Merge tag '6.11-rc-smb-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[linux-stable.git] / mm / page_alloc.c
blob28f80daf5c0418163fd111052e61b24ab2a7ba41
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
100 #define pcp_trylock_prepare(flags) do { } while (0)
101 #define pcp_trylock_finish(flag) do { } while (0)
102 #else
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags) local_irq_save(flags)
106 #define pcp_trylock_finish(flags) local_irq_restore(flags)
107 #endif
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin() preempt_disable()
119 #define pcpu_task_unpin() preempt_enable()
120 #else
121 #define pcpu_task_pin() migrate_disable()
122 #define pcpu_task_unpin() migrate_enable()
123 #endif
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
129 #define pcpu_spin_lock(type, member, ptr) \
130 ({ \
131 type *_ret; \
132 pcpu_task_pin(); \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
135 _ret; \
138 #define pcpu_spin_trylock(type, member, ptr) \
139 ({ \
140 type *_ret; \
141 pcpu_task_pin(); \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
144 pcpu_task_unpin(); \
145 _ret = NULL; \
147 _ret; \
150 #define pcpu_spin_unlock(member, ptr) \
151 ({ \
152 spin_unlock(&ptr->member); \
153 pcpu_task_unpin(); \
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
160 #define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
163 #define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
184 static DEFINE_MUTEX(pcpu_drain_mutex);
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
192 * Array of node states.
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 [N_POSSIBLE] = NODE_MASK_ALL,
196 [N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 [N_MEMORY] = { { [0] = 1UL } },
203 [N_CPU] = { { [0] = 1UL } },
204 #endif /* NUMA */
206 EXPORT_SYMBOL(node_states);
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 fpi_t fpi_flags);
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 [ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 [ZONE_DMA32] = 256,
234 #endif
235 [ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 [ZONE_HIGHMEM] = 0,
238 #endif
239 [ZONE_MOVABLE] = 0,
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 "DMA32",
248 #endif
249 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 "HighMem",
252 #endif
253 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 "Device",
256 #endif
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 "Unmovable",
261 "Movable",
262 "Reclaimable",
263 "HighAtomic",
264 #ifdef CONFIG_CMA
265 "CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 "Isolate",
269 #endif
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static void accept_page(struct page *page, unsigned int order);
290 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
291 static inline bool has_unaccepted_memory(void);
292 static bool __free_unaccepted(struct page *page);
294 int page_group_by_mobility_disabled __read_mostly;
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 * During boot we initialize deferred pages on-demand, as needed, but once
299 * page_alloc_init_late() has finished, the deferred pages are all initialized,
300 * and we can permanently disable that path.
302 DEFINE_STATIC_KEY_TRUE(deferred_pages);
304 static inline bool deferred_pages_enabled(void)
306 return static_branch_unlikely(&deferred_pages);
310 * deferred_grow_zone() is __init, but it is called from
311 * get_page_from_freelist() during early boot until deferred_pages permanently
312 * disables this call. This is why we have refdata wrapper to avoid warning,
313 * and to ensure that the function body gets unloaded.
315 static bool __ref
316 _deferred_grow_zone(struct zone *zone, unsigned int order)
318 return deferred_grow_zone(zone, order);
320 #else
321 static inline bool deferred_pages_enabled(void)
323 return false;
325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
327 /* Return a pointer to the bitmap storing bits affecting a block of pages */
328 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 unsigned long pfn)
331 #ifdef CONFIG_SPARSEMEM
332 return section_to_usemap(__pfn_to_section(pfn));
333 #else
334 return page_zone(page)->pageblock_flags;
335 #endif /* CONFIG_SPARSEMEM */
338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
340 #ifdef CONFIG_SPARSEMEM
341 pfn &= (PAGES_PER_SECTION-1);
342 #else
343 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344 #endif /* CONFIG_SPARSEMEM */
345 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350 * @page: The page within the block of interest
351 * @pfn: The target page frame number
352 * @mask: mask of bits that the caller is interested in
354 * Return: pageblock_bits flags
356 unsigned long get_pfnblock_flags_mask(const struct page *page,
357 unsigned long pfn, unsigned long mask)
359 unsigned long *bitmap;
360 unsigned long bitidx, word_bitidx;
361 unsigned long word;
363 bitmap = get_pageblock_bitmap(page, pfn);
364 bitidx = pfn_to_bitidx(page, pfn);
365 word_bitidx = bitidx / BITS_PER_LONG;
366 bitidx &= (BITS_PER_LONG-1);
368 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 * a consistent read of the memory array, so that results, even though
370 * racy, are not corrupted.
372 word = READ_ONCE(bitmap[word_bitidx]);
373 return (word >> bitidx) & mask;
376 static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 unsigned long pfn)
379 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384 * @page: The page within the block of interest
385 * @flags: The flags to set
386 * @pfn: The target page frame number
387 * @mask: mask of bits that the caller is interested in
389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 unsigned long pfn,
391 unsigned long mask)
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
400 bitmap = get_pageblock_bitmap(page, pfn);
401 bitidx = pfn_to_bitidx(page, pfn);
402 word_bitidx = bitidx / BITS_PER_LONG;
403 bitidx &= (BITS_PER_LONG-1);
405 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
407 mask <<= bitidx;
408 flags <<= bitidx;
410 word = READ_ONCE(bitmap[word_bitidx]);
411 do {
412 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
415 void set_pageblock_migratetype(struct page *page, int migratetype)
417 if (unlikely(page_group_by_mobility_disabled &&
418 migratetype < MIGRATE_PCPTYPES))
419 migratetype = MIGRATE_UNMOVABLE;
421 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 page_to_pfn(page), MIGRATETYPE_MASK);
425 #ifdef CONFIG_DEBUG_VM
426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
428 int ret;
429 unsigned seq;
430 unsigned long pfn = page_to_pfn(page);
431 unsigned long sp, start_pfn;
433 do {
434 seq = zone_span_seqbegin(zone);
435 start_pfn = zone->zone_start_pfn;
436 sp = zone->spanned_pages;
437 ret = !zone_spans_pfn(zone, pfn);
438 } while (zone_span_seqretry(zone, seq));
440 if (ret)
441 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 pfn, zone_to_nid(zone), zone->name,
443 start_pfn, start_pfn + sp);
445 return ret;
449 * Temporary debugging check for pages not lying within a given zone.
451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
453 if (page_outside_zone_boundaries(zone, page))
454 return true;
455 if (zone != page_zone(page))
456 return true;
458 return false;
460 #else
461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
463 return false;
465 #endif
467 static void bad_page(struct page *page, const char *reason)
469 static unsigned long resume;
470 static unsigned long nr_shown;
471 static unsigned long nr_unshown;
474 * Allow a burst of 60 reports, then keep quiet for that minute;
475 * or allow a steady drip of one report per second.
477 if (nr_shown == 60) {
478 if (time_before(jiffies, resume)) {
479 nr_unshown++;
480 goto out;
482 if (nr_unshown) {
483 pr_alert(
484 "BUG: Bad page state: %lu messages suppressed\n",
485 nr_unshown);
486 nr_unshown = 0;
488 nr_shown = 0;
490 if (nr_shown++ == 0)
491 resume = jiffies + 60 * HZ;
493 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
494 current->comm, page_to_pfn(page));
495 dump_page(page, reason);
497 print_modules();
498 dump_stack();
499 out:
500 /* Leave bad fields for debug, except PageBuddy could make trouble */
501 if (PageBuddy(page))
502 __ClearPageBuddy(page);
503 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
506 static inline unsigned int order_to_pindex(int migratetype, int order)
508 bool __maybe_unused movable;
510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
511 if (order > PAGE_ALLOC_COSTLY_ORDER) {
512 VM_BUG_ON(order != HPAGE_PMD_ORDER);
514 movable = migratetype == MIGRATE_MOVABLE;
516 return NR_LOWORDER_PCP_LISTS + movable;
518 #else
519 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
520 #endif
522 return (MIGRATE_PCPTYPES * order) + migratetype;
525 static inline int pindex_to_order(unsigned int pindex)
527 int order = pindex / MIGRATE_PCPTYPES;
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 if (pindex >= NR_LOWORDER_PCP_LISTS)
531 order = HPAGE_PMD_ORDER;
532 #else
533 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534 #endif
536 return order;
539 static inline bool pcp_allowed_order(unsigned int order)
541 if (order <= PAGE_ALLOC_COSTLY_ORDER)
542 return true;
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 if (order == HPAGE_PMD_ORDER)
545 return true;
546 #endif
547 return false;
551 * Higher-order pages are called "compound pages". They are structured thusly:
553 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
555 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
556 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
558 * The first tail page's ->compound_order holds the order of allocation.
559 * This usage means that zero-order pages may not be compound.
562 void prep_compound_page(struct page *page, unsigned int order)
564 int i;
565 int nr_pages = 1 << order;
567 __SetPageHead(page);
568 for (i = 1; i < nr_pages; i++)
569 prep_compound_tail(page, i);
571 prep_compound_head(page, order);
574 static inline void set_buddy_order(struct page *page, unsigned int order)
576 set_page_private(page, order);
577 __SetPageBuddy(page);
580 #ifdef CONFIG_COMPACTION
581 static inline struct capture_control *task_capc(struct zone *zone)
583 struct capture_control *capc = current->capture_control;
585 return unlikely(capc) &&
586 !(current->flags & PF_KTHREAD) &&
587 !capc->page &&
588 capc->cc->zone == zone ? capc : NULL;
591 static inline bool
592 compaction_capture(struct capture_control *capc, struct page *page,
593 int order, int migratetype)
595 if (!capc || order != capc->cc->order)
596 return false;
598 /* Do not accidentally pollute CMA or isolated regions*/
599 if (is_migrate_cma(migratetype) ||
600 is_migrate_isolate(migratetype))
601 return false;
604 * Do not let lower order allocations pollute a movable pageblock
605 * unless compaction is also requesting movable pages.
606 * This might let an unmovable request use a reclaimable pageblock
607 * and vice-versa but no more than normal fallback logic which can
608 * have trouble finding a high-order free page.
610 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
611 capc->cc->migratetype != MIGRATE_MOVABLE)
612 return false;
614 capc->page = page;
615 return true;
618 #else
619 static inline struct capture_control *task_capc(struct zone *zone)
621 return NULL;
624 static inline bool
625 compaction_capture(struct capture_control *capc, struct page *page,
626 int order, int migratetype)
628 return false;
630 #endif /* CONFIG_COMPACTION */
632 static inline void account_freepages(struct zone *zone, int nr_pages,
633 int migratetype)
635 if (is_migrate_isolate(migratetype))
636 return;
638 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
640 if (is_migrate_cma(migratetype))
641 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
644 /* Used for pages not on another list */
645 static inline void __add_to_free_list(struct page *page, struct zone *zone,
646 unsigned int order, int migratetype,
647 bool tail)
649 struct free_area *area = &zone->free_area[order];
651 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
652 "page type is %lu, passed migratetype is %d (nr=%d)\n",
653 get_pageblock_migratetype(page), migratetype, 1 << order);
655 if (tail)
656 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
657 else
658 list_add(&page->buddy_list, &area->free_list[migratetype]);
659 area->nr_free++;
663 * Used for pages which are on another list. Move the pages to the tail
664 * of the list - so the moved pages won't immediately be considered for
665 * allocation again (e.g., optimization for memory onlining).
667 static inline void move_to_free_list(struct page *page, struct zone *zone,
668 unsigned int order, int old_mt, int new_mt)
670 struct free_area *area = &zone->free_area[order];
672 /* Free page moving can fail, so it happens before the type update */
673 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
674 "page type is %lu, passed migratetype is %d (nr=%d)\n",
675 get_pageblock_migratetype(page), old_mt, 1 << order);
677 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
679 account_freepages(zone, -(1 << order), old_mt);
680 account_freepages(zone, 1 << order, new_mt);
683 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
684 unsigned int order, int migratetype)
686 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
687 "page type is %lu, passed migratetype is %d (nr=%d)\n",
688 get_pageblock_migratetype(page), migratetype, 1 << order);
690 /* clear reported state and update reported page count */
691 if (page_reported(page))
692 __ClearPageReported(page);
694 list_del(&page->buddy_list);
695 __ClearPageBuddy(page);
696 set_page_private(page, 0);
697 zone->free_area[order].nr_free--;
700 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
701 unsigned int order, int migratetype)
703 __del_page_from_free_list(page, zone, order, migratetype);
704 account_freepages(zone, -(1 << order), migratetype);
707 static inline struct page *get_page_from_free_area(struct free_area *area,
708 int migratetype)
710 return list_first_entry_or_null(&area->free_list[migratetype],
711 struct page, buddy_list);
715 * If this is less than the 2nd largest possible page, check if the buddy
716 * of the next-higher order is free. If it is, it's possible
717 * that pages are being freed that will coalesce soon. In case,
718 * that is happening, add the free page to the tail of the list
719 * so it's less likely to be used soon and more likely to be merged
720 * as a 2-level higher order page
722 static inline bool
723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
724 struct page *page, unsigned int order)
726 unsigned long higher_page_pfn;
727 struct page *higher_page;
729 if (order >= MAX_PAGE_ORDER - 1)
730 return false;
732 higher_page_pfn = buddy_pfn & pfn;
733 higher_page = page + (higher_page_pfn - pfn);
735 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
736 NULL) != NULL;
740 * Freeing function for a buddy system allocator.
742 * The concept of a buddy system is to maintain direct-mapped table
743 * (containing bit values) for memory blocks of various "orders".
744 * The bottom level table contains the map for the smallest allocatable
745 * units of memory (here, pages), and each level above it describes
746 * pairs of units from the levels below, hence, "buddies".
747 * At a high level, all that happens here is marking the table entry
748 * at the bottom level available, and propagating the changes upward
749 * as necessary, plus some accounting needed to play nicely with other
750 * parts of the VM system.
751 * At each level, we keep a list of pages, which are heads of continuous
752 * free pages of length of (1 << order) and marked with PageBuddy.
753 * Page's order is recorded in page_private(page) field.
754 * So when we are allocating or freeing one, we can derive the state of the
755 * other. That is, if we allocate a small block, and both were
756 * free, the remainder of the region must be split into blocks.
757 * If a block is freed, and its buddy is also free, then this
758 * triggers coalescing into a block of larger size.
760 * -- nyc
763 static inline void __free_one_page(struct page *page,
764 unsigned long pfn,
765 struct zone *zone, unsigned int order,
766 int migratetype, fpi_t fpi_flags)
768 struct capture_control *capc = task_capc(zone);
769 unsigned long buddy_pfn = 0;
770 unsigned long combined_pfn;
771 struct page *buddy;
772 bool to_tail;
774 VM_BUG_ON(!zone_is_initialized(zone));
775 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
777 VM_BUG_ON(migratetype == -1);
778 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
779 VM_BUG_ON_PAGE(bad_range(zone, page), page);
781 account_freepages(zone, 1 << order, migratetype);
783 while (order < MAX_PAGE_ORDER) {
784 int buddy_mt = migratetype;
786 if (compaction_capture(capc, page, order, migratetype)) {
787 account_freepages(zone, -(1 << order), migratetype);
788 return;
791 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
792 if (!buddy)
793 goto done_merging;
795 if (unlikely(order >= pageblock_order)) {
797 * We want to prevent merge between freepages on pageblock
798 * without fallbacks and normal pageblock. Without this,
799 * pageblock isolation could cause incorrect freepage or CMA
800 * accounting or HIGHATOMIC accounting.
802 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
804 if (migratetype != buddy_mt &&
805 (!migratetype_is_mergeable(migratetype) ||
806 !migratetype_is_mergeable(buddy_mt)))
807 goto done_merging;
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
814 if (page_is_guard(buddy))
815 clear_page_guard(zone, buddy, order);
816 else
817 __del_page_from_free_list(buddy, zone, order, buddy_mt);
819 if (unlikely(buddy_mt != migratetype)) {
821 * Match buddy type. This ensures that an
822 * expand() down the line puts the sub-blocks
823 * on the right freelists.
825 set_pageblock_migratetype(buddy, migratetype);
828 combined_pfn = buddy_pfn & pfn;
829 page = page + (combined_pfn - pfn);
830 pfn = combined_pfn;
831 order++;
834 done_merging:
835 set_buddy_order(page, order);
837 if (fpi_flags & FPI_TO_TAIL)
838 to_tail = true;
839 else if (is_shuffle_order(order))
840 to_tail = shuffle_pick_tail();
841 else
842 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
844 __add_to_free_list(page, zone, order, migratetype, to_tail);
846 /* Notify page reporting subsystem of freed page */
847 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
848 page_reporting_notify_free(order);
852 * A bad page could be due to a number of fields. Instead of multiple branches,
853 * try and check multiple fields with one check. The caller must do a detailed
854 * check if necessary.
856 static inline bool page_expected_state(struct page *page,
857 unsigned long check_flags)
859 if (unlikely(atomic_read(&page->_mapcount) != -1))
860 return false;
862 if (unlikely((unsigned long)page->mapping |
863 page_ref_count(page) |
864 #ifdef CONFIG_MEMCG
865 page->memcg_data |
866 #endif
867 #ifdef CONFIG_PAGE_POOL
868 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
869 #endif
870 (page->flags & check_flags)))
871 return false;
873 return true;
876 static const char *page_bad_reason(struct page *page, unsigned long flags)
878 const char *bad_reason = NULL;
880 if (unlikely(atomic_read(&page->_mapcount) != -1))
881 bad_reason = "nonzero mapcount";
882 if (unlikely(page->mapping != NULL))
883 bad_reason = "non-NULL mapping";
884 if (unlikely(page_ref_count(page) != 0))
885 bad_reason = "nonzero _refcount";
886 if (unlikely(page->flags & flags)) {
887 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
888 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
889 else
890 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
892 #ifdef CONFIG_MEMCG
893 if (unlikely(page->memcg_data))
894 bad_reason = "page still charged to cgroup";
895 #endif
896 #ifdef CONFIG_PAGE_POOL
897 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
898 bad_reason = "page_pool leak";
899 #endif
900 return bad_reason;
903 static void free_page_is_bad_report(struct page *page)
905 bad_page(page,
906 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
909 static inline bool free_page_is_bad(struct page *page)
911 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
912 return false;
914 /* Something has gone sideways, find it */
915 free_page_is_bad_report(page);
916 return true;
919 static inline bool is_check_pages_enabled(void)
921 return static_branch_unlikely(&check_pages_enabled);
924 static int free_tail_page_prepare(struct page *head_page, struct page *page)
926 struct folio *folio = (struct folio *)head_page;
927 int ret = 1;
930 * We rely page->lru.next never has bit 0 set, unless the page
931 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
933 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
935 if (!is_check_pages_enabled()) {
936 ret = 0;
937 goto out;
939 switch (page - head_page) {
940 case 1:
941 /* the first tail page: these may be in place of ->mapping */
942 if (unlikely(folio_entire_mapcount(folio))) {
943 bad_page(page, "nonzero entire_mapcount");
944 goto out;
946 if (unlikely(folio_large_mapcount(folio))) {
947 bad_page(page, "nonzero large_mapcount");
948 goto out;
950 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
951 bad_page(page, "nonzero nr_pages_mapped");
952 goto out;
954 if (unlikely(atomic_read(&folio->_pincount))) {
955 bad_page(page, "nonzero pincount");
956 goto out;
958 break;
959 case 2:
960 /* the second tail page: deferred_list overlaps ->mapping */
961 if (unlikely(!list_empty(&folio->_deferred_list))) {
962 bad_page(page, "on deferred list");
963 goto out;
965 break;
966 default:
967 if (page->mapping != TAIL_MAPPING) {
968 bad_page(page, "corrupted mapping in tail page");
969 goto out;
971 break;
973 if (unlikely(!PageTail(page))) {
974 bad_page(page, "PageTail not set");
975 goto out;
977 if (unlikely(compound_head(page) != head_page)) {
978 bad_page(page, "compound_head not consistent");
979 goto out;
981 ret = 0;
982 out:
983 page->mapping = NULL;
984 clear_compound_head(page);
985 return ret;
989 * Skip KASAN memory poisoning when either:
991 * 1. For generic KASAN: deferred memory initialization has not yet completed.
992 * Tag-based KASAN modes skip pages freed via deferred memory initialization
993 * using page tags instead (see below).
994 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
995 * that error detection is disabled for accesses via the page address.
997 * Pages will have match-all tags in the following circumstances:
999 * 1. Pages are being initialized for the first time, including during deferred
1000 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1001 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1002 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1003 * 3. The allocation was excluded from being checked due to sampling,
1004 * see the call to kasan_unpoison_pages.
1006 * Poisoning pages during deferred memory init will greatly lengthen the
1007 * process and cause problem in large memory systems as the deferred pages
1008 * initialization is done with interrupt disabled.
1010 * Assuming that there will be no reference to those newly initialized
1011 * pages before they are ever allocated, this should have no effect on
1012 * KASAN memory tracking as the poison will be properly inserted at page
1013 * allocation time. The only corner case is when pages are allocated by
1014 * on-demand allocation and then freed again before the deferred pages
1015 * initialization is done, but this is not likely to happen.
1017 static inline bool should_skip_kasan_poison(struct page *page)
1019 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1020 return deferred_pages_enabled();
1022 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1025 static void kernel_init_pages(struct page *page, int numpages)
1027 int i;
1029 /* s390's use of memset() could override KASAN redzones. */
1030 kasan_disable_current();
1031 for (i = 0; i < numpages; i++)
1032 clear_highpage_kasan_tagged(page + i);
1033 kasan_enable_current();
1036 __always_inline bool free_pages_prepare(struct page *page,
1037 unsigned int order)
1039 int bad = 0;
1040 bool skip_kasan_poison = should_skip_kasan_poison(page);
1041 bool init = want_init_on_free();
1042 bool compound = PageCompound(page);
1044 VM_BUG_ON_PAGE(PageTail(page), page);
1046 trace_mm_page_free(page, order);
1047 kmsan_free_page(page, order);
1049 if (memcg_kmem_online() && PageMemcgKmem(page))
1050 __memcg_kmem_uncharge_page(page, order);
1052 if (unlikely(PageHWPoison(page)) && !order) {
1053 /* Do not let hwpoison pages hit pcplists/buddy */
1054 reset_page_owner(page, order);
1055 page_table_check_free(page, order);
1056 pgalloc_tag_sub(page, 1 << order);
1057 return false;
1060 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1063 * Check tail pages before head page information is cleared to
1064 * avoid checking PageCompound for order-0 pages.
1066 if (unlikely(order)) {
1067 int i;
1069 if (compound)
1070 page[1].flags &= ~PAGE_FLAGS_SECOND;
1071 for (i = 1; i < (1 << order); i++) {
1072 if (compound)
1073 bad += free_tail_page_prepare(page, page + i);
1074 if (is_check_pages_enabled()) {
1075 if (free_page_is_bad(page + i)) {
1076 bad++;
1077 continue;
1080 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1083 if (PageMappingFlags(page))
1084 page->mapping = NULL;
1085 if (is_check_pages_enabled()) {
1086 if (free_page_is_bad(page))
1087 bad++;
1088 if (bad)
1089 return false;
1092 page_cpupid_reset_last(page);
1093 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1094 reset_page_owner(page, order);
1095 page_table_check_free(page, order);
1096 pgalloc_tag_sub(page, 1 << order);
1098 if (!PageHighMem(page)) {
1099 debug_check_no_locks_freed(page_address(page),
1100 PAGE_SIZE << order);
1101 debug_check_no_obj_freed(page_address(page),
1102 PAGE_SIZE << order);
1105 kernel_poison_pages(page, 1 << order);
1108 * As memory initialization might be integrated into KASAN,
1109 * KASAN poisoning and memory initialization code must be
1110 * kept together to avoid discrepancies in behavior.
1112 * With hardware tag-based KASAN, memory tags must be set before the
1113 * page becomes unavailable via debug_pagealloc or arch_free_page.
1115 if (!skip_kasan_poison) {
1116 kasan_poison_pages(page, order, init);
1118 /* Memory is already initialized if KASAN did it internally. */
1119 if (kasan_has_integrated_init())
1120 init = false;
1122 if (init)
1123 kernel_init_pages(page, 1 << order);
1126 * arch_free_page() can make the page's contents inaccessible. s390
1127 * does this. So nothing which can access the page's contents should
1128 * happen after this.
1130 arch_free_page(page, order);
1132 debug_pagealloc_unmap_pages(page, 1 << order);
1134 return true;
1138 * Frees a number of pages from the PCP lists
1139 * Assumes all pages on list are in same zone.
1140 * count is the number of pages to free.
1142 static void free_pcppages_bulk(struct zone *zone, int count,
1143 struct per_cpu_pages *pcp,
1144 int pindex)
1146 unsigned long flags;
1147 unsigned int order;
1148 struct page *page;
1151 * Ensure proper count is passed which otherwise would stuck in the
1152 * below while (list_empty(list)) loop.
1154 count = min(pcp->count, count);
1156 /* Ensure requested pindex is drained first. */
1157 pindex = pindex - 1;
1159 spin_lock_irqsave(&zone->lock, flags);
1161 while (count > 0) {
1162 struct list_head *list;
1163 int nr_pages;
1165 /* Remove pages from lists in a round-robin fashion. */
1166 do {
1167 if (++pindex > NR_PCP_LISTS - 1)
1168 pindex = 0;
1169 list = &pcp->lists[pindex];
1170 } while (list_empty(list));
1172 order = pindex_to_order(pindex);
1173 nr_pages = 1 << order;
1174 do {
1175 unsigned long pfn;
1176 int mt;
1178 page = list_last_entry(list, struct page, pcp_list);
1179 pfn = page_to_pfn(page);
1180 mt = get_pfnblock_migratetype(page, pfn);
1182 /* must delete to avoid corrupting pcp list */
1183 list_del(&page->pcp_list);
1184 count -= nr_pages;
1185 pcp->count -= nr_pages;
1187 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1188 trace_mm_page_pcpu_drain(page, order, mt);
1189 } while (count > 0 && !list_empty(list));
1192 spin_unlock_irqrestore(&zone->lock, flags);
1195 static void free_one_page(struct zone *zone, struct page *page,
1196 unsigned long pfn, unsigned int order,
1197 fpi_t fpi_flags)
1199 unsigned long flags;
1200 int migratetype;
1202 spin_lock_irqsave(&zone->lock, flags);
1203 migratetype = get_pfnblock_migratetype(page, pfn);
1204 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1205 spin_unlock_irqrestore(&zone->lock, flags);
1208 static void __free_pages_ok(struct page *page, unsigned int order,
1209 fpi_t fpi_flags)
1211 unsigned long pfn = page_to_pfn(page);
1212 struct zone *zone = page_zone(page);
1214 if (!free_pages_prepare(page, order))
1215 return;
1217 free_one_page(zone, page, pfn, order, fpi_flags);
1219 __count_vm_events(PGFREE, 1 << order);
1222 void __meminit __free_pages_core(struct page *page, unsigned int order,
1223 enum meminit_context context)
1225 unsigned int nr_pages = 1 << order;
1226 struct page *p = page;
1227 unsigned int loop;
1230 * When initializing the memmap, __init_single_page() sets the refcount
1231 * of all pages to 1 ("allocated"/"not free"). We have to set the
1232 * refcount of all involved pages to 0.
1234 * Note that hotplugged memory pages are initialized to PageOffline().
1235 * Pages freed from memblock might be marked as reserved.
1237 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1238 unlikely(context == MEMINIT_HOTPLUG)) {
1239 for (loop = 0; loop < nr_pages; loop++, p++) {
1240 VM_WARN_ON_ONCE(PageReserved(p));
1241 __ClearPageOffline(p);
1242 set_page_count(p, 0);
1246 * Freeing the page with debug_pagealloc enabled will try to
1247 * unmap it; some archs don't like double-unmappings, so
1248 * map it first.
1250 debug_pagealloc_map_pages(page, nr_pages);
1251 adjust_managed_page_count(page, nr_pages);
1252 } else {
1253 for (loop = 0; loop < nr_pages; loop++, p++) {
1254 __ClearPageReserved(p);
1255 set_page_count(p, 0);
1258 /* memblock adjusts totalram_pages() manually. */
1259 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1262 if (page_contains_unaccepted(page, order)) {
1263 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1264 return;
1266 accept_page(page, order);
1270 * Bypass PCP and place fresh pages right to the tail, primarily
1271 * relevant for memory onlining.
1273 __free_pages_ok(page, order, FPI_TO_TAIL);
1277 * Check that the whole (or subset of) a pageblock given by the interval of
1278 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1279 * with the migration of free compaction scanner.
1281 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1283 * It's possible on some configurations to have a setup like node0 node1 node0
1284 * i.e. it's possible that all pages within a zones range of pages do not
1285 * belong to a single zone. We assume that a border between node0 and node1
1286 * can occur within a single pageblock, but not a node0 node1 node0
1287 * interleaving within a single pageblock. It is therefore sufficient to check
1288 * the first and last page of a pageblock and avoid checking each individual
1289 * page in a pageblock.
1291 * Note: the function may return non-NULL struct page even for a page block
1292 * which contains a memory hole (i.e. there is no physical memory for a subset
1293 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1294 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1295 * even though the start pfn is online and valid. This should be safe most of
1296 * the time because struct pages are still initialized via init_unavailable_range()
1297 * and pfn walkers shouldn't touch any physical memory range for which they do
1298 * not recognize any specific metadata in struct pages.
1300 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1301 unsigned long end_pfn, struct zone *zone)
1303 struct page *start_page;
1304 struct page *end_page;
1306 /* end_pfn is one past the range we are checking */
1307 end_pfn--;
1309 if (!pfn_valid(end_pfn))
1310 return NULL;
1312 start_page = pfn_to_online_page(start_pfn);
1313 if (!start_page)
1314 return NULL;
1316 if (page_zone(start_page) != zone)
1317 return NULL;
1319 end_page = pfn_to_page(end_pfn);
1321 /* This gives a shorter code than deriving page_zone(end_page) */
1322 if (page_zone_id(start_page) != page_zone_id(end_page))
1323 return NULL;
1325 return start_page;
1329 * The order of subdivision here is critical for the IO subsystem.
1330 * Please do not alter this order without good reasons and regression
1331 * testing. Specifically, as large blocks of memory are subdivided,
1332 * the order in which smaller blocks are delivered depends on the order
1333 * they're subdivided in this function. This is the primary factor
1334 * influencing the order in which pages are delivered to the IO
1335 * subsystem according to empirical testing, and this is also justified
1336 * by considering the behavior of a buddy system containing a single
1337 * large block of memory acted on by a series of small allocations.
1338 * This behavior is a critical factor in sglist merging's success.
1340 * -- nyc
1342 static inline void expand(struct zone *zone, struct page *page,
1343 int low, int high, int migratetype)
1345 unsigned long size = 1 << high;
1346 unsigned long nr_added = 0;
1348 while (high > low) {
1349 high--;
1350 size >>= 1;
1351 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1354 * Mark as guard pages (or page), that will allow to
1355 * merge back to allocator when buddy will be freed.
1356 * Corresponding page table entries will not be touched,
1357 * pages will stay not present in virtual address space
1359 if (set_page_guard(zone, &page[size], high))
1360 continue;
1362 __add_to_free_list(&page[size], zone, high, migratetype, false);
1363 set_buddy_order(&page[size], high);
1364 nr_added += size;
1366 account_freepages(zone, nr_added, migratetype);
1369 static void check_new_page_bad(struct page *page)
1371 if (unlikely(page->flags & __PG_HWPOISON)) {
1372 /* Don't complain about hwpoisoned pages */
1373 if (PageBuddy(page))
1374 __ClearPageBuddy(page);
1375 return;
1378 bad_page(page,
1379 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1383 * This page is about to be returned from the page allocator
1385 static bool check_new_page(struct page *page)
1387 if (likely(page_expected_state(page,
1388 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1389 return false;
1391 check_new_page_bad(page);
1392 return true;
1395 static inline bool check_new_pages(struct page *page, unsigned int order)
1397 if (is_check_pages_enabled()) {
1398 for (int i = 0; i < (1 << order); i++) {
1399 struct page *p = page + i;
1401 if (check_new_page(p))
1402 return true;
1406 return false;
1409 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1411 /* Don't skip if a software KASAN mode is enabled. */
1412 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1413 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1414 return false;
1416 /* Skip, if hardware tag-based KASAN is not enabled. */
1417 if (!kasan_hw_tags_enabled())
1418 return true;
1421 * With hardware tag-based KASAN enabled, skip if this has been
1422 * requested via __GFP_SKIP_KASAN.
1424 return flags & __GFP_SKIP_KASAN;
1427 static inline bool should_skip_init(gfp_t flags)
1429 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1430 if (!kasan_hw_tags_enabled())
1431 return false;
1433 /* For hardware tag-based KASAN, skip if requested. */
1434 return (flags & __GFP_SKIP_ZERO);
1437 inline void post_alloc_hook(struct page *page, unsigned int order,
1438 gfp_t gfp_flags)
1440 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1441 !should_skip_init(gfp_flags);
1442 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1443 int i;
1445 set_page_private(page, 0);
1446 set_page_refcounted(page);
1448 arch_alloc_page(page, order);
1449 debug_pagealloc_map_pages(page, 1 << order);
1452 * Page unpoisoning must happen before memory initialization.
1453 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1454 * allocations and the page unpoisoning code will complain.
1456 kernel_unpoison_pages(page, 1 << order);
1459 * As memory initialization might be integrated into KASAN,
1460 * KASAN unpoisoning and memory initializion code must be
1461 * kept together to avoid discrepancies in behavior.
1465 * If memory tags should be zeroed
1466 * (which happens only when memory should be initialized as well).
1468 if (zero_tags) {
1469 /* Initialize both memory and memory tags. */
1470 for (i = 0; i != 1 << order; ++i)
1471 tag_clear_highpage(page + i);
1473 /* Take note that memory was initialized by the loop above. */
1474 init = false;
1476 if (!should_skip_kasan_unpoison(gfp_flags) &&
1477 kasan_unpoison_pages(page, order, init)) {
1478 /* Take note that memory was initialized by KASAN. */
1479 if (kasan_has_integrated_init())
1480 init = false;
1481 } else {
1483 * If memory tags have not been set by KASAN, reset the page
1484 * tags to ensure page_address() dereferencing does not fault.
1486 for (i = 0; i != 1 << order; ++i)
1487 page_kasan_tag_reset(page + i);
1489 /* If memory is still not initialized, initialize it now. */
1490 if (init)
1491 kernel_init_pages(page, 1 << order);
1493 set_page_owner(page, order, gfp_flags);
1494 page_table_check_alloc(page, order);
1495 pgalloc_tag_add(page, current, 1 << order);
1498 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1499 unsigned int alloc_flags)
1501 post_alloc_hook(page, order, gfp_flags);
1503 if (order && (gfp_flags & __GFP_COMP))
1504 prep_compound_page(page, order);
1507 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1508 * allocate the page. The expectation is that the caller is taking
1509 * steps that will free more memory. The caller should avoid the page
1510 * being used for !PFMEMALLOC purposes.
1512 if (alloc_flags & ALLOC_NO_WATERMARKS)
1513 set_page_pfmemalloc(page);
1514 else
1515 clear_page_pfmemalloc(page);
1519 * Go through the free lists for the given migratetype and remove
1520 * the smallest available page from the freelists
1522 static __always_inline
1523 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1524 int migratetype)
1526 unsigned int current_order;
1527 struct free_area *area;
1528 struct page *page;
1530 /* Find a page of the appropriate size in the preferred list */
1531 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1532 area = &(zone->free_area[current_order]);
1533 page = get_page_from_free_area(area, migratetype);
1534 if (!page)
1535 continue;
1536 del_page_from_free_list(page, zone, current_order, migratetype);
1537 expand(zone, page, order, current_order, migratetype);
1538 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1539 pcp_allowed_order(order) &&
1540 migratetype < MIGRATE_PCPTYPES);
1541 return page;
1544 return NULL;
1549 * This array describes the order lists are fallen back to when
1550 * the free lists for the desirable migrate type are depleted
1552 * The other migratetypes do not have fallbacks.
1554 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1555 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1556 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1557 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1560 #ifdef CONFIG_CMA
1561 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1562 unsigned int order)
1564 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1566 #else
1567 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1568 unsigned int order) { return NULL; }
1569 #endif
1572 * Change the type of a block and move all its free pages to that
1573 * type's freelist.
1575 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1576 int old_mt, int new_mt)
1578 struct page *page;
1579 unsigned long pfn, end_pfn;
1580 unsigned int order;
1581 int pages_moved = 0;
1583 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1584 end_pfn = pageblock_end_pfn(start_pfn);
1586 for (pfn = start_pfn; pfn < end_pfn;) {
1587 page = pfn_to_page(pfn);
1588 if (!PageBuddy(page)) {
1589 pfn++;
1590 continue;
1593 /* Make sure we are not inadvertently changing nodes */
1594 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1595 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1597 order = buddy_order(page);
1599 move_to_free_list(page, zone, order, old_mt, new_mt);
1601 pfn += 1 << order;
1602 pages_moved += 1 << order;
1605 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1607 return pages_moved;
1610 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1611 unsigned long *start_pfn,
1612 int *num_free, int *num_movable)
1614 unsigned long pfn, start, end;
1616 pfn = page_to_pfn(page);
1617 start = pageblock_start_pfn(pfn);
1618 end = pageblock_end_pfn(pfn);
1621 * The caller only has the lock for @zone, don't touch ranges
1622 * that straddle into other zones. While we could move part of
1623 * the range that's inside the zone, this call is usually
1624 * accompanied by other operations such as migratetype updates
1625 * which also should be locked.
1627 if (!zone_spans_pfn(zone, start))
1628 return false;
1629 if (!zone_spans_pfn(zone, end - 1))
1630 return false;
1632 *start_pfn = start;
1634 if (num_free) {
1635 *num_free = 0;
1636 *num_movable = 0;
1637 for (pfn = start; pfn < end;) {
1638 page = pfn_to_page(pfn);
1639 if (PageBuddy(page)) {
1640 int nr = 1 << buddy_order(page);
1642 *num_free += nr;
1643 pfn += nr;
1644 continue;
1647 * We assume that pages that could be isolated for
1648 * migration are movable. But we don't actually try
1649 * isolating, as that would be expensive.
1651 if (PageLRU(page) || __PageMovable(page))
1652 (*num_movable)++;
1653 pfn++;
1657 return true;
1660 static int move_freepages_block(struct zone *zone, struct page *page,
1661 int old_mt, int new_mt)
1663 unsigned long start_pfn;
1665 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1666 return -1;
1668 return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1671 #ifdef CONFIG_MEMORY_ISOLATION
1672 /* Look for a buddy that straddles start_pfn */
1673 static unsigned long find_large_buddy(unsigned long start_pfn)
1675 int order = 0;
1676 struct page *page;
1677 unsigned long pfn = start_pfn;
1679 while (!PageBuddy(page = pfn_to_page(pfn))) {
1680 /* Nothing found */
1681 if (++order > MAX_PAGE_ORDER)
1682 return start_pfn;
1683 pfn &= ~0UL << order;
1687 * Found a preceding buddy, but does it straddle?
1689 if (pfn + (1 << buddy_order(page)) > start_pfn)
1690 return pfn;
1692 /* Nothing found */
1693 return start_pfn;
1696 /* Split a multi-block free page into its individual pageblocks */
1697 static void split_large_buddy(struct zone *zone, struct page *page,
1698 unsigned long pfn, int order)
1700 unsigned long end_pfn = pfn + (1 << order);
1702 VM_WARN_ON_ONCE(order <= pageblock_order);
1703 VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1705 /* Caller removed page from freelist, buddy info cleared! */
1706 VM_WARN_ON_ONCE(PageBuddy(page));
1708 while (pfn != end_pfn) {
1709 int mt = get_pfnblock_migratetype(page, pfn);
1711 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1712 pfn += pageblock_nr_pages;
1713 page = pfn_to_page(pfn);
1718 * move_freepages_block_isolate - move free pages in block for page isolation
1719 * @zone: the zone
1720 * @page: the pageblock page
1721 * @migratetype: migratetype to set on the pageblock
1723 * This is similar to move_freepages_block(), but handles the special
1724 * case encountered in page isolation, where the block of interest
1725 * might be part of a larger buddy spanning multiple pageblocks.
1727 * Unlike the regular page allocator path, which moves pages while
1728 * stealing buddies off the freelist, page isolation is interested in
1729 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1731 * This function handles that. Straddling buddies are split into
1732 * individual pageblocks. Only the block of interest is moved.
1734 * Returns %true if pages could be moved, %false otherwise.
1736 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1737 int migratetype)
1739 unsigned long start_pfn, pfn;
1741 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1742 return false;
1744 /* No splits needed if buddies can't span multiple blocks */
1745 if (pageblock_order == MAX_PAGE_ORDER)
1746 goto move;
1748 /* We're a tail block in a larger buddy */
1749 pfn = find_large_buddy(start_pfn);
1750 if (pfn != start_pfn) {
1751 struct page *buddy = pfn_to_page(pfn);
1752 int order = buddy_order(buddy);
1754 del_page_from_free_list(buddy, zone, order,
1755 get_pfnblock_migratetype(buddy, pfn));
1756 set_pageblock_migratetype(page, migratetype);
1757 split_large_buddy(zone, buddy, pfn, order);
1758 return true;
1761 /* We're the starting block of a larger buddy */
1762 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1763 int order = buddy_order(page);
1765 del_page_from_free_list(page, zone, order,
1766 get_pfnblock_migratetype(page, pfn));
1767 set_pageblock_migratetype(page, migratetype);
1768 split_large_buddy(zone, page, pfn, order);
1769 return true;
1771 move:
1772 __move_freepages_block(zone, start_pfn,
1773 get_pfnblock_migratetype(page, start_pfn),
1774 migratetype);
1775 return true;
1777 #endif /* CONFIG_MEMORY_ISOLATION */
1779 static void change_pageblock_range(struct page *pageblock_page,
1780 int start_order, int migratetype)
1782 int nr_pageblocks = 1 << (start_order - pageblock_order);
1784 while (nr_pageblocks--) {
1785 set_pageblock_migratetype(pageblock_page, migratetype);
1786 pageblock_page += pageblock_nr_pages;
1791 * When we are falling back to another migratetype during allocation, try to
1792 * steal extra free pages from the same pageblocks to satisfy further
1793 * allocations, instead of polluting multiple pageblocks.
1795 * If we are stealing a relatively large buddy page, it is likely there will
1796 * be more free pages in the pageblock, so try to steal them all. For
1797 * reclaimable and unmovable allocations, we steal regardless of page size,
1798 * as fragmentation caused by those allocations polluting movable pageblocks
1799 * is worse than movable allocations stealing from unmovable and reclaimable
1800 * pageblocks.
1802 static bool can_steal_fallback(unsigned int order, int start_mt)
1805 * Leaving this order check is intended, although there is
1806 * relaxed order check in next check. The reason is that
1807 * we can actually steal whole pageblock if this condition met,
1808 * but, below check doesn't guarantee it and that is just heuristic
1809 * so could be changed anytime.
1811 if (order >= pageblock_order)
1812 return true;
1814 if (order >= pageblock_order / 2 ||
1815 start_mt == MIGRATE_RECLAIMABLE ||
1816 start_mt == MIGRATE_UNMOVABLE ||
1817 page_group_by_mobility_disabled)
1818 return true;
1820 return false;
1823 static inline bool boost_watermark(struct zone *zone)
1825 unsigned long max_boost;
1827 if (!watermark_boost_factor)
1828 return false;
1830 * Don't bother in zones that are unlikely to produce results.
1831 * On small machines, including kdump capture kernels running
1832 * in a small area, boosting the watermark can cause an out of
1833 * memory situation immediately.
1835 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1836 return false;
1838 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1839 watermark_boost_factor, 10000);
1842 * high watermark may be uninitialised if fragmentation occurs
1843 * very early in boot so do not boost. We do not fall
1844 * through and boost by pageblock_nr_pages as failing
1845 * allocations that early means that reclaim is not going
1846 * to help and it may even be impossible to reclaim the
1847 * boosted watermark resulting in a hang.
1849 if (!max_boost)
1850 return false;
1852 max_boost = max(pageblock_nr_pages, max_boost);
1854 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1855 max_boost);
1857 return true;
1861 * This function implements actual steal behaviour. If order is large enough, we
1862 * can claim the whole pageblock for the requested migratetype. If not, we check
1863 * the pageblock for constituent pages; if at least half of the pages are free
1864 * or compatible, we can still claim the whole block, so pages freed in the
1865 * future will be put on the correct free list. Otherwise, we isolate exactly
1866 * the order we need from the fallback block and leave its migratetype alone.
1868 static struct page *
1869 steal_suitable_fallback(struct zone *zone, struct page *page,
1870 int current_order, int order, int start_type,
1871 unsigned int alloc_flags, bool whole_block)
1873 int free_pages, movable_pages, alike_pages;
1874 unsigned long start_pfn;
1875 int block_type;
1877 block_type = get_pageblock_migratetype(page);
1880 * This can happen due to races and we want to prevent broken
1881 * highatomic accounting.
1883 if (is_migrate_highatomic(block_type))
1884 goto single_page;
1886 /* Take ownership for orders >= pageblock_order */
1887 if (current_order >= pageblock_order) {
1888 del_page_from_free_list(page, zone, current_order, block_type);
1889 change_pageblock_range(page, current_order, start_type);
1890 expand(zone, page, order, current_order, start_type);
1891 return page;
1895 * Boost watermarks to increase reclaim pressure to reduce the
1896 * likelihood of future fallbacks. Wake kswapd now as the node
1897 * may be balanced overall and kswapd will not wake naturally.
1899 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1900 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1902 /* We are not allowed to try stealing from the whole block */
1903 if (!whole_block)
1904 goto single_page;
1906 /* moving whole block can fail due to zone boundary conditions */
1907 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1908 &movable_pages))
1909 goto single_page;
1912 * Determine how many pages are compatible with our allocation.
1913 * For movable allocation, it's the number of movable pages which
1914 * we just obtained. For other types it's a bit more tricky.
1916 if (start_type == MIGRATE_MOVABLE) {
1917 alike_pages = movable_pages;
1918 } else {
1920 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1921 * to MOVABLE pageblock, consider all non-movable pages as
1922 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1923 * vice versa, be conservative since we can't distinguish the
1924 * exact migratetype of non-movable pages.
1926 if (block_type == MIGRATE_MOVABLE)
1927 alike_pages = pageblock_nr_pages
1928 - (free_pages + movable_pages);
1929 else
1930 alike_pages = 0;
1933 * If a sufficient number of pages in the block are either free or of
1934 * compatible migratability as our allocation, claim the whole block.
1936 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1937 page_group_by_mobility_disabled) {
1938 __move_freepages_block(zone, start_pfn, block_type, start_type);
1939 return __rmqueue_smallest(zone, order, start_type);
1942 single_page:
1943 del_page_from_free_list(page, zone, current_order, block_type);
1944 expand(zone, page, order, current_order, block_type);
1945 return page;
1949 * Check whether there is a suitable fallback freepage with requested order.
1950 * If only_stealable is true, this function returns fallback_mt only if
1951 * we can steal other freepages all together. This would help to reduce
1952 * fragmentation due to mixed migratetype pages in one pageblock.
1954 int find_suitable_fallback(struct free_area *area, unsigned int order,
1955 int migratetype, bool only_stealable, bool *can_steal)
1957 int i;
1958 int fallback_mt;
1960 if (area->nr_free == 0)
1961 return -1;
1963 *can_steal = false;
1964 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1965 fallback_mt = fallbacks[migratetype][i];
1966 if (free_area_empty(area, fallback_mt))
1967 continue;
1969 if (can_steal_fallback(order, migratetype))
1970 *can_steal = true;
1972 if (!only_stealable)
1973 return fallback_mt;
1975 if (*can_steal)
1976 return fallback_mt;
1979 return -1;
1983 * Reserve the pageblock(s) surrounding an allocation request for
1984 * exclusive use of high-order atomic allocations if there are no
1985 * empty page blocks that contain a page with a suitable order
1987 static void reserve_highatomic_pageblock(struct page *page, int order,
1988 struct zone *zone)
1990 int mt;
1991 unsigned long max_managed, flags;
1994 * The number reserved as: minimum is 1 pageblock, maximum is
1995 * roughly 1% of a zone. But if 1% of a zone falls below a
1996 * pageblock size, then don't reserve any pageblocks.
1997 * Check is race-prone but harmless.
1999 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2000 return;
2001 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2002 if (zone->nr_reserved_highatomic >= max_managed)
2003 return;
2005 spin_lock_irqsave(&zone->lock, flags);
2007 /* Recheck the nr_reserved_highatomic limit under the lock */
2008 if (zone->nr_reserved_highatomic >= max_managed)
2009 goto out_unlock;
2011 /* Yoink! */
2012 mt = get_pageblock_migratetype(page);
2013 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2014 if (!migratetype_is_mergeable(mt))
2015 goto out_unlock;
2017 if (order < pageblock_order) {
2018 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2019 goto out_unlock;
2020 zone->nr_reserved_highatomic += pageblock_nr_pages;
2021 } else {
2022 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2023 zone->nr_reserved_highatomic += 1 << order;
2026 out_unlock:
2027 spin_unlock_irqrestore(&zone->lock, flags);
2031 * Used when an allocation is about to fail under memory pressure. This
2032 * potentially hurts the reliability of high-order allocations when under
2033 * intense memory pressure but failed atomic allocations should be easier
2034 * to recover from than an OOM.
2036 * If @force is true, try to unreserve pageblocks even though highatomic
2037 * pageblock is exhausted.
2039 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2040 bool force)
2042 struct zonelist *zonelist = ac->zonelist;
2043 unsigned long flags;
2044 struct zoneref *z;
2045 struct zone *zone;
2046 struct page *page;
2047 int order;
2048 int ret;
2050 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2051 ac->nodemask) {
2053 * Preserve at least one pageblock unless memory pressure
2054 * is really high.
2056 if (!force && zone->nr_reserved_highatomic <=
2057 pageblock_nr_pages)
2058 continue;
2060 spin_lock_irqsave(&zone->lock, flags);
2061 for (order = 0; order < NR_PAGE_ORDERS; order++) {
2062 struct free_area *area = &(zone->free_area[order]);
2063 int mt;
2065 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2066 if (!page)
2067 continue;
2069 mt = get_pageblock_migratetype(page);
2071 * In page freeing path, migratetype change is racy so
2072 * we can counter several free pages in a pageblock
2073 * in this loop although we changed the pageblock type
2074 * from highatomic to ac->migratetype. So we should
2075 * adjust the count once.
2077 if (is_migrate_highatomic(mt)) {
2078 unsigned long size;
2080 * It should never happen but changes to
2081 * locking could inadvertently allow a per-cpu
2082 * drain to add pages to MIGRATE_HIGHATOMIC
2083 * while unreserving so be safe and watch for
2084 * underflows.
2086 size = max(pageblock_nr_pages, 1UL << order);
2087 size = min(size, zone->nr_reserved_highatomic);
2088 zone->nr_reserved_highatomic -= size;
2092 * Convert to ac->migratetype and avoid the normal
2093 * pageblock stealing heuristics. Minimally, the caller
2094 * is doing the work and needs the pages. More
2095 * importantly, if the block was always converted to
2096 * MIGRATE_UNMOVABLE or another type then the number
2097 * of pageblocks that cannot be completely freed
2098 * may increase.
2100 if (order < pageblock_order)
2101 ret = move_freepages_block(zone, page, mt,
2102 ac->migratetype);
2103 else {
2104 move_to_free_list(page, zone, order, mt,
2105 ac->migratetype);
2106 change_pageblock_range(page, order,
2107 ac->migratetype);
2108 ret = 1;
2111 * Reserving the block(s) already succeeded,
2112 * so this should not fail on zone boundaries.
2114 WARN_ON_ONCE(ret == -1);
2115 if (ret > 0) {
2116 spin_unlock_irqrestore(&zone->lock, flags);
2117 return ret;
2120 spin_unlock_irqrestore(&zone->lock, flags);
2123 return false;
2127 * Try finding a free buddy page on the fallback list and put it on the free
2128 * list of requested migratetype, possibly along with other pages from the same
2129 * block, depending on fragmentation avoidance heuristics. Returns true if
2130 * fallback was found so that __rmqueue_smallest() can grab it.
2132 * The use of signed ints for order and current_order is a deliberate
2133 * deviation from the rest of this file, to make the for loop
2134 * condition simpler.
2136 static __always_inline struct page *
2137 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2138 unsigned int alloc_flags)
2140 struct free_area *area;
2141 int current_order;
2142 int min_order = order;
2143 struct page *page;
2144 int fallback_mt;
2145 bool can_steal;
2148 * Do not steal pages from freelists belonging to other pageblocks
2149 * i.e. orders < pageblock_order. If there are no local zones free,
2150 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2152 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2153 min_order = pageblock_order;
2156 * Find the largest available free page in the other list. This roughly
2157 * approximates finding the pageblock with the most free pages, which
2158 * would be too costly to do exactly.
2160 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2161 --current_order) {
2162 area = &(zone->free_area[current_order]);
2163 fallback_mt = find_suitable_fallback(area, current_order,
2164 start_migratetype, false, &can_steal);
2165 if (fallback_mt == -1)
2166 continue;
2169 * We cannot steal all free pages from the pageblock and the
2170 * requested migratetype is movable. In that case it's better to
2171 * steal and split the smallest available page instead of the
2172 * largest available page, because even if the next movable
2173 * allocation falls back into a different pageblock than this
2174 * one, it won't cause permanent fragmentation.
2176 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2177 && current_order > order)
2178 goto find_smallest;
2180 goto do_steal;
2183 return NULL;
2185 find_smallest:
2186 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2187 area = &(zone->free_area[current_order]);
2188 fallback_mt = find_suitable_fallback(area, current_order,
2189 start_migratetype, false, &can_steal);
2190 if (fallback_mt != -1)
2191 break;
2195 * This should not happen - we already found a suitable fallback
2196 * when looking for the largest page.
2198 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2200 do_steal:
2201 page = get_page_from_free_area(area, fallback_mt);
2203 /* take off list, maybe claim block, expand remainder */
2204 page = steal_suitable_fallback(zone, page, current_order, order,
2205 start_migratetype, alloc_flags, can_steal);
2207 trace_mm_page_alloc_extfrag(page, order, current_order,
2208 start_migratetype, fallback_mt);
2210 return page;
2214 * Do the hard work of removing an element from the buddy allocator.
2215 * Call me with the zone->lock already held.
2217 static __always_inline struct page *
2218 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2219 unsigned int alloc_flags)
2221 struct page *page;
2223 if (IS_ENABLED(CONFIG_CMA)) {
2225 * Balance movable allocations between regular and CMA areas by
2226 * allocating from CMA when over half of the zone's free memory
2227 * is in the CMA area.
2229 if (alloc_flags & ALLOC_CMA &&
2230 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2231 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2232 page = __rmqueue_cma_fallback(zone, order);
2233 if (page)
2234 return page;
2238 page = __rmqueue_smallest(zone, order, migratetype);
2239 if (unlikely(!page)) {
2240 if (alloc_flags & ALLOC_CMA)
2241 page = __rmqueue_cma_fallback(zone, order);
2243 if (!page)
2244 page = __rmqueue_fallback(zone, order, migratetype,
2245 alloc_flags);
2247 return page;
2251 * Obtain a specified number of elements from the buddy allocator, all under
2252 * a single hold of the lock, for efficiency. Add them to the supplied list.
2253 * Returns the number of new pages which were placed at *list.
2255 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2256 unsigned long count, struct list_head *list,
2257 int migratetype, unsigned int alloc_flags)
2259 unsigned long flags;
2260 int i;
2262 spin_lock_irqsave(&zone->lock, flags);
2263 for (i = 0; i < count; ++i) {
2264 struct page *page = __rmqueue(zone, order, migratetype,
2265 alloc_flags);
2266 if (unlikely(page == NULL))
2267 break;
2270 * Split buddy pages returned by expand() are received here in
2271 * physical page order. The page is added to the tail of
2272 * caller's list. From the callers perspective, the linked list
2273 * is ordered by page number under some conditions. This is
2274 * useful for IO devices that can forward direction from the
2275 * head, thus also in the physical page order. This is useful
2276 * for IO devices that can merge IO requests if the physical
2277 * pages are ordered properly.
2279 list_add_tail(&page->pcp_list, list);
2281 spin_unlock_irqrestore(&zone->lock, flags);
2283 return i;
2287 * Called from the vmstat counter updater to decay the PCP high.
2288 * Return whether there are addition works to do.
2290 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2292 int high_min, to_drain, batch;
2293 int todo = 0;
2295 high_min = READ_ONCE(pcp->high_min);
2296 batch = READ_ONCE(pcp->batch);
2298 * Decrease pcp->high periodically to try to free possible
2299 * idle PCP pages. And, avoid to free too many pages to
2300 * control latency. This caps pcp->high decrement too.
2302 if (pcp->high > high_min) {
2303 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2304 pcp->high - (pcp->high >> 3), high_min);
2305 if (pcp->high > high_min)
2306 todo++;
2309 to_drain = pcp->count - pcp->high;
2310 if (to_drain > 0) {
2311 spin_lock(&pcp->lock);
2312 free_pcppages_bulk(zone, to_drain, pcp, 0);
2313 spin_unlock(&pcp->lock);
2314 todo++;
2317 return todo;
2320 #ifdef CONFIG_NUMA
2322 * Called from the vmstat counter updater to drain pagesets of this
2323 * currently executing processor on remote nodes after they have
2324 * expired.
2326 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2328 int to_drain, batch;
2330 batch = READ_ONCE(pcp->batch);
2331 to_drain = min(pcp->count, batch);
2332 if (to_drain > 0) {
2333 spin_lock(&pcp->lock);
2334 free_pcppages_bulk(zone, to_drain, pcp, 0);
2335 spin_unlock(&pcp->lock);
2338 #endif
2341 * Drain pcplists of the indicated processor and zone.
2343 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2345 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2346 int count;
2348 do {
2349 spin_lock(&pcp->lock);
2350 count = pcp->count;
2351 if (count) {
2352 int to_drain = min(count,
2353 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2355 free_pcppages_bulk(zone, to_drain, pcp, 0);
2356 count -= to_drain;
2358 spin_unlock(&pcp->lock);
2359 } while (count);
2363 * Drain pcplists of all zones on the indicated processor.
2365 static void drain_pages(unsigned int cpu)
2367 struct zone *zone;
2369 for_each_populated_zone(zone) {
2370 drain_pages_zone(cpu, zone);
2375 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2377 void drain_local_pages(struct zone *zone)
2379 int cpu = smp_processor_id();
2381 if (zone)
2382 drain_pages_zone(cpu, zone);
2383 else
2384 drain_pages(cpu);
2388 * The implementation of drain_all_pages(), exposing an extra parameter to
2389 * drain on all cpus.
2391 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2392 * not empty. The check for non-emptiness can however race with a free to
2393 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2394 * that need the guarantee that every CPU has drained can disable the
2395 * optimizing racy check.
2397 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2399 int cpu;
2402 * Allocate in the BSS so we won't require allocation in
2403 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2405 static cpumask_t cpus_with_pcps;
2408 * Do not drain if one is already in progress unless it's specific to
2409 * a zone. Such callers are primarily CMA and memory hotplug and need
2410 * the drain to be complete when the call returns.
2412 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2413 if (!zone)
2414 return;
2415 mutex_lock(&pcpu_drain_mutex);
2419 * We don't care about racing with CPU hotplug event
2420 * as offline notification will cause the notified
2421 * cpu to drain that CPU pcps and on_each_cpu_mask
2422 * disables preemption as part of its processing
2424 for_each_online_cpu(cpu) {
2425 struct per_cpu_pages *pcp;
2426 struct zone *z;
2427 bool has_pcps = false;
2429 if (force_all_cpus) {
2431 * The pcp.count check is racy, some callers need a
2432 * guarantee that no cpu is missed.
2434 has_pcps = true;
2435 } else if (zone) {
2436 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2437 if (pcp->count)
2438 has_pcps = true;
2439 } else {
2440 for_each_populated_zone(z) {
2441 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2442 if (pcp->count) {
2443 has_pcps = true;
2444 break;
2449 if (has_pcps)
2450 cpumask_set_cpu(cpu, &cpus_with_pcps);
2451 else
2452 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2455 for_each_cpu(cpu, &cpus_with_pcps) {
2456 if (zone)
2457 drain_pages_zone(cpu, zone);
2458 else
2459 drain_pages(cpu);
2462 mutex_unlock(&pcpu_drain_mutex);
2466 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2468 * When zone parameter is non-NULL, spill just the single zone's pages.
2470 void drain_all_pages(struct zone *zone)
2472 __drain_all_pages(zone, false);
2475 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2477 int min_nr_free, max_nr_free;
2479 /* Free as much as possible if batch freeing high-order pages. */
2480 if (unlikely(free_high))
2481 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2483 /* Check for PCP disabled or boot pageset */
2484 if (unlikely(high < batch))
2485 return 1;
2487 /* Leave at least pcp->batch pages on the list */
2488 min_nr_free = batch;
2489 max_nr_free = high - batch;
2492 * Increase the batch number to the number of the consecutive
2493 * freed pages to reduce zone lock contention.
2495 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2497 return batch;
2500 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2501 int batch, bool free_high)
2503 int high, high_min, high_max;
2505 high_min = READ_ONCE(pcp->high_min);
2506 high_max = READ_ONCE(pcp->high_max);
2507 high = pcp->high = clamp(pcp->high, high_min, high_max);
2509 if (unlikely(!high))
2510 return 0;
2512 if (unlikely(free_high)) {
2513 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2514 high_min);
2515 return 0;
2519 * If reclaim is active, limit the number of pages that can be
2520 * stored on pcp lists
2522 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2523 int free_count = max_t(int, pcp->free_count, batch);
2525 pcp->high = max(high - free_count, high_min);
2526 return min(batch << 2, pcp->high);
2529 if (high_min == high_max)
2530 return high;
2532 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2533 int free_count = max_t(int, pcp->free_count, batch);
2535 pcp->high = max(high - free_count, high_min);
2536 high = max(pcp->count, high_min);
2537 } else if (pcp->count >= high) {
2538 int need_high = pcp->free_count + batch;
2540 /* pcp->high should be large enough to hold batch freed pages */
2541 if (pcp->high < need_high)
2542 pcp->high = clamp(need_high, high_min, high_max);
2545 return high;
2548 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2549 struct page *page, int migratetype,
2550 unsigned int order)
2552 int high, batch;
2553 int pindex;
2554 bool free_high = false;
2557 * On freeing, reduce the number of pages that are batch allocated.
2558 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2559 * allocations.
2561 pcp->alloc_factor >>= 1;
2562 __count_vm_events(PGFREE, 1 << order);
2563 pindex = order_to_pindex(migratetype, order);
2564 list_add(&page->pcp_list, &pcp->lists[pindex]);
2565 pcp->count += 1 << order;
2567 batch = READ_ONCE(pcp->batch);
2569 * As high-order pages other than THP's stored on PCP can contribute
2570 * to fragmentation, limit the number stored when PCP is heavily
2571 * freeing without allocation. The remainder after bulk freeing
2572 * stops will be drained from vmstat refresh context.
2574 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2575 free_high = (pcp->free_count >= batch &&
2576 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2577 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2578 pcp->count >= READ_ONCE(batch)));
2579 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2580 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2581 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2583 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2584 pcp->free_count += (1 << order);
2585 high = nr_pcp_high(pcp, zone, batch, free_high);
2586 if (pcp->count >= high) {
2587 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2588 pcp, pindex);
2589 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2590 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2591 ZONE_MOVABLE, 0))
2592 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2597 * Free a pcp page
2599 void free_unref_page(struct page *page, unsigned int order)
2601 unsigned long __maybe_unused UP_flags;
2602 struct per_cpu_pages *pcp;
2603 struct zone *zone;
2604 unsigned long pfn = page_to_pfn(page);
2605 int migratetype;
2607 if (!pcp_allowed_order(order)) {
2608 __free_pages_ok(page, order, FPI_NONE);
2609 return;
2612 if (!free_pages_prepare(page, order))
2613 return;
2616 * We only track unmovable, reclaimable and movable on pcp lists.
2617 * Place ISOLATE pages on the isolated list because they are being
2618 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2619 * get those areas back if necessary. Otherwise, we may have to free
2620 * excessively into the page allocator
2622 migratetype = get_pfnblock_migratetype(page, pfn);
2623 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2624 if (unlikely(is_migrate_isolate(migratetype))) {
2625 free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2626 return;
2628 migratetype = MIGRATE_MOVABLE;
2631 zone = page_zone(page);
2632 pcp_trylock_prepare(UP_flags);
2633 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2634 if (pcp) {
2635 free_unref_page_commit(zone, pcp, page, migratetype, order);
2636 pcp_spin_unlock(pcp);
2637 } else {
2638 free_one_page(zone, page, pfn, order, FPI_NONE);
2640 pcp_trylock_finish(UP_flags);
2644 * Free a batch of folios
2646 void free_unref_folios(struct folio_batch *folios)
2648 unsigned long __maybe_unused UP_flags;
2649 struct per_cpu_pages *pcp = NULL;
2650 struct zone *locked_zone = NULL;
2651 int i, j;
2653 /* Prepare folios for freeing */
2654 for (i = 0, j = 0; i < folios->nr; i++) {
2655 struct folio *folio = folios->folios[i];
2656 unsigned long pfn = folio_pfn(folio);
2657 unsigned int order = folio_order(folio);
2659 folio_undo_large_rmappable(folio);
2660 if (!free_pages_prepare(&folio->page, order))
2661 continue;
2663 * Free orders not handled on the PCP directly to the
2664 * allocator.
2666 if (!pcp_allowed_order(order)) {
2667 free_one_page(folio_zone(folio), &folio->page,
2668 pfn, order, FPI_NONE);
2669 continue;
2671 folio->private = (void *)(unsigned long)order;
2672 if (j != i)
2673 folios->folios[j] = folio;
2674 j++;
2676 folios->nr = j;
2678 for (i = 0; i < folios->nr; i++) {
2679 struct folio *folio = folios->folios[i];
2680 struct zone *zone = folio_zone(folio);
2681 unsigned long pfn = folio_pfn(folio);
2682 unsigned int order = (unsigned long)folio->private;
2683 int migratetype;
2685 folio->private = NULL;
2686 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2688 /* Different zone requires a different pcp lock */
2689 if (zone != locked_zone ||
2690 is_migrate_isolate(migratetype)) {
2691 if (pcp) {
2692 pcp_spin_unlock(pcp);
2693 pcp_trylock_finish(UP_flags);
2694 locked_zone = NULL;
2695 pcp = NULL;
2699 * Free isolated pages directly to the
2700 * allocator, see comment in free_unref_page.
2702 if (is_migrate_isolate(migratetype)) {
2703 free_one_page(zone, &folio->page, pfn,
2704 order, FPI_NONE);
2705 continue;
2709 * trylock is necessary as folios may be getting freed
2710 * from IRQ or SoftIRQ context after an IO completion.
2712 pcp_trylock_prepare(UP_flags);
2713 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2714 if (unlikely(!pcp)) {
2715 pcp_trylock_finish(UP_flags);
2716 free_one_page(zone, &folio->page, pfn,
2717 order, FPI_NONE);
2718 continue;
2720 locked_zone = zone;
2724 * Non-isolated types over MIGRATE_PCPTYPES get added
2725 * to the MIGRATE_MOVABLE pcp list.
2727 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2728 migratetype = MIGRATE_MOVABLE;
2730 trace_mm_page_free_batched(&folio->page);
2731 free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2732 order);
2735 if (pcp) {
2736 pcp_spin_unlock(pcp);
2737 pcp_trylock_finish(UP_flags);
2739 folio_batch_reinit(folios);
2743 * split_page takes a non-compound higher-order page, and splits it into
2744 * n (1<<order) sub-pages: page[0..n]
2745 * Each sub-page must be freed individually.
2747 * Note: this is probably too low level an operation for use in drivers.
2748 * Please consult with lkml before using this in your driver.
2750 void split_page(struct page *page, unsigned int order)
2752 int i;
2754 VM_BUG_ON_PAGE(PageCompound(page), page);
2755 VM_BUG_ON_PAGE(!page_count(page), page);
2757 for (i = 1; i < (1 << order); i++)
2758 set_page_refcounted(page + i);
2759 split_page_owner(page, order, 0);
2760 pgalloc_tag_split(page, 1 << order);
2761 split_page_memcg(page, order, 0);
2763 EXPORT_SYMBOL_GPL(split_page);
2765 int __isolate_free_page(struct page *page, unsigned int order)
2767 struct zone *zone = page_zone(page);
2768 int mt = get_pageblock_migratetype(page);
2770 if (!is_migrate_isolate(mt)) {
2771 unsigned long watermark;
2773 * Obey watermarks as if the page was being allocated. We can
2774 * emulate a high-order watermark check with a raised order-0
2775 * watermark, because we already know our high-order page
2776 * exists.
2778 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2779 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2780 return 0;
2783 del_page_from_free_list(page, zone, order, mt);
2786 * Set the pageblock if the isolated page is at least half of a
2787 * pageblock
2789 if (order >= pageblock_order - 1) {
2790 struct page *endpage = page + (1 << order) - 1;
2791 for (; page < endpage; page += pageblock_nr_pages) {
2792 int mt = get_pageblock_migratetype(page);
2794 * Only change normal pageblocks (i.e., they can merge
2795 * with others)
2797 if (migratetype_is_mergeable(mt))
2798 move_freepages_block(zone, page, mt,
2799 MIGRATE_MOVABLE);
2803 return 1UL << order;
2807 * __putback_isolated_page - Return a now-isolated page back where we got it
2808 * @page: Page that was isolated
2809 * @order: Order of the isolated page
2810 * @mt: The page's pageblock's migratetype
2812 * This function is meant to return a page pulled from the free lists via
2813 * __isolate_free_page back to the free lists they were pulled from.
2815 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2817 struct zone *zone = page_zone(page);
2819 /* zone lock should be held when this function is called */
2820 lockdep_assert_held(&zone->lock);
2822 /* Return isolated page to tail of freelist. */
2823 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2824 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2828 * Update NUMA hit/miss statistics
2830 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2831 long nr_account)
2833 #ifdef CONFIG_NUMA
2834 enum numa_stat_item local_stat = NUMA_LOCAL;
2836 /* skip numa counters update if numa stats is disabled */
2837 if (!static_branch_likely(&vm_numa_stat_key))
2838 return;
2840 if (zone_to_nid(z) != numa_node_id())
2841 local_stat = NUMA_OTHER;
2843 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2844 __count_numa_events(z, NUMA_HIT, nr_account);
2845 else {
2846 __count_numa_events(z, NUMA_MISS, nr_account);
2847 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2849 __count_numa_events(z, local_stat, nr_account);
2850 #endif
2853 static __always_inline
2854 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2855 unsigned int order, unsigned int alloc_flags,
2856 int migratetype)
2858 struct page *page;
2859 unsigned long flags;
2861 do {
2862 page = NULL;
2863 spin_lock_irqsave(&zone->lock, flags);
2864 if (alloc_flags & ALLOC_HIGHATOMIC)
2865 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2866 if (!page) {
2867 page = __rmqueue(zone, order, migratetype, alloc_flags);
2870 * If the allocation fails, allow OOM handling access
2871 * to HIGHATOMIC reserves as failing now is worse than
2872 * failing a high-order atomic allocation in the
2873 * future.
2875 if (!page && (alloc_flags & ALLOC_OOM))
2876 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2878 if (!page) {
2879 spin_unlock_irqrestore(&zone->lock, flags);
2880 return NULL;
2883 spin_unlock_irqrestore(&zone->lock, flags);
2884 } while (check_new_pages(page, order));
2886 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2887 zone_statistics(preferred_zone, zone, 1);
2889 return page;
2892 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2894 int high, base_batch, batch, max_nr_alloc;
2895 int high_max, high_min;
2897 base_batch = READ_ONCE(pcp->batch);
2898 high_min = READ_ONCE(pcp->high_min);
2899 high_max = READ_ONCE(pcp->high_max);
2900 high = pcp->high = clamp(pcp->high, high_min, high_max);
2902 /* Check for PCP disabled or boot pageset */
2903 if (unlikely(high < base_batch))
2904 return 1;
2906 if (order)
2907 batch = base_batch;
2908 else
2909 batch = (base_batch << pcp->alloc_factor);
2912 * If we had larger pcp->high, we could avoid to allocate from
2913 * zone.
2915 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2916 high = pcp->high = min(high + batch, high_max);
2918 if (!order) {
2919 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2921 * Double the number of pages allocated each time there is
2922 * subsequent allocation of order-0 pages without any freeing.
2924 if (batch <= max_nr_alloc &&
2925 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2926 pcp->alloc_factor++;
2927 batch = min(batch, max_nr_alloc);
2931 * Scale batch relative to order if batch implies free pages
2932 * can be stored on the PCP. Batch can be 1 for small zones or
2933 * for boot pagesets which should never store free pages as
2934 * the pages may belong to arbitrary zones.
2936 if (batch > 1)
2937 batch = max(batch >> order, 2);
2939 return batch;
2942 /* Remove page from the per-cpu list, caller must protect the list */
2943 static inline
2944 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2945 int migratetype,
2946 unsigned int alloc_flags,
2947 struct per_cpu_pages *pcp,
2948 struct list_head *list)
2950 struct page *page;
2952 do {
2953 if (list_empty(list)) {
2954 int batch = nr_pcp_alloc(pcp, zone, order);
2955 int alloced;
2957 alloced = rmqueue_bulk(zone, order,
2958 batch, list,
2959 migratetype, alloc_flags);
2961 pcp->count += alloced << order;
2962 if (unlikely(list_empty(list)))
2963 return NULL;
2966 page = list_first_entry(list, struct page, pcp_list);
2967 list_del(&page->pcp_list);
2968 pcp->count -= 1 << order;
2969 } while (check_new_pages(page, order));
2971 return page;
2974 /* Lock and remove page from the per-cpu list */
2975 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2976 struct zone *zone, unsigned int order,
2977 int migratetype, unsigned int alloc_flags)
2979 struct per_cpu_pages *pcp;
2980 struct list_head *list;
2981 struct page *page;
2982 unsigned long __maybe_unused UP_flags;
2984 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2985 pcp_trylock_prepare(UP_flags);
2986 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2987 if (!pcp) {
2988 pcp_trylock_finish(UP_flags);
2989 return NULL;
2993 * On allocation, reduce the number of pages that are batch freed.
2994 * See nr_pcp_free() where free_factor is increased for subsequent
2995 * frees.
2997 pcp->free_count >>= 1;
2998 list = &pcp->lists[order_to_pindex(migratetype, order)];
2999 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3000 pcp_spin_unlock(pcp);
3001 pcp_trylock_finish(UP_flags);
3002 if (page) {
3003 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3004 zone_statistics(preferred_zone, zone, 1);
3006 return page;
3010 * Allocate a page from the given zone.
3011 * Use pcplists for THP or "cheap" high-order allocations.
3015 * Do not instrument rmqueue() with KMSAN. This function may call
3016 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3017 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3018 * may call rmqueue() again, which will result in a deadlock.
3020 __no_sanitize_memory
3021 static inline
3022 struct page *rmqueue(struct zone *preferred_zone,
3023 struct zone *zone, unsigned int order,
3024 gfp_t gfp_flags, unsigned int alloc_flags,
3025 int migratetype)
3027 struct page *page;
3030 * We most definitely don't want callers attempting to
3031 * allocate greater than order-1 page units with __GFP_NOFAIL.
3033 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3035 if (likely(pcp_allowed_order(order))) {
3036 page = rmqueue_pcplist(preferred_zone, zone, order,
3037 migratetype, alloc_flags);
3038 if (likely(page))
3039 goto out;
3042 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3043 migratetype);
3045 out:
3046 /* Separate test+clear to avoid unnecessary atomics */
3047 if ((alloc_flags & ALLOC_KSWAPD) &&
3048 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3049 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3050 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3053 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3054 return page;
3057 static inline long __zone_watermark_unusable_free(struct zone *z,
3058 unsigned int order, unsigned int alloc_flags)
3060 long unusable_free = (1 << order) - 1;
3063 * If the caller does not have rights to reserves below the min
3064 * watermark then subtract the high-atomic reserves. This will
3065 * over-estimate the size of the atomic reserve but it avoids a search.
3067 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3068 unusable_free += z->nr_reserved_highatomic;
3070 #ifdef CONFIG_CMA
3071 /* If allocation can't use CMA areas don't use free CMA pages */
3072 if (!(alloc_flags & ALLOC_CMA))
3073 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3074 #endif
3075 #ifdef CONFIG_UNACCEPTED_MEMORY
3076 unusable_free += zone_page_state(z, NR_UNACCEPTED);
3077 #endif
3079 return unusable_free;
3083 * Return true if free base pages are above 'mark'. For high-order checks it
3084 * will return true of the order-0 watermark is reached and there is at least
3085 * one free page of a suitable size. Checking now avoids taking the zone lock
3086 * to check in the allocation paths if no pages are free.
3088 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3089 int highest_zoneidx, unsigned int alloc_flags,
3090 long free_pages)
3092 long min = mark;
3093 int o;
3095 /* free_pages may go negative - that's OK */
3096 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3098 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3100 * __GFP_HIGH allows access to 50% of the min reserve as well
3101 * as OOM.
3103 if (alloc_flags & ALLOC_MIN_RESERVE) {
3104 min -= min / 2;
3107 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3108 * access more reserves than just __GFP_HIGH. Other
3109 * non-blocking allocations requests such as GFP_NOWAIT
3110 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3111 * access to the min reserve.
3113 if (alloc_flags & ALLOC_NON_BLOCK)
3114 min -= min / 4;
3118 * OOM victims can try even harder than the normal reserve
3119 * users on the grounds that it's definitely going to be in
3120 * the exit path shortly and free memory. Any allocation it
3121 * makes during the free path will be small and short-lived.
3123 if (alloc_flags & ALLOC_OOM)
3124 min -= min / 2;
3128 * Check watermarks for an order-0 allocation request. If these
3129 * are not met, then a high-order request also cannot go ahead
3130 * even if a suitable page happened to be free.
3132 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3133 return false;
3135 /* If this is an order-0 request then the watermark is fine */
3136 if (!order)
3137 return true;
3139 /* For a high-order request, check at least one suitable page is free */
3140 for (o = order; o < NR_PAGE_ORDERS; o++) {
3141 struct free_area *area = &z->free_area[o];
3142 int mt;
3144 if (!area->nr_free)
3145 continue;
3147 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3148 if (!free_area_empty(area, mt))
3149 return true;
3152 #ifdef CONFIG_CMA
3153 if ((alloc_flags & ALLOC_CMA) &&
3154 !free_area_empty(area, MIGRATE_CMA)) {
3155 return true;
3157 #endif
3158 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3159 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3160 return true;
3163 return false;
3166 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3167 int highest_zoneidx, unsigned int alloc_flags)
3169 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3170 zone_page_state(z, NR_FREE_PAGES));
3173 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3174 unsigned long mark, int highest_zoneidx,
3175 unsigned int alloc_flags, gfp_t gfp_mask)
3177 long free_pages;
3179 free_pages = zone_page_state(z, NR_FREE_PAGES);
3182 * Fast check for order-0 only. If this fails then the reserves
3183 * need to be calculated.
3185 if (!order) {
3186 long usable_free;
3187 long reserved;
3189 usable_free = free_pages;
3190 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3192 /* reserved may over estimate high-atomic reserves. */
3193 usable_free -= min(usable_free, reserved);
3194 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3195 return true;
3198 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3199 free_pages))
3200 return true;
3203 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3204 * when checking the min watermark. The min watermark is the
3205 * point where boosting is ignored so that kswapd is woken up
3206 * when below the low watermark.
3208 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3209 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3210 mark = z->_watermark[WMARK_MIN];
3211 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3212 alloc_flags, free_pages);
3215 return false;
3218 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3219 unsigned long mark, int highest_zoneidx)
3221 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3223 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3224 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3226 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3227 free_pages);
3230 #ifdef CONFIG_NUMA
3231 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3233 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3235 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3236 node_reclaim_distance;
3238 #else /* CONFIG_NUMA */
3239 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3241 return true;
3243 #endif /* CONFIG_NUMA */
3246 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3247 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3248 * premature use of a lower zone may cause lowmem pressure problems that
3249 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3250 * probably too small. It only makes sense to spread allocations to avoid
3251 * fragmentation between the Normal and DMA32 zones.
3253 static inline unsigned int
3254 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3256 unsigned int alloc_flags;
3259 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3260 * to save a branch.
3262 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3264 #ifdef CONFIG_ZONE_DMA32
3265 if (!zone)
3266 return alloc_flags;
3268 if (zone_idx(zone) != ZONE_NORMAL)
3269 return alloc_flags;
3272 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3273 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3274 * on UMA that if Normal is populated then so is DMA32.
3276 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3277 if (nr_online_nodes > 1 && !populated_zone(--zone))
3278 return alloc_flags;
3280 alloc_flags |= ALLOC_NOFRAGMENT;
3281 #endif /* CONFIG_ZONE_DMA32 */
3282 return alloc_flags;
3285 /* Must be called after current_gfp_context() which can change gfp_mask */
3286 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3287 unsigned int alloc_flags)
3289 #ifdef CONFIG_CMA
3290 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3291 alloc_flags |= ALLOC_CMA;
3292 #endif
3293 return alloc_flags;
3297 * get_page_from_freelist goes through the zonelist trying to allocate
3298 * a page.
3300 static struct page *
3301 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3302 const struct alloc_context *ac)
3304 struct zoneref *z;
3305 struct zone *zone;
3306 struct pglist_data *last_pgdat = NULL;
3307 bool last_pgdat_dirty_ok = false;
3308 bool no_fallback;
3310 retry:
3312 * Scan zonelist, looking for a zone with enough free.
3313 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3315 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3316 z = ac->preferred_zoneref;
3317 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3318 ac->nodemask) {
3319 struct page *page;
3320 unsigned long mark;
3322 if (cpusets_enabled() &&
3323 (alloc_flags & ALLOC_CPUSET) &&
3324 !__cpuset_zone_allowed(zone, gfp_mask))
3325 continue;
3327 * When allocating a page cache page for writing, we
3328 * want to get it from a node that is within its dirty
3329 * limit, such that no single node holds more than its
3330 * proportional share of globally allowed dirty pages.
3331 * The dirty limits take into account the node's
3332 * lowmem reserves and high watermark so that kswapd
3333 * should be able to balance it without having to
3334 * write pages from its LRU list.
3336 * XXX: For now, allow allocations to potentially
3337 * exceed the per-node dirty limit in the slowpath
3338 * (spread_dirty_pages unset) before going into reclaim,
3339 * which is important when on a NUMA setup the allowed
3340 * nodes are together not big enough to reach the
3341 * global limit. The proper fix for these situations
3342 * will require awareness of nodes in the
3343 * dirty-throttling and the flusher threads.
3345 if (ac->spread_dirty_pages) {
3346 if (last_pgdat != zone->zone_pgdat) {
3347 last_pgdat = zone->zone_pgdat;
3348 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3351 if (!last_pgdat_dirty_ok)
3352 continue;
3355 if (no_fallback && nr_online_nodes > 1 &&
3356 zone != ac->preferred_zoneref->zone) {
3357 int local_nid;
3360 * If moving to a remote node, retry but allow
3361 * fragmenting fallbacks. Locality is more important
3362 * than fragmentation avoidance.
3364 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3365 if (zone_to_nid(zone) != local_nid) {
3366 alloc_flags &= ~ALLOC_NOFRAGMENT;
3367 goto retry;
3372 * Detect whether the number of free pages is below high
3373 * watermark. If so, we will decrease pcp->high and free
3374 * PCP pages in free path to reduce the possibility of
3375 * premature page reclaiming. Detection is done here to
3376 * avoid to do that in hotter free path.
3378 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3379 goto check_alloc_wmark;
3381 mark = high_wmark_pages(zone);
3382 if (zone_watermark_fast(zone, order, mark,
3383 ac->highest_zoneidx, alloc_flags,
3384 gfp_mask))
3385 goto try_this_zone;
3386 else
3387 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3389 check_alloc_wmark:
3390 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3391 if (!zone_watermark_fast(zone, order, mark,
3392 ac->highest_zoneidx, alloc_flags,
3393 gfp_mask)) {
3394 int ret;
3396 if (has_unaccepted_memory()) {
3397 if (try_to_accept_memory(zone, order))
3398 goto try_this_zone;
3401 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3403 * Watermark failed for this zone, but see if we can
3404 * grow this zone if it contains deferred pages.
3406 if (deferred_pages_enabled()) {
3407 if (_deferred_grow_zone(zone, order))
3408 goto try_this_zone;
3410 #endif
3411 /* Checked here to keep the fast path fast */
3412 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3413 if (alloc_flags & ALLOC_NO_WATERMARKS)
3414 goto try_this_zone;
3416 if (!node_reclaim_enabled() ||
3417 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3418 continue;
3420 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3421 switch (ret) {
3422 case NODE_RECLAIM_NOSCAN:
3423 /* did not scan */
3424 continue;
3425 case NODE_RECLAIM_FULL:
3426 /* scanned but unreclaimable */
3427 continue;
3428 default:
3429 /* did we reclaim enough */
3430 if (zone_watermark_ok(zone, order, mark,
3431 ac->highest_zoneidx, alloc_flags))
3432 goto try_this_zone;
3434 continue;
3438 try_this_zone:
3439 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3440 gfp_mask, alloc_flags, ac->migratetype);
3441 if (page) {
3442 prep_new_page(page, order, gfp_mask, alloc_flags);
3445 * If this is a high-order atomic allocation then check
3446 * if the pageblock should be reserved for the future
3448 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3449 reserve_highatomic_pageblock(page, order, zone);
3451 return page;
3452 } else {
3453 if (has_unaccepted_memory()) {
3454 if (try_to_accept_memory(zone, order))
3455 goto try_this_zone;
3458 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3459 /* Try again if zone has deferred pages */
3460 if (deferred_pages_enabled()) {
3461 if (_deferred_grow_zone(zone, order))
3462 goto try_this_zone;
3464 #endif
3469 * It's possible on a UMA machine to get through all zones that are
3470 * fragmented. If avoiding fragmentation, reset and try again.
3472 if (no_fallback) {
3473 alloc_flags &= ~ALLOC_NOFRAGMENT;
3474 goto retry;
3477 return NULL;
3480 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3482 unsigned int filter = SHOW_MEM_FILTER_NODES;
3485 * This documents exceptions given to allocations in certain
3486 * contexts that are allowed to allocate outside current's set
3487 * of allowed nodes.
3489 if (!(gfp_mask & __GFP_NOMEMALLOC))
3490 if (tsk_is_oom_victim(current) ||
3491 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3492 filter &= ~SHOW_MEM_FILTER_NODES;
3493 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3494 filter &= ~SHOW_MEM_FILTER_NODES;
3496 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3499 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3501 struct va_format vaf;
3502 va_list args;
3503 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3505 if ((gfp_mask & __GFP_NOWARN) ||
3506 !__ratelimit(&nopage_rs) ||
3507 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3508 return;
3510 va_start(args, fmt);
3511 vaf.fmt = fmt;
3512 vaf.va = &args;
3513 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3514 current->comm, &vaf, gfp_mask, &gfp_mask,
3515 nodemask_pr_args(nodemask));
3516 va_end(args);
3518 cpuset_print_current_mems_allowed();
3519 pr_cont("\n");
3520 dump_stack();
3521 warn_alloc_show_mem(gfp_mask, nodemask);
3524 static inline struct page *
3525 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3526 unsigned int alloc_flags,
3527 const struct alloc_context *ac)
3529 struct page *page;
3531 page = get_page_from_freelist(gfp_mask, order,
3532 alloc_flags|ALLOC_CPUSET, ac);
3534 * fallback to ignore cpuset restriction if our nodes
3535 * are depleted
3537 if (!page)
3538 page = get_page_from_freelist(gfp_mask, order,
3539 alloc_flags, ac);
3541 return page;
3544 static inline struct page *
3545 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3546 const struct alloc_context *ac, unsigned long *did_some_progress)
3548 struct oom_control oc = {
3549 .zonelist = ac->zonelist,
3550 .nodemask = ac->nodemask,
3551 .memcg = NULL,
3552 .gfp_mask = gfp_mask,
3553 .order = order,
3555 struct page *page;
3557 *did_some_progress = 0;
3560 * Acquire the oom lock. If that fails, somebody else is
3561 * making progress for us.
3563 if (!mutex_trylock(&oom_lock)) {
3564 *did_some_progress = 1;
3565 schedule_timeout_uninterruptible(1);
3566 return NULL;
3570 * Go through the zonelist yet one more time, keep very high watermark
3571 * here, this is only to catch a parallel oom killing, we must fail if
3572 * we're still under heavy pressure. But make sure that this reclaim
3573 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3574 * allocation which will never fail due to oom_lock already held.
3576 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3577 ~__GFP_DIRECT_RECLAIM, order,
3578 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3579 if (page)
3580 goto out;
3582 /* Coredumps can quickly deplete all memory reserves */
3583 if (current->flags & PF_DUMPCORE)
3584 goto out;
3585 /* The OOM killer will not help higher order allocs */
3586 if (order > PAGE_ALLOC_COSTLY_ORDER)
3587 goto out;
3589 * We have already exhausted all our reclaim opportunities without any
3590 * success so it is time to admit defeat. We will skip the OOM killer
3591 * because it is very likely that the caller has a more reasonable
3592 * fallback than shooting a random task.
3594 * The OOM killer may not free memory on a specific node.
3596 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3597 goto out;
3598 /* The OOM killer does not needlessly kill tasks for lowmem */
3599 if (ac->highest_zoneidx < ZONE_NORMAL)
3600 goto out;
3601 if (pm_suspended_storage())
3602 goto out;
3604 * XXX: GFP_NOFS allocations should rather fail than rely on
3605 * other request to make a forward progress.
3606 * We are in an unfortunate situation where out_of_memory cannot
3607 * do much for this context but let's try it to at least get
3608 * access to memory reserved if the current task is killed (see
3609 * out_of_memory). Once filesystems are ready to handle allocation
3610 * failures more gracefully we should just bail out here.
3613 /* Exhausted what can be done so it's blame time */
3614 if (out_of_memory(&oc) ||
3615 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3616 *did_some_progress = 1;
3619 * Help non-failing allocations by giving them access to memory
3620 * reserves
3622 if (gfp_mask & __GFP_NOFAIL)
3623 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3624 ALLOC_NO_WATERMARKS, ac);
3626 out:
3627 mutex_unlock(&oom_lock);
3628 return page;
3632 * Maximum number of compaction retries with a progress before OOM
3633 * killer is consider as the only way to move forward.
3635 #define MAX_COMPACT_RETRIES 16
3637 #ifdef CONFIG_COMPACTION
3638 /* Try memory compaction for high-order allocations before reclaim */
3639 static struct page *
3640 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3641 unsigned int alloc_flags, const struct alloc_context *ac,
3642 enum compact_priority prio, enum compact_result *compact_result)
3644 struct page *page = NULL;
3645 unsigned long pflags;
3646 unsigned int noreclaim_flag;
3648 if (!order)
3649 return NULL;
3651 psi_memstall_enter(&pflags);
3652 delayacct_compact_start();
3653 noreclaim_flag = memalloc_noreclaim_save();
3655 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3656 prio, &page);
3658 memalloc_noreclaim_restore(noreclaim_flag);
3659 psi_memstall_leave(&pflags);
3660 delayacct_compact_end();
3662 if (*compact_result == COMPACT_SKIPPED)
3663 return NULL;
3665 * At least in one zone compaction wasn't deferred or skipped, so let's
3666 * count a compaction stall
3668 count_vm_event(COMPACTSTALL);
3670 /* Prep a captured page if available */
3671 if (page)
3672 prep_new_page(page, order, gfp_mask, alloc_flags);
3674 /* Try get a page from the freelist if available */
3675 if (!page)
3676 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3678 if (page) {
3679 struct zone *zone = page_zone(page);
3681 zone->compact_blockskip_flush = false;
3682 compaction_defer_reset(zone, order, true);
3683 count_vm_event(COMPACTSUCCESS);
3684 return page;
3688 * It's bad if compaction run occurs and fails. The most likely reason
3689 * is that pages exist, but not enough to satisfy watermarks.
3691 count_vm_event(COMPACTFAIL);
3693 cond_resched();
3695 return NULL;
3698 static inline bool
3699 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3700 enum compact_result compact_result,
3701 enum compact_priority *compact_priority,
3702 int *compaction_retries)
3704 int max_retries = MAX_COMPACT_RETRIES;
3705 int min_priority;
3706 bool ret = false;
3707 int retries = *compaction_retries;
3708 enum compact_priority priority = *compact_priority;
3710 if (!order)
3711 return false;
3713 if (fatal_signal_pending(current))
3714 return false;
3717 * Compaction was skipped due to a lack of free order-0
3718 * migration targets. Continue if reclaim can help.
3720 if (compact_result == COMPACT_SKIPPED) {
3721 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3722 goto out;
3726 * Compaction managed to coalesce some page blocks, but the
3727 * allocation failed presumably due to a race. Retry some.
3729 if (compact_result == COMPACT_SUCCESS) {
3731 * !costly requests are much more important than
3732 * __GFP_RETRY_MAYFAIL costly ones because they are de
3733 * facto nofail and invoke OOM killer to move on while
3734 * costly can fail and users are ready to cope with
3735 * that. 1/4 retries is rather arbitrary but we would
3736 * need much more detailed feedback from compaction to
3737 * make a better decision.
3739 if (order > PAGE_ALLOC_COSTLY_ORDER)
3740 max_retries /= 4;
3742 if (++(*compaction_retries) <= max_retries) {
3743 ret = true;
3744 goto out;
3749 * Compaction failed. Retry with increasing priority.
3751 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3752 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3754 if (*compact_priority > min_priority) {
3755 (*compact_priority)--;
3756 *compaction_retries = 0;
3757 ret = true;
3759 out:
3760 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3761 return ret;
3763 #else
3764 static inline struct page *
3765 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3766 unsigned int alloc_flags, const struct alloc_context *ac,
3767 enum compact_priority prio, enum compact_result *compact_result)
3769 *compact_result = COMPACT_SKIPPED;
3770 return NULL;
3773 static inline bool
3774 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3775 enum compact_result compact_result,
3776 enum compact_priority *compact_priority,
3777 int *compaction_retries)
3779 struct zone *zone;
3780 struct zoneref *z;
3782 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3783 return false;
3786 * There are setups with compaction disabled which would prefer to loop
3787 * inside the allocator rather than hit the oom killer prematurely.
3788 * Let's give them a good hope and keep retrying while the order-0
3789 * watermarks are OK.
3791 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3792 ac->highest_zoneidx, ac->nodemask) {
3793 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3794 ac->highest_zoneidx, alloc_flags))
3795 return true;
3797 return false;
3799 #endif /* CONFIG_COMPACTION */
3801 #ifdef CONFIG_LOCKDEP
3802 static struct lockdep_map __fs_reclaim_map =
3803 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3805 static bool __need_reclaim(gfp_t gfp_mask)
3807 /* no reclaim without waiting on it */
3808 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3809 return false;
3811 /* this guy won't enter reclaim */
3812 if (current->flags & PF_MEMALLOC)
3813 return false;
3815 if (gfp_mask & __GFP_NOLOCKDEP)
3816 return false;
3818 return true;
3821 void __fs_reclaim_acquire(unsigned long ip)
3823 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3826 void __fs_reclaim_release(unsigned long ip)
3828 lock_release(&__fs_reclaim_map, ip);
3831 void fs_reclaim_acquire(gfp_t gfp_mask)
3833 gfp_mask = current_gfp_context(gfp_mask);
3835 if (__need_reclaim(gfp_mask)) {
3836 if (gfp_mask & __GFP_FS)
3837 __fs_reclaim_acquire(_RET_IP_);
3839 #ifdef CONFIG_MMU_NOTIFIER
3840 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3841 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3842 #endif
3846 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3848 void fs_reclaim_release(gfp_t gfp_mask)
3850 gfp_mask = current_gfp_context(gfp_mask);
3852 if (__need_reclaim(gfp_mask)) {
3853 if (gfp_mask & __GFP_FS)
3854 __fs_reclaim_release(_RET_IP_);
3857 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3858 #endif
3861 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3862 * have been rebuilt so allocation retries. Reader side does not lock and
3863 * retries the allocation if zonelist changes. Writer side is protected by the
3864 * embedded spin_lock.
3866 static DEFINE_SEQLOCK(zonelist_update_seq);
3868 static unsigned int zonelist_iter_begin(void)
3870 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3871 return read_seqbegin(&zonelist_update_seq);
3873 return 0;
3876 static unsigned int check_retry_zonelist(unsigned int seq)
3878 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3879 return read_seqretry(&zonelist_update_seq, seq);
3881 return seq;
3884 /* Perform direct synchronous page reclaim */
3885 static unsigned long
3886 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3887 const struct alloc_context *ac)
3889 unsigned int noreclaim_flag;
3890 unsigned long progress;
3892 cond_resched();
3894 /* We now go into synchronous reclaim */
3895 cpuset_memory_pressure_bump();
3896 fs_reclaim_acquire(gfp_mask);
3897 noreclaim_flag = memalloc_noreclaim_save();
3899 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3900 ac->nodemask);
3902 memalloc_noreclaim_restore(noreclaim_flag);
3903 fs_reclaim_release(gfp_mask);
3905 cond_resched();
3907 return progress;
3910 /* The really slow allocator path where we enter direct reclaim */
3911 static inline struct page *
3912 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3913 unsigned int alloc_flags, const struct alloc_context *ac,
3914 unsigned long *did_some_progress)
3916 struct page *page = NULL;
3917 unsigned long pflags;
3918 bool drained = false;
3920 psi_memstall_enter(&pflags);
3921 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3922 if (unlikely(!(*did_some_progress)))
3923 goto out;
3925 retry:
3926 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3929 * If an allocation failed after direct reclaim, it could be because
3930 * pages are pinned on the per-cpu lists or in high alloc reserves.
3931 * Shrink them and try again
3933 if (!page && !drained) {
3934 unreserve_highatomic_pageblock(ac, false);
3935 drain_all_pages(NULL);
3936 drained = true;
3937 goto retry;
3939 out:
3940 psi_memstall_leave(&pflags);
3942 return page;
3945 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3946 const struct alloc_context *ac)
3948 struct zoneref *z;
3949 struct zone *zone;
3950 pg_data_t *last_pgdat = NULL;
3951 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3953 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3954 ac->nodemask) {
3955 if (!managed_zone(zone))
3956 continue;
3957 if (last_pgdat != zone->zone_pgdat) {
3958 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3959 last_pgdat = zone->zone_pgdat;
3964 static inline unsigned int
3965 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3967 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3970 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3971 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3972 * to save two branches.
3974 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3975 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3978 * The caller may dip into page reserves a bit more if the caller
3979 * cannot run direct reclaim, or if the caller has realtime scheduling
3980 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3981 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3983 alloc_flags |= (__force int)
3984 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3986 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3988 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3989 * if it can't schedule.
3991 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3992 alloc_flags |= ALLOC_NON_BLOCK;
3994 if (order > 0)
3995 alloc_flags |= ALLOC_HIGHATOMIC;
3999 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4000 * GFP_ATOMIC) rather than fail, see the comment for
4001 * cpuset_node_allowed().
4003 if (alloc_flags & ALLOC_MIN_RESERVE)
4004 alloc_flags &= ~ALLOC_CPUSET;
4005 } else if (unlikely(rt_task(current)) && in_task())
4006 alloc_flags |= ALLOC_MIN_RESERVE;
4008 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4010 return alloc_flags;
4013 static bool oom_reserves_allowed(struct task_struct *tsk)
4015 if (!tsk_is_oom_victim(tsk))
4016 return false;
4019 * !MMU doesn't have oom reaper so give access to memory reserves
4020 * only to the thread with TIF_MEMDIE set
4022 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4023 return false;
4025 return true;
4029 * Distinguish requests which really need access to full memory
4030 * reserves from oom victims which can live with a portion of it
4032 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4034 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4035 return 0;
4036 if (gfp_mask & __GFP_MEMALLOC)
4037 return ALLOC_NO_WATERMARKS;
4038 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4039 return ALLOC_NO_WATERMARKS;
4040 if (!in_interrupt()) {
4041 if (current->flags & PF_MEMALLOC)
4042 return ALLOC_NO_WATERMARKS;
4043 else if (oom_reserves_allowed(current))
4044 return ALLOC_OOM;
4047 return 0;
4050 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4052 return !!__gfp_pfmemalloc_flags(gfp_mask);
4056 * Checks whether it makes sense to retry the reclaim to make a forward progress
4057 * for the given allocation request.
4059 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4060 * without success, or when we couldn't even meet the watermark if we
4061 * reclaimed all remaining pages on the LRU lists.
4063 * Returns true if a retry is viable or false to enter the oom path.
4065 static inline bool
4066 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4067 struct alloc_context *ac, int alloc_flags,
4068 bool did_some_progress, int *no_progress_loops)
4070 struct zone *zone;
4071 struct zoneref *z;
4072 bool ret = false;
4075 * Costly allocations might have made a progress but this doesn't mean
4076 * their order will become available due to high fragmentation so
4077 * always increment the no progress counter for them
4079 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4080 *no_progress_loops = 0;
4081 else
4082 (*no_progress_loops)++;
4084 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4085 goto out;
4089 * Keep reclaiming pages while there is a chance this will lead
4090 * somewhere. If none of the target zones can satisfy our allocation
4091 * request even if all reclaimable pages are considered then we are
4092 * screwed and have to go OOM.
4094 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4095 ac->highest_zoneidx, ac->nodemask) {
4096 unsigned long available;
4097 unsigned long reclaimable;
4098 unsigned long min_wmark = min_wmark_pages(zone);
4099 bool wmark;
4101 available = reclaimable = zone_reclaimable_pages(zone);
4102 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4105 * Would the allocation succeed if we reclaimed all
4106 * reclaimable pages?
4108 wmark = __zone_watermark_ok(zone, order, min_wmark,
4109 ac->highest_zoneidx, alloc_flags, available);
4110 trace_reclaim_retry_zone(z, order, reclaimable,
4111 available, min_wmark, *no_progress_loops, wmark);
4112 if (wmark) {
4113 ret = true;
4114 break;
4119 * Memory allocation/reclaim might be called from a WQ context and the
4120 * current implementation of the WQ concurrency control doesn't
4121 * recognize that a particular WQ is congested if the worker thread is
4122 * looping without ever sleeping. Therefore we have to do a short sleep
4123 * here rather than calling cond_resched().
4125 if (current->flags & PF_WQ_WORKER)
4126 schedule_timeout_uninterruptible(1);
4127 else
4128 cond_resched();
4129 out:
4130 /* Before OOM, exhaust highatomic_reserve */
4131 if (!ret)
4132 return unreserve_highatomic_pageblock(ac, true);
4134 return ret;
4137 static inline bool
4138 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4141 * It's possible that cpuset's mems_allowed and the nodemask from
4142 * mempolicy don't intersect. This should be normally dealt with by
4143 * policy_nodemask(), but it's possible to race with cpuset update in
4144 * such a way the check therein was true, and then it became false
4145 * before we got our cpuset_mems_cookie here.
4146 * This assumes that for all allocations, ac->nodemask can come only
4147 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4148 * when it does not intersect with the cpuset restrictions) or the
4149 * caller can deal with a violated nodemask.
4151 if (cpusets_enabled() && ac->nodemask &&
4152 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4153 ac->nodemask = NULL;
4154 return true;
4158 * When updating a task's mems_allowed or mempolicy nodemask, it is
4159 * possible to race with parallel threads in such a way that our
4160 * allocation can fail while the mask is being updated. If we are about
4161 * to fail, check if the cpuset changed during allocation and if so,
4162 * retry.
4164 if (read_mems_allowed_retry(cpuset_mems_cookie))
4165 return true;
4167 return false;
4170 static inline struct page *
4171 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4172 struct alloc_context *ac)
4174 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4175 bool can_compact = gfp_compaction_allowed(gfp_mask);
4176 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4177 struct page *page = NULL;
4178 unsigned int alloc_flags;
4179 unsigned long did_some_progress;
4180 enum compact_priority compact_priority;
4181 enum compact_result compact_result;
4182 int compaction_retries;
4183 int no_progress_loops;
4184 unsigned int cpuset_mems_cookie;
4185 unsigned int zonelist_iter_cookie;
4186 int reserve_flags;
4188 restart:
4189 compaction_retries = 0;
4190 no_progress_loops = 0;
4191 compact_priority = DEF_COMPACT_PRIORITY;
4192 cpuset_mems_cookie = read_mems_allowed_begin();
4193 zonelist_iter_cookie = zonelist_iter_begin();
4196 * The fast path uses conservative alloc_flags to succeed only until
4197 * kswapd needs to be woken up, and to avoid the cost of setting up
4198 * alloc_flags precisely. So we do that now.
4200 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4203 * We need to recalculate the starting point for the zonelist iterator
4204 * because we might have used different nodemask in the fast path, or
4205 * there was a cpuset modification and we are retrying - otherwise we
4206 * could end up iterating over non-eligible zones endlessly.
4208 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4209 ac->highest_zoneidx, ac->nodemask);
4210 if (!ac->preferred_zoneref->zone)
4211 goto nopage;
4214 * Check for insane configurations where the cpuset doesn't contain
4215 * any suitable zone to satisfy the request - e.g. non-movable
4216 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4218 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4219 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4220 ac->highest_zoneidx,
4221 &cpuset_current_mems_allowed);
4222 if (!z->zone)
4223 goto nopage;
4226 if (alloc_flags & ALLOC_KSWAPD)
4227 wake_all_kswapds(order, gfp_mask, ac);
4230 * The adjusted alloc_flags might result in immediate success, so try
4231 * that first
4233 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4234 if (page)
4235 goto got_pg;
4238 * For costly allocations, try direct compaction first, as it's likely
4239 * that we have enough base pages and don't need to reclaim. For non-
4240 * movable high-order allocations, do that as well, as compaction will
4241 * try prevent permanent fragmentation by migrating from blocks of the
4242 * same migratetype.
4243 * Don't try this for allocations that are allowed to ignore
4244 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4246 if (can_direct_reclaim && can_compact &&
4247 (costly_order ||
4248 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4249 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4250 page = __alloc_pages_direct_compact(gfp_mask, order,
4251 alloc_flags, ac,
4252 INIT_COMPACT_PRIORITY,
4253 &compact_result);
4254 if (page)
4255 goto got_pg;
4258 * Checks for costly allocations with __GFP_NORETRY, which
4259 * includes some THP page fault allocations
4261 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4263 * If allocating entire pageblock(s) and compaction
4264 * failed because all zones are below low watermarks
4265 * or is prohibited because it recently failed at this
4266 * order, fail immediately unless the allocator has
4267 * requested compaction and reclaim retry.
4269 * Reclaim is
4270 * - potentially very expensive because zones are far
4271 * below their low watermarks or this is part of very
4272 * bursty high order allocations,
4273 * - not guaranteed to help because isolate_freepages()
4274 * may not iterate over freed pages as part of its
4275 * linear scan, and
4276 * - unlikely to make entire pageblocks free on its
4277 * own.
4279 if (compact_result == COMPACT_SKIPPED ||
4280 compact_result == COMPACT_DEFERRED)
4281 goto nopage;
4284 * Looks like reclaim/compaction is worth trying, but
4285 * sync compaction could be very expensive, so keep
4286 * using async compaction.
4288 compact_priority = INIT_COMPACT_PRIORITY;
4292 retry:
4293 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4294 if (alloc_flags & ALLOC_KSWAPD)
4295 wake_all_kswapds(order, gfp_mask, ac);
4297 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4298 if (reserve_flags)
4299 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4300 (alloc_flags & ALLOC_KSWAPD);
4303 * Reset the nodemask and zonelist iterators if memory policies can be
4304 * ignored. These allocations are high priority and system rather than
4305 * user oriented.
4307 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4308 ac->nodemask = NULL;
4309 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4310 ac->highest_zoneidx, ac->nodemask);
4313 /* Attempt with potentially adjusted zonelist and alloc_flags */
4314 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4315 if (page)
4316 goto got_pg;
4318 /* Caller is not willing to reclaim, we can't balance anything */
4319 if (!can_direct_reclaim)
4320 goto nopage;
4322 /* Avoid recursion of direct reclaim */
4323 if (current->flags & PF_MEMALLOC)
4324 goto nopage;
4326 /* Try direct reclaim and then allocating */
4327 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4328 &did_some_progress);
4329 if (page)
4330 goto got_pg;
4332 /* Try direct compaction and then allocating */
4333 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4334 compact_priority, &compact_result);
4335 if (page)
4336 goto got_pg;
4338 /* Do not loop if specifically requested */
4339 if (gfp_mask & __GFP_NORETRY)
4340 goto nopage;
4343 * Do not retry costly high order allocations unless they are
4344 * __GFP_RETRY_MAYFAIL and we can compact
4346 if (costly_order && (!can_compact ||
4347 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4348 goto nopage;
4350 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4351 did_some_progress > 0, &no_progress_loops))
4352 goto retry;
4355 * It doesn't make any sense to retry for the compaction if the order-0
4356 * reclaim is not able to make any progress because the current
4357 * implementation of the compaction depends on the sufficient amount
4358 * of free memory (see __compaction_suitable)
4360 if (did_some_progress > 0 && can_compact &&
4361 should_compact_retry(ac, order, alloc_flags,
4362 compact_result, &compact_priority,
4363 &compaction_retries))
4364 goto retry;
4368 * Deal with possible cpuset update races or zonelist updates to avoid
4369 * a unnecessary OOM kill.
4371 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4372 check_retry_zonelist(zonelist_iter_cookie))
4373 goto restart;
4375 /* Reclaim has failed us, start killing things */
4376 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4377 if (page)
4378 goto got_pg;
4380 /* Avoid allocations with no watermarks from looping endlessly */
4381 if (tsk_is_oom_victim(current) &&
4382 (alloc_flags & ALLOC_OOM ||
4383 (gfp_mask & __GFP_NOMEMALLOC)))
4384 goto nopage;
4386 /* Retry as long as the OOM killer is making progress */
4387 if (did_some_progress) {
4388 no_progress_loops = 0;
4389 goto retry;
4392 nopage:
4394 * Deal with possible cpuset update races or zonelist updates to avoid
4395 * a unnecessary OOM kill.
4397 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4398 check_retry_zonelist(zonelist_iter_cookie))
4399 goto restart;
4402 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4403 * we always retry
4405 if (gfp_mask & __GFP_NOFAIL) {
4407 * All existing users of the __GFP_NOFAIL are blockable, so warn
4408 * of any new users that actually require GFP_NOWAIT
4410 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4411 goto fail;
4414 * PF_MEMALLOC request from this context is rather bizarre
4415 * because we cannot reclaim anything and only can loop waiting
4416 * for somebody to do a work for us
4418 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4421 * non failing costly orders are a hard requirement which we
4422 * are not prepared for much so let's warn about these users
4423 * so that we can identify them and convert them to something
4424 * else.
4426 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4429 * Help non-failing allocations by giving some access to memory
4430 * reserves normally used for high priority non-blocking
4431 * allocations but do not use ALLOC_NO_WATERMARKS because this
4432 * could deplete whole memory reserves which would just make
4433 * the situation worse.
4435 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4436 if (page)
4437 goto got_pg;
4439 cond_resched();
4440 goto retry;
4442 fail:
4443 warn_alloc(gfp_mask, ac->nodemask,
4444 "page allocation failure: order:%u", order);
4445 got_pg:
4446 return page;
4449 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4450 int preferred_nid, nodemask_t *nodemask,
4451 struct alloc_context *ac, gfp_t *alloc_gfp,
4452 unsigned int *alloc_flags)
4454 ac->highest_zoneidx = gfp_zone(gfp_mask);
4455 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4456 ac->nodemask = nodemask;
4457 ac->migratetype = gfp_migratetype(gfp_mask);
4459 if (cpusets_enabled()) {
4460 *alloc_gfp |= __GFP_HARDWALL;
4462 * When we are in the interrupt context, it is irrelevant
4463 * to the current task context. It means that any node ok.
4465 if (in_task() && !ac->nodemask)
4466 ac->nodemask = &cpuset_current_mems_allowed;
4467 else
4468 *alloc_flags |= ALLOC_CPUSET;
4471 might_alloc(gfp_mask);
4473 if (should_fail_alloc_page(gfp_mask, order))
4474 return false;
4476 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4478 /* Dirty zone balancing only done in the fast path */
4479 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4482 * The preferred zone is used for statistics but crucially it is
4483 * also used as the starting point for the zonelist iterator. It
4484 * may get reset for allocations that ignore memory policies.
4486 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4487 ac->highest_zoneidx, ac->nodemask);
4489 return true;
4493 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4494 * @gfp: GFP flags for the allocation
4495 * @preferred_nid: The preferred NUMA node ID to allocate from
4496 * @nodemask: Set of nodes to allocate from, may be NULL
4497 * @nr_pages: The number of pages desired on the list or array
4498 * @page_list: Optional list to store the allocated pages
4499 * @page_array: Optional array to store the pages
4501 * This is a batched version of the page allocator that attempts to
4502 * allocate nr_pages quickly. Pages are added to page_list if page_list
4503 * is not NULL, otherwise it is assumed that the page_array is valid.
4505 * For lists, nr_pages is the number of pages that should be allocated.
4507 * For arrays, only NULL elements are populated with pages and nr_pages
4508 * is the maximum number of pages that will be stored in the array.
4510 * Returns the number of pages on the list or array.
4512 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4513 nodemask_t *nodemask, int nr_pages,
4514 struct list_head *page_list,
4515 struct page **page_array)
4517 struct page *page;
4518 unsigned long __maybe_unused UP_flags;
4519 struct zone *zone;
4520 struct zoneref *z;
4521 struct per_cpu_pages *pcp;
4522 struct list_head *pcp_list;
4523 struct alloc_context ac;
4524 gfp_t alloc_gfp;
4525 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4526 int nr_populated = 0, nr_account = 0;
4529 * Skip populated array elements to determine if any pages need
4530 * to be allocated before disabling IRQs.
4532 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4533 nr_populated++;
4535 /* No pages requested? */
4536 if (unlikely(nr_pages <= 0))
4537 goto out;
4539 /* Already populated array? */
4540 if (unlikely(page_array && nr_pages - nr_populated == 0))
4541 goto out;
4543 /* Bulk allocator does not support memcg accounting. */
4544 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4545 goto failed;
4547 /* Use the single page allocator for one page. */
4548 if (nr_pages - nr_populated == 1)
4549 goto failed;
4551 #ifdef CONFIG_PAGE_OWNER
4553 * PAGE_OWNER may recurse into the allocator to allocate space to
4554 * save the stack with pagesets.lock held. Releasing/reacquiring
4555 * removes much of the performance benefit of bulk allocation so
4556 * force the caller to allocate one page at a time as it'll have
4557 * similar performance to added complexity to the bulk allocator.
4559 if (static_branch_unlikely(&page_owner_inited))
4560 goto failed;
4561 #endif
4563 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4564 gfp &= gfp_allowed_mask;
4565 alloc_gfp = gfp;
4566 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4567 goto out;
4568 gfp = alloc_gfp;
4570 /* Find an allowed local zone that meets the low watermark. */
4571 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4572 unsigned long mark;
4574 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4575 !__cpuset_zone_allowed(zone, gfp)) {
4576 continue;
4579 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4580 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4581 goto failed;
4584 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4585 if (zone_watermark_fast(zone, 0, mark,
4586 zonelist_zone_idx(ac.preferred_zoneref),
4587 alloc_flags, gfp)) {
4588 break;
4593 * If there are no allowed local zones that meets the watermarks then
4594 * try to allocate a single page and reclaim if necessary.
4596 if (unlikely(!zone))
4597 goto failed;
4599 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4600 pcp_trylock_prepare(UP_flags);
4601 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4602 if (!pcp)
4603 goto failed_irq;
4605 /* Attempt the batch allocation */
4606 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4607 while (nr_populated < nr_pages) {
4609 /* Skip existing pages */
4610 if (page_array && page_array[nr_populated]) {
4611 nr_populated++;
4612 continue;
4615 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4616 pcp, pcp_list);
4617 if (unlikely(!page)) {
4618 /* Try and allocate at least one page */
4619 if (!nr_account) {
4620 pcp_spin_unlock(pcp);
4621 goto failed_irq;
4623 break;
4625 nr_account++;
4627 prep_new_page(page, 0, gfp, 0);
4628 if (page_list)
4629 list_add(&page->lru, page_list);
4630 else
4631 page_array[nr_populated] = page;
4632 nr_populated++;
4635 pcp_spin_unlock(pcp);
4636 pcp_trylock_finish(UP_flags);
4638 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4639 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4641 out:
4642 return nr_populated;
4644 failed_irq:
4645 pcp_trylock_finish(UP_flags);
4647 failed:
4648 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4649 if (page) {
4650 if (page_list)
4651 list_add(&page->lru, page_list);
4652 else
4653 page_array[nr_populated] = page;
4654 nr_populated++;
4657 goto out;
4659 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4662 * This is the 'heart' of the zoned buddy allocator.
4664 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4665 int preferred_nid, nodemask_t *nodemask)
4667 struct page *page;
4668 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4669 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4670 struct alloc_context ac = { };
4673 * There are several places where we assume that the order value is sane
4674 * so bail out early if the request is out of bound.
4676 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4677 return NULL;
4679 gfp &= gfp_allowed_mask;
4681 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4682 * resp. GFP_NOIO which has to be inherited for all allocation requests
4683 * from a particular context which has been marked by
4684 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4685 * movable zones are not used during allocation.
4687 gfp = current_gfp_context(gfp);
4688 alloc_gfp = gfp;
4689 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4690 &alloc_gfp, &alloc_flags))
4691 return NULL;
4694 * Forbid the first pass from falling back to types that fragment
4695 * memory until all local zones are considered.
4697 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4699 /* First allocation attempt */
4700 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4701 if (likely(page))
4702 goto out;
4704 alloc_gfp = gfp;
4705 ac.spread_dirty_pages = false;
4708 * Restore the original nodemask if it was potentially replaced with
4709 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4711 ac.nodemask = nodemask;
4713 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4715 out:
4716 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4717 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4718 __free_pages(page, order);
4719 page = NULL;
4722 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4723 kmsan_alloc_page(page, order, alloc_gfp);
4725 return page;
4727 EXPORT_SYMBOL(__alloc_pages_noprof);
4729 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4730 nodemask_t *nodemask)
4732 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4733 preferred_nid, nodemask);
4734 return page_rmappable_folio(page);
4736 EXPORT_SYMBOL(__folio_alloc_noprof);
4739 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4740 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4741 * you need to access high mem.
4743 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4745 struct page *page;
4747 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4748 if (!page)
4749 return 0;
4750 return (unsigned long) page_address(page);
4752 EXPORT_SYMBOL(get_free_pages_noprof);
4754 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4756 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4758 EXPORT_SYMBOL(get_zeroed_page_noprof);
4761 * __free_pages - Free pages allocated with alloc_pages().
4762 * @page: The page pointer returned from alloc_pages().
4763 * @order: The order of the allocation.
4765 * This function can free multi-page allocations that are not compound
4766 * pages. It does not check that the @order passed in matches that of
4767 * the allocation, so it is easy to leak memory. Freeing more memory
4768 * than was allocated will probably emit a warning.
4770 * If the last reference to this page is speculative, it will be released
4771 * by put_page() which only frees the first page of a non-compound
4772 * allocation. To prevent the remaining pages from being leaked, we free
4773 * the subsequent pages here. If you want to use the page's reference
4774 * count to decide when to free the allocation, you should allocate a
4775 * compound page, and use put_page() instead of __free_pages().
4777 * Context: May be called in interrupt context or while holding a normal
4778 * spinlock, but not in NMI context or while holding a raw spinlock.
4780 void __free_pages(struct page *page, unsigned int order)
4782 /* get PageHead before we drop reference */
4783 int head = PageHead(page);
4784 struct alloc_tag *tag = pgalloc_tag_get(page);
4786 if (put_page_testzero(page))
4787 free_unref_page(page, order);
4788 else if (!head) {
4789 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4790 while (order-- > 0)
4791 free_unref_page(page + (1 << order), order);
4794 EXPORT_SYMBOL(__free_pages);
4796 void free_pages(unsigned long addr, unsigned int order)
4798 if (addr != 0) {
4799 VM_BUG_ON(!virt_addr_valid((void *)addr));
4800 __free_pages(virt_to_page((void *)addr), order);
4804 EXPORT_SYMBOL(free_pages);
4807 * Page Fragment:
4808 * An arbitrary-length arbitrary-offset area of memory which resides
4809 * within a 0 or higher order page. Multiple fragments within that page
4810 * are individually refcounted, in the page's reference counter.
4812 * The page_frag functions below provide a simple allocation framework for
4813 * page fragments. This is used by the network stack and network device
4814 * drivers to provide a backing region of memory for use as either an
4815 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4817 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4818 gfp_t gfp_mask)
4820 struct page *page = NULL;
4821 gfp_t gfp = gfp_mask;
4823 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4824 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP |
4825 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4826 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4827 PAGE_FRAG_CACHE_MAX_ORDER);
4828 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4829 #endif
4830 if (unlikely(!page))
4831 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4833 nc->va = page ? page_address(page) : NULL;
4835 return page;
4838 void page_frag_cache_drain(struct page_frag_cache *nc)
4840 if (!nc->va)
4841 return;
4843 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4844 nc->va = NULL;
4846 EXPORT_SYMBOL(page_frag_cache_drain);
4848 void __page_frag_cache_drain(struct page *page, unsigned int count)
4850 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4852 if (page_ref_sub_and_test(page, count))
4853 free_unref_page(page, compound_order(page));
4855 EXPORT_SYMBOL(__page_frag_cache_drain);
4857 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4858 unsigned int fragsz, gfp_t gfp_mask,
4859 unsigned int align_mask)
4861 unsigned int size = PAGE_SIZE;
4862 struct page *page;
4863 int offset;
4865 if (unlikely(!nc->va)) {
4866 refill:
4867 page = __page_frag_cache_refill(nc, gfp_mask);
4868 if (!page)
4869 return NULL;
4871 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4872 /* if size can vary use size else just use PAGE_SIZE */
4873 size = nc->size;
4874 #endif
4875 /* Even if we own the page, we do not use atomic_set().
4876 * This would break get_page_unless_zero() users.
4878 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4880 /* reset page count bias and offset to start of new frag */
4881 nc->pfmemalloc = page_is_pfmemalloc(page);
4882 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4883 nc->offset = size;
4886 offset = nc->offset - fragsz;
4887 if (unlikely(offset < 0)) {
4888 page = virt_to_page(nc->va);
4890 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4891 goto refill;
4893 if (unlikely(nc->pfmemalloc)) {
4894 free_unref_page(page, compound_order(page));
4895 goto refill;
4898 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4899 /* if size can vary use size else just use PAGE_SIZE */
4900 size = nc->size;
4901 #endif
4902 /* OK, page count is 0, we can safely set it */
4903 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4905 /* reset page count bias and offset to start of new frag */
4906 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4907 offset = size - fragsz;
4908 if (unlikely(offset < 0)) {
4910 * The caller is trying to allocate a fragment
4911 * with fragsz > PAGE_SIZE but the cache isn't big
4912 * enough to satisfy the request, this may
4913 * happen in low memory conditions.
4914 * We don't release the cache page because
4915 * it could make memory pressure worse
4916 * so we simply return NULL here.
4918 return NULL;
4922 nc->pagecnt_bias--;
4923 offset &= align_mask;
4924 nc->offset = offset;
4926 return nc->va + offset;
4928 EXPORT_SYMBOL(__page_frag_alloc_align);
4931 * Frees a page fragment allocated out of either a compound or order 0 page.
4933 void page_frag_free(void *addr)
4935 struct page *page = virt_to_head_page(addr);
4937 if (unlikely(put_page_testzero(page)))
4938 free_unref_page(page, compound_order(page));
4940 EXPORT_SYMBOL(page_frag_free);
4942 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4943 size_t size)
4945 if (addr) {
4946 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4947 struct page *page = virt_to_page((void *)addr);
4948 struct page *last = page + nr;
4950 split_page_owner(page, order, 0);
4951 pgalloc_tag_split(page, 1 << order);
4952 split_page_memcg(page, order, 0);
4953 while (page < --last)
4954 set_page_refcounted(last);
4956 last = page + (1UL << order);
4957 for (page += nr; page < last; page++)
4958 __free_pages_ok(page, 0, FPI_TO_TAIL);
4960 return (void *)addr;
4964 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4965 * @size: the number of bytes to allocate
4966 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4968 * This function is similar to alloc_pages(), except that it allocates the
4969 * minimum number of pages to satisfy the request. alloc_pages() can only
4970 * allocate memory in power-of-two pages.
4972 * This function is also limited by MAX_PAGE_ORDER.
4974 * Memory allocated by this function must be released by free_pages_exact().
4976 * Return: pointer to the allocated area or %NULL in case of error.
4978 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4980 unsigned int order = get_order(size);
4981 unsigned long addr;
4983 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4984 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4986 addr = get_free_pages_noprof(gfp_mask, order);
4987 return make_alloc_exact(addr, order, size);
4989 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4992 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4993 * pages on a node.
4994 * @nid: the preferred node ID where memory should be allocated
4995 * @size: the number of bytes to allocate
4996 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4998 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4999 * back.
5001 * Return: pointer to the allocated area or %NULL in case of error.
5003 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5005 unsigned int order = get_order(size);
5006 struct page *p;
5008 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5009 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5011 p = alloc_pages_node_noprof(nid, gfp_mask, order);
5012 if (!p)
5013 return NULL;
5014 return make_alloc_exact((unsigned long)page_address(p), order, size);
5018 * free_pages_exact - release memory allocated via alloc_pages_exact()
5019 * @virt: the value returned by alloc_pages_exact.
5020 * @size: size of allocation, same value as passed to alloc_pages_exact().
5022 * Release the memory allocated by a previous call to alloc_pages_exact.
5024 void free_pages_exact(void *virt, size_t size)
5026 unsigned long addr = (unsigned long)virt;
5027 unsigned long end = addr + PAGE_ALIGN(size);
5029 while (addr < end) {
5030 free_page(addr);
5031 addr += PAGE_SIZE;
5034 EXPORT_SYMBOL(free_pages_exact);
5037 * nr_free_zone_pages - count number of pages beyond high watermark
5038 * @offset: The zone index of the highest zone
5040 * nr_free_zone_pages() counts the number of pages which are beyond the
5041 * high watermark within all zones at or below a given zone index. For each
5042 * zone, the number of pages is calculated as:
5044 * nr_free_zone_pages = managed_pages - high_pages
5046 * Return: number of pages beyond high watermark.
5048 static unsigned long nr_free_zone_pages(int offset)
5050 struct zoneref *z;
5051 struct zone *zone;
5053 /* Just pick one node, since fallback list is circular */
5054 unsigned long sum = 0;
5056 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5058 for_each_zone_zonelist(zone, z, zonelist, offset) {
5059 unsigned long size = zone_managed_pages(zone);
5060 unsigned long high = high_wmark_pages(zone);
5061 if (size > high)
5062 sum += size - high;
5065 return sum;
5069 * nr_free_buffer_pages - count number of pages beyond high watermark
5071 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5072 * watermark within ZONE_DMA and ZONE_NORMAL.
5074 * Return: number of pages beyond high watermark within ZONE_DMA and
5075 * ZONE_NORMAL.
5077 unsigned long nr_free_buffer_pages(void)
5079 return nr_free_zone_pages(gfp_zone(GFP_USER));
5081 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5083 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5085 zoneref->zone = zone;
5086 zoneref->zone_idx = zone_idx(zone);
5090 * Builds allocation fallback zone lists.
5092 * Add all populated zones of a node to the zonelist.
5094 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5096 struct zone *zone;
5097 enum zone_type zone_type = MAX_NR_ZONES;
5098 int nr_zones = 0;
5100 do {
5101 zone_type--;
5102 zone = pgdat->node_zones + zone_type;
5103 if (populated_zone(zone)) {
5104 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5105 check_highest_zone(zone_type);
5107 } while (zone_type);
5109 return nr_zones;
5112 #ifdef CONFIG_NUMA
5114 static int __parse_numa_zonelist_order(char *s)
5117 * We used to support different zonelists modes but they turned
5118 * out to be just not useful. Let's keep the warning in place
5119 * if somebody still use the cmd line parameter so that we do
5120 * not fail it silently
5122 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5123 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5124 return -EINVAL;
5126 return 0;
5129 static char numa_zonelist_order[] = "Node";
5130 #define NUMA_ZONELIST_ORDER_LEN 16
5132 * sysctl handler for numa_zonelist_order
5134 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5135 void *buffer, size_t *length, loff_t *ppos)
5137 if (write)
5138 return __parse_numa_zonelist_order(buffer);
5139 return proc_dostring(table, write, buffer, length, ppos);
5142 static int node_load[MAX_NUMNODES];
5145 * find_next_best_node - find the next node that should appear in a given node's fallback list
5146 * @node: node whose fallback list we're appending
5147 * @used_node_mask: nodemask_t of already used nodes
5149 * We use a number of factors to determine which is the next node that should
5150 * appear on a given node's fallback list. The node should not have appeared
5151 * already in @node's fallback list, and it should be the next closest node
5152 * according to the distance array (which contains arbitrary distance values
5153 * from each node to each node in the system), and should also prefer nodes
5154 * with no CPUs, since presumably they'll have very little allocation pressure
5155 * on them otherwise.
5157 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5159 int find_next_best_node(int node, nodemask_t *used_node_mask)
5161 int n, val;
5162 int min_val = INT_MAX;
5163 int best_node = NUMA_NO_NODE;
5166 * Use the local node if we haven't already, but for memoryless local
5167 * node, we should skip it and fall back to other nodes.
5169 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5170 node_set(node, *used_node_mask);
5171 return node;
5174 for_each_node_state(n, N_MEMORY) {
5176 /* Don't want a node to appear more than once */
5177 if (node_isset(n, *used_node_mask))
5178 continue;
5180 /* Use the distance array to find the distance */
5181 val = node_distance(node, n);
5183 /* Penalize nodes under us ("prefer the next node") */
5184 val += (n < node);
5186 /* Give preference to headless and unused nodes */
5187 if (!cpumask_empty(cpumask_of_node(n)))
5188 val += PENALTY_FOR_NODE_WITH_CPUS;
5190 /* Slight preference for less loaded node */
5191 val *= MAX_NUMNODES;
5192 val += node_load[n];
5194 if (val < min_val) {
5195 min_val = val;
5196 best_node = n;
5200 if (best_node >= 0)
5201 node_set(best_node, *used_node_mask);
5203 return best_node;
5208 * Build zonelists ordered by node and zones within node.
5209 * This results in maximum locality--normal zone overflows into local
5210 * DMA zone, if any--but risks exhausting DMA zone.
5212 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5213 unsigned nr_nodes)
5215 struct zoneref *zonerefs;
5216 int i;
5218 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5220 for (i = 0; i < nr_nodes; i++) {
5221 int nr_zones;
5223 pg_data_t *node = NODE_DATA(node_order[i]);
5225 nr_zones = build_zonerefs_node(node, zonerefs);
5226 zonerefs += nr_zones;
5228 zonerefs->zone = NULL;
5229 zonerefs->zone_idx = 0;
5233 * Build __GFP_THISNODE zonelists
5235 static void build_thisnode_zonelists(pg_data_t *pgdat)
5237 struct zoneref *zonerefs;
5238 int nr_zones;
5240 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5241 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5242 zonerefs += nr_zones;
5243 zonerefs->zone = NULL;
5244 zonerefs->zone_idx = 0;
5248 * Build zonelists ordered by zone and nodes within zones.
5249 * This results in conserving DMA zone[s] until all Normal memory is
5250 * exhausted, but results in overflowing to remote node while memory
5251 * may still exist in local DMA zone.
5254 static void build_zonelists(pg_data_t *pgdat)
5256 static int node_order[MAX_NUMNODES];
5257 int node, nr_nodes = 0;
5258 nodemask_t used_mask = NODE_MASK_NONE;
5259 int local_node, prev_node;
5261 /* NUMA-aware ordering of nodes */
5262 local_node = pgdat->node_id;
5263 prev_node = local_node;
5265 memset(node_order, 0, sizeof(node_order));
5266 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5268 * We don't want to pressure a particular node.
5269 * So adding penalty to the first node in same
5270 * distance group to make it round-robin.
5272 if (node_distance(local_node, node) !=
5273 node_distance(local_node, prev_node))
5274 node_load[node] += 1;
5276 node_order[nr_nodes++] = node;
5277 prev_node = node;
5280 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5281 build_thisnode_zonelists(pgdat);
5282 pr_info("Fallback order for Node %d: ", local_node);
5283 for (node = 0; node < nr_nodes; node++)
5284 pr_cont("%d ", node_order[node]);
5285 pr_cont("\n");
5288 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5290 * Return node id of node used for "local" allocations.
5291 * I.e., first node id of first zone in arg node's generic zonelist.
5292 * Used for initializing percpu 'numa_mem', which is used primarily
5293 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5295 int local_memory_node(int node)
5297 struct zoneref *z;
5299 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5300 gfp_zone(GFP_KERNEL),
5301 NULL);
5302 return zone_to_nid(z->zone);
5304 #endif
5306 static void setup_min_unmapped_ratio(void);
5307 static void setup_min_slab_ratio(void);
5308 #else /* CONFIG_NUMA */
5310 static void build_zonelists(pg_data_t *pgdat)
5312 struct zoneref *zonerefs;
5313 int nr_zones;
5315 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5316 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5317 zonerefs += nr_zones;
5319 zonerefs->zone = NULL;
5320 zonerefs->zone_idx = 0;
5323 #endif /* CONFIG_NUMA */
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5340 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5341 /* These effectively disable the pcplists in the boot pageset completely */
5342 #define BOOT_PAGESET_HIGH 0
5343 #define BOOT_PAGESET_BATCH 1
5344 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5345 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5347 static void __build_all_zonelists(void *data)
5349 int nid;
5350 int __maybe_unused cpu;
5351 pg_data_t *self = data;
5352 unsigned long flags;
5355 * The zonelist_update_seq must be acquired with irqsave because the
5356 * reader can be invoked from IRQ with GFP_ATOMIC.
5358 write_seqlock_irqsave(&zonelist_update_seq, flags);
5360 * Also disable synchronous printk() to prevent any printk() from
5361 * trying to hold port->lock, for
5362 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5363 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5365 printk_deferred_enter();
5367 #ifdef CONFIG_NUMA
5368 memset(node_load, 0, sizeof(node_load));
5369 #endif
5372 * This node is hotadded and no memory is yet present. So just
5373 * building zonelists is fine - no need to touch other nodes.
5375 if (self && !node_online(self->node_id)) {
5376 build_zonelists(self);
5377 } else {
5379 * All possible nodes have pgdat preallocated
5380 * in free_area_init
5382 for_each_node(nid) {
5383 pg_data_t *pgdat = NODE_DATA(nid);
5385 build_zonelists(pgdat);
5388 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5390 * We now know the "local memory node" for each node--
5391 * i.e., the node of the first zone in the generic zonelist.
5392 * Set up numa_mem percpu variable for on-line cpus. During
5393 * boot, only the boot cpu should be on-line; we'll init the
5394 * secondary cpus' numa_mem as they come on-line. During
5395 * node/memory hotplug, we'll fixup all on-line cpus.
5397 for_each_online_cpu(cpu)
5398 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5399 #endif
5402 printk_deferred_exit();
5403 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5406 static noinline void __init
5407 build_all_zonelists_init(void)
5409 int cpu;
5411 __build_all_zonelists(NULL);
5414 * Initialize the boot_pagesets that are going to be used
5415 * for bootstrapping processors. The real pagesets for
5416 * each zone will be allocated later when the per cpu
5417 * allocator is available.
5419 * boot_pagesets are used also for bootstrapping offline
5420 * cpus if the system is already booted because the pagesets
5421 * are needed to initialize allocators on a specific cpu too.
5422 * F.e. the percpu allocator needs the page allocator which
5423 * needs the percpu allocator in order to allocate its pagesets
5424 * (a chicken-egg dilemma).
5426 for_each_possible_cpu(cpu)
5427 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5429 mminit_verify_zonelist();
5430 cpuset_init_current_mems_allowed();
5434 * unless system_state == SYSTEM_BOOTING.
5436 * __ref due to call of __init annotated helper build_all_zonelists_init
5437 * [protected by SYSTEM_BOOTING].
5439 void __ref build_all_zonelists(pg_data_t *pgdat)
5441 unsigned long vm_total_pages;
5443 if (system_state == SYSTEM_BOOTING) {
5444 build_all_zonelists_init();
5445 } else {
5446 __build_all_zonelists(pgdat);
5447 /* cpuset refresh routine should be here */
5449 /* Get the number of free pages beyond high watermark in all zones. */
5450 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5452 * Disable grouping by mobility if the number of pages in the
5453 * system is too low to allow the mechanism to work. It would be
5454 * more accurate, but expensive to check per-zone. This check is
5455 * made on memory-hotadd so a system can start with mobility
5456 * disabled and enable it later
5458 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5459 page_group_by_mobility_disabled = 1;
5460 else
5461 page_group_by_mobility_disabled = 0;
5463 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5464 nr_online_nodes,
5465 page_group_by_mobility_disabled ? "off" : "on",
5466 vm_total_pages);
5467 #ifdef CONFIG_NUMA
5468 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5469 #endif
5472 static int zone_batchsize(struct zone *zone)
5474 #ifdef CONFIG_MMU
5475 int batch;
5478 * The number of pages to batch allocate is either ~0.1%
5479 * of the zone or 1MB, whichever is smaller. The batch
5480 * size is striking a balance between allocation latency
5481 * and zone lock contention.
5483 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5484 batch /= 4; /* We effectively *= 4 below */
5485 if (batch < 1)
5486 batch = 1;
5489 * Clamp the batch to a 2^n - 1 value. Having a power
5490 * of 2 value was found to be more likely to have
5491 * suboptimal cache aliasing properties in some cases.
5493 * For example if 2 tasks are alternately allocating
5494 * batches of pages, one task can end up with a lot
5495 * of pages of one half of the possible page colors
5496 * and the other with pages of the other colors.
5498 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5500 return batch;
5502 #else
5503 /* The deferral and batching of frees should be suppressed under NOMMU
5504 * conditions.
5506 * The problem is that NOMMU needs to be able to allocate large chunks
5507 * of contiguous memory as there's no hardware page translation to
5508 * assemble apparent contiguous memory from discontiguous pages.
5510 * Queueing large contiguous runs of pages for batching, however,
5511 * causes the pages to actually be freed in smaller chunks. As there
5512 * can be a significant delay between the individual batches being
5513 * recycled, this leads to the once large chunks of space being
5514 * fragmented and becoming unavailable for high-order allocations.
5516 return 0;
5517 #endif
5520 static int percpu_pagelist_high_fraction;
5521 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5522 int high_fraction)
5524 #ifdef CONFIG_MMU
5525 int high;
5526 int nr_split_cpus;
5527 unsigned long total_pages;
5529 if (!high_fraction) {
5531 * By default, the high value of the pcp is based on the zone
5532 * low watermark so that if they are full then background
5533 * reclaim will not be started prematurely.
5535 total_pages = low_wmark_pages(zone);
5536 } else {
5538 * If percpu_pagelist_high_fraction is configured, the high
5539 * value is based on a fraction of the managed pages in the
5540 * zone.
5542 total_pages = zone_managed_pages(zone) / high_fraction;
5546 * Split the high value across all online CPUs local to the zone. Note
5547 * that early in boot that CPUs may not be online yet and that during
5548 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5549 * onlined. For memory nodes that have no CPUs, split the high value
5550 * across all online CPUs to mitigate the risk that reclaim is triggered
5551 * prematurely due to pages stored on pcp lists.
5553 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5554 if (!nr_split_cpus)
5555 nr_split_cpus = num_online_cpus();
5556 high = total_pages / nr_split_cpus;
5559 * Ensure high is at least batch*4. The multiple is based on the
5560 * historical relationship between high and batch.
5562 high = max(high, batch << 2);
5564 return high;
5565 #else
5566 return 0;
5567 #endif
5571 * pcp->high and pcp->batch values are related and generally batch is lower
5572 * than high. They are also related to pcp->count such that count is lower
5573 * than high, and as soon as it reaches high, the pcplist is flushed.
5575 * However, guaranteeing these relations at all times would require e.g. write
5576 * barriers here but also careful usage of read barriers at the read side, and
5577 * thus be prone to error and bad for performance. Thus the update only prevents
5578 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5579 * should ensure they can cope with those fields changing asynchronously, and
5580 * fully trust only the pcp->count field on the local CPU with interrupts
5581 * disabled.
5583 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5584 * outside of boot time (or some other assurance that no concurrent updaters
5585 * exist).
5587 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5588 unsigned long high_max, unsigned long batch)
5590 WRITE_ONCE(pcp->batch, batch);
5591 WRITE_ONCE(pcp->high_min, high_min);
5592 WRITE_ONCE(pcp->high_max, high_max);
5595 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5597 int pindex;
5599 memset(pcp, 0, sizeof(*pcp));
5600 memset(pzstats, 0, sizeof(*pzstats));
5602 spin_lock_init(&pcp->lock);
5603 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5604 INIT_LIST_HEAD(&pcp->lists[pindex]);
5607 * Set batch and high values safe for a boot pageset. A true percpu
5608 * pageset's initialization will update them subsequently. Here we don't
5609 * need to be as careful as pageset_update() as nobody can access the
5610 * pageset yet.
5612 pcp->high_min = BOOT_PAGESET_HIGH;
5613 pcp->high_max = BOOT_PAGESET_HIGH;
5614 pcp->batch = BOOT_PAGESET_BATCH;
5615 pcp->free_count = 0;
5618 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5619 unsigned long high_max, unsigned long batch)
5621 struct per_cpu_pages *pcp;
5622 int cpu;
5624 for_each_possible_cpu(cpu) {
5625 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5626 pageset_update(pcp, high_min, high_max, batch);
5631 * Calculate and set new high and batch values for all per-cpu pagesets of a
5632 * zone based on the zone's size.
5634 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5636 int new_high_min, new_high_max, new_batch;
5638 new_batch = max(1, zone_batchsize(zone));
5639 if (percpu_pagelist_high_fraction) {
5640 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5641 percpu_pagelist_high_fraction);
5643 * PCP high is tuned manually, disable auto-tuning via
5644 * setting high_min and high_max to the manual value.
5646 new_high_max = new_high_min;
5647 } else {
5648 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5649 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5650 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5653 if (zone->pageset_high_min == new_high_min &&
5654 zone->pageset_high_max == new_high_max &&
5655 zone->pageset_batch == new_batch)
5656 return;
5658 zone->pageset_high_min = new_high_min;
5659 zone->pageset_high_max = new_high_max;
5660 zone->pageset_batch = new_batch;
5662 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5663 new_batch);
5666 void __meminit setup_zone_pageset(struct zone *zone)
5668 int cpu;
5670 /* Size may be 0 on !SMP && !NUMA */
5671 if (sizeof(struct per_cpu_zonestat) > 0)
5672 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5674 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5675 for_each_possible_cpu(cpu) {
5676 struct per_cpu_pages *pcp;
5677 struct per_cpu_zonestat *pzstats;
5679 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5680 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5681 per_cpu_pages_init(pcp, pzstats);
5684 zone_set_pageset_high_and_batch(zone, 0);
5688 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5689 * page high values need to be recalculated.
5691 static void zone_pcp_update(struct zone *zone, int cpu_online)
5693 mutex_lock(&pcp_batch_high_lock);
5694 zone_set_pageset_high_and_batch(zone, cpu_online);
5695 mutex_unlock(&pcp_batch_high_lock);
5698 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5700 struct per_cpu_pages *pcp;
5701 struct cpu_cacheinfo *cci;
5703 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5704 cci = get_cpu_cacheinfo(cpu);
5706 * If data cache slice of CPU is large enough, "pcp->batch"
5707 * pages can be preserved in PCP before draining PCP for
5708 * consecutive high-order pages freeing without allocation.
5709 * This can reduce zone lock contention without hurting
5710 * cache-hot pages sharing.
5712 spin_lock(&pcp->lock);
5713 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5714 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5715 else
5716 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5717 spin_unlock(&pcp->lock);
5720 void setup_pcp_cacheinfo(unsigned int cpu)
5722 struct zone *zone;
5724 for_each_populated_zone(zone)
5725 zone_pcp_update_cacheinfo(zone, cpu);
5729 * Allocate per cpu pagesets and initialize them.
5730 * Before this call only boot pagesets were available.
5732 void __init setup_per_cpu_pageset(void)
5734 struct pglist_data *pgdat;
5735 struct zone *zone;
5736 int __maybe_unused cpu;
5738 for_each_populated_zone(zone)
5739 setup_zone_pageset(zone);
5741 #ifdef CONFIG_NUMA
5743 * Unpopulated zones continue using the boot pagesets.
5744 * The numa stats for these pagesets need to be reset.
5745 * Otherwise, they will end up skewing the stats of
5746 * the nodes these zones are associated with.
5748 for_each_possible_cpu(cpu) {
5749 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5750 memset(pzstats->vm_numa_event, 0,
5751 sizeof(pzstats->vm_numa_event));
5753 #endif
5755 for_each_online_pgdat(pgdat)
5756 pgdat->per_cpu_nodestats =
5757 alloc_percpu(struct per_cpu_nodestat);
5758 store_early_perpage_metadata();
5761 __meminit void zone_pcp_init(struct zone *zone)
5764 * per cpu subsystem is not up at this point. The following code
5765 * relies on the ability of the linker to provide the
5766 * offset of a (static) per cpu variable into the per cpu area.
5768 zone->per_cpu_pageset = &boot_pageset;
5769 zone->per_cpu_zonestats = &boot_zonestats;
5770 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5771 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5772 zone->pageset_batch = BOOT_PAGESET_BATCH;
5774 if (populated_zone(zone))
5775 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5776 zone->present_pages, zone_batchsize(zone));
5779 void adjust_managed_page_count(struct page *page, long count)
5781 atomic_long_add(count, &page_zone(page)->managed_pages);
5782 totalram_pages_add(count);
5784 EXPORT_SYMBOL(adjust_managed_page_count);
5786 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5788 void *pos;
5789 unsigned long pages = 0;
5791 start = (void *)PAGE_ALIGN((unsigned long)start);
5792 end = (void *)((unsigned long)end & PAGE_MASK);
5793 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5794 struct page *page = virt_to_page(pos);
5795 void *direct_map_addr;
5798 * 'direct_map_addr' might be different from 'pos'
5799 * because some architectures' virt_to_page()
5800 * work with aliases. Getting the direct map
5801 * address ensures that we get a _writeable_
5802 * alias for the memset().
5804 direct_map_addr = page_address(page);
5806 * Perform a kasan-unchecked memset() since this memory
5807 * has not been initialized.
5809 direct_map_addr = kasan_reset_tag(direct_map_addr);
5810 if ((unsigned int)poison <= 0xFF)
5811 memset(direct_map_addr, poison, PAGE_SIZE);
5813 free_reserved_page(page);
5816 if (pages && s)
5817 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5819 return pages;
5822 void free_reserved_page(struct page *page)
5824 if (mem_alloc_profiling_enabled()) {
5825 union codetag_ref *ref = get_page_tag_ref(page);
5827 if (ref) {
5828 set_codetag_empty(ref);
5829 put_page_tag_ref(ref);
5832 ClearPageReserved(page);
5833 init_page_count(page);
5834 __free_page(page);
5835 adjust_managed_page_count(page, 1);
5837 EXPORT_SYMBOL(free_reserved_page);
5839 static int page_alloc_cpu_dead(unsigned int cpu)
5841 struct zone *zone;
5843 lru_add_drain_cpu(cpu);
5844 mlock_drain_remote(cpu);
5845 drain_pages(cpu);
5848 * Spill the event counters of the dead processor
5849 * into the current processors event counters.
5850 * This artificially elevates the count of the current
5851 * processor.
5853 vm_events_fold_cpu(cpu);
5856 * Zero the differential counters of the dead processor
5857 * so that the vm statistics are consistent.
5859 * This is only okay since the processor is dead and cannot
5860 * race with what we are doing.
5862 cpu_vm_stats_fold(cpu);
5864 for_each_populated_zone(zone)
5865 zone_pcp_update(zone, 0);
5867 return 0;
5870 static int page_alloc_cpu_online(unsigned int cpu)
5872 struct zone *zone;
5874 for_each_populated_zone(zone)
5875 zone_pcp_update(zone, 1);
5876 return 0;
5879 void __init page_alloc_init_cpuhp(void)
5881 int ret;
5883 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5884 "mm/page_alloc:pcp",
5885 page_alloc_cpu_online,
5886 page_alloc_cpu_dead);
5887 WARN_ON(ret < 0);
5891 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5892 * or min_free_kbytes changes.
5894 static void calculate_totalreserve_pages(void)
5896 struct pglist_data *pgdat;
5897 unsigned long reserve_pages = 0;
5898 enum zone_type i, j;
5900 for_each_online_pgdat(pgdat) {
5902 pgdat->totalreserve_pages = 0;
5904 for (i = 0; i < MAX_NR_ZONES; i++) {
5905 struct zone *zone = pgdat->node_zones + i;
5906 long max = 0;
5907 unsigned long managed_pages = zone_managed_pages(zone);
5909 /* Find valid and maximum lowmem_reserve in the zone */
5910 for (j = i; j < MAX_NR_ZONES; j++) {
5911 if (zone->lowmem_reserve[j] > max)
5912 max = zone->lowmem_reserve[j];
5915 /* we treat the high watermark as reserved pages. */
5916 max += high_wmark_pages(zone);
5918 if (max > managed_pages)
5919 max = managed_pages;
5921 pgdat->totalreserve_pages += max;
5923 reserve_pages += max;
5926 totalreserve_pages = reserve_pages;
5930 * setup_per_zone_lowmem_reserve - called whenever
5931 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5932 * has a correct pages reserved value, so an adequate number of
5933 * pages are left in the zone after a successful __alloc_pages().
5935 static void setup_per_zone_lowmem_reserve(void)
5937 struct pglist_data *pgdat;
5938 enum zone_type i, j;
5940 for_each_online_pgdat(pgdat) {
5941 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5942 struct zone *zone = &pgdat->node_zones[i];
5943 int ratio = sysctl_lowmem_reserve_ratio[i];
5944 bool clear = !ratio || !zone_managed_pages(zone);
5945 unsigned long managed_pages = 0;
5947 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5948 struct zone *upper_zone = &pgdat->node_zones[j];
5949 bool empty = !zone_managed_pages(upper_zone);
5951 managed_pages += zone_managed_pages(upper_zone);
5953 if (clear || empty)
5954 zone->lowmem_reserve[j] = 0;
5955 else
5956 zone->lowmem_reserve[j] = managed_pages / ratio;
5961 /* update totalreserve_pages */
5962 calculate_totalreserve_pages();
5965 static void __setup_per_zone_wmarks(void)
5967 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5968 unsigned long lowmem_pages = 0;
5969 struct zone *zone;
5970 unsigned long flags;
5972 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5973 for_each_zone(zone) {
5974 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5975 lowmem_pages += zone_managed_pages(zone);
5978 for_each_zone(zone) {
5979 u64 tmp;
5981 spin_lock_irqsave(&zone->lock, flags);
5982 tmp = (u64)pages_min * zone_managed_pages(zone);
5983 tmp = div64_ul(tmp, lowmem_pages);
5984 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5986 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5987 * need highmem and movable zones pages, so cap pages_min
5988 * to a small value here.
5990 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5991 * deltas control async page reclaim, and so should
5992 * not be capped for highmem and movable zones.
5994 unsigned long min_pages;
5996 min_pages = zone_managed_pages(zone) / 1024;
5997 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5998 zone->_watermark[WMARK_MIN] = min_pages;
5999 } else {
6001 * If it's a lowmem zone, reserve a number of pages
6002 * proportionate to the zone's size.
6004 zone->_watermark[WMARK_MIN] = tmp;
6008 * Set the kswapd watermarks distance according to the
6009 * scale factor in proportion to available memory, but
6010 * ensure a minimum size on small systems.
6012 tmp = max_t(u64, tmp >> 2,
6013 mult_frac(zone_managed_pages(zone),
6014 watermark_scale_factor, 10000));
6016 zone->watermark_boost = 0;
6017 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6018 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6019 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6021 spin_unlock_irqrestore(&zone->lock, flags);
6024 /* update totalreserve_pages */
6025 calculate_totalreserve_pages();
6029 * setup_per_zone_wmarks - called when min_free_kbytes changes
6030 * or when memory is hot-{added|removed}
6032 * Ensures that the watermark[min,low,high] values for each zone are set
6033 * correctly with respect to min_free_kbytes.
6035 void setup_per_zone_wmarks(void)
6037 struct zone *zone;
6038 static DEFINE_SPINLOCK(lock);
6040 spin_lock(&lock);
6041 __setup_per_zone_wmarks();
6042 spin_unlock(&lock);
6045 * The watermark size have changed so update the pcpu batch
6046 * and high limits or the limits may be inappropriate.
6048 for_each_zone(zone)
6049 zone_pcp_update(zone, 0);
6053 * Initialise min_free_kbytes.
6055 * For small machines we want it small (128k min). For large machines
6056 * we want it large (256MB max). But it is not linear, because network
6057 * bandwidth does not increase linearly with machine size. We use
6059 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6060 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6062 * which yields
6064 * 16MB: 512k
6065 * 32MB: 724k
6066 * 64MB: 1024k
6067 * 128MB: 1448k
6068 * 256MB: 2048k
6069 * 512MB: 2896k
6070 * 1024MB: 4096k
6071 * 2048MB: 5792k
6072 * 4096MB: 8192k
6073 * 8192MB: 11584k
6074 * 16384MB: 16384k
6076 void calculate_min_free_kbytes(void)
6078 unsigned long lowmem_kbytes;
6079 int new_min_free_kbytes;
6081 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6082 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6084 if (new_min_free_kbytes > user_min_free_kbytes)
6085 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6086 else
6087 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6088 new_min_free_kbytes, user_min_free_kbytes);
6092 int __meminit init_per_zone_wmark_min(void)
6094 calculate_min_free_kbytes();
6095 setup_per_zone_wmarks();
6096 refresh_zone_stat_thresholds();
6097 setup_per_zone_lowmem_reserve();
6099 #ifdef CONFIG_NUMA
6100 setup_min_unmapped_ratio();
6101 setup_min_slab_ratio();
6102 #endif
6104 khugepaged_min_free_kbytes_update();
6106 return 0;
6108 postcore_initcall(init_per_zone_wmark_min)
6111 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6112 * that we can call two helper functions whenever min_free_kbytes
6113 * changes.
6115 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6116 void *buffer, size_t *length, loff_t *ppos)
6118 int rc;
6120 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6121 if (rc)
6122 return rc;
6124 if (write) {
6125 user_min_free_kbytes = min_free_kbytes;
6126 setup_per_zone_wmarks();
6128 return 0;
6131 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6132 void *buffer, size_t *length, loff_t *ppos)
6134 int rc;
6136 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6137 if (rc)
6138 return rc;
6140 if (write)
6141 setup_per_zone_wmarks();
6143 return 0;
6146 #ifdef CONFIG_NUMA
6147 static void setup_min_unmapped_ratio(void)
6149 pg_data_t *pgdat;
6150 struct zone *zone;
6152 for_each_online_pgdat(pgdat)
6153 pgdat->min_unmapped_pages = 0;
6155 for_each_zone(zone)
6156 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6157 sysctl_min_unmapped_ratio) / 100;
6161 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6162 void *buffer, size_t *length, loff_t *ppos)
6164 int rc;
6166 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6167 if (rc)
6168 return rc;
6170 setup_min_unmapped_ratio();
6172 return 0;
6175 static void setup_min_slab_ratio(void)
6177 pg_data_t *pgdat;
6178 struct zone *zone;
6180 for_each_online_pgdat(pgdat)
6181 pgdat->min_slab_pages = 0;
6183 for_each_zone(zone)
6184 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6185 sysctl_min_slab_ratio) / 100;
6188 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6189 void *buffer, size_t *length, loff_t *ppos)
6191 int rc;
6193 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6194 if (rc)
6195 return rc;
6197 setup_min_slab_ratio();
6199 return 0;
6201 #endif
6204 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6205 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6206 * whenever sysctl_lowmem_reserve_ratio changes.
6208 * The reserve ratio obviously has absolutely no relation with the
6209 * minimum watermarks. The lowmem reserve ratio can only make sense
6210 * if in function of the boot time zone sizes.
6212 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6213 int write, void *buffer, size_t *length, loff_t *ppos)
6215 int i;
6217 proc_dointvec_minmax(table, write, buffer, length, ppos);
6219 for (i = 0; i < MAX_NR_ZONES; i++) {
6220 if (sysctl_lowmem_reserve_ratio[i] < 1)
6221 sysctl_lowmem_reserve_ratio[i] = 0;
6224 setup_per_zone_lowmem_reserve();
6225 return 0;
6229 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6230 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6231 * pagelist can have before it gets flushed back to buddy allocator.
6233 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6234 int write, void *buffer, size_t *length, loff_t *ppos)
6236 struct zone *zone;
6237 int old_percpu_pagelist_high_fraction;
6238 int ret;
6240 mutex_lock(&pcp_batch_high_lock);
6241 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6243 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6244 if (!write || ret < 0)
6245 goto out;
6247 /* Sanity checking to avoid pcp imbalance */
6248 if (percpu_pagelist_high_fraction &&
6249 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6250 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6251 ret = -EINVAL;
6252 goto out;
6255 /* No change? */
6256 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6257 goto out;
6259 for_each_populated_zone(zone)
6260 zone_set_pageset_high_and_batch(zone, 0);
6261 out:
6262 mutex_unlock(&pcp_batch_high_lock);
6263 return ret;
6266 static struct ctl_table page_alloc_sysctl_table[] = {
6268 .procname = "min_free_kbytes",
6269 .data = &min_free_kbytes,
6270 .maxlen = sizeof(min_free_kbytes),
6271 .mode = 0644,
6272 .proc_handler = min_free_kbytes_sysctl_handler,
6273 .extra1 = SYSCTL_ZERO,
6276 .procname = "watermark_boost_factor",
6277 .data = &watermark_boost_factor,
6278 .maxlen = sizeof(watermark_boost_factor),
6279 .mode = 0644,
6280 .proc_handler = proc_dointvec_minmax,
6281 .extra1 = SYSCTL_ZERO,
6284 .procname = "watermark_scale_factor",
6285 .data = &watermark_scale_factor,
6286 .maxlen = sizeof(watermark_scale_factor),
6287 .mode = 0644,
6288 .proc_handler = watermark_scale_factor_sysctl_handler,
6289 .extra1 = SYSCTL_ONE,
6290 .extra2 = SYSCTL_THREE_THOUSAND,
6293 .procname = "percpu_pagelist_high_fraction",
6294 .data = &percpu_pagelist_high_fraction,
6295 .maxlen = sizeof(percpu_pagelist_high_fraction),
6296 .mode = 0644,
6297 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6298 .extra1 = SYSCTL_ZERO,
6301 .procname = "lowmem_reserve_ratio",
6302 .data = &sysctl_lowmem_reserve_ratio,
6303 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6304 .mode = 0644,
6305 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6307 #ifdef CONFIG_NUMA
6309 .procname = "numa_zonelist_order",
6310 .data = &numa_zonelist_order,
6311 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6312 .mode = 0644,
6313 .proc_handler = numa_zonelist_order_handler,
6316 .procname = "min_unmapped_ratio",
6317 .data = &sysctl_min_unmapped_ratio,
6318 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6319 .mode = 0644,
6320 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6321 .extra1 = SYSCTL_ZERO,
6322 .extra2 = SYSCTL_ONE_HUNDRED,
6325 .procname = "min_slab_ratio",
6326 .data = &sysctl_min_slab_ratio,
6327 .maxlen = sizeof(sysctl_min_slab_ratio),
6328 .mode = 0644,
6329 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6330 .extra1 = SYSCTL_ZERO,
6331 .extra2 = SYSCTL_ONE_HUNDRED,
6333 #endif
6336 void __init page_alloc_sysctl_init(void)
6338 register_sysctl_init("vm", page_alloc_sysctl_table);
6341 #ifdef CONFIG_CONTIG_ALLOC
6342 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6343 static void alloc_contig_dump_pages(struct list_head *page_list)
6345 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6347 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6348 struct page *page;
6350 dump_stack();
6351 list_for_each_entry(page, page_list, lru)
6352 dump_page(page, "migration failure");
6357 * [start, end) must belong to a single zone.
6358 * @migratetype: using migratetype to filter the type of migration in
6359 * trace_mm_alloc_contig_migrate_range_info.
6361 int __alloc_contig_migrate_range(struct compact_control *cc,
6362 unsigned long start, unsigned long end,
6363 int migratetype)
6365 /* This function is based on compact_zone() from compaction.c. */
6366 unsigned int nr_reclaimed;
6367 unsigned long pfn = start;
6368 unsigned int tries = 0;
6369 int ret = 0;
6370 struct migration_target_control mtc = {
6371 .nid = zone_to_nid(cc->zone),
6372 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6373 .reason = MR_CONTIG_RANGE,
6375 struct page *page;
6376 unsigned long total_mapped = 0;
6377 unsigned long total_migrated = 0;
6378 unsigned long total_reclaimed = 0;
6380 lru_cache_disable();
6382 while (pfn < end || !list_empty(&cc->migratepages)) {
6383 if (fatal_signal_pending(current)) {
6384 ret = -EINTR;
6385 break;
6388 if (list_empty(&cc->migratepages)) {
6389 cc->nr_migratepages = 0;
6390 ret = isolate_migratepages_range(cc, pfn, end);
6391 if (ret && ret != -EAGAIN)
6392 break;
6393 pfn = cc->migrate_pfn;
6394 tries = 0;
6395 } else if (++tries == 5) {
6396 ret = -EBUSY;
6397 break;
6400 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6401 &cc->migratepages);
6402 cc->nr_migratepages -= nr_reclaimed;
6404 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6405 total_reclaimed += nr_reclaimed;
6406 list_for_each_entry(page, &cc->migratepages, lru) {
6407 struct folio *folio = page_folio(page);
6409 total_mapped += folio_mapped(folio) *
6410 folio_nr_pages(folio);
6414 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6415 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6417 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6418 total_migrated += cc->nr_migratepages;
6421 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6422 * to retry again over this error, so do the same here.
6424 if (ret == -ENOMEM)
6425 break;
6428 lru_cache_enable();
6429 if (ret < 0) {
6430 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6431 alloc_contig_dump_pages(&cc->migratepages);
6432 putback_movable_pages(&cc->migratepages);
6435 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6436 total_migrated,
6437 total_reclaimed,
6438 total_mapped);
6439 return (ret < 0) ? ret : 0;
6443 * alloc_contig_range() -- tries to allocate given range of pages
6444 * @start: start PFN to allocate
6445 * @end: one-past-the-last PFN to allocate
6446 * @migratetype: migratetype of the underlying pageblocks (either
6447 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6448 * in range must have the same migratetype and it must
6449 * be either of the two.
6450 * @gfp_mask: GFP mask to use during compaction
6452 * The PFN range does not have to be pageblock aligned. The PFN range must
6453 * belong to a single zone.
6455 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6456 * pageblocks in the range. Once isolated, the pageblocks should not
6457 * be modified by others.
6459 * Return: zero on success or negative error code. On success all
6460 * pages which PFN is in [start, end) are allocated for the caller and
6461 * need to be freed with free_contig_range().
6463 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6464 unsigned migratetype, gfp_t gfp_mask)
6466 unsigned long outer_start, outer_end;
6467 int ret = 0;
6469 struct compact_control cc = {
6470 .nr_migratepages = 0,
6471 .order = -1,
6472 .zone = page_zone(pfn_to_page(start)),
6473 .mode = MIGRATE_SYNC,
6474 .ignore_skip_hint = true,
6475 .no_set_skip_hint = true,
6476 .gfp_mask = current_gfp_context(gfp_mask),
6477 .alloc_contig = true,
6479 INIT_LIST_HEAD(&cc.migratepages);
6482 * What we do here is we mark all pageblocks in range as
6483 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6484 * have different sizes, and due to the way page allocator
6485 * work, start_isolate_page_range() has special handlings for this.
6487 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6488 * migrate the pages from an unaligned range (ie. pages that
6489 * we are interested in). This will put all the pages in
6490 * range back to page allocator as MIGRATE_ISOLATE.
6492 * When this is done, we take the pages in range from page
6493 * allocator removing them from the buddy system. This way
6494 * page allocator will never consider using them.
6496 * This lets us mark the pageblocks back as
6497 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6498 * aligned range but not in the unaligned, original range are
6499 * put back to page allocator so that buddy can use them.
6502 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6503 if (ret)
6504 goto done;
6506 drain_all_pages(cc.zone);
6509 * In case of -EBUSY, we'd like to know which page causes problem.
6510 * So, just fall through. test_pages_isolated() has a tracepoint
6511 * which will report the busy page.
6513 * It is possible that busy pages could become available before
6514 * the call to test_pages_isolated, and the range will actually be
6515 * allocated. So, if we fall through be sure to clear ret so that
6516 * -EBUSY is not accidentally used or returned to caller.
6518 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6519 if (ret && ret != -EBUSY)
6520 goto done;
6521 ret = 0;
6524 * Pages from [start, end) are within a pageblock_nr_pages
6525 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6526 * more, all pages in [start, end) are free in page allocator.
6527 * What we are going to do is to allocate all pages from
6528 * [start, end) (that is remove them from page allocator).
6530 * The only problem is that pages at the beginning and at the
6531 * end of interesting range may be not aligned with pages that
6532 * page allocator holds, ie. they can be part of higher order
6533 * pages. Because of this, we reserve the bigger range and
6534 * once this is done free the pages we are not interested in.
6536 * We don't have to hold zone->lock here because the pages are
6537 * isolated thus they won't get removed from buddy.
6539 outer_start = find_large_buddy(start);
6541 /* Make sure the range is really isolated. */
6542 if (test_pages_isolated(outer_start, end, 0)) {
6543 ret = -EBUSY;
6544 goto done;
6547 /* Grab isolated pages from freelists. */
6548 outer_end = isolate_freepages_range(&cc, outer_start, end);
6549 if (!outer_end) {
6550 ret = -EBUSY;
6551 goto done;
6554 /* Free head and tail (if any) */
6555 if (start != outer_start)
6556 free_contig_range(outer_start, start - outer_start);
6557 if (end != outer_end)
6558 free_contig_range(end, outer_end - end);
6560 done:
6561 undo_isolate_page_range(start, end, migratetype);
6562 return ret;
6564 EXPORT_SYMBOL(alloc_contig_range_noprof);
6566 static int __alloc_contig_pages(unsigned long start_pfn,
6567 unsigned long nr_pages, gfp_t gfp_mask)
6569 unsigned long end_pfn = start_pfn + nr_pages;
6571 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6572 gfp_mask);
6575 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6576 unsigned long nr_pages)
6578 unsigned long i, end_pfn = start_pfn + nr_pages;
6579 struct page *page;
6581 for (i = start_pfn; i < end_pfn; i++) {
6582 page = pfn_to_online_page(i);
6583 if (!page)
6584 return false;
6586 if (page_zone(page) != z)
6587 return false;
6589 if (PageReserved(page))
6590 return false;
6592 if (PageHuge(page))
6593 return false;
6595 return true;
6598 static bool zone_spans_last_pfn(const struct zone *zone,
6599 unsigned long start_pfn, unsigned long nr_pages)
6601 unsigned long last_pfn = start_pfn + nr_pages - 1;
6603 return zone_spans_pfn(zone, last_pfn);
6607 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6608 * @nr_pages: Number of contiguous pages to allocate
6609 * @gfp_mask: GFP mask to limit search and used during compaction
6610 * @nid: Target node
6611 * @nodemask: Mask for other possible nodes
6613 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6614 * on an applicable zonelist to find a contiguous pfn range which can then be
6615 * tried for allocation with alloc_contig_range(). This routine is intended
6616 * for allocation requests which can not be fulfilled with the buddy allocator.
6618 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6619 * power of two, then allocated range is also guaranteed to be aligned to same
6620 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6622 * Allocated pages can be freed with free_contig_range() or by manually calling
6623 * __free_page() on each allocated page.
6625 * Return: pointer to contiguous pages on success, or NULL if not successful.
6627 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6628 int nid, nodemask_t *nodemask)
6630 unsigned long ret, pfn, flags;
6631 struct zonelist *zonelist;
6632 struct zone *zone;
6633 struct zoneref *z;
6635 zonelist = node_zonelist(nid, gfp_mask);
6636 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6637 gfp_zone(gfp_mask), nodemask) {
6638 spin_lock_irqsave(&zone->lock, flags);
6640 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6641 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6642 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6644 * We release the zone lock here because
6645 * alloc_contig_range() will also lock the zone
6646 * at some point. If there's an allocation
6647 * spinning on this lock, it may win the race
6648 * and cause alloc_contig_range() to fail...
6650 spin_unlock_irqrestore(&zone->lock, flags);
6651 ret = __alloc_contig_pages(pfn, nr_pages,
6652 gfp_mask);
6653 if (!ret)
6654 return pfn_to_page(pfn);
6655 spin_lock_irqsave(&zone->lock, flags);
6657 pfn += nr_pages;
6659 spin_unlock_irqrestore(&zone->lock, flags);
6661 return NULL;
6663 #endif /* CONFIG_CONTIG_ALLOC */
6665 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6667 unsigned long count = 0;
6669 for (; nr_pages--; pfn++) {
6670 struct page *page = pfn_to_page(pfn);
6672 count += page_count(page) != 1;
6673 __free_page(page);
6675 WARN(count != 0, "%lu pages are still in use!\n", count);
6677 EXPORT_SYMBOL(free_contig_range);
6680 * Effectively disable pcplists for the zone by setting the high limit to 0
6681 * and draining all cpus. A concurrent page freeing on another CPU that's about
6682 * to put the page on pcplist will either finish before the drain and the page
6683 * will be drained, or observe the new high limit and skip the pcplist.
6685 * Must be paired with a call to zone_pcp_enable().
6687 void zone_pcp_disable(struct zone *zone)
6689 mutex_lock(&pcp_batch_high_lock);
6690 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6691 __drain_all_pages(zone, true);
6694 void zone_pcp_enable(struct zone *zone)
6696 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6697 zone->pageset_high_max, zone->pageset_batch);
6698 mutex_unlock(&pcp_batch_high_lock);
6701 void zone_pcp_reset(struct zone *zone)
6703 int cpu;
6704 struct per_cpu_zonestat *pzstats;
6706 if (zone->per_cpu_pageset != &boot_pageset) {
6707 for_each_online_cpu(cpu) {
6708 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6709 drain_zonestat(zone, pzstats);
6711 free_percpu(zone->per_cpu_pageset);
6712 zone->per_cpu_pageset = &boot_pageset;
6713 if (zone->per_cpu_zonestats != &boot_zonestats) {
6714 free_percpu(zone->per_cpu_zonestats);
6715 zone->per_cpu_zonestats = &boot_zonestats;
6720 #ifdef CONFIG_MEMORY_HOTREMOVE
6722 * All pages in the range must be in a single zone, must not contain holes,
6723 * must span full sections, and must be isolated before calling this function.
6725 * Returns the number of managed (non-PageOffline()) pages in the range: the
6726 * number of pages for which memory offlining code must adjust managed page
6727 * counters using adjust_managed_page_count().
6729 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6730 unsigned long end_pfn)
6732 unsigned long already_offline = 0, flags;
6733 unsigned long pfn = start_pfn;
6734 struct page *page;
6735 struct zone *zone;
6736 unsigned int order;
6738 offline_mem_sections(pfn, end_pfn);
6739 zone = page_zone(pfn_to_page(pfn));
6740 spin_lock_irqsave(&zone->lock, flags);
6741 while (pfn < end_pfn) {
6742 page = pfn_to_page(pfn);
6744 * The HWPoisoned page may be not in buddy system, and
6745 * page_count() is not 0.
6747 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6748 pfn++;
6749 continue;
6752 * At this point all remaining PageOffline() pages have a
6753 * reference count of 0 and can simply be skipped.
6755 if (PageOffline(page)) {
6756 BUG_ON(page_count(page));
6757 BUG_ON(PageBuddy(page));
6758 already_offline++;
6759 pfn++;
6760 continue;
6763 BUG_ON(page_count(page));
6764 BUG_ON(!PageBuddy(page));
6765 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6766 order = buddy_order(page);
6767 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6768 pfn += (1 << order);
6770 spin_unlock_irqrestore(&zone->lock, flags);
6772 return end_pfn - start_pfn - already_offline;
6774 #endif
6777 * This function returns a stable result only if called under zone lock.
6779 bool is_free_buddy_page(const struct page *page)
6781 unsigned long pfn = page_to_pfn(page);
6782 unsigned int order;
6784 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6785 const struct page *head = page - (pfn & ((1 << order) - 1));
6787 if (PageBuddy(head) &&
6788 buddy_order_unsafe(head) >= order)
6789 break;
6792 return order <= MAX_PAGE_ORDER;
6794 EXPORT_SYMBOL(is_free_buddy_page);
6796 #ifdef CONFIG_MEMORY_FAILURE
6797 static inline void add_to_free_list(struct page *page, struct zone *zone,
6798 unsigned int order, int migratetype,
6799 bool tail)
6801 __add_to_free_list(page, zone, order, migratetype, tail);
6802 account_freepages(zone, 1 << order, migratetype);
6806 * Break down a higher-order page in sub-pages, and keep our target out of
6807 * buddy allocator.
6809 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6810 struct page *target, int low, int high,
6811 int migratetype)
6813 unsigned long size = 1 << high;
6814 struct page *current_buddy;
6816 while (high > low) {
6817 high--;
6818 size >>= 1;
6820 if (target >= &page[size]) {
6821 current_buddy = page;
6822 page = page + size;
6823 } else {
6824 current_buddy = page + size;
6827 if (set_page_guard(zone, current_buddy, high))
6828 continue;
6830 add_to_free_list(current_buddy, zone, high, migratetype, false);
6831 set_buddy_order(current_buddy, high);
6836 * Take a page that will be marked as poisoned off the buddy allocator.
6838 bool take_page_off_buddy(struct page *page)
6840 struct zone *zone = page_zone(page);
6841 unsigned long pfn = page_to_pfn(page);
6842 unsigned long flags;
6843 unsigned int order;
6844 bool ret = false;
6846 spin_lock_irqsave(&zone->lock, flags);
6847 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6848 struct page *page_head = page - (pfn & ((1 << order) - 1));
6849 int page_order = buddy_order(page_head);
6851 if (PageBuddy(page_head) && page_order >= order) {
6852 unsigned long pfn_head = page_to_pfn(page_head);
6853 int migratetype = get_pfnblock_migratetype(page_head,
6854 pfn_head);
6856 del_page_from_free_list(page_head, zone, page_order,
6857 migratetype);
6858 break_down_buddy_pages(zone, page_head, page, 0,
6859 page_order, migratetype);
6860 SetPageHWPoisonTakenOff(page);
6861 ret = true;
6862 break;
6864 if (page_count(page_head) > 0)
6865 break;
6867 spin_unlock_irqrestore(&zone->lock, flags);
6868 return ret;
6872 * Cancel takeoff done by take_page_off_buddy().
6874 bool put_page_back_buddy(struct page *page)
6876 struct zone *zone = page_zone(page);
6877 unsigned long flags;
6878 bool ret = false;
6880 spin_lock_irqsave(&zone->lock, flags);
6881 if (put_page_testzero(page)) {
6882 unsigned long pfn = page_to_pfn(page);
6883 int migratetype = get_pfnblock_migratetype(page, pfn);
6885 ClearPageHWPoisonTakenOff(page);
6886 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6887 if (TestClearPageHWPoison(page)) {
6888 ret = true;
6891 spin_unlock_irqrestore(&zone->lock, flags);
6893 return ret;
6895 #endif
6897 #ifdef CONFIG_ZONE_DMA
6898 bool has_managed_dma(void)
6900 struct pglist_data *pgdat;
6902 for_each_online_pgdat(pgdat) {
6903 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6905 if (managed_zone(zone))
6906 return true;
6908 return false;
6910 #endif /* CONFIG_ZONE_DMA */
6912 #ifdef CONFIG_UNACCEPTED_MEMORY
6914 /* Counts number of zones with unaccepted pages. */
6915 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6917 static bool lazy_accept = true;
6919 static int __init accept_memory_parse(char *p)
6921 if (!strcmp(p, "lazy")) {
6922 lazy_accept = true;
6923 return 0;
6924 } else if (!strcmp(p, "eager")) {
6925 lazy_accept = false;
6926 return 0;
6927 } else {
6928 return -EINVAL;
6931 early_param("accept_memory", accept_memory_parse);
6933 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6935 phys_addr_t start = page_to_phys(page);
6936 phys_addr_t end = start + (PAGE_SIZE << order);
6938 return range_contains_unaccepted_memory(start, end);
6941 static void accept_page(struct page *page, unsigned int order)
6943 phys_addr_t start = page_to_phys(page);
6945 accept_memory(start, start + (PAGE_SIZE << order));
6948 static bool try_to_accept_memory_one(struct zone *zone)
6950 unsigned long flags;
6951 struct page *page;
6952 bool last;
6954 if (list_empty(&zone->unaccepted_pages))
6955 return false;
6957 spin_lock_irqsave(&zone->lock, flags);
6958 page = list_first_entry_or_null(&zone->unaccepted_pages,
6959 struct page, lru);
6960 if (!page) {
6961 spin_unlock_irqrestore(&zone->lock, flags);
6962 return false;
6965 list_del(&page->lru);
6966 last = list_empty(&zone->unaccepted_pages);
6968 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6969 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6970 spin_unlock_irqrestore(&zone->lock, flags);
6972 accept_page(page, MAX_PAGE_ORDER);
6974 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6976 if (last)
6977 static_branch_dec(&zones_with_unaccepted_pages);
6979 return true;
6982 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6984 long to_accept;
6985 int ret = false;
6987 /* How much to accept to get to high watermark? */
6988 to_accept = high_wmark_pages(zone) -
6989 (zone_page_state(zone, NR_FREE_PAGES) -
6990 __zone_watermark_unusable_free(zone, order, 0));
6992 /* Accept at least one page */
6993 do {
6994 if (!try_to_accept_memory_one(zone))
6995 break;
6996 ret = true;
6997 to_accept -= MAX_ORDER_NR_PAGES;
6998 } while (to_accept > 0);
7000 return ret;
7003 static inline bool has_unaccepted_memory(void)
7005 return static_branch_unlikely(&zones_with_unaccepted_pages);
7008 static bool __free_unaccepted(struct page *page)
7010 struct zone *zone = page_zone(page);
7011 unsigned long flags;
7012 bool first = false;
7014 if (!lazy_accept)
7015 return false;
7017 spin_lock_irqsave(&zone->lock, flags);
7018 first = list_empty(&zone->unaccepted_pages);
7019 list_add_tail(&page->lru, &zone->unaccepted_pages);
7020 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7021 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7022 spin_unlock_irqrestore(&zone->lock, flags);
7024 if (first)
7025 static_branch_inc(&zones_with_unaccepted_pages);
7027 return true;
7030 #else
7032 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7034 return false;
7037 static void accept_page(struct page *page, unsigned int order)
7041 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
7043 return false;
7046 static inline bool has_unaccepted_memory(void)
7048 return false;
7051 static bool __free_unaccepted(struct page *page)
7053 BUILD_BUG();
7054 return false;
7057 #endif /* CONFIG_UNACCEPTED_MEMORY */