0 request then the watermark is fine */
3158 /* For a high-order request, check at least one suitable page is free */
3159 for (o
= order
; o
< NR_PAGE_ORDERS
; o
++) {
3160 struct free_area
*area
= &z
->free_area
[o
];
3166 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3167 if (!free_area_empty(area
, mt
))
3172 if ((alloc_flags
& ALLOC_CMA
) &&
3173 !free_area_empty(area
, MIGRATE_CMA
)) {
3177 if ((alloc_flags
& (ALLOC_HIGHATOMIC
|ALLOC_OOM
)) &&
3178 !free_area_empty(area
, MIGRATE_HIGHATOMIC
)) {
3185 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3186 int highest_zoneidx
, unsigned int alloc_flags
)
3188 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3189 zone_page_state(z
, NR_FREE_PAGES
));
3192 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3193 unsigned long mark
, int highest_zoneidx
,
3194 unsigned int alloc_flags
, gfp_t gfp_mask
)
3198 free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3201 * Fast check for order-0 only. If this fails then the reserves
3202 * need to be calculated.
3208 usable_free
= free_pages
;
3209 reserved
= __zone_watermark_unusable_free(z
, 0, alloc_flags
);
3211 /* reserved may over estimate high-atomic reserves. */
3212 usable_free
-= min(usable_free
, reserved
);
3213 if (usable_free
> mark
+ z
->lowmem_reserve
[highest_zoneidx
])
3217 if (__zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3222 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3223 * when checking the min watermark. The min watermark is the
3224 * point where boosting is ignored so that kswapd is woken up
3225 * when below the low watermark.
3227 if (unlikely(!order
&& (alloc_flags
& ALLOC_MIN_RESERVE
) && z
->watermark_boost
3228 && ((alloc_flags
& ALLOC_WMARK_MASK
) == WMARK_MIN
))) {
3229 mark
= z
->_watermark
[WMARK_MIN
];
3230 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
,
3231 alloc_flags
, free_pages
);
3237 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3238 unsigned long mark
, int highest_zoneidx
)
3240 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3242 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3243 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3245 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, 0,
3250 int __read_mostly node_reclaim_distance
= RECLAIM_DISTANCE
;
3252 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3254 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3255 node_reclaim_distance
;
3257 #else /* CONFIG_NUMA */
3258 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3262 #endif /* CONFIG_NUMA */
3265 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3266 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3267 * premature use of a lower zone may cause lowmem pressure problems that
3268 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3269 * probably too small. It only makes sense to spread allocations to avoid
3270 * fragmentation between the Normal and DMA32 zones.
3272 static inline unsigned int
3273 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3275 unsigned int alloc_flags
;
3278 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3281 alloc_flags
= (__force
int) (gfp_mask
& __GFP_KSWAPD_RECLAIM
);
3283 #ifdef CONFIG_ZONE_DMA32
3287 if (zone_idx(zone
) != ZONE_NORMAL
)
3291 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3292 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3293 * on UMA that if Normal is populated then so is DMA32.
3295 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3296 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3299 alloc_flags
|= ALLOC_NOFRAGMENT
;
3300 #endif /* CONFIG_ZONE_DMA32 */
3304 /* Must be called after current_gfp_context() which can change gfp_mask */
3305 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask
,
3306 unsigned int alloc_flags
)
3309 if (gfp_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3310 alloc_flags
|= ALLOC_CMA
;
3316 * get_page_from_freelist goes through the zonelist trying to allocate
3319 static struct page
*
3320 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3321 const struct alloc_context
*ac
)
3325 struct pglist_data
*last_pgdat
= NULL
;
3326 bool last_pgdat_dirty_ok
= false;
3331 * Scan zonelist, looking for a zone with enough free.
3332 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3334 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3335 z
= ac
->preferred_zoneref
;
3336 for_next_zone_zonelist_nodemask(zone
, z
, ac
->highest_zoneidx
,
3341 if (cpusets_enabled() &&
3342 (alloc_flags
& ALLOC_CPUSET
) &&
3343 !__cpuset_zone_allowed(zone
, gfp_mask
))
3346 * When allocating a page cache page for writing, we
3347 * want to get it from a node that is within its dirty
3348 * limit, such that no single node holds more than its
3349 * proportional share of globally allowed dirty pages.
3350 * The dirty limits take into account the node's
3351 * lowmem reserves and high watermark so that kswapd
3352 * should be able to balance it without having to
3353 * write pages from its LRU list.
3355 * XXX: For now, allow allocations to potentially
3356 * exceed the per-node dirty limit in the slowpath
3357 * (spread_dirty_pages unset) before going into reclaim,
3358 * which is important when on a NUMA setup the allowed
3359 * nodes are together not big enough to reach the
3360 * global limit. The proper fix for these situations
3361 * will require awareness of nodes in the
3362 * dirty-throttling and the flusher threads.
3364 if (ac
->spread_dirty_pages
) {
3365 if (last_pgdat
!= zone
->zone_pgdat
) {
3366 last_pgdat
= zone
->zone_pgdat
;
3367 last_pgdat_dirty_ok
= node_dirty_ok(zone
->zone_pgdat
);
3370 if (!last_pgdat_dirty_ok
)
3374 if (no_fallback
&& nr_online_nodes
> 1 &&
3375 zone
!= zonelist_zone(ac
->preferred_zoneref
)) {
3379 * If moving to a remote node, retry but allow
3380 * fragmenting fallbacks. Locality is more important
3381 * than fragmentation avoidance.
3383 local_nid
= zonelist_node_idx(ac
->preferred_zoneref
);
3384 if (zone_to_nid(zone
) != local_nid
) {
3385 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3390 cond_accept_memory(zone
, order
);
3393 * Detect whether the number of free pages is below high
3394 * watermark. If so, we will decrease pcp->high and free
3395 * PCP pages in free path to reduce the possibility of
3396 * premature page reclaiming. Detection is done here to
3397 * avoid to do that in hotter free path.
3399 if (test_bit(ZONE_BELOW_HIGH
, &zone
->flags
))
3400 goto check_alloc_wmark
;
3402 mark
= high_wmark_pages(zone
);
3403 if (zone_watermark_fast(zone
, order
, mark
,
3404 ac
->highest_zoneidx
, alloc_flags
,
3408 set_bit(ZONE_BELOW_HIGH
, &zone
->flags
);
3411 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3412 if (!zone_watermark_fast(zone
, order
, mark
,
3413 ac
->highest_zoneidx
, alloc_flags
,
3417 if (cond_accept_memory(zone
, order
))
3421 * Watermark failed for this zone, but see if we can
3422 * grow this zone if it contains deferred pages.
3424 if (deferred_pages_enabled()) {
3425 if (_deferred_grow_zone(zone
, order
))
3428 /* Checked here to keep the fast path fast */
3429 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3430 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3433 if (!node_reclaim_enabled() ||
3434 !zone_allows_reclaim(zonelist_zone(ac
->preferred_zoneref
), zone
))
3437 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3439 case NODE_RECLAIM_NOSCAN
:
3442 case NODE_RECLAIM_FULL
:
3443 /* scanned but unreclaimable */
3446 /* did we reclaim enough */
3447 if (zone_watermark_ok(zone
, order
, mark
,
3448 ac
->highest_zoneidx
, alloc_flags
))
3456 page
= rmqueue(zonelist_zone(ac
->preferred_zoneref
), zone
, order
,
3457 gfp_mask
, alloc_flags
, ac
->migratetype
);
3459 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3462 * If this is a high-order atomic allocation then check
3463 * if the pageblock should be reserved for the future
3465 if (unlikely(alloc_flags
& ALLOC_HIGHATOMIC
))
3466 reserve_highatomic_pageblock(page
, order
, zone
);
3470 if (cond_accept_memory(zone
, order
))
3473 /* Try again if zone has deferred pages */
3474 if (deferred_pages_enabled()) {
3475 if (_deferred_grow_zone(zone
, order
))
3482 * It's possible on a UMA machine to get through all zones that are
3483 * fragmented. If avoiding fragmentation, reset and try again.
3486 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3493 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3495 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3498 * This documents exceptions given to allocations in certain
3499 * contexts that are allowed to allocate outside current's set
3502 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3503 if (tsk_is_oom_victim(current
) ||
3504 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3505 filter
&= ~SHOW_MEM_FILTER_NODES
;
3506 if (!in_task() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3507 filter
&= ~SHOW_MEM_FILTER_NODES
;
3509 __show_mem(filter
, nodemask
, gfp_zone(gfp_mask
));
3512 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3514 struct va_format vaf
;
3516 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
3518 if ((gfp_mask
& __GFP_NOWARN
) ||
3519 !__ratelimit(&nopage_rs
) ||
3520 ((gfp_mask
& __GFP_DMA
) && !has_managed_dma()))
3523 va_start(args
, fmt
);
3526 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3527 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3528 nodemask_pr_args(nodemask
));
3531 cpuset_print_current_mems_allowed();
3534 warn_alloc_show_mem(gfp_mask
, nodemask
);
3537 static inline struct page
*
3538 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3539 unsigned int alloc_flags
,
3540 const struct alloc_context
*ac
)
3544 page
= get_page_from_freelist(gfp_mask
, order
,
3545 alloc_flags
|ALLOC_CPUSET
, ac
);
3547 * fallback to ignore cpuset restriction if our nodes
3551 page
= get_page_from_freelist(gfp_mask
, order
,
3557 static inline struct page
*
3558 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3559 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3561 struct oom_control oc
= {
3562 .zonelist
= ac
->zonelist
,
3563 .nodemask
= ac
->nodemask
,
3565 .gfp_mask
= gfp_mask
,
3570 *did_some_progress
= 0;
3573 * Acquire the oom lock. If that fails, somebody else is
3574 * making progress for us.
3576 if (!mutex_trylock(&oom_lock
)) {
3577 *did_some_progress
= 1;
3578 schedule_timeout_uninterruptible(1);
3583 * Go through the zonelist yet one more time, keep very high watermark
3584 * here, this is only to catch a parallel oom killing, we must fail if
3585 * we're still under heavy pressure. But make sure that this reclaim
3586 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3587 * allocation which will never fail due to oom_lock already held.
3589 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3590 ~__GFP_DIRECT_RECLAIM
, order
,
3591 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3595 /* Coredumps can quickly deplete all memory reserves */
3596 if (current
->flags
& PF_DUMPCORE
)
3598 /* The OOM killer will not help higher order allocs */
3599 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3602 * We have already exhausted all our reclaim opportunities without any
3603 * success so it is time to admit defeat. We will skip the OOM killer
3604 * because it is very likely that the caller has a more reasonable
3605 * fallback than shooting a random task.
3607 * The OOM killer may not free memory on a specific node.
3609 if (gfp_mask
& (__GFP_RETRY_MAYFAIL
| __GFP_THISNODE
))
3611 /* The OOM killer does not needlessly kill tasks for lowmem */
3612 if (ac
->highest_zoneidx
< ZONE_NORMAL
)
3614 if (pm_suspended_storage())
3617 * XXX: GFP_NOFS allocations should rather fail than rely on
3618 * other request to make a forward progress.
3619 * We are in an unfortunate situation where out_of_memory cannot
3620 * do much for this context but let's try it to at least get
3621 * access to memory reserved if the current task is killed (see
3622 * out_of_memory). Once filesystems are ready to handle allocation
3623 * failures more gracefully we should just bail out here.
3626 /* Exhausted what can be done so it's blame time */
3627 if (out_of_memory(&oc
) ||
3628 WARN_ON_ONCE_GFP(gfp_mask
& __GFP_NOFAIL
, gfp_mask
)) {
3629 *did_some_progress
= 1;
3632 * Help non-failing allocations by giving them access to memory
3635 if (gfp_mask
& __GFP_NOFAIL
)
3636 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3637 ALLOC_NO_WATERMARKS
, ac
);
3640 mutex_unlock(&oom_lock
);
3645 * Maximum number of compaction retries with a progress before OOM
3646 * killer is consider as the only way to move forward.
3648 #define MAX_COMPACT_RETRIES 16
3650 #ifdef CONFIG_COMPACTION
3651 /* Try memory compaction for high-order allocations before reclaim */
3652 static struct page
*
3653 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3654 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3655 enum compact_priority prio
, enum compact_result
*compact_result
)
3657 struct page
*page
= NULL
;
3658 unsigned long pflags
;
3659 unsigned int noreclaim_flag
;
3664 psi_memstall_enter(&pflags
);
3665 delayacct_compact_start();
3666 noreclaim_flag
= memalloc_noreclaim_save();
3668 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3671 memalloc_noreclaim_restore(noreclaim_flag
);
3672 psi_memstall_leave(&pflags
);
3673 delayacct_compact_end();
3675 if (*compact_result
== COMPACT_SKIPPED
)
3678 * At least in one zone compaction wasn't deferred or skipped, so let's
3679 * count a compaction stall
3681 count_vm_event(COMPACTSTALL
);
3683 /* Prep a captured page if available */
3685 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3687 /* Try get a page from the freelist if available */
3689 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3692 struct zone
*zone
= page_zone(page
);
3694 zone
->compact_blockskip_flush
= false;
3695 compaction_defer_reset(zone
, order
, true);
3696 count_vm_event(COMPACTSUCCESS
);
3701 * It's bad if compaction run occurs and fails. The most likely reason
3702 * is that pages exist, but not enough to satisfy watermarks.
3704 count_vm_event(COMPACTFAIL
);
3712 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3713 enum compact_result compact_result
,
3714 enum compact_priority
*compact_priority
,
3715 int *compaction_retries
)
3717 int max_retries
= MAX_COMPACT_RETRIES
;
3720 int retries
= *compaction_retries
;
3721 enum compact_priority priority
= *compact_priority
;
3726 if (fatal_signal_pending(current
))
3730 * Compaction was skipped due to a lack of free order-0
3731 * migration targets. Continue if reclaim can help.
3733 if (compact_result
== COMPACT_SKIPPED
) {
3734 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3739 * Compaction managed to coalesce some page blocks, but the
3740 * allocation failed presumably due to a race. Retry some.
3742 if (compact_result
== COMPACT_SUCCESS
) {
3744 * !costly requests are much more important than
3745 * __GFP_RETRY_MAYFAIL costly ones because they are de
3746 * facto nofail and invoke OOM killer to move on while
3747 * costly can fail and users are ready to cope with
3748 * that. 1/4 retries is rather arbitrary but we would
3749 * need much more detailed feedback from compaction to
3750 * make a better decision.
3752 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3755 if (++(*compaction_retries
) <= max_retries
) {
3762 * Compaction failed. Retry with increasing priority.
3764 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3765 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3767 if (*compact_priority
> min_priority
) {
3768 (*compact_priority
)--;
3769 *compaction_retries
= 0;
3773 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3777 static inline struct page
*
3778 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3779 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3780 enum compact_priority prio
, enum compact_result
*compact_result
)
3782 *compact_result
= COMPACT_SKIPPED
;
3787 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3788 enum compact_result compact_result
,
3789 enum compact_priority
*compact_priority
,
3790 int *compaction_retries
)
3795 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3799 * There are setups with compaction disabled which would prefer to loop
3800 * inside the allocator rather than hit the oom killer prematurely.
3801 * Let's give them a good hope and keep retrying while the order-0
3802 * watermarks are OK.
3804 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3805 ac
->highest_zoneidx
, ac
->nodemask
) {
3806 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3807 ac
->highest_zoneidx
, alloc_flags
))
3812 #endif /* CONFIG_COMPACTION */
3814 #ifdef CONFIG_LOCKDEP
3815 static struct lockdep_map __fs_reclaim_map
=
3816 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3818 static bool __need_reclaim(gfp_t gfp_mask
)
3820 /* no reclaim without waiting on it */
3821 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3824 /* this guy won't enter reclaim */
3825 if (current
->flags
& PF_MEMALLOC
)
3828 if (gfp_mask
& __GFP_NOLOCKDEP
)
3834 void __fs_reclaim_acquire(unsigned long ip
)
3836 lock_acquire_exclusive(&__fs_reclaim_map
, 0, 0, NULL
, ip
);
3839 void __fs_reclaim_release(unsigned long ip
)
3841 lock_release(&__fs_reclaim_map
, ip
);
3844 void fs_reclaim_acquire(gfp_t gfp_mask
)
3846 gfp_mask
= current_gfp_context(gfp_mask
);
3848 if (__need_reclaim(gfp_mask
)) {
3849 if (gfp_mask
& __GFP_FS
)
3850 __fs_reclaim_acquire(_RET_IP_
);
3852 #ifdef CONFIG_MMU_NOTIFIER
3853 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map
);
3854 lock_map_release(&__mmu_notifier_invalidate_range_start_map
);
3859 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3861 void fs_reclaim_release(gfp_t gfp_mask
)
3863 gfp_mask
= current_gfp_context(gfp_mask
);
3865 if (__need_reclaim(gfp_mask
)) {
3866 if (gfp_mask
& __GFP_FS
)
3867 __fs_reclaim_release(_RET_IP_
);
3870 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3874 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3875 * have been rebuilt so allocation retries. Reader side does not lock and
3876 * retries the allocation if zonelist changes. Writer side is protected by the
3877 * embedded spin_lock.
3879 static DEFINE_SEQLOCK(zonelist_update_seq
);
3881 static unsigned int zonelist_iter_begin(void)
3883 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
))
3884 return read_seqbegin(&zonelist_update_seq
);
3889 static unsigned int check_retry_zonelist(unsigned int seq
)
3891 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
))
3892 return read_seqretry(&zonelist_update_seq
, seq
);
3897 /* Perform direct synchronous page reclaim */
3898 static unsigned long
3899 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3900 const struct alloc_context
*ac
)
3902 unsigned int noreclaim_flag
;
3903 unsigned long progress
;
3907 /* We now go into synchronous reclaim */
3908 cpuset_memory_pressure_bump();
3909 fs_reclaim_acquire(gfp_mask
);
3910 noreclaim_flag
= memalloc_noreclaim_save();
3912 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3915 memalloc_noreclaim_restore(noreclaim_flag
);
3916 fs_reclaim_release(gfp_mask
);
3923 /* The really slow allocator path where we enter direct reclaim */
3924 static inline struct page
*
3925 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3926 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3927 unsigned long *did_some_progress
)
3929 struct page
*page
= NULL
;
3930 unsigned long pflags
;
3931 bool drained
= false;
3933 psi_memstall_enter(&pflags
);
3934 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3935 if (unlikely(!(*did_some_progress
)))
3939 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3942 * If an allocation failed after direct reclaim, it could be because
3943 * pages are pinned on the per-cpu lists or in high alloc reserves.
3944 * Shrink them and try again
3946 if (!page
&& !drained
) {
3947 unreserve_highatomic_pageblock(ac
, false);
3948 drain_all_pages(NULL
);
3953 psi_memstall_leave(&pflags
);
3958 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
3959 const struct alloc_context
*ac
)
3963 pg_data_t
*last_pgdat
= NULL
;
3964 enum zone_type highest_zoneidx
= ac
->highest_zoneidx
;
3966 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, highest_zoneidx
,
3968 if (!managed_zone(zone
))
3970 if (last_pgdat
!= zone
->zone_pgdat
) {
3971 wakeup_kswapd(zone
, gfp_mask
, order
, highest_zoneidx
);
3972 last_pgdat
= zone
->zone_pgdat
;
3977 static inline unsigned int
3978 gfp_to_alloc_flags(gfp_t gfp_mask
, unsigned int order
)
3980 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3983 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3984 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3985 * to save two branches.
3987 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_MIN_RESERVE
);
3988 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM
!= (__force gfp_t
) ALLOC_KSWAPD
);
3991 * The caller may dip into page reserves a bit more if the caller
3992 * cannot run direct reclaim, or if the caller has realtime scheduling
3993 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3994 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3996 alloc_flags
|= (__force
int)
3997 (gfp_mask
& (__GFP_HIGH
| __GFP_KSWAPD_RECLAIM
));
3999 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
)) {
4001 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4002 * if it can't schedule.
4004 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
4005 alloc_flags
|= ALLOC_NON_BLOCK
;
4008 alloc_flags
|= ALLOC_HIGHATOMIC
;
4012 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4013 * GFP_ATOMIC) rather than fail, see the comment for
4014 * cpuset_node_allowed().
4016 if (alloc_flags
& ALLOC_MIN_RESERVE
)
4017 alloc_flags
&= ~ALLOC_CPUSET
;
4018 } else if (unlikely(rt_or_dl_task(current
)) && in_task())
4019 alloc_flags
|= ALLOC_MIN_RESERVE
;
4021 alloc_flags
= gfp_to_alloc_flags_cma(gfp_mask
, alloc_flags
);
4026 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4028 if (!tsk_is_oom_victim(tsk
))
4032 * !MMU doesn't have oom reaper so give access to memory reserves
4033 * only to the thread with TIF_MEMDIE set
4035 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4042 * Distinguish requests which really need access to full memory
4043 * reserves from oom victims which can live with a portion of it
4045 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4047 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4049 if (gfp_mask
& __GFP_MEMALLOC
)
4050 return ALLOC_NO_WATERMARKS
;
4051 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4052 return ALLOC_NO_WATERMARKS
;
4053 if (!in_interrupt()) {
4054 if (current
->flags
& PF_MEMALLOC
)
4055 return ALLOC_NO_WATERMARKS
;
4056 else if (oom_reserves_allowed(current
))
4063 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4065 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4069 * Checks whether it makes sense to retry the reclaim to make a forward progress
4070 * for the given allocation request.
4072 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4073 * without success, or when we couldn't even meet the watermark if we
4074 * reclaimed all remaining pages on the LRU lists.
4076 * Returns true if a retry is viable or false to enter the oom path.
4079 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4080 struct alloc_context
*ac
, int alloc_flags
,
4081 bool did_some_progress
, int *no_progress_loops
)
4088 * Costly allocations might have made a progress but this doesn't mean
4089 * their order will become available due to high fragmentation so
4090 * always increment the no progress counter for them
4092 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4093 *no_progress_loops
= 0;
4095 (*no_progress_loops
)++;
4097 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
)
4102 * Keep reclaiming pages while there is a chance this will lead
4103 * somewhere. If none of the target zones can satisfy our allocation
4104 * request even if all reclaimable pages are considered then we are
4105 * screwed and have to go OOM.
4107 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
4108 ac
->highest_zoneidx
, ac
->nodemask
) {
4109 unsigned long available
;
4110 unsigned long reclaimable
;
4111 unsigned long min_wmark
= min_wmark_pages(zone
);
4114 if (cpusets_enabled() &&
4115 (alloc_flags
& ALLOC_CPUSET
) &&
4116 !__cpuset_zone_allowed(zone
, gfp_mask
))
4119 available
= reclaimable
= zone_reclaimable_pages(zone
);
4120 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4123 * Would the allocation succeed if we reclaimed all
4124 * reclaimable pages?
4126 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4127 ac
->highest_zoneidx
, alloc_flags
, available
);
4128 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4129 available
, min_wmark
, *no_progress_loops
, wmark
);
4137 * Memory allocation/reclaim might be called from a WQ context and the
4138 * current implementation of the WQ concurrency control doesn't
4139 * recognize that a particular WQ is congested if the worker thread is
4140 * looping without ever sleeping. Therefore we have to do a short sleep
4141 * here rather than calling cond_resched().
4143 if (current
->flags
& PF_WQ_WORKER
)
4144 schedule_timeout_uninterruptible(1);
4148 /* Before OOM, exhaust highatomic_reserve */
4150 return unreserve_highatomic_pageblock(ac
, true);
4156 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4159 * It's possible that cpuset's mems_allowed and the nodemask from
4160 * mempolicy don't intersect. This should be normally dealt with by
4161 * policy_nodemask(), but it's possible to race with cpuset update in
4162 * such a way the check therein was true, and then it became false
4163 * before we got our cpuset_mems_cookie here.
4164 * This assumes that for all allocations, ac->nodemask can come only
4165 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4166 * when it does not intersect with the cpuset restrictions) or the
4167 * caller can deal with a violated nodemask.
4169 if (cpusets_enabled() && ac
->nodemask
&&
4170 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4171 ac
->nodemask
= NULL
;
4176 * When updating a task's mems_allowed or mempolicy nodemask, it is
4177 * possible to race with parallel threads in such a way that our
4178 * allocation can fail while the mask is being updated. If we are about
4179 * to fail, check if the cpuset changed during allocation and if so,
4182 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4188 static inline struct page
*
4189 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4190 struct alloc_context
*ac
)
4192 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4193 bool can_compact
= gfp_compaction_allowed(gfp_mask
);
4194 bool nofail
= gfp_mask
& __GFP_NOFAIL
;
4195 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4196 struct page
*page
= NULL
;
4197 unsigned int alloc_flags
;
4198 unsigned long did_some_progress
;
4199 enum compact_priority compact_priority
;
4200 enum compact_result compact_result
;
4201 int compaction_retries
;
4202 int no_progress_loops
;
4203 unsigned int cpuset_mems_cookie
;
4204 unsigned int zonelist_iter_cookie
;
4207 if (unlikely(nofail
)) {
4209 * We most definitely don't want callers attempting to
4210 * allocate greater than order-1 page units with __GFP_NOFAIL.
4212 WARN_ON_ONCE(order
> 1);
4214 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4215 * otherwise, we may result in lockup.
4217 WARN_ON_ONCE(!can_direct_reclaim
);
4219 * PF_MEMALLOC request from this context is rather bizarre
4220 * because we cannot reclaim anything and only can loop waiting
4221 * for somebody to do a work for us.
4223 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4227 compaction_retries
= 0;
4228 no_progress_loops
= 0;
4229 compact_priority
= DEF_COMPACT_PRIORITY
;
4230 cpuset_mems_cookie
= read_mems_allowed_begin();
4231 zonelist_iter_cookie
= zonelist_iter_begin();
4234 * The fast path uses conservative alloc_flags to succeed only until
4235 * kswapd needs to be woken up, and to avoid the cost of setting up
4236 * alloc_flags precisely. So we do that now.
4238 alloc_flags
= gfp_to_alloc_flags(gfp_mask
, order
);
4241 * We need to recalculate the starting point for the zonelist iterator
4242 * because we might have used different nodemask in the fast path, or
4243 * there was a cpuset modification and we are retrying - otherwise we
4244 * could end up iterating over non-eligible zones endlessly.
4246 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4247 ac
->highest_zoneidx
, ac
->nodemask
);
4248 if (!zonelist_zone(ac
->preferred_zoneref
))
4252 * Check for insane configurations where the cpuset doesn't contain
4253 * any suitable zone to satisfy the request - e.g. non-movable
4254 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4256 if (cpusets_insane_config() && (gfp_mask
& __GFP_HARDWALL
)) {
4257 struct zoneref
*z
= first_zones_zonelist(ac
->zonelist
,
4258 ac
->highest_zoneidx
,
4259 &cpuset_current_mems_allowed
);
4260 if (!zonelist_zone(z
))
4264 if (alloc_flags
& ALLOC_KSWAPD
)
4265 wake_all_kswapds(order
, gfp_mask
, ac
);
4268 * The adjusted alloc_flags might result in immediate success, so try
4271 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4276 * For costly allocations, try direct compaction first, as it's likely
4277 * that we have enough base pages and don't need to reclaim. For non-
4278 * movable high-order allocations, do that as well, as compaction will
4279 * try prevent permanent fragmentation by migrating from blocks of the
4281 * Don't try this for allocations that are allowed to ignore
4282 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4284 if (can_direct_reclaim
&& can_compact
&&
4286 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4287 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4288 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4290 INIT_COMPACT_PRIORITY
,
4296 * Checks for costly allocations with __GFP_NORETRY, which
4297 * includes some THP page fault allocations
4299 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4301 * If allocating entire pageblock(s) and compaction
4302 * failed because all zones are below low watermarks
4303 * or is prohibited because it recently failed at this
4304 * order, fail immediately unless the allocator has
4305 * requested compaction and reclaim retry.
4308 * - potentially very expensive because zones are far
4309 * below their low watermarks or this is part of very
4310 * bursty high order allocations,
4311 * - not guaranteed to help because isolate_freepages()
4312 * may not iterate over freed pages as part of its
4314 * - unlikely to make entire pageblocks free on its
4317 if (compact_result
== COMPACT_SKIPPED
||
4318 compact_result
== COMPACT_DEFERRED
)
4322 * Looks like reclaim/compaction is worth trying, but
4323 * sync compaction could be very expensive, so keep
4324 * using async compaction.
4326 compact_priority
= INIT_COMPACT_PRIORITY
;
4331 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4332 if (alloc_flags
& ALLOC_KSWAPD
)
4333 wake_all_kswapds(order
, gfp_mask
, ac
);
4335 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4337 alloc_flags
= gfp_to_alloc_flags_cma(gfp_mask
, reserve_flags
) |
4338 (alloc_flags
& ALLOC_KSWAPD
);
4341 * Reset the nodemask and zonelist iterators if memory policies can be
4342 * ignored. These allocations are high priority and system rather than
4345 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4346 ac
->nodemask
= NULL
;
4347 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4348 ac
->highest_zoneidx
, ac
->nodemask
);
4351 /* Attempt with potentially adjusted zonelist and alloc_flags */
4352 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4356 /* Caller is not willing to reclaim, we can't balance anything */
4357 if (!can_direct_reclaim
)
4360 /* Avoid recursion of direct reclaim */
4361 if (current
->flags
& PF_MEMALLOC
)
4364 /* Try direct reclaim and then allocating */
4365 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4366 &did_some_progress
);
4370 /* Try direct compaction and then allocating */
4371 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4372 compact_priority
, &compact_result
);
4376 /* Do not loop if specifically requested */
4377 if (gfp_mask
& __GFP_NORETRY
)
4381 * Do not retry costly high order allocations unless they are
4382 * __GFP_RETRY_MAYFAIL and we can compact
4384 if (costly_order
&& (!can_compact
||
4385 !(gfp_mask
& __GFP_RETRY_MAYFAIL
)))
4388 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4389 did_some_progress
> 0, &no_progress_loops
))
4393 * It doesn't make any sense to retry for the compaction if the order-0
4394 * reclaim is not able to make any progress because the current
4395 * implementation of the compaction depends on the sufficient amount
4396 * of free memory (see __compaction_suitable)
4398 if (did_some_progress
> 0 && can_compact
&&
4399 should_compact_retry(ac
, order
, alloc_flags
,
4400 compact_result
, &compact_priority
,
4401 &compaction_retries
))
4406 * Deal with possible cpuset update races or zonelist updates to avoid
4407 * a unnecessary OOM kill.
4409 if (check_retry_cpuset(cpuset_mems_cookie
, ac
) ||
4410 check_retry_zonelist(zonelist_iter_cookie
))
4413 /* Reclaim has failed us, start killing things */
4414 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4418 /* Avoid allocations with no watermarks from looping endlessly */
4419 if (tsk_is_oom_victim(current
) &&
4420 (alloc_flags
& ALLOC_OOM
||
4421 (gfp_mask
& __GFP_NOMEMALLOC
)))
4424 /* Retry as long as the OOM killer is making progress */
4425 if (did_some_progress
) {
4426 no_progress_loops
= 0;
4432 * Deal with possible cpuset update races or zonelist updates to avoid
4433 * a unnecessary OOM kill.
4435 if (check_retry_cpuset(cpuset_mems_cookie
, ac
) ||
4436 check_retry_zonelist(zonelist_iter_cookie
))
4440 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4443 if (unlikely(nofail
)) {
4445 * Lacking direct_reclaim we can't do anything to reclaim memory,
4446 * we disregard these unreasonable nofail requests and still
4449 if (!can_direct_reclaim
)
4453 * Help non-failing allocations by giving some access to memory
4454 * reserves normally used for high priority non-blocking
4455 * allocations but do not use ALLOC_NO_WATERMARKS because this
4456 * could deplete whole memory reserves which would just make
4457 * the situation worse.
4459 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_MIN_RESERVE
, ac
);
4467 warn_alloc(gfp_mask
, ac
->nodemask
,
4468 "page allocation failure: order:%u", order
);
4473 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4474 int preferred_nid
, nodemask_t
*nodemask
,
4475 struct alloc_context
*ac
, gfp_t
*alloc_gfp
,
4476 unsigned int *alloc_flags
)
4478 ac
->highest_zoneidx
= gfp_zone(gfp_mask
);
4479 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4480 ac
->nodemask
= nodemask
;
4481 ac
->migratetype
= gfp_migratetype(gfp_mask
);
4483 if (cpusets_enabled()) {
4484 *alloc_gfp
|= __GFP_HARDWALL
;
4486 * When we are in the interrupt context, it is irrelevant
4487 * to the current task context. It means that any node ok.
4489 if (in_task() && !ac
->nodemask
)
4490 ac
->nodemask
= &cpuset_current_mems_allowed
;
4492 *alloc_flags
|= ALLOC_CPUSET
;
4495 might_alloc(gfp_mask
);
4497 if (should_fail_alloc_page(gfp_mask
, order
))
4500 *alloc_flags
= gfp_to_alloc_flags_cma(gfp_mask
, *alloc_flags
);
4502 /* Dirty zone balancing only done in the fast path */
4503 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4506 * The preferred zone is used for statistics but crucially it is
4507 * also used as the starting point for the zonelist iterator. It
4508 * may get reset for allocations that ignore memory policies.
4510 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4511 ac
->highest_zoneidx
, ac
->nodemask
);
4517 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4518 * @gfp: GFP flags for the allocation
4519 * @preferred_nid: The preferred NUMA node ID to allocate from
4520 * @nodemask: Set of nodes to allocate from, may be NULL
4521 * @nr_pages: The number of pages desired on the list or array
4522 * @page_list: Optional list to store the allocated pages
4523 * @page_array: Optional array to store the pages
4525 * This is a batched version of the page allocator that attempts to
4526 * allocate nr_pages quickly. Pages are added to page_list if page_list
4527 * is not NULL, otherwise it is assumed that the page_array is valid.
4529 * For lists, nr_pages is the number of pages that should be allocated.
4531 * For arrays, only NULL elements are populated with pages and nr_pages
4532 * is the maximum number of pages that will be stored in the array.
4534 * Returns the number of pages on the list or array.
4536 unsigned long alloc_pages_bulk_noprof(gfp_t gfp
, int preferred_nid
,
4537 nodemask_t
*nodemask
, int nr_pages
,
4538 struct list_head
*page_list
,
4539 struct page
**page_array
)
4542 unsigned long __maybe_unused UP_flags
;
4545 struct per_cpu_pages
*pcp
;
4546 struct list_head
*pcp_list
;
4547 struct alloc_context ac
;
4549 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4550 int nr_populated
= 0, nr_account
= 0;
4553 * Skip populated array elements to determine if any pages need
4554 * to be allocated before disabling IRQs.
4556 while (page_array
&& nr_populated
< nr_pages
&& page_array
[nr_populated
])
4559 /* No pages requested? */
4560 if (unlikely(nr_pages
<= 0))
4563 /* Already populated array? */
4564 if (unlikely(page_array
&& nr_pages
- nr_populated
== 0))
4567 /* Bulk allocator does not support memcg accounting. */
4568 if (memcg_kmem_online() && (gfp
& __GFP_ACCOUNT
))
4571 /* Use the single page allocator for one page. */
4572 if (nr_pages
- nr_populated
== 1)
4575 #ifdef CONFIG_PAGE_OWNER
4577 * PAGE_OWNER may recurse into the allocator to allocate space to
4578 * save the stack with pagesets.lock held. Releasing/reacquiring
4579 * removes much of the performance benefit of bulk allocation so
4580 * force the caller to allocate one page at a time as it'll have
4581 * similar performance to added complexity to the bulk allocator.
4583 if (static_branch_unlikely(&page_owner_inited
))
4587 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4588 gfp
&= gfp_allowed_mask
;
4590 if (!prepare_alloc_pages(gfp
, 0, preferred_nid
, nodemask
, &ac
, &alloc_gfp
, &alloc_flags
))
4594 /* Find an allowed local zone that meets the low watermark. */
4595 for_each_zone_zonelist_nodemask(zone
, z
, ac
.zonelist
, ac
.highest_zoneidx
, ac
.nodemask
) {
4598 if (cpusets_enabled() && (alloc_flags
& ALLOC_CPUSET
) &&
4599 !__cpuset_zone_allowed(zone
, gfp
)) {
4603 if (nr_online_nodes
> 1 && zone
!= zonelist_zone(ac
.preferred_zoneref
) &&
4604 zone_to_nid(zone
) != zonelist_node_idx(ac
.preferred_zoneref
)) {
4608 cond_accept_memory(zone
, 0);
4610 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
) + nr_pages
;
4611 if (zone_watermark_fast(zone
, 0, mark
,
4612 zonelist_zone_idx(ac
.preferred_zoneref
),
4613 alloc_flags
, gfp
)) {
4617 if (cond_accept_memory(zone
, 0))
4618 goto retry_this_zone
;
4620 /* Try again if zone has deferred pages */
4621 if (deferred_pages_enabled()) {
4622 if (_deferred_grow_zone(zone
, 0))
4623 goto retry_this_zone
;
4628 * If there are no allowed local zones that meets the watermarks then
4629 * try to allocate a single page and reclaim if necessary.
4631 if (unlikely(!zone
))
4634 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4635 pcp_trylock_prepare(UP_flags
);
4636 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
4640 /* Attempt the batch allocation */
4641 pcp_list
= &pcp
->lists
[order_to_pindex(ac
.migratetype
, 0)];
4642 while (nr_populated
< nr_pages
) {
4644 /* Skip existing pages */
4645 if (page_array
&& page_array
[nr_populated
]) {
4650 page
= __rmqueue_pcplist(zone
, 0, ac
.migratetype
, alloc_flags
,
4652 if (unlikely(!page
)) {
4653 /* Try and allocate at least one page */
4655 pcp_spin_unlock(pcp
);
4662 prep_new_page(page
, 0, gfp
, 0);
4664 list_add(&page
->lru
, page_list
);
4666 page_array
[nr_populated
] = page
;
4670 pcp_spin_unlock(pcp
);
4671 pcp_trylock_finish(UP_flags
);
4673 __count_zid_vm_events(PGALLOC
, zone_idx(zone
), nr_account
);
4674 zone_statistics(zonelist_zone(ac
.preferred_zoneref
), zone
, nr_account
);
4677 return nr_populated
;
4680 pcp_trylock_finish(UP_flags
);
4683 page
= __alloc_pages_noprof(gfp
, 0, preferred_nid
, nodemask
);
4686 list_add(&page
->lru
, page_list
);
4688 page_array
[nr_populated
] = page
;
4694 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof
);
4697 * This is the 'heart' of the zoned buddy allocator.
4699 struct page
*__alloc_pages_noprof(gfp_t gfp
, unsigned int order
,
4700 int preferred_nid
, nodemask_t
*nodemask
)
4703 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4704 gfp_t alloc_gfp
; /* The gfp_t that was actually used for allocation */
4705 struct alloc_context ac
= { };
4708 * There are several places where we assume that the order value is sane
4709 * so bail out early if the request is out of bound.
4711 if (WARN_ON_ONCE_GFP(order
> MAX_PAGE_ORDER
, gfp
))
4714 gfp
&= gfp_allowed_mask
;
4716 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4717 * resp. GFP_NOIO which has to be inherited for all allocation requests
4718 * from a particular context which has been marked by
4719 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4720 * movable zones are not used during allocation.
4722 gfp
= current_gfp_context(gfp
);
4724 if (!prepare_alloc_pages(gfp
, order
, preferred_nid
, nodemask
, &ac
,
4725 &alloc_gfp
, &alloc_flags
))
4729 * Forbid the first pass from falling back to types that fragment
4730 * memory until all local zones are considered.
4732 alloc_flags
|= alloc_flags_nofragment(zonelist_zone(ac
.preferred_zoneref
), gfp
);
4734 /* First allocation attempt */
4735 page
= get_page_from_freelist(alloc_gfp
, order
, alloc_flags
, &ac
);
4740 ac
.spread_dirty_pages
= false;
4743 * Restore the original nodemask if it was potentially replaced with
4744 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4746 ac
.nodemask
= nodemask
;
4748 page
= __alloc_pages_slowpath(alloc_gfp
, order
, &ac
);
4751 if (memcg_kmem_online() && (gfp
& __GFP_ACCOUNT
) && page
&&
4752 unlikely(__memcg_kmem_charge_page(page
, gfp
, order
) != 0)) {
4753 __free_pages(page
, order
);
4757 trace_mm_page_alloc(page
, order
, alloc_gfp
, ac
.migratetype
);
4758 kmsan_alloc_page(page
, order
, alloc_gfp
);
4762 EXPORT_SYMBOL(__alloc_pages_noprof
);
4764 struct folio
*__folio_alloc_noprof(gfp_t gfp
, unsigned int order
, int preferred_nid
,
4765 nodemask_t
*nodemask
)
4767 struct page
*page
= __alloc_pages_noprof(gfp
| __GFP_COMP
, order
,
4768 preferred_nid
, nodemask
);
4769 return page_rmappable_folio(page
);
4771 EXPORT_SYMBOL(__folio_alloc_noprof
);
4774 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4775 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4776 * you need to access high mem.
4778 unsigned long get_free_pages_noprof(gfp_t gfp_mask
, unsigned int order
)
4782 page
= alloc_pages_noprof(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4785 return (unsigned long) page_address(page
);
4787 EXPORT_SYMBOL(get_free_pages_noprof
);
4789 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask
)
4791 return get_free_pages_noprof(gfp_mask
| __GFP_ZERO
, 0);
4793 EXPORT_SYMBOL(get_zeroed_page_noprof
);
4796 * __free_pages - Free pages allocated with alloc_pages().
4797 * @page: The page pointer returned from alloc_pages().
4798 * @order: The order of the allocation.
4800 * This function can free multi-page allocations that are not compound
4801 * pages. It does not check that the @order passed in matches that of
4802 * the allocation, so it is easy to leak memory. Freeing more memory
4803 * than was allocated will probably emit a warning.
4805 * If the last reference to this page is speculative, it will be released
4806 * by put_page() which only frees the first page of a non-compound
4807 * allocation. To prevent the remaining pages from being leaked, we free
4808 * the subsequent pages here. If you want to use the page's reference
4809 * count to decide when to free the allocation, you should allocate a
4810 * compound page, and use put_page() instead of __free_pages().
4812 * Context: May be called in interrupt context or while holding a normal
4813 * spinlock, but not in NMI context or while holding a raw spinlock.
4815 void __free_pages(struct page
*page
, unsigned int order
)
4817 /* get PageHead before we drop reference */
4818 int head
= PageHead(page
);
4819 struct alloc_tag
*tag
= pgalloc_tag_get(page
);
4821 if (put_page_testzero(page
))
4822 free_unref_page(page
, order
);
4824 pgalloc_tag_sub_pages(tag
, (1 << order
) - 1);
4826 free_unref_page(page
+ (1 << order
), order
);
4829 EXPORT_SYMBOL(__free_pages
);
4831 void free_pages(unsigned long addr
, unsigned int order
)
4834 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4835 __free_pages(virt_to_page((void *)addr
), order
);
4839 EXPORT_SYMBOL(free_pages
);
4843 * An arbitrary-length arbitrary-offset area of memory which resides
4844 * within a 0 or higher order page. Multiple fragments within that page
4845 * are individually refcounted, in the page's reference counter.
4847 * The page_frag functions below provide a simple allocation framework for
4848 * page fragments. This is used by the network stack and network device
4849 * drivers to provide a backing region of memory for use as either an
4850 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4852 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4855 struct page
*page
= NULL
;
4856 gfp_t gfp
= gfp_mask
;
4858 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4859 gfp_mask
= (gfp_mask
& ~__GFP_DIRECT_RECLAIM
) | __GFP_COMP
|
4860 __GFP_NOWARN
| __GFP_NORETRY
| __GFP_NOMEMALLOC
;
4861 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4862 PAGE_FRAG_CACHE_MAX_ORDER
);
4863 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4865 if (unlikely(!page
))
4866 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4868 nc
->va
= page
? page_address(page
) : NULL
;
4873 void page_frag_cache_drain(struct page_frag_cache
*nc
)
4878 __page_frag_cache_drain(virt_to_head_page(nc
->va
), nc
->pagecnt_bias
);
4881 EXPORT_SYMBOL(page_frag_cache_drain
);
4883 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4885 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4887 if (page_ref_sub_and_test(page
, count
))
4888 free_unref_page(page
, compound_order(page
));
4890 EXPORT_SYMBOL(__page_frag_cache_drain
);
4892 void *__page_frag_alloc_align(struct page_frag_cache
*nc
,
4893 unsigned int fragsz
, gfp_t gfp_mask
,
4894 unsigned int align_mask
)
4896 unsigned int size
= PAGE_SIZE
;
4900 if (unlikely(!nc
->va
)) {
4902 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4906 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4907 /* if size can vary use size else just use PAGE_SIZE */
4910 /* Even if we own the page, we do not use atomic_set().
4911 * This would break get_page_unless_zero() users.
4913 page_ref_add(page
, PAGE_FRAG_CACHE_MAX_SIZE
);
4915 /* reset page count bias and offset to start of new frag */
4916 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4917 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4921 offset
= nc
->offset
- fragsz
;
4922 if (unlikely(offset
< 0)) {
4923 page
= virt_to_page(nc
->va
);
4925 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4928 if (unlikely(nc
->pfmemalloc
)) {
4929 free_unref_page(page
, compound_order(page
));
4933 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4934 /* if size can vary use size else just use PAGE_SIZE */
4937 /* OK, page count is 0, we can safely set it */
4938 set_page_count(page
, PAGE_FRAG_CACHE_MAX_SIZE
+ 1);
4940 /* reset page count bias and offset to start of new frag */
4941 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4942 offset
= size
- fragsz
;
4943 if (unlikely(offset
< 0)) {
4945 * The caller is trying to allocate a fragment
4946 * with fragsz > PAGE_SIZE but the cache isn't big
4947 * enough to satisfy the request, this may
4948 * happen in low memory conditions.
4949 * We don't release the cache page because
4950 * it could make memory pressure worse
4951 * so we simply return NULL here.
4958 offset
&= align_mask
;
4959 nc
->offset
= offset
;
4961 return nc
->va
+ offset
;
4963 EXPORT_SYMBOL(__page_frag_alloc_align
);
4966 * Frees a page fragment allocated out of either a compound or order 0 page.
4968 void page_frag_free(void *addr
)
4970 struct page
*page
= virt_to_head_page(addr
);
4972 if (unlikely(put_page_testzero(page
)))
4973 free_unref_page(page
, compound_order(page
));
4975 EXPORT_SYMBOL(page_frag_free
);
4977 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4981 unsigned long nr
= DIV_ROUND_UP(size
, PAGE_SIZE
);
4982 struct page
*page
= virt_to_page((void *)addr
);
4983 struct page
*last
= page
+ nr
;
4985 split_page_owner(page
, order
, 0);
4986 pgalloc_tag_split(page_folio(page
), order
, 0);
4987 split_page_memcg(page
, order
, 0);
4988 while (page
< --last
)
4989 set_page_refcounted(last
);
4991 last
= page
+ (1UL << order
);
4992 for (page
+= nr
; page
< last
; page
++)
4993 __free_pages_ok(page
, 0, FPI_TO_TAIL
);
4995 return (void *)addr
;
4999 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5000 * @size: the number of bytes to allocate
5001 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5003 * This function is similar to alloc_pages(), except that it allocates the
5004 * minimum number of pages to satisfy the request. alloc_pages() can only
5005 * allocate memory in power-of-two pages.
5007 * This function is also limited by MAX_PAGE_ORDER.
5009 * Memory allocated by this function must be released by free_pages_exact().
5011 * Return: pointer to the allocated area or %NULL in case of error.
5013 void *alloc_pages_exact_noprof(size_t size
, gfp_t gfp_mask
)
5015 unsigned int order
= get_order(size
);
5018 if (WARN_ON_ONCE(gfp_mask
& (__GFP_COMP
| __GFP_HIGHMEM
)))
5019 gfp_mask
&= ~(__GFP_COMP
| __GFP_HIGHMEM
);
5021 addr
= get_free_pages_noprof(gfp_mask
, order
);
5022 return make_alloc_exact(addr
, order
, size
);
5024 EXPORT_SYMBOL(alloc_pages_exact_noprof
);
5027 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5029 * @nid: the preferred node ID where memory should be allocated
5030 * @size: the number of bytes to allocate
5031 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5033 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5036 * Return: pointer to the allocated area or %NULL in case of error.
5038 void * __meminit
alloc_pages_exact_nid_noprof(int nid
, size_t size
, gfp_t gfp_mask
)
5040 unsigned int order
= get_order(size
);
5043 if (WARN_ON_ONCE(gfp_mask
& (__GFP_COMP
| __GFP_HIGHMEM
)))
5044 gfp_mask
&= ~(__GFP_COMP
| __GFP_HIGHMEM
);
5046 p
= alloc_pages_node_noprof(nid
, gfp_mask
, order
);
5049 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
5053 * free_pages_exact - release memory allocated via alloc_pages_exact()
5054 * @virt: the value returned by alloc_pages_exact.
5055 * @size: size of allocation, same value as passed to alloc_pages_exact().
5057 * Release the memory allocated by a previous call to alloc_pages_exact.
5059 void free_pages_exact(void *virt
, size_t size
)
5061 unsigned long addr
= (unsigned long)virt
;
5062 unsigned long end
= addr
+ PAGE_ALIGN(size
);
5064 while (addr
< end
) {
5069 EXPORT_SYMBOL(free_pages_exact
);
5072 * nr_free_zone_pages - count number of pages beyond high watermark
5073 * @offset: The zone index of the highest zone
5075 * nr_free_zone_pages() counts the number of pages which are beyond the
5076 * high watermark within all zones at or below a given zone index. For each
5077 * zone, the number of pages is calculated as:
5079 * nr_free_zone_pages = managed_pages - high_pages
5081 * Return: number of pages beyond high watermark.
5083 static unsigned long nr_free_zone_pages(int offset
)
5088 /* Just pick one node, since fallback list is circular */
5089 unsigned long sum
= 0;
5091 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
5093 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
5094 unsigned long size
= zone_managed_pages(zone
);
5095 unsigned long high
= high_wmark_pages(zone
);
5104 * nr_free_buffer_pages - count number of pages beyond high watermark
5106 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5107 * watermark within ZONE_DMA and ZONE_NORMAL.
5109 * Return: number of pages beyond high watermark within ZONE_DMA and
5112 unsigned long nr_free_buffer_pages(void)
5114 return nr_free_zone_pages(gfp_zone(GFP_USER
));
5116 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
5118 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5120 zoneref
->zone
= zone
;
5121 zoneref
->zone_idx
= zone_idx(zone
);
5125 * Builds allocation fallback zone lists.
5127 * Add all populated zones of a node to the zonelist.
5129 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5132 enum zone_type zone_type
= MAX_NR_ZONES
;
5137 zone
= pgdat
->node_zones
+ zone_type
;
5138 if (populated_zone(zone
)) {
5139 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5140 check_highest_zone(zone_type
);
5142 } while (zone_type
);
5149 static int __parse_numa_zonelist_order(char *s
)
5152 * We used to support different zonelists modes but they turned
5153 * out to be just not useful. Let's keep the warning in place
5154 * if somebody still use the cmd line parameter so that we do
5155 * not fail it silently
5157 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5158 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5164 static char numa_zonelist_order
[] = "Node";
5165 #define NUMA_ZONELIST_ORDER_LEN 16
5167 * sysctl handler for numa_zonelist_order
5169 static int numa_zonelist_order_handler(const struct ctl_table
*table
, int write
,
5170 void *buffer
, size_t *length
, loff_t
*ppos
)
5173 return __parse_numa_zonelist_order(buffer
);
5174 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5177 static int node_load
[MAX_NUMNODES
];
5180 * find_next_best_node - find the next node that should appear in a given node's fallback list
5181 * @node: node whose fallback list we're appending
5182 * @used_node_mask: nodemask_t of already used nodes
5184 * We use a number of factors to determine which is the next node that should
5185 * appear on a given node's fallback list. The node should not have appeared
5186 * already in @node's fallback list, and it should be the next closest node
5187 * according to the distance array (which contains arbitrary distance values
5188 * from each node to each node in the system), and should also prefer nodes
5189 * with no CPUs, since presumably they'll have very little allocation pressure
5190 * on them otherwise.
5192 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5194 int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5197 int min_val
= INT_MAX
;
5198 int best_node
= NUMA_NO_NODE
;
5201 * Use the local node if we haven't already, but for memoryless local
5202 * node, we should skip it and fall back to other nodes.
5204 if (!node_isset(node
, *used_node_mask
) && node_state(node
, N_MEMORY
)) {
5205 node_set(node
, *used_node_mask
);
5209 for_each_node_state(n
, N_MEMORY
) {
5211 /* Don't want a node to appear more than once */
5212 if (node_isset(n
, *used_node_mask
))
5215 /* Use the distance array to find the distance */
5216 val
= node_distance(node
, n
);
5218 /* Penalize nodes under us ("prefer the next node") */
5221 /* Give preference to headless and unused nodes */
5222 if (!cpumask_empty(cpumask_of_node(n
)))
5223 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5225 /* Slight preference for less loaded node */
5226 val
*= MAX_NUMNODES
;
5227 val
+= node_load
[n
];
5229 if (val
< min_val
) {
5236 node_set(best_node
, *used_node_mask
);
5243 * Build zonelists ordered by node and zones within node.
5244 * This results in maximum locality--normal zone overflows into local
5245 * DMA zone, if any--but risks exhausting DMA zone.
5247 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5250 struct zoneref
*zonerefs
;
5253 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5255 for (i
= 0; i
< nr_nodes
; i
++) {
5258 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5260 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5261 zonerefs
+= nr_zones
;
5263 zonerefs
->zone
= NULL
;
5264 zonerefs
->zone_idx
= 0;
5268 * Build __GFP_THISNODE zonelists
5270 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5272 struct zoneref
*zonerefs
;
5275 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5276 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5277 zonerefs
+= nr_zones
;
5278 zonerefs
->zone
= NULL
;
5279 zonerefs
->zone_idx
= 0;
5283 * Build zonelists ordered by zone and nodes within zones.
5284 * This results in conserving DMA zone[s] until all Normal memory is
5285 * exhausted, but results in overflowing to remote node while memory
5286 * may still exist in local DMA zone.
5289 static void build_zonelists(pg_data_t
*pgdat
)
5291 static int node_order
[MAX_NUMNODES
];
5292 int node
, nr_nodes
= 0;
5293 nodemask_t used_mask
= NODE_MASK_NONE
;
5294 int local_node
, prev_node
;
5296 /* NUMA-aware ordering of nodes */
5297 local_node
= pgdat
->node_id
;
5298 prev_node
= local_node
;
5300 memset(node_order
, 0, sizeof(node_order
));
5301 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5303 * We don't want to pressure a particular node.
5304 * So adding penalty to the first node in same
5305 * distance group to make it round-robin.
5307 if (node_distance(local_node
, node
) !=
5308 node_distance(local_node
, prev_node
))
5309 node_load
[node
] += 1;
5311 node_order
[nr_nodes
++] = node
;
5315 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5316 build_thisnode_zonelists(pgdat
);
5317 pr_info("Fallback order for Node %d: ", local_node
);
5318 for (node
= 0; node
< nr_nodes
; node
++)
5319 pr_cont("%d ", node_order
[node
]);
5323 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5325 * Return node id of node used for "local" allocations.
5326 * I.e., first node id of first zone in arg node's generic zonelist.
5327 * Used for initializing percpu 'numa_mem', which is used primarily
5328 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5330 int local_memory_node(int node
)
5334 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5335 gfp_zone(GFP_KERNEL
),
5337 return zonelist_node_idx(z
);
5341 static void setup_min_unmapped_ratio(void);
5342 static void setup_min_slab_ratio(void);
5343 #else /* CONFIG_NUMA */
5345 static void build_zonelists(pg_data_t
*pgdat
)
5347 struct zoneref
*zonerefs
;
5350 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5351 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5352 zonerefs
+= nr_zones
;
5354 zonerefs
->zone
= NULL
;
5355 zonerefs
->zone_idx
= 0;
5358 #endif /* CONFIG_NUMA */
5361 * Boot pageset table. One per cpu which is going to be used for all
5362 * zones and all nodes. The parameters will be set in such a way
5363 * that an item put on a list will immediately be handed over to
5364 * the buddy list. This is safe since pageset manipulation is done
5365 * with interrupts disabled.
5367 * The boot_pagesets must be kept even after bootup is complete for
5368 * unused processors and/or zones. They do play a role for bootstrapping
5369 * hotplugged processors.
5371 * zoneinfo_show() and maybe other functions do
5372 * not check if the processor is online before following the pageset pointer.
5373 * Other parts of the kernel may not check if the zone is available.
5375 static void per_cpu_pages_init(struct per_cpu_pages
*pcp
, struct per_cpu_zonestat
*pzstats
);
5376 /* These effectively disable the pcplists in the boot pageset completely */
5377 #define BOOT_PAGESET_HIGH 0
5378 #define BOOT_PAGESET_BATCH 1
5379 static DEFINE_PER_CPU(struct per_cpu_pages
, boot_pageset
);
5380 static DEFINE_PER_CPU(struct per_cpu_zonestat
, boot_zonestats
);
5382 static void __build_all_zonelists(void *data
)
5385 int __maybe_unused cpu
;
5386 pg_data_t
*self
= data
;
5387 unsigned long flags
;
5390 * The zonelist_update_seq must be acquired with irqsave because the
5391 * reader can be invoked from IRQ with GFP_ATOMIC.
5393 write_seqlock_irqsave(&zonelist_update_seq
, flags
);
5395 * Also disable synchronous printk() to prevent any printk() from
5396 * trying to hold port->lock, for
5397 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5398 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5400 printk_deferred_enter();
5403 memset(node_load
, 0, sizeof(node_load
));
5407 * This node is hotadded and no memory is yet present. So just
5408 * building zonelists is fine - no need to touch other nodes.
5410 if (self
&& !node_online(self
->node_id
)) {
5411 build_zonelists(self
);
5414 * All possible nodes have pgdat preallocated
5417 for_each_node(nid
) {
5418 pg_data_t
*pgdat
= NODE_DATA(nid
);
5420 build_zonelists(pgdat
);
5423 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5425 * We now know the "local memory node" for each node--
5426 * i.e., the node of the first zone in the generic zonelist.
5427 * Set up numa_mem percpu variable for on-line cpus. During
5428 * boot, only the boot cpu should be on-line; we'll init the
5429 * secondary cpus' numa_mem as they come on-line. During
5430 * node/memory hotplug, we'll fixup all on-line cpus.
5432 for_each_online_cpu(cpu
)
5433 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5437 printk_deferred_exit();
5438 write_sequnlock_irqrestore(&zonelist_update_seq
, flags
);
5441 static noinline
void __init
5442 build_all_zonelists_init(void)
5446 __build_all_zonelists(NULL
);
5449 * Initialize the boot_pagesets that are going to be used
5450 * for bootstrapping processors. The real pagesets for
5451 * each zone will be allocated later when the per cpu
5452 * allocator is available.
5454 * boot_pagesets are used also for bootstrapping offline
5455 * cpus if the system is already booted because the pagesets
5456 * are needed to initialize allocators on a specific cpu too.
5457 * F.e. the percpu allocator needs the page allocator which
5458 * needs the percpu allocator in order to allocate its pagesets
5459 * (a chicken-egg dilemma).
5461 for_each_possible_cpu(cpu
)
5462 per_cpu_pages_init(&per_cpu(boot_pageset
, cpu
), &per_cpu(boot_zonestats
, cpu
));
5464 mminit_verify_zonelist();
5465 cpuset_init_current_mems_allowed();
5469 * unless system_state == SYSTEM_BOOTING.
5471 * __ref due to call of __init annotated helper build_all_zonelists_init
5472 * [protected by SYSTEM_BOOTING].
5474 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5476 unsigned long vm_total_pages
;
5478 if (system_state
== SYSTEM_BOOTING
) {
5479 build_all_zonelists_init();
5481 __build_all_zonelists(pgdat
);
5482 /* cpuset refresh routine should be here */
5484 /* Get the number of free pages beyond high watermark in all zones. */
5485 vm_total_pages
= nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
5487 * Disable grouping by mobility if the number of pages in the
5488 * system is too low to allow the mechanism to work. It would be
5489 * more accurate, but expensive to check per-zone. This check is
5490 * made on memory-hotadd so a system can start with mobility
5491 * disabled and enable it later
5493 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5494 page_group_by_mobility_disabled
= 1;
5496 page_group_by_mobility_disabled
= 0;
5498 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5500 page_group_by_mobility_disabled
? "off" : "on",
5503 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5507 static int zone_batchsize(struct zone
*zone
)
5513 * The number of pages to batch allocate is either ~0.1%
5514 * of the zone or 1MB, whichever is smaller. The batch
5515 * size is striking a balance between allocation latency
5516 * and zone lock contention.
5518 batch
= min(zone_managed_pages(zone
) >> 10, SZ_1M
/ PAGE_SIZE
);
5519 batch
/= 4; /* We effectively *= 4 below */
5524 * Clamp the batch to a 2^n - 1 value. Having a power
5525 * of 2 value was found to be more likely to have
5526 * suboptimal cache aliasing properties in some cases.
5528 * For example if 2 tasks are alternately allocating
5529 * batches of pages, one task can end up with a lot
5530 * of pages of one half of the possible page colors
5531 * and the other with pages of the other colors.
5533 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5538 /* The deferral and batching of frees should be suppressed under NOMMU
5541 * The problem is that NOMMU needs to be able to allocate large chunks
5542 * of contiguous memory as there's no hardware page translation to
5543 * assemble apparent contiguous memory from discontiguous pages.
5545 * Queueing large contiguous runs of pages for batching, however,
5546 * causes the pages to actually be freed in smaller chunks. As there
5547 * can be a significant delay between the individual batches being
5548 * recycled, this leads to the once large chunks of space being
5549 * fragmented and becoming unavailable for high-order allocations.
5555 static int percpu_pagelist_high_fraction
;
5556 static int zone_highsize(struct zone
*zone
, int batch
, int cpu_online
,
5562 unsigned long total_pages
;
5564 if (!high_fraction
) {
5566 * By default, the high value of the pcp is based on the zone
5567 * low watermark so that if they are full then background
5568 * reclaim will not be started prematurely.
5570 total_pages
= low_wmark_pages(zone
);
5573 * If percpu_pagelist_high_fraction is configured, the high
5574 * value is based on a fraction of the managed pages in the
5577 total_pages
= zone_managed_pages(zone
) / high_fraction
;
5581 * Split the high value across all online CPUs local to the zone. Note
5582 * that early in boot that CPUs may not be online yet and that during
5583 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5584 * onlined. For memory nodes that have no CPUs, split the high value
5585 * across all online CPUs to mitigate the risk that reclaim is triggered
5586 * prematurely due to pages stored on pcp lists.
5588 nr_split_cpus
= cpumask_weight(cpumask_of_node(zone_to_nid(zone
))) + cpu_online
;
5590 nr_split_cpus
= num_online_cpus();
5591 high
= total_pages
/ nr_split_cpus
;
5594 * Ensure high is at least batch*4. The multiple is based on the
5595 * historical relationship between high and batch.
5597 high
= max(high
, batch
<< 2);
5606 * pcp->high and pcp->batch values are related and generally batch is lower
5607 * than high. They are also related to pcp->count such that count is lower
5608 * than high, and as soon as it reaches high, the pcplist is flushed.
5610 * However, guaranteeing these relations at all times would require e.g. write
5611 * barriers here but also careful usage of read barriers at the read side, and
5612 * thus be prone to error and bad for performance. Thus the update only prevents
5613 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5614 * should ensure they can cope with those fields changing asynchronously, and
5615 * fully trust only the pcp->count field on the local CPU with interrupts
5618 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5619 * outside of boot time (or some other assurance that no concurrent updaters
5622 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high_min
,
5623 unsigned long high_max
, unsigned long batch
)
5625 WRITE_ONCE(pcp
->batch
, batch
);
5626 WRITE_ONCE(pcp
->high_min
, high_min
);
5627 WRITE_ONCE(pcp
->high_max
, high_max
);
5630 static void per_cpu_pages_init(struct per_cpu_pages
*pcp
, struct per_cpu_zonestat
*pzstats
)
5634 memset(pcp
, 0, sizeof(*pcp
));
5635 memset(pzstats
, 0, sizeof(*pzstats
));
5637 spin_lock_init(&pcp
->lock
);
5638 for (pindex
= 0; pindex
< NR_PCP_LISTS
; pindex
++)
5639 INIT_LIST_HEAD(&pcp
->lists
[pindex
]);
5642 * Set batch and high values safe for a boot pageset. A true percpu
5643 * pageset's initialization will update them subsequently. Here we don't
5644 * need to be as careful as pageset_update() as nobody can access the
5647 pcp
->high_min
= BOOT_PAGESET_HIGH
;
5648 pcp
->high_max
= BOOT_PAGESET_HIGH
;
5649 pcp
->batch
= BOOT_PAGESET_BATCH
;
5650 pcp
->free_count
= 0;
5653 static void __zone_set_pageset_high_and_batch(struct zone
*zone
, unsigned long high_min
,
5654 unsigned long high_max
, unsigned long batch
)
5656 struct per_cpu_pages
*pcp
;
5659 for_each_possible_cpu(cpu
) {
5660 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
5661 pageset_update(pcp
, high_min
, high_max
, batch
);
5666 * Calculate and set new high and batch values for all per-cpu pagesets of a
5667 * zone based on the zone's size.
5669 static void zone_set_pageset_high_and_batch(struct zone
*zone
, int cpu_online
)
5671 int new_high_min
, new_high_max
, new_batch
;
5673 new_batch
= max(1, zone_batchsize(zone
));
5674 if (percpu_pagelist_high_fraction
) {
5675 new_high_min
= zone_highsize(zone
, new_batch
, cpu_online
,
5676 percpu_pagelist_high_fraction
);
5678 * PCP high is tuned manually, disable auto-tuning via
5679 * setting high_min and high_max to the manual value.
5681 new_high_max
= new_high_min
;
5683 new_high_min
= zone_highsize(zone
, new_batch
, cpu_online
, 0);
5684 new_high_max
= zone_highsize(zone
, new_batch
, cpu_online
,
5685 MIN_PERCPU_PAGELIST_HIGH_FRACTION
);
5688 if (zone
->pageset_high_min
== new_high_min
&&
5689 zone
->pageset_high_max
== new_high_max
&&
5690 zone
->pageset_batch
== new_batch
)
5693 zone
->pageset_high_min
= new_high_min
;
5694 zone
->pageset_high_max
= new_high_max
;
5695 zone
->pageset_batch
= new_batch
;
5697 __zone_set_pageset_high_and_batch(zone
, new_high_min
, new_high_max
,
5701 void __meminit
setup_zone_pageset(struct zone
*zone
)
5705 /* Size may be 0 on !SMP && !NUMA */
5706 if (sizeof(struct per_cpu_zonestat
) > 0)
5707 zone
->per_cpu_zonestats
= alloc_percpu(struct per_cpu_zonestat
);
5709 zone
->per_cpu_pageset
= alloc_percpu(struct per_cpu_pages
);
5710 for_each_possible_cpu(cpu
) {
5711 struct per_cpu_pages
*pcp
;
5712 struct per_cpu_zonestat
*pzstats
;
5714 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
5715 pzstats
= per_cpu_ptr(zone
->per_cpu_zonestats
, cpu
);
5716 per_cpu_pages_init(pcp
, pzstats
);
5719 zone_set_pageset_high_and_batch(zone
, 0);
5723 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5724 * page high values need to be recalculated.
5726 static void zone_pcp_update(struct zone
*zone
, int cpu_online
)
5728 mutex_lock(&pcp_batch_high_lock
);
5729 zone_set_pageset_high_and_batch(zone
, cpu_online
);
5730 mutex_unlock(&pcp_batch_high_lock
);
5733 static void zone_pcp_update_cacheinfo(struct zone
*zone
, unsigned int cpu
)
5735 struct per_cpu_pages
*pcp
;
5736 struct cpu_cacheinfo
*cci
;
5738 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
5739 cci
= get_cpu_cacheinfo(cpu
);
5741 * If data cache slice of CPU is large enough, "pcp->batch"
5742 * pages can be preserved in PCP before draining PCP for
5743 * consecutive high-order pages freeing without allocation.
5744 * This can reduce zone lock contention without hurting
5745 * cache-hot pages sharing.
5747 spin_lock(&pcp
->lock
);
5748 if ((cci
->per_cpu_data_slice_size
>> PAGE_SHIFT
) > 3 * pcp
->batch
)
5749 pcp
->flags
|= PCPF_FREE_HIGH_BATCH
;
5751 pcp
->flags
&= ~PCPF_FREE_HIGH_BATCH
;
5752 spin_unlock(&pcp
->lock
);
5755 void setup_pcp_cacheinfo(unsigned int cpu
)
5759 for_each_populated_zone(zone
)
5760 zone_pcp_update_cacheinfo(zone
, cpu
);
5764 * Allocate per cpu pagesets and initialize them.
5765 * Before this call only boot pagesets were available.
5767 void __init
setup_per_cpu_pageset(void)
5769 struct pglist_data
*pgdat
;
5771 int __maybe_unused cpu
;
5773 for_each_populated_zone(zone
)
5774 setup_zone_pageset(zone
);
5778 * Unpopulated zones continue using the boot pagesets.
5779 * The numa stats for these pagesets need to be reset.
5780 * Otherwise, they will end up skewing the stats of
5781 * the nodes these zones are associated with.
5783 for_each_possible_cpu(cpu
) {
5784 struct per_cpu_zonestat
*pzstats
= &per_cpu(boot_zonestats
, cpu
);
5785 memset(pzstats
->vm_numa_event
, 0,
5786 sizeof(pzstats
->vm_numa_event
));
5790 for_each_online_pgdat(pgdat
)
5791 pgdat
->per_cpu_nodestats
=
5792 alloc_percpu(struct per_cpu_nodestat
);
5795 __meminit
void zone_pcp_init(struct zone
*zone
)
5798 * per cpu subsystem is not up at this point. The following code
5799 * relies on the ability of the linker to provide the
5800 * offset of a (static) per cpu variable into the per cpu area.
5802 zone
->per_cpu_pageset
= &boot_pageset
;
5803 zone
->per_cpu_zonestats
= &boot_zonestats
;
5804 zone
->pageset_high_min
= BOOT_PAGESET_HIGH
;
5805 zone
->pageset_high_max
= BOOT_PAGESET_HIGH
;
5806 zone
->pageset_batch
= BOOT_PAGESET_BATCH
;
5808 if (populated_zone(zone
))
5809 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone
->name
,
5810 zone
->present_pages
, zone_batchsize(zone
));
5813 void adjust_managed_page_count(struct page
*page
, long count
)
5815 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
5816 totalram_pages_add(count
);
5818 EXPORT_SYMBOL(adjust_managed_page_count
);
5820 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
5823 unsigned long pages
= 0;
5825 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5826 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5827 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5828 struct page
*page
= virt_to_page(pos
);
5829 void *direct_map_addr
;
5832 * 'direct_map_addr' might be different from 'pos'
5833 * because some architectures' virt_to_page()
5834 * work with aliases. Getting the direct map
5835 * address ensures that we get a _writeable_
5836 * alias for the memset().
5838 direct_map_addr
= page_address(page
);
5840 * Perform a kasan-unchecked memset() since this memory
5841 * has not been initialized.
5843 direct_map_addr
= kasan_reset_tag(direct_map_addr
);
5844 if ((unsigned int)poison
<= 0xFF)
5845 memset(direct_map_addr
, poison
, PAGE_SIZE
);
5847 free_reserved_page(page
);
5851 pr_info("Freeing %s memory: %ldK\n", s
, K(pages
));
5856 void free_reserved_page(struct page
*page
)
5858 clear_page_tag_ref(page
);
5859 ClearPageReserved(page
);
5860 init_page_count(page
);
5862 adjust_managed_page_count(page
, 1);
5864 EXPORT_SYMBOL(free_reserved_page
);
5866 static int page_alloc_cpu_dead(unsigned int cpu
)
5870 lru_add_drain_cpu(cpu
);
5871 mlock_drain_remote(cpu
);
5875 * Spill the event counters of the dead processor
5876 * into the current processors event counters.
5877 * This artificially elevates the count of the current
5880 vm_events_fold_cpu(cpu
);
5883 * Zero the differential counters of the dead processor
5884 * so that the vm statistics are consistent.
5886 * This is only okay since the processor is dead and cannot
5887 * race with what we are doing.
5889 cpu_vm_stats_fold(cpu
);
5891 for_each_populated_zone(zone
)
5892 zone_pcp_update(zone
, 0);
5897 static int page_alloc_cpu_online(unsigned int cpu
)
5901 for_each_populated_zone(zone
)
5902 zone_pcp_update(zone
, 1);
5906 void __init
page_alloc_init_cpuhp(void)
5910 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC
,
5911 "mm/page_alloc:pcp",
5912 page_alloc_cpu_online
,
5913 page_alloc_cpu_dead
);
5918 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5919 * or min_free_kbytes changes.
5921 static void calculate_totalreserve_pages(void)
5923 struct pglist_data
*pgdat
;
5924 unsigned long reserve_pages
= 0;
5925 enum zone_type i
, j
;
5927 for_each_online_pgdat(pgdat
) {
5929 pgdat
->totalreserve_pages
= 0;
5931 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5932 struct zone
*zone
= pgdat
->node_zones
+ i
;
5934 unsigned long managed_pages
= zone_managed_pages(zone
);
5936 /* Find valid and maximum lowmem_reserve in the zone */
5937 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5938 if (zone
->lowmem_reserve
[j
] > max
)
5939 max
= zone
->lowmem_reserve
[j
];
5942 /* we treat the high watermark as reserved pages. */
5943 max
+= high_wmark_pages(zone
);
5945 if (max
> managed_pages
)
5946 max
= managed_pages
;
5948 pgdat
->totalreserve_pages
+= max
;
5950 reserve_pages
+= max
;
5953 totalreserve_pages
= reserve_pages
;
5957 * setup_per_zone_lowmem_reserve - called whenever
5958 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5959 * has a correct pages reserved value, so an adequate number of
5960 * pages are left in the zone after a successful __alloc_pages().
5962 static void setup_per_zone_lowmem_reserve(void)
5964 struct pglist_data
*pgdat
;
5965 enum zone_type i
, j
;
5967 for_each_online_pgdat(pgdat
) {
5968 for (i
= 0; i
< MAX_NR_ZONES
- 1; i
++) {
5969 struct zone
*zone
= &pgdat
->node_zones
[i
];
5970 int ratio
= sysctl_lowmem_reserve_ratio
[i
];
5971 bool clear
= !ratio
|| !zone_managed_pages(zone
);
5972 unsigned long managed_pages
= 0;
5974 for (j
= i
+ 1; j
< MAX_NR_ZONES
; j
++) {
5975 struct zone
*upper_zone
= &pgdat
->node_zones
[j
];
5976 bool empty
= !zone_managed_pages(upper_zone
);
5978 managed_pages
+= zone_managed_pages(upper_zone
);
5981 zone
->lowmem_reserve
[j
] = 0;
5983 zone
->lowmem_reserve
[j
] = managed_pages
/ ratio
;
5988 /* update totalreserve_pages */
5989 calculate_totalreserve_pages();
5992 static void __setup_per_zone_wmarks(void)
5994 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5995 unsigned long lowmem_pages
= 0;
5997 unsigned long flags
;
5999 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6000 for_each_zone(zone
) {
6001 if (!is_highmem(zone
) && zone_idx(zone
) != ZONE_MOVABLE
)
6002 lowmem_pages
+= zone_managed_pages(zone
);
6005 for_each_zone(zone
) {
6008 spin_lock_irqsave(&zone
->lock
, flags
);
6009 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
6010 tmp
= div64_ul(tmp
, lowmem_pages
);
6011 if (is_highmem(zone
) || zone_idx(zone
) == ZONE_MOVABLE
) {
6013 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6014 * need highmem and movable zones pages, so cap pages_min
6015 * to a small value here.
6017 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6018 * deltas control async page reclaim, and so should
6019 * not be capped for highmem and movable zones.
6021 unsigned long min_pages
;
6023 min_pages
= zone_managed_pages(zone
) / 1024;
6024 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6025 zone
->_watermark
[WMARK_MIN
] = min_pages
;
6028 * If it's a lowmem zone, reserve a number of pages
6029 * proportionate to the zone's size.
6031 zone
->_watermark
[WMARK_MIN
] = tmp
;
6035 * Set the kswapd watermarks distance according to the
6036 * scale factor in proportion to available memory, but
6037 * ensure a minimum size on small systems.
6039 tmp
= max_t(u64
, tmp
>> 2,
6040 mult_frac(zone_managed_pages(zone
),
6041 watermark_scale_factor
, 10000));
6043 zone
->watermark_boost
= 0;
6044 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6045 zone
->_watermark
[WMARK_HIGH
] = low_wmark_pages(zone
) + tmp
;
6046 zone
->_watermark
[WMARK_PROMO
] = high_wmark_pages(zone
) + tmp
;
6048 spin_unlock_irqrestore(&zone
->lock
, flags
);
6051 /* update totalreserve_pages */
6052 calculate_totalreserve_pages();
6056 * setup_per_zone_wmarks - called when min_free_kbytes changes
6057 * or when memory is hot-{added|removed}
6059 * Ensures that the watermark[min,low,high] values for each zone are set
6060 * correctly with respect to min_free_kbytes.
6062 void setup_per_zone_wmarks(void)
6065 static DEFINE_SPINLOCK(lock
);
6068 __setup_per_zone_wmarks();
6072 * The watermark size have changed so update the pcpu batch
6073 * and high limits or the limits may be inappropriate.
6076 zone_pcp_update(zone
, 0);
6080 * Initialise min_free_kbytes.
6082 * For small machines we want it small (128k min). For large machines
6083 * we want it large (256MB max). But it is not linear, because network
6084 * bandwidth does not increase linearly with machine size. We use
6086 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6087 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6103 void calculate_min_free_kbytes(void)
6105 unsigned long lowmem_kbytes
;
6106 int new_min_free_kbytes
;
6108 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6109 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6111 if (new_min_free_kbytes
> user_min_free_kbytes
)
6112 min_free_kbytes
= clamp(new_min_free_kbytes
, 128, 262144);
6114 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6115 new_min_free_kbytes
, user_min_free_kbytes
);
6119 int __meminit
init_per_zone_wmark_min(void)
6121 calculate_min_free_kbytes();
6122 setup_per_zone_wmarks();
6123 refresh_zone_stat_thresholds();
6124 setup_per_zone_lowmem_reserve();
6127 setup_min_unmapped_ratio();
6128 setup_min_slab_ratio();
6131 khugepaged_min_free_kbytes_update();
6135 postcore_initcall(init_per_zone_wmark_min
)
6138 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6139 * that we can call two helper functions whenever min_free_kbytes
6142 static int min_free_kbytes_sysctl_handler(const struct ctl_table
*table
, int write
,
6143 void *buffer
, size_t *length
, loff_t
*ppos
)
6147 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6152 user_min_free_kbytes
= min_free_kbytes
;
6153 setup_per_zone_wmarks();
6158 static int watermark_scale_factor_sysctl_handler(const struct ctl_table
*table
, int write
,
6159 void *buffer
, size_t *length
, loff_t
*ppos
)
6163 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6168 setup_per_zone_wmarks();
6174 static void setup_min_unmapped_ratio(void)
6179 for_each_online_pgdat(pgdat
)
6180 pgdat
->min_unmapped_pages
= 0;
6183 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
6184 sysctl_min_unmapped_ratio
) / 100;
6188 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table
*table
, int write
,
6189 void *buffer
, size_t *length
, loff_t
*ppos
)
6193 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6197 setup_min_unmapped_ratio();
6202 static void setup_min_slab_ratio(void)
6207 for_each_online_pgdat(pgdat
)
6208 pgdat
->min_slab_pages
= 0;
6211 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
6212 sysctl_min_slab_ratio
) / 100;
6215 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table
*table
, int write
,
6216 void *buffer
, size_t *length
, loff_t
*ppos
)
6220 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6224 setup_min_slab_ratio();
6231 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6232 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6233 * whenever sysctl_lowmem_reserve_ratio changes.
6235 * The reserve ratio obviously has absolutely no relation with the
6236 * minimum watermarks. The lowmem reserve ratio can only make sense
6237 * if in function of the boot time zone sizes.
6239 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table
*table
,
6240 int write
, void *buffer
, size_t *length
, loff_t
*ppos
)
6244 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6246 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6247 if (sysctl_lowmem_reserve_ratio
[i
] < 1)
6248 sysctl_lowmem_reserve_ratio
[i
] = 0;
6251 setup_per_zone_lowmem_reserve();
6256 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6257 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6258 * pagelist can have before it gets flushed back to buddy allocator.
6260 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table
*table
,
6261 int write
, void *buffer
, size_t *length
, loff_t
*ppos
)
6264 int old_percpu_pagelist_high_fraction
;
6267 mutex_lock(&pcp_batch_high_lock
);
6268 old_percpu_pagelist_high_fraction
= percpu_pagelist_high_fraction
;
6270 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6271 if (!write
|| ret
< 0)
6274 /* Sanity checking to avoid pcp imbalance */
6275 if (percpu_pagelist_high_fraction
&&
6276 percpu_pagelist_high_fraction
< MIN_PERCPU_PAGELIST_HIGH_FRACTION
) {
6277 percpu_pagelist_high_fraction
= old_percpu_pagelist_high_fraction
;
6283 if (percpu_pagelist_high_fraction
== old_percpu_pagelist_high_fraction
)
6286 for_each_populated_zone(zone
)
6287 zone_set_pageset_high_and_batch(zone
, 0);
6289 mutex_unlock(&pcp_batch_high_lock
);
6293 static struct ctl_table page_alloc_sysctl_table
[] = {
6295 .procname
= "min_free_kbytes",
6296 .data
= &min_free_kbytes
,
6297 .maxlen
= sizeof(min_free_kbytes
),
6299 .proc_handler
= min_free_kbytes_sysctl_handler
,
6300 .extra1
= SYSCTL_ZERO
,
6303 .procname
= "watermark_boost_factor",
6304 .data
= &watermark_boost_factor
,
6305 .maxlen
= sizeof(watermark_boost_factor
),
6307 .proc_handler
= proc_dointvec_minmax
,
6308 .extra1
= SYSCTL_ZERO
,
6311 .procname
= "watermark_scale_factor",
6312 .data
= &watermark_scale_factor
,
6313 .maxlen
= sizeof(watermark_scale_factor
),
6315 .proc_handler
= watermark_scale_factor_sysctl_handler
,
6316 .extra1
= SYSCTL_ONE
,
6317 .extra2
= SYSCTL_THREE_THOUSAND
,
6320 .procname
= "percpu_pagelist_high_fraction",
6321 .data
= &percpu_pagelist_high_fraction
,
6322 .maxlen
= sizeof(percpu_pagelist_high_fraction
),
6324 .proc_handler
= percpu_pagelist_high_fraction_sysctl_handler
,
6325 .extra1
= SYSCTL_ZERO
,
6328 .procname
= "lowmem_reserve_ratio",
6329 .data
= &sysctl_lowmem_reserve_ratio
,
6330 .maxlen
= sizeof(sysctl_lowmem_reserve_ratio
),
6332 .proc_handler
= lowmem_reserve_ratio_sysctl_handler
,
6336 .procname
= "numa_zonelist_order",
6337 .data
= &numa_zonelist_order
,
6338 .maxlen
= NUMA_ZONELIST_ORDER_LEN
,
6340 .proc_handler
= numa_zonelist_order_handler
,
6343 .procname
= "min_unmapped_ratio",
6344 .data
= &sysctl_min_unmapped_ratio
,
6345 .maxlen
= sizeof(sysctl_min_unmapped_ratio
),
6347 .proc_handler
= sysctl_min_unmapped_ratio_sysctl_handler
,
6348 .extra1
= SYSCTL_ZERO
,
6349 .extra2
= SYSCTL_ONE_HUNDRED
,
6352 .procname
= "min_slab_ratio",
6353 .data
= &sysctl_min_slab_ratio
,
6354 .maxlen
= sizeof(sysctl_min_slab_ratio
),
6356 .proc_handler
= sysctl_min_slab_ratio_sysctl_handler
,
6357 .extra1
= SYSCTL_ZERO
,
6358 .extra2
= SYSCTL_ONE_HUNDRED
,
6363 void __init
page_alloc_sysctl_init(void)
6365 register_sysctl_init("vm", page_alloc_sysctl_table
);
6368 #ifdef CONFIG_CONTIG_ALLOC
6369 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6370 static void alloc_contig_dump_pages(struct list_head
*page_list
)
6372 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor
, "migrate failure");
6374 if (DYNAMIC_DEBUG_BRANCH(descriptor
)) {
6378 list_for_each_entry(page
, page_list
, lru
)
6379 dump_page(page
, "migration failure");
6384 * [start, end) must belong to a single zone.
6385 * @migratetype: using migratetype to filter the type of migration in
6386 * trace_mm_alloc_contig_migrate_range_info.
6388 int __alloc_contig_migrate_range(struct compact_control
*cc
,
6389 unsigned long start
, unsigned long end
,
6392 /* This function is based on compact_zone() from compaction.c. */
6393 unsigned int nr_reclaimed
;
6394 unsigned long pfn
= start
;
6395 unsigned int tries
= 0;
6397 struct migration_target_control mtc
= {
6398 .nid
= zone_to_nid(cc
->zone
),
6399 .gfp_mask
= GFP_USER
| __GFP_MOVABLE
| __GFP_RETRY_MAYFAIL
,
6400 .reason
= MR_CONTIG_RANGE
,
6403 unsigned long total_mapped
= 0;
6404 unsigned long total_migrated
= 0;
6405 unsigned long total_reclaimed
= 0;
6407 lru_cache_disable();
6409 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6410 if (fatal_signal_pending(current
)) {
6415 if (list_empty(&cc
->migratepages
)) {
6416 cc
->nr_migratepages
= 0;
6417 ret
= isolate_migratepages_range(cc
, pfn
, end
);
6418 if (ret
&& ret
!= -EAGAIN
)
6420 pfn
= cc
->migrate_pfn
;
6422 } else if (++tries
== 5) {
6427 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6429 cc
->nr_migratepages
-= nr_reclaimed
;
6431 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6432 total_reclaimed
+= nr_reclaimed
;
6433 list_for_each_entry(page
, &cc
->migratepages
, lru
) {
6434 struct folio
*folio
= page_folio(page
);
6436 total_mapped
+= folio_mapped(folio
) *
6437 folio_nr_pages(folio
);
6441 ret
= migrate_pages(&cc
->migratepages
, alloc_migration_target
,
6442 NULL
, (unsigned long)&mtc
, cc
->mode
, MR_CONTIG_RANGE
, NULL
);
6444 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret
)
6445 total_migrated
+= cc
->nr_migratepages
;
6448 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6449 * to retry again over this error, so do the same here.
6457 if (!(cc
->gfp_mask
& __GFP_NOWARN
) && ret
== -EBUSY
)
6458 alloc_contig_dump_pages(&cc
->migratepages
);
6459 putback_movable_pages(&cc
->migratepages
);
6462 trace_mm_alloc_contig_migrate_range_info(start
, end
, migratetype
,
6466 return (ret
< 0) ? ret
: 0;
6469 static void split_free_pages(struct list_head
*list
)
6473 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
6474 struct page
*page
, *next
;
6475 int nr_pages
= 1 << order
;
6477 list_for_each_entry_safe(page
, next
, &list
[order
], lru
) {
6480 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
6484 split_page(page
, order
);
6486 /* Add all subpages to the order-0 head, in sequence. */
6487 list_del(&page
->lru
);
6488 for (i
= 0; i
< nr_pages
; i
++)
6489 list_add_tail(&page
[i
].lru
, &list
[0]);
6495 * alloc_contig_range() -- tries to allocate given range of pages
6496 * @start: start PFN to allocate
6497 * @end: one-past-the-last PFN to allocate
6498 * @migratetype: migratetype of the underlying pageblocks (either
6499 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6500 * in range must have the same migratetype and it must
6501 * be either of the two.
6502 * @gfp_mask: GFP mask to use during compaction
6504 * The PFN range does not have to be pageblock aligned. The PFN range must
6505 * belong to a single zone.
6507 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6508 * pageblocks in the range. Once isolated, the pageblocks should not
6509 * be modified by others.
6511 * Return: zero on success or negative error code. On success all
6512 * pages which PFN is in [start, end) are allocated for the caller and
6513 * need to be freed with free_contig_range().
6515 int alloc_contig_range_noprof(unsigned long start
, unsigned long end
,
6516 unsigned migratetype
, gfp_t gfp_mask
)
6518 unsigned long outer_start
, outer_end
;
6521 struct compact_control cc
= {
6522 .nr_migratepages
= 0,
6524 .zone
= page_zone(pfn_to_page(start
)),
6525 .mode
= MIGRATE_SYNC
,
6526 .ignore_skip_hint
= true,
6527 .no_set_skip_hint
= true,
6528 .gfp_mask
= current_gfp_context(gfp_mask
),
6529 .alloc_contig
= true,
6531 INIT_LIST_HEAD(&cc
.migratepages
);
6534 * What we do here is we mark all pageblocks in range as
6535 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6536 * have different sizes, and due to the way page allocator
6537 * work, start_isolate_page_range() has special handlings for this.
6539 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6540 * migrate the pages from an unaligned range (ie. pages that
6541 * we are interested in). This will put all the pages in
6542 * range back to page allocator as MIGRATE_ISOLATE.
6544 * When this is done, we take the pages in range from page
6545 * allocator removing them from the buddy system. This way
6546 * page allocator will never consider using them.
6548 * This lets us mark the pageblocks back as
6549 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6550 * aligned range but not in the unaligned, original range are
6551 * put back to page allocator so that buddy can use them.
6554 ret
= start_isolate_page_range(start
, end
, migratetype
, 0, gfp_mask
);
6558 drain_all_pages(cc
.zone
);
6561 * In case of -EBUSY, we'd like to know which page causes problem.
6562 * So, just fall through. test_pages_isolated() has a tracepoint
6563 * which will report the busy page.
6565 * It is possible that busy pages could become available before
6566 * the call to test_pages_isolated, and the range will actually be
6567 * allocated. So, if we fall through be sure to clear ret so that
6568 * -EBUSY is not accidentally used or returned to caller.
6570 ret
= __alloc_contig_migrate_range(&cc
, start
, end
, migratetype
);
6571 if (ret
&& ret
!= -EBUSY
)
6576 * Pages from [start, end) are within a pageblock_nr_pages
6577 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6578 * more, all pages in [start, end) are free in page allocator.
6579 * What we are going to do is to allocate all pages from
6580 * [start, end) (that is remove them from page allocator).
6582 * The only problem is that pages at the beginning and at the
6583 * end of interesting range may be not aligned with pages that
6584 * page allocator holds, ie. they can be part of higher order
6585 * pages. Because of this, we reserve the bigger range and
6586 * once this is done free the pages we are not interested in.
6588 * We don't have to hold zone->lock here because the pages are
6589 * isolated thus they won't get removed from buddy.
6591 outer_start
= find_large_buddy(start
);
6593 /* Make sure the range is really isolated. */
6594 if (test_pages_isolated(outer_start
, end
, 0)) {
6599 /* Grab isolated pages from freelists. */
6600 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6606 if (!(gfp_mask
& __GFP_COMP
)) {
6607 split_free_pages(cc
.freepages
);
6609 /* Free head and tail (if any) */
6610 if (start
!= outer_start
)
6611 free_contig_range(outer_start
, start
- outer_start
);
6612 if (end
!= outer_end
)
6613 free_contig_range(end
, outer_end
- end
);
6614 } else if (start
== outer_start
&& end
== outer_end
&& is_power_of_2(end
- start
)) {
6615 struct page
*head
= pfn_to_page(start
);
6616 int order
= ilog2(end
- start
);
6618 check_new_pages(head
, order
);
6619 prep_new_page(head
, order
, gfp_mask
, 0);
6622 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6623 start
, end
, outer_start
, outer_end
);
6626 undo_isolate_page_range(start
, end
, migratetype
);
6629 EXPORT_SYMBOL(alloc_contig_range_noprof
);
6631 static int __alloc_contig_pages(unsigned long start_pfn
,
6632 unsigned long nr_pages
, gfp_t gfp_mask
)
6634 unsigned long end_pfn
= start_pfn
+ nr_pages
;
6636 return alloc_contig_range_noprof(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
6640 static bool pfn_range_valid_contig(struct zone
*z
, unsigned long start_pfn
,
6641 unsigned long nr_pages
)
6643 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
6646 for (i
= start_pfn
; i
< end_pfn
; i
++) {
6647 page
= pfn_to_online_page(i
);
6651 if (page_zone(page
) != z
)
6654 if (PageReserved(page
))
6663 static bool zone_spans_last_pfn(const struct zone
*zone
,
6664 unsigned long start_pfn
, unsigned long nr_pages
)
6666 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
6668 return zone_spans_pfn(zone
, last_pfn
);
6672 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6673 * @nr_pages: Number of contiguous pages to allocate
6674 * @gfp_mask: GFP mask to limit search and used during compaction
6676 * @nodemask: Mask for other possible nodes
6678 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6679 * on an applicable zonelist to find a contiguous pfn range which can then be
6680 * tried for allocation with alloc_contig_range(). This routine is intended
6681 * for allocation requests which can not be fulfilled with the buddy allocator.
6683 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6684 * power of two, then allocated range is also guaranteed to be aligned to same
6685 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6687 * Allocated pages can be freed with free_contig_range() or by manually calling
6688 * __free_page() on each allocated page.
6690 * Return: pointer to contiguous pages on success, or NULL if not successful.
6692 struct page
*alloc_contig_pages_noprof(unsigned long nr_pages
, gfp_t gfp_mask
,
6693 int nid
, nodemask_t
*nodemask
)
6695 unsigned long ret
, pfn
, flags
;
6696 struct zonelist
*zonelist
;
6700 zonelist
= node_zonelist(nid
, gfp_mask
);
6701 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
6702 gfp_zone(gfp_mask
), nodemask
) {
6703 spin_lock_irqsave(&zone
->lock
, flags
);
6705 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
6706 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
6707 if (pfn_range_valid_contig(zone
, pfn
, nr_pages
)) {
6709 * We release the zone lock here because
6710 * alloc_contig_range() will also lock the zone
6711 * at some point. If there's an allocation
6712 * spinning on this lock, it may win the race
6713 * and cause alloc_contig_range() to fail...
6715 spin_unlock_irqrestore(&zone
->lock
, flags
);
6716 ret
= __alloc_contig_pages(pfn
, nr_pages
,
6719 return pfn_to_page(pfn
);
6720 spin_lock_irqsave(&zone
->lock
, flags
);
6724 spin_unlock_irqrestore(&zone
->lock
, flags
);
6728 #endif /* CONFIG_CONTIG_ALLOC */
6730 void free_contig_range(unsigned long pfn
, unsigned long nr_pages
)
6732 unsigned long count
= 0;
6733 struct folio
*folio
= pfn_folio(pfn
);
6735 if (folio_test_large(folio
)) {
6736 int expected
= folio_nr_pages(folio
);
6738 if (nr_pages
== expected
)
6741 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6742 pfn
, nr_pages
, expected
);
6746 for (; nr_pages
--; pfn
++) {
6747 struct page
*page
= pfn_to_page(pfn
);
6749 count
+= page_count(page
) != 1;
6752 WARN(count
!= 0, "%lu pages are still in use!\n", count
);
6754 EXPORT_SYMBOL(free_contig_range
);
6757 * Effectively disable pcplists for the zone by setting the high limit to 0
6758 * and draining all cpus. A concurrent page freeing on another CPU that's about
6759 * to put the page on pcplist will either finish before the drain and the page
6760 * will be drained, or observe the new high limit and skip the pcplist.
6762 * Must be paired with a call to zone_pcp_enable().
6764 void zone_pcp_disable(struct zone
*zone
)
6766 mutex_lock(&pcp_batch_high_lock
);
6767 __zone_set_pageset_high_and_batch(zone
, 0, 0, 1);
6768 __drain_all_pages(zone
, true);
6771 void zone_pcp_enable(struct zone
*zone
)
6773 __zone_set_pageset_high_and_batch(zone
, zone
->pageset_high_min
,
6774 zone
->pageset_high_max
, zone
->pageset_batch
);
6775 mutex_unlock(&pcp_batch_high_lock
);
6778 void zone_pcp_reset(struct zone
*zone
)
6781 struct per_cpu_zonestat
*pzstats
;
6783 if (zone
->per_cpu_pageset
!= &boot_pageset
) {
6784 for_each_online_cpu(cpu
) {
6785 pzstats
= per_cpu_ptr(zone
->per_cpu_zonestats
, cpu
);
6786 drain_zonestat(zone
, pzstats
);
6788 free_percpu(zone
->per_cpu_pageset
);
6789 zone
->per_cpu_pageset
= &boot_pageset
;
6790 if (zone
->per_cpu_zonestats
!= &boot_zonestats
) {
6791 free_percpu(zone
->per_cpu_zonestats
);
6792 zone
->per_cpu_zonestats
= &boot_zonestats
;
6797 #ifdef CONFIG_MEMORY_HOTREMOVE
6799 * All pages in the range must be in a single zone, must not contain holes,
6800 * must span full sections, and must be isolated before calling this function.
6802 * Returns the number of managed (non-PageOffline()) pages in the range: the
6803 * number of pages for which memory offlining code must adjust managed page
6804 * counters using adjust_managed_page_count().
6806 unsigned long __offline_isolated_pages(unsigned long start_pfn
,
6807 unsigned long end_pfn
)
6809 unsigned long already_offline
= 0, flags
;
6810 unsigned long pfn
= start_pfn
;
6815 offline_mem_sections(pfn
, end_pfn
);
6816 zone
= page_zone(pfn_to_page(pfn
));
6817 spin_lock_irqsave(&zone
->lock
, flags
);
6818 while (pfn
< end_pfn
) {
6819 page
= pfn_to_page(pfn
);
6821 * The HWPoisoned page may be not in buddy system, and
6822 * page_count() is not 0.
6824 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6829 * At this point all remaining PageOffline() pages have a
6830 * reference count of 0 and can simply be skipped.
6832 if (PageOffline(page
)) {
6833 BUG_ON(page_count(page
));
6834 BUG_ON(PageBuddy(page
));
6840 BUG_ON(page_count(page
));
6841 BUG_ON(!PageBuddy(page
));
6842 VM_WARN_ON(get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
);
6843 order
= buddy_order(page
);
6844 del_page_from_free_list(page
, zone
, order
, MIGRATE_ISOLATE
);
6845 pfn
+= (1 << order
);
6847 spin_unlock_irqrestore(&zone
->lock
, flags
);
6849 return end_pfn
- start_pfn
- already_offline
;
6854 * This function returns a stable result only if called under zone lock.
6856 bool is_free_buddy_page(const struct page
*page
)
6858 unsigned long pfn
= page_to_pfn(page
);
6861 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
6862 const struct page
*head
= page
- (pfn
& ((1 << order
) - 1));
6864 if (PageBuddy(head
) &&
6865 buddy_order_unsafe(head
) >= order
)
6869 return order
<= MAX_PAGE_ORDER
;
6871 EXPORT_SYMBOL(is_free_buddy_page
);
6873 #ifdef CONFIG_MEMORY_FAILURE
6874 static inline void add_to_free_list(struct page
*page
, struct zone
*zone
,
6875 unsigned int order
, int migratetype
,
6878 __add_to_free_list(page
, zone
, order
, migratetype
, tail
);
6879 account_freepages(zone
, 1 << order
, migratetype
);
6883 * Break down a higher-order page in sub-pages, and keep our target out of
6886 static void break_down_buddy_pages(struct zone
*zone
, struct page
*page
,
6887 struct page
*target
, int low
, int high
,
6890 unsigned long size
= 1 << high
;
6891 struct page
*current_buddy
;
6893 while (high
> low
) {
6897 if (target
>= &page
[size
]) {
6898 current_buddy
= page
;
6901 current_buddy
= page
+ size
;
6904 if (set_page_guard(zone
, current_buddy
, high
))
6907 add_to_free_list(current_buddy
, zone
, high
, migratetype
, false);
6908 set_buddy_order(current_buddy
, high
);
6913 * Take a page that will be marked as poisoned off the buddy allocator.
6915 bool take_page_off_buddy(struct page
*page
)
6917 struct zone
*zone
= page_zone(page
);
6918 unsigned long pfn
= page_to_pfn(page
);
6919 unsigned long flags
;
6923 spin_lock_irqsave(&zone
->lock
, flags
);
6924 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
6925 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6926 int page_order
= buddy_order(page_head
);
6928 if (PageBuddy(page_head
) && page_order
>= order
) {
6929 unsigned long pfn_head
= page_to_pfn(page_head
);
6930 int migratetype
= get_pfnblock_migratetype(page_head
,
6933 del_page_from_free_list(page_head
, zone
, page_order
,
6935 break_down_buddy_pages(zone
, page_head
, page
, 0,
6936 page_order
, migratetype
);
6937 SetPageHWPoisonTakenOff(page
);
6941 if (page_count(page_head
) > 0)
6944 spin_unlock_irqrestore(&zone
->lock
, flags
);
6949 * Cancel takeoff done by take_page_off_buddy().
6951 bool put_page_back_buddy(struct page
*page
)
6953 struct zone
*zone
= page_zone(page
);
6954 unsigned long flags
;
6957 spin_lock_irqsave(&zone
->lock
, flags
);
6958 if (put_page_testzero(page
)) {
6959 unsigned long pfn
= page_to_pfn(page
);
6960 int migratetype
= get_pfnblock_migratetype(page
, pfn
);
6962 ClearPageHWPoisonTakenOff(page
);
6963 __free_one_page(page
, pfn
, zone
, 0, migratetype
, FPI_NONE
);
6964 if (TestClearPageHWPoison(page
)) {
6968 spin_unlock_irqrestore(&zone
->lock
, flags
);
6974 #ifdef CONFIG_ZONE_DMA
6975 bool has_managed_dma(void)
6977 struct pglist_data
*pgdat
;
6979 for_each_online_pgdat(pgdat
) {
6980 struct zone
*zone
= &pgdat
->node_zones
[ZONE_DMA
];
6982 if (managed_zone(zone
))
6987 #endif /* CONFIG_ZONE_DMA */
6989 #ifdef CONFIG_UNACCEPTED_MEMORY
6991 /* Counts number of zones with unaccepted pages. */
6992 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages
);
6994 static bool lazy_accept
= true;
6996 static int __init
accept_memory_parse(char *p
)
6998 if (!strcmp(p
, "lazy")) {
7001 } else if (!strcmp(p
, "eager")) {
7002 lazy_accept
= false;
7008 early_param("accept_memory", accept_memory_parse
);
7010 static bool page_contains_unaccepted(struct page
*page
, unsigned int order
)
7012 phys_addr_t start
= page_to_phys(page
);
7014 return range_contains_unaccepted_memory(start
, PAGE_SIZE
<< order
);
7017 static void __accept_page(struct zone
*zone
, unsigned long *flags
,
7022 list_del(&page
->lru
);
7023 last
= list_empty(&zone
->unaccepted_pages
);
7025 account_freepages(zone
, -MAX_ORDER_NR_PAGES
, MIGRATE_MOVABLE
);
7026 __mod_zone_page_state(zone
, NR_UNACCEPTED
, -MAX_ORDER_NR_PAGES
);
7027 __ClearPageUnaccepted(page
);
7028 spin_unlock_irqrestore(&zone
->lock
, *flags
);
7030 accept_memory(page_to_phys(page
), PAGE_SIZE
<< MAX_PAGE_ORDER
);
7032 __free_pages_ok(page
, MAX_PAGE_ORDER
, FPI_TO_TAIL
);
7035 static_branch_dec(&zones_with_unaccepted_pages
);
7038 void accept_page(struct page
*page
)
7040 struct zone
*zone
= page_zone(page
);
7041 unsigned long flags
;
7043 spin_lock_irqsave(&zone
->lock
, flags
);
7044 if (!PageUnaccepted(page
)) {
7045 spin_unlock_irqrestore(&zone
->lock
, flags
);
7049 /* Unlocks zone->lock */
7050 __accept_page(zone
, &flags
, page
);
7053 static bool try_to_accept_memory_one(struct zone
*zone
)
7055 unsigned long flags
;
7058 spin_lock_irqsave(&zone
->lock
, flags
);
7059 page
= list_first_entry_or_null(&zone
->unaccepted_pages
,
7062 spin_unlock_irqrestore(&zone
->lock
, flags
);
7066 /* Unlocks zone->lock */
7067 __accept_page(zone
, &flags
, page
);
7072 static inline bool has_unaccepted_memory(void)
7074 return static_branch_unlikely(&zones_with_unaccepted_pages
);
7077 static bool cond_accept_memory(struct zone
*zone
, unsigned int order
)
7082 if (!has_unaccepted_memory())
7085 if (list_empty(&zone
->unaccepted_pages
))
7088 /* How much to accept to get to promo watermark? */
7089 to_accept
= promo_wmark_pages(zone
) -
7090 (zone_page_state(zone
, NR_FREE_PAGES
) -
7091 __zone_watermark_unusable_free(zone
, order
, 0) -
7092 zone_page_state(zone
, NR_UNACCEPTED
));
7094 while (to_accept
> 0) {
7095 if (!try_to_accept_memory_one(zone
))
7098 to_accept
-= MAX_ORDER_NR_PAGES
;
7104 static bool __free_unaccepted(struct page
*page
)
7106 struct zone
*zone
= page_zone(page
);
7107 unsigned long flags
;
7113 spin_lock_irqsave(&zone
->lock
, flags
);
7114 first
= list_empty(&zone
->unaccepted_pages
);
7115 list_add_tail(&page
->lru
, &zone
->unaccepted_pages
);
7116 account_freepages(zone
, MAX_ORDER_NR_PAGES
, MIGRATE_MOVABLE
);
7117 __mod_zone_page_state(zone
, NR_UNACCEPTED
, MAX_ORDER_NR_PAGES
);
7118 __SetPageUnaccepted(page
);
7119 spin_unlock_irqrestore(&zone
->lock
, flags
);
7122 static_branch_inc(&zones_with_unaccepted_pages
);
7129 static bool page_contains_unaccepted(struct page
*page
, unsigned int order
)
7134 static bool cond_accept_memory(struct zone
*zone
, unsigned int order
)
7139 static bool __free_unaccepted(struct page
*page
)
7145 #endif /* CONFIG_UNACCEPTED_MEMORY */