x86: cpa, fix out of date comment
[linux-2.6/mini2440.git] / arch / x86 / mm / pageattr.c
blob4119379f80fff553de99fd30facb39485659f250
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
13 #include <asm/e820.h>
14 #include <asm/processor.h>
15 #include <asm/tlbflush.h>
16 #include <asm/sections.h>
17 #include <asm/uaccess.h>
18 #include <asm/pgalloc.h>
21 * The current flushing context - we pass it instead of 5 arguments:
23 struct cpa_data {
24 unsigned long vaddr;
25 pgprot_t mask_set;
26 pgprot_t mask_clr;
27 int numpages;
28 int flushtlb;
31 static inline int
32 within(unsigned long addr, unsigned long start, unsigned long end)
34 return addr >= start && addr < end;
38 * Flushing functions
41 /**
42 * clflush_cache_range - flush a cache range with clflush
43 * @addr: virtual start address
44 * @size: number of bytes to flush
46 * clflush is an unordered instruction which needs fencing with mfence
47 * to avoid ordering issues.
49 void clflush_cache_range(void *vaddr, unsigned int size)
51 void *vend = vaddr + size - 1;
53 mb();
55 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
56 clflush(vaddr);
58 * Flush any possible final partial cacheline:
60 clflush(vend);
62 mb();
65 static void __cpa_flush_all(void *arg)
67 unsigned long cache = (unsigned long)arg;
70 * Flush all to work around Errata in early athlons regarding
71 * large page flushing.
73 __flush_tlb_all();
75 if (cache && boot_cpu_data.x86_model >= 4)
76 wbinvd();
79 static void cpa_flush_all(unsigned long cache)
81 BUG_ON(irqs_disabled());
83 on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
86 static void __cpa_flush_range(void *arg)
89 * We could optimize that further and do individual per page
90 * tlb invalidates for a low number of pages. Caveat: we must
91 * flush the high aliases on 64bit as well.
93 __flush_tlb_all();
96 static void cpa_flush_range(unsigned long start, int numpages, int cache)
98 unsigned int i, level;
99 unsigned long addr;
101 BUG_ON(irqs_disabled());
102 WARN_ON(PAGE_ALIGN(start) != start);
104 on_each_cpu(__cpa_flush_range, NULL, 1, 1);
106 if (!cache)
107 return;
110 * We only need to flush on one CPU,
111 * clflush is a MESI-coherent instruction that
112 * will cause all other CPUs to flush the same
113 * cachelines:
115 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
116 pte_t *pte = lookup_address(addr, &level);
119 * Only flush present addresses:
121 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
122 clflush_cache_range((void *) addr, PAGE_SIZE);
126 #define HIGH_MAP_START __START_KERNEL_map
127 #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
131 * Converts a virtual address to a X86-64 highmap address
133 static unsigned long virt_to_highmap(void *address)
135 #ifdef CONFIG_X86_64
136 return __pa((unsigned long)address) + HIGH_MAP_START - phys_base;
137 #else
138 return (unsigned long)address;
139 #endif
143 * Certain areas of memory on x86 require very specific protection flags,
144 * for example the BIOS area or kernel text. Callers don't always get this
145 * right (again, ioremap() on BIOS memory is not uncommon) so this function
146 * checks and fixes these known static required protection bits.
148 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
150 pgprot_t forbidden = __pgprot(0);
153 * The BIOS area between 640k and 1Mb needs to be executable for
154 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
156 if (within(__pa(address), BIOS_BEGIN, BIOS_END))
157 pgprot_val(forbidden) |= _PAGE_NX;
160 * The kernel text needs to be executable for obvious reasons
161 * Does not cover __inittext since that is gone later on
163 if (within(address, (unsigned long)_text, (unsigned long)_etext))
164 pgprot_val(forbidden) |= _PAGE_NX;
166 * Do the same for the x86-64 high kernel mapping
168 if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext)))
169 pgprot_val(forbidden) |= _PAGE_NX;
171 /* The .rodata section needs to be read-only */
172 if (within(address, (unsigned long)__start_rodata,
173 (unsigned long)__end_rodata))
174 pgprot_val(forbidden) |= _PAGE_RW;
176 * Do the same for the x86-64 high kernel mapping
178 if (within(address, virt_to_highmap(__start_rodata),
179 virt_to_highmap(__end_rodata)))
180 pgprot_val(forbidden) |= _PAGE_RW;
182 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
184 return prot;
188 * Lookup the page table entry for a virtual address. Return a pointer
189 * to the entry and the level of the mapping.
191 * Note: We return pud and pmd either when the entry is marked large
192 * or when the present bit is not set. Otherwise we would return a
193 * pointer to a nonexisting mapping.
195 pte_t *lookup_address(unsigned long address, unsigned int *level)
197 pgd_t *pgd = pgd_offset_k(address);
198 pud_t *pud;
199 pmd_t *pmd;
201 *level = PG_LEVEL_NONE;
203 if (pgd_none(*pgd))
204 return NULL;
206 pud = pud_offset(pgd, address);
207 if (pud_none(*pud))
208 return NULL;
210 *level = PG_LEVEL_1G;
211 if (pud_large(*pud) || !pud_present(*pud))
212 return (pte_t *)pud;
214 pmd = pmd_offset(pud, address);
215 if (pmd_none(*pmd))
216 return NULL;
218 *level = PG_LEVEL_2M;
219 if (pmd_large(*pmd) || !pmd_present(*pmd))
220 return (pte_t *)pmd;
222 *level = PG_LEVEL_4K;
224 return pte_offset_kernel(pmd, address);
228 * Set the new pmd in all the pgds we know about:
230 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
232 /* change init_mm */
233 set_pte_atomic(kpte, pte);
234 #ifdef CONFIG_X86_32
235 if (!SHARED_KERNEL_PMD) {
236 struct page *page;
238 list_for_each_entry(page, &pgd_list, lru) {
239 pgd_t *pgd;
240 pud_t *pud;
241 pmd_t *pmd;
243 pgd = (pgd_t *)page_address(page) + pgd_index(address);
244 pud = pud_offset(pgd, address);
245 pmd = pmd_offset(pud, address);
246 set_pte_atomic((pte_t *)pmd, pte);
249 #endif
252 static int
253 try_preserve_large_page(pte_t *kpte, unsigned long address,
254 struct cpa_data *cpa)
256 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr;
257 pte_t new_pte, old_pte, *tmp;
258 pgprot_t old_prot, new_prot;
259 int i, do_split = 1;
260 unsigned int level;
262 spin_lock_irqsave(&pgd_lock, flags);
264 * Check for races, another CPU might have split this page
265 * up already:
267 tmp = lookup_address(address, &level);
268 if (tmp != kpte)
269 goto out_unlock;
271 switch (level) {
272 case PG_LEVEL_2M:
273 psize = PMD_PAGE_SIZE;
274 pmask = PMD_PAGE_MASK;
275 break;
276 #ifdef CONFIG_X86_64
277 case PG_LEVEL_1G:
278 psize = PUD_PAGE_SIZE;
279 pmask = PUD_PAGE_MASK;
280 break;
281 #endif
282 default:
283 do_split = -EINVAL;
284 goto out_unlock;
288 * Calculate the number of pages, which fit into this large
289 * page starting at address:
291 nextpage_addr = (address + psize) & pmask;
292 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
293 if (numpages < cpa->numpages)
294 cpa->numpages = numpages;
297 * We are safe now. Check whether the new pgprot is the same:
299 old_pte = *kpte;
300 old_prot = new_prot = pte_pgprot(old_pte);
302 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
303 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
304 new_prot = static_protections(new_prot, address);
307 * We need to check the full range, whether
308 * static_protection() requires a different pgprot for one of
309 * the pages in the range we try to preserve:
311 addr = address + PAGE_SIZE;
312 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE) {
313 pgprot_t chk_prot = static_protections(new_prot, addr);
315 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
316 goto out_unlock;
320 * If there are no changes, return. maxpages has been updated
321 * above:
323 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
324 do_split = 0;
325 goto out_unlock;
329 * We need to change the attributes. Check, whether we can
330 * change the large page in one go. We request a split, when
331 * the address is not aligned and the number of pages is
332 * smaller than the number of pages in the large page. Note
333 * that we limited the number of possible pages already to
334 * the number of pages in the large page.
336 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
338 * The address is aligned and the number of pages
339 * covers the full page.
341 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
342 __set_pmd_pte(kpte, address, new_pte);
343 cpa->flushtlb = 1;
344 do_split = 0;
347 out_unlock:
348 spin_unlock_irqrestore(&pgd_lock, flags);
350 return do_split;
353 static LIST_HEAD(page_pool);
354 static unsigned long pool_size, pool_pages, pool_low;
355 static unsigned long pool_used, pool_failed, pool_refill;
357 static void cpa_fill_pool(void)
359 struct page *p;
360 gfp_t gfp = GFP_KERNEL;
362 /* Do not allocate from interrupt context */
363 if (in_irq() || irqs_disabled())
364 return;
366 * Check unlocked. I does not matter when we have one more
367 * page in the pool. The bit lock avoids recursive pool
368 * allocations:
370 if (pool_pages >= pool_size || test_and_set_bit_lock(0, &pool_refill))
371 return;
373 #ifdef CONFIG_DEBUG_PAGEALLOC
375 * We could do:
376 * gfp = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
377 * but this fails on !PREEMPT kernels
379 gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
380 #endif
382 while (pool_pages < pool_size) {
383 p = alloc_pages(gfp, 0);
384 if (!p) {
385 pool_failed++;
386 break;
388 spin_lock_irq(&pgd_lock);
389 list_add(&p->lru, &page_pool);
390 pool_pages++;
391 spin_unlock_irq(&pgd_lock);
393 clear_bit_unlock(0, &pool_refill);
396 #define SHIFT_MB (20 - PAGE_SHIFT)
397 #define ROUND_MB_GB ((1 << 10) - 1)
398 #define SHIFT_MB_GB 10
399 #define POOL_PAGES_PER_GB 16
401 void __init cpa_init(void)
403 struct sysinfo si;
404 unsigned long gb;
406 si_meminfo(&si);
408 * Calculate the number of pool pages:
410 * Convert totalram (nr of pages) to MiB and round to the next
411 * GiB. Shift MiB to Gib and multiply the result by
412 * POOL_PAGES_PER_GB:
414 gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
415 pool_size = POOL_PAGES_PER_GB * gb;
416 pool_low = pool_size;
418 cpa_fill_pool();
419 printk(KERN_DEBUG
420 "CPA: page pool initialized %lu of %lu pages preallocated\n",
421 pool_pages, pool_size);
424 static int split_large_page(pte_t *kpte, unsigned long address)
426 unsigned long flags, pfn, pfninc = 1;
427 unsigned int i, level;
428 pte_t *pbase, *tmp;
429 pgprot_t ref_prot;
430 struct page *base;
433 * Get a page from the pool. The pool list is protected by the
434 * pgd_lock, which we have to take anyway for the split
435 * operation:
437 spin_lock_irqsave(&pgd_lock, flags);
438 if (list_empty(&page_pool)) {
439 spin_unlock_irqrestore(&pgd_lock, flags);
440 return -ENOMEM;
443 base = list_first_entry(&page_pool, struct page, lru);
444 list_del(&base->lru);
445 pool_pages--;
447 if (pool_pages < pool_low)
448 pool_low = pool_pages;
451 * Check for races, another CPU might have split this page
452 * up for us already:
454 tmp = lookup_address(address, &level);
455 if (tmp != kpte)
456 goto out_unlock;
458 pbase = (pte_t *)page_address(base);
459 #ifdef CONFIG_X86_32
460 paravirt_alloc_pt(&init_mm, page_to_pfn(base));
461 #endif
462 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
464 #ifdef CONFIG_X86_64
465 if (level == PG_LEVEL_1G) {
466 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
467 pgprot_val(ref_prot) |= _PAGE_PSE;
469 #endif
472 * Get the target pfn from the original entry:
474 pfn = pte_pfn(*kpte);
475 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
476 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
479 * Install the new, split up pagetable. Important details here:
481 * On Intel the NX bit of all levels must be cleared to make a
482 * page executable. See section 4.13.2 of Intel 64 and IA-32
483 * Architectures Software Developer's Manual).
485 * Mark the entry present. The current mapping might be
486 * set to not present, which we preserved above.
488 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
489 pgprot_val(ref_prot) |= _PAGE_PRESENT;
490 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
491 base = NULL;
493 out_unlock:
495 * If we dropped out via the lookup_address check under
496 * pgd_lock then stick the page back into the pool:
498 if (base) {
499 list_add(&base->lru, &page_pool);
500 pool_pages++;
501 } else
502 pool_used++;
503 spin_unlock_irqrestore(&pgd_lock, flags);
505 return 0;
508 static int __change_page_attr(unsigned long address, struct cpa_data *cpa)
510 int do_split, err;
511 unsigned int level;
512 struct page *kpte_page;
513 pte_t *kpte;
515 repeat:
516 kpte = lookup_address(address, &level);
517 if (!kpte)
518 return -EINVAL;
520 kpte_page = virt_to_page(kpte);
521 BUG_ON(PageLRU(kpte_page));
522 BUG_ON(PageCompound(kpte_page));
524 if (level == PG_LEVEL_4K) {
525 pte_t new_pte, old_pte = *kpte;
526 pgprot_t new_prot = pte_pgprot(old_pte);
528 if(!pte_val(old_pte)) {
529 printk(KERN_WARNING "CPA: called for zero pte. "
530 "vaddr = %lx cpa->vaddr = %lx\n", address,
531 cpa->vaddr);
532 WARN_ON(1);
533 return -EINVAL;
536 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
537 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
539 new_prot = static_protections(new_prot, address);
542 * We need to keep the pfn from the existing PTE,
543 * after all we're only going to change it's attributes
544 * not the memory it points to
546 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
549 * Do we really change anything ?
551 if (pte_val(old_pte) != pte_val(new_pte)) {
552 set_pte_atomic(kpte, new_pte);
553 cpa->flushtlb = 1;
555 cpa->numpages = 1;
556 return 0;
560 * Check, whether we can keep the large page intact
561 * and just change the pte:
563 do_split = try_preserve_large_page(kpte, address, cpa);
565 * When the range fits into the existing large page,
566 * return. cp->numpages and cpa->tlbflush have been updated in
567 * try_large_page:
569 if (do_split <= 0)
570 return do_split;
573 * We have to split the large page:
575 err = split_large_page(kpte, address);
576 if (!err) {
577 cpa->flushtlb = 1;
578 goto repeat;
581 return err;
585 * change_page_attr_addr - Change page table attributes in linear mapping
586 * @address: Virtual address in linear mapping.
587 * @prot: New page table attribute (PAGE_*)
589 * Change page attributes of a page in the direct mapping. This is a variant
590 * of change_page_attr() that also works on memory holes that do not have
591 * mem_map entry (pfn_valid() is false).
593 * See change_page_attr() documentation for more details.
595 * Modules and drivers should use the set_memory_* APIs instead.
597 static int change_page_attr_addr(struct cpa_data *cpa)
599 int err;
600 unsigned long address = cpa->vaddr;
602 #ifdef CONFIG_X86_64
603 unsigned long phys_addr = __pa(address);
606 * If we are inside the high mapped kernel range, then we
607 * fixup the low mapping first. __va() returns the virtual
608 * address in the linear mapping:
610 if (within(address, HIGH_MAP_START, HIGH_MAP_END))
611 address = (unsigned long) __va(phys_addr);
612 #endif
614 err = __change_page_attr(address, cpa);
615 if (err)
616 return err;
618 #ifdef CONFIG_X86_64
620 * If the physical address is inside the kernel map, we need
621 * to touch the high mapped kernel as well:
623 if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) {
625 * Calc the high mapping address. See __phys_addr()
626 * for the non obvious details.
628 * Note that NX and other required permissions are
629 * checked in static_protections().
631 address = phys_addr + HIGH_MAP_START - phys_base;
634 * Our high aliases are imprecise, because we check
635 * everything between 0 and KERNEL_TEXT_SIZE, so do
636 * not propagate lookup failures back to users:
638 __change_page_attr(address, cpa);
640 #endif
641 return err;
644 static int __change_page_attr_set_clr(struct cpa_data *cpa)
646 int ret, numpages = cpa->numpages;
648 while (numpages) {
650 * Store the remaining nr of pages for the large page
651 * preservation check.
653 cpa->numpages = numpages;
654 ret = change_page_attr_addr(cpa);
655 if (ret)
656 return ret;
659 * Adjust the number of pages with the result of the
660 * CPA operation. Either a large page has been
661 * preserved or a single page update happened.
663 BUG_ON(cpa->numpages > numpages);
664 numpages -= cpa->numpages;
665 cpa->vaddr += cpa->numpages * PAGE_SIZE;
667 return 0;
670 static inline int cache_attr(pgprot_t attr)
672 return pgprot_val(attr) &
673 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
676 static int change_page_attr_set_clr(unsigned long addr, int numpages,
677 pgprot_t mask_set, pgprot_t mask_clr)
679 struct cpa_data cpa;
680 int ret, cache;
683 * Check, if we are requested to change a not supported
684 * feature:
686 mask_set = canon_pgprot(mask_set);
687 mask_clr = canon_pgprot(mask_clr);
688 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
689 return 0;
691 /* Ensure we are PAGE_SIZE aligned */
692 if (addr & ~PAGE_MASK) {
693 addr &= PAGE_MASK;
695 * People should not be passing in unaligned addresses:
697 WARN_ON_ONCE(1);
700 cpa.vaddr = addr;
701 cpa.numpages = numpages;
702 cpa.mask_set = mask_set;
703 cpa.mask_clr = mask_clr;
704 cpa.flushtlb = 0;
706 ret = __change_page_attr_set_clr(&cpa);
709 * Check whether we really changed something:
711 if (!cpa.flushtlb)
712 goto out;
715 * No need to flush, when we did not set any of the caching
716 * attributes:
718 cache = cache_attr(mask_set);
721 * On success we use clflush, when the CPU supports it to
722 * avoid the wbindv. If the CPU does not support it and in the
723 * error case we fall back to cpa_flush_all (which uses
724 * wbindv):
726 if (!ret && cpu_has_clflush)
727 cpa_flush_range(addr, numpages, cache);
728 else
729 cpa_flush_all(cache);
731 out:
732 cpa_fill_pool();
733 return ret;
736 static inline int change_page_attr_set(unsigned long addr, int numpages,
737 pgprot_t mask)
739 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
742 static inline int change_page_attr_clear(unsigned long addr, int numpages,
743 pgprot_t mask)
745 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
748 int set_memory_uc(unsigned long addr, int numpages)
750 return change_page_attr_set(addr, numpages,
751 __pgprot(_PAGE_PCD | _PAGE_PWT));
753 EXPORT_SYMBOL(set_memory_uc);
755 int set_memory_wb(unsigned long addr, int numpages)
757 return change_page_attr_clear(addr, numpages,
758 __pgprot(_PAGE_PCD | _PAGE_PWT));
760 EXPORT_SYMBOL(set_memory_wb);
762 int set_memory_x(unsigned long addr, int numpages)
764 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
766 EXPORT_SYMBOL(set_memory_x);
768 int set_memory_nx(unsigned long addr, int numpages)
770 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
772 EXPORT_SYMBOL(set_memory_nx);
774 int set_memory_ro(unsigned long addr, int numpages)
776 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
779 int set_memory_rw(unsigned long addr, int numpages)
781 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
784 int set_memory_np(unsigned long addr, int numpages)
786 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
789 int set_pages_uc(struct page *page, int numpages)
791 unsigned long addr = (unsigned long)page_address(page);
793 return set_memory_uc(addr, numpages);
795 EXPORT_SYMBOL(set_pages_uc);
797 int set_pages_wb(struct page *page, int numpages)
799 unsigned long addr = (unsigned long)page_address(page);
801 return set_memory_wb(addr, numpages);
803 EXPORT_SYMBOL(set_pages_wb);
805 int set_pages_x(struct page *page, int numpages)
807 unsigned long addr = (unsigned long)page_address(page);
809 return set_memory_x(addr, numpages);
811 EXPORT_SYMBOL(set_pages_x);
813 int set_pages_nx(struct page *page, int numpages)
815 unsigned long addr = (unsigned long)page_address(page);
817 return set_memory_nx(addr, numpages);
819 EXPORT_SYMBOL(set_pages_nx);
821 int set_pages_ro(struct page *page, int numpages)
823 unsigned long addr = (unsigned long)page_address(page);
825 return set_memory_ro(addr, numpages);
828 int set_pages_rw(struct page *page, int numpages)
830 unsigned long addr = (unsigned long)page_address(page);
832 return set_memory_rw(addr, numpages);
835 #ifdef CONFIG_DEBUG_PAGEALLOC
837 static int __set_pages_p(struct page *page, int numpages)
839 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
840 .numpages = numpages,
841 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
842 .mask_clr = __pgprot(0)};
844 return __change_page_attr_set_clr(&cpa);
847 static int __set_pages_np(struct page *page, int numpages)
849 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
850 .numpages = numpages,
851 .mask_set = __pgprot(0),
852 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
854 return __change_page_attr_set_clr(&cpa);
857 void kernel_map_pages(struct page *page, int numpages, int enable)
859 if (PageHighMem(page))
860 return;
861 if (!enable) {
862 debug_check_no_locks_freed(page_address(page),
863 numpages * PAGE_SIZE);
867 * If page allocator is not up yet then do not call c_p_a():
869 if (!debug_pagealloc_enabled)
870 return;
873 * The return value is ignored as the calls cannot fail.
874 * Large pages are kept enabled at boot time, and are
875 * split up quickly with DEBUG_PAGEALLOC. If a splitup
876 * fails here (due to temporary memory shortage) no damage
877 * is done because we just keep the largepage intact up
878 * to the next attempt when it will likely be split up:
880 if (enable)
881 __set_pages_p(page, numpages);
882 else
883 __set_pages_np(page, numpages);
886 * We should perform an IPI and flush all tlbs,
887 * but that can deadlock->flush only current cpu:
889 __flush_tlb_all();
892 * Try to refill the page pool here. We can do this only after
893 * the tlb flush.
895 cpa_fill_pool();
897 #endif
900 * The testcases use internal knowledge of the implementation that shouldn't
901 * be exposed to the rest of the kernel. Include these directly here.
903 #ifdef CONFIG_CPA_DEBUG
904 #include "pageattr-test.c"
905 #endif