1 /* arch/sparc64/mm/tsb.c
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <asm/system.h>
10 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgtable.h>
15 #include <asm/oplib.h>
17 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
19 static inline unsigned long tsb_hash(unsigned long vaddr
, unsigned long hash_shift
, unsigned long nentries
)
22 return vaddr
& (nentries
- 1);
25 static inline int tag_compare(unsigned long tag
, unsigned long vaddr
)
27 return (tag
== (vaddr
>> 22));
30 /* TSB flushes need only occur on the processor initiating the address
31 * space modification, not on each cpu the address space has run on.
32 * Only the TLB flush needs that treatment.
35 void flush_tsb_kernel_range(unsigned long start
, unsigned long end
)
39 for (v
= start
; v
< end
; v
+= PAGE_SIZE
) {
40 unsigned long hash
= tsb_hash(v
, PAGE_SHIFT
,
42 struct tsb
*ent
= &swapper_tsb
[hash
];
44 if (tag_compare(ent
->tag
, v
))
45 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
49 static void __flush_tsb_one(struct mmu_gather
*mp
, unsigned long hash_shift
, unsigned long tsb
, unsigned long nentries
)
53 for (i
= 0; i
< mp
->tlb_nr
; i
++) {
54 unsigned long v
= mp
->vaddrs
[i
];
55 unsigned long tag
, ent
, hash
;
59 hash
= tsb_hash(v
, hash_shift
, nentries
);
60 ent
= tsb
+ (hash
* sizeof(struct tsb
));
67 void flush_tsb_user(struct mmu_gather
*mp
)
69 struct mm_struct
*mm
= mp
->mm
;
70 unsigned long nentries
, base
, flags
;
72 spin_lock_irqsave(&mm
->context
.lock
, flags
);
74 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
;
75 nentries
= mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_nentries
;
76 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
78 __flush_tsb_one(mp
, PAGE_SHIFT
, base
, nentries
);
80 #ifdef CONFIG_HUGETLB_PAGE
81 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
) {
82 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
;
83 nentries
= mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_nentries
;
84 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
86 __flush_tsb_one(mp
, HPAGE_SHIFT
, base
, nentries
);
89 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
92 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
93 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
94 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
95 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
96 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
97 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
99 #error Broken base page size setting...
102 #ifdef CONFIG_HUGETLB_PAGE
103 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
104 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
105 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
106 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
107 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
108 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
109 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
110 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
111 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
113 #error Broken huge page size setting...
117 static void setup_tsb_params(struct mm_struct
*mm
, unsigned long tsb_idx
, unsigned long tsb_bytes
)
119 unsigned long tsb_reg
, base
, tsb_paddr
;
120 unsigned long page_sz
, tte
;
122 mm
->context
.tsb_block
[tsb_idx
].tsb_nentries
=
123 tsb_bytes
/ sizeof(struct tsb
);
126 tte
= pgprot_val(PAGE_KERNEL_LOCKED
);
127 tsb_paddr
= __pa(mm
->context
.tsb_block
[tsb_idx
].tsb
);
128 BUG_ON(tsb_paddr
& (tsb_bytes
- 1UL));
130 /* Use the smallest page size that can map the whole TSB
136 #ifdef DCACHE_ALIASING_POSSIBLE
137 base
+= (tsb_paddr
& 8192);
159 page_sz
= 512 * 1024;
164 page_sz
= 512 * 1024;
169 page_sz
= 512 * 1024;
174 page_sz
= 4 * 1024 * 1024;
178 printk(KERN_ERR
"TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
179 current
->comm
, current
->pid
, tsb_bytes
);
182 tte
|= pte_sz_bits(page_sz
);
184 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
) {
185 /* Physical mapping, no locked TLB entry for TSB. */
186 tsb_reg
|= tsb_paddr
;
188 mm
->context
.tsb_block
[tsb_idx
].tsb_reg_val
= tsb_reg
;
189 mm
->context
.tsb_block
[tsb_idx
].tsb_map_vaddr
= 0;
190 mm
->context
.tsb_block
[tsb_idx
].tsb_map_pte
= 0;
193 tsb_reg
|= (tsb_paddr
& (page_sz
- 1UL));
194 tte
|= (tsb_paddr
& ~(page_sz
- 1UL));
196 mm
->context
.tsb_block
[tsb_idx
].tsb_reg_val
= tsb_reg
;
197 mm
->context
.tsb_block
[tsb_idx
].tsb_map_vaddr
= base
;
198 mm
->context
.tsb_block
[tsb_idx
].tsb_map_pte
= tte
;
201 /* Setup the Hypervisor TSB descriptor. */
202 if (tlb_type
== hypervisor
) {
203 struct hv_tsb_descr
*hp
= &mm
->context
.tsb_descr
[tsb_idx
];
207 hp
->pgsz_idx
= HV_PGSZ_IDX_BASE
;
209 #ifdef CONFIG_HUGETLB_PAGE
211 hp
->pgsz_idx
= HV_PGSZ_IDX_HUGE
;
218 hp
->num_ttes
= tsb_bytes
/ 16;
222 hp
->pgsz_mask
= HV_PGSZ_MASK_BASE
;
224 #ifdef CONFIG_HUGETLB_PAGE
226 hp
->pgsz_mask
= HV_PGSZ_MASK_HUGE
;
232 hp
->tsb_base
= tsb_paddr
;
237 static struct kmem_cache
*tsb_caches
[8] __read_mostly
;
239 static const char *tsb_cache_names
[8] = {
250 void __init
pgtable_cache_init(void)
254 for (i
= 0; i
< 8; i
++) {
255 unsigned long size
= 8192 << i
;
256 const char *name
= tsb_cache_names
[i
];
258 tsb_caches
[i
] = kmem_cache_create(name
,
261 if (!tsb_caches
[i
]) {
262 prom_printf("Could not create %s cache\n", name
);
268 int sysctl_tsb_ratio
= -2;
270 static unsigned long tsb_size_to_rss_limit(unsigned long new_size
)
272 unsigned long num_ents
= (new_size
/ sizeof(struct tsb
));
274 if (sysctl_tsb_ratio
< 0)
275 return num_ents
- (num_ents
>> -sysctl_tsb_ratio
);
277 return num_ents
+ (num_ents
>> sysctl_tsb_ratio
);
280 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
281 * do_sparc64_fault() invokes this routine to try and grow it.
283 * When we reach the maximum TSB size supported, we stick ~0UL into
284 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
285 * will not trigger any longer.
287 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
288 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
289 * must be 512K aligned. It also must be physically contiguous, so we
290 * cannot use vmalloc().
292 * The idea here is to grow the TSB when the RSS of the process approaches
293 * the number of entries that the current TSB can hold at once. Currently,
294 * we trigger when the RSS hits 3/4 of the TSB capacity.
296 void tsb_grow(struct mm_struct
*mm
, unsigned long tsb_index
, unsigned long rss
)
298 unsigned long max_tsb_size
= 1 * 1024 * 1024;
299 unsigned long new_size
, old_size
, flags
;
300 struct tsb
*old_tsb
, *new_tsb
;
301 unsigned long new_cache_index
, old_cache_index
;
302 unsigned long new_rss_limit
;
305 if (max_tsb_size
> (PAGE_SIZE
<< MAX_ORDER
))
306 max_tsb_size
= (PAGE_SIZE
<< MAX_ORDER
);
309 for (new_size
= 8192; new_size
< max_tsb_size
; new_size
<<= 1UL) {
310 new_rss_limit
= tsb_size_to_rss_limit(new_size
);
311 if (new_rss_limit
> rss
)
316 if (new_size
== max_tsb_size
)
317 new_rss_limit
= ~0UL;
320 gfp_flags
= GFP_KERNEL
;
321 if (new_size
> (PAGE_SIZE
* 2))
322 gfp_flags
= __GFP_NOWARN
| __GFP_NORETRY
;
324 new_tsb
= kmem_cache_alloc_node(tsb_caches
[new_cache_index
],
325 gfp_flags
, numa_node_id());
326 if (unlikely(!new_tsb
)) {
327 /* Not being able to fork due to a high-order TSB
328 * allocation failure is very bad behavior. Just back
329 * down to a 0-order allocation and force no TSB
330 * growing for this address space.
332 if (mm
->context
.tsb_block
[tsb_index
].tsb
== NULL
&&
333 new_cache_index
> 0) {
336 new_rss_limit
= ~0UL;
337 goto retry_tsb_alloc
;
340 /* If we failed on a TSB grow, we are under serious
341 * memory pressure so don't try to grow any more.
343 if (mm
->context
.tsb_block
[tsb_index
].tsb
!= NULL
)
344 mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
= ~0UL;
348 /* Mark all tags as invalid. */
349 tsb_init(new_tsb
, new_size
);
351 /* Ok, we are about to commit the changes. If we are
352 * growing an existing TSB the locking is very tricky,
355 * We have to hold mm->context.lock while committing to the
356 * new TSB, this synchronizes us with processors in
357 * flush_tsb_user() and switch_mm() for this address space.
359 * But even with that lock held, processors run asynchronously
360 * accessing the old TSB via TLB miss handling. This is OK
361 * because those actions are just propagating state from the
362 * Linux page tables into the TSB, page table mappings are not
363 * being changed. If a real fault occurs, the processor will
364 * synchronize with us when it hits flush_tsb_user(), this is
365 * also true for the case where vmscan is modifying the page
366 * tables. The only thing we need to be careful with is to
367 * skip any locked TSB entries during copy_tsb().
369 * When we finish committing to the new TSB, we have to drop
370 * the lock and ask all other cpus running this address space
371 * to run tsb_context_switch() to see the new TSB table.
373 spin_lock_irqsave(&mm
->context
.lock
, flags
);
375 old_tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
377 (mm
->context
.tsb_block
[tsb_index
].tsb_reg_val
& 0x7UL
);
378 old_size
= (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
*
382 /* Handle multiple threads trying to grow the TSB at the same time.
383 * One will get in here first, and bump the size and the RSS limit.
384 * The others will get in here next and hit this check.
386 if (unlikely(old_tsb
&&
387 (rss
< mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
))) {
388 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
390 kmem_cache_free(tsb_caches
[new_cache_index
], new_tsb
);
394 mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
= new_rss_limit
;
397 extern void copy_tsb(unsigned long old_tsb_base
,
398 unsigned long old_tsb_size
,
399 unsigned long new_tsb_base
,
400 unsigned long new_tsb_size
);
401 unsigned long old_tsb_base
= (unsigned long) old_tsb
;
402 unsigned long new_tsb_base
= (unsigned long) new_tsb
;
404 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
) {
405 old_tsb_base
= __pa(old_tsb_base
);
406 new_tsb_base
= __pa(new_tsb_base
);
408 copy_tsb(old_tsb_base
, old_size
, new_tsb_base
, new_size
);
411 mm
->context
.tsb_block
[tsb_index
].tsb
= new_tsb
;
412 setup_tsb_params(mm
, tsb_index
, new_size
);
414 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
416 /* If old_tsb is NULL, we're being invoked for the first time
417 * from init_new_context().
420 /* Reload it on the local cpu. */
421 tsb_context_switch(mm
);
423 /* Now force other processors to do the same. */
428 /* Now it is safe to free the old tsb. */
429 kmem_cache_free(tsb_caches
[old_cache_index
], old_tsb
);
433 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
435 #ifdef CONFIG_HUGETLB_PAGE
436 unsigned long huge_pte_count
;
440 spin_lock_init(&mm
->context
.lock
);
442 mm
->context
.sparc64_ctx_val
= 0UL;
444 #ifdef CONFIG_HUGETLB_PAGE
445 /* We reset it to zero because the fork() page copying
446 * will re-increment the counters as the parent PTEs are
447 * copied into the child address space.
449 huge_pte_count
= mm
->context
.huge_pte_count
;
450 mm
->context
.huge_pte_count
= 0;
453 /* copy_mm() copies over the parent's mm_struct before calling
454 * us, so we need to zero out the TSB pointer or else tsb_grow()
455 * will be confused and think there is an older TSB to free up.
457 for (i
= 0; i
< MM_NUM_TSBS
; i
++)
458 mm
->context
.tsb_block
[i
].tsb
= NULL
;
460 /* If this is fork, inherit the parent's TSB size. We would
461 * grow it to that size on the first page fault anyways.
463 tsb_grow(mm
, MM_TSB_BASE
, get_mm_rss(mm
));
465 #ifdef CONFIG_HUGETLB_PAGE
466 if (unlikely(huge_pte_count
))
467 tsb_grow(mm
, MM_TSB_HUGE
, huge_pte_count
);
470 if (unlikely(!mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
))
476 static void tsb_destroy_one(struct tsb_config
*tp
)
478 unsigned long cache_index
;
482 cache_index
= tp
->tsb_reg_val
& 0x7UL
;
483 kmem_cache_free(tsb_caches
[cache_index
], tp
->tsb
);
485 tp
->tsb_reg_val
= 0UL;
488 void destroy_context(struct mm_struct
*mm
)
490 unsigned long flags
, i
;
492 for (i
= 0; i
< MM_NUM_TSBS
; i
++)
493 tsb_destroy_one(&mm
->context
.tsb_block
[i
]);
495 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
497 if (CTX_VALID(mm
->context
)) {
498 unsigned long nr
= CTX_NRBITS(mm
->context
);
499 mmu_context_bmap
[nr
>>6] &= ~(1UL << (nr
& 63));
502 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);