2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
14 #include <asm/processor.h>
15 #include <asm/tlbflush.h>
16 #include <asm/sections.h>
17 #include <asm/uaccess.h>
18 #include <asm/pgalloc.h>
21 * The current flushing context - we pass it instead of 5 arguments:
32 within(unsigned long addr
, unsigned long start
, unsigned long end
)
34 return addr
>= start
&& addr
< end
;
42 * clflush_cache_range - flush a cache range with clflush
43 * @addr: virtual start address
44 * @size: number of bytes to flush
46 * clflush is an unordered instruction which needs fencing with mfence
47 * to avoid ordering issues.
49 void clflush_cache_range(void *vaddr
, unsigned int size
)
51 void *vend
= vaddr
+ size
- 1;
55 for (; vaddr
< vend
; vaddr
+= boot_cpu_data
.x86_clflush_size
)
58 * Flush any possible final partial cacheline:
65 static void __cpa_flush_all(void *arg
)
67 unsigned long cache
= (unsigned long)arg
;
70 * Flush all to work around Errata in early athlons regarding
71 * large page flushing.
75 if (cache
&& boot_cpu_data
.x86_model
>= 4)
79 static void cpa_flush_all(unsigned long cache
)
81 BUG_ON(irqs_disabled());
83 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1, 1);
86 static void __cpa_flush_range(void *arg
)
89 * We could optimize that further and do individual per page
90 * tlb invalidates for a low number of pages. Caveat: we must
91 * flush the high aliases on 64bit as well.
96 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
98 unsigned int i
, level
;
101 BUG_ON(irqs_disabled());
102 WARN_ON(PAGE_ALIGN(start
) != start
);
104 on_each_cpu(__cpa_flush_range
, NULL
, 1, 1);
110 * We only need to flush on one CPU,
111 * clflush is a MESI-coherent instruction that
112 * will cause all other CPUs to flush the same
115 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
116 pte_t
*pte
= lookup_address(addr
, &level
);
119 * Only flush present addresses:
121 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
122 clflush_cache_range((void *) addr
, PAGE_SIZE
);
126 #define HIGH_MAP_START __START_KERNEL_map
127 #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
131 * Converts a virtual address to a X86-64 highmap address
133 static unsigned long virt_to_highmap(void *address
)
136 return __pa((unsigned long)address
) + HIGH_MAP_START
- phys_base
;
138 return (unsigned long)address
;
143 * Certain areas of memory on x86 require very specific protection flags,
144 * for example the BIOS area or kernel text. Callers don't always get this
145 * right (again, ioremap() on BIOS memory is not uncommon) so this function
146 * checks and fixes these known static required protection bits.
148 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
)
150 pgprot_t forbidden
= __pgprot(0);
153 * The BIOS area between 640k and 1Mb needs to be executable for
154 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
156 if (within(__pa(address
), BIOS_BEGIN
, BIOS_END
))
157 pgprot_val(forbidden
) |= _PAGE_NX
;
160 * The kernel text needs to be executable for obvious reasons
161 * Does not cover __inittext since that is gone later on
163 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
164 pgprot_val(forbidden
) |= _PAGE_NX
;
166 * Do the same for the x86-64 high kernel mapping
168 if (within(address
, virt_to_highmap(_text
), virt_to_highmap(_etext
)))
169 pgprot_val(forbidden
) |= _PAGE_NX
;
171 /* The .rodata section needs to be read-only */
172 if (within(address
, (unsigned long)__start_rodata
,
173 (unsigned long)__end_rodata
))
174 pgprot_val(forbidden
) |= _PAGE_RW
;
176 * Do the same for the x86-64 high kernel mapping
178 if (within(address
, virt_to_highmap(__start_rodata
),
179 virt_to_highmap(__end_rodata
)))
180 pgprot_val(forbidden
) |= _PAGE_RW
;
182 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
188 * Lookup the page table entry for a virtual address. Return a pointer
189 * to the entry and the level of the mapping.
191 * Note: We return pud and pmd either when the entry is marked large
192 * or when the present bit is not set. Otherwise we would return a
193 * pointer to a nonexisting mapping.
195 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
197 pgd_t
*pgd
= pgd_offset_k(address
);
201 *level
= PG_LEVEL_NONE
;
206 pud
= pud_offset(pgd
, address
);
210 *level
= PG_LEVEL_1G
;
211 if (pud_large(*pud
) || !pud_present(*pud
))
214 pmd
= pmd_offset(pud
, address
);
218 *level
= PG_LEVEL_2M
;
219 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
222 *level
= PG_LEVEL_4K
;
224 return pte_offset_kernel(pmd
, address
);
228 * Set the new pmd in all the pgds we know about:
230 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
233 set_pte_atomic(kpte
, pte
);
235 if (!SHARED_KERNEL_PMD
) {
238 list_for_each_entry(page
, &pgd_list
, lru
) {
243 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
244 pud
= pud_offset(pgd
, address
);
245 pmd
= pmd_offset(pud
, address
);
246 set_pte_atomic((pte_t
*)pmd
, pte
);
253 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
254 struct cpa_data
*cpa
)
256 unsigned long nextpage_addr
, numpages
, pmask
, psize
, flags
, addr
;
257 pte_t new_pte
, old_pte
, *tmp
;
258 pgprot_t old_prot
, new_prot
;
262 spin_lock_irqsave(&pgd_lock
, flags
);
264 * Check for races, another CPU might have split this page
267 tmp
= lookup_address(address
, &level
);
273 psize
= PMD_PAGE_SIZE
;
274 pmask
= PMD_PAGE_MASK
;
278 psize
= PUD_PAGE_SIZE
;
279 pmask
= PUD_PAGE_MASK
;
288 * Calculate the number of pages, which fit into this large
289 * page starting at address:
291 nextpage_addr
= (address
+ psize
) & pmask
;
292 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
293 if (numpages
< cpa
->numpages
)
294 cpa
->numpages
= numpages
;
297 * We are safe now. Check whether the new pgprot is the same:
300 old_prot
= new_prot
= pte_pgprot(old_pte
);
302 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
303 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
304 new_prot
= static_protections(new_prot
, address
);
307 * We need to check the full range, whether
308 * static_protection() requires a different pgprot for one of
309 * the pages in the range we try to preserve:
311 addr
= address
+ PAGE_SIZE
;
312 for (i
= 1; i
< cpa
->numpages
; i
++, addr
+= PAGE_SIZE
) {
313 pgprot_t chk_prot
= static_protections(new_prot
, addr
);
315 if (pgprot_val(chk_prot
) != pgprot_val(new_prot
))
320 * If there are no changes, return. maxpages has been updated
323 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
329 * We need to change the attributes. Check, whether we can
330 * change the large page in one go. We request a split, when
331 * the address is not aligned and the number of pages is
332 * smaller than the number of pages in the large page. Note
333 * that we limited the number of possible pages already to
334 * the number of pages in the large page.
336 if (address
== (nextpage_addr
- psize
) && cpa
->numpages
== numpages
) {
338 * The address is aligned and the number of pages
339 * covers the full page.
341 new_pte
= pfn_pte(pte_pfn(old_pte
), canon_pgprot(new_prot
));
342 __set_pmd_pte(kpte
, address
, new_pte
);
348 spin_unlock_irqrestore(&pgd_lock
, flags
);
353 static LIST_HEAD(page_pool
);
354 static unsigned long pool_size
, pool_pages
, pool_low
;
355 static unsigned long pool_used
, pool_failed
, pool_refill
;
357 static void cpa_fill_pool(void)
360 gfp_t gfp
= GFP_KERNEL
;
362 /* Do not allocate from interrupt context */
363 if (in_irq() || irqs_disabled())
366 * Check unlocked. I does not matter when we have one more
367 * page in the pool. The bit lock avoids recursive pool
370 if (pool_pages
>= pool_size
|| test_and_set_bit_lock(0, &pool_refill
))
373 #ifdef CONFIG_DEBUG_PAGEALLOC
376 * gfp = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
377 * but this fails on !PREEMPT kernels
379 gfp
= GFP_ATOMIC
| __GFP_NORETRY
| __GFP_NOWARN
;
382 while (pool_pages
< pool_size
) {
383 p
= alloc_pages(gfp
, 0);
388 spin_lock_irq(&pgd_lock
);
389 list_add(&p
->lru
, &page_pool
);
391 spin_unlock_irq(&pgd_lock
);
393 clear_bit_unlock(0, &pool_refill
);
396 #define SHIFT_MB (20 - PAGE_SHIFT)
397 #define ROUND_MB_GB ((1 << 10) - 1)
398 #define SHIFT_MB_GB 10
399 #define POOL_PAGES_PER_GB 16
401 void __init
cpa_init(void)
408 * Calculate the number of pool pages:
410 * Convert totalram (nr of pages) to MiB and round to the next
411 * GiB. Shift MiB to Gib and multiply the result by
414 gb
= ((si
.totalram
>> SHIFT_MB
) + ROUND_MB_GB
) >> SHIFT_MB_GB
;
415 pool_size
= POOL_PAGES_PER_GB
* gb
;
416 pool_low
= pool_size
;
420 "CPA: page pool initialized %lu of %lu pages preallocated\n",
421 pool_pages
, pool_size
);
424 static int split_large_page(pte_t
*kpte
, unsigned long address
)
426 unsigned long flags
, pfn
, pfninc
= 1;
427 unsigned int i
, level
;
433 * Get a page from the pool. The pool list is protected by the
434 * pgd_lock, which we have to take anyway for the split
437 spin_lock_irqsave(&pgd_lock
, flags
);
438 if (list_empty(&page_pool
)) {
439 spin_unlock_irqrestore(&pgd_lock
, flags
);
443 base
= list_first_entry(&page_pool
, struct page
, lru
);
444 list_del(&base
->lru
);
447 if (pool_pages
< pool_low
)
448 pool_low
= pool_pages
;
451 * Check for races, another CPU might have split this page
454 tmp
= lookup_address(address
, &level
);
458 pbase
= (pte_t
*)page_address(base
);
460 paravirt_alloc_pt(&init_mm
, page_to_pfn(base
));
462 ref_prot
= pte_pgprot(pte_clrhuge(*kpte
));
465 if (level
== PG_LEVEL_1G
) {
466 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
467 pgprot_val(ref_prot
) |= _PAGE_PSE
;
472 * Get the target pfn from the original entry:
474 pfn
= pte_pfn(*kpte
);
475 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
476 set_pte(&pbase
[i
], pfn_pte(pfn
, ref_prot
));
479 * Install the new, split up pagetable. Important details here:
481 * On Intel the NX bit of all levels must be cleared to make a
482 * page executable. See section 4.13.2 of Intel 64 and IA-32
483 * Architectures Software Developer's Manual).
485 * Mark the entry present. The current mapping might be
486 * set to not present, which we preserved above.
488 ref_prot
= pte_pgprot(pte_mkexec(pte_clrhuge(*kpte
)));
489 pgprot_val(ref_prot
) |= _PAGE_PRESENT
;
490 __set_pmd_pte(kpte
, address
, mk_pte(base
, ref_prot
));
495 * If we dropped out via the lookup_address check under
496 * pgd_lock then stick the page back into the pool:
499 list_add(&base
->lru
, &page_pool
);
503 spin_unlock_irqrestore(&pgd_lock
, flags
);
508 static int __change_page_attr(unsigned long address
, struct cpa_data
*cpa
)
512 struct page
*kpte_page
;
516 kpte
= lookup_address(address
, &level
);
520 kpte_page
= virt_to_page(kpte
);
521 BUG_ON(PageLRU(kpte_page
));
522 BUG_ON(PageCompound(kpte_page
));
524 if (level
== PG_LEVEL_4K
) {
525 pte_t new_pte
, old_pte
= *kpte
;
526 pgprot_t new_prot
= pte_pgprot(old_pte
);
528 if(!pte_val(old_pte
)) {
529 printk(KERN_WARNING
"CPA: called for zero pte. "
530 "vaddr = %lx cpa->vaddr = %lx\n", address
,
536 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
537 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
539 new_prot
= static_protections(new_prot
, address
);
542 * We need to keep the pfn from the existing PTE,
543 * after all we're only going to change it's attributes
544 * not the memory it points to
546 new_pte
= pfn_pte(pte_pfn(old_pte
), canon_pgprot(new_prot
));
549 * Do we really change anything ?
551 if (pte_val(old_pte
) != pte_val(new_pte
)) {
552 set_pte_atomic(kpte
, new_pte
);
560 * Check, whether we can keep the large page intact
561 * and just change the pte:
563 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
565 * When the range fits into the existing large page,
566 * return. cp->numpages and cpa->tlbflush have been updated in
573 * We have to split the large page:
575 err
= split_large_page(kpte
, address
);
585 * change_page_attr_addr - Change page table attributes in linear mapping
586 * @address: Virtual address in linear mapping.
587 * @prot: New page table attribute (PAGE_*)
589 * Change page attributes of a page in the direct mapping. This is a variant
590 * of change_page_attr() that also works on memory holes that do not have
591 * mem_map entry (pfn_valid() is false).
593 * See change_page_attr() documentation for more details.
595 * Modules and drivers should use the set_memory_* APIs instead.
597 static int change_page_attr_addr(struct cpa_data
*cpa
)
600 unsigned long address
= cpa
->vaddr
;
603 unsigned long phys_addr
= __pa(address
);
606 * If we are inside the high mapped kernel range, then we
607 * fixup the low mapping first. __va() returns the virtual
608 * address in the linear mapping:
610 if (within(address
, HIGH_MAP_START
, HIGH_MAP_END
))
611 address
= (unsigned long) __va(phys_addr
);
614 err
= __change_page_attr(address
, cpa
);
620 * If the physical address is inside the kernel map, we need
621 * to touch the high mapped kernel as well:
623 if (within(phys_addr
, 0, KERNEL_TEXT_SIZE
)) {
625 * Calc the high mapping address. See __phys_addr()
626 * for the non obvious details.
628 * Note that NX and other required permissions are
629 * checked in static_protections().
631 address
= phys_addr
+ HIGH_MAP_START
- phys_base
;
634 * Our high aliases are imprecise, because we check
635 * everything between 0 and KERNEL_TEXT_SIZE, so do
636 * not propagate lookup failures back to users:
638 __change_page_attr(address
, cpa
);
644 static int __change_page_attr_set_clr(struct cpa_data
*cpa
)
646 int ret
, numpages
= cpa
->numpages
;
650 * Store the remaining nr of pages for the large page
651 * preservation check.
653 cpa
->numpages
= numpages
;
654 ret
= change_page_attr_addr(cpa
);
659 * Adjust the number of pages with the result of the
660 * CPA operation. Either a large page has been
661 * preserved or a single page update happened.
663 BUG_ON(cpa
->numpages
> numpages
);
664 numpages
-= cpa
->numpages
;
665 cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
670 static inline int cache_attr(pgprot_t attr
)
672 return pgprot_val(attr
) &
673 (_PAGE_PAT
| _PAGE_PAT_LARGE
| _PAGE_PWT
| _PAGE_PCD
);
676 static int change_page_attr_set_clr(unsigned long addr
, int numpages
,
677 pgprot_t mask_set
, pgprot_t mask_clr
)
683 * Check, if we are requested to change a not supported
686 mask_set
= canon_pgprot(mask_set
);
687 mask_clr
= canon_pgprot(mask_clr
);
688 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
))
691 /* Ensure we are PAGE_SIZE aligned */
692 if (addr
& ~PAGE_MASK
) {
695 * People should not be passing in unaligned addresses:
701 cpa
.numpages
= numpages
;
702 cpa
.mask_set
= mask_set
;
703 cpa
.mask_clr
= mask_clr
;
706 ret
= __change_page_attr_set_clr(&cpa
);
709 * Check whether we really changed something:
715 * No need to flush, when we did not set any of the caching
718 cache
= cache_attr(mask_set
);
721 * On success we use clflush, when the CPU supports it to
722 * avoid the wbindv. If the CPU does not support it and in the
723 * error case we fall back to cpa_flush_all (which uses
726 if (!ret
&& cpu_has_clflush
)
727 cpa_flush_range(addr
, numpages
, cache
);
729 cpa_flush_all(cache
);
736 static inline int change_page_attr_set(unsigned long addr
, int numpages
,
739 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0));
742 static inline int change_page_attr_clear(unsigned long addr
, int numpages
,
745 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
);
748 int set_memory_uc(unsigned long addr
, int numpages
)
750 return change_page_attr_set(addr
, numpages
,
751 __pgprot(_PAGE_PCD
| _PAGE_PWT
));
753 EXPORT_SYMBOL(set_memory_uc
);
755 int set_memory_wb(unsigned long addr
, int numpages
)
757 return change_page_attr_clear(addr
, numpages
,
758 __pgprot(_PAGE_PCD
| _PAGE_PWT
));
760 EXPORT_SYMBOL(set_memory_wb
);
762 int set_memory_x(unsigned long addr
, int numpages
)
764 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_NX
));
766 EXPORT_SYMBOL(set_memory_x
);
768 int set_memory_nx(unsigned long addr
, int numpages
)
770 return change_page_attr_set(addr
, numpages
, __pgprot(_PAGE_NX
));
772 EXPORT_SYMBOL(set_memory_nx
);
774 int set_memory_ro(unsigned long addr
, int numpages
)
776 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_RW
));
779 int set_memory_rw(unsigned long addr
, int numpages
)
781 return change_page_attr_set(addr
, numpages
, __pgprot(_PAGE_RW
));
784 int set_memory_np(unsigned long addr
, int numpages
)
786 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_PRESENT
));
789 int set_pages_uc(struct page
*page
, int numpages
)
791 unsigned long addr
= (unsigned long)page_address(page
);
793 return set_memory_uc(addr
, numpages
);
795 EXPORT_SYMBOL(set_pages_uc
);
797 int set_pages_wb(struct page
*page
, int numpages
)
799 unsigned long addr
= (unsigned long)page_address(page
);
801 return set_memory_wb(addr
, numpages
);
803 EXPORT_SYMBOL(set_pages_wb
);
805 int set_pages_x(struct page
*page
, int numpages
)
807 unsigned long addr
= (unsigned long)page_address(page
);
809 return set_memory_x(addr
, numpages
);
811 EXPORT_SYMBOL(set_pages_x
);
813 int set_pages_nx(struct page
*page
, int numpages
)
815 unsigned long addr
= (unsigned long)page_address(page
);
817 return set_memory_nx(addr
, numpages
);
819 EXPORT_SYMBOL(set_pages_nx
);
821 int set_pages_ro(struct page
*page
, int numpages
)
823 unsigned long addr
= (unsigned long)page_address(page
);
825 return set_memory_ro(addr
, numpages
);
828 int set_pages_rw(struct page
*page
, int numpages
)
830 unsigned long addr
= (unsigned long)page_address(page
);
832 return set_memory_rw(addr
, numpages
);
835 #ifdef CONFIG_DEBUG_PAGEALLOC
837 static int __set_pages_p(struct page
*page
, int numpages
)
839 struct cpa_data cpa
= { .vaddr
= (unsigned long) page_address(page
),
840 .numpages
= numpages
,
841 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
842 .mask_clr
= __pgprot(0)};
844 return __change_page_attr_set_clr(&cpa
);
847 static int __set_pages_np(struct page
*page
, int numpages
)
849 struct cpa_data cpa
= { .vaddr
= (unsigned long) page_address(page
),
850 .numpages
= numpages
,
851 .mask_set
= __pgprot(0),
852 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
)};
854 return __change_page_attr_set_clr(&cpa
);
857 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
859 if (PageHighMem(page
))
862 debug_check_no_locks_freed(page_address(page
),
863 numpages
* PAGE_SIZE
);
867 * If page allocator is not up yet then do not call c_p_a():
869 if (!debug_pagealloc_enabled
)
873 * The return value is ignored as the calls cannot fail.
874 * Large pages are kept enabled at boot time, and are
875 * split up quickly with DEBUG_PAGEALLOC. If a splitup
876 * fails here (due to temporary memory shortage) no damage
877 * is done because we just keep the largepage intact up
878 * to the next attempt when it will likely be split up:
881 __set_pages_p(page
, numpages
);
883 __set_pages_np(page
, numpages
);
886 * We should perform an IPI and flush all tlbs,
887 * but that can deadlock->flush only current cpu:
892 * Try to refill the page pool here. We can do this only after
900 * The testcases use internal knowledge of the implementation that shouldn't
901 * be exposed to the rest of the kernel. Include these directly here.
903 #ifdef CONFIG_CPA_DEBUG
904 #include "pageattr-test.c"