Merge branch 'mini2440-dev-unlikely' into mini2440-dev
[linux-2.6/mini2440.git] / arch / x86 / mm / pageattr.c
blobdd38bfbefd1fa1972f47403fa6b35e20663e3590
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
28 * The current flushing context - we pass it instead of 5 arguments:
30 struct cpa_data {
31 unsigned long *vaddr;
32 pgprot_t mask_set;
33 pgprot_t mask_clr;
34 int numpages;
35 int flags;
36 unsigned long pfn;
37 unsigned force_split : 1;
38 int curpage;
39 struct page **pages;
43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45 * entries change the page attribute in parallel to some other cpu
46 * splitting a large page entry along with changing the attribute.
48 static DEFINE_SPINLOCK(cpa_lock);
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57 void update_page_count(int level, unsigned long pages)
59 unsigned long flags;
61 /* Protect against CPA */
62 spin_lock_irqsave(&pgd_lock, flags);
63 direct_pages_count[level] += pages;
64 spin_unlock_irqrestore(&pgd_lock, flags);
67 static void split_page_count(int level)
69 direct_pages_count[level]--;
70 direct_pages_count[level - 1] += PTRS_PER_PTE;
73 void arch_report_meminfo(struct seq_file *m)
75 seq_printf(m, "DirectMap4k: %8lu kB\n",
76 direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m, "DirectMap2M: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 seq_printf(m, "DirectMap4M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85 if (direct_gbpages)
86 seq_printf(m, "DirectMap1G: %8lu kB\n",
87 direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
94 #ifdef CONFIG_X86_64
96 static inline unsigned long highmap_start_pfn(void)
98 return __pa(_text) >> PAGE_SHIFT;
101 static inline unsigned long highmap_end_pfn(void)
103 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
106 #endif
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
117 return addr >= start && addr < end;
121 * Flushing functions
125 * clflush_cache_range - flush a cache range with clflush
126 * @addr: virtual start address
127 * @size: number of bytes to flush
129 * clflush is an unordered instruction which needs fencing with mfence
130 * to avoid ordering issues.
132 void clflush_cache_range(void *vaddr, unsigned int size)
134 void *vend = vaddr + size - 1;
136 mb();
138 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139 clflush(vaddr);
141 * Flush any possible final partial cacheline:
143 clflush(vend);
145 mb();
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
149 static void __cpa_flush_all(void *arg)
151 unsigned long cache = (unsigned long)arg;
154 * Flush all to work around Errata in early athlons regarding
155 * large page flushing.
157 __flush_tlb_all();
159 if (cache && boot_cpu_data.x86 >= 4)
160 wbinvd();
163 static void cpa_flush_all(unsigned long cache)
165 BUG_ON(irqs_disabled());
167 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
170 static void __cpa_flush_range(void *arg)
173 * We could optimize that further and do individual per page
174 * tlb invalidates for a low number of pages. Caveat: we must
175 * flush the high aliases on 64bit as well.
177 __flush_tlb_all();
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
182 unsigned int i, level;
183 unsigned long addr;
185 BUG_ON(irqs_disabled());
186 WARN_ON(PAGE_ALIGN(start) != start);
188 on_each_cpu(__cpa_flush_range, NULL, 1);
190 if (!cache)
191 return;
194 * We only need to flush on one CPU,
195 * clflush is a MESI-coherent instruction that
196 * will cause all other CPUs to flush the same
197 * cachelines:
199 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200 pte_t *pte = lookup_address(addr, &level);
203 * Only flush present addresses:
205 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206 clflush_cache_range((void *) addr, PAGE_SIZE);
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211 int in_flags, struct page **pages)
213 unsigned int i, level;
214 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
216 BUG_ON(irqs_disabled());
218 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
220 if (!cache || do_wbinvd)
221 return;
224 * We only need to flush on one CPU,
225 * clflush is a MESI-coherent instruction that
226 * will cause all other CPUs to flush the same
227 * cachelines:
229 for (i = 0; i < numpages; i++) {
230 unsigned long addr;
231 pte_t *pte;
233 if (in_flags & CPA_PAGES_ARRAY)
234 addr = (unsigned long)page_address(pages[i]);
235 else
236 addr = start[i];
238 pte = lookup_address(addr, &level);
241 * Only flush present addresses:
243 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244 clflush_cache_range((void *)addr, PAGE_SIZE);
249 * Certain areas of memory on x86 require very specific protection flags,
250 * for example the BIOS area or kernel text. Callers don't always get this
251 * right (again, ioremap() on BIOS memory is not uncommon) so this function
252 * checks and fixes these known static required protection bits.
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255 unsigned long pfn)
257 pgprot_t forbidden = __pgprot(0);
260 * The BIOS area between 640k and 1Mb needs to be executable for
261 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
263 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264 pgprot_val(forbidden) |= _PAGE_NX;
267 * The kernel text needs to be executable for obvious reasons
268 * Does not cover __inittext since that is gone later on. On
269 * 64bit we do not enforce !NX on the low mapping
271 if (within(address, (unsigned long)_text, (unsigned long)_etext))
272 pgprot_val(forbidden) |= _PAGE_NX;
275 * The .rodata section needs to be read-only. Using the pfn
276 * catches all aliases.
278 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
279 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
280 pgprot_val(forbidden) |= _PAGE_RW;
282 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
284 return prot;
288 * Lookup the page table entry for a virtual address. Return a pointer
289 * to the entry and the level of the mapping.
291 * Note: We return pud and pmd either when the entry is marked large
292 * or when the present bit is not set. Otherwise we would return a
293 * pointer to a nonexisting mapping.
295 pte_t *lookup_address(unsigned long address, unsigned int *level)
297 pgd_t *pgd = pgd_offset_k(address);
298 pud_t *pud;
299 pmd_t *pmd;
301 *level = PG_LEVEL_NONE;
303 if (pgd_none(*pgd))
304 return NULL;
306 pud = pud_offset(pgd, address);
307 if (pud_none(*pud))
308 return NULL;
310 *level = PG_LEVEL_1G;
311 if (pud_large(*pud) || !pud_present(*pud))
312 return (pte_t *)pud;
314 pmd = pmd_offset(pud, address);
315 if (pmd_none(*pmd))
316 return NULL;
318 *level = PG_LEVEL_2M;
319 if (pmd_large(*pmd) || !pmd_present(*pmd))
320 return (pte_t *)pmd;
322 *level = PG_LEVEL_4K;
324 return pte_offset_kernel(pmd, address);
326 EXPORT_SYMBOL_GPL(lookup_address);
329 * Set the new pmd in all the pgds we know about:
331 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
333 /* change init_mm */
334 set_pte_atomic(kpte, pte);
335 #ifdef CONFIG_X86_32
336 if (!SHARED_KERNEL_PMD) {
337 struct page *page;
339 list_for_each_entry(page, &pgd_list, lru) {
340 pgd_t *pgd;
341 pud_t *pud;
342 pmd_t *pmd;
344 pgd = (pgd_t *)page_address(page) + pgd_index(address);
345 pud = pud_offset(pgd, address);
346 pmd = pmd_offset(pud, address);
347 set_pte_atomic((pte_t *)pmd, pte);
350 #endif
353 static int
354 try_preserve_large_page(pte_t *kpte, unsigned long address,
355 struct cpa_data *cpa)
357 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
358 pte_t new_pte, old_pte, *tmp;
359 pgprot_t old_prot, new_prot;
360 int i, do_split = 1;
361 unsigned int level;
363 if (cpa->force_split)
364 return 1;
366 spin_lock_irqsave(&pgd_lock, flags);
368 * Check for races, another CPU might have split this page
369 * up already:
371 tmp = lookup_address(address, &level);
372 if (tmp != kpte)
373 goto out_unlock;
375 switch (level) {
376 case PG_LEVEL_2M:
377 psize = PMD_PAGE_SIZE;
378 pmask = PMD_PAGE_MASK;
379 break;
380 #ifdef CONFIG_X86_64
381 case PG_LEVEL_1G:
382 psize = PUD_PAGE_SIZE;
383 pmask = PUD_PAGE_MASK;
384 break;
385 #endif
386 default:
387 do_split = -EINVAL;
388 goto out_unlock;
392 * Calculate the number of pages, which fit into this large
393 * page starting at address:
395 nextpage_addr = (address + psize) & pmask;
396 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
397 if (numpages < cpa->numpages)
398 cpa->numpages = numpages;
401 * We are safe now. Check whether the new pgprot is the same:
403 old_pte = *kpte;
404 old_prot = new_prot = pte_pgprot(old_pte);
406 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
407 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
410 * old_pte points to the large page base address. So we need
411 * to add the offset of the virtual address:
413 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
414 cpa->pfn = pfn;
416 new_prot = static_protections(new_prot, address, pfn);
419 * We need to check the full range, whether
420 * static_protection() requires a different pgprot for one of
421 * the pages in the range we try to preserve:
423 addr = address + PAGE_SIZE;
424 pfn++;
425 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
426 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
428 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
429 goto out_unlock;
433 * If there are no changes, return. maxpages has been updated
434 * above:
436 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
437 do_split = 0;
438 goto out_unlock;
442 * We need to change the attributes. Check, whether we can
443 * change the large page in one go. We request a split, when
444 * the address is not aligned and the number of pages is
445 * smaller than the number of pages in the large page. Note
446 * that we limited the number of possible pages already to
447 * the number of pages in the large page.
449 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
451 * The address is aligned and the number of pages
452 * covers the full page.
454 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
455 __set_pmd_pte(kpte, address, new_pte);
456 cpa->flags |= CPA_FLUSHTLB;
457 do_split = 0;
460 out_unlock:
461 spin_unlock_irqrestore(&pgd_lock, flags);
463 return do_split;
466 static int split_large_page(pte_t *kpte, unsigned long address)
468 unsigned long flags, pfn, pfninc = 1;
469 unsigned int i, level;
470 pte_t *pbase, *tmp;
471 pgprot_t ref_prot;
472 struct page *base;
474 if (!debug_pagealloc)
475 spin_unlock(&cpa_lock);
476 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
477 if (!debug_pagealloc)
478 spin_lock(&cpa_lock);
479 if (!base)
480 return -ENOMEM;
482 spin_lock_irqsave(&pgd_lock, flags);
484 * Check for races, another CPU might have split this page
485 * up for us already:
487 tmp = lookup_address(address, &level);
488 if (tmp != kpte)
489 goto out_unlock;
491 pbase = (pte_t *)page_address(base);
492 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
493 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
495 * If we ever want to utilize the PAT bit, we need to
496 * update this function to make sure it's converted from
497 * bit 12 to bit 7 when we cross from the 2MB level to
498 * the 4K level:
500 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
502 #ifdef CONFIG_X86_64
503 if (level == PG_LEVEL_1G) {
504 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
505 pgprot_val(ref_prot) |= _PAGE_PSE;
507 #endif
510 * Get the target pfn from the original entry:
512 pfn = pte_pfn(*kpte);
513 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
514 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
516 if (address >= (unsigned long)__va(0) &&
517 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
518 split_page_count(level);
520 #ifdef CONFIG_X86_64
521 if (address >= (unsigned long)__va(1UL<<32) &&
522 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
523 split_page_count(level);
524 #endif
527 * Install the new, split up pagetable.
529 * We use the standard kernel pagetable protections for the new
530 * pagetable protections, the actual ptes set above control the
531 * primary protection behavior:
533 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
536 * Intel Atom errata AAH41 workaround.
538 * The real fix should be in hw or in a microcode update, but
539 * we also probabilistically try to reduce the window of having
540 * a large TLB mixed with 4K TLBs while instruction fetches are
541 * going on.
543 __flush_tlb_all();
545 base = NULL;
547 out_unlock:
549 * If we dropped out via the lookup_address check under
550 * pgd_lock then stick the page back into the pool:
552 if (base)
553 __free_page(base);
554 spin_unlock_irqrestore(&pgd_lock, flags);
556 return 0;
559 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
560 int primary)
563 * Ignore all non primary paths.
565 if (!primary)
566 return 0;
569 * Ignore the NULL PTE for kernel identity mapping, as it is expected
570 * to have holes.
571 * Also set numpages to '1' indicating that we processed cpa req for
572 * one virtual address page and its pfn. TBD: numpages can be set based
573 * on the initial value and the level returned by lookup_address().
575 if (within(vaddr, PAGE_OFFSET,
576 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
577 cpa->numpages = 1;
578 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
579 return 0;
580 } else {
581 WARN(1, KERN_WARNING "CPA: called for zero pte. "
582 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
583 *cpa->vaddr);
585 return -EFAULT;
589 static int __change_page_attr(struct cpa_data *cpa, int primary)
591 unsigned long address;
592 int do_split, err;
593 unsigned int level;
594 pte_t *kpte, old_pte;
596 if (cpa->flags & CPA_PAGES_ARRAY) {
597 struct page *page = cpa->pages[cpa->curpage];
598 if (unlikely(PageHighMem(page)))
599 return 0;
600 address = (unsigned long)page_address(page);
601 } else if (cpa->flags & CPA_ARRAY)
602 address = cpa->vaddr[cpa->curpage];
603 else
604 address = *cpa->vaddr;
605 repeat:
606 kpte = lookup_address(address, &level);
607 if (!kpte)
608 return __cpa_process_fault(cpa, address, primary);
610 old_pte = *kpte;
611 if (!pte_val(old_pte))
612 return __cpa_process_fault(cpa, address, primary);
614 if (level == PG_LEVEL_4K) {
615 pte_t new_pte;
616 pgprot_t new_prot = pte_pgprot(old_pte);
617 unsigned long pfn = pte_pfn(old_pte);
619 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
620 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
622 new_prot = static_protections(new_prot, address, pfn);
625 * We need to keep the pfn from the existing PTE,
626 * after all we're only going to change it's attributes
627 * not the memory it points to
629 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
630 cpa->pfn = pfn;
632 * Do we really change anything ?
634 if (pte_val(old_pte) != pte_val(new_pte)) {
635 set_pte_atomic(kpte, new_pte);
636 cpa->flags |= CPA_FLUSHTLB;
638 cpa->numpages = 1;
639 return 0;
643 * Check, whether we can keep the large page intact
644 * and just change the pte:
646 do_split = try_preserve_large_page(kpte, address, cpa);
648 * When the range fits into the existing large page,
649 * return. cp->numpages and cpa->tlbflush have been updated in
650 * try_large_page:
652 if (do_split <= 0)
653 return do_split;
656 * We have to split the large page:
658 err = split_large_page(kpte, address);
659 if (!err) {
661 * Do a global flush tlb after splitting the large page
662 * and before we do the actual change page attribute in the PTE.
664 * With out this, we violate the TLB application note, that says
665 * "The TLBs may contain both ordinary and large-page
666 * translations for a 4-KByte range of linear addresses. This
667 * may occur if software modifies the paging structures so that
668 * the page size used for the address range changes. If the two
669 * translations differ with respect to page frame or attributes
670 * (e.g., permissions), processor behavior is undefined and may
671 * be implementation-specific."
673 * We do this global tlb flush inside the cpa_lock, so that we
674 * don't allow any other cpu, with stale tlb entries change the
675 * page attribute in parallel, that also falls into the
676 * just split large page entry.
678 flush_tlb_all();
679 goto repeat;
682 return err;
685 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
687 static int cpa_process_alias(struct cpa_data *cpa)
689 struct cpa_data alias_cpa;
690 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
691 unsigned long vaddr;
692 int ret;
694 if (cpa->pfn >= max_pfn_mapped)
695 return 0;
697 #ifdef CONFIG_X86_64
698 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
699 return 0;
700 #endif
702 * No need to redo, when the primary call touched the direct
703 * mapping already:
705 if (cpa->flags & CPA_PAGES_ARRAY) {
706 struct page *page = cpa->pages[cpa->curpage];
707 if (unlikely(PageHighMem(page)))
708 return 0;
709 vaddr = (unsigned long)page_address(page);
710 } else if (cpa->flags & CPA_ARRAY)
711 vaddr = cpa->vaddr[cpa->curpage];
712 else
713 vaddr = *cpa->vaddr;
715 if (!(within(vaddr, PAGE_OFFSET,
716 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
718 alias_cpa = *cpa;
719 alias_cpa.vaddr = &laddr;
720 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
722 ret = __change_page_attr_set_clr(&alias_cpa, 0);
723 if (ret)
724 return ret;
727 #ifdef CONFIG_X86_64
729 * If the primary call didn't touch the high mapping already
730 * and the physical address is inside the kernel map, we need
731 * to touch the high mapped kernel as well:
733 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
734 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
735 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
736 __START_KERNEL_map - phys_base;
737 alias_cpa = *cpa;
738 alias_cpa.vaddr = &temp_cpa_vaddr;
739 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
742 * The high mapping range is imprecise, so ignore the
743 * return value.
745 __change_page_attr_set_clr(&alias_cpa, 0);
747 #endif
749 return 0;
752 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
754 int ret, numpages = cpa->numpages;
756 while (numpages) {
758 * Store the remaining nr of pages for the large page
759 * preservation check.
761 cpa->numpages = numpages;
762 /* for array changes, we can't use large page */
763 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
764 cpa->numpages = 1;
766 if (!debug_pagealloc)
767 spin_lock(&cpa_lock);
768 ret = __change_page_attr(cpa, checkalias);
769 if (!debug_pagealloc)
770 spin_unlock(&cpa_lock);
771 if (ret)
772 return ret;
774 if (checkalias) {
775 ret = cpa_process_alias(cpa);
776 if (ret)
777 return ret;
781 * Adjust the number of pages with the result of the
782 * CPA operation. Either a large page has been
783 * preserved or a single page update happened.
785 BUG_ON(cpa->numpages > numpages);
786 numpages -= cpa->numpages;
787 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
788 cpa->curpage++;
789 else
790 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
793 return 0;
796 static inline int cache_attr(pgprot_t attr)
798 return pgprot_val(attr) &
799 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
802 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
803 pgprot_t mask_set, pgprot_t mask_clr,
804 int force_split, int in_flag,
805 struct page **pages)
807 struct cpa_data cpa;
808 int ret, cache, checkalias;
809 unsigned long baddr = 0;
812 * Check, if we are requested to change a not supported
813 * feature:
815 mask_set = canon_pgprot(mask_set);
816 mask_clr = canon_pgprot(mask_clr);
817 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
818 return 0;
820 /* Ensure we are PAGE_SIZE aligned */
821 if (in_flag & CPA_ARRAY) {
822 int i;
823 for (i = 0; i < numpages; i++) {
824 if (addr[i] & ~PAGE_MASK) {
825 addr[i] &= PAGE_MASK;
826 WARN_ON_ONCE(1);
829 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
831 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
832 * No need to cehck in that case
834 if (*addr & ~PAGE_MASK) {
835 *addr &= PAGE_MASK;
837 * People should not be passing in unaligned addresses:
839 WARN_ON_ONCE(1);
842 * Save address for cache flush. *addr is modified in the call
843 * to __change_page_attr_set_clr() below.
845 baddr = *addr;
848 /* Must avoid aliasing mappings in the highmem code */
849 kmap_flush_unused();
851 vm_unmap_aliases();
853 cpa.vaddr = addr;
854 cpa.pages = pages;
855 cpa.numpages = numpages;
856 cpa.mask_set = mask_set;
857 cpa.mask_clr = mask_clr;
858 cpa.flags = 0;
859 cpa.curpage = 0;
860 cpa.force_split = force_split;
862 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
863 cpa.flags |= in_flag;
865 /* No alias checking for _NX bit modifications */
866 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
868 ret = __change_page_attr_set_clr(&cpa, checkalias);
871 * Check whether we really changed something:
873 if (!(cpa.flags & CPA_FLUSHTLB))
874 goto out;
877 * No need to flush, when we did not set any of the caching
878 * attributes:
880 cache = cache_attr(mask_set);
883 * On success we use clflush, when the CPU supports it to
884 * avoid the wbindv. If the CPU does not support it and in the
885 * error case we fall back to cpa_flush_all (which uses
886 * wbindv):
888 if (!ret && cpu_has_clflush) {
889 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
890 cpa_flush_array(addr, numpages, cache,
891 cpa.flags, pages);
892 } else
893 cpa_flush_range(baddr, numpages, cache);
894 } else
895 cpa_flush_all(cache);
897 out:
898 return ret;
901 static inline int change_page_attr_set(unsigned long *addr, int numpages,
902 pgprot_t mask, int array)
904 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
905 (array ? CPA_ARRAY : 0), NULL);
908 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
909 pgprot_t mask, int array)
911 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
912 (array ? CPA_ARRAY : 0), NULL);
915 static inline int cpa_set_pages_array(struct page **pages, int numpages,
916 pgprot_t mask)
918 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
919 CPA_PAGES_ARRAY, pages);
922 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
923 pgprot_t mask)
925 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
926 CPA_PAGES_ARRAY, pages);
929 int _set_memory_uc(unsigned long addr, int numpages)
932 * for now UC MINUS. see comments in ioremap_nocache()
934 return change_page_attr_set(&addr, numpages,
935 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
938 int set_memory_uc(unsigned long addr, int numpages)
940 int ret;
943 * for now UC MINUS. see comments in ioremap_nocache()
945 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
946 _PAGE_CACHE_UC_MINUS, NULL);
947 if (ret)
948 goto out_err;
950 ret = _set_memory_uc(addr, numpages);
951 if (ret)
952 goto out_free;
954 return 0;
956 out_free:
957 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
958 out_err:
959 return ret;
961 EXPORT_SYMBOL(set_memory_uc);
963 int set_memory_array_uc(unsigned long *addr, int addrinarray)
965 int i, j;
966 int ret;
969 * for now UC MINUS. see comments in ioremap_nocache()
971 for (i = 0; i < addrinarray; i++) {
972 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
973 _PAGE_CACHE_UC_MINUS, NULL);
974 if (ret)
975 goto out_free;
978 ret = change_page_attr_set(addr, addrinarray,
979 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
980 if (ret)
981 goto out_free;
983 return 0;
985 out_free:
986 for (j = 0; j < i; j++)
987 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
989 return ret;
991 EXPORT_SYMBOL(set_memory_array_uc);
993 int _set_memory_wc(unsigned long addr, int numpages)
995 int ret;
996 unsigned long addr_copy = addr;
998 ret = change_page_attr_set(&addr, numpages,
999 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1000 if (!ret) {
1001 ret = change_page_attr_set_clr(&addr_copy, numpages,
1002 __pgprot(_PAGE_CACHE_WC),
1003 __pgprot(_PAGE_CACHE_MASK),
1004 0, 0, NULL);
1006 return ret;
1009 int set_memory_wc(unsigned long addr, int numpages)
1011 int ret;
1013 if (!pat_enabled)
1014 return set_memory_uc(addr, numpages);
1016 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1017 _PAGE_CACHE_WC, NULL);
1018 if (ret)
1019 goto out_err;
1021 ret = _set_memory_wc(addr, numpages);
1022 if (ret)
1023 goto out_free;
1025 return 0;
1027 out_free:
1028 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1029 out_err:
1030 return ret;
1032 EXPORT_SYMBOL(set_memory_wc);
1034 int _set_memory_wb(unsigned long addr, int numpages)
1036 return change_page_attr_clear(&addr, numpages,
1037 __pgprot(_PAGE_CACHE_MASK), 0);
1040 int set_memory_wb(unsigned long addr, int numpages)
1042 int ret;
1044 ret = _set_memory_wb(addr, numpages);
1045 if (ret)
1046 return ret;
1048 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1049 return 0;
1051 EXPORT_SYMBOL(set_memory_wb);
1053 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1055 int i;
1056 int ret;
1058 ret = change_page_attr_clear(addr, addrinarray,
1059 __pgprot(_PAGE_CACHE_MASK), 1);
1060 if (ret)
1061 return ret;
1063 for (i = 0; i < addrinarray; i++)
1064 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1066 return 0;
1068 EXPORT_SYMBOL(set_memory_array_wb);
1070 int set_memory_x(unsigned long addr, int numpages)
1072 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1074 EXPORT_SYMBOL(set_memory_x);
1076 int set_memory_nx(unsigned long addr, int numpages)
1078 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1080 EXPORT_SYMBOL(set_memory_nx);
1082 int set_memory_ro(unsigned long addr, int numpages)
1084 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1086 EXPORT_SYMBOL_GPL(set_memory_ro);
1088 int set_memory_rw(unsigned long addr, int numpages)
1090 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1092 EXPORT_SYMBOL_GPL(set_memory_rw);
1094 int set_memory_np(unsigned long addr, int numpages)
1096 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1099 int set_memory_4k(unsigned long addr, int numpages)
1101 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1102 __pgprot(0), 1, 0, NULL);
1105 int set_pages_uc(struct page *page, int numpages)
1107 unsigned long addr = (unsigned long)page_address(page);
1109 return set_memory_uc(addr, numpages);
1111 EXPORT_SYMBOL(set_pages_uc);
1113 int set_pages_array_uc(struct page **pages, int addrinarray)
1115 unsigned long start;
1116 unsigned long end;
1117 int i;
1118 int free_idx;
1120 for (i = 0; i < addrinarray; i++) {
1121 if (PageHighMem(pages[i]))
1122 continue;
1123 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1124 end = start + PAGE_SIZE;
1125 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1126 goto err_out;
1129 if (cpa_set_pages_array(pages, addrinarray,
1130 __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1131 return 0; /* Success */
1133 err_out:
1134 free_idx = i;
1135 for (i = 0; i < free_idx; i++) {
1136 if (PageHighMem(pages[i]))
1137 continue;
1138 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1139 end = start + PAGE_SIZE;
1140 free_memtype(start, end);
1142 return -EINVAL;
1144 EXPORT_SYMBOL(set_pages_array_uc);
1146 int set_pages_wb(struct page *page, int numpages)
1148 unsigned long addr = (unsigned long)page_address(page);
1150 return set_memory_wb(addr, numpages);
1152 EXPORT_SYMBOL(set_pages_wb);
1154 int set_pages_array_wb(struct page **pages, int addrinarray)
1156 int retval;
1157 unsigned long start;
1158 unsigned long end;
1159 int i;
1161 retval = cpa_clear_pages_array(pages, addrinarray,
1162 __pgprot(_PAGE_CACHE_MASK));
1163 if (retval)
1164 return retval;
1166 for (i = 0; i < addrinarray; i++) {
1167 if (PageHighMem(pages[i]))
1168 continue;
1169 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1170 end = start + PAGE_SIZE;
1171 free_memtype(start, end);
1174 return 0;
1176 EXPORT_SYMBOL(set_pages_array_wb);
1178 int set_pages_x(struct page *page, int numpages)
1180 unsigned long addr = (unsigned long)page_address(page);
1182 return set_memory_x(addr, numpages);
1184 EXPORT_SYMBOL(set_pages_x);
1186 int set_pages_nx(struct page *page, int numpages)
1188 unsigned long addr = (unsigned long)page_address(page);
1190 return set_memory_nx(addr, numpages);
1192 EXPORT_SYMBOL(set_pages_nx);
1194 int set_pages_ro(struct page *page, int numpages)
1196 unsigned long addr = (unsigned long)page_address(page);
1198 return set_memory_ro(addr, numpages);
1201 int set_pages_rw(struct page *page, int numpages)
1203 unsigned long addr = (unsigned long)page_address(page);
1205 return set_memory_rw(addr, numpages);
1208 #ifdef CONFIG_DEBUG_PAGEALLOC
1210 static int __set_pages_p(struct page *page, int numpages)
1212 unsigned long tempaddr = (unsigned long) page_address(page);
1213 struct cpa_data cpa = { .vaddr = &tempaddr,
1214 .numpages = numpages,
1215 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1216 .mask_clr = __pgprot(0),
1217 .flags = 0};
1220 * No alias checking needed for setting present flag. otherwise,
1221 * we may need to break large pages for 64-bit kernel text
1222 * mappings (this adds to complexity if we want to do this from
1223 * atomic context especially). Let's keep it simple!
1225 return __change_page_attr_set_clr(&cpa, 0);
1228 static int __set_pages_np(struct page *page, int numpages)
1230 unsigned long tempaddr = (unsigned long) page_address(page);
1231 struct cpa_data cpa = { .vaddr = &tempaddr,
1232 .numpages = numpages,
1233 .mask_set = __pgprot(0),
1234 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1235 .flags = 0};
1238 * No alias checking needed for setting not present flag. otherwise,
1239 * we may need to break large pages for 64-bit kernel text
1240 * mappings (this adds to complexity if we want to do this from
1241 * atomic context especially). Let's keep it simple!
1243 return __change_page_attr_set_clr(&cpa, 0);
1246 void kernel_map_pages(struct page *page, int numpages, int enable)
1248 if (PageHighMem(page))
1249 return;
1250 if (!enable) {
1251 debug_check_no_locks_freed(page_address(page),
1252 numpages * PAGE_SIZE);
1256 * If page allocator is not up yet then do not call c_p_a():
1258 if (!debug_pagealloc_enabled)
1259 return;
1262 * The return value is ignored as the calls cannot fail.
1263 * Large pages for identity mappings are not used at boot time
1264 * and hence no memory allocations during large page split.
1266 if (enable)
1267 __set_pages_p(page, numpages);
1268 else
1269 __set_pages_np(page, numpages);
1272 * We should perform an IPI and flush all tlbs,
1273 * but that can deadlock->flush only current cpu:
1275 __flush_tlb_all();
1278 #ifdef CONFIG_HIBERNATION
1280 bool kernel_page_present(struct page *page)
1282 unsigned int level;
1283 pte_t *pte;
1285 if (PageHighMem(page))
1286 return false;
1288 pte = lookup_address((unsigned long)page_address(page), &level);
1289 return (pte_val(*pte) & _PAGE_PRESENT);
1292 #endif /* CONFIG_HIBERNATION */
1294 #endif /* CONFIG_DEBUG_PAGEALLOC */
1297 * The testcases use internal knowledge of the implementation that shouldn't
1298 * be exposed to the rest of the kernel. Include these directly here.
1300 #ifdef CONFIG_CPA_DEBUG
1301 #include "pageattr-test.c"
1302 #endif