WAN: dscc4: Fix warning pointing out a bug.
[linux-2.6/mini2440.git] / arch / sparc / mm / tsb.c
blob36a0813f9517b39ec9b7b86c17a03233d442483e
1 /* arch/sparc64/mm/tsb.c
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <asm/system.h>
9 #include <asm/page.h>
10 #include <asm/tlbflush.h>
11 #include <asm/tlb.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgtable.h>
14 #include <asm/tsb.h>
15 #include <asm/oplib.h>
17 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
19 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
21 vaddr >>= hash_shift;
22 return vaddr & (nentries - 1);
25 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
27 return (tag == (vaddr >> 22));
30 /* TSB flushes need only occur on the processor initiating the address
31 * space modification, not on each cpu the address space has run on.
32 * Only the TLB flush needs that treatment.
35 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
37 unsigned long v;
39 for (v = start; v < end; v += PAGE_SIZE) {
40 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
41 KERNEL_TSB_NENTRIES);
42 struct tsb *ent = &swapper_tsb[hash];
44 if (tag_compare(ent->tag, v))
45 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
49 static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
51 unsigned long i;
53 for (i = 0; i < mp->tlb_nr; i++) {
54 unsigned long v = mp->vaddrs[i];
55 unsigned long tag, ent, hash;
57 v &= ~0x1UL;
59 hash = tsb_hash(v, hash_shift, nentries);
60 ent = tsb + (hash * sizeof(struct tsb));
61 tag = (v >> 22UL);
63 tsb_flush(ent, tag);
67 void flush_tsb_user(struct mmu_gather *mp)
69 struct mm_struct *mm = mp->mm;
70 unsigned long nentries, base, flags;
72 spin_lock_irqsave(&mm->context.lock, flags);
74 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
75 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
76 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
77 base = __pa(base);
78 __flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
80 #ifdef CONFIG_HUGETLB_PAGE
81 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
82 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
83 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
84 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
85 base = __pa(base);
86 __flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
88 #endif
89 spin_unlock_irqrestore(&mm->context.lock, flags);
92 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
93 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
94 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
95 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
96 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
97 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
98 #else
99 #error Broken base page size setting...
100 #endif
102 #ifdef CONFIG_HUGETLB_PAGE
103 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
104 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
105 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
106 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
107 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
108 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
109 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
110 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
111 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
112 #else
113 #error Broken huge page size setting...
114 #endif
115 #endif
117 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
119 unsigned long tsb_reg, base, tsb_paddr;
120 unsigned long page_sz, tte;
122 mm->context.tsb_block[tsb_idx].tsb_nentries =
123 tsb_bytes / sizeof(struct tsb);
125 base = TSBMAP_BASE;
126 tte = pgprot_val(PAGE_KERNEL_LOCKED);
127 tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
128 BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
130 /* Use the smallest page size that can map the whole TSB
131 * in one TLB entry.
133 switch (tsb_bytes) {
134 case 8192 << 0:
135 tsb_reg = 0x0UL;
136 #ifdef DCACHE_ALIASING_POSSIBLE
137 base += (tsb_paddr & 8192);
138 #endif
139 page_sz = 8192;
140 break;
142 case 8192 << 1:
143 tsb_reg = 0x1UL;
144 page_sz = 64 * 1024;
145 break;
147 case 8192 << 2:
148 tsb_reg = 0x2UL;
149 page_sz = 64 * 1024;
150 break;
152 case 8192 << 3:
153 tsb_reg = 0x3UL;
154 page_sz = 64 * 1024;
155 break;
157 case 8192 << 4:
158 tsb_reg = 0x4UL;
159 page_sz = 512 * 1024;
160 break;
162 case 8192 << 5:
163 tsb_reg = 0x5UL;
164 page_sz = 512 * 1024;
165 break;
167 case 8192 << 6:
168 tsb_reg = 0x6UL;
169 page_sz = 512 * 1024;
170 break;
172 case 8192 << 7:
173 tsb_reg = 0x7UL;
174 page_sz = 4 * 1024 * 1024;
175 break;
177 default:
178 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
179 current->comm, current->pid, tsb_bytes);
180 do_exit(SIGSEGV);
182 tte |= pte_sz_bits(page_sz);
184 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
185 /* Physical mapping, no locked TLB entry for TSB. */
186 tsb_reg |= tsb_paddr;
188 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
189 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
190 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
191 } else {
192 tsb_reg |= base;
193 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
194 tte |= (tsb_paddr & ~(page_sz - 1UL));
196 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
197 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
198 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
201 /* Setup the Hypervisor TSB descriptor. */
202 if (tlb_type == hypervisor) {
203 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
205 switch (tsb_idx) {
206 case MM_TSB_BASE:
207 hp->pgsz_idx = HV_PGSZ_IDX_BASE;
208 break;
209 #ifdef CONFIG_HUGETLB_PAGE
210 case MM_TSB_HUGE:
211 hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
212 break;
213 #endif
214 default:
215 BUG();
217 hp->assoc = 1;
218 hp->num_ttes = tsb_bytes / 16;
219 hp->ctx_idx = 0;
220 switch (tsb_idx) {
221 case MM_TSB_BASE:
222 hp->pgsz_mask = HV_PGSZ_MASK_BASE;
223 break;
224 #ifdef CONFIG_HUGETLB_PAGE
225 case MM_TSB_HUGE:
226 hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
227 break;
228 #endif
229 default:
230 BUG();
232 hp->tsb_base = tsb_paddr;
233 hp->resv = 0;
237 static struct kmem_cache *tsb_caches[8] __read_mostly;
239 static const char *tsb_cache_names[8] = {
240 "tsb_8KB",
241 "tsb_16KB",
242 "tsb_32KB",
243 "tsb_64KB",
244 "tsb_128KB",
245 "tsb_256KB",
246 "tsb_512KB",
247 "tsb_1MB",
250 void __init pgtable_cache_init(void)
252 unsigned long i;
254 for (i = 0; i < 8; i++) {
255 unsigned long size = 8192 << i;
256 const char *name = tsb_cache_names[i];
258 tsb_caches[i] = kmem_cache_create(name,
259 size, size,
260 0, NULL);
261 if (!tsb_caches[i]) {
262 prom_printf("Could not create %s cache\n", name);
263 prom_halt();
268 int sysctl_tsb_ratio = -2;
270 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
272 unsigned long num_ents = (new_size / sizeof(struct tsb));
274 if (sysctl_tsb_ratio < 0)
275 return num_ents - (num_ents >> -sysctl_tsb_ratio);
276 else
277 return num_ents + (num_ents >> sysctl_tsb_ratio);
280 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
281 * do_sparc64_fault() invokes this routine to try and grow it.
283 * When we reach the maximum TSB size supported, we stick ~0UL into
284 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
285 * will not trigger any longer.
287 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
288 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
289 * must be 512K aligned. It also must be physically contiguous, so we
290 * cannot use vmalloc().
292 * The idea here is to grow the TSB when the RSS of the process approaches
293 * the number of entries that the current TSB can hold at once. Currently,
294 * we trigger when the RSS hits 3/4 of the TSB capacity.
296 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
298 unsigned long max_tsb_size = 1 * 1024 * 1024;
299 unsigned long new_size, old_size, flags;
300 struct tsb *old_tsb, *new_tsb;
301 unsigned long new_cache_index, old_cache_index;
302 unsigned long new_rss_limit;
303 gfp_t gfp_flags;
305 if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
306 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
308 new_cache_index = 0;
309 for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
310 new_rss_limit = tsb_size_to_rss_limit(new_size);
311 if (new_rss_limit > rss)
312 break;
313 new_cache_index++;
316 if (new_size == max_tsb_size)
317 new_rss_limit = ~0UL;
319 retry_tsb_alloc:
320 gfp_flags = GFP_KERNEL;
321 if (new_size > (PAGE_SIZE * 2))
322 gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
324 new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
325 gfp_flags, numa_node_id());
326 if (unlikely(!new_tsb)) {
327 /* Not being able to fork due to a high-order TSB
328 * allocation failure is very bad behavior. Just back
329 * down to a 0-order allocation and force no TSB
330 * growing for this address space.
332 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
333 new_cache_index > 0) {
334 new_cache_index = 0;
335 new_size = 8192;
336 new_rss_limit = ~0UL;
337 goto retry_tsb_alloc;
340 /* If we failed on a TSB grow, we are under serious
341 * memory pressure so don't try to grow any more.
343 if (mm->context.tsb_block[tsb_index].tsb != NULL)
344 mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
345 return;
348 /* Mark all tags as invalid. */
349 tsb_init(new_tsb, new_size);
351 /* Ok, we are about to commit the changes. If we are
352 * growing an existing TSB the locking is very tricky,
353 * so WATCH OUT!
355 * We have to hold mm->context.lock while committing to the
356 * new TSB, this synchronizes us with processors in
357 * flush_tsb_user() and switch_mm() for this address space.
359 * But even with that lock held, processors run asynchronously
360 * accessing the old TSB via TLB miss handling. This is OK
361 * because those actions are just propagating state from the
362 * Linux page tables into the TSB, page table mappings are not
363 * being changed. If a real fault occurs, the processor will
364 * synchronize with us when it hits flush_tsb_user(), this is
365 * also true for the case where vmscan is modifying the page
366 * tables. The only thing we need to be careful with is to
367 * skip any locked TSB entries during copy_tsb().
369 * When we finish committing to the new TSB, we have to drop
370 * the lock and ask all other cpus running this address space
371 * to run tsb_context_switch() to see the new TSB table.
373 spin_lock_irqsave(&mm->context.lock, flags);
375 old_tsb = mm->context.tsb_block[tsb_index].tsb;
376 old_cache_index =
377 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
378 old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
379 sizeof(struct tsb));
382 /* Handle multiple threads trying to grow the TSB at the same time.
383 * One will get in here first, and bump the size and the RSS limit.
384 * The others will get in here next and hit this check.
386 if (unlikely(old_tsb &&
387 (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
388 spin_unlock_irqrestore(&mm->context.lock, flags);
390 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
391 return;
394 mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
396 if (old_tsb) {
397 extern void copy_tsb(unsigned long old_tsb_base,
398 unsigned long old_tsb_size,
399 unsigned long new_tsb_base,
400 unsigned long new_tsb_size);
401 unsigned long old_tsb_base = (unsigned long) old_tsb;
402 unsigned long new_tsb_base = (unsigned long) new_tsb;
404 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
405 old_tsb_base = __pa(old_tsb_base);
406 new_tsb_base = __pa(new_tsb_base);
408 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
411 mm->context.tsb_block[tsb_index].tsb = new_tsb;
412 setup_tsb_params(mm, tsb_index, new_size);
414 spin_unlock_irqrestore(&mm->context.lock, flags);
416 /* If old_tsb is NULL, we're being invoked for the first time
417 * from init_new_context().
419 if (old_tsb) {
420 /* Reload it on the local cpu. */
421 tsb_context_switch(mm);
423 /* Now force other processors to do the same. */
424 preempt_disable();
425 smp_tsb_sync(mm);
426 preempt_enable();
428 /* Now it is safe to free the old tsb. */
429 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
433 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
435 #ifdef CONFIG_HUGETLB_PAGE
436 unsigned long huge_pte_count;
437 #endif
438 unsigned int i;
440 spin_lock_init(&mm->context.lock);
442 mm->context.sparc64_ctx_val = 0UL;
444 #ifdef CONFIG_HUGETLB_PAGE
445 /* We reset it to zero because the fork() page copying
446 * will re-increment the counters as the parent PTEs are
447 * copied into the child address space.
449 huge_pte_count = mm->context.huge_pte_count;
450 mm->context.huge_pte_count = 0;
451 #endif
453 /* copy_mm() copies over the parent's mm_struct before calling
454 * us, so we need to zero out the TSB pointer or else tsb_grow()
455 * will be confused and think there is an older TSB to free up.
457 for (i = 0; i < MM_NUM_TSBS; i++)
458 mm->context.tsb_block[i].tsb = NULL;
460 /* If this is fork, inherit the parent's TSB size. We would
461 * grow it to that size on the first page fault anyways.
463 tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
465 #ifdef CONFIG_HUGETLB_PAGE
466 if (unlikely(huge_pte_count))
467 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
468 #endif
470 if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
471 return -ENOMEM;
473 return 0;
476 static void tsb_destroy_one(struct tsb_config *tp)
478 unsigned long cache_index;
480 if (!tp->tsb)
481 return;
482 cache_index = tp->tsb_reg_val & 0x7UL;
483 kmem_cache_free(tsb_caches[cache_index], tp->tsb);
484 tp->tsb = NULL;
485 tp->tsb_reg_val = 0UL;
488 void destroy_context(struct mm_struct *mm)
490 unsigned long flags, i;
492 for (i = 0; i < MM_NUM_TSBS; i++)
493 tsb_destroy_one(&mm->context.tsb_block[i]);
495 spin_lock_irqsave(&ctx_alloc_lock, flags);
497 if (CTX_VALID(mm->context)) {
498 unsigned long nr = CTX_NRBITS(mm->context);
499 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
502 spin_unlock_irqrestore(&ctx_alloc_lock, flags);