2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock
);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node
);
82 EXPORT_PER_CPU_SYMBOL(numa_node
);
85 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
92 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
93 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
94 int _node_numa_mem_
[MAX_NUMNODES
];
97 /* work_structs for global per-cpu drains */
98 DEFINE_MUTEX(pcpu_drain_mutex
);
99 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
101 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102 volatile unsigned long latent_entropy __latent_entropy
;
103 EXPORT_SYMBOL(latent_entropy
);
107 * Array of node states.
109 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
110 [N_POSSIBLE
] = NODE_MASK_ALL
,
111 [N_ONLINE
] = { { [0] = 1UL } },
113 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
114 #ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
117 [N_MEMORY
] = { { [0] = 1UL } },
118 [N_CPU
] = { { [0] = 1UL } },
121 EXPORT_SYMBOL(node_states
);
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock
);
126 unsigned long totalram_pages __read_mostly
;
127 unsigned long totalreserve_pages __read_mostly
;
128 unsigned long totalcma_pages __read_mostly
;
130 int percpu_pagelist_fraction
;
131 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
141 static inline int get_pcppage_migratetype(struct page
*page
)
146 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
148 page
->index
= migratetype
;
151 #ifdef CONFIG_PM_SLEEP
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
161 static gfp_t saved_gfp_mask
;
163 void pm_restore_gfp_mask(void)
165 WARN_ON(!mutex_is_locked(&pm_mutex
));
166 if (saved_gfp_mask
) {
167 gfp_allowed_mask
= saved_gfp_mask
;
172 void pm_restrict_gfp_mask(void)
174 WARN_ON(!mutex_is_locked(&pm_mutex
));
175 WARN_ON(saved_gfp_mask
);
176 saved_gfp_mask
= gfp_allowed_mask
;
177 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
180 bool pm_suspended_storage(void)
182 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
186 #endif /* CONFIG_PM_SLEEP */
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly
;
192 static void __free_pages_ok(struct page
*page
, unsigned int order
);
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
205 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
206 #ifdef CONFIG_ZONE_DMA
209 #ifdef CONFIG_ZONE_DMA32
212 #ifdef CONFIG_HIGHMEM
218 EXPORT_SYMBOL(totalram_pages
);
220 static char * const zone_names
[MAX_NR_ZONES
] = {
221 #ifdef CONFIG_ZONE_DMA
224 #ifdef CONFIG_ZONE_DMA32
228 #ifdef CONFIG_HIGHMEM
232 #ifdef CONFIG_ZONE_DEVICE
237 char * const migratetype_names
[MIGRATE_TYPES
] = {
245 #ifdef CONFIG_MEMORY_ISOLATION
250 compound_page_dtor
* const compound_page_dtors
[] = {
253 #ifdef CONFIG_HUGETLB_PAGE
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 int min_free_kbytes
= 1024;
262 int user_min_free_kbytes
= -1;
263 int watermark_scale_factor
= 10;
265 static unsigned long __meminitdata nr_kernel_pages
;
266 static unsigned long __meminitdata nr_all_pages
;
267 static unsigned long __meminitdata dma_reserve
;
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
272 static unsigned long __initdata required_kernelcore
;
273 static unsigned long __initdata required_movablecore
;
274 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
275 static bool mirrored_kernelcore
;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 EXPORT_SYMBOL(movable_zone
);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
284 int nr_online_nodes __read_mostly
= 1;
285 EXPORT_SYMBOL(nr_node_ids
);
286 EXPORT_SYMBOL(nr_online_nodes
);
289 int page_group_by_mobility_disabled __read_mostly
;
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294 * Determine how many pages need to be initialized durig early boot
295 * (non-deferred initialization).
296 * The value of first_deferred_pfn will be set later, once non-deferred pages
297 * are initialized, but for now set it ULONG_MAX.
299 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
301 phys_addr_t start_addr
, end_addr
;
302 unsigned long max_pgcnt
;
303 unsigned long reserved
;
306 * Initialise at least 2G of a node but also take into account that
307 * two large system hashes that can take up 1GB for 0.25TB/node.
309 max_pgcnt
= max(2UL << (30 - PAGE_SHIFT
),
310 (pgdat
->node_spanned_pages
>> 8));
313 * Compensate the all the memblock reservations (e.g. crash kernel)
314 * from the initial estimation to make sure we will initialize enough
317 start_addr
= PFN_PHYS(pgdat
->node_start_pfn
);
318 end_addr
= PFN_PHYS(pgdat
->node_start_pfn
+ max_pgcnt
);
319 reserved
= memblock_reserved_memory_within(start_addr
, end_addr
);
320 max_pgcnt
+= PHYS_PFN(reserved
);
322 pgdat
->static_init_pgcnt
= min(max_pgcnt
, pgdat
->node_spanned_pages
);
323 pgdat
->first_deferred_pfn
= ULONG_MAX
;
326 /* Returns true if the struct page for the pfn is uninitialised */
327 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
329 int nid
= early_pfn_to_nid(pfn
);
331 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
338 * Returns false when the remaining initialisation should be deferred until
339 * later in the boot cycle when it can be parallelised.
341 static inline bool update_defer_init(pg_data_t
*pgdat
,
342 unsigned long pfn
, unsigned long zone_end
,
343 unsigned long *nr_initialised
)
345 /* Always populate low zones for address-contrained allocations */
346 if (zone_end
< pgdat_end_pfn(pgdat
))
349 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
350 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
351 pgdat
->first_deferred_pfn
= pfn
;
358 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
362 static inline bool early_page_uninitialised(unsigned long pfn
)
367 static inline bool update_defer_init(pg_data_t
*pgdat
,
368 unsigned long pfn
, unsigned long zone_end
,
369 unsigned long *nr_initialised
)
375 /* Return a pointer to the bitmap storing bits affecting a block of pages */
376 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
379 #ifdef CONFIG_SPARSEMEM
380 return __pfn_to_section(pfn
)->pageblock_flags
;
382 return page_zone(page
)->pageblock_flags
;
383 #endif /* CONFIG_SPARSEMEM */
386 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
388 #ifdef CONFIG_SPARSEMEM
389 pfn
&= (PAGES_PER_SECTION
-1);
390 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
392 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
393 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
394 #endif /* CONFIG_SPARSEMEM */
398 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
399 * @page: The page within the block of interest
400 * @pfn: The target page frame number
401 * @end_bitidx: The last bit of interest to retrieve
402 * @mask: mask of bits that the caller is interested in
404 * Return: pageblock_bits flags
406 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
408 unsigned long end_bitidx
,
411 unsigned long *bitmap
;
412 unsigned long bitidx
, word_bitidx
;
415 bitmap
= get_pageblock_bitmap(page
, pfn
);
416 bitidx
= pfn_to_bitidx(page
, pfn
);
417 word_bitidx
= bitidx
/ BITS_PER_LONG
;
418 bitidx
&= (BITS_PER_LONG
-1);
420 word
= bitmap
[word_bitidx
];
421 bitidx
+= end_bitidx
;
422 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
425 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
426 unsigned long end_bitidx
,
429 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
432 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
434 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
438 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
439 * @page: The page within the block of interest
440 * @flags: The flags to set
441 * @pfn: The target page frame number
442 * @end_bitidx: The last bit of interest
443 * @mask: mask of bits that the caller is interested in
445 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
447 unsigned long end_bitidx
,
450 unsigned long *bitmap
;
451 unsigned long bitidx
, word_bitidx
;
452 unsigned long old_word
, word
;
454 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
456 bitmap
= get_pageblock_bitmap(page
, pfn
);
457 bitidx
= pfn_to_bitidx(page
, pfn
);
458 word_bitidx
= bitidx
/ BITS_PER_LONG
;
459 bitidx
&= (BITS_PER_LONG
-1);
461 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
463 bitidx
+= end_bitidx
;
464 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
465 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
467 word
= READ_ONCE(bitmap
[word_bitidx
]);
469 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
470 if (word
== old_word
)
476 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
478 if (unlikely(page_group_by_mobility_disabled
&&
479 migratetype
< MIGRATE_PCPTYPES
))
480 migratetype
= MIGRATE_UNMOVABLE
;
482 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
483 PB_migrate
, PB_migrate_end
);
486 #ifdef CONFIG_DEBUG_VM
487 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
491 unsigned long pfn
= page_to_pfn(page
);
492 unsigned long sp
, start_pfn
;
495 seq
= zone_span_seqbegin(zone
);
496 start_pfn
= zone
->zone_start_pfn
;
497 sp
= zone
->spanned_pages
;
498 if (!zone_spans_pfn(zone
, pfn
))
500 } while (zone_span_seqretry(zone
, seq
));
503 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
504 pfn
, zone_to_nid(zone
), zone
->name
,
505 start_pfn
, start_pfn
+ sp
);
510 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
512 if (!pfn_valid_within(page_to_pfn(page
)))
514 if (zone
!= page_zone(page
))
520 * Temporary debugging check for pages not lying within a given zone.
522 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
524 if (page_outside_zone_boundaries(zone
, page
))
526 if (!page_is_consistent(zone
, page
))
532 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
538 static void bad_page(struct page
*page
, const char *reason
,
539 unsigned long bad_flags
)
541 static unsigned long resume
;
542 static unsigned long nr_shown
;
543 static unsigned long nr_unshown
;
546 * Allow a burst of 60 reports, then keep quiet for that minute;
547 * or allow a steady drip of one report per second.
549 if (nr_shown
== 60) {
550 if (time_before(jiffies
, resume
)) {
556 "BUG: Bad page state: %lu messages suppressed\n",
563 resume
= jiffies
+ 60 * HZ
;
565 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
566 current
->comm
, page_to_pfn(page
));
567 __dump_page(page
, reason
);
568 bad_flags
&= page
->flags
;
570 pr_alert("bad because of flags: %#lx(%pGp)\n",
571 bad_flags
, &bad_flags
);
572 dump_page_owner(page
);
577 /* Leave bad fields for debug, except PageBuddy could make trouble */
578 page_mapcount_reset(page
); /* remove PageBuddy */
579 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
583 * Higher-order pages are called "compound pages". They are structured thusly:
585 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
587 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
588 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
590 * The first tail page's ->compound_dtor holds the offset in array of compound
591 * page destructors. See compound_page_dtors.
593 * The first tail page's ->compound_order holds the order of allocation.
594 * This usage means that zero-order pages may not be compound.
597 void free_compound_page(struct page
*page
)
599 __free_pages_ok(page
, compound_order(page
));
602 void prep_compound_page(struct page
*page
, unsigned int order
)
605 int nr_pages
= 1 << order
;
607 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
608 set_compound_order(page
, order
);
610 for (i
= 1; i
< nr_pages
; i
++) {
611 struct page
*p
= page
+ i
;
612 set_page_count(p
, 0);
613 p
->mapping
= TAIL_MAPPING
;
614 set_compound_head(p
, page
);
616 atomic_set(compound_mapcount_ptr(page
), -1);
619 #ifdef CONFIG_DEBUG_PAGEALLOC
620 unsigned int _debug_guardpage_minorder
;
621 bool _debug_pagealloc_enabled __read_mostly
622 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
623 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
624 bool _debug_guardpage_enabled __read_mostly
;
626 static int __init
early_debug_pagealloc(char *buf
)
630 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
632 early_param("debug_pagealloc", early_debug_pagealloc
);
634 static bool need_debug_guardpage(void)
636 /* If we don't use debug_pagealloc, we don't need guard page */
637 if (!debug_pagealloc_enabled())
640 if (!debug_guardpage_minorder())
646 static void init_debug_guardpage(void)
648 if (!debug_pagealloc_enabled())
651 if (!debug_guardpage_minorder())
654 _debug_guardpage_enabled
= true;
657 struct page_ext_operations debug_guardpage_ops
= {
658 .need
= need_debug_guardpage
,
659 .init
= init_debug_guardpage
,
662 static int __init
debug_guardpage_minorder_setup(char *buf
)
666 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
667 pr_err("Bad debug_guardpage_minorder value\n");
670 _debug_guardpage_minorder
= res
;
671 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
674 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
676 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
677 unsigned int order
, int migratetype
)
679 struct page_ext
*page_ext
;
681 if (!debug_guardpage_enabled())
684 if (order
>= debug_guardpage_minorder())
687 page_ext
= lookup_page_ext(page
);
688 if (unlikely(!page_ext
))
691 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
693 INIT_LIST_HEAD(&page
->lru
);
694 set_page_private(page
, order
);
695 /* Guard pages are not available for any usage */
696 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
701 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
702 unsigned int order
, int migratetype
)
704 struct page_ext
*page_ext
;
706 if (!debug_guardpage_enabled())
709 page_ext
= lookup_page_ext(page
);
710 if (unlikely(!page_ext
))
713 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
715 set_page_private(page
, 0);
716 if (!is_migrate_isolate(migratetype
))
717 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
720 struct page_ext_operations debug_guardpage_ops
;
721 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
722 unsigned int order
, int migratetype
) { return false; }
723 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
724 unsigned int order
, int migratetype
) {}
727 static inline void set_page_order(struct page
*page
, unsigned int order
)
729 set_page_private(page
, order
);
730 __SetPageBuddy(page
);
733 static inline void rmv_page_order(struct page
*page
)
735 __ClearPageBuddy(page
);
736 set_page_private(page
, 0);
740 * This function checks whether a page is free && is the buddy
741 * we can do coalesce a page and its buddy if
742 * (a) the buddy is not in a hole (check before calling!) &&
743 * (b) the buddy is in the buddy system &&
744 * (c) a page and its buddy have the same order &&
745 * (d) a page and its buddy are in the same zone.
747 * For recording whether a page is in the buddy system, we set ->_mapcount
748 * PAGE_BUDDY_MAPCOUNT_VALUE.
749 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
750 * serialized by zone->lock.
752 * For recording page's order, we use page_private(page).
754 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
757 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
758 if (page_zone_id(page
) != page_zone_id(buddy
))
761 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
766 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
768 * zone check is done late to avoid uselessly
769 * calculating zone/node ids for pages that could
772 if (page_zone_id(page
) != page_zone_id(buddy
))
775 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
783 * Freeing function for a buddy system allocator.
785 * The concept of a buddy system is to maintain direct-mapped table
786 * (containing bit values) for memory blocks of various "orders".
787 * The bottom level table contains the map for the smallest allocatable
788 * units of memory (here, pages), and each level above it describes
789 * pairs of units from the levels below, hence, "buddies".
790 * At a high level, all that happens here is marking the table entry
791 * at the bottom level available, and propagating the changes upward
792 * as necessary, plus some accounting needed to play nicely with other
793 * parts of the VM system.
794 * At each level, we keep a list of pages, which are heads of continuous
795 * free pages of length of (1 << order) and marked with _mapcount
796 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
798 * So when we are allocating or freeing one, we can derive the state of the
799 * other. That is, if we allocate a small block, and both were
800 * free, the remainder of the region must be split into blocks.
801 * If a block is freed, and its buddy is also free, then this
802 * triggers coalescing into a block of larger size.
807 static inline void __free_one_page(struct page
*page
,
809 struct zone
*zone
, unsigned int order
,
812 unsigned long combined_pfn
;
813 unsigned long uninitialized_var(buddy_pfn
);
815 unsigned int max_order
;
817 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
819 VM_BUG_ON(!zone_is_initialized(zone
));
820 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
822 VM_BUG_ON(migratetype
== -1);
823 if (likely(!is_migrate_isolate(migratetype
)))
824 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
826 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
827 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
830 while (order
< max_order
- 1) {
831 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
832 buddy
= page
+ (buddy_pfn
- pfn
);
834 if (!pfn_valid_within(buddy_pfn
))
836 if (!page_is_buddy(page
, buddy
, order
))
839 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
840 * merge with it and move up one order.
842 if (page_is_guard(buddy
)) {
843 clear_page_guard(zone
, buddy
, order
, migratetype
);
845 list_del(&buddy
->lru
);
846 zone
->free_area
[order
].nr_free
--;
847 rmv_page_order(buddy
);
849 combined_pfn
= buddy_pfn
& pfn
;
850 page
= page
+ (combined_pfn
- pfn
);
854 if (max_order
< MAX_ORDER
) {
855 /* If we are here, it means order is >= pageblock_order.
856 * We want to prevent merge between freepages on isolate
857 * pageblock and normal pageblock. Without this, pageblock
858 * isolation could cause incorrect freepage or CMA accounting.
860 * We don't want to hit this code for the more frequent
863 if (unlikely(has_isolate_pageblock(zone
))) {
866 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
867 buddy
= page
+ (buddy_pfn
- pfn
);
868 buddy_mt
= get_pageblock_migratetype(buddy
);
870 if (migratetype
!= buddy_mt
871 && (is_migrate_isolate(migratetype
) ||
872 is_migrate_isolate(buddy_mt
)))
876 goto continue_merging
;
880 set_page_order(page
, order
);
883 * If this is not the largest possible page, check if the buddy
884 * of the next-highest order is free. If it is, it's possible
885 * that pages are being freed that will coalesce soon. In case,
886 * that is happening, add the free page to the tail of the list
887 * so it's less likely to be used soon and more likely to be merged
888 * as a higher order page
890 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
891 struct page
*higher_page
, *higher_buddy
;
892 combined_pfn
= buddy_pfn
& pfn
;
893 higher_page
= page
+ (combined_pfn
- pfn
);
894 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
895 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
896 if (pfn_valid_within(buddy_pfn
) &&
897 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
898 list_add_tail(&page
->lru
,
899 &zone
->free_area
[order
].free_list
[migratetype
]);
904 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
906 zone
->free_area
[order
].nr_free
++;
910 * A bad page could be due to a number of fields. Instead of multiple branches,
911 * try and check multiple fields with one check. The caller must do a detailed
912 * check if necessary.
914 static inline bool page_expected_state(struct page
*page
,
915 unsigned long check_flags
)
917 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
920 if (unlikely((unsigned long)page
->mapping
|
921 page_ref_count(page
) |
923 (unsigned long)page
->mem_cgroup
|
925 (page
->flags
& check_flags
)))
931 static void free_pages_check_bad(struct page
*page
)
933 const char *bad_reason
;
934 unsigned long bad_flags
;
939 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
940 bad_reason
= "nonzero mapcount";
941 if (unlikely(page
->mapping
!= NULL
))
942 bad_reason
= "non-NULL mapping";
943 if (unlikely(page_ref_count(page
) != 0))
944 bad_reason
= "nonzero _refcount";
945 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
946 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
947 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
950 if (unlikely(page
->mem_cgroup
))
951 bad_reason
= "page still charged to cgroup";
953 bad_page(page
, bad_reason
, bad_flags
);
956 static inline int free_pages_check(struct page
*page
)
958 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
961 /* Something has gone sideways, find it */
962 free_pages_check_bad(page
);
966 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
971 * We rely page->lru.next never has bit 0 set, unless the page
972 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
974 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
976 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
980 switch (page
- head_page
) {
982 /* the first tail page: ->mapping is compound_mapcount() */
983 if (unlikely(compound_mapcount(page
))) {
984 bad_page(page
, "nonzero compound_mapcount", 0);
990 * the second tail page: ->mapping is
991 * page_deferred_list().next -- ignore value.
995 if (page
->mapping
!= TAIL_MAPPING
) {
996 bad_page(page
, "corrupted mapping in tail page", 0);
1001 if (unlikely(!PageTail(page
))) {
1002 bad_page(page
, "PageTail not set", 0);
1005 if (unlikely(compound_head(page
) != head_page
)) {
1006 bad_page(page
, "compound_head not consistent", 0);
1011 page
->mapping
= NULL
;
1012 clear_compound_head(page
);
1016 static __always_inline
bool free_pages_prepare(struct page
*page
,
1017 unsigned int order
, bool check_free
)
1021 VM_BUG_ON_PAGE(PageTail(page
), page
);
1023 trace_mm_page_free(page
, order
);
1026 * Check tail pages before head page information is cleared to
1027 * avoid checking PageCompound for order-0 pages.
1029 if (unlikely(order
)) {
1030 bool compound
= PageCompound(page
);
1033 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1036 ClearPageDoubleMap(page
);
1037 for (i
= 1; i
< (1 << order
); i
++) {
1039 bad
+= free_tail_pages_check(page
, page
+ i
);
1040 if (unlikely(free_pages_check(page
+ i
))) {
1044 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1047 if (PageMappingFlags(page
))
1048 page
->mapping
= NULL
;
1049 if (memcg_kmem_enabled() && PageKmemcg(page
))
1050 memcg_kmem_uncharge(page
, order
);
1052 bad
+= free_pages_check(page
);
1056 page_cpupid_reset_last(page
);
1057 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1058 reset_page_owner(page
, order
);
1060 if (!PageHighMem(page
)) {
1061 debug_check_no_locks_freed(page_address(page
),
1062 PAGE_SIZE
<< order
);
1063 debug_check_no_obj_freed(page_address(page
),
1064 PAGE_SIZE
<< order
);
1066 arch_free_page(page
, order
);
1067 kernel_poison_pages(page
, 1 << order
, 0);
1068 kernel_map_pages(page
, 1 << order
, 0);
1069 kasan_free_pages(page
, order
);
1074 #ifdef CONFIG_DEBUG_VM
1075 static inline bool free_pcp_prepare(struct page
*page
)
1077 return free_pages_prepare(page
, 0, true);
1080 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1085 static bool free_pcp_prepare(struct page
*page
)
1087 return free_pages_prepare(page
, 0, false);
1090 static bool bulkfree_pcp_prepare(struct page
*page
)
1092 return free_pages_check(page
);
1094 #endif /* CONFIG_DEBUG_VM */
1097 * Frees a number of pages from the PCP lists
1098 * Assumes all pages on list are in same zone, and of same order.
1099 * count is the number of pages to free.
1101 * If the zone was previously in an "all pages pinned" state then look to
1102 * see if this freeing clears that state.
1104 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1105 * pinned" detection logic.
1107 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1108 struct per_cpu_pages
*pcp
)
1110 int migratetype
= 0;
1112 bool isolated_pageblocks
;
1114 spin_lock(&zone
->lock
);
1115 isolated_pageblocks
= has_isolate_pageblock(zone
);
1119 struct list_head
*list
;
1122 * Remove pages from lists in a round-robin fashion. A
1123 * batch_free count is maintained that is incremented when an
1124 * empty list is encountered. This is so more pages are freed
1125 * off fuller lists instead of spinning excessively around empty
1130 if (++migratetype
== MIGRATE_PCPTYPES
)
1132 list
= &pcp
->lists
[migratetype
];
1133 } while (list_empty(list
));
1135 /* This is the only non-empty list. Free them all. */
1136 if (batch_free
== MIGRATE_PCPTYPES
)
1140 int mt
; /* migratetype of the to-be-freed page */
1142 page
= list_last_entry(list
, struct page
, lru
);
1143 /* must delete as __free_one_page list manipulates */
1144 list_del(&page
->lru
);
1146 mt
= get_pcppage_migratetype(page
);
1147 /* MIGRATE_ISOLATE page should not go to pcplists */
1148 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1149 /* Pageblock could have been isolated meanwhile */
1150 if (unlikely(isolated_pageblocks
))
1151 mt
= get_pageblock_migratetype(page
);
1153 if (bulkfree_pcp_prepare(page
))
1156 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1157 trace_mm_page_pcpu_drain(page
, 0, mt
);
1158 } while (--count
&& --batch_free
&& !list_empty(list
));
1160 spin_unlock(&zone
->lock
);
1163 static void free_one_page(struct zone
*zone
,
1164 struct page
*page
, unsigned long pfn
,
1168 spin_lock(&zone
->lock
);
1169 if (unlikely(has_isolate_pageblock(zone
) ||
1170 is_migrate_isolate(migratetype
))) {
1171 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1173 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1174 spin_unlock(&zone
->lock
);
1177 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1178 unsigned long zone
, int nid
)
1180 set_page_links(page
, zone
, nid
, pfn
);
1181 init_page_count(page
);
1182 page_mapcount_reset(page
);
1183 page_cpupid_reset_last(page
);
1185 INIT_LIST_HEAD(&page
->lru
);
1186 #ifdef WANT_PAGE_VIRTUAL
1187 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1188 if (!is_highmem_idx(zone
))
1189 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1193 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1196 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1199 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1200 static void __meminit
init_reserved_page(unsigned long pfn
)
1205 if (!early_page_uninitialised(pfn
))
1208 nid
= early_pfn_to_nid(pfn
);
1209 pgdat
= NODE_DATA(nid
);
1211 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1212 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1214 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1217 __init_single_pfn(pfn
, zid
, nid
);
1220 static inline void init_reserved_page(unsigned long pfn
)
1223 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1226 * Initialised pages do not have PageReserved set. This function is
1227 * called for each range allocated by the bootmem allocator and
1228 * marks the pages PageReserved. The remaining valid pages are later
1229 * sent to the buddy page allocator.
1231 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1233 unsigned long start_pfn
= PFN_DOWN(start
);
1234 unsigned long end_pfn
= PFN_UP(end
);
1236 for (; start_pfn
< end_pfn
; start_pfn
++) {
1237 if (pfn_valid(start_pfn
)) {
1238 struct page
*page
= pfn_to_page(start_pfn
);
1240 init_reserved_page(start_pfn
);
1242 /* Avoid false-positive PageTail() */
1243 INIT_LIST_HEAD(&page
->lru
);
1245 SetPageReserved(page
);
1250 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1252 unsigned long flags
;
1254 unsigned long pfn
= page_to_pfn(page
);
1256 if (!free_pages_prepare(page
, order
, true))
1259 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1260 local_irq_save(flags
);
1261 __count_vm_events(PGFREE
, 1 << order
);
1262 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1263 local_irq_restore(flags
);
1266 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1268 unsigned int nr_pages
= 1 << order
;
1269 struct page
*p
= page
;
1273 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1275 __ClearPageReserved(p
);
1276 set_page_count(p
, 0);
1278 __ClearPageReserved(p
);
1279 set_page_count(p
, 0);
1281 page_zone(page
)->managed_pages
+= nr_pages
;
1282 set_page_refcounted(page
);
1283 __free_pages(page
, order
);
1286 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1287 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1289 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1291 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1293 static DEFINE_SPINLOCK(early_pfn_lock
);
1296 spin_lock(&early_pfn_lock
);
1297 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1299 nid
= first_online_node
;
1300 spin_unlock(&early_pfn_lock
);
1306 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1307 static inline bool __meminit __maybe_unused
1308 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1309 struct mminit_pfnnid_cache
*state
)
1313 nid
= __early_pfn_to_nid(pfn
, state
);
1314 if (nid
>= 0 && nid
!= node
)
1319 /* Only safe to use early in boot when initialisation is single-threaded */
1320 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1322 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1327 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1331 static inline bool __meminit __maybe_unused
1332 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1333 struct mminit_pfnnid_cache
*state
)
1340 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1343 if (early_page_uninitialised(pfn
))
1345 return __free_pages_boot_core(page
, order
);
1349 * Check that the whole (or subset of) a pageblock given by the interval of
1350 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1351 * with the migration of free compaction scanner. The scanners then need to
1352 * use only pfn_valid_within() check for arches that allow holes within
1355 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1357 * It's possible on some configurations to have a setup like node0 node1 node0
1358 * i.e. it's possible that all pages within a zones range of pages do not
1359 * belong to a single zone. We assume that a border between node0 and node1
1360 * can occur within a single pageblock, but not a node0 node1 node0
1361 * interleaving within a single pageblock. It is therefore sufficient to check
1362 * the first and last page of a pageblock and avoid checking each individual
1363 * page in a pageblock.
1365 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1366 unsigned long end_pfn
, struct zone
*zone
)
1368 struct page
*start_page
;
1369 struct page
*end_page
;
1371 /* end_pfn is one past the range we are checking */
1374 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1377 start_page
= pfn_to_online_page(start_pfn
);
1381 if (page_zone(start_page
) != zone
)
1384 end_page
= pfn_to_page(end_pfn
);
1386 /* This gives a shorter code than deriving page_zone(end_page) */
1387 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1393 void set_zone_contiguous(struct zone
*zone
)
1395 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1396 unsigned long block_end_pfn
;
1398 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1399 for (; block_start_pfn
< zone_end_pfn(zone
);
1400 block_start_pfn
= block_end_pfn
,
1401 block_end_pfn
+= pageblock_nr_pages
) {
1403 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1405 if (!__pageblock_pfn_to_page(block_start_pfn
,
1406 block_end_pfn
, zone
))
1410 /* We confirm that there is no hole */
1411 zone
->contiguous
= true;
1414 void clear_zone_contiguous(struct zone
*zone
)
1416 zone
->contiguous
= false;
1419 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1420 static void __init
deferred_free_range(struct page
*page
,
1421 unsigned long pfn
, int nr_pages
)
1428 /* Free a large naturally-aligned chunk if possible */
1429 if (nr_pages
== pageblock_nr_pages
&&
1430 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1431 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1432 __free_pages_boot_core(page
, pageblock_order
);
1436 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1437 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1438 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1439 __free_pages_boot_core(page
, 0);
1443 /* Completion tracking for deferred_init_memmap() threads */
1444 static atomic_t pgdat_init_n_undone __initdata
;
1445 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1447 static inline void __init
pgdat_init_report_one_done(void)
1449 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1450 complete(&pgdat_init_all_done_comp
);
1453 /* Initialise remaining memory on a node */
1454 static int __init
deferred_init_memmap(void *data
)
1456 pg_data_t
*pgdat
= data
;
1457 int nid
= pgdat
->node_id
;
1458 struct mminit_pfnnid_cache nid_init_state
= { };
1459 unsigned long start
= jiffies
;
1460 unsigned long nr_pages
= 0;
1461 unsigned long walk_start
, walk_end
;
1464 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1465 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1467 if (first_init_pfn
== ULONG_MAX
) {
1468 pgdat_init_report_one_done();
1472 /* Bind memory initialisation thread to a local node if possible */
1473 if (!cpumask_empty(cpumask
))
1474 set_cpus_allowed_ptr(current
, cpumask
);
1476 /* Sanity check boundaries */
1477 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1478 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1479 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1481 /* Only the highest zone is deferred so find it */
1482 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1483 zone
= pgdat
->node_zones
+ zid
;
1484 if (first_init_pfn
< zone_end_pfn(zone
))
1488 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1489 unsigned long pfn
, end_pfn
;
1490 struct page
*page
= NULL
;
1491 struct page
*free_base_page
= NULL
;
1492 unsigned long free_base_pfn
= 0;
1495 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1496 pfn
= first_init_pfn
;
1497 if (pfn
< walk_start
)
1499 if (pfn
< zone
->zone_start_pfn
)
1500 pfn
= zone
->zone_start_pfn
;
1502 for (; pfn
< end_pfn
; pfn
++) {
1503 if (!pfn_valid_within(pfn
))
1507 * Ensure pfn_valid is checked every
1508 * pageblock_nr_pages for memory holes
1510 if ((pfn
& (pageblock_nr_pages
- 1)) == 0) {
1511 if (!pfn_valid(pfn
)) {
1517 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1522 /* Minimise pfn page lookups and scheduler checks */
1523 if (page
&& (pfn
& (pageblock_nr_pages
- 1)) != 0) {
1526 nr_pages
+= nr_to_free
;
1527 deferred_free_range(free_base_page
,
1528 free_base_pfn
, nr_to_free
);
1529 free_base_page
= NULL
;
1530 free_base_pfn
= nr_to_free
= 0;
1532 page
= pfn_to_page(pfn
);
1537 VM_BUG_ON(page_zone(page
) != zone
);
1541 __init_single_page(page
, pfn
, zid
, nid
);
1542 if (!free_base_page
) {
1543 free_base_page
= page
;
1544 free_base_pfn
= pfn
;
1549 /* Where possible, batch up pages for a single free */
1552 /* Free the current block of pages to allocator */
1553 nr_pages
+= nr_to_free
;
1554 deferred_free_range(free_base_page
, free_base_pfn
,
1556 free_base_page
= NULL
;
1557 free_base_pfn
= nr_to_free
= 0;
1559 /* Free the last block of pages to allocator */
1560 nr_pages
+= nr_to_free
;
1561 deferred_free_range(free_base_page
, free_base_pfn
, nr_to_free
);
1563 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1566 /* Sanity check that the next zone really is unpopulated */
1567 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1569 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1570 jiffies_to_msecs(jiffies
- start
));
1572 pgdat_init_report_one_done();
1575 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1577 void __init
page_alloc_init_late(void)
1581 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1584 /* There will be num_node_state(N_MEMORY) threads */
1585 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1586 for_each_node_state(nid
, N_MEMORY
) {
1587 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1590 /* Block until all are initialised */
1591 wait_for_completion(&pgdat_init_all_done_comp
);
1593 /* Reinit limits that are based on free pages after the kernel is up */
1594 files_maxfiles_init();
1596 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1597 /* Discard memblock private memory */
1601 for_each_populated_zone(zone
)
1602 set_zone_contiguous(zone
);
1606 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1607 void __init
init_cma_reserved_pageblock(struct page
*page
)
1609 unsigned i
= pageblock_nr_pages
;
1610 struct page
*p
= page
;
1613 __ClearPageReserved(p
);
1614 set_page_count(p
, 0);
1617 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1619 if (pageblock_order
>= MAX_ORDER
) {
1620 i
= pageblock_nr_pages
;
1623 set_page_refcounted(p
);
1624 __free_pages(p
, MAX_ORDER
- 1);
1625 p
+= MAX_ORDER_NR_PAGES
;
1626 } while (i
-= MAX_ORDER_NR_PAGES
);
1628 set_page_refcounted(page
);
1629 __free_pages(page
, pageblock_order
);
1632 adjust_managed_page_count(page
, pageblock_nr_pages
);
1637 * The order of subdivision here is critical for the IO subsystem.
1638 * Please do not alter this order without good reasons and regression
1639 * testing. Specifically, as large blocks of memory are subdivided,
1640 * the order in which smaller blocks are delivered depends on the order
1641 * they're subdivided in this function. This is the primary factor
1642 * influencing the order in which pages are delivered to the IO
1643 * subsystem according to empirical testing, and this is also justified
1644 * by considering the behavior of a buddy system containing a single
1645 * large block of memory acted on by a series of small allocations.
1646 * This behavior is a critical factor in sglist merging's success.
1650 static inline void expand(struct zone
*zone
, struct page
*page
,
1651 int low
, int high
, struct free_area
*area
,
1654 unsigned long size
= 1 << high
;
1656 while (high
> low
) {
1660 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1663 * Mark as guard pages (or page), that will allow to
1664 * merge back to allocator when buddy will be freed.
1665 * Corresponding page table entries will not be touched,
1666 * pages will stay not present in virtual address space
1668 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1671 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1673 set_page_order(&page
[size
], high
);
1677 static void check_new_page_bad(struct page
*page
)
1679 const char *bad_reason
= NULL
;
1680 unsigned long bad_flags
= 0;
1682 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1683 bad_reason
= "nonzero mapcount";
1684 if (unlikely(page
->mapping
!= NULL
))
1685 bad_reason
= "non-NULL mapping";
1686 if (unlikely(page_ref_count(page
) != 0))
1687 bad_reason
= "nonzero _count";
1688 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1689 bad_reason
= "HWPoisoned (hardware-corrupted)";
1690 bad_flags
= __PG_HWPOISON
;
1691 /* Don't complain about hwpoisoned pages */
1692 page_mapcount_reset(page
); /* remove PageBuddy */
1695 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1696 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1697 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1700 if (unlikely(page
->mem_cgroup
))
1701 bad_reason
= "page still charged to cgroup";
1703 bad_page(page
, bad_reason
, bad_flags
);
1707 * This page is about to be returned from the page allocator
1709 static inline int check_new_page(struct page
*page
)
1711 if (likely(page_expected_state(page
,
1712 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1715 check_new_page_bad(page
);
1719 static inline bool free_pages_prezeroed(void)
1721 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1722 page_poisoning_enabled();
1725 #ifdef CONFIG_DEBUG_VM
1726 static bool check_pcp_refill(struct page
*page
)
1731 static bool check_new_pcp(struct page
*page
)
1733 return check_new_page(page
);
1736 static bool check_pcp_refill(struct page
*page
)
1738 return check_new_page(page
);
1740 static bool check_new_pcp(struct page
*page
)
1744 #endif /* CONFIG_DEBUG_VM */
1746 static bool check_new_pages(struct page
*page
, unsigned int order
)
1749 for (i
= 0; i
< (1 << order
); i
++) {
1750 struct page
*p
= page
+ i
;
1752 if (unlikely(check_new_page(p
)))
1759 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1762 set_page_private(page
, 0);
1763 set_page_refcounted(page
);
1765 arch_alloc_page(page
, order
);
1766 kernel_map_pages(page
, 1 << order
, 1);
1767 kasan_alloc_pages(page
, order
);
1768 kernel_poison_pages(page
, 1 << order
, 1);
1769 set_page_owner(page
, order
, gfp_flags
);
1772 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1773 unsigned int alloc_flags
)
1777 post_alloc_hook(page
, order
, gfp_flags
);
1779 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1780 for (i
= 0; i
< (1 << order
); i
++)
1781 clear_highpage(page
+ i
);
1783 if (order
&& (gfp_flags
& __GFP_COMP
))
1784 prep_compound_page(page
, order
);
1787 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1788 * allocate the page. The expectation is that the caller is taking
1789 * steps that will free more memory. The caller should avoid the page
1790 * being used for !PFMEMALLOC purposes.
1792 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1793 set_page_pfmemalloc(page
);
1795 clear_page_pfmemalloc(page
);
1799 * Go through the free lists for the given migratetype and remove
1800 * the smallest available page from the freelists
1803 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1806 unsigned int current_order
;
1807 struct free_area
*area
;
1810 /* Find a page of the appropriate size in the preferred list */
1811 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1812 area
= &(zone
->free_area
[current_order
]);
1813 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1817 list_del(&page
->lru
);
1818 rmv_page_order(page
);
1820 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1821 set_pcppage_migratetype(page
, migratetype
);
1830 * This array describes the order lists are fallen back to when
1831 * the free lists for the desirable migrate type are depleted
1833 static int fallbacks
[MIGRATE_TYPES
][4] = {
1834 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1835 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1836 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1838 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1840 #ifdef CONFIG_MEMORY_ISOLATION
1841 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1846 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1849 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1852 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1853 unsigned int order
) { return NULL
; }
1857 * Move the free pages in a range to the free lists of the requested type.
1858 * Note that start_page and end_pages are not aligned on a pageblock
1859 * boundary. If alignment is required, use move_freepages_block()
1861 static int move_freepages(struct zone
*zone
,
1862 struct page
*start_page
, struct page
*end_page
,
1863 int migratetype
, int *num_movable
)
1867 int pages_moved
= 0;
1869 #ifndef CONFIG_HOLES_IN_ZONE
1871 * page_zone is not safe to call in this context when
1872 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1873 * anyway as we check zone boundaries in move_freepages_block().
1874 * Remove at a later date when no bug reports exist related to
1875 * grouping pages by mobility
1877 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1883 for (page
= start_page
; page
<= end_page
;) {
1884 if (!pfn_valid_within(page_to_pfn(page
))) {
1889 /* Make sure we are not inadvertently changing nodes */
1890 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1892 if (!PageBuddy(page
)) {
1894 * We assume that pages that could be isolated for
1895 * migration are movable. But we don't actually try
1896 * isolating, as that would be expensive.
1899 (PageLRU(page
) || __PageMovable(page
)))
1906 order
= page_order(page
);
1907 list_move(&page
->lru
,
1908 &zone
->free_area
[order
].free_list
[migratetype
]);
1910 pages_moved
+= 1 << order
;
1916 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1917 int migratetype
, int *num_movable
)
1919 unsigned long start_pfn
, end_pfn
;
1920 struct page
*start_page
, *end_page
;
1922 start_pfn
= page_to_pfn(page
);
1923 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1924 start_page
= pfn_to_page(start_pfn
);
1925 end_page
= start_page
+ pageblock_nr_pages
- 1;
1926 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1928 /* Do not cross zone boundaries */
1929 if (!zone_spans_pfn(zone
, start_pfn
))
1931 if (!zone_spans_pfn(zone
, end_pfn
))
1934 return move_freepages(zone
, start_page
, end_page
, migratetype
,
1938 static void change_pageblock_range(struct page
*pageblock_page
,
1939 int start_order
, int migratetype
)
1941 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1943 while (nr_pageblocks
--) {
1944 set_pageblock_migratetype(pageblock_page
, migratetype
);
1945 pageblock_page
+= pageblock_nr_pages
;
1950 * When we are falling back to another migratetype during allocation, try to
1951 * steal extra free pages from the same pageblocks to satisfy further
1952 * allocations, instead of polluting multiple pageblocks.
1954 * If we are stealing a relatively large buddy page, it is likely there will
1955 * be more free pages in the pageblock, so try to steal them all. For
1956 * reclaimable and unmovable allocations, we steal regardless of page size,
1957 * as fragmentation caused by those allocations polluting movable pageblocks
1958 * is worse than movable allocations stealing from unmovable and reclaimable
1961 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1964 * Leaving this order check is intended, although there is
1965 * relaxed order check in next check. The reason is that
1966 * we can actually steal whole pageblock if this condition met,
1967 * but, below check doesn't guarantee it and that is just heuristic
1968 * so could be changed anytime.
1970 if (order
>= pageblock_order
)
1973 if (order
>= pageblock_order
/ 2 ||
1974 start_mt
== MIGRATE_RECLAIMABLE
||
1975 start_mt
== MIGRATE_UNMOVABLE
||
1976 page_group_by_mobility_disabled
)
1983 * This function implements actual steal behaviour. If order is large enough,
1984 * we can steal whole pageblock. If not, we first move freepages in this
1985 * pageblock to our migratetype and determine how many already-allocated pages
1986 * are there in the pageblock with a compatible migratetype. If at least half
1987 * of pages are free or compatible, we can change migratetype of the pageblock
1988 * itself, so pages freed in the future will be put on the correct free list.
1990 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1991 int start_type
, bool whole_block
)
1993 unsigned int current_order
= page_order(page
);
1994 struct free_area
*area
;
1995 int free_pages
, movable_pages
, alike_pages
;
1998 old_block_type
= get_pageblock_migratetype(page
);
2001 * This can happen due to races and we want to prevent broken
2002 * highatomic accounting.
2004 if (is_migrate_highatomic(old_block_type
))
2007 /* Take ownership for orders >= pageblock_order */
2008 if (current_order
>= pageblock_order
) {
2009 change_pageblock_range(page
, current_order
, start_type
);
2013 /* We are not allowed to try stealing from the whole block */
2017 free_pages
= move_freepages_block(zone
, page
, start_type
,
2020 * Determine how many pages are compatible with our allocation.
2021 * For movable allocation, it's the number of movable pages which
2022 * we just obtained. For other types it's a bit more tricky.
2024 if (start_type
== MIGRATE_MOVABLE
) {
2025 alike_pages
= movable_pages
;
2028 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2029 * to MOVABLE pageblock, consider all non-movable pages as
2030 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2031 * vice versa, be conservative since we can't distinguish the
2032 * exact migratetype of non-movable pages.
2034 if (old_block_type
== MIGRATE_MOVABLE
)
2035 alike_pages
= pageblock_nr_pages
2036 - (free_pages
+ movable_pages
);
2041 /* moving whole block can fail due to zone boundary conditions */
2046 * If a sufficient number of pages in the block are either free or of
2047 * comparable migratability as our allocation, claim the whole block.
2049 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2050 page_group_by_mobility_disabled
)
2051 set_pageblock_migratetype(page
, start_type
);
2056 area
= &zone
->free_area
[current_order
];
2057 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2061 * Check whether there is a suitable fallback freepage with requested order.
2062 * If only_stealable is true, this function returns fallback_mt only if
2063 * we can steal other freepages all together. This would help to reduce
2064 * fragmentation due to mixed migratetype pages in one pageblock.
2066 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2067 int migratetype
, bool only_stealable
, bool *can_steal
)
2072 if (area
->nr_free
== 0)
2077 fallback_mt
= fallbacks
[migratetype
][i
];
2078 if (fallback_mt
== MIGRATE_TYPES
)
2081 if (list_empty(&area
->free_list
[fallback_mt
]))
2084 if (can_steal_fallback(order
, migratetype
))
2087 if (!only_stealable
)
2098 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2099 * there are no empty page blocks that contain a page with a suitable order
2101 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2102 unsigned int alloc_order
)
2105 unsigned long max_managed
, flags
;
2108 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2109 * Check is race-prone but harmless.
2111 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2112 if (zone
->nr_reserved_highatomic
>= max_managed
)
2115 spin_lock_irqsave(&zone
->lock
, flags
);
2117 /* Recheck the nr_reserved_highatomic limit under the lock */
2118 if (zone
->nr_reserved_highatomic
>= max_managed
)
2122 mt
= get_pageblock_migratetype(page
);
2123 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2124 && !is_migrate_cma(mt
)) {
2125 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2126 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2127 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2131 spin_unlock_irqrestore(&zone
->lock
, flags
);
2135 * Used when an allocation is about to fail under memory pressure. This
2136 * potentially hurts the reliability of high-order allocations when under
2137 * intense memory pressure but failed atomic allocations should be easier
2138 * to recover from than an OOM.
2140 * If @force is true, try to unreserve a pageblock even though highatomic
2141 * pageblock is exhausted.
2143 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2146 struct zonelist
*zonelist
= ac
->zonelist
;
2147 unsigned long flags
;
2154 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2157 * Preserve at least one pageblock unless memory pressure
2160 if (!force
&& zone
->nr_reserved_highatomic
<=
2164 spin_lock_irqsave(&zone
->lock
, flags
);
2165 for (order
= 0; order
< MAX_ORDER
; order
++) {
2166 struct free_area
*area
= &(zone
->free_area
[order
]);
2168 page
= list_first_entry_or_null(
2169 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2175 * In page freeing path, migratetype change is racy so
2176 * we can counter several free pages in a pageblock
2177 * in this loop althoug we changed the pageblock type
2178 * from highatomic to ac->migratetype. So we should
2179 * adjust the count once.
2181 if (is_migrate_highatomic_page(page
)) {
2183 * It should never happen but changes to
2184 * locking could inadvertently allow a per-cpu
2185 * drain to add pages to MIGRATE_HIGHATOMIC
2186 * while unreserving so be safe and watch for
2189 zone
->nr_reserved_highatomic
-= min(
2191 zone
->nr_reserved_highatomic
);
2195 * Convert to ac->migratetype and avoid the normal
2196 * pageblock stealing heuristics. Minimally, the caller
2197 * is doing the work and needs the pages. More
2198 * importantly, if the block was always converted to
2199 * MIGRATE_UNMOVABLE or another type then the number
2200 * of pageblocks that cannot be completely freed
2203 set_pageblock_migratetype(page
, ac
->migratetype
);
2204 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2207 spin_unlock_irqrestore(&zone
->lock
, flags
);
2211 spin_unlock_irqrestore(&zone
->lock
, flags
);
2218 * Try finding a free buddy page on the fallback list and put it on the free
2219 * list of requested migratetype, possibly along with other pages from the same
2220 * block, depending on fragmentation avoidance heuristics. Returns true if
2221 * fallback was found so that __rmqueue_smallest() can grab it.
2223 * The use of signed ints for order and current_order is a deliberate
2224 * deviation from the rest of this file, to make the for loop
2225 * condition simpler.
2228 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2230 struct free_area
*area
;
2237 * Find the largest available free page in the other list. This roughly
2238 * approximates finding the pageblock with the most free pages, which
2239 * would be too costly to do exactly.
2241 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2243 area
= &(zone
->free_area
[current_order
]);
2244 fallback_mt
= find_suitable_fallback(area
, current_order
,
2245 start_migratetype
, false, &can_steal
);
2246 if (fallback_mt
== -1)
2250 * We cannot steal all free pages from the pageblock and the
2251 * requested migratetype is movable. In that case it's better to
2252 * steal and split the smallest available page instead of the
2253 * largest available page, because even if the next movable
2254 * allocation falls back into a different pageblock than this
2255 * one, it won't cause permanent fragmentation.
2257 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2258 && current_order
> order
)
2267 for (current_order
= order
; current_order
< MAX_ORDER
;
2269 area
= &(zone
->free_area
[current_order
]);
2270 fallback_mt
= find_suitable_fallback(area
, current_order
,
2271 start_migratetype
, false, &can_steal
);
2272 if (fallback_mt
!= -1)
2277 * This should not happen - we already found a suitable fallback
2278 * when looking for the largest page.
2280 VM_BUG_ON(current_order
== MAX_ORDER
);
2283 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2286 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2288 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2289 start_migratetype
, fallback_mt
);
2296 * Do the hard work of removing an element from the buddy allocator.
2297 * Call me with the zone->lock already held.
2299 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2305 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2306 if (unlikely(!page
)) {
2307 if (migratetype
== MIGRATE_MOVABLE
)
2308 page
= __rmqueue_cma_fallback(zone
, order
);
2310 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2314 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2319 * Obtain a specified number of elements from the buddy allocator, all under
2320 * a single hold of the lock, for efficiency. Add them to the supplied list.
2321 * Returns the number of new pages which were placed at *list.
2323 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2324 unsigned long count
, struct list_head
*list
,
2325 int migratetype
, bool cold
)
2329 spin_lock(&zone
->lock
);
2330 for (i
= 0; i
< count
; ++i
) {
2331 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2332 if (unlikely(page
== NULL
))
2335 if (unlikely(check_pcp_refill(page
)))
2339 * Split buddy pages returned by expand() are received here
2340 * in physical page order. The page is added to the callers and
2341 * list and the list head then moves forward. From the callers
2342 * perspective, the linked list is ordered by page number in
2343 * some conditions. This is useful for IO devices that can
2344 * merge IO requests if the physical pages are ordered
2348 list_add(&page
->lru
, list
);
2350 list_add_tail(&page
->lru
, list
);
2353 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2354 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2359 * i pages were removed from the buddy list even if some leak due
2360 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2361 * on i. Do not confuse with 'alloced' which is the number of
2362 * pages added to the pcp list.
2364 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2365 spin_unlock(&zone
->lock
);
2371 * Called from the vmstat counter updater to drain pagesets of this
2372 * currently executing processor on remote nodes after they have
2375 * Note that this function must be called with the thread pinned to
2376 * a single processor.
2378 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2380 unsigned long flags
;
2381 int to_drain
, batch
;
2383 local_irq_save(flags
);
2384 batch
= READ_ONCE(pcp
->batch
);
2385 to_drain
= min(pcp
->count
, batch
);
2387 free_pcppages_bulk(zone
, to_drain
, pcp
);
2388 pcp
->count
-= to_drain
;
2390 local_irq_restore(flags
);
2395 * Drain pcplists of the indicated processor and zone.
2397 * The processor must either be the current processor and the
2398 * thread pinned to the current processor or a processor that
2401 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2403 unsigned long flags
;
2404 struct per_cpu_pageset
*pset
;
2405 struct per_cpu_pages
*pcp
;
2407 local_irq_save(flags
);
2408 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2412 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2415 local_irq_restore(flags
);
2419 * Drain pcplists of all zones on the indicated processor.
2421 * The processor must either be the current processor and the
2422 * thread pinned to the current processor or a processor that
2425 static void drain_pages(unsigned int cpu
)
2429 for_each_populated_zone(zone
) {
2430 drain_pages_zone(cpu
, zone
);
2435 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2437 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2438 * the single zone's pages.
2440 void drain_local_pages(struct zone
*zone
)
2442 int cpu
= smp_processor_id();
2445 drain_pages_zone(cpu
, zone
);
2450 static void drain_local_pages_wq(struct work_struct
*work
)
2453 * drain_all_pages doesn't use proper cpu hotplug protection so
2454 * we can race with cpu offline when the WQ can move this from
2455 * a cpu pinned worker to an unbound one. We can operate on a different
2456 * cpu which is allright but we also have to make sure to not move to
2460 drain_local_pages(NULL
);
2465 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2467 * When zone parameter is non-NULL, spill just the single zone's pages.
2469 * Note that this can be extremely slow as the draining happens in a workqueue.
2471 void drain_all_pages(struct zone
*zone
)
2476 * Allocate in the BSS so we wont require allocation in
2477 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2479 static cpumask_t cpus_with_pcps
;
2482 * Make sure nobody triggers this path before mm_percpu_wq is fully
2485 if (WARN_ON_ONCE(!mm_percpu_wq
))
2489 * Do not drain if one is already in progress unless it's specific to
2490 * a zone. Such callers are primarily CMA and memory hotplug and need
2491 * the drain to be complete when the call returns.
2493 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2496 mutex_lock(&pcpu_drain_mutex
);
2500 * We don't care about racing with CPU hotplug event
2501 * as offline notification will cause the notified
2502 * cpu to drain that CPU pcps and on_each_cpu_mask
2503 * disables preemption as part of its processing
2505 for_each_online_cpu(cpu
) {
2506 struct per_cpu_pageset
*pcp
;
2508 bool has_pcps
= false;
2511 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2515 for_each_populated_zone(z
) {
2516 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2517 if (pcp
->pcp
.count
) {
2525 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2527 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2530 for_each_cpu(cpu
, &cpus_with_pcps
) {
2531 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2532 INIT_WORK(work
, drain_local_pages_wq
);
2533 queue_work_on(cpu
, mm_percpu_wq
, work
);
2535 for_each_cpu(cpu
, &cpus_with_pcps
)
2536 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2538 mutex_unlock(&pcpu_drain_mutex
);
2541 #ifdef CONFIG_HIBERNATION
2544 * Touch the watchdog for every WD_PAGE_COUNT pages.
2546 #define WD_PAGE_COUNT (128*1024)
2548 void mark_free_pages(struct zone
*zone
)
2550 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2551 unsigned long flags
;
2552 unsigned int order
, t
;
2555 if (zone_is_empty(zone
))
2558 spin_lock_irqsave(&zone
->lock
, flags
);
2560 max_zone_pfn
= zone_end_pfn(zone
);
2561 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2562 if (pfn_valid(pfn
)) {
2563 page
= pfn_to_page(pfn
);
2565 if (!--page_count
) {
2566 touch_nmi_watchdog();
2567 page_count
= WD_PAGE_COUNT
;
2570 if (page_zone(page
) != zone
)
2573 if (!swsusp_page_is_forbidden(page
))
2574 swsusp_unset_page_free(page
);
2577 for_each_migratetype_order(order
, t
) {
2578 list_for_each_entry(page
,
2579 &zone
->free_area
[order
].free_list
[t
], lru
) {
2582 pfn
= page_to_pfn(page
);
2583 for (i
= 0; i
< (1UL << order
); i
++) {
2584 if (!--page_count
) {
2585 touch_nmi_watchdog();
2586 page_count
= WD_PAGE_COUNT
;
2588 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2592 spin_unlock_irqrestore(&zone
->lock
, flags
);
2594 #endif /* CONFIG_PM */
2597 * Free a 0-order page
2598 * cold == true ? free a cold page : free a hot page
2600 void free_hot_cold_page(struct page
*page
, bool cold
)
2602 struct zone
*zone
= page_zone(page
);
2603 struct per_cpu_pages
*pcp
;
2604 unsigned long flags
;
2605 unsigned long pfn
= page_to_pfn(page
);
2608 if (!free_pcp_prepare(page
))
2611 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2612 set_pcppage_migratetype(page
, migratetype
);
2613 local_irq_save(flags
);
2614 __count_vm_event(PGFREE
);
2617 * We only track unmovable, reclaimable and movable on pcp lists.
2618 * Free ISOLATE pages back to the allocator because they are being
2619 * offlined but treat HIGHATOMIC as movable pages so we can get those
2620 * areas back if necessary. Otherwise, we may have to free
2621 * excessively into the page allocator
2623 if (migratetype
>= MIGRATE_PCPTYPES
) {
2624 if (unlikely(is_migrate_isolate(migratetype
))) {
2625 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2628 migratetype
= MIGRATE_MOVABLE
;
2631 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2633 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2635 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2637 if (pcp
->count
>= pcp
->high
) {
2638 unsigned long batch
= READ_ONCE(pcp
->batch
);
2639 free_pcppages_bulk(zone
, batch
, pcp
);
2640 pcp
->count
-= batch
;
2644 local_irq_restore(flags
);
2648 * Free a list of 0-order pages
2650 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2652 struct page
*page
, *next
;
2654 list_for_each_entry_safe(page
, next
, list
, lru
) {
2655 trace_mm_page_free_batched(page
, cold
);
2656 free_hot_cold_page(page
, cold
);
2661 * split_page takes a non-compound higher-order page, and splits it into
2662 * n (1<<order) sub-pages: page[0..n]
2663 * Each sub-page must be freed individually.
2665 * Note: this is probably too low level an operation for use in drivers.
2666 * Please consult with lkml before using this in your driver.
2668 void split_page(struct page
*page
, unsigned int order
)
2672 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2673 VM_BUG_ON_PAGE(!page_count(page
), page
);
2675 for (i
= 1; i
< (1 << order
); i
++)
2676 set_page_refcounted(page
+ i
);
2677 split_page_owner(page
, order
);
2679 EXPORT_SYMBOL_GPL(split_page
);
2681 int __isolate_free_page(struct page
*page
, unsigned int order
)
2683 unsigned long watermark
;
2687 BUG_ON(!PageBuddy(page
));
2689 zone
= page_zone(page
);
2690 mt
= get_pageblock_migratetype(page
);
2692 if (!is_migrate_isolate(mt
)) {
2694 * Obey watermarks as if the page was being allocated. We can
2695 * emulate a high-order watermark check with a raised order-0
2696 * watermark, because we already know our high-order page
2699 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2700 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2703 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2706 /* Remove page from free list */
2707 list_del(&page
->lru
);
2708 zone
->free_area
[order
].nr_free
--;
2709 rmv_page_order(page
);
2712 * Set the pageblock if the isolated page is at least half of a
2715 if (order
>= pageblock_order
- 1) {
2716 struct page
*endpage
= page
+ (1 << order
) - 1;
2717 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2718 int mt
= get_pageblock_migratetype(page
);
2719 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2720 && !is_migrate_highatomic(mt
))
2721 set_pageblock_migratetype(page
,
2727 return 1UL << order
;
2731 * Update NUMA hit/miss statistics
2733 * Must be called with interrupts disabled.
2735 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2738 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2740 if (z
->node
!= numa_node_id())
2741 local_stat
= NUMA_OTHER
;
2743 if (z
->node
== preferred_zone
->node
)
2744 __inc_numa_state(z
, NUMA_HIT
);
2746 __inc_numa_state(z
, NUMA_MISS
);
2747 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
2749 __inc_numa_state(z
, local_stat
);
2753 /* Remove page from the per-cpu list, caller must protect the list */
2754 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2755 bool cold
, struct per_cpu_pages
*pcp
,
2756 struct list_head
*list
)
2761 if (list_empty(list
)) {
2762 pcp
->count
+= rmqueue_bulk(zone
, 0,
2765 if (unlikely(list_empty(list
)))
2770 page
= list_last_entry(list
, struct page
, lru
);
2772 page
= list_first_entry(list
, struct page
, lru
);
2774 list_del(&page
->lru
);
2776 } while (check_new_pcp(page
));
2781 /* Lock and remove page from the per-cpu list */
2782 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2783 struct zone
*zone
, unsigned int order
,
2784 gfp_t gfp_flags
, int migratetype
)
2786 struct per_cpu_pages
*pcp
;
2787 struct list_head
*list
;
2788 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2790 unsigned long flags
;
2792 local_irq_save(flags
);
2793 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2794 list
= &pcp
->lists
[migratetype
];
2795 page
= __rmqueue_pcplist(zone
, migratetype
, cold
, pcp
, list
);
2797 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2798 zone_statistics(preferred_zone
, zone
);
2800 local_irq_restore(flags
);
2805 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2808 struct page
*rmqueue(struct zone
*preferred_zone
,
2809 struct zone
*zone
, unsigned int order
,
2810 gfp_t gfp_flags
, unsigned int alloc_flags
,
2813 unsigned long flags
;
2816 if (likely(order
== 0)) {
2817 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2818 gfp_flags
, migratetype
);
2823 * We most definitely don't want callers attempting to
2824 * allocate greater than order-1 page units with __GFP_NOFAIL.
2826 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2827 spin_lock_irqsave(&zone
->lock
, flags
);
2831 if (alloc_flags
& ALLOC_HARDER
) {
2832 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2834 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2837 page
= __rmqueue(zone
, order
, migratetype
);
2838 } while (page
&& check_new_pages(page
, order
));
2839 spin_unlock(&zone
->lock
);
2842 __mod_zone_freepage_state(zone
, -(1 << order
),
2843 get_pcppage_migratetype(page
));
2845 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2846 zone_statistics(preferred_zone
, zone
);
2847 local_irq_restore(flags
);
2850 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
2854 local_irq_restore(flags
);
2858 #ifdef CONFIG_FAIL_PAGE_ALLOC
2861 struct fault_attr attr
;
2863 bool ignore_gfp_highmem
;
2864 bool ignore_gfp_reclaim
;
2866 } fail_page_alloc
= {
2867 .attr
= FAULT_ATTR_INITIALIZER
,
2868 .ignore_gfp_reclaim
= true,
2869 .ignore_gfp_highmem
= true,
2873 static int __init
setup_fail_page_alloc(char *str
)
2875 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2877 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2879 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2881 if (order
< fail_page_alloc
.min_order
)
2883 if (gfp_mask
& __GFP_NOFAIL
)
2885 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2887 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2888 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2891 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2894 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2896 static int __init
fail_page_alloc_debugfs(void)
2898 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2901 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2902 &fail_page_alloc
.attr
);
2904 return PTR_ERR(dir
);
2906 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2907 &fail_page_alloc
.ignore_gfp_reclaim
))
2909 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2910 &fail_page_alloc
.ignore_gfp_highmem
))
2912 if (!debugfs_create_u32("min-order", mode
, dir
,
2913 &fail_page_alloc
.min_order
))
2918 debugfs_remove_recursive(dir
);
2923 late_initcall(fail_page_alloc_debugfs
);
2925 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2927 #else /* CONFIG_FAIL_PAGE_ALLOC */
2929 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2934 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2937 * Return true if free base pages are above 'mark'. For high-order checks it
2938 * will return true of the order-0 watermark is reached and there is at least
2939 * one free page of a suitable size. Checking now avoids taking the zone lock
2940 * to check in the allocation paths if no pages are free.
2942 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2943 int classzone_idx
, unsigned int alloc_flags
,
2948 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
2950 /* free_pages may go negative - that's OK */
2951 free_pages
-= (1 << order
) - 1;
2953 if (alloc_flags
& ALLOC_HIGH
)
2957 * If the caller does not have rights to ALLOC_HARDER then subtract
2958 * the high-atomic reserves. This will over-estimate the size of the
2959 * atomic reserve but it avoids a search.
2961 if (likely(!alloc_harder
)) {
2962 free_pages
-= z
->nr_reserved_highatomic
;
2965 * OOM victims can try even harder than normal ALLOC_HARDER
2966 * users on the grounds that it's definitely going to be in
2967 * the exit path shortly and free memory. Any allocation it
2968 * makes during the free path will be small and short-lived.
2970 if (alloc_flags
& ALLOC_OOM
)
2978 /* If allocation can't use CMA areas don't use free CMA pages */
2979 if (!(alloc_flags
& ALLOC_CMA
))
2980 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2984 * Check watermarks for an order-0 allocation request. If these
2985 * are not met, then a high-order request also cannot go ahead
2986 * even if a suitable page happened to be free.
2988 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2991 /* If this is an order-0 request then the watermark is fine */
2995 /* For a high-order request, check at least one suitable page is free */
2996 for (o
= order
; o
< MAX_ORDER
; o
++) {
2997 struct free_area
*area
= &z
->free_area
[o
];
3003 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3004 if (!list_empty(&area
->free_list
[mt
]))
3009 if ((alloc_flags
& ALLOC_CMA
) &&
3010 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3015 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3021 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3022 int classzone_idx
, unsigned int alloc_flags
)
3024 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3025 zone_page_state(z
, NR_FREE_PAGES
));
3028 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3029 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3031 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3035 /* If allocation can't use CMA areas don't use free CMA pages */
3036 if (!(alloc_flags
& ALLOC_CMA
))
3037 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3041 * Fast check for order-0 only. If this fails then the reserves
3042 * need to be calculated. There is a corner case where the check
3043 * passes but only the high-order atomic reserve are free. If
3044 * the caller is !atomic then it'll uselessly search the free
3045 * list. That corner case is then slower but it is harmless.
3047 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3050 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3054 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3055 unsigned long mark
, int classzone_idx
)
3057 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3059 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3060 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3062 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3067 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3069 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3072 #else /* CONFIG_NUMA */
3073 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3077 #endif /* CONFIG_NUMA */
3080 * get_page_from_freelist goes through the zonelist trying to allocate
3083 static struct page
*
3084 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3085 const struct alloc_context
*ac
)
3087 struct zoneref
*z
= ac
->preferred_zoneref
;
3089 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3092 * Scan zonelist, looking for a zone with enough free.
3093 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3095 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3100 if (cpusets_enabled() &&
3101 (alloc_flags
& ALLOC_CPUSET
) &&
3102 !__cpuset_zone_allowed(zone
, gfp_mask
))
3105 * When allocating a page cache page for writing, we
3106 * want to get it from a node that is within its dirty
3107 * limit, such that no single node holds more than its
3108 * proportional share of globally allowed dirty pages.
3109 * The dirty limits take into account the node's
3110 * lowmem reserves and high watermark so that kswapd
3111 * should be able to balance it without having to
3112 * write pages from its LRU list.
3114 * XXX: For now, allow allocations to potentially
3115 * exceed the per-node dirty limit in the slowpath
3116 * (spread_dirty_pages unset) before going into reclaim,
3117 * which is important when on a NUMA setup the allowed
3118 * nodes are together not big enough to reach the
3119 * global limit. The proper fix for these situations
3120 * will require awareness of nodes in the
3121 * dirty-throttling and the flusher threads.
3123 if (ac
->spread_dirty_pages
) {
3124 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3127 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3128 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3133 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3134 if (!zone_watermark_fast(zone
, order
, mark
,
3135 ac_classzone_idx(ac
), alloc_flags
)) {
3138 /* Checked here to keep the fast path fast */
3139 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3140 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3143 if (node_reclaim_mode
== 0 ||
3144 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3147 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3149 case NODE_RECLAIM_NOSCAN
:
3152 case NODE_RECLAIM_FULL
:
3153 /* scanned but unreclaimable */
3156 /* did we reclaim enough */
3157 if (zone_watermark_ok(zone
, order
, mark
,
3158 ac_classzone_idx(ac
), alloc_flags
))
3166 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3167 gfp_mask
, alloc_flags
, ac
->migratetype
);
3169 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3172 * If this is a high-order atomic allocation then check
3173 * if the pageblock should be reserved for the future
3175 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3176 reserve_highatomic_pageblock(page
, zone
, order
);
3186 * Large machines with many possible nodes should not always dump per-node
3187 * meminfo in irq context.
3189 static inline bool should_suppress_show_mem(void)
3194 ret
= in_interrupt();
3199 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3201 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3202 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3204 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3208 * This documents exceptions given to allocations in certain
3209 * contexts that are allowed to allocate outside current's set
3212 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3213 if (tsk_is_oom_victim(current
) ||
3214 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3215 filter
&= ~SHOW_MEM_FILTER_NODES
;
3216 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3217 filter
&= ~SHOW_MEM_FILTER_NODES
;
3219 show_mem(filter
, nodemask
);
3222 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3224 struct va_format vaf
;
3226 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3227 DEFAULT_RATELIMIT_BURST
);
3229 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3232 pr_warn("%s: ", current
->comm
);
3234 va_start(args
, fmt
);
3237 pr_cont("%pV", &vaf
);
3240 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask
, &gfp_mask
);
3242 pr_cont("%*pbl\n", nodemask_pr_args(nodemask
));
3244 pr_cont("(null)\n");
3246 cpuset_print_current_mems_allowed();
3249 warn_alloc_show_mem(gfp_mask
, nodemask
);
3252 static inline struct page
*
3253 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3254 unsigned int alloc_flags
,
3255 const struct alloc_context
*ac
)
3259 page
= get_page_from_freelist(gfp_mask
, order
,
3260 alloc_flags
|ALLOC_CPUSET
, ac
);
3262 * fallback to ignore cpuset restriction if our nodes
3266 page
= get_page_from_freelist(gfp_mask
, order
,
3272 static inline struct page
*
3273 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3274 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3276 struct oom_control oc
= {
3277 .zonelist
= ac
->zonelist
,
3278 .nodemask
= ac
->nodemask
,
3280 .gfp_mask
= gfp_mask
,
3285 *did_some_progress
= 0;
3288 * Acquire the oom lock. If that fails, somebody else is
3289 * making progress for us.
3291 if (!mutex_trylock(&oom_lock
)) {
3292 *did_some_progress
= 1;
3293 schedule_timeout_uninterruptible(1);
3298 * Go through the zonelist yet one more time, keep very high watermark
3299 * here, this is only to catch a parallel oom killing, we must fail if
3300 * we're still under heavy pressure. But make sure that this reclaim
3301 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3302 * allocation which will never fail due to oom_lock already held.
3304 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3305 ~__GFP_DIRECT_RECLAIM
, order
,
3306 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3310 /* Coredumps can quickly deplete all memory reserves */
3311 if (current
->flags
& PF_DUMPCORE
)
3313 /* The OOM killer will not help higher order allocs */
3314 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3317 * We have already exhausted all our reclaim opportunities without any
3318 * success so it is time to admit defeat. We will skip the OOM killer
3319 * because it is very likely that the caller has a more reasonable
3320 * fallback than shooting a random task.
3322 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3324 /* The OOM killer does not needlessly kill tasks for lowmem */
3325 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3327 if (pm_suspended_storage())
3330 * XXX: GFP_NOFS allocations should rather fail than rely on
3331 * other request to make a forward progress.
3332 * We are in an unfortunate situation where out_of_memory cannot
3333 * do much for this context but let's try it to at least get
3334 * access to memory reserved if the current task is killed (see
3335 * out_of_memory). Once filesystems are ready to handle allocation
3336 * failures more gracefully we should just bail out here.
3339 /* The OOM killer may not free memory on a specific node */
3340 if (gfp_mask
& __GFP_THISNODE
)
3343 /* Exhausted what can be done so it's blamo time */
3344 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3345 *did_some_progress
= 1;
3348 * Help non-failing allocations by giving them access to memory
3351 if (gfp_mask
& __GFP_NOFAIL
)
3352 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3353 ALLOC_NO_WATERMARKS
, ac
);
3356 mutex_unlock(&oom_lock
);
3361 * Maximum number of compaction retries wit a progress before OOM
3362 * killer is consider as the only way to move forward.
3364 #define MAX_COMPACT_RETRIES 16
3366 #ifdef CONFIG_COMPACTION
3367 /* Try memory compaction for high-order allocations before reclaim */
3368 static struct page
*
3369 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3370 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3371 enum compact_priority prio
, enum compact_result
*compact_result
)
3374 unsigned int noreclaim_flag
;
3379 noreclaim_flag
= memalloc_noreclaim_save();
3380 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3382 memalloc_noreclaim_restore(noreclaim_flag
);
3384 if (*compact_result
<= COMPACT_INACTIVE
)
3388 * At least in one zone compaction wasn't deferred or skipped, so let's
3389 * count a compaction stall
3391 count_vm_event(COMPACTSTALL
);
3393 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3396 struct zone
*zone
= page_zone(page
);
3398 zone
->compact_blockskip_flush
= false;
3399 compaction_defer_reset(zone
, order
, true);
3400 count_vm_event(COMPACTSUCCESS
);
3405 * It's bad if compaction run occurs and fails. The most likely reason
3406 * is that pages exist, but not enough to satisfy watermarks.
3408 count_vm_event(COMPACTFAIL
);
3416 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3417 enum compact_result compact_result
,
3418 enum compact_priority
*compact_priority
,
3419 int *compaction_retries
)
3421 int max_retries
= MAX_COMPACT_RETRIES
;
3424 int retries
= *compaction_retries
;
3425 enum compact_priority priority
= *compact_priority
;
3430 if (compaction_made_progress(compact_result
))
3431 (*compaction_retries
)++;
3434 * compaction considers all the zone as desperately out of memory
3435 * so it doesn't really make much sense to retry except when the
3436 * failure could be caused by insufficient priority
3438 if (compaction_failed(compact_result
))
3439 goto check_priority
;
3442 * make sure the compaction wasn't deferred or didn't bail out early
3443 * due to locks contention before we declare that we should give up.
3444 * But do not retry if the given zonelist is not suitable for
3447 if (compaction_withdrawn(compact_result
)) {
3448 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3453 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3454 * costly ones because they are de facto nofail and invoke OOM
3455 * killer to move on while costly can fail and users are ready
3456 * to cope with that. 1/4 retries is rather arbitrary but we
3457 * would need much more detailed feedback from compaction to
3458 * make a better decision.
3460 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3462 if (*compaction_retries
<= max_retries
) {
3468 * Make sure there are attempts at the highest priority if we exhausted
3469 * all retries or failed at the lower priorities.
3472 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3473 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3475 if (*compact_priority
> min_priority
) {
3476 (*compact_priority
)--;
3477 *compaction_retries
= 0;
3481 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3485 static inline struct page
*
3486 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3487 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3488 enum compact_priority prio
, enum compact_result
*compact_result
)
3490 *compact_result
= COMPACT_SKIPPED
;
3495 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3496 enum compact_result compact_result
,
3497 enum compact_priority
*compact_priority
,
3498 int *compaction_retries
)
3503 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3507 * There are setups with compaction disabled which would prefer to loop
3508 * inside the allocator rather than hit the oom killer prematurely.
3509 * Let's give them a good hope and keep retrying while the order-0
3510 * watermarks are OK.
3512 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3514 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3515 ac_classzone_idx(ac
), alloc_flags
))
3520 #endif /* CONFIG_COMPACTION */
3522 #ifdef CONFIG_LOCKDEP
3523 struct lockdep_map __fs_reclaim_map
=
3524 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3526 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3528 gfp_mask
= current_gfp_context(gfp_mask
);
3530 /* no reclaim without waiting on it */
3531 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3534 /* this guy won't enter reclaim */
3535 if (current
->flags
& PF_MEMALLOC
)
3538 /* We're only interested __GFP_FS allocations for now */
3539 if (!(gfp_mask
& __GFP_FS
))
3542 if (gfp_mask
& __GFP_NOLOCKDEP
)
3548 void fs_reclaim_acquire(gfp_t gfp_mask
)
3550 if (__need_fs_reclaim(gfp_mask
))
3551 lock_map_acquire(&__fs_reclaim_map
);
3553 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3555 void fs_reclaim_release(gfp_t gfp_mask
)
3557 if (__need_fs_reclaim(gfp_mask
))
3558 lock_map_release(&__fs_reclaim_map
);
3560 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3563 /* Perform direct synchronous page reclaim */
3565 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3566 const struct alloc_context
*ac
)
3568 struct reclaim_state reclaim_state
;
3570 unsigned int noreclaim_flag
;
3574 /* We now go into synchronous reclaim */
3575 cpuset_memory_pressure_bump();
3576 noreclaim_flag
= memalloc_noreclaim_save();
3577 fs_reclaim_acquire(gfp_mask
);
3578 reclaim_state
.reclaimed_slab
= 0;
3579 current
->reclaim_state
= &reclaim_state
;
3581 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3584 current
->reclaim_state
= NULL
;
3585 fs_reclaim_release(gfp_mask
);
3586 memalloc_noreclaim_restore(noreclaim_flag
);
3593 /* The really slow allocator path where we enter direct reclaim */
3594 static inline struct page
*
3595 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3596 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3597 unsigned long *did_some_progress
)
3599 struct page
*page
= NULL
;
3600 bool drained
= false;
3602 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3603 if (unlikely(!(*did_some_progress
)))
3607 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3610 * If an allocation failed after direct reclaim, it could be because
3611 * pages are pinned on the per-cpu lists or in high alloc reserves.
3612 * Shrink them them and try again
3614 if (!page
&& !drained
) {
3615 unreserve_highatomic_pageblock(ac
, false);
3616 drain_all_pages(NULL
);
3624 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3628 pg_data_t
*last_pgdat
= NULL
;
3630 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3631 ac
->high_zoneidx
, ac
->nodemask
) {
3632 if (last_pgdat
!= zone
->zone_pgdat
)
3633 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3634 last_pgdat
= zone
->zone_pgdat
;
3638 static inline unsigned int
3639 gfp_to_alloc_flags(gfp_t gfp_mask
)
3641 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3643 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3644 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3647 * The caller may dip into page reserves a bit more if the caller
3648 * cannot run direct reclaim, or if the caller has realtime scheduling
3649 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3650 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3652 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3654 if (gfp_mask
& __GFP_ATOMIC
) {
3656 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3657 * if it can't schedule.
3659 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3660 alloc_flags
|= ALLOC_HARDER
;
3662 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3663 * comment for __cpuset_node_allowed().
3665 alloc_flags
&= ~ALLOC_CPUSET
;
3666 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3667 alloc_flags
|= ALLOC_HARDER
;
3670 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3671 alloc_flags
|= ALLOC_CMA
;
3676 static bool oom_reserves_allowed(struct task_struct
*tsk
)
3678 if (!tsk_is_oom_victim(tsk
))
3682 * !MMU doesn't have oom reaper so give access to memory reserves
3683 * only to the thread with TIF_MEMDIE set
3685 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
3692 * Distinguish requests which really need access to full memory
3693 * reserves from oom victims which can live with a portion of it
3695 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
3697 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3699 if (gfp_mask
& __GFP_MEMALLOC
)
3700 return ALLOC_NO_WATERMARKS
;
3701 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3702 return ALLOC_NO_WATERMARKS
;
3703 if (!in_interrupt()) {
3704 if (current
->flags
& PF_MEMALLOC
)
3705 return ALLOC_NO_WATERMARKS
;
3706 else if (oom_reserves_allowed(current
))
3713 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3715 return !!__gfp_pfmemalloc_flags(gfp_mask
);
3719 * Checks whether it makes sense to retry the reclaim to make a forward progress
3720 * for the given allocation request.
3722 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3723 * without success, or when we couldn't even meet the watermark if we
3724 * reclaimed all remaining pages on the LRU lists.
3726 * Returns true if a retry is viable or false to enter the oom path.
3729 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3730 struct alloc_context
*ac
, int alloc_flags
,
3731 bool did_some_progress
, int *no_progress_loops
)
3737 * Costly allocations might have made a progress but this doesn't mean
3738 * their order will become available due to high fragmentation so
3739 * always increment the no progress counter for them
3741 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3742 *no_progress_loops
= 0;
3744 (*no_progress_loops
)++;
3747 * Make sure we converge to OOM if we cannot make any progress
3748 * several times in the row.
3750 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3751 /* Before OOM, exhaust highatomic_reserve */
3752 return unreserve_highatomic_pageblock(ac
, true);
3756 * Keep reclaiming pages while there is a chance this will lead
3757 * somewhere. If none of the target zones can satisfy our allocation
3758 * request even if all reclaimable pages are considered then we are
3759 * screwed and have to go OOM.
3761 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3763 unsigned long available
;
3764 unsigned long reclaimable
;
3765 unsigned long min_wmark
= min_wmark_pages(zone
);
3768 available
= reclaimable
= zone_reclaimable_pages(zone
);
3769 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3772 * Would the allocation succeed if we reclaimed all
3773 * reclaimable pages?
3775 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3776 ac_classzone_idx(ac
), alloc_flags
, available
);
3777 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3778 available
, min_wmark
, *no_progress_loops
, wmark
);
3781 * If we didn't make any progress and have a lot of
3782 * dirty + writeback pages then we should wait for
3783 * an IO to complete to slow down the reclaim and
3784 * prevent from pre mature OOM
3786 if (!did_some_progress
) {
3787 unsigned long write_pending
;
3789 write_pending
= zone_page_state_snapshot(zone
,
3790 NR_ZONE_WRITE_PENDING
);
3792 if (2 * write_pending
> reclaimable
) {
3793 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3799 * Memory allocation/reclaim might be called from a WQ
3800 * context and the current implementation of the WQ
3801 * concurrency control doesn't recognize that
3802 * a particular WQ is congested if the worker thread is
3803 * looping without ever sleeping. Therefore we have to
3804 * do a short sleep here rather than calling
3807 if (current
->flags
& PF_WQ_WORKER
)
3808 schedule_timeout_uninterruptible(1);
3820 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
3823 * It's possible that cpuset's mems_allowed and the nodemask from
3824 * mempolicy don't intersect. This should be normally dealt with by
3825 * policy_nodemask(), but it's possible to race with cpuset update in
3826 * such a way the check therein was true, and then it became false
3827 * before we got our cpuset_mems_cookie here.
3828 * This assumes that for all allocations, ac->nodemask can come only
3829 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3830 * when it does not intersect with the cpuset restrictions) or the
3831 * caller can deal with a violated nodemask.
3833 if (cpusets_enabled() && ac
->nodemask
&&
3834 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
3835 ac
->nodemask
= NULL
;
3840 * When updating a task's mems_allowed or mempolicy nodemask, it is
3841 * possible to race with parallel threads in such a way that our
3842 * allocation can fail while the mask is being updated. If we are about
3843 * to fail, check if the cpuset changed during allocation and if so,
3846 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3852 static inline struct page
*
3853 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3854 struct alloc_context
*ac
)
3856 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3857 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
3858 struct page
*page
= NULL
;
3859 unsigned int alloc_flags
;
3860 unsigned long did_some_progress
;
3861 enum compact_priority compact_priority
;
3862 enum compact_result compact_result
;
3863 int compaction_retries
;
3864 int no_progress_loops
;
3865 unsigned int cpuset_mems_cookie
;
3869 * We also sanity check to catch abuse of atomic reserves being used by
3870 * callers that are not in atomic context.
3872 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3873 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3874 gfp_mask
&= ~__GFP_ATOMIC
;
3877 compaction_retries
= 0;
3878 no_progress_loops
= 0;
3879 compact_priority
= DEF_COMPACT_PRIORITY
;
3880 cpuset_mems_cookie
= read_mems_allowed_begin();
3883 * The fast path uses conservative alloc_flags to succeed only until
3884 * kswapd needs to be woken up, and to avoid the cost of setting up
3885 * alloc_flags precisely. So we do that now.
3887 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3890 * We need to recalculate the starting point for the zonelist iterator
3891 * because we might have used different nodemask in the fast path, or
3892 * there was a cpuset modification and we are retrying - otherwise we
3893 * could end up iterating over non-eligible zones endlessly.
3895 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3896 ac
->high_zoneidx
, ac
->nodemask
);
3897 if (!ac
->preferred_zoneref
->zone
)
3900 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3901 wake_all_kswapds(order
, ac
);
3904 * The adjusted alloc_flags might result in immediate success, so try
3907 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3912 * For costly allocations, try direct compaction first, as it's likely
3913 * that we have enough base pages and don't need to reclaim. For non-
3914 * movable high-order allocations, do that as well, as compaction will
3915 * try prevent permanent fragmentation by migrating from blocks of the
3917 * Don't try this for allocations that are allowed to ignore
3918 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3920 if (can_direct_reclaim
&&
3922 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
3923 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
3924 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3926 INIT_COMPACT_PRIORITY
,
3932 * Checks for costly allocations with __GFP_NORETRY, which
3933 * includes THP page fault allocations
3935 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
3937 * If compaction is deferred for high-order allocations,
3938 * it is because sync compaction recently failed. If
3939 * this is the case and the caller requested a THP
3940 * allocation, we do not want to heavily disrupt the
3941 * system, so we fail the allocation instead of entering
3944 if (compact_result
== COMPACT_DEFERRED
)
3948 * Looks like reclaim/compaction is worth trying, but
3949 * sync compaction could be very expensive, so keep
3950 * using async compaction.
3952 compact_priority
= INIT_COMPACT_PRIORITY
;
3957 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3958 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3959 wake_all_kswapds(order
, ac
);
3961 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
3963 alloc_flags
= reserve_flags
;
3966 * Reset the zonelist iterators if memory policies can be ignored.
3967 * These allocations are high priority and system rather than user
3970 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
3971 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3972 ac
->high_zoneidx
, ac
->nodemask
);
3975 /* Attempt with potentially adjusted zonelist and alloc_flags */
3976 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3980 /* Caller is not willing to reclaim, we can't balance anything */
3981 if (!can_direct_reclaim
)
3984 /* Avoid recursion of direct reclaim */
3985 if (current
->flags
& PF_MEMALLOC
)
3988 /* Try direct reclaim and then allocating */
3989 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3990 &did_some_progress
);
3994 /* Try direct compaction and then allocating */
3995 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3996 compact_priority
, &compact_result
);
4000 /* Do not loop if specifically requested */
4001 if (gfp_mask
& __GFP_NORETRY
)
4005 * Do not retry costly high order allocations unless they are
4006 * __GFP_RETRY_MAYFAIL
4008 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4011 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4012 did_some_progress
> 0, &no_progress_loops
))
4016 * It doesn't make any sense to retry for the compaction if the order-0
4017 * reclaim is not able to make any progress because the current
4018 * implementation of the compaction depends on the sufficient amount
4019 * of free memory (see __compaction_suitable)
4021 if (did_some_progress
> 0 &&
4022 should_compact_retry(ac
, order
, alloc_flags
,
4023 compact_result
, &compact_priority
,
4024 &compaction_retries
))
4028 /* Deal with possible cpuset update races before we start OOM killing */
4029 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4032 /* Reclaim has failed us, start killing things */
4033 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4037 /* Avoid allocations with no watermarks from looping endlessly */
4038 if (tsk_is_oom_victim(current
) &&
4039 (alloc_flags
== ALLOC_OOM
||
4040 (gfp_mask
& __GFP_NOMEMALLOC
)))
4043 /* Retry as long as the OOM killer is making progress */
4044 if (did_some_progress
) {
4045 no_progress_loops
= 0;
4050 /* Deal with possible cpuset update races before we fail */
4051 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4055 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4058 if (gfp_mask
& __GFP_NOFAIL
) {
4060 * All existing users of the __GFP_NOFAIL are blockable, so warn
4061 * of any new users that actually require GFP_NOWAIT
4063 if (WARN_ON_ONCE(!can_direct_reclaim
))
4067 * PF_MEMALLOC request from this context is rather bizarre
4068 * because we cannot reclaim anything and only can loop waiting
4069 * for somebody to do a work for us
4071 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4074 * non failing costly orders are a hard requirement which we
4075 * are not prepared for much so let's warn about these users
4076 * so that we can identify them and convert them to something
4079 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4082 * Help non-failing allocations by giving them access to memory
4083 * reserves but do not use ALLOC_NO_WATERMARKS because this
4084 * could deplete whole memory reserves which would just make
4085 * the situation worse
4087 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4095 warn_alloc(gfp_mask
, ac
->nodemask
,
4096 "page allocation failure: order:%u", order
);
4101 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4102 int preferred_nid
, nodemask_t
*nodemask
,
4103 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4104 unsigned int *alloc_flags
)
4106 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4107 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4108 ac
->nodemask
= nodemask
;
4109 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4111 if (cpusets_enabled()) {
4112 *alloc_mask
|= __GFP_HARDWALL
;
4114 ac
->nodemask
= &cpuset_current_mems_allowed
;
4116 *alloc_flags
|= ALLOC_CPUSET
;
4119 fs_reclaim_acquire(gfp_mask
);
4120 fs_reclaim_release(gfp_mask
);
4122 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4124 if (should_fail_alloc_page(gfp_mask
, order
))
4127 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4128 *alloc_flags
|= ALLOC_CMA
;
4133 /* Determine whether to spread dirty pages and what the first usable zone */
4134 static inline void finalise_ac(gfp_t gfp_mask
,
4135 unsigned int order
, struct alloc_context
*ac
)
4137 /* Dirty zone balancing only done in the fast path */
4138 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4141 * The preferred zone is used for statistics but crucially it is
4142 * also used as the starting point for the zonelist iterator. It
4143 * may get reset for allocations that ignore memory policies.
4145 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4146 ac
->high_zoneidx
, ac
->nodemask
);
4150 * This is the 'heart' of the zoned buddy allocator.
4153 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4154 nodemask_t
*nodemask
)
4157 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4158 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4159 struct alloc_context ac
= { };
4162 * There are several places where we assume that the order value is sane
4163 * so bail out early if the request is out of bound.
4165 if (unlikely(order
>= MAX_ORDER
)) {
4166 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4170 gfp_mask
&= gfp_allowed_mask
;
4171 alloc_mask
= gfp_mask
;
4172 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4175 finalise_ac(gfp_mask
, order
, &ac
);
4177 /* First allocation attempt */
4178 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4183 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4184 * resp. GFP_NOIO which has to be inherited for all allocation requests
4185 * from a particular context which has been marked by
4186 * memalloc_no{fs,io}_{save,restore}.
4188 alloc_mask
= current_gfp_context(gfp_mask
);
4189 ac
.spread_dirty_pages
= false;
4192 * Restore the original nodemask if it was potentially replaced with
4193 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4195 if (unlikely(ac
.nodemask
!= nodemask
))
4196 ac
.nodemask
= nodemask
;
4198 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4201 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4202 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4203 __free_pages(page
, order
);
4207 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4211 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4214 * Common helper functions.
4216 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4221 * __get_free_pages() returns a 32-bit address, which cannot represent
4224 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
4226 page
= alloc_pages(gfp_mask
, order
);
4229 return (unsigned long) page_address(page
);
4231 EXPORT_SYMBOL(__get_free_pages
);
4233 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4235 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4237 EXPORT_SYMBOL(get_zeroed_page
);
4239 void __free_pages(struct page
*page
, unsigned int order
)
4241 if (put_page_testzero(page
)) {
4243 free_hot_cold_page(page
, false);
4245 __free_pages_ok(page
, order
);
4249 EXPORT_SYMBOL(__free_pages
);
4251 void free_pages(unsigned long addr
, unsigned int order
)
4254 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4255 __free_pages(virt_to_page((void *)addr
), order
);
4259 EXPORT_SYMBOL(free_pages
);
4263 * An arbitrary-length arbitrary-offset area of memory which resides
4264 * within a 0 or higher order page. Multiple fragments within that page
4265 * are individually refcounted, in the page's reference counter.
4267 * The page_frag functions below provide a simple allocation framework for
4268 * page fragments. This is used by the network stack and network device
4269 * drivers to provide a backing region of memory for use as either an
4270 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4272 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4275 struct page
*page
= NULL
;
4276 gfp_t gfp
= gfp_mask
;
4278 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4279 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4281 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4282 PAGE_FRAG_CACHE_MAX_ORDER
);
4283 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4285 if (unlikely(!page
))
4286 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4288 nc
->va
= page
? page_address(page
) : NULL
;
4293 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4295 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4297 if (page_ref_sub_and_test(page
, count
)) {
4298 unsigned int order
= compound_order(page
);
4301 free_hot_cold_page(page
, false);
4303 __free_pages_ok(page
, order
);
4306 EXPORT_SYMBOL(__page_frag_cache_drain
);
4308 void *page_frag_alloc(struct page_frag_cache
*nc
,
4309 unsigned int fragsz
, gfp_t gfp_mask
)
4311 unsigned int size
= PAGE_SIZE
;
4315 if (unlikely(!nc
->va
)) {
4317 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4321 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4322 /* if size can vary use size else just use PAGE_SIZE */
4325 /* Even if we own the page, we do not use atomic_set().
4326 * This would break get_page_unless_zero() users.
4328 page_ref_add(page
, size
);
4330 /* reset page count bias and offset to start of new frag */
4331 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4332 nc
->pagecnt_bias
= size
+ 1;
4336 offset
= nc
->offset
- fragsz
;
4337 if (unlikely(offset
< 0)) {
4338 page
= virt_to_page(nc
->va
);
4340 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4344 /* if size can vary use size else just use PAGE_SIZE */
4347 /* OK, page count is 0, we can safely set it */
4348 set_page_count(page
, size
+ 1);
4350 /* reset page count bias and offset to start of new frag */
4351 nc
->pagecnt_bias
= size
+ 1;
4352 offset
= size
- fragsz
;
4356 nc
->offset
= offset
;
4358 return nc
->va
+ offset
;
4360 EXPORT_SYMBOL(page_frag_alloc
);
4363 * Frees a page fragment allocated out of either a compound or order 0 page.
4365 void page_frag_free(void *addr
)
4367 struct page
*page
= virt_to_head_page(addr
);
4369 if (unlikely(put_page_testzero(page
)))
4370 __free_pages_ok(page
, compound_order(page
));
4372 EXPORT_SYMBOL(page_frag_free
);
4374 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4378 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4379 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4381 split_page(virt_to_page((void *)addr
), order
);
4382 while (used
< alloc_end
) {
4387 return (void *)addr
;
4391 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4392 * @size: the number of bytes to allocate
4393 * @gfp_mask: GFP flags for the allocation
4395 * This function is similar to alloc_pages(), except that it allocates the
4396 * minimum number of pages to satisfy the request. alloc_pages() can only
4397 * allocate memory in power-of-two pages.
4399 * This function is also limited by MAX_ORDER.
4401 * Memory allocated by this function must be released by free_pages_exact().
4403 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4405 unsigned int order
= get_order(size
);
4408 addr
= __get_free_pages(gfp_mask
, order
);
4409 return make_alloc_exact(addr
, order
, size
);
4411 EXPORT_SYMBOL(alloc_pages_exact
);
4414 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4416 * @nid: the preferred node ID where memory should be allocated
4417 * @size: the number of bytes to allocate
4418 * @gfp_mask: GFP flags for the allocation
4420 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4423 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4425 unsigned int order
= get_order(size
);
4426 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4429 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4433 * free_pages_exact - release memory allocated via alloc_pages_exact()
4434 * @virt: the value returned by alloc_pages_exact.
4435 * @size: size of allocation, same value as passed to alloc_pages_exact().
4437 * Release the memory allocated by a previous call to alloc_pages_exact.
4439 void free_pages_exact(void *virt
, size_t size
)
4441 unsigned long addr
= (unsigned long)virt
;
4442 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4444 while (addr
< end
) {
4449 EXPORT_SYMBOL(free_pages_exact
);
4452 * nr_free_zone_pages - count number of pages beyond high watermark
4453 * @offset: The zone index of the highest zone
4455 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4456 * high watermark within all zones at or below a given zone index. For each
4457 * zone, the number of pages is calculated as:
4459 * nr_free_zone_pages = managed_pages - high_pages
4461 static unsigned long nr_free_zone_pages(int offset
)
4466 /* Just pick one node, since fallback list is circular */
4467 unsigned long sum
= 0;
4469 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4471 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4472 unsigned long size
= zone
->managed_pages
;
4473 unsigned long high
= high_wmark_pages(zone
);
4482 * nr_free_buffer_pages - count number of pages beyond high watermark
4484 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4485 * watermark within ZONE_DMA and ZONE_NORMAL.
4487 unsigned long nr_free_buffer_pages(void)
4489 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4491 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4494 * nr_free_pagecache_pages - count number of pages beyond high watermark
4496 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4497 * high watermark within all zones.
4499 unsigned long nr_free_pagecache_pages(void)
4501 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4504 static inline void show_node(struct zone
*zone
)
4506 if (IS_ENABLED(CONFIG_NUMA
))
4507 printk("Node %d ", zone_to_nid(zone
));
4510 long si_mem_available(void)
4513 unsigned long pagecache
;
4514 unsigned long wmark_low
= 0;
4515 unsigned long pages
[NR_LRU_LISTS
];
4519 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4520 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4523 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4526 * Estimate the amount of memory available for userspace allocations,
4527 * without causing swapping.
4529 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4532 * Not all the page cache can be freed, otherwise the system will
4533 * start swapping. Assume at least half of the page cache, or the
4534 * low watermark worth of cache, needs to stay.
4536 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4537 pagecache
-= min(pagecache
/ 2, wmark_low
);
4538 available
+= pagecache
;
4541 * Part of the reclaimable slab consists of items that are in use,
4542 * and cannot be freed. Cap this estimate at the low watermark.
4544 available
+= global_node_page_state(NR_SLAB_RECLAIMABLE
) -
4545 min(global_node_page_state(NR_SLAB_RECLAIMABLE
) / 2,
4549 * Part of the kernel memory, which can be released under memory
4552 available
+= global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES
) >>
4559 EXPORT_SYMBOL_GPL(si_mem_available
);
4561 void si_meminfo(struct sysinfo
*val
)
4563 val
->totalram
= totalram_pages
;
4564 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4565 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4566 val
->bufferram
= nr_blockdev_pages();
4567 val
->totalhigh
= totalhigh_pages
;
4568 val
->freehigh
= nr_free_highpages();
4569 val
->mem_unit
= PAGE_SIZE
;
4572 EXPORT_SYMBOL(si_meminfo
);
4575 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4577 int zone_type
; /* needs to be signed */
4578 unsigned long managed_pages
= 0;
4579 unsigned long managed_highpages
= 0;
4580 unsigned long free_highpages
= 0;
4581 pg_data_t
*pgdat
= NODE_DATA(nid
);
4583 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4584 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4585 val
->totalram
= managed_pages
;
4586 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4587 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4588 #ifdef CONFIG_HIGHMEM
4589 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4590 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4592 if (is_highmem(zone
)) {
4593 managed_highpages
+= zone
->managed_pages
;
4594 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4597 val
->totalhigh
= managed_highpages
;
4598 val
->freehigh
= free_highpages
;
4600 val
->totalhigh
= managed_highpages
;
4601 val
->freehigh
= free_highpages
;
4603 val
->mem_unit
= PAGE_SIZE
;
4608 * Determine whether the node should be displayed or not, depending on whether
4609 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4611 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4613 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4617 * no node mask - aka implicit memory numa policy. Do not bother with
4618 * the synchronization - read_mems_allowed_begin - because we do not
4619 * have to be precise here.
4622 nodemask
= &cpuset_current_mems_allowed
;
4624 return !node_isset(nid
, *nodemask
);
4627 #define K(x) ((x) << (PAGE_SHIFT-10))
4629 static void show_migration_types(unsigned char type
)
4631 static const char types
[MIGRATE_TYPES
] = {
4632 [MIGRATE_UNMOVABLE
] = 'U',
4633 [MIGRATE_MOVABLE
] = 'M',
4634 [MIGRATE_RECLAIMABLE
] = 'E',
4635 [MIGRATE_HIGHATOMIC
] = 'H',
4637 [MIGRATE_CMA
] = 'C',
4639 #ifdef CONFIG_MEMORY_ISOLATION
4640 [MIGRATE_ISOLATE
] = 'I',
4643 char tmp
[MIGRATE_TYPES
+ 1];
4647 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4648 if (type
& (1 << i
))
4653 printk(KERN_CONT
"(%s) ", tmp
);
4657 * Show free area list (used inside shift_scroll-lock stuff)
4658 * We also calculate the percentage fragmentation. We do this by counting the
4659 * memory on each free list with the exception of the first item on the list.
4662 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4665 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4667 unsigned long free_pcp
= 0;
4672 for_each_populated_zone(zone
) {
4673 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4676 for_each_online_cpu(cpu
)
4677 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4680 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4681 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4682 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4683 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4684 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4685 " free:%lu free_pcp:%lu free_cma:%lu\n",
4686 global_node_page_state(NR_ACTIVE_ANON
),
4687 global_node_page_state(NR_INACTIVE_ANON
),
4688 global_node_page_state(NR_ISOLATED_ANON
),
4689 global_node_page_state(NR_ACTIVE_FILE
),
4690 global_node_page_state(NR_INACTIVE_FILE
),
4691 global_node_page_state(NR_ISOLATED_FILE
),
4692 global_node_page_state(NR_UNEVICTABLE
),
4693 global_node_page_state(NR_FILE_DIRTY
),
4694 global_node_page_state(NR_WRITEBACK
),
4695 global_node_page_state(NR_UNSTABLE_NFS
),
4696 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4697 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4698 global_node_page_state(NR_FILE_MAPPED
),
4699 global_node_page_state(NR_SHMEM
),
4700 global_zone_page_state(NR_PAGETABLE
),
4701 global_zone_page_state(NR_BOUNCE
),
4702 global_zone_page_state(NR_FREE_PAGES
),
4704 global_zone_page_state(NR_FREE_CMA_PAGES
));
4706 for_each_online_pgdat(pgdat
) {
4707 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4711 " active_anon:%lukB"
4712 " inactive_anon:%lukB"
4713 " active_file:%lukB"
4714 " inactive_file:%lukB"
4715 " unevictable:%lukB"
4716 " isolated(anon):%lukB"
4717 " isolated(file):%lukB"
4722 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4724 " shmem_pmdmapped: %lukB"
4727 " writeback_tmp:%lukB"
4729 " all_unreclaimable? %s"
4732 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4733 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4734 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4735 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4736 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4737 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4738 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4739 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4740 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4741 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4742 K(node_page_state(pgdat
, NR_SHMEM
)),
4743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4744 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4745 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4747 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4749 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4750 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4751 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4755 for_each_populated_zone(zone
) {
4758 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4762 for_each_online_cpu(cpu
)
4763 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4772 " active_anon:%lukB"
4773 " inactive_anon:%lukB"
4774 " active_file:%lukB"
4775 " inactive_file:%lukB"
4776 " unevictable:%lukB"
4777 " writepending:%lukB"
4781 " kernel_stack:%lukB"
4789 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4790 K(min_wmark_pages(zone
)),
4791 K(low_wmark_pages(zone
)),
4792 K(high_wmark_pages(zone
)),
4793 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4794 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4795 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4796 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4797 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4798 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4799 K(zone
->present_pages
),
4800 K(zone
->managed_pages
),
4801 K(zone_page_state(zone
, NR_MLOCK
)),
4802 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4803 K(zone_page_state(zone
, NR_PAGETABLE
)),
4804 K(zone_page_state(zone
, NR_BOUNCE
)),
4806 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4807 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4808 printk("lowmem_reserve[]:");
4809 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4810 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4811 printk(KERN_CONT
"\n");
4814 for_each_populated_zone(zone
) {
4816 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4817 unsigned char types
[MAX_ORDER
];
4819 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4822 printk(KERN_CONT
"%s: ", zone
->name
);
4824 spin_lock_irqsave(&zone
->lock
, flags
);
4825 for (order
= 0; order
< MAX_ORDER
; order
++) {
4826 struct free_area
*area
= &zone
->free_area
[order
];
4829 nr
[order
] = area
->nr_free
;
4830 total
+= nr
[order
] << order
;
4833 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4834 if (!list_empty(&area
->free_list
[type
]))
4835 types
[order
] |= 1 << type
;
4838 spin_unlock_irqrestore(&zone
->lock
, flags
);
4839 for (order
= 0; order
< MAX_ORDER
; order
++) {
4840 printk(KERN_CONT
"%lu*%lukB ",
4841 nr
[order
], K(1UL) << order
);
4843 show_migration_types(types
[order
]);
4845 printk(KERN_CONT
"= %lukB\n", K(total
));
4848 hugetlb_show_meminfo();
4850 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4852 show_swap_cache_info();
4855 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4857 zoneref
->zone
= zone
;
4858 zoneref
->zone_idx
= zone_idx(zone
);
4862 * Builds allocation fallback zone lists.
4864 * Add all populated zones of a node to the zonelist.
4866 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
4869 enum zone_type zone_type
= MAX_NR_ZONES
;
4874 zone
= pgdat
->node_zones
+ zone_type
;
4875 if (managed_zone(zone
)) {
4876 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
4877 check_highest_zone(zone_type
);
4879 } while (zone_type
);
4886 static int __parse_numa_zonelist_order(char *s
)
4889 * We used to support different zonlists modes but they turned
4890 * out to be just not useful. Let's keep the warning in place
4891 * if somebody still use the cmd line parameter so that we do
4892 * not fail it silently
4894 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
4895 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
4901 static __init
int setup_numa_zonelist_order(char *s
)
4906 return __parse_numa_zonelist_order(s
);
4908 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4910 char numa_zonelist_order
[] = "Node";
4913 * sysctl handler for numa_zonelist_order
4915 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4916 void __user
*buffer
, size_t *length
,
4923 return proc_dostring(table
, write
, buffer
, length
, ppos
);
4924 str
= memdup_user_nul(buffer
, 16);
4926 return PTR_ERR(str
);
4928 ret
= __parse_numa_zonelist_order(str
);
4934 #define MAX_NODE_LOAD (nr_online_nodes)
4935 static int node_load
[MAX_NUMNODES
];
4938 * find_next_best_node - find the next node that should appear in a given node's fallback list
4939 * @node: node whose fallback list we're appending
4940 * @used_node_mask: nodemask_t of already used nodes
4942 * We use a number of factors to determine which is the next node that should
4943 * appear on a given node's fallback list. The node should not have appeared
4944 * already in @node's fallback list, and it should be the next closest node
4945 * according to the distance array (which contains arbitrary distance values
4946 * from each node to each node in the system), and should also prefer nodes
4947 * with no CPUs, since presumably they'll have very little allocation pressure
4948 * on them otherwise.
4949 * It returns -1 if no node is found.
4951 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4954 int min_val
= INT_MAX
;
4955 int best_node
= NUMA_NO_NODE
;
4956 const struct cpumask
*tmp
= cpumask_of_node(0);
4958 /* Use the local node if we haven't already */
4959 if (!node_isset(node
, *used_node_mask
)) {
4960 node_set(node
, *used_node_mask
);
4964 for_each_node_state(n
, N_MEMORY
) {
4966 /* Don't want a node to appear more than once */
4967 if (node_isset(n
, *used_node_mask
))
4970 /* Use the distance array to find the distance */
4971 val
= node_distance(node
, n
);
4973 /* Penalize nodes under us ("prefer the next node") */
4976 /* Give preference to headless and unused nodes */
4977 tmp
= cpumask_of_node(n
);
4978 if (!cpumask_empty(tmp
))
4979 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4981 /* Slight preference for less loaded node */
4982 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4983 val
+= node_load
[n
];
4985 if (val
< min_val
) {
4992 node_set(best_node
, *used_node_mask
);
4999 * Build zonelists ordered by node and zones within node.
5000 * This results in maximum locality--normal zone overflows into local
5001 * DMA zone, if any--but risks exhausting DMA zone.
5003 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5006 struct zoneref
*zonerefs
;
5009 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5011 for (i
= 0; i
< nr_nodes
; i
++) {
5014 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5016 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5017 zonerefs
+= nr_zones
;
5019 zonerefs
->zone
= NULL
;
5020 zonerefs
->zone_idx
= 0;
5024 * Build gfp_thisnode zonelists
5026 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5028 struct zoneref
*zonerefs
;
5031 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5032 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5033 zonerefs
+= nr_zones
;
5034 zonerefs
->zone
= NULL
;
5035 zonerefs
->zone_idx
= 0;
5039 * Build zonelists ordered by zone and nodes within zones.
5040 * This results in conserving DMA zone[s] until all Normal memory is
5041 * exhausted, but results in overflowing to remote node while memory
5042 * may still exist in local DMA zone.
5045 static void build_zonelists(pg_data_t
*pgdat
)
5047 static int node_order
[MAX_NUMNODES
];
5048 int node
, load
, nr_nodes
= 0;
5049 nodemask_t used_mask
;
5050 int local_node
, prev_node
;
5052 /* NUMA-aware ordering of nodes */
5053 local_node
= pgdat
->node_id
;
5054 load
= nr_online_nodes
;
5055 prev_node
= local_node
;
5056 nodes_clear(used_mask
);
5058 memset(node_order
, 0, sizeof(node_order
));
5059 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5061 * We don't want to pressure a particular node.
5062 * So adding penalty to the first node in same
5063 * distance group to make it round-robin.
5065 if (node_distance(local_node
, node
) !=
5066 node_distance(local_node
, prev_node
))
5067 node_load
[node
] = load
;
5069 node_order
[nr_nodes
++] = node
;
5074 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5075 build_thisnode_zonelists(pgdat
);
5078 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5080 * Return node id of node used for "local" allocations.
5081 * I.e., first node id of first zone in arg node's generic zonelist.
5082 * Used for initializing percpu 'numa_mem', which is used primarily
5083 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5085 int local_memory_node(int node
)
5089 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5090 gfp_zone(GFP_KERNEL
),
5092 return z
->zone
->node
;
5096 static void setup_min_unmapped_ratio(void);
5097 static void setup_min_slab_ratio(void);
5098 #else /* CONFIG_NUMA */
5100 static void build_zonelists(pg_data_t
*pgdat
)
5102 int node
, local_node
;
5103 struct zoneref
*zonerefs
;
5106 local_node
= pgdat
->node_id
;
5108 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5109 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5110 zonerefs
+= nr_zones
;
5113 * Now we build the zonelist so that it contains the zones
5114 * of all the other nodes.
5115 * We don't want to pressure a particular node, so when
5116 * building the zones for node N, we make sure that the
5117 * zones coming right after the local ones are those from
5118 * node N+1 (modulo N)
5120 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5121 if (!node_online(node
))
5123 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5124 zonerefs
+= nr_zones
;
5126 for (node
= 0; node
< local_node
; node
++) {
5127 if (!node_online(node
))
5129 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5130 zonerefs
+= nr_zones
;
5133 zonerefs
->zone
= NULL
;
5134 zonerefs
->zone_idx
= 0;
5137 #endif /* CONFIG_NUMA */
5140 * Boot pageset table. One per cpu which is going to be used for all
5141 * zones and all nodes. The parameters will be set in such a way
5142 * that an item put on a list will immediately be handed over to
5143 * the buddy list. This is safe since pageset manipulation is done
5144 * with interrupts disabled.
5146 * The boot_pagesets must be kept even after bootup is complete for
5147 * unused processors and/or zones. They do play a role for bootstrapping
5148 * hotplugged processors.
5150 * zoneinfo_show() and maybe other functions do
5151 * not check if the processor is online before following the pageset pointer.
5152 * Other parts of the kernel may not check if the zone is available.
5154 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5155 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5156 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5158 static void __build_all_zonelists(void *data
)
5161 int __maybe_unused cpu
;
5162 pg_data_t
*self
= data
;
5163 static DEFINE_SPINLOCK(lock
);
5168 memset(node_load
, 0, sizeof(node_load
));
5172 * This node is hotadded and no memory is yet present. So just
5173 * building zonelists is fine - no need to touch other nodes.
5175 if (self
&& !node_online(self
->node_id
)) {
5176 build_zonelists(self
);
5178 for_each_online_node(nid
) {
5179 pg_data_t
*pgdat
= NODE_DATA(nid
);
5181 build_zonelists(pgdat
);
5184 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5186 * We now know the "local memory node" for each node--
5187 * i.e., the node of the first zone in the generic zonelist.
5188 * Set up numa_mem percpu variable for on-line cpus. During
5189 * boot, only the boot cpu should be on-line; we'll init the
5190 * secondary cpus' numa_mem as they come on-line. During
5191 * node/memory hotplug, we'll fixup all on-line cpus.
5193 for_each_online_cpu(cpu
)
5194 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5201 static noinline
void __init
5202 build_all_zonelists_init(void)
5206 __build_all_zonelists(NULL
);
5209 * Initialize the boot_pagesets that are going to be used
5210 * for bootstrapping processors. The real pagesets for
5211 * each zone will be allocated later when the per cpu
5212 * allocator is available.
5214 * boot_pagesets are used also for bootstrapping offline
5215 * cpus if the system is already booted because the pagesets
5216 * are needed to initialize allocators on a specific cpu too.
5217 * F.e. the percpu allocator needs the page allocator which
5218 * needs the percpu allocator in order to allocate its pagesets
5219 * (a chicken-egg dilemma).
5221 for_each_possible_cpu(cpu
)
5222 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5224 mminit_verify_zonelist();
5225 cpuset_init_current_mems_allowed();
5229 * unless system_state == SYSTEM_BOOTING.
5231 * __ref due to call of __init annotated helper build_all_zonelists_init
5232 * [protected by SYSTEM_BOOTING].
5234 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5236 if (system_state
== SYSTEM_BOOTING
) {
5237 build_all_zonelists_init();
5239 __build_all_zonelists(pgdat
);
5240 /* cpuset refresh routine should be here */
5242 vm_total_pages
= nr_free_pagecache_pages();
5244 * Disable grouping by mobility if the number of pages in the
5245 * system is too low to allow the mechanism to work. It would be
5246 * more accurate, but expensive to check per-zone. This check is
5247 * made on memory-hotadd so a system can start with mobility
5248 * disabled and enable it later
5250 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5251 page_group_by_mobility_disabled
= 1;
5253 page_group_by_mobility_disabled
= 0;
5255 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5257 page_group_by_mobility_disabled
? "off" : "on",
5260 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5265 * Initially all pages are reserved - free ones are freed
5266 * up by free_all_bootmem() once the early boot process is
5267 * done. Non-atomic initialization, single-pass.
5269 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5270 unsigned long start_pfn
, enum memmap_context context
)
5272 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5273 unsigned long end_pfn
= start_pfn
+ size
;
5274 pg_data_t
*pgdat
= NODE_DATA(nid
);
5276 unsigned long nr_initialised
= 0;
5277 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5278 struct memblock_region
*r
= NULL
, *tmp
;
5281 if (highest_memmap_pfn
< end_pfn
- 1)
5282 highest_memmap_pfn
= end_pfn
- 1;
5285 * Honor reservation requested by the driver for this ZONE_DEVICE
5288 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5289 start_pfn
+= altmap
->reserve
;
5291 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5293 * There can be holes in boot-time mem_map[]s handed to this
5294 * function. They do not exist on hotplugged memory.
5296 if (context
!= MEMMAP_EARLY
)
5299 if (!early_pfn_valid(pfn
))
5301 if (!early_pfn_in_nid(pfn
, nid
))
5303 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5306 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5308 * Check given memblock attribute by firmware which can affect
5309 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5310 * mirrored, it's an overlapped memmap init. skip it.
5312 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5313 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5314 for_each_memblock(memory
, tmp
)
5315 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5319 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5320 memblock_is_mirror(r
)) {
5321 /* already initialized as NORMAL */
5322 pfn
= memblock_region_memory_end_pfn(r
);
5330 * Mark the block movable so that blocks are reserved for
5331 * movable at startup. This will force kernel allocations
5332 * to reserve their blocks rather than leaking throughout
5333 * the address space during boot when many long-lived
5334 * kernel allocations are made.
5336 * bitmap is created for zone's valid pfn range. but memmap
5337 * can be created for invalid pages (for alignment)
5338 * check here not to call set_pageblock_migratetype() against
5341 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5342 struct page
*page
= pfn_to_page(pfn
);
5344 __init_single_page(page
, pfn
, zone
, nid
);
5345 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5348 __init_single_pfn(pfn
, zone
, nid
);
5353 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5355 unsigned int order
, t
;
5356 for_each_migratetype_order(order
, t
) {
5357 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5358 zone
->free_area
[order
].nr_free
= 0;
5362 #ifndef __HAVE_ARCH_MEMMAP_INIT
5363 #define memmap_init(size, nid, zone, start_pfn) \
5364 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5367 static int zone_batchsize(struct zone
*zone
)
5373 * The per-cpu-pages pools are set to around 1000th of the
5374 * size of the zone. But no more than 1/2 of a meg.
5376 * OK, so we don't know how big the cache is. So guess.
5378 batch
= zone
->managed_pages
/ 1024;
5379 if (batch
* PAGE_SIZE
> 512 * 1024)
5380 batch
= (512 * 1024) / PAGE_SIZE
;
5381 batch
/= 4; /* We effectively *= 4 below */
5386 * Clamp the batch to a 2^n - 1 value. Having a power
5387 * of 2 value was found to be more likely to have
5388 * suboptimal cache aliasing properties in some cases.
5390 * For example if 2 tasks are alternately allocating
5391 * batches of pages, one task can end up with a lot
5392 * of pages of one half of the possible page colors
5393 * and the other with pages of the other colors.
5395 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5400 /* The deferral and batching of frees should be suppressed under NOMMU
5403 * The problem is that NOMMU needs to be able to allocate large chunks
5404 * of contiguous memory as there's no hardware page translation to
5405 * assemble apparent contiguous memory from discontiguous pages.
5407 * Queueing large contiguous runs of pages for batching, however,
5408 * causes the pages to actually be freed in smaller chunks. As there
5409 * can be a significant delay between the individual batches being
5410 * recycled, this leads to the once large chunks of space being
5411 * fragmented and becoming unavailable for high-order allocations.
5418 * pcp->high and pcp->batch values are related and dependent on one another:
5419 * ->batch must never be higher then ->high.
5420 * The following function updates them in a safe manner without read side
5423 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5424 * those fields changing asynchronously (acording the the above rule).
5426 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5427 * outside of boot time (or some other assurance that no concurrent updaters
5430 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5431 unsigned long batch
)
5433 /* start with a fail safe value for batch */
5437 /* Update high, then batch, in order */
5444 /* a companion to pageset_set_high() */
5445 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5447 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5450 static void pageset_init(struct per_cpu_pageset
*p
)
5452 struct per_cpu_pages
*pcp
;
5455 memset(p
, 0, sizeof(*p
));
5459 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5460 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5463 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5466 pageset_set_batch(p
, batch
);
5470 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5471 * to the value high for the pageset p.
5473 static void pageset_set_high(struct per_cpu_pageset
*p
,
5476 unsigned long batch
= max(1UL, high
/ 4);
5477 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5478 batch
= PAGE_SHIFT
* 8;
5480 pageset_update(&p
->pcp
, high
, batch
);
5483 static void pageset_set_high_and_batch(struct zone
*zone
,
5484 struct per_cpu_pageset
*pcp
)
5486 if (percpu_pagelist_fraction
)
5487 pageset_set_high(pcp
,
5488 (zone
->managed_pages
/
5489 percpu_pagelist_fraction
));
5491 pageset_set_batch(pcp
, zone_batchsize(zone
));
5494 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5496 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5499 pageset_set_high_and_batch(zone
, pcp
);
5502 void __meminit
setup_zone_pageset(struct zone
*zone
)
5505 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5506 for_each_possible_cpu(cpu
)
5507 zone_pageset_init(zone
, cpu
);
5511 * Allocate per cpu pagesets and initialize them.
5512 * Before this call only boot pagesets were available.
5514 void __init
setup_per_cpu_pageset(void)
5516 struct pglist_data
*pgdat
;
5519 for_each_populated_zone(zone
)
5520 setup_zone_pageset(zone
);
5522 for_each_online_pgdat(pgdat
)
5523 pgdat
->per_cpu_nodestats
=
5524 alloc_percpu(struct per_cpu_nodestat
);
5527 static __meminit
void zone_pcp_init(struct zone
*zone
)
5530 * per cpu subsystem is not up at this point. The following code
5531 * relies on the ability of the linker to provide the
5532 * offset of a (static) per cpu variable into the per cpu area.
5534 zone
->pageset
= &boot_pageset
;
5536 if (populated_zone(zone
))
5537 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5538 zone
->name
, zone
->present_pages
,
5539 zone_batchsize(zone
));
5542 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5543 unsigned long zone_start_pfn
,
5546 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5547 int zone_idx
= zone_idx(zone
) + 1;
5549 if (zone_idx
> pgdat
->nr_zones
)
5550 pgdat
->nr_zones
= zone_idx
;
5552 zone
->zone_start_pfn
= zone_start_pfn
;
5554 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5555 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5557 (unsigned long)zone_idx(zone
),
5558 zone_start_pfn
, (zone_start_pfn
+ size
));
5560 zone_init_free_lists(zone
);
5561 zone
->initialized
= 1;
5564 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5565 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5568 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5570 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5571 struct mminit_pfnnid_cache
*state
)
5573 unsigned long start_pfn
, end_pfn
;
5576 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5577 return state
->last_nid
;
5579 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5581 state
->last_start
= start_pfn
;
5582 state
->last_end
= end_pfn
;
5583 state
->last_nid
= nid
;
5588 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5591 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5592 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5593 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5595 * If an architecture guarantees that all ranges registered contain no holes
5596 * and may be freed, this this function may be used instead of calling
5597 * memblock_free_early_nid() manually.
5599 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5601 unsigned long start_pfn
, end_pfn
;
5604 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5605 start_pfn
= min(start_pfn
, max_low_pfn
);
5606 end_pfn
= min(end_pfn
, max_low_pfn
);
5608 if (start_pfn
< end_pfn
)
5609 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5610 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5616 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5617 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5619 * If an architecture guarantees that all ranges registered contain no holes and may
5620 * be freed, this function may be used instead of calling memory_present() manually.
5622 void __init
sparse_memory_present_with_active_regions(int nid
)
5624 unsigned long start_pfn
, end_pfn
;
5627 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5628 memory_present(this_nid
, start_pfn
, end_pfn
);
5632 * get_pfn_range_for_nid - Return the start and end page frames for a node
5633 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5634 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5635 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5637 * It returns the start and end page frame of a node based on information
5638 * provided by memblock_set_node(). If called for a node
5639 * with no available memory, a warning is printed and the start and end
5642 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5643 unsigned long *start_pfn
, unsigned long *end_pfn
)
5645 unsigned long this_start_pfn
, this_end_pfn
;
5651 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5652 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5653 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5656 if (*start_pfn
== -1UL)
5661 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5662 * assumption is made that zones within a node are ordered in monotonic
5663 * increasing memory addresses so that the "highest" populated zone is used
5665 static void __init
find_usable_zone_for_movable(void)
5668 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5669 if (zone_index
== ZONE_MOVABLE
)
5672 if (arch_zone_highest_possible_pfn
[zone_index
] >
5673 arch_zone_lowest_possible_pfn
[zone_index
])
5677 VM_BUG_ON(zone_index
== -1);
5678 movable_zone
= zone_index
;
5682 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5683 * because it is sized independent of architecture. Unlike the other zones,
5684 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5685 * in each node depending on the size of each node and how evenly kernelcore
5686 * is distributed. This helper function adjusts the zone ranges
5687 * provided by the architecture for a given node by using the end of the
5688 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5689 * zones within a node are in order of monotonic increases memory addresses
5691 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5692 unsigned long zone_type
,
5693 unsigned long node_start_pfn
,
5694 unsigned long node_end_pfn
,
5695 unsigned long *zone_start_pfn
,
5696 unsigned long *zone_end_pfn
)
5698 /* Only adjust if ZONE_MOVABLE is on this node */
5699 if (zone_movable_pfn
[nid
]) {
5700 /* Size ZONE_MOVABLE */
5701 if (zone_type
== ZONE_MOVABLE
) {
5702 *zone_start_pfn
= zone_movable_pfn
[nid
];
5703 *zone_end_pfn
= min(node_end_pfn
,
5704 arch_zone_highest_possible_pfn
[movable_zone
]);
5706 /* Adjust for ZONE_MOVABLE starting within this range */
5707 } else if (!mirrored_kernelcore
&&
5708 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5709 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5710 *zone_end_pfn
= zone_movable_pfn
[nid
];
5712 /* Check if this whole range is within ZONE_MOVABLE */
5713 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5714 *zone_start_pfn
= *zone_end_pfn
;
5719 * Return the number of pages a zone spans in a node, including holes
5720 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5722 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5723 unsigned long zone_type
,
5724 unsigned long node_start_pfn
,
5725 unsigned long node_end_pfn
,
5726 unsigned long *zone_start_pfn
,
5727 unsigned long *zone_end_pfn
,
5728 unsigned long *ignored
)
5730 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5731 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5732 /* When hotadd a new node from cpu_up(), the node should be empty */
5733 if (!node_start_pfn
&& !node_end_pfn
)
5736 /* Get the start and end of the zone */
5737 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5738 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5739 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5740 node_start_pfn
, node_end_pfn
,
5741 zone_start_pfn
, zone_end_pfn
);
5743 /* Check that this node has pages within the zone's required range */
5744 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5747 /* Move the zone boundaries inside the node if necessary */
5748 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5749 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5751 /* Return the spanned pages */
5752 return *zone_end_pfn
- *zone_start_pfn
;
5756 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5757 * then all holes in the requested range will be accounted for.
5759 unsigned long __meminit
__absent_pages_in_range(int nid
,
5760 unsigned long range_start_pfn
,
5761 unsigned long range_end_pfn
)
5763 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5764 unsigned long start_pfn
, end_pfn
;
5767 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5768 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5769 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5770 nr_absent
-= end_pfn
- start_pfn
;
5776 * absent_pages_in_range - Return number of page frames in holes within a range
5777 * @start_pfn: The start PFN to start searching for holes
5778 * @end_pfn: The end PFN to stop searching for holes
5780 * It returns the number of pages frames in memory holes within a range.
5782 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5783 unsigned long end_pfn
)
5785 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5788 /* Return the number of page frames in holes in a zone on a node */
5789 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5790 unsigned long zone_type
,
5791 unsigned long node_start_pfn
,
5792 unsigned long node_end_pfn
,
5793 unsigned long *ignored
)
5795 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5796 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5797 unsigned long zone_start_pfn
, zone_end_pfn
;
5798 unsigned long nr_absent
;
5800 /* When hotadd a new node from cpu_up(), the node should be empty */
5801 if (!node_start_pfn
&& !node_end_pfn
)
5804 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5805 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5807 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5808 node_start_pfn
, node_end_pfn
,
5809 &zone_start_pfn
, &zone_end_pfn
);
5810 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5813 * ZONE_MOVABLE handling.
5814 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5817 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5818 unsigned long start_pfn
, end_pfn
;
5819 struct memblock_region
*r
;
5821 for_each_memblock(memory
, r
) {
5822 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5823 zone_start_pfn
, zone_end_pfn
);
5824 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5825 zone_start_pfn
, zone_end_pfn
);
5827 if (zone_type
== ZONE_MOVABLE
&&
5828 memblock_is_mirror(r
))
5829 nr_absent
+= end_pfn
- start_pfn
;
5831 if (zone_type
== ZONE_NORMAL
&&
5832 !memblock_is_mirror(r
))
5833 nr_absent
+= end_pfn
- start_pfn
;
5840 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5841 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5842 unsigned long zone_type
,
5843 unsigned long node_start_pfn
,
5844 unsigned long node_end_pfn
,
5845 unsigned long *zone_start_pfn
,
5846 unsigned long *zone_end_pfn
,
5847 unsigned long *zones_size
)
5851 *zone_start_pfn
= node_start_pfn
;
5852 for (zone
= 0; zone
< zone_type
; zone
++)
5853 *zone_start_pfn
+= zones_size
[zone
];
5855 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5857 return zones_size
[zone_type
];
5860 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5861 unsigned long zone_type
,
5862 unsigned long node_start_pfn
,
5863 unsigned long node_end_pfn
,
5864 unsigned long *zholes_size
)
5869 return zholes_size
[zone_type
];
5872 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5874 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5875 unsigned long node_start_pfn
,
5876 unsigned long node_end_pfn
,
5877 unsigned long *zones_size
,
5878 unsigned long *zholes_size
)
5880 unsigned long realtotalpages
= 0, totalpages
= 0;
5883 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5884 struct zone
*zone
= pgdat
->node_zones
+ i
;
5885 unsigned long zone_start_pfn
, zone_end_pfn
;
5886 unsigned long size
, real_size
;
5888 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5894 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5895 node_start_pfn
, node_end_pfn
,
5898 zone
->zone_start_pfn
= zone_start_pfn
;
5900 zone
->zone_start_pfn
= 0;
5901 zone
->spanned_pages
= size
;
5902 zone
->present_pages
= real_size
;
5905 realtotalpages
+= real_size
;
5908 pgdat
->node_spanned_pages
= totalpages
;
5909 pgdat
->node_present_pages
= realtotalpages
;
5910 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5914 #ifndef CONFIG_SPARSEMEM
5916 * Calculate the size of the zone->blockflags rounded to an unsigned long
5917 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5918 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5919 * round what is now in bits to nearest long in bits, then return it in
5922 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5924 unsigned long usemapsize
;
5926 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5927 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5928 usemapsize
= usemapsize
>> pageblock_order
;
5929 usemapsize
*= NR_PAGEBLOCK_BITS
;
5930 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5932 return usemapsize
/ 8;
5935 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5937 unsigned long zone_start_pfn
,
5938 unsigned long zonesize
)
5940 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5941 zone
->pageblock_flags
= NULL
;
5943 zone
->pageblock_flags
=
5944 memblock_virt_alloc_node_nopanic(usemapsize
,
5948 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5949 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5950 #endif /* CONFIG_SPARSEMEM */
5952 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5954 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5955 void __paginginit
set_pageblock_order(void)
5959 /* Check that pageblock_nr_pages has not already been setup */
5960 if (pageblock_order
)
5963 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5964 order
= HUGETLB_PAGE_ORDER
;
5966 order
= MAX_ORDER
- 1;
5969 * Assume the largest contiguous order of interest is a huge page.
5970 * This value may be variable depending on boot parameters on IA64 and
5973 pageblock_order
= order
;
5975 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5978 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5979 * is unused as pageblock_order is set at compile-time. See
5980 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5983 void __paginginit
set_pageblock_order(void)
5987 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5989 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5990 unsigned long present_pages
)
5992 unsigned long pages
= spanned_pages
;
5995 * Provide a more accurate estimation if there are holes within
5996 * the zone and SPARSEMEM is in use. If there are holes within the
5997 * zone, each populated memory region may cost us one or two extra
5998 * memmap pages due to alignment because memmap pages for each
5999 * populated regions may not be naturally aligned on page boundary.
6000 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6002 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6003 IS_ENABLED(CONFIG_SPARSEMEM
))
6004 pages
= present_pages
;
6006 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6010 * Set up the zone data structures:
6011 * - mark all pages reserved
6012 * - mark all memory queues empty
6013 * - clear the memory bitmaps
6015 * NOTE: pgdat should get zeroed by caller.
6017 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
6020 int nid
= pgdat
->node_id
;
6022 pgdat_resize_init(pgdat
);
6023 #ifdef CONFIG_NUMA_BALANCING
6024 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6025 pgdat
->numabalancing_migrate_nr_pages
= 0;
6026 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6028 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6029 spin_lock_init(&pgdat
->split_queue_lock
);
6030 INIT_LIST_HEAD(&pgdat
->split_queue
);
6031 pgdat
->split_queue_len
= 0;
6033 init_waitqueue_head(&pgdat
->kswapd_wait
);
6034 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6035 #ifdef CONFIG_COMPACTION
6036 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6038 pgdat_page_ext_init(pgdat
);
6039 spin_lock_init(&pgdat
->lru_lock
);
6040 lruvec_init(node_lruvec(pgdat
));
6042 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6044 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6045 struct zone
*zone
= pgdat
->node_zones
+ j
;
6046 unsigned long size
, realsize
, freesize
, memmap_pages
;
6047 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6049 size
= zone
->spanned_pages
;
6050 realsize
= freesize
= zone
->present_pages
;
6053 * Adjust freesize so that it accounts for how much memory
6054 * is used by this zone for memmap. This affects the watermark
6055 * and per-cpu initialisations
6057 memmap_pages
= calc_memmap_size(size
, realsize
);
6058 if (!is_highmem_idx(j
)) {
6059 if (freesize
>= memmap_pages
) {
6060 freesize
-= memmap_pages
;
6063 " %s zone: %lu pages used for memmap\n",
6064 zone_names
[j
], memmap_pages
);
6066 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6067 zone_names
[j
], memmap_pages
, freesize
);
6070 /* Account for reserved pages */
6071 if (j
== 0 && freesize
> dma_reserve
) {
6072 freesize
-= dma_reserve
;
6073 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6074 zone_names
[0], dma_reserve
);
6077 if (!is_highmem_idx(j
))
6078 nr_kernel_pages
+= freesize
;
6079 /* Charge for highmem memmap if there are enough kernel pages */
6080 else if (nr_kernel_pages
> memmap_pages
* 2)
6081 nr_kernel_pages
-= memmap_pages
;
6082 nr_all_pages
+= freesize
;
6085 * Set an approximate value for lowmem here, it will be adjusted
6086 * when the bootmem allocator frees pages into the buddy system.
6087 * And all highmem pages will be managed by the buddy system.
6089 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6093 zone
->name
= zone_names
[j
];
6094 zone
->zone_pgdat
= pgdat
;
6095 spin_lock_init(&zone
->lock
);
6096 zone_seqlock_init(zone
);
6097 zone_pcp_init(zone
);
6102 set_pageblock_order();
6103 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6104 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6105 memmap_init(size
, nid
, j
, zone_start_pfn
);
6109 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6111 unsigned long __maybe_unused start
= 0;
6112 unsigned long __maybe_unused offset
= 0;
6114 /* Skip empty nodes */
6115 if (!pgdat
->node_spanned_pages
)
6118 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6119 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6120 offset
= pgdat
->node_start_pfn
- start
;
6121 /* ia64 gets its own node_mem_map, before this, without bootmem */
6122 if (!pgdat
->node_mem_map
) {
6123 unsigned long size
, end
;
6127 * The zone's endpoints aren't required to be MAX_ORDER
6128 * aligned but the node_mem_map endpoints must be in order
6129 * for the buddy allocator to function correctly.
6131 end
= pgdat_end_pfn(pgdat
);
6132 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6133 size
= (end
- start
) * sizeof(struct page
);
6134 map
= alloc_remap(pgdat
->node_id
, size
);
6136 map
= memblock_virt_alloc_node_nopanic(size
,
6138 pgdat
->node_mem_map
= map
+ offset
;
6140 #ifndef CONFIG_NEED_MULTIPLE_NODES
6142 * With no DISCONTIG, the global mem_map is just set as node 0's
6144 if (pgdat
== NODE_DATA(0)) {
6145 mem_map
= NODE_DATA(0)->node_mem_map
;
6146 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6147 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6149 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6152 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6155 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6156 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6158 pg_data_t
*pgdat
= NODE_DATA(nid
);
6159 unsigned long start_pfn
= 0;
6160 unsigned long end_pfn
= 0;
6162 /* pg_data_t should be reset to zero when it's allocated */
6163 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6165 pgdat
->node_id
= nid
;
6166 pgdat
->node_start_pfn
= node_start_pfn
;
6167 pgdat
->per_cpu_nodestats
= NULL
;
6168 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6169 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6170 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6171 (u64
)start_pfn
<< PAGE_SHIFT
,
6172 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6174 start_pfn
= node_start_pfn
;
6176 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6177 zones_size
, zholes_size
);
6179 alloc_node_mem_map(pgdat
);
6180 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6181 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6182 nid
, (unsigned long)pgdat
,
6183 (unsigned long)pgdat
->node_mem_map
);
6186 reset_deferred_meminit(pgdat
);
6187 free_area_init_core(pgdat
);
6190 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6192 #if MAX_NUMNODES > 1
6194 * Figure out the number of possible node ids.
6196 void __init
setup_nr_node_ids(void)
6198 unsigned int highest
;
6200 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6201 nr_node_ids
= highest
+ 1;
6206 * node_map_pfn_alignment - determine the maximum internode alignment
6208 * This function should be called after node map is populated and sorted.
6209 * It calculates the maximum power of two alignment which can distinguish
6212 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6213 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6214 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6215 * shifted, 1GiB is enough and this function will indicate so.
6217 * This is used to test whether pfn -> nid mapping of the chosen memory
6218 * model has fine enough granularity to avoid incorrect mapping for the
6219 * populated node map.
6221 * Returns the determined alignment in pfn's. 0 if there is no alignment
6222 * requirement (single node).
6224 unsigned long __init
node_map_pfn_alignment(void)
6226 unsigned long accl_mask
= 0, last_end
= 0;
6227 unsigned long start
, end
, mask
;
6231 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6232 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6239 * Start with a mask granular enough to pin-point to the
6240 * start pfn and tick off bits one-by-one until it becomes
6241 * too coarse to separate the current node from the last.
6243 mask
= ~((1 << __ffs(start
)) - 1);
6244 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6247 /* accumulate all internode masks */
6251 /* convert mask to number of pages */
6252 return ~accl_mask
+ 1;
6255 /* Find the lowest pfn for a node */
6256 static unsigned long __init
find_min_pfn_for_node(int nid
)
6258 unsigned long min_pfn
= ULONG_MAX
;
6259 unsigned long start_pfn
;
6262 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6263 min_pfn
= min(min_pfn
, start_pfn
);
6265 if (min_pfn
== ULONG_MAX
) {
6266 pr_warn("Could not find start_pfn for node %d\n", nid
);
6274 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6276 * It returns the minimum PFN based on information provided via
6277 * memblock_set_node().
6279 unsigned long __init
find_min_pfn_with_active_regions(void)
6281 return find_min_pfn_for_node(MAX_NUMNODES
);
6285 * early_calculate_totalpages()
6286 * Sum pages in active regions for movable zone.
6287 * Populate N_MEMORY for calculating usable_nodes.
6289 static unsigned long __init
early_calculate_totalpages(void)
6291 unsigned long totalpages
= 0;
6292 unsigned long start_pfn
, end_pfn
;
6295 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6296 unsigned long pages
= end_pfn
- start_pfn
;
6298 totalpages
+= pages
;
6300 node_set_state(nid
, N_MEMORY
);
6306 * Find the PFN the Movable zone begins in each node. Kernel memory
6307 * is spread evenly between nodes as long as the nodes have enough
6308 * memory. When they don't, some nodes will have more kernelcore than
6311 static void __init
find_zone_movable_pfns_for_nodes(void)
6314 unsigned long usable_startpfn
;
6315 unsigned long kernelcore_node
, kernelcore_remaining
;
6316 /* save the state before borrow the nodemask */
6317 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6318 unsigned long totalpages
= early_calculate_totalpages();
6319 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6320 struct memblock_region
*r
;
6322 /* Need to find movable_zone earlier when movable_node is specified. */
6323 find_usable_zone_for_movable();
6326 * If movable_node is specified, ignore kernelcore and movablecore
6329 if (movable_node_is_enabled()) {
6330 for_each_memblock(memory
, r
) {
6331 if (!memblock_is_hotpluggable(r
))
6336 usable_startpfn
= PFN_DOWN(r
->base
);
6337 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6338 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6346 * If kernelcore=mirror is specified, ignore movablecore option
6348 if (mirrored_kernelcore
) {
6349 bool mem_below_4gb_not_mirrored
= false;
6351 for_each_memblock(memory
, r
) {
6352 if (memblock_is_mirror(r
))
6357 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6359 if (usable_startpfn
< 0x100000) {
6360 mem_below_4gb_not_mirrored
= true;
6364 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6365 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6369 if (mem_below_4gb_not_mirrored
)
6370 pr_warn("This configuration results in unmirrored kernel memory.");
6376 * If movablecore=nn[KMG] was specified, calculate what size of
6377 * kernelcore that corresponds so that memory usable for
6378 * any allocation type is evenly spread. If both kernelcore
6379 * and movablecore are specified, then the value of kernelcore
6380 * will be used for required_kernelcore if it's greater than
6381 * what movablecore would have allowed.
6383 if (required_movablecore
) {
6384 unsigned long corepages
;
6387 * Round-up so that ZONE_MOVABLE is at least as large as what
6388 * was requested by the user
6390 required_movablecore
=
6391 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6392 required_movablecore
= min(totalpages
, required_movablecore
);
6393 corepages
= totalpages
- required_movablecore
;
6395 required_kernelcore
= max(required_kernelcore
, corepages
);
6399 * If kernelcore was not specified or kernelcore size is larger
6400 * than totalpages, there is no ZONE_MOVABLE.
6402 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6405 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6406 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6409 /* Spread kernelcore memory as evenly as possible throughout nodes */
6410 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6411 for_each_node_state(nid
, N_MEMORY
) {
6412 unsigned long start_pfn
, end_pfn
;
6415 * Recalculate kernelcore_node if the division per node
6416 * now exceeds what is necessary to satisfy the requested
6417 * amount of memory for the kernel
6419 if (required_kernelcore
< kernelcore_node
)
6420 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6423 * As the map is walked, we track how much memory is usable
6424 * by the kernel using kernelcore_remaining. When it is
6425 * 0, the rest of the node is usable by ZONE_MOVABLE
6427 kernelcore_remaining
= kernelcore_node
;
6429 /* Go through each range of PFNs within this node */
6430 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6431 unsigned long size_pages
;
6433 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6434 if (start_pfn
>= end_pfn
)
6437 /* Account for what is only usable for kernelcore */
6438 if (start_pfn
< usable_startpfn
) {
6439 unsigned long kernel_pages
;
6440 kernel_pages
= min(end_pfn
, usable_startpfn
)
6443 kernelcore_remaining
-= min(kernel_pages
,
6444 kernelcore_remaining
);
6445 required_kernelcore
-= min(kernel_pages
,
6446 required_kernelcore
);
6448 /* Continue if range is now fully accounted */
6449 if (end_pfn
<= usable_startpfn
) {
6452 * Push zone_movable_pfn to the end so
6453 * that if we have to rebalance
6454 * kernelcore across nodes, we will
6455 * not double account here
6457 zone_movable_pfn
[nid
] = end_pfn
;
6460 start_pfn
= usable_startpfn
;
6464 * The usable PFN range for ZONE_MOVABLE is from
6465 * start_pfn->end_pfn. Calculate size_pages as the
6466 * number of pages used as kernelcore
6468 size_pages
= end_pfn
- start_pfn
;
6469 if (size_pages
> kernelcore_remaining
)
6470 size_pages
= kernelcore_remaining
;
6471 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6474 * Some kernelcore has been met, update counts and
6475 * break if the kernelcore for this node has been
6478 required_kernelcore
-= min(required_kernelcore
,
6480 kernelcore_remaining
-= size_pages
;
6481 if (!kernelcore_remaining
)
6487 * If there is still required_kernelcore, we do another pass with one
6488 * less node in the count. This will push zone_movable_pfn[nid] further
6489 * along on the nodes that still have memory until kernelcore is
6493 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6497 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6498 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6499 zone_movable_pfn
[nid
] =
6500 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6503 /* restore the node_state */
6504 node_states
[N_MEMORY
] = saved_node_state
;
6507 /* Any regular or high memory on that node ? */
6508 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6510 enum zone_type zone_type
;
6512 if (N_MEMORY
== N_NORMAL_MEMORY
)
6515 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6516 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6517 if (populated_zone(zone
)) {
6518 node_set_state(nid
, N_HIGH_MEMORY
);
6519 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6520 zone_type
<= ZONE_NORMAL
)
6521 node_set_state(nid
, N_NORMAL_MEMORY
);
6528 * free_area_init_nodes - Initialise all pg_data_t and zone data
6529 * @max_zone_pfn: an array of max PFNs for each zone
6531 * This will call free_area_init_node() for each active node in the system.
6532 * Using the page ranges provided by memblock_set_node(), the size of each
6533 * zone in each node and their holes is calculated. If the maximum PFN
6534 * between two adjacent zones match, it is assumed that the zone is empty.
6535 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6536 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6537 * starts where the previous one ended. For example, ZONE_DMA32 starts
6538 * at arch_max_dma_pfn.
6540 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6542 unsigned long start_pfn
, end_pfn
;
6545 /* Record where the zone boundaries are */
6546 memset(arch_zone_lowest_possible_pfn
, 0,
6547 sizeof(arch_zone_lowest_possible_pfn
));
6548 memset(arch_zone_highest_possible_pfn
, 0,
6549 sizeof(arch_zone_highest_possible_pfn
));
6551 start_pfn
= find_min_pfn_with_active_regions();
6553 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6554 if (i
== ZONE_MOVABLE
)
6557 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6558 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6559 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6561 start_pfn
= end_pfn
;
6564 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6565 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6566 find_zone_movable_pfns_for_nodes();
6568 /* Print out the zone ranges */
6569 pr_info("Zone ranges:\n");
6570 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6571 if (i
== ZONE_MOVABLE
)
6573 pr_info(" %-8s ", zone_names
[i
]);
6574 if (arch_zone_lowest_possible_pfn
[i
] ==
6575 arch_zone_highest_possible_pfn
[i
])
6578 pr_cont("[mem %#018Lx-%#018Lx]\n",
6579 (u64
)arch_zone_lowest_possible_pfn
[i
]
6581 ((u64
)arch_zone_highest_possible_pfn
[i
]
6582 << PAGE_SHIFT
) - 1);
6585 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6586 pr_info("Movable zone start for each node\n");
6587 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6588 if (zone_movable_pfn
[i
])
6589 pr_info(" Node %d: %#018Lx\n", i
,
6590 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6593 /* Print out the early node map */
6594 pr_info("Early memory node ranges\n");
6595 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6596 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6597 (u64
)start_pfn
<< PAGE_SHIFT
,
6598 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6600 /* Initialise every node */
6601 mminit_verify_pageflags_layout();
6602 setup_nr_node_ids();
6603 for_each_online_node(nid
) {
6604 pg_data_t
*pgdat
= NODE_DATA(nid
);
6605 free_area_init_node(nid
, NULL
,
6606 find_min_pfn_for_node(nid
), NULL
);
6608 /* Any memory on that node */
6609 if (pgdat
->node_present_pages
)
6610 node_set_state(nid
, N_MEMORY
);
6611 check_for_memory(pgdat
, nid
);
6615 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6617 unsigned long long coremem
;
6621 coremem
= memparse(p
, &p
);
6622 *core
= coremem
>> PAGE_SHIFT
;
6624 /* Paranoid check that UL is enough for the coremem value */
6625 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6631 * kernelcore=size sets the amount of memory for use for allocations that
6632 * cannot be reclaimed or migrated.
6634 static int __init
cmdline_parse_kernelcore(char *p
)
6636 /* parse kernelcore=mirror */
6637 if (parse_option_str(p
, "mirror")) {
6638 mirrored_kernelcore
= true;
6642 return cmdline_parse_core(p
, &required_kernelcore
);
6646 * movablecore=size sets the amount of memory for use for allocations that
6647 * can be reclaimed or migrated.
6649 static int __init
cmdline_parse_movablecore(char *p
)
6651 return cmdline_parse_core(p
, &required_movablecore
);
6654 early_param("kernelcore", cmdline_parse_kernelcore
);
6655 early_param("movablecore", cmdline_parse_movablecore
);
6657 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6659 void adjust_managed_page_count(struct page
*page
, long count
)
6661 spin_lock(&managed_page_count_lock
);
6662 page_zone(page
)->managed_pages
+= count
;
6663 totalram_pages
+= count
;
6664 #ifdef CONFIG_HIGHMEM
6665 if (PageHighMem(page
))
6666 totalhigh_pages
+= count
;
6668 spin_unlock(&managed_page_count_lock
);
6670 EXPORT_SYMBOL(adjust_managed_page_count
);
6672 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6675 unsigned long pages
= 0;
6677 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6678 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6679 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6680 if ((unsigned int)poison
<= 0xFF)
6681 memset(pos
, poison
, PAGE_SIZE
);
6682 free_reserved_page(virt_to_page(pos
));
6686 pr_info("Freeing %s memory: %ldK\n",
6687 s
, pages
<< (PAGE_SHIFT
- 10));
6691 EXPORT_SYMBOL(free_reserved_area
);
6693 #ifdef CONFIG_HIGHMEM
6694 void free_highmem_page(struct page
*page
)
6696 __free_reserved_page(page
);
6698 page_zone(page
)->managed_pages
++;
6704 void __init
mem_init_print_info(const char *str
)
6706 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6707 unsigned long init_code_size
, init_data_size
;
6709 physpages
= get_num_physpages();
6710 codesize
= _etext
- _stext
;
6711 datasize
= _edata
- _sdata
;
6712 rosize
= __end_rodata
- __start_rodata
;
6713 bss_size
= __bss_stop
- __bss_start
;
6714 init_data_size
= __init_end
- __init_begin
;
6715 init_code_size
= _einittext
- _sinittext
;
6718 * Detect special cases and adjust section sizes accordingly:
6719 * 1) .init.* may be embedded into .data sections
6720 * 2) .init.text.* may be out of [__init_begin, __init_end],
6721 * please refer to arch/tile/kernel/vmlinux.lds.S.
6722 * 3) .rodata.* may be embedded into .text or .data sections.
6724 #define adj_init_size(start, end, size, pos, adj) \
6726 if (start <= pos && pos < end && size > adj) \
6730 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6731 _sinittext
, init_code_size
);
6732 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6733 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6734 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6735 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6737 #undef adj_init_size
6739 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6740 #ifdef CONFIG_HIGHMEM
6744 nr_free_pages() << (PAGE_SHIFT
- 10),
6745 physpages
<< (PAGE_SHIFT
- 10),
6746 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6747 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6748 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6749 totalcma_pages
<< (PAGE_SHIFT
- 10),
6750 #ifdef CONFIG_HIGHMEM
6751 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6753 str
? ", " : "", str
? str
: "");
6757 * set_dma_reserve - set the specified number of pages reserved in the first zone
6758 * @new_dma_reserve: The number of pages to mark reserved
6760 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6761 * In the DMA zone, a significant percentage may be consumed by kernel image
6762 * and other unfreeable allocations which can skew the watermarks badly. This
6763 * function may optionally be used to account for unfreeable pages in the
6764 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6765 * smaller per-cpu batchsize.
6767 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6769 dma_reserve
= new_dma_reserve
;
6772 void __init
free_area_init(unsigned long *zones_size
)
6774 free_area_init_node(0, zones_size
,
6775 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6778 static int page_alloc_cpu_dead(unsigned int cpu
)
6781 lru_add_drain_cpu(cpu
);
6785 * Spill the event counters of the dead processor
6786 * into the current processors event counters.
6787 * This artificially elevates the count of the current
6790 vm_events_fold_cpu(cpu
);
6793 * Zero the differential counters of the dead processor
6794 * so that the vm statistics are consistent.
6796 * This is only okay since the processor is dead and cannot
6797 * race with what we are doing.
6799 cpu_vm_stats_fold(cpu
);
6803 void __init
page_alloc_init(void)
6807 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
6808 "mm/page_alloc:dead", NULL
,
6809 page_alloc_cpu_dead
);
6814 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6815 * or min_free_kbytes changes.
6817 static void calculate_totalreserve_pages(void)
6819 struct pglist_data
*pgdat
;
6820 unsigned long reserve_pages
= 0;
6821 enum zone_type i
, j
;
6823 for_each_online_pgdat(pgdat
) {
6825 pgdat
->totalreserve_pages
= 0;
6827 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6828 struct zone
*zone
= pgdat
->node_zones
+ i
;
6831 /* Find valid and maximum lowmem_reserve in the zone */
6832 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6833 if (zone
->lowmem_reserve
[j
] > max
)
6834 max
= zone
->lowmem_reserve
[j
];
6837 /* we treat the high watermark as reserved pages. */
6838 max
+= high_wmark_pages(zone
);
6840 if (max
> zone
->managed_pages
)
6841 max
= zone
->managed_pages
;
6843 pgdat
->totalreserve_pages
+= max
;
6845 reserve_pages
+= max
;
6848 totalreserve_pages
= reserve_pages
;
6852 * setup_per_zone_lowmem_reserve - called whenever
6853 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6854 * has a correct pages reserved value, so an adequate number of
6855 * pages are left in the zone after a successful __alloc_pages().
6857 static void setup_per_zone_lowmem_reserve(void)
6859 struct pglist_data
*pgdat
;
6860 enum zone_type j
, idx
;
6862 for_each_online_pgdat(pgdat
) {
6863 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6864 struct zone
*zone
= pgdat
->node_zones
+ j
;
6865 unsigned long managed_pages
= zone
->managed_pages
;
6867 zone
->lowmem_reserve
[j
] = 0;
6871 struct zone
*lower_zone
;
6875 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6876 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6878 lower_zone
= pgdat
->node_zones
+ idx
;
6879 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6880 sysctl_lowmem_reserve_ratio
[idx
];
6881 managed_pages
+= lower_zone
->managed_pages
;
6886 /* update totalreserve_pages */
6887 calculate_totalreserve_pages();
6890 static void __setup_per_zone_wmarks(void)
6892 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6893 unsigned long lowmem_pages
= 0;
6895 unsigned long flags
;
6897 /* Calculate total number of !ZONE_HIGHMEM pages */
6898 for_each_zone(zone
) {
6899 if (!is_highmem(zone
))
6900 lowmem_pages
+= zone
->managed_pages
;
6903 for_each_zone(zone
) {
6906 spin_lock_irqsave(&zone
->lock
, flags
);
6907 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6908 do_div(tmp
, lowmem_pages
);
6909 if (is_highmem(zone
)) {
6911 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6912 * need highmem pages, so cap pages_min to a small
6915 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6916 * deltas control asynch page reclaim, and so should
6917 * not be capped for highmem.
6919 unsigned long min_pages
;
6921 min_pages
= zone
->managed_pages
/ 1024;
6922 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6923 zone
->watermark
[WMARK_MIN
] = min_pages
;
6926 * If it's a lowmem zone, reserve a number of pages
6927 * proportionate to the zone's size.
6929 zone
->watermark
[WMARK_MIN
] = tmp
;
6933 * Set the kswapd watermarks distance according to the
6934 * scale factor in proportion to available memory, but
6935 * ensure a minimum size on small systems.
6937 tmp
= max_t(u64
, tmp
>> 2,
6938 mult_frac(zone
->managed_pages
,
6939 watermark_scale_factor
, 10000));
6941 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6942 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6944 spin_unlock_irqrestore(&zone
->lock
, flags
);
6947 /* update totalreserve_pages */
6948 calculate_totalreserve_pages();
6952 * setup_per_zone_wmarks - called when min_free_kbytes changes
6953 * or when memory is hot-{added|removed}
6955 * Ensures that the watermark[min,low,high] values for each zone are set
6956 * correctly with respect to min_free_kbytes.
6958 void setup_per_zone_wmarks(void)
6960 static DEFINE_SPINLOCK(lock
);
6963 __setup_per_zone_wmarks();
6968 * Initialise min_free_kbytes.
6970 * For small machines we want it small (128k min). For large machines
6971 * we want it large (64MB max). But it is not linear, because network
6972 * bandwidth does not increase linearly with machine size. We use
6974 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6975 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6991 int __meminit
init_per_zone_wmark_min(void)
6993 unsigned long lowmem_kbytes
;
6994 int new_min_free_kbytes
;
6996 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6997 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6999 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7000 min_free_kbytes
= new_min_free_kbytes
;
7001 if (min_free_kbytes
< 128)
7002 min_free_kbytes
= 128;
7003 if (min_free_kbytes
> 65536)
7004 min_free_kbytes
= 65536;
7006 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7007 new_min_free_kbytes
, user_min_free_kbytes
);
7009 setup_per_zone_wmarks();
7010 refresh_zone_stat_thresholds();
7011 setup_per_zone_lowmem_reserve();
7014 setup_min_unmapped_ratio();
7015 setup_min_slab_ratio();
7020 core_initcall(init_per_zone_wmark_min
)
7023 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7024 * that we can call two helper functions whenever min_free_kbytes
7027 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7028 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7032 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7037 user_min_free_kbytes
= min_free_kbytes
;
7038 setup_per_zone_wmarks();
7043 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7044 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7048 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7053 setup_per_zone_wmarks();
7059 static void setup_min_unmapped_ratio(void)
7064 for_each_online_pgdat(pgdat
)
7065 pgdat
->min_unmapped_pages
= 0;
7068 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7069 sysctl_min_unmapped_ratio
) / 100;
7073 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7074 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7078 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7082 setup_min_unmapped_ratio();
7087 static void setup_min_slab_ratio(void)
7092 for_each_online_pgdat(pgdat
)
7093 pgdat
->min_slab_pages
= 0;
7096 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7097 sysctl_min_slab_ratio
) / 100;
7100 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7101 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7105 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7109 setup_min_slab_ratio();
7116 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7117 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7118 * whenever sysctl_lowmem_reserve_ratio changes.
7120 * The reserve ratio obviously has absolutely no relation with the
7121 * minimum watermarks. The lowmem reserve ratio can only make sense
7122 * if in function of the boot time zone sizes.
7124 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7125 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7127 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7128 setup_per_zone_lowmem_reserve();
7133 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7134 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7135 * pagelist can have before it gets flushed back to buddy allocator.
7137 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7138 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7141 int old_percpu_pagelist_fraction
;
7144 mutex_lock(&pcp_batch_high_lock
);
7145 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7147 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7148 if (!write
|| ret
< 0)
7151 /* Sanity checking to avoid pcp imbalance */
7152 if (percpu_pagelist_fraction
&&
7153 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7154 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7160 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7163 for_each_populated_zone(zone
) {
7166 for_each_possible_cpu(cpu
)
7167 pageset_set_high_and_batch(zone
,
7168 per_cpu_ptr(zone
->pageset
, cpu
));
7171 mutex_unlock(&pcp_batch_high_lock
);
7176 int hashdist
= HASHDIST_DEFAULT
;
7178 static int __init
set_hashdist(char *str
)
7182 hashdist
= simple_strtoul(str
, &str
, 0);
7185 __setup("hashdist=", set_hashdist
);
7188 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7190 * Returns the number of pages that arch has reserved but
7191 * is not known to alloc_large_system_hash().
7193 static unsigned long __init
arch_reserved_kernel_pages(void)
7200 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7201 * machines. As memory size is increased the scale is also increased but at
7202 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7203 * quadruples the scale is increased by one, which means the size of hash table
7204 * only doubles, instead of quadrupling as well.
7205 * Because 32-bit systems cannot have large physical memory, where this scaling
7206 * makes sense, it is disabled on such platforms.
7208 #if __BITS_PER_LONG > 32
7209 #define ADAPT_SCALE_BASE (64ul << 30)
7210 #define ADAPT_SCALE_SHIFT 2
7211 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7215 * allocate a large system hash table from bootmem
7216 * - it is assumed that the hash table must contain an exact power-of-2
7217 * quantity of entries
7218 * - limit is the number of hash buckets, not the total allocation size
7220 void *__init
alloc_large_system_hash(const char *tablename
,
7221 unsigned long bucketsize
,
7222 unsigned long numentries
,
7225 unsigned int *_hash_shift
,
7226 unsigned int *_hash_mask
,
7227 unsigned long low_limit
,
7228 unsigned long high_limit
)
7230 unsigned long long max
= high_limit
;
7231 unsigned long log2qty
, size
;
7235 /* allow the kernel cmdline to have a say */
7237 /* round applicable memory size up to nearest megabyte */
7238 numentries
= nr_kernel_pages
;
7239 numentries
-= arch_reserved_kernel_pages();
7241 /* It isn't necessary when PAGE_SIZE >= 1MB */
7242 if (PAGE_SHIFT
< 20)
7243 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7245 #if __BITS_PER_LONG > 32
7247 unsigned long adapt
;
7249 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7250 adapt
<<= ADAPT_SCALE_SHIFT
)
7255 /* limit to 1 bucket per 2^scale bytes of low memory */
7256 if (scale
> PAGE_SHIFT
)
7257 numentries
>>= (scale
- PAGE_SHIFT
);
7259 numentries
<<= (PAGE_SHIFT
- scale
);
7261 /* Make sure we've got at least a 0-order allocation.. */
7262 if (unlikely(flags
& HASH_SMALL
)) {
7263 /* Makes no sense without HASH_EARLY */
7264 WARN_ON(!(flags
& HASH_EARLY
));
7265 if (!(numentries
>> *_hash_shift
)) {
7266 numentries
= 1UL << *_hash_shift
;
7267 BUG_ON(!numentries
);
7269 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7270 numentries
= PAGE_SIZE
/ bucketsize
;
7272 numentries
= roundup_pow_of_two(numentries
);
7274 /* limit allocation size to 1/16 total memory by default */
7276 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7277 do_div(max
, bucketsize
);
7279 max
= min(max
, 0x80000000ULL
);
7281 if (numentries
< low_limit
)
7282 numentries
= low_limit
;
7283 if (numentries
> max
)
7286 log2qty
= ilog2(numentries
);
7289 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7290 * currently not used when HASH_EARLY is specified.
7292 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7294 size
= bucketsize
<< log2qty
;
7295 if (flags
& HASH_EARLY
)
7296 table
= memblock_virt_alloc_nopanic(size
, 0);
7298 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7301 * If bucketsize is not a power-of-two, we may free
7302 * some pages at the end of hash table which
7303 * alloc_pages_exact() automatically does
7305 if (get_order(size
) < MAX_ORDER
) {
7306 table
= alloc_pages_exact(size
, gfp_flags
);
7307 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7310 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7313 panic("Failed to allocate %s hash table\n", tablename
);
7315 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7316 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7319 *_hash_shift
= log2qty
;
7321 *_hash_mask
= (1 << log2qty
) - 1;
7327 * This function checks whether pageblock includes unmovable pages or not.
7328 * If @count is not zero, it is okay to include less @count unmovable pages
7330 * PageLRU check without isolation or lru_lock could race so that
7331 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7332 * check without lock_page also may miss some movable non-lru pages at
7333 * race condition. So you can't expect this function should be exact.
7335 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7336 bool skip_hwpoisoned_pages
)
7338 unsigned long pfn
, iter
, found
;
7342 * For avoiding noise data, lru_add_drain_all() should be called
7343 * If ZONE_MOVABLE, the zone never contains unmovable pages
7345 if (zone_idx(zone
) == ZONE_MOVABLE
)
7347 mt
= get_pageblock_migratetype(page
);
7348 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7351 pfn
= page_to_pfn(page
);
7352 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7353 unsigned long check
= pfn
+ iter
;
7355 if (!pfn_valid_within(check
))
7358 page
= pfn_to_page(check
);
7361 * Hugepages are not in LRU lists, but they're movable.
7362 * We need not scan over tail pages bacause we don't
7363 * handle each tail page individually in migration.
7365 if (PageHuge(page
)) {
7366 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7371 * We can't use page_count without pin a page
7372 * because another CPU can free compound page.
7373 * This check already skips compound tails of THP
7374 * because their page->_refcount is zero at all time.
7376 if (!page_ref_count(page
)) {
7377 if (PageBuddy(page
))
7378 iter
+= (1 << page_order(page
)) - 1;
7383 * The HWPoisoned page may be not in buddy system, and
7384 * page_count() is not 0.
7386 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7389 if (__PageMovable(page
))
7395 * If there are RECLAIMABLE pages, we need to check
7396 * it. But now, memory offline itself doesn't call
7397 * shrink_node_slabs() and it still to be fixed.
7400 * If the page is not RAM, page_count()should be 0.
7401 * we don't need more check. This is an _used_ not-movable page.
7403 * The problematic thing here is PG_reserved pages. PG_reserved
7404 * is set to both of a memory hole page and a _used_ kernel
7413 bool is_pageblock_removable_nolock(struct page
*page
)
7419 * We have to be careful here because we are iterating over memory
7420 * sections which are not zone aware so we might end up outside of
7421 * the zone but still within the section.
7422 * We have to take care about the node as well. If the node is offline
7423 * its NODE_DATA will be NULL - see page_zone.
7425 if (!node_online(page_to_nid(page
)))
7428 zone
= page_zone(page
);
7429 pfn
= page_to_pfn(page
);
7430 if (!zone_spans_pfn(zone
, pfn
))
7433 return !has_unmovable_pages(zone
, page
, 0, true);
7436 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7438 static unsigned long pfn_max_align_down(unsigned long pfn
)
7440 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7441 pageblock_nr_pages
) - 1);
7444 static unsigned long pfn_max_align_up(unsigned long pfn
)
7446 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7447 pageblock_nr_pages
));
7450 /* [start, end) must belong to a single zone. */
7451 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7452 unsigned long start
, unsigned long end
)
7454 /* This function is based on compact_zone() from compaction.c. */
7455 unsigned long nr_reclaimed
;
7456 unsigned long pfn
= start
;
7457 unsigned int tries
= 0;
7462 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7463 if (fatal_signal_pending(current
)) {
7468 if (list_empty(&cc
->migratepages
)) {
7469 cc
->nr_migratepages
= 0;
7470 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7476 } else if (++tries
== 5) {
7477 ret
= ret
< 0 ? ret
: -EBUSY
;
7481 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7483 cc
->nr_migratepages
-= nr_reclaimed
;
7485 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7486 NULL
, 0, cc
->mode
, MR_CMA
);
7489 putback_movable_pages(&cc
->migratepages
);
7496 * alloc_contig_range() -- tries to allocate given range of pages
7497 * @start: start PFN to allocate
7498 * @end: one-past-the-last PFN to allocate
7499 * @migratetype: migratetype of the underlaying pageblocks (either
7500 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7501 * in range must have the same migratetype and it must
7502 * be either of the two.
7503 * @gfp_mask: GFP mask to use during compaction
7505 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7506 * aligned, however it's the caller's responsibility to guarantee that
7507 * we are the only thread that changes migrate type of pageblocks the
7510 * The PFN range must belong to a single zone.
7512 * Returns zero on success or negative error code. On success all
7513 * pages which PFN is in [start, end) are allocated for the caller and
7514 * need to be freed with free_contig_range().
7516 int alloc_contig_range(unsigned long start
, unsigned long end
,
7517 unsigned migratetype
, gfp_t gfp_mask
)
7519 unsigned long outer_start
, outer_end
;
7523 struct compact_control cc
= {
7524 .nr_migratepages
= 0,
7526 .zone
= page_zone(pfn_to_page(start
)),
7527 .mode
= MIGRATE_SYNC
,
7528 .ignore_skip_hint
= true,
7529 .gfp_mask
= current_gfp_context(gfp_mask
),
7531 INIT_LIST_HEAD(&cc
.migratepages
);
7534 * What we do here is we mark all pageblocks in range as
7535 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7536 * have different sizes, and due to the way page allocator
7537 * work, we align the range to biggest of the two pages so
7538 * that page allocator won't try to merge buddies from
7539 * different pageblocks and change MIGRATE_ISOLATE to some
7540 * other migration type.
7542 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7543 * migrate the pages from an unaligned range (ie. pages that
7544 * we are interested in). This will put all the pages in
7545 * range back to page allocator as MIGRATE_ISOLATE.
7547 * When this is done, we take the pages in range from page
7548 * allocator removing them from the buddy system. This way
7549 * page allocator will never consider using them.
7551 * This lets us mark the pageblocks back as
7552 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7553 * aligned range but not in the unaligned, original range are
7554 * put back to page allocator so that buddy can use them.
7557 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7558 pfn_max_align_up(end
), migratetype
,
7564 * In case of -EBUSY, we'd like to know which page causes problem.
7565 * So, just fall through. test_pages_isolated() has a tracepoint
7566 * which will report the busy page.
7568 * It is possible that busy pages could become available before
7569 * the call to test_pages_isolated, and the range will actually be
7570 * allocated. So, if we fall through be sure to clear ret so that
7571 * -EBUSY is not accidentally used or returned to caller.
7573 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7574 if (ret
&& ret
!= -EBUSY
)
7579 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7580 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7581 * more, all pages in [start, end) are free in page allocator.
7582 * What we are going to do is to allocate all pages from
7583 * [start, end) (that is remove them from page allocator).
7585 * The only problem is that pages at the beginning and at the
7586 * end of interesting range may be not aligned with pages that
7587 * page allocator holds, ie. they can be part of higher order
7588 * pages. Because of this, we reserve the bigger range and
7589 * once this is done free the pages we are not interested in.
7591 * We don't have to hold zone->lock here because the pages are
7592 * isolated thus they won't get removed from buddy.
7595 lru_add_drain_all();
7596 drain_all_pages(cc
.zone
);
7599 outer_start
= start
;
7600 while (!PageBuddy(pfn_to_page(outer_start
))) {
7601 if (++order
>= MAX_ORDER
) {
7602 outer_start
= start
;
7605 outer_start
&= ~0UL << order
;
7608 if (outer_start
!= start
) {
7609 order
= page_order(pfn_to_page(outer_start
));
7612 * outer_start page could be small order buddy page and
7613 * it doesn't include start page. Adjust outer_start
7614 * in this case to report failed page properly
7615 * on tracepoint in test_pages_isolated()
7617 if (outer_start
+ (1UL << order
) <= start
)
7618 outer_start
= start
;
7621 /* Make sure the range is really isolated. */
7622 if (test_pages_isolated(outer_start
, end
, false)) {
7623 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7624 __func__
, outer_start
, end
);
7629 /* Grab isolated pages from freelists. */
7630 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7636 /* Free head and tail (if any) */
7637 if (start
!= outer_start
)
7638 free_contig_range(outer_start
, start
- outer_start
);
7639 if (end
!= outer_end
)
7640 free_contig_range(end
, outer_end
- end
);
7643 undo_isolate_page_range(pfn_max_align_down(start
),
7644 pfn_max_align_up(end
), migratetype
);
7648 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7650 unsigned int count
= 0;
7652 for (; nr_pages
--; pfn
++) {
7653 struct page
*page
= pfn_to_page(pfn
);
7655 count
+= page_count(page
) != 1;
7658 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7662 #ifdef CONFIG_MEMORY_HOTPLUG
7664 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7665 * page high values need to be recalulated.
7667 void __meminit
zone_pcp_update(struct zone
*zone
)
7670 mutex_lock(&pcp_batch_high_lock
);
7671 for_each_possible_cpu(cpu
)
7672 pageset_set_high_and_batch(zone
,
7673 per_cpu_ptr(zone
->pageset
, cpu
));
7674 mutex_unlock(&pcp_batch_high_lock
);
7678 void zone_pcp_reset(struct zone
*zone
)
7680 unsigned long flags
;
7682 struct per_cpu_pageset
*pset
;
7684 /* avoid races with drain_pages() */
7685 local_irq_save(flags
);
7686 if (zone
->pageset
!= &boot_pageset
) {
7687 for_each_online_cpu(cpu
) {
7688 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7689 drain_zonestat(zone
, pset
);
7691 free_percpu(zone
->pageset
);
7692 zone
->pageset
= &boot_pageset
;
7694 local_irq_restore(flags
);
7697 #ifdef CONFIG_MEMORY_HOTREMOVE
7699 * All pages in the range must be in a single zone and isolated
7700 * before calling this.
7703 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7707 unsigned int order
, i
;
7709 unsigned long flags
;
7710 /* find the first valid pfn */
7711 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7716 offline_mem_sections(pfn
, end_pfn
);
7717 zone
= page_zone(pfn_to_page(pfn
));
7718 spin_lock_irqsave(&zone
->lock
, flags
);
7720 while (pfn
< end_pfn
) {
7721 if (!pfn_valid(pfn
)) {
7725 page
= pfn_to_page(pfn
);
7727 * The HWPoisoned page may be not in buddy system, and
7728 * page_count() is not 0.
7730 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7732 SetPageReserved(page
);
7736 BUG_ON(page_count(page
));
7737 BUG_ON(!PageBuddy(page
));
7738 order
= page_order(page
);
7739 #ifdef CONFIG_DEBUG_VM
7740 pr_info("remove from free list %lx %d %lx\n",
7741 pfn
, 1 << order
, end_pfn
);
7743 list_del(&page
->lru
);
7744 rmv_page_order(page
);
7745 zone
->free_area
[order
].nr_free
--;
7746 for (i
= 0; i
< (1 << order
); i
++)
7747 SetPageReserved((page
+i
));
7748 pfn
+= (1 << order
);
7750 spin_unlock_irqrestore(&zone
->lock
, flags
);
7754 bool is_free_buddy_page(struct page
*page
)
7756 struct zone
*zone
= page_zone(page
);
7757 unsigned long pfn
= page_to_pfn(page
);
7758 unsigned long flags
;
7761 spin_lock_irqsave(&zone
->lock
, flags
);
7762 for (order
= 0; order
< MAX_ORDER
; order
++) {
7763 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7765 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7768 spin_unlock_irqrestore(&zone
->lock
, flags
);
7770 return order
< MAX_ORDER
;