Use a format for linux_banner
[linux-2.6/mini2440.git] / drivers / char / tty_io.c
blob66b99a2049e373cacca62d54d1d689daed2417e2
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
126 EXPORT_SYMBOL(tty_std_termios);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 * alloc_tty_struct - allocate a tty object
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
164 * Locking: none
167 struct tty_struct *alloc_tty_struct(void)
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
176 * Free the write buffers, tty queue and tty memory itself.
178 * Locking: none. Must be called after tty is definitely unused
181 void free_tty_struct(struct tty_struct *tty)
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
198 * Locking: none
201 char *tty_name(struct tty_struct *tty, char *buf)
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
210 EXPORT_SYMBOL(tty_name);
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
228 #endif
229 return 0;
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
253 #endif
254 return 0;
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
265 * Locking: caller must hold tty_mutex
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
270 struct tty_driver *p;
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
279 return NULL;
282 #ifdef CONFIG_CONSOLE_POLL
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str;
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 if (*str == ',')
315 str++;
316 if (*str == '\0')
317 str = NULL;
319 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
321 res = tty_driver_kref_get(p);
322 *line = tty_line;
323 break;
326 mutex_unlock(&tty_mutex);
328 return res;
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
334 * tty_check_change - check for POSIX terminal changes
335 * @tty: tty to check
337 * If we try to write to, or set the state of, a terminal and we're
338 * not in the foreground, send a SIGTTOU. If the signal is blocked or
339 * ignored, go ahead and perform the operation. (POSIX 7.2)
341 * Locking: ctrl_lock
344 int tty_check_change(struct tty_struct *tty)
346 unsigned long flags;
347 int ret = 0;
349 if (current->signal->tty != tty)
350 return 0;
352 spin_lock_irqsave(&tty->ctrl_lock, flags);
354 if (!tty->pgrp) {
355 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356 goto out_unlock;
358 if (task_pgrp(current) == tty->pgrp)
359 goto out_unlock;
360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361 if (is_ignored(SIGTTOU))
362 goto out;
363 if (is_current_pgrp_orphaned()) {
364 ret = -EIO;
365 goto out;
367 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368 set_thread_flag(TIF_SIGPENDING);
369 ret = -ERESTARTSYS;
370 out:
371 return ret;
372 out_unlock:
373 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374 return ret;
377 EXPORT_SYMBOL(tty_check_change);
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
382 return 0;
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *ppos)
388 return -EIO;
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398 unsigned long arg)
400 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
403 static long hung_up_tty_compat_ioctl(struct file *file,
404 unsigned int cmd, unsigned long arg)
406 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
409 static const struct file_operations tty_fops = {
410 .llseek = no_llseek,
411 .read = tty_read,
412 .write = tty_write,
413 .poll = tty_poll,
414 .unlocked_ioctl = tty_ioctl,
415 .compat_ioctl = tty_compat_ioctl,
416 .open = tty_open,
417 .release = tty_release,
418 .fasync = tty_fasync,
421 static const struct file_operations console_fops = {
422 .llseek = no_llseek,
423 .read = tty_read,
424 .write = redirected_tty_write,
425 .poll = tty_poll,
426 .unlocked_ioctl = tty_ioctl,
427 .compat_ioctl = tty_compat_ioctl,
428 .open = tty_open,
429 .release = tty_release,
430 .fasync = tty_fasync,
433 static const struct file_operations hung_up_tty_fops = {
434 .llseek = no_llseek,
435 .read = hung_up_tty_read,
436 .write = hung_up_tty_write,
437 .poll = hung_up_tty_poll,
438 .unlocked_ioctl = hung_up_tty_ioctl,
439 .compat_ioctl = hung_up_tty_compat_ioctl,
440 .release = tty_release,
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
447 * tty_wakeup - request more data
448 * @tty: terminal
450 * Internal and external helper for wakeups of tty. This function
451 * informs the line discipline if present that the driver is ready
452 * to receive more output data.
455 void tty_wakeup(struct tty_struct *tty)
457 struct tty_ldisc *ld;
459 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460 ld = tty_ldisc_ref(tty);
461 if (ld) {
462 if (ld->ops->write_wakeup)
463 ld->ops->write_wakeup(tty);
464 tty_ldisc_deref(ld);
467 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
470 EXPORT_SYMBOL_GPL(tty_wakeup);
473 * tty_ldisc_flush - flush line discipline queue
474 * @tty: tty
476 * Flush the line discipline queue (if any) for this tty. If there
477 * is no line discipline active this is a no-op.
480 void tty_ldisc_flush(struct tty_struct *tty)
482 struct tty_ldisc *ld = tty_ldisc_ref(tty);
483 if (ld) {
484 if (ld->ops->flush_buffer)
485 ld->ops->flush_buffer(tty);
486 tty_ldisc_deref(ld);
488 tty_buffer_flush(tty);
491 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
494 * tty_reset_termios - reset terminal state
495 * @tty: tty to reset
497 * Restore a terminal to the driver default state
500 static void tty_reset_termios(struct tty_struct *tty)
502 mutex_lock(&tty->termios_mutex);
503 *tty->termios = tty->driver->init_termios;
504 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
505 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
506 mutex_unlock(&tty->termios_mutex);
510 * do_tty_hangup - actual handler for hangup events
511 * @work: tty device
513 * This can be called by the "eventd" kernel thread. That is process
514 * synchronous but doesn't hold any locks, so we need to make sure we
515 * have the appropriate locks for what we're doing.
517 * The hangup event clears any pending redirections onto the hung up
518 * device. It ensures future writes will error and it does the needed
519 * line discipline hangup and signal delivery. The tty object itself
520 * remains intact.
522 * Locking:
523 * BKL
524 * redirect lock for undoing redirection
525 * file list lock for manipulating list of ttys
526 * tty_ldisc_lock from called functions
527 * termios_mutex resetting termios data
528 * tasklist_lock to walk task list for hangup event
529 * ->siglock to protect ->signal/->sighand
531 static void do_tty_hangup(struct work_struct *work)
533 struct tty_struct *tty =
534 container_of(work, struct tty_struct, hangup_work);
535 struct file *cons_filp = NULL;
536 struct file *filp, *f = NULL;
537 struct task_struct *p;
538 struct tty_ldisc *ld;
539 int closecount = 0, n;
540 unsigned long flags;
541 int refs = 0;
543 if (!tty)
544 return;
546 /* inuse_filps is protected by the single kernel lock */
547 lock_kernel();
549 spin_lock(&redirect_lock);
550 if (redirect && redirect->private_data == tty) {
551 f = redirect;
552 redirect = NULL;
554 spin_unlock(&redirect_lock);
556 check_tty_count(tty, "do_tty_hangup");
557 file_list_lock();
558 /* This breaks for file handles being sent over AF_UNIX sockets ? */
559 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
560 if (filp->f_op->write == redirected_tty_write)
561 cons_filp = filp;
562 if (filp->f_op->write != tty_write)
563 continue;
564 closecount++;
565 tty_fasync(-1, filp, 0); /* can't block */
566 filp->f_op = &hung_up_tty_fops;
568 file_list_unlock();
570 * FIXME! What are the locking issues here? This may me overdoing
571 * things... This question is especially important now that we've
572 * removed the irqlock.
574 ld = tty_ldisc_ref(tty);
575 if (ld != NULL) {
576 /* We may have no line discipline at this point */
577 if (ld->ops->flush_buffer)
578 ld->ops->flush_buffer(tty);
579 tty_driver_flush_buffer(tty);
580 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
581 ld->ops->write_wakeup)
582 ld->ops->write_wakeup(tty);
583 if (ld->ops->hangup)
584 ld->ops->hangup(tty);
587 * FIXME: Once we trust the LDISC code better we can wait here for
588 * ldisc completion and fix the driver call race
590 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
591 wake_up_interruptible_poll(&tty->read_wait, POLLIN);
593 * Shutdown the current line discipline, and reset it to
594 * N_TTY.
596 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
597 tty_reset_termios(tty);
598 /* Defer ldisc switch */
599 /* tty_deferred_ldisc_switch(N_TTY);
601 This should get done automatically when the port closes and
602 tty_release is called */
604 read_lock(&tasklist_lock);
605 if (tty->session) {
606 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
607 spin_lock_irq(&p->sighand->siglock);
608 if (p->signal->tty == tty) {
609 p->signal->tty = NULL;
610 /* We defer the dereferences outside fo
611 the tasklist lock */
612 refs++;
614 if (!p->signal->leader) {
615 spin_unlock_irq(&p->sighand->siglock);
616 continue;
618 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
619 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
620 put_pid(p->signal->tty_old_pgrp); /* A noop */
621 spin_lock_irqsave(&tty->ctrl_lock, flags);
622 if (tty->pgrp)
623 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
624 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
625 spin_unlock_irq(&p->sighand->siglock);
626 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
628 read_unlock(&tasklist_lock);
630 spin_lock_irqsave(&tty->ctrl_lock, flags);
631 tty->flags = 0;
632 put_pid(tty->session);
633 put_pid(tty->pgrp);
634 tty->session = NULL;
635 tty->pgrp = NULL;
636 tty->ctrl_status = 0;
637 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
639 /* Account for the p->signal references we killed */
640 while (refs--)
641 tty_kref_put(tty);
644 * If one of the devices matches a console pointer, we
645 * cannot just call hangup() because that will cause
646 * tty->count and state->count to go out of sync.
647 * So we just call close() the right number of times.
649 if (cons_filp) {
650 if (tty->ops->close)
651 for (n = 0; n < closecount; n++)
652 tty->ops->close(tty, cons_filp);
653 } else if (tty->ops->hangup)
654 (tty->ops->hangup)(tty);
656 * We don't want to have driver/ldisc interactions beyond
657 * the ones we did here. The driver layer expects no
658 * calls after ->hangup() from the ldisc side. However we
659 * can't yet guarantee all that.
661 set_bit(TTY_HUPPED, &tty->flags);
662 if (ld) {
663 tty_ldisc_enable(tty);
664 tty_ldisc_deref(ld);
666 unlock_kernel();
667 if (f)
668 fput(f);
672 * tty_hangup - trigger a hangup event
673 * @tty: tty to hangup
675 * A carrier loss (virtual or otherwise) has occurred on this like
676 * schedule a hangup sequence to run after this event.
679 void tty_hangup(struct tty_struct *tty)
681 #ifdef TTY_DEBUG_HANGUP
682 char buf[64];
683 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
684 #endif
685 schedule_work(&tty->hangup_work);
688 EXPORT_SYMBOL(tty_hangup);
691 * tty_vhangup - process vhangup
692 * @tty: tty to hangup
694 * The user has asked via system call for the terminal to be hung up.
695 * We do this synchronously so that when the syscall returns the process
696 * is complete. That guarantee is necessary for security reasons.
699 void tty_vhangup(struct tty_struct *tty)
701 #ifdef TTY_DEBUG_HANGUP
702 char buf[64];
704 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
705 #endif
706 do_tty_hangup(&tty->hangup_work);
709 EXPORT_SYMBOL(tty_vhangup);
712 * tty_vhangup_self - process vhangup for own ctty
714 * Perform a vhangup on the current controlling tty
717 void tty_vhangup_self(void)
719 struct tty_struct *tty;
721 tty = get_current_tty();
722 if (tty) {
723 tty_vhangup(tty);
724 tty_kref_put(tty);
729 * tty_hung_up_p - was tty hung up
730 * @filp: file pointer of tty
732 * Return true if the tty has been subject to a vhangup or a carrier
733 * loss
736 int tty_hung_up_p(struct file *filp)
738 return (filp->f_op == &hung_up_tty_fops);
741 EXPORT_SYMBOL(tty_hung_up_p);
743 static void session_clear_tty(struct pid *session)
745 struct task_struct *p;
746 do_each_pid_task(session, PIDTYPE_SID, p) {
747 proc_clear_tty(p);
748 } while_each_pid_task(session, PIDTYPE_SID, p);
752 * disassociate_ctty - disconnect controlling tty
753 * @on_exit: true if exiting so need to "hang up" the session
755 * This function is typically called only by the session leader, when
756 * it wants to disassociate itself from its controlling tty.
758 * It performs the following functions:
759 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
760 * (2) Clears the tty from being controlling the session
761 * (3) Clears the controlling tty for all processes in the
762 * session group.
764 * The argument on_exit is set to 1 if called when a process is
765 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
767 * Locking:
768 * BKL is taken for hysterical raisins
769 * tty_mutex is taken to protect tty
770 * ->siglock is taken to protect ->signal/->sighand
771 * tasklist_lock is taken to walk process list for sessions
772 * ->siglock is taken to protect ->signal/->sighand
775 void disassociate_ctty(int on_exit)
777 struct tty_struct *tty;
778 struct pid *tty_pgrp = NULL;
781 tty = get_current_tty();
782 if (tty) {
783 tty_pgrp = get_pid(tty->pgrp);
784 lock_kernel();
785 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
786 tty_vhangup(tty);
787 unlock_kernel();
788 tty_kref_put(tty);
789 } else if (on_exit) {
790 struct pid *old_pgrp;
791 spin_lock_irq(&current->sighand->siglock);
792 old_pgrp = current->signal->tty_old_pgrp;
793 current->signal->tty_old_pgrp = NULL;
794 spin_unlock_irq(&current->sighand->siglock);
795 if (old_pgrp) {
796 kill_pgrp(old_pgrp, SIGHUP, on_exit);
797 kill_pgrp(old_pgrp, SIGCONT, on_exit);
798 put_pid(old_pgrp);
800 return;
802 if (tty_pgrp) {
803 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
804 if (!on_exit)
805 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
806 put_pid(tty_pgrp);
809 spin_lock_irq(&current->sighand->siglock);
810 put_pid(current->signal->tty_old_pgrp);
811 current->signal->tty_old_pgrp = NULL;
812 spin_unlock_irq(&current->sighand->siglock);
814 tty = get_current_tty();
815 if (tty) {
816 unsigned long flags;
817 spin_lock_irqsave(&tty->ctrl_lock, flags);
818 put_pid(tty->session);
819 put_pid(tty->pgrp);
820 tty->session = NULL;
821 tty->pgrp = NULL;
822 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
823 tty_kref_put(tty);
824 } else {
825 #ifdef TTY_DEBUG_HANGUP
826 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
827 " = NULL", tty);
828 #endif
831 /* Now clear signal->tty under the lock */
832 read_lock(&tasklist_lock);
833 session_clear_tty(task_session(current));
834 read_unlock(&tasklist_lock);
839 * no_tty - Ensure the current process does not have a controlling tty
841 void no_tty(void)
843 struct task_struct *tsk = current;
844 lock_kernel();
845 if (tsk->signal->leader)
846 disassociate_ctty(0);
847 unlock_kernel();
848 proc_clear_tty(tsk);
853 * stop_tty - propagate flow control
854 * @tty: tty to stop
856 * Perform flow control to the driver. For PTY/TTY pairs we
857 * must also propagate the TIOCKPKT status. May be called
858 * on an already stopped device and will not re-call the driver
859 * method.
861 * This functionality is used by both the line disciplines for
862 * halting incoming flow and by the driver. It may therefore be
863 * called from any context, may be under the tty atomic_write_lock
864 * but not always.
866 * Locking:
867 * Uses the tty control lock internally
870 void stop_tty(struct tty_struct *tty)
872 unsigned long flags;
873 spin_lock_irqsave(&tty->ctrl_lock, flags);
874 if (tty->stopped) {
875 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
876 return;
878 tty->stopped = 1;
879 if (tty->link && tty->link->packet) {
880 tty->ctrl_status &= ~TIOCPKT_START;
881 tty->ctrl_status |= TIOCPKT_STOP;
882 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
884 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
885 if (tty->ops->stop)
886 (tty->ops->stop)(tty);
889 EXPORT_SYMBOL(stop_tty);
892 * start_tty - propagate flow control
893 * @tty: tty to start
895 * Start a tty that has been stopped if at all possible. Perform
896 * any necessary wakeups and propagate the TIOCPKT status. If this
897 * is the tty was previous stopped and is being started then the
898 * driver start method is invoked and the line discipline woken.
900 * Locking:
901 * ctrl_lock
904 void start_tty(struct tty_struct *tty)
906 unsigned long flags;
907 spin_lock_irqsave(&tty->ctrl_lock, flags);
908 if (!tty->stopped || tty->flow_stopped) {
909 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
910 return;
912 tty->stopped = 0;
913 if (tty->link && tty->link->packet) {
914 tty->ctrl_status &= ~TIOCPKT_STOP;
915 tty->ctrl_status |= TIOCPKT_START;
916 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
918 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
919 if (tty->ops->start)
920 (tty->ops->start)(tty);
921 /* If we have a running line discipline it may need kicking */
922 tty_wakeup(tty);
925 EXPORT_SYMBOL(start_tty);
928 * tty_read - read method for tty device files
929 * @file: pointer to tty file
930 * @buf: user buffer
931 * @count: size of user buffer
932 * @ppos: unused
934 * Perform the read system call function on this terminal device. Checks
935 * for hung up devices before calling the line discipline method.
937 * Locking:
938 * Locks the line discipline internally while needed. Multiple
939 * read calls may be outstanding in parallel.
942 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
943 loff_t *ppos)
945 int i;
946 struct tty_struct *tty;
947 struct inode *inode;
948 struct tty_ldisc *ld;
950 tty = (struct tty_struct *)file->private_data;
951 inode = file->f_path.dentry->d_inode;
952 if (tty_paranoia_check(tty, inode, "tty_read"))
953 return -EIO;
954 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
955 return -EIO;
957 /* We want to wait for the line discipline to sort out in this
958 situation */
959 ld = tty_ldisc_ref_wait(tty);
960 if (ld->ops->read)
961 i = (ld->ops->read)(tty, file, buf, count);
962 else
963 i = -EIO;
964 tty_ldisc_deref(ld);
965 if (i > 0)
966 inode->i_atime = current_fs_time(inode->i_sb);
967 return i;
970 void tty_write_unlock(struct tty_struct *tty)
972 mutex_unlock(&tty->atomic_write_lock);
973 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
976 int tty_write_lock(struct tty_struct *tty, int ndelay)
978 if (!mutex_trylock(&tty->atomic_write_lock)) {
979 if (ndelay)
980 return -EAGAIN;
981 if (mutex_lock_interruptible(&tty->atomic_write_lock))
982 return -ERESTARTSYS;
984 return 0;
988 * Split writes up in sane blocksizes to avoid
989 * denial-of-service type attacks
991 static inline ssize_t do_tty_write(
992 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
993 struct tty_struct *tty,
994 struct file *file,
995 const char __user *buf,
996 size_t count)
998 ssize_t ret, written = 0;
999 unsigned int chunk;
1001 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1002 if (ret < 0)
1003 return ret;
1006 * We chunk up writes into a temporary buffer. This
1007 * simplifies low-level drivers immensely, since they
1008 * don't have locking issues and user mode accesses.
1010 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1011 * big chunk-size..
1013 * The default chunk-size is 2kB, because the NTTY
1014 * layer has problems with bigger chunks. It will
1015 * claim to be able to handle more characters than
1016 * it actually does.
1018 * FIXME: This can probably go away now except that 64K chunks
1019 * are too likely to fail unless switched to vmalloc...
1021 chunk = 2048;
1022 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1023 chunk = 65536;
1024 if (count < chunk)
1025 chunk = count;
1027 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1028 if (tty->write_cnt < chunk) {
1029 unsigned char *buf_chunk;
1031 if (chunk < 1024)
1032 chunk = 1024;
1034 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1035 if (!buf_chunk) {
1036 ret = -ENOMEM;
1037 goto out;
1039 kfree(tty->write_buf);
1040 tty->write_cnt = chunk;
1041 tty->write_buf = buf_chunk;
1044 /* Do the write .. */
1045 for (;;) {
1046 size_t size = count;
1047 if (size > chunk)
1048 size = chunk;
1049 ret = -EFAULT;
1050 if (copy_from_user(tty->write_buf, buf, size))
1051 break;
1052 ret = write(tty, file, tty->write_buf, size);
1053 if (ret <= 0)
1054 break;
1055 written += ret;
1056 buf += ret;
1057 count -= ret;
1058 if (!count)
1059 break;
1060 ret = -ERESTARTSYS;
1061 if (signal_pending(current))
1062 break;
1063 cond_resched();
1065 if (written) {
1066 struct inode *inode = file->f_path.dentry->d_inode;
1067 inode->i_mtime = current_fs_time(inode->i_sb);
1068 ret = written;
1070 out:
1071 tty_write_unlock(tty);
1072 return ret;
1076 * tty_write_message - write a message to a certain tty, not just the console.
1077 * @tty: the destination tty_struct
1078 * @msg: the message to write
1080 * This is used for messages that need to be redirected to a specific tty.
1081 * We don't put it into the syslog queue right now maybe in the future if
1082 * really needed.
1084 * We must still hold the BKL and test the CLOSING flag for the moment.
1087 void tty_write_message(struct tty_struct *tty, char *msg)
1089 lock_kernel();
1090 if (tty) {
1091 mutex_lock(&tty->atomic_write_lock);
1092 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1093 tty->ops->write(tty, msg, strlen(msg));
1094 tty_write_unlock(tty);
1096 unlock_kernel();
1097 return;
1102 * tty_write - write method for tty device file
1103 * @file: tty file pointer
1104 * @buf: user data to write
1105 * @count: bytes to write
1106 * @ppos: unused
1108 * Write data to a tty device via the line discipline.
1110 * Locking:
1111 * Locks the line discipline as required
1112 * Writes to the tty driver are serialized by the atomic_write_lock
1113 * and are then processed in chunks to the device. The line discipline
1114 * write method will not be invoked in parallel for each device.
1117 static ssize_t tty_write(struct file *file, const char __user *buf,
1118 size_t count, loff_t *ppos)
1120 struct tty_struct *tty;
1121 struct inode *inode = file->f_path.dentry->d_inode;
1122 ssize_t ret;
1123 struct tty_ldisc *ld;
1125 tty = (struct tty_struct *)file->private_data;
1126 if (tty_paranoia_check(tty, inode, "tty_write"))
1127 return -EIO;
1128 if (!tty || !tty->ops->write ||
1129 (test_bit(TTY_IO_ERROR, &tty->flags)))
1130 return -EIO;
1131 /* Short term debug to catch buggy drivers */
1132 if (tty->ops->write_room == NULL)
1133 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1134 tty->driver->name);
1135 ld = tty_ldisc_ref_wait(tty);
1136 if (!ld->ops->write)
1137 ret = -EIO;
1138 else
1139 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1140 tty_ldisc_deref(ld);
1141 return ret;
1144 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1145 size_t count, loff_t *ppos)
1147 struct file *p = NULL;
1149 spin_lock(&redirect_lock);
1150 if (redirect) {
1151 get_file(redirect);
1152 p = redirect;
1154 spin_unlock(&redirect_lock);
1156 if (p) {
1157 ssize_t res;
1158 res = vfs_write(p, buf, count, &p->f_pos);
1159 fput(p);
1160 return res;
1162 return tty_write(file, buf, count, ppos);
1165 static char ptychar[] = "pqrstuvwxyzabcde";
1168 * pty_line_name - generate name for a pty
1169 * @driver: the tty driver in use
1170 * @index: the minor number
1171 * @p: output buffer of at least 6 bytes
1173 * Generate a name from a driver reference and write it to the output
1174 * buffer.
1176 * Locking: None
1178 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1180 int i = index + driver->name_base;
1181 /* ->name is initialized to "ttyp", but "tty" is expected */
1182 sprintf(p, "%s%c%x",
1183 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1184 ptychar[i >> 4 & 0xf], i & 0xf);
1188 * tty_line_name - generate name for a tty
1189 * @driver: the tty driver in use
1190 * @index: the minor number
1191 * @p: output buffer of at least 7 bytes
1193 * Generate a name from a driver reference and write it to the output
1194 * buffer.
1196 * Locking: None
1198 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1200 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1204 * tty_driver_lookup_tty() - find an existing tty, if any
1205 * @driver: the driver for the tty
1206 * @idx: the minor number
1208 * Return the tty, if found or ERR_PTR() otherwise.
1210 * Locking: tty_mutex must be held. If tty is found, the mutex must
1211 * be held until the 'fast-open' is also done. Will change once we
1212 * have refcounting in the driver and per driver locking
1214 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1215 struct inode *inode, int idx)
1217 struct tty_struct *tty;
1219 if (driver->ops->lookup)
1220 return driver->ops->lookup(driver, inode, idx);
1222 tty = driver->ttys[idx];
1223 return tty;
1227 * tty_init_termios - helper for termios setup
1228 * @tty: the tty to set up
1230 * Initialise the termios structures for this tty. Thus runs under
1231 * the tty_mutex currently so we can be relaxed about ordering.
1234 int tty_init_termios(struct tty_struct *tty)
1236 struct ktermios *tp;
1237 int idx = tty->index;
1239 tp = tty->driver->termios[idx];
1240 if (tp == NULL) {
1241 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1242 if (tp == NULL)
1243 return -ENOMEM;
1244 memcpy(tp, &tty->driver->init_termios,
1245 sizeof(struct ktermios));
1246 tty->driver->termios[idx] = tp;
1248 tty->termios = tp;
1249 tty->termios_locked = tp + 1;
1251 /* Compatibility until drivers always set this */
1252 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1253 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1254 return 0;
1258 * tty_driver_install_tty() - install a tty entry in the driver
1259 * @driver: the driver for the tty
1260 * @tty: the tty
1262 * Install a tty object into the driver tables. The tty->index field
1263 * will be set by the time this is called. This method is responsible
1264 * for ensuring any need additional structures are allocated and
1265 * configured.
1267 * Locking: tty_mutex for now
1269 static int tty_driver_install_tty(struct tty_driver *driver,
1270 struct tty_struct *tty)
1272 int idx = tty->index;
1274 if (driver->ops->install)
1275 return driver->ops->install(driver, tty);
1277 if (tty_init_termios(tty) == 0) {
1278 tty_driver_kref_get(driver);
1279 tty->count++;
1280 driver->ttys[idx] = tty;
1281 return 0;
1283 return -ENOMEM;
1287 * tty_driver_remove_tty() - remove a tty from the driver tables
1288 * @driver: the driver for the tty
1289 * @idx: the minor number
1291 * Remvoe a tty object from the driver tables. The tty->index field
1292 * will be set by the time this is called.
1294 * Locking: tty_mutex for now
1296 static void tty_driver_remove_tty(struct tty_driver *driver,
1297 struct tty_struct *tty)
1299 if (driver->ops->remove)
1300 driver->ops->remove(driver, tty);
1301 else
1302 driver->ttys[tty->index] = NULL;
1306 * tty_reopen() - fast re-open of an open tty
1307 * @tty - the tty to open
1309 * Return 0 on success, -errno on error.
1311 * Locking: tty_mutex must be held from the time the tty was found
1312 * till this open completes.
1314 static int tty_reopen(struct tty_struct *tty)
1316 struct tty_driver *driver = tty->driver;
1318 if (test_bit(TTY_CLOSING, &tty->flags))
1319 return -EIO;
1321 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1322 driver->subtype == PTY_TYPE_MASTER) {
1324 * special case for PTY masters: only one open permitted,
1325 * and the slave side open count is incremented as well.
1327 if (tty->count)
1328 return -EIO;
1330 tty->link->count++;
1332 tty->count++;
1333 tty->driver = driver; /* N.B. why do this every time?? */
1335 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1337 return 0;
1341 * tty_init_dev - initialise a tty device
1342 * @driver: tty driver we are opening a device on
1343 * @idx: device index
1344 * @ret_tty: returned tty structure
1345 * @first_ok: ok to open a new device (used by ptmx)
1347 * Prepare a tty device. This may not be a "new" clean device but
1348 * could also be an active device. The pty drivers require special
1349 * handling because of this.
1351 * Locking:
1352 * The function is called under the tty_mutex, which
1353 * protects us from the tty struct or driver itself going away.
1355 * On exit the tty device has the line discipline attached and
1356 * a reference count of 1. If a pair was created for pty/tty use
1357 * and the other was a pty master then it too has a reference count of 1.
1359 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1360 * failed open. The new code protects the open with a mutex, so it's
1361 * really quite straightforward. The mutex locking can probably be
1362 * relaxed for the (most common) case of reopening a tty.
1365 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1366 int first_ok)
1368 struct tty_struct *tty;
1369 int retval;
1371 /* Check if pty master is being opened multiple times */
1372 if (driver->subtype == PTY_TYPE_MASTER &&
1373 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1374 return ERR_PTR(-EIO);
1377 * First time open is complex, especially for PTY devices.
1378 * This code guarantees that either everything succeeds and the
1379 * TTY is ready for operation, or else the table slots are vacated
1380 * and the allocated memory released. (Except that the termios
1381 * and locked termios may be retained.)
1384 if (!try_module_get(driver->owner))
1385 return ERR_PTR(-ENODEV);
1387 tty = alloc_tty_struct();
1388 if (!tty)
1389 goto fail_no_mem;
1390 initialize_tty_struct(tty, driver, idx);
1392 retval = tty_driver_install_tty(driver, tty);
1393 if (retval < 0) {
1394 free_tty_struct(tty);
1395 module_put(driver->owner);
1396 return ERR_PTR(retval);
1400 * Structures all installed ... call the ldisc open routines.
1401 * If we fail here just call release_tty to clean up. No need
1402 * to decrement the use counts, as release_tty doesn't care.
1405 retval = tty_ldisc_setup(tty, tty->link);
1406 if (retval)
1407 goto release_mem_out;
1408 return tty;
1410 fail_no_mem:
1411 module_put(driver->owner);
1412 return ERR_PTR(-ENOMEM);
1414 /* call the tty release_tty routine to clean out this slot */
1415 release_mem_out:
1416 if (printk_ratelimit())
1417 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1418 "clearing slot %d\n", idx);
1419 release_tty(tty, idx);
1420 return ERR_PTR(retval);
1423 void tty_free_termios(struct tty_struct *tty)
1425 struct ktermios *tp;
1426 int idx = tty->index;
1427 /* Kill this flag and push into drivers for locking etc */
1428 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1429 /* FIXME: Locking on ->termios array */
1430 tp = tty->termios;
1431 tty->driver->termios[idx] = NULL;
1432 kfree(tp);
1435 EXPORT_SYMBOL(tty_free_termios);
1437 void tty_shutdown(struct tty_struct *tty)
1439 tty_driver_remove_tty(tty->driver, tty);
1440 tty_free_termios(tty);
1442 EXPORT_SYMBOL(tty_shutdown);
1445 * release_one_tty - release tty structure memory
1446 * @kref: kref of tty we are obliterating
1448 * Releases memory associated with a tty structure, and clears out the
1449 * driver table slots. This function is called when a device is no longer
1450 * in use. It also gets called when setup of a device fails.
1452 * Locking:
1453 * tty_mutex - sometimes only
1454 * takes the file list lock internally when working on the list
1455 * of ttys that the driver keeps.
1457 static void release_one_tty(struct kref *kref)
1459 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1460 struct tty_driver *driver = tty->driver;
1462 if (tty->ops->shutdown)
1463 tty->ops->shutdown(tty);
1464 else
1465 tty_shutdown(tty);
1466 tty->magic = 0;
1467 tty_driver_kref_put(driver);
1468 module_put(driver->owner);
1470 file_list_lock();
1471 list_del_init(&tty->tty_files);
1472 file_list_unlock();
1474 free_tty_struct(tty);
1478 * tty_kref_put - release a tty kref
1479 * @tty: tty device
1481 * Release a reference to a tty device and if need be let the kref
1482 * layer destruct the object for us
1485 void tty_kref_put(struct tty_struct *tty)
1487 if (tty)
1488 kref_put(&tty->kref, release_one_tty);
1490 EXPORT_SYMBOL(tty_kref_put);
1493 * release_tty - release tty structure memory
1495 * Release both @tty and a possible linked partner (think pty pair),
1496 * and decrement the refcount of the backing module.
1498 * Locking:
1499 * tty_mutex - sometimes only
1500 * takes the file list lock internally when working on the list
1501 * of ttys that the driver keeps.
1502 * FIXME: should we require tty_mutex is held here ??
1505 static void release_tty(struct tty_struct *tty, int idx)
1507 /* This should always be true but check for the moment */
1508 WARN_ON(tty->index != idx);
1510 if (tty->link)
1511 tty_kref_put(tty->link);
1512 tty_kref_put(tty);
1516 * Even releasing the tty structures is a tricky business.. We have
1517 * to be very careful that the structures are all released at the
1518 * same time, as interrupts might otherwise get the wrong pointers.
1520 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1521 * lead to double frees or releasing memory still in use.
1523 void tty_release_dev(struct file *filp)
1525 struct tty_struct *tty, *o_tty;
1526 int pty_master, tty_closing, o_tty_closing, do_sleep;
1527 int devpts;
1528 int idx;
1529 char buf[64];
1530 struct inode *inode;
1532 inode = filp->f_path.dentry->d_inode;
1533 tty = (struct tty_struct *)filp->private_data;
1534 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1535 return;
1537 check_tty_count(tty, "tty_release_dev");
1539 tty_fasync(-1, filp, 0);
1541 idx = tty->index;
1542 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1543 tty->driver->subtype == PTY_TYPE_MASTER);
1544 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1545 o_tty = tty->link;
1547 #ifdef TTY_PARANOIA_CHECK
1548 if (idx < 0 || idx >= tty->driver->num) {
1549 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1550 "free (%s)\n", tty->name);
1551 return;
1553 if (!devpts) {
1554 if (tty != tty->driver->ttys[idx]) {
1555 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1556 "for (%s)\n", idx, tty->name);
1557 return;
1559 if (tty->termios != tty->driver->termios[idx]) {
1560 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1561 "for (%s)\n",
1562 idx, tty->name);
1563 return;
1566 #endif
1568 #ifdef TTY_DEBUG_HANGUP
1569 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1570 tty_name(tty, buf), tty->count);
1571 #endif
1573 #ifdef TTY_PARANOIA_CHECK
1574 if (tty->driver->other &&
1575 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1576 if (o_tty != tty->driver->other->ttys[idx]) {
1577 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1578 "not o_tty for (%s)\n",
1579 idx, tty->name);
1580 return;
1582 if (o_tty->termios != tty->driver->other->termios[idx]) {
1583 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1584 "not o_termios for (%s)\n",
1585 idx, tty->name);
1586 return;
1588 if (o_tty->link != tty) {
1589 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1590 return;
1593 #endif
1594 if (tty->ops->close)
1595 tty->ops->close(tty, filp);
1598 * Sanity check: if tty->count is going to zero, there shouldn't be
1599 * any waiters on tty->read_wait or tty->write_wait. We test the
1600 * wait queues and kick everyone out _before_ actually starting to
1601 * close. This ensures that we won't block while releasing the tty
1602 * structure.
1604 * The test for the o_tty closing is necessary, since the master and
1605 * slave sides may close in any order. If the slave side closes out
1606 * first, its count will be one, since the master side holds an open.
1607 * Thus this test wouldn't be triggered at the time the slave closes,
1608 * so we do it now.
1610 * Note that it's possible for the tty to be opened again while we're
1611 * flushing out waiters. By recalculating the closing flags before
1612 * each iteration we avoid any problems.
1614 while (1) {
1615 /* Guard against races with tty->count changes elsewhere and
1616 opens on /dev/tty */
1618 mutex_lock(&tty_mutex);
1619 tty_closing = tty->count <= 1;
1620 o_tty_closing = o_tty &&
1621 (o_tty->count <= (pty_master ? 1 : 0));
1622 do_sleep = 0;
1624 if (tty_closing) {
1625 if (waitqueue_active(&tty->read_wait)) {
1626 wake_up_poll(&tty->read_wait, POLLIN);
1627 do_sleep++;
1629 if (waitqueue_active(&tty->write_wait)) {
1630 wake_up_poll(&tty->write_wait, POLLOUT);
1631 do_sleep++;
1634 if (o_tty_closing) {
1635 if (waitqueue_active(&o_tty->read_wait)) {
1636 wake_up_poll(&o_tty->read_wait, POLLIN);
1637 do_sleep++;
1639 if (waitqueue_active(&o_tty->write_wait)) {
1640 wake_up_poll(&o_tty->write_wait, POLLOUT);
1641 do_sleep++;
1644 if (!do_sleep)
1645 break;
1647 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1648 "active!\n", tty_name(tty, buf));
1649 mutex_unlock(&tty_mutex);
1650 schedule();
1654 * The closing flags are now consistent with the open counts on
1655 * both sides, and we've completed the last operation that could
1656 * block, so it's safe to proceed with closing.
1658 if (pty_master) {
1659 if (--o_tty->count < 0) {
1660 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1661 "(%d) for %s\n",
1662 o_tty->count, tty_name(o_tty, buf));
1663 o_tty->count = 0;
1666 if (--tty->count < 0) {
1667 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1668 tty->count, tty_name(tty, buf));
1669 tty->count = 0;
1673 * We've decremented tty->count, so we need to remove this file
1674 * descriptor off the tty->tty_files list; this serves two
1675 * purposes:
1676 * - check_tty_count sees the correct number of file descriptors
1677 * associated with this tty.
1678 * - do_tty_hangup no longer sees this file descriptor as
1679 * something that needs to be handled for hangups.
1681 file_kill(filp);
1682 filp->private_data = NULL;
1685 * Perform some housekeeping before deciding whether to return.
1687 * Set the TTY_CLOSING flag if this was the last open. In the
1688 * case of a pty we may have to wait around for the other side
1689 * to close, and TTY_CLOSING makes sure we can't be reopened.
1691 if (tty_closing)
1692 set_bit(TTY_CLOSING, &tty->flags);
1693 if (o_tty_closing)
1694 set_bit(TTY_CLOSING, &o_tty->flags);
1697 * If _either_ side is closing, make sure there aren't any
1698 * processes that still think tty or o_tty is their controlling
1699 * tty.
1701 if (tty_closing || o_tty_closing) {
1702 read_lock(&tasklist_lock);
1703 session_clear_tty(tty->session);
1704 if (o_tty)
1705 session_clear_tty(o_tty->session);
1706 read_unlock(&tasklist_lock);
1709 mutex_unlock(&tty_mutex);
1711 /* check whether both sides are closing ... */
1712 if (!tty_closing || (o_tty && !o_tty_closing))
1713 return;
1715 #ifdef TTY_DEBUG_HANGUP
1716 printk(KERN_DEBUG "freeing tty structure...");
1717 #endif
1719 * Ask the line discipline code to release its structures
1721 tty_ldisc_release(tty, o_tty);
1723 * The release_tty function takes care of the details of clearing
1724 * the slots and preserving the termios structure.
1726 release_tty(tty, idx);
1728 /* Make this pty number available for reallocation */
1729 if (devpts)
1730 devpts_kill_index(inode, idx);
1734 * __tty_open - open a tty device
1735 * @inode: inode of device file
1736 * @filp: file pointer to tty
1738 * tty_open and tty_release keep up the tty count that contains the
1739 * number of opens done on a tty. We cannot use the inode-count, as
1740 * different inodes might point to the same tty.
1742 * Open-counting is needed for pty masters, as well as for keeping
1743 * track of serial lines: DTR is dropped when the last close happens.
1744 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1746 * The termios state of a pty is reset on first open so that
1747 * settings don't persist across reuse.
1749 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1750 * tty->count should protect the rest.
1751 * ->siglock protects ->signal/->sighand
1754 static int __tty_open(struct inode *inode, struct file *filp)
1756 struct tty_struct *tty = NULL;
1757 int noctty, retval;
1758 struct tty_driver *driver;
1759 int index;
1760 dev_t device = inode->i_rdev;
1761 unsigned saved_flags = filp->f_flags;
1763 nonseekable_open(inode, filp);
1765 retry_open:
1766 noctty = filp->f_flags & O_NOCTTY;
1767 index = -1;
1768 retval = 0;
1770 mutex_lock(&tty_mutex);
1772 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1773 tty = get_current_tty();
1774 if (!tty) {
1775 mutex_unlock(&tty_mutex);
1776 return -ENXIO;
1778 driver = tty_driver_kref_get(tty->driver);
1779 index = tty->index;
1780 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1781 /* noctty = 1; */
1782 /* FIXME: Should we take a driver reference ? */
1783 tty_kref_put(tty);
1784 goto got_driver;
1786 #ifdef CONFIG_VT
1787 if (device == MKDEV(TTY_MAJOR, 0)) {
1788 extern struct tty_driver *console_driver;
1789 driver = tty_driver_kref_get(console_driver);
1790 index = fg_console;
1791 noctty = 1;
1792 goto got_driver;
1794 #endif
1795 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1796 struct tty_driver *console_driver = console_device(&index);
1797 if (console_driver) {
1798 driver = tty_driver_kref_get(console_driver);
1799 if (driver) {
1800 /* Don't let /dev/console block */
1801 filp->f_flags |= O_NONBLOCK;
1802 noctty = 1;
1803 goto got_driver;
1806 mutex_unlock(&tty_mutex);
1807 return -ENODEV;
1810 driver = get_tty_driver(device, &index);
1811 if (!driver) {
1812 mutex_unlock(&tty_mutex);
1813 return -ENODEV;
1815 got_driver:
1816 if (!tty) {
1817 /* check whether we're reopening an existing tty */
1818 tty = tty_driver_lookup_tty(driver, inode, index);
1820 if (IS_ERR(tty)) {
1821 mutex_unlock(&tty_mutex);
1822 return PTR_ERR(tty);
1826 if (tty) {
1827 retval = tty_reopen(tty);
1828 if (retval)
1829 tty = ERR_PTR(retval);
1830 } else
1831 tty = tty_init_dev(driver, index, 0);
1833 mutex_unlock(&tty_mutex);
1834 tty_driver_kref_put(driver);
1835 if (IS_ERR(tty))
1836 return PTR_ERR(tty);
1838 filp->private_data = tty;
1839 file_move(filp, &tty->tty_files);
1840 check_tty_count(tty, "tty_open");
1841 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1842 tty->driver->subtype == PTY_TYPE_MASTER)
1843 noctty = 1;
1844 #ifdef TTY_DEBUG_HANGUP
1845 printk(KERN_DEBUG "opening %s...", tty->name);
1846 #endif
1847 if (!retval) {
1848 if (tty->ops->open)
1849 retval = tty->ops->open(tty, filp);
1850 else
1851 retval = -ENODEV;
1853 filp->f_flags = saved_flags;
1855 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1856 !capable(CAP_SYS_ADMIN))
1857 retval = -EBUSY;
1859 if (retval) {
1860 #ifdef TTY_DEBUG_HANGUP
1861 printk(KERN_DEBUG "error %d in opening %s...", retval,
1862 tty->name);
1863 #endif
1864 tty_release_dev(filp);
1865 if (retval != -ERESTARTSYS)
1866 return retval;
1867 if (signal_pending(current))
1868 return retval;
1869 schedule();
1871 * Need to reset f_op in case a hangup happened.
1873 if (filp->f_op == &hung_up_tty_fops)
1874 filp->f_op = &tty_fops;
1875 goto retry_open;
1878 mutex_lock(&tty_mutex);
1879 spin_lock_irq(&current->sighand->siglock);
1880 if (!noctty &&
1881 current->signal->leader &&
1882 !current->signal->tty &&
1883 tty->session == NULL)
1884 __proc_set_tty(current, tty);
1885 spin_unlock_irq(&current->sighand->siglock);
1886 mutex_unlock(&tty_mutex);
1887 return 0;
1890 /* BKL pushdown: scary code avoidance wrapper */
1891 static int tty_open(struct inode *inode, struct file *filp)
1893 int ret;
1895 lock_kernel();
1896 ret = __tty_open(inode, filp);
1897 unlock_kernel();
1898 return ret;
1905 * tty_release - vfs callback for close
1906 * @inode: inode of tty
1907 * @filp: file pointer for handle to tty
1909 * Called the last time each file handle is closed that references
1910 * this tty. There may however be several such references.
1912 * Locking:
1913 * Takes bkl. See tty_release_dev
1916 static int tty_release(struct inode *inode, struct file *filp)
1918 lock_kernel();
1919 tty_release_dev(filp);
1920 unlock_kernel();
1921 return 0;
1925 * tty_poll - check tty status
1926 * @filp: file being polled
1927 * @wait: poll wait structures to update
1929 * Call the line discipline polling method to obtain the poll
1930 * status of the device.
1932 * Locking: locks called line discipline but ldisc poll method
1933 * may be re-entered freely by other callers.
1936 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1938 struct tty_struct *tty;
1939 struct tty_ldisc *ld;
1940 int ret = 0;
1942 tty = (struct tty_struct *)filp->private_data;
1943 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1944 return 0;
1946 ld = tty_ldisc_ref_wait(tty);
1947 if (ld->ops->poll)
1948 ret = (ld->ops->poll)(tty, filp, wait);
1949 tty_ldisc_deref(ld);
1950 return ret;
1953 static int tty_fasync(int fd, struct file *filp, int on)
1955 struct tty_struct *tty;
1956 unsigned long flags;
1957 int retval = 0;
1959 lock_kernel();
1960 tty = (struct tty_struct *)filp->private_data;
1961 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1962 goto out;
1964 retval = fasync_helper(fd, filp, on, &tty->fasync);
1965 if (retval <= 0)
1966 goto out;
1968 if (on) {
1969 enum pid_type type;
1970 struct pid *pid;
1971 if (!waitqueue_active(&tty->read_wait))
1972 tty->minimum_to_wake = 1;
1973 spin_lock_irqsave(&tty->ctrl_lock, flags);
1974 if (tty->pgrp) {
1975 pid = tty->pgrp;
1976 type = PIDTYPE_PGID;
1977 } else {
1978 pid = task_pid(current);
1979 type = PIDTYPE_PID;
1981 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1982 retval = __f_setown(filp, pid, type, 0);
1983 if (retval)
1984 goto out;
1985 } else {
1986 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1987 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1989 retval = 0;
1990 out:
1991 unlock_kernel();
1992 return retval;
1996 * tiocsti - fake input character
1997 * @tty: tty to fake input into
1998 * @p: pointer to character
2000 * Fake input to a tty device. Does the necessary locking and
2001 * input management.
2003 * FIXME: does not honour flow control ??
2005 * Locking:
2006 * Called functions take tty_ldisc_lock
2007 * current->signal->tty check is safe without locks
2009 * FIXME: may race normal receive processing
2012 static int tiocsti(struct tty_struct *tty, char __user *p)
2014 char ch, mbz = 0;
2015 struct tty_ldisc *ld;
2017 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2018 return -EPERM;
2019 if (get_user(ch, p))
2020 return -EFAULT;
2021 tty_audit_tiocsti(tty, ch);
2022 ld = tty_ldisc_ref_wait(tty);
2023 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2024 tty_ldisc_deref(ld);
2025 return 0;
2029 * tiocgwinsz - implement window query ioctl
2030 * @tty; tty
2031 * @arg: user buffer for result
2033 * Copies the kernel idea of the window size into the user buffer.
2035 * Locking: tty->termios_mutex is taken to ensure the winsize data
2036 * is consistent.
2039 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2041 int err;
2043 mutex_lock(&tty->termios_mutex);
2044 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2045 mutex_unlock(&tty->termios_mutex);
2047 return err ? -EFAULT: 0;
2051 * tty_do_resize - resize event
2052 * @tty: tty being resized
2053 * @rows: rows (character)
2054 * @cols: cols (character)
2056 * Update the termios variables and send the neccessary signals to
2057 * peform a terminal resize correctly
2060 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2062 struct pid *pgrp;
2063 unsigned long flags;
2065 /* Lock the tty */
2066 mutex_lock(&tty->termios_mutex);
2067 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2068 goto done;
2069 /* Get the PID values and reference them so we can
2070 avoid holding the tty ctrl lock while sending signals */
2071 spin_lock_irqsave(&tty->ctrl_lock, flags);
2072 pgrp = get_pid(tty->pgrp);
2073 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2075 if (pgrp)
2076 kill_pgrp(pgrp, SIGWINCH, 1);
2077 put_pid(pgrp);
2079 tty->winsize = *ws;
2080 done:
2081 mutex_unlock(&tty->termios_mutex);
2082 return 0;
2086 * tiocswinsz - implement window size set ioctl
2087 * @tty; tty side of tty
2088 * @arg: user buffer for result
2090 * Copies the user idea of the window size to the kernel. Traditionally
2091 * this is just advisory information but for the Linux console it
2092 * actually has driver level meaning and triggers a VC resize.
2094 * Locking:
2095 * Driver dependant. The default do_resize method takes the
2096 * tty termios mutex and ctrl_lock. The console takes its own lock
2097 * then calls into the default method.
2100 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2102 struct winsize tmp_ws;
2103 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2104 return -EFAULT;
2106 if (tty->ops->resize)
2107 return tty->ops->resize(tty, &tmp_ws);
2108 else
2109 return tty_do_resize(tty, &tmp_ws);
2113 * tioccons - allow admin to move logical console
2114 * @file: the file to become console
2116 * Allow the adminstrator to move the redirected console device
2118 * Locking: uses redirect_lock to guard the redirect information
2121 static int tioccons(struct file *file)
2123 if (!capable(CAP_SYS_ADMIN))
2124 return -EPERM;
2125 if (file->f_op->write == redirected_tty_write) {
2126 struct file *f;
2127 spin_lock(&redirect_lock);
2128 f = redirect;
2129 redirect = NULL;
2130 spin_unlock(&redirect_lock);
2131 if (f)
2132 fput(f);
2133 return 0;
2135 spin_lock(&redirect_lock);
2136 if (redirect) {
2137 spin_unlock(&redirect_lock);
2138 return -EBUSY;
2140 get_file(file);
2141 redirect = file;
2142 spin_unlock(&redirect_lock);
2143 return 0;
2147 * fionbio - non blocking ioctl
2148 * @file: file to set blocking value
2149 * @p: user parameter
2151 * Historical tty interfaces had a blocking control ioctl before
2152 * the generic functionality existed. This piece of history is preserved
2153 * in the expected tty API of posix OS's.
2155 * Locking: none, the open fle handle ensures it won't go away.
2158 static int fionbio(struct file *file, int __user *p)
2160 int nonblock;
2162 if (get_user(nonblock, p))
2163 return -EFAULT;
2165 spin_lock(&file->f_lock);
2166 if (nonblock)
2167 file->f_flags |= O_NONBLOCK;
2168 else
2169 file->f_flags &= ~O_NONBLOCK;
2170 spin_unlock(&file->f_lock);
2171 return 0;
2175 * tiocsctty - set controlling tty
2176 * @tty: tty structure
2177 * @arg: user argument
2179 * This ioctl is used to manage job control. It permits a session
2180 * leader to set this tty as the controlling tty for the session.
2182 * Locking:
2183 * Takes tty_mutex() to protect tty instance
2184 * Takes tasklist_lock internally to walk sessions
2185 * Takes ->siglock() when updating signal->tty
2188 static int tiocsctty(struct tty_struct *tty, int arg)
2190 int ret = 0;
2191 if (current->signal->leader && (task_session(current) == tty->session))
2192 return ret;
2194 mutex_lock(&tty_mutex);
2196 * The process must be a session leader and
2197 * not have a controlling tty already.
2199 if (!current->signal->leader || current->signal->tty) {
2200 ret = -EPERM;
2201 goto unlock;
2204 if (tty->session) {
2206 * This tty is already the controlling
2207 * tty for another session group!
2209 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2211 * Steal it away
2213 read_lock(&tasklist_lock);
2214 session_clear_tty(tty->session);
2215 read_unlock(&tasklist_lock);
2216 } else {
2217 ret = -EPERM;
2218 goto unlock;
2221 proc_set_tty(current, tty);
2222 unlock:
2223 mutex_unlock(&tty_mutex);
2224 return ret;
2228 * tty_get_pgrp - return a ref counted pgrp pid
2229 * @tty: tty to read
2231 * Returns a refcounted instance of the pid struct for the process
2232 * group controlling the tty.
2235 struct pid *tty_get_pgrp(struct tty_struct *tty)
2237 unsigned long flags;
2238 struct pid *pgrp;
2240 spin_lock_irqsave(&tty->ctrl_lock, flags);
2241 pgrp = get_pid(tty->pgrp);
2242 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2244 return pgrp;
2246 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2249 * tiocgpgrp - get process group
2250 * @tty: tty passed by user
2251 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2252 * @p: returned pid
2254 * Obtain the process group of the tty. If there is no process group
2255 * return an error.
2257 * Locking: none. Reference to current->signal->tty is safe.
2260 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2262 struct pid *pid;
2263 int ret;
2265 * (tty == real_tty) is a cheap way of
2266 * testing if the tty is NOT a master pty.
2268 if (tty == real_tty && current->signal->tty != real_tty)
2269 return -ENOTTY;
2270 pid = tty_get_pgrp(real_tty);
2271 ret = put_user(pid_vnr(pid), p);
2272 put_pid(pid);
2273 return ret;
2277 * tiocspgrp - attempt to set process group
2278 * @tty: tty passed by user
2279 * @real_tty: tty side device matching tty passed by user
2280 * @p: pid pointer
2282 * Set the process group of the tty to the session passed. Only
2283 * permitted where the tty session is our session.
2285 * Locking: RCU, ctrl lock
2288 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2290 struct pid *pgrp;
2291 pid_t pgrp_nr;
2292 int retval = tty_check_change(real_tty);
2293 unsigned long flags;
2295 if (retval == -EIO)
2296 return -ENOTTY;
2297 if (retval)
2298 return retval;
2299 if (!current->signal->tty ||
2300 (current->signal->tty != real_tty) ||
2301 (real_tty->session != task_session(current)))
2302 return -ENOTTY;
2303 if (get_user(pgrp_nr, p))
2304 return -EFAULT;
2305 if (pgrp_nr < 0)
2306 return -EINVAL;
2307 rcu_read_lock();
2308 pgrp = find_vpid(pgrp_nr);
2309 retval = -ESRCH;
2310 if (!pgrp)
2311 goto out_unlock;
2312 retval = -EPERM;
2313 if (session_of_pgrp(pgrp) != task_session(current))
2314 goto out_unlock;
2315 retval = 0;
2316 spin_lock_irqsave(&tty->ctrl_lock, flags);
2317 put_pid(real_tty->pgrp);
2318 real_tty->pgrp = get_pid(pgrp);
2319 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2320 out_unlock:
2321 rcu_read_unlock();
2322 return retval;
2326 * tiocgsid - get session id
2327 * @tty: tty passed by user
2328 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2329 * @p: pointer to returned session id
2331 * Obtain the session id of the tty. If there is no session
2332 * return an error.
2334 * Locking: none. Reference to current->signal->tty is safe.
2337 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2340 * (tty == real_tty) is a cheap way of
2341 * testing if the tty is NOT a master pty.
2343 if (tty == real_tty && current->signal->tty != real_tty)
2344 return -ENOTTY;
2345 if (!real_tty->session)
2346 return -ENOTTY;
2347 return put_user(pid_vnr(real_tty->session), p);
2351 * tiocsetd - set line discipline
2352 * @tty: tty device
2353 * @p: pointer to user data
2355 * Set the line discipline according to user request.
2357 * Locking: see tty_set_ldisc, this function is just a helper
2360 static int tiocsetd(struct tty_struct *tty, int __user *p)
2362 int ldisc;
2363 int ret;
2365 if (get_user(ldisc, p))
2366 return -EFAULT;
2368 lock_kernel();
2369 ret = tty_set_ldisc(tty, ldisc);
2370 unlock_kernel();
2372 return ret;
2376 * send_break - performed time break
2377 * @tty: device to break on
2378 * @duration: timeout in mS
2380 * Perform a timed break on hardware that lacks its own driver level
2381 * timed break functionality.
2383 * Locking:
2384 * atomic_write_lock serializes
2388 static int send_break(struct tty_struct *tty, unsigned int duration)
2390 int retval;
2392 if (tty->ops->break_ctl == NULL)
2393 return 0;
2395 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2396 retval = tty->ops->break_ctl(tty, duration);
2397 else {
2398 /* Do the work ourselves */
2399 if (tty_write_lock(tty, 0) < 0)
2400 return -EINTR;
2401 retval = tty->ops->break_ctl(tty, -1);
2402 if (retval)
2403 goto out;
2404 if (!signal_pending(current))
2405 msleep_interruptible(duration);
2406 retval = tty->ops->break_ctl(tty, 0);
2407 out:
2408 tty_write_unlock(tty);
2409 if (signal_pending(current))
2410 retval = -EINTR;
2412 return retval;
2416 * tty_tiocmget - get modem status
2417 * @tty: tty device
2418 * @file: user file pointer
2419 * @p: pointer to result
2421 * Obtain the modem status bits from the tty driver if the feature
2422 * is supported. Return -EINVAL if it is not available.
2424 * Locking: none (up to the driver)
2427 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2429 int retval = -EINVAL;
2431 if (tty->ops->tiocmget) {
2432 retval = tty->ops->tiocmget(tty, file);
2434 if (retval >= 0)
2435 retval = put_user(retval, p);
2437 return retval;
2441 * tty_tiocmset - set modem status
2442 * @tty: tty device
2443 * @file: user file pointer
2444 * @cmd: command - clear bits, set bits or set all
2445 * @p: pointer to desired bits
2447 * Set the modem status bits from the tty driver if the feature
2448 * is supported. Return -EINVAL if it is not available.
2450 * Locking: none (up to the driver)
2453 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2454 unsigned __user *p)
2456 int retval;
2457 unsigned int set, clear, val;
2459 if (tty->ops->tiocmset == NULL)
2460 return -EINVAL;
2462 retval = get_user(val, p);
2463 if (retval)
2464 return retval;
2465 set = clear = 0;
2466 switch (cmd) {
2467 case TIOCMBIS:
2468 set = val;
2469 break;
2470 case TIOCMBIC:
2471 clear = val;
2472 break;
2473 case TIOCMSET:
2474 set = val;
2475 clear = ~val;
2476 break;
2478 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2479 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2480 return tty->ops->tiocmset(tty, file, set, clear);
2484 * Split this up, as gcc can choke on it otherwise..
2486 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2488 struct tty_struct *tty, *real_tty;
2489 void __user *p = (void __user *)arg;
2490 int retval;
2491 struct tty_ldisc *ld;
2492 struct inode *inode = file->f_dentry->d_inode;
2494 tty = (struct tty_struct *)file->private_data;
2495 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2496 return -EINVAL;
2498 real_tty = tty;
2499 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2500 tty->driver->subtype == PTY_TYPE_MASTER)
2501 real_tty = tty->link;
2505 * Factor out some common prep work
2507 switch (cmd) {
2508 case TIOCSETD:
2509 case TIOCSBRK:
2510 case TIOCCBRK:
2511 case TCSBRK:
2512 case TCSBRKP:
2513 retval = tty_check_change(tty);
2514 if (retval)
2515 return retval;
2516 if (cmd != TIOCCBRK) {
2517 tty_wait_until_sent(tty, 0);
2518 if (signal_pending(current))
2519 return -EINTR;
2521 break;
2525 * Now do the stuff.
2527 switch (cmd) {
2528 case TIOCSTI:
2529 return tiocsti(tty, p);
2530 case TIOCGWINSZ:
2531 return tiocgwinsz(real_tty, p);
2532 case TIOCSWINSZ:
2533 return tiocswinsz(real_tty, p);
2534 case TIOCCONS:
2535 return real_tty != tty ? -EINVAL : tioccons(file);
2536 case FIONBIO:
2537 return fionbio(file, p);
2538 case TIOCEXCL:
2539 set_bit(TTY_EXCLUSIVE, &tty->flags);
2540 return 0;
2541 case TIOCNXCL:
2542 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2543 return 0;
2544 case TIOCNOTTY:
2545 if (current->signal->tty != tty)
2546 return -ENOTTY;
2547 no_tty();
2548 return 0;
2549 case TIOCSCTTY:
2550 return tiocsctty(tty, arg);
2551 case TIOCGPGRP:
2552 return tiocgpgrp(tty, real_tty, p);
2553 case TIOCSPGRP:
2554 return tiocspgrp(tty, real_tty, p);
2555 case TIOCGSID:
2556 return tiocgsid(tty, real_tty, p);
2557 case TIOCGETD:
2558 return put_user(tty->ldisc.ops->num, (int __user *)p);
2559 case TIOCSETD:
2560 return tiocsetd(tty, p);
2562 * Break handling
2564 case TIOCSBRK: /* Turn break on, unconditionally */
2565 if (tty->ops->break_ctl)
2566 return tty->ops->break_ctl(tty, -1);
2567 return 0;
2568 case TIOCCBRK: /* Turn break off, unconditionally */
2569 if (tty->ops->break_ctl)
2570 return tty->ops->break_ctl(tty, 0);
2571 return 0;
2572 case TCSBRK: /* SVID version: non-zero arg --> no break */
2573 /* non-zero arg means wait for all output data
2574 * to be sent (performed above) but don't send break.
2575 * This is used by the tcdrain() termios function.
2577 if (!arg)
2578 return send_break(tty, 250);
2579 return 0;
2580 case TCSBRKP: /* support for POSIX tcsendbreak() */
2581 return send_break(tty, arg ? arg*100 : 250);
2583 case TIOCMGET:
2584 return tty_tiocmget(tty, file, p);
2585 case TIOCMSET:
2586 case TIOCMBIC:
2587 case TIOCMBIS:
2588 return tty_tiocmset(tty, file, cmd, p);
2589 case TCFLSH:
2590 switch (arg) {
2591 case TCIFLUSH:
2592 case TCIOFLUSH:
2593 /* flush tty buffer and allow ldisc to process ioctl */
2594 tty_buffer_flush(tty);
2595 break;
2597 break;
2599 if (tty->ops->ioctl) {
2600 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2601 if (retval != -ENOIOCTLCMD)
2602 return retval;
2604 ld = tty_ldisc_ref_wait(tty);
2605 retval = -EINVAL;
2606 if (ld->ops->ioctl) {
2607 retval = ld->ops->ioctl(tty, file, cmd, arg);
2608 if (retval == -ENOIOCTLCMD)
2609 retval = -EINVAL;
2611 tty_ldisc_deref(ld);
2612 return retval;
2615 #ifdef CONFIG_COMPAT
2616 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2617 unsigned long arg)
2619 struct inode *inode = file->f_dentry->d_inode;
2620 struct tty_struct *tty = file->private_data;
2621 struct tty_ldisc *ld;
2622 int retval = -ENOIOCTLCMD;
2624 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2625 return -EINVAL;
2627 if (tty->ops->compat_ioctl) {
2628 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2629 if (retval != -ENOIOCTLCMD)
2630 return retval;
2633 ld = tty_ldisc_ref_wait(tty);
2634 if (ld->ops->compat_ioctl)
2635 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2636 tty_ldisc_deref(ld);
2638 return retval;
2640 #endif
2643 * This implements the "Secure Attention Key" --- the idea is to
2644 * prevent trojan horses by killing all processes associated with this
2645 * tty when the user hits the "Secure Attention Key". Required for
2646 * super-paranoid applications --- see the Orange Book for more details.
2648 * This code could be nicer; ideally it should send a HUP, wait a few
2649 * seconds, then send a INT, and then a KILL signal. But you then
2650 * have to coordinate with the init process, since all processes associated
2651 * with the current tty must be dead before the new getty is allowed
2652 * to spawn.
2654 * Now, if it would be correct ;-/ The current code has a nasty hole -
2655 * it doesn't catch files in flight. We may send the descriptor to ourselves
2656 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2658 * Nasty bug: do_SAK is being called in interrupt context. This can
2659 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2661 void __do_SAK(struct tty_struct *tty)
2663 #ifdef TTY_SOFT_SAK
2664 tty_hangup(tty);
2665 #else
2666 struct task_struct *g, *p;
2667 struct pid *session;
2668 int i;
2669 struct file *filp;
2670 struct fdtable *fdt;
2672 if (!tty)
2673 return;
2674 session = tty->session;
2676 tty_ldisc_flush(tty);
2678 tty_driver_flush_buffer(tty);
2680 read_lock(&tasklist_lock);
2681 /* Kill the entire session */
2682 do_each_pid_task(session, PIDTYPE_SID, p) {
2683 printk(KERN_NOTICE "SAK: killed process %d"
2684 " (%s): task_session(p)==tty->session\n",
2685 task_pid_nr(p), p->comm);
2686 send_sig(SIGKILL, p, 1);
2687 } while_each_pid_task(session, PIDTYPE_SID, p);
2688 /* Now kill any processes that happen to have the
2689 * tty open.
2691 do_each_thread(g, p) {
2692 if (p->signal->tty == tty) {
2693 printk(KERN_NOTICE "SAK: killed process %d"
2694 " (%s): task_session(p)==tty->session\n",
2695 task_pid_nr(p), p->comm);
2696 send_sig(SIGKILL, p, 1);
2697 continue;
2699 task_lock(p);
2700 if (p->files) {
2702 * We don't take a ref to the file, so we must
2703 * hold ->file_lock instead.
2705 spin_lock(&p->files->file_lock);
2706 fdt = files_fdtable(p->files);
2707 for (i = 0; i < fdt->max_fds; i++) {
2708 filp = fcheck_files(p->files, i);
2709 if (!filp)
2710 continue;
2711 if (filp->f_op->read == tty_read &&
2712 filp->private_data == tty) {
2713 printk(KERN_NOTICE "SAK: killed process %d"
2714 " (%s): fd#%d opened to the tty\n",
2715 task_pid_nr(p), p->comm, i);
2716 force_sig(SIGKILL, p);
2717 break;
2720 spin_unlock(&p->files->file_lock);
2722 task_unlock(p);
2723 } while_each_thread(g, p);
2724 read_unlock(&tasklist_lock);
2725 #endif
2728 static void do_SAK_work(struct work_struct *work)
2730 struct tty_struct *tty =
2731 container_of(work, struct tty_struct, SAK_work);
2732 __do_SAK(tty);
2736 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2737 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2738 * the values which we write to it will be identical to the values which it
2739 * already has. --akpm
2741 void do_SAK(struct tty_struct *tty)
2743 if (!tty)
2744 return;
2745 schedule_work(&tty->SAK_work);
2748 EXPORT_SYMBOL(do_SAK);
2751 * initialize_tty_struct
2752 * @tty: tty to initialize
2754 * This subroutine initializes a tty structure that has been newly
2755 * allocated.
2757 * Locking: none - tty in question must not be exposed at this point
2760 void initialize_tty_struct(struct tty_struct *tty,
2761 struct tty_driver *driver, int idx)
2763 memset(tty, 0, sizeof(struct tty_struct));
2764 kref_init(&tty->kref);
2765 tty->magic = TTY_MAGIC;
2766 tty_ldisc_init(tty);
2767 tty->session = NULL;
2768 tty->pgrp = NULL;
2769 tty->overrun_time = jiffies;
2770 tty->buf.head = tty->buf.tail = NULL;
2771 tty_buffer_init(tty);
2772 mutex_init(&tty->termios_mutex);
2773 init_waitqueue_head(&tty->write_wait);
2774 init_waitqueue_head(&tty->read_wait);
2775 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2776 mutex_init(&tty->atomic_read_lock);
2777 mutex_init(&tty->atomic_write_lock);
2778 mutex_init(&tty->output_lock);
2779 mutex_init(&tty->echo_lock);
2780 spin_lock_init(&tty->read_lock);
2781 spin_lock_init(&tty->ctrl_lock);
2782 INIT_LIST_HEAD(&tty->tty_files);
2783 INIT_WORK(&tty->SAK_work, do_SAK_work);
2785 tty->driver = driver;
2786 tty->ops = driver->ops;
2787 tty->index = idx;
2788 tty_line_name(driver, idx, tty->name);
2792 * tty_put_char - write one character to a tty
2793 * @tty: tty
2794 * @ch: character
2796 * Write one byte to the tty using the provided put_char method
2797 * if present. Returns the number of characters successfully output.
2799 * Note: the specific put_char operation in the driver layer may go
2800 * away soon. Don't call it directly, use this method
2803 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2805 if (tty->ops->put_char)
2806 return tty->ops->put_char(tty, ch);
2807 return tty->ops->write(tty, &ch, 1);
2809 EXPORT_SYMBOL_GPL(tty_put_char);
2811 struct class *tty_class;
2814 * tty_register_device - register a tty device
2815 * @driver: the tty driver that describes the tty device
2816 * @index: the index in the tty driver for this tty device
2817 * @device: a struct device that is associated with this tty device.
2818 * This field is optional, if there is no known struct device
2819 * for this tty device it can be set to NULL safely.
2821 * Returns a pointer to the struct device for this tty device
2822 * (or ERR_PTR(-EFOO) on error).
2824 * This call is required to be made to register an individual tty device
2825 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2826 * that bit is not set, this function should not be called by a tty
2827 * driver.
2829 * Locking: ??
2832 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2833 struct device *device)
2835 char name[64];
2836 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2838 if (index >= driver->num) {
2839 printk(KERN_ERR "Attempt to register invalid tty line number "
2840 " (%d).\n", index);
2841 return ERR_PTR(-EINVAL);
2844 if (driver->type == TTY_DRIVER_TYPE_PTY)
2845 pty_line_name(driver, index, name);
2846 else
2847 tty_line_name(driver, index, name);
2849 return device_create(tty_class, device, dev, NULL, name);
2851 EXPORT_SYMBOL(tty_register_device);
2854 * tty_unregister_device - unregister a tty device
2855 * @driver: the tty driver that describes the tty device
2856 * @index: the index in the tty driver for this tty device
2858 * If a tty device is registered with a call to tty_register_device() then
2859 * this function must be called when the tty device is gone.
2861 * Locking: ??
2864 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2866 device_destroy(tty_class,
2867 MKDEV(driver->major, driver->minor_start) + index);
2869 EXPORT_SYMBOL(tty_unregister_device);
2871 struct tty_driver *alloc_tty_driver(int lines)
2873 struct tty_driver *driver;
2875 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2876 if (driver) {
2877 kref_init(&driver->kref);
2878 driver->magic = TTY_DRIVER_MAGIC;
2879 driver->num = lines;
2880 /* later we'll move allocation of tables here */
2882 return driver;
2884 EXPORT_SYMBOL(alloc_tty_driver);
2886 static void destruct_tty_driver(struct kref *kref)
2888 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2889 int i;
2890 struct ktermios *tp;
2891 void *p;
2893 if (driver->flags & TTY_DRIVER_INSTALLED) {
2895 * Free the termios and termios_locked structures because
2896 * we don't want to get memory leaks when modular tty
2897 * drivers are removed from the kernel.
2899 for (i = 0; i < driver->num; i++) {
2900 tp = driver->termios[i];
2901 if (tp) {
2902 driver->termios[i] = NULL;
2903 kfree(tp);
2905 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2906 tty_unregister_device(driver, i);
2908 p = driver->ttys;
2909 proc_tty_unregister_driver(driver);
2910 driver->ttys = NULL;
2911 driver->termios = NULL;
2912 kfree(p);
2913 cdev_del(&driver->cdev);
2915 kfree(driver);
2918 void tty_driver_kref_put(struct tty_driver *driver)
2920 kref_put(&driver->kref, destruct_tty_driver);
2922 EXPORT_SYMBOL(tty_driver_kref_put);
2924 void tty_set_operations(struct tty_driver *driver,
2925 const struct tty_operations *op)
2927 driver->ops = op;
2929 EXPORT_SYMBOL(tty_set_operations);
2931 void put_tty_driver(struct tty_driver *d)
2933 tty_driver_kref_put(d);
2935 EXPORT_SYMBOL(put_tty_driver);
2938 * Called by a tty driver to register itself.
2940 int tty_register_driver(struct tty_driver *driver)
2942 int error;
2943 int i;
2944 dev_t dev;
2945 void **p = NULL;
2947 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2948 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2949 if (!p)
2950 return -ENOMEM;
2953 if (!driver->major) {
2954 error = alloc_chrdev_region(&dev, driver->minor_start,
2955 driver->num, driver->name);
2956 if (!error) {
2957 driver->major = MAJOR(dev);
2958 driver->minor_start = MINOR(dev);
2960 } else {
2961 dev = MKDEV(driver->major, driver->minor_start);
2962 error = register_chrdev_region(dev, driver->num, driver->name);
2964 if (error < 0) {
2965 kfree(p);
2966 return error;
2969 if (p) {
2970 driver->ttys = (struct tty_struct **)p;
2971 driver->termios = (struct ktermios **)(p + driver->num);
2972 } else {
2973 driver->ttys = NULL;
2974 driver->termios = NULL;
2977 cdev_init(&driver->cdev, &tty_fops);
2978 driver->cdev.owner = driver->owner;
2979 error = cdev_add(&driver->cdev, dev, driver->num);
2980 if (error) {
2981 unregister_chrdev_region(dev, driver->num);
2982 driver->ttys = NULL;
2983 driver->termios = NULL;
2984 kfree(p);
2985 return error;
2988 mutex_lock(&tty_mutex);
2989 list_add(&driver->tty_drivers, &tty_drivers);
2990 mutex_unlock(&tty_mutex);
2992 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2993 for (i = 0; i < driver->num; i++)
2994 tty_register_device(driver, i, NULL);
2996 proc_tty_register_driver(driver);
2997 driver->flags |= TTY_DRIVER_INSTALLED;
2998 return 0;
3001 EXPORT_SYMBOL(tty_register_driver);
3004 * Called by a tty driver to unregister itself.
3006 int tty_unregister_driver(struct tty_driver *driver)
3008 #if 0
3009 /* FIXME */
3010 if (driver->refcount)
3011 return -EBUSY;
3012 #endif
3013 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3014 driver->num);
3015 mutex_lock(&tty_mutex);
3016 list_del(&driver->tty_drivers);
3017 mutex_unlock(&tty_mutex);
3018 return 0;
3021 EXPORT_SYMBOL(tty_unregister_driver);
3023 dev_t tty_devnum(struct tty_struct *tty)
3025 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3027 EXPORT_SYMBOL(tty_devnum);
3029 void proc_clear_tty(struct task_struct *p)
3031 unsigned long flags;
3032 struct tty_struct *tty;
3033 spin_lock_irqsave(&p->sighand->siglock, flags);
3034 tty = p->signal->tty;
3035 p->signal->tty = NULL;
3036 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3037 tty_kref_put(tty);
3040 /* Called under the sighand lock */
3042 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3044 if (tty) {
3045 unsigned long flags;
3046 /* We should not have a session or pgrp to put here but.... */
3047 spin_lock_irqsave(&tty->ctrl_lock, flags);
3048 put_pid(tty->session);
3049 put_pid(tty->pgrp);
3050 tty->pgrp = get_pid(task_pgrp(tsk));
3051 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3052 tty->session = get_pid(task_session(tsk));
3053 if (tsk->signal->tty) {
3054 printk(KERN_DEBUG "tty not NULL!!\n");
3055 tty_kref_put(tsk->signal->tty);
3058 put_pid(tsk->signal->tty_old_pgrp);
3059 tsk->signal->tty = tty_kref_get(tty);
3060 tsk->signal->tty_old_pgrp = NULL;
3063 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3065 spin_lock_irq(&tsk->sighand->siglock);
3066 __proc_set_tty(tsk, tty);
3067 spin_unlock_irq(&tsk->sighand->siglock);
3070 struct tty_struct *get_current_tty(void)
3072 struct tty_struct *tty;
3073 unsigned long flags;
3075 spin_lock_irqsave(&current->sighand->siglock, flags);
3076 tty = tty_kref_get(current->signal->tty);
3077 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3078 return tty;
3080 EXPORT_SYMBOL_GPL(get_current_tty);
3082 void tty_default_fops(struct file_operations *fops)
3084 *fops = tty_fops;
3088 * Initialize the console device. This is called *early*, so
3089 * we can't necessarily depend on lots of kernel help here.
3090 * Just do some early initializations, and do the complex setup
3091 * later.
3093 void __init console_init(void)
3095 initcall_t *call;
3097 /* Setup the default TTY line discipline. */
3098 tty_ldisc_begin();
3101 * set up the console device so that later boot sequences can
3102 * inform about problems etc..
3104 call = __con_initcall_start;
3105 while (call < __con_initcall_end) {
3106 (*call)();
3107 call++;
3111 static int __init tty_class_init(void)
3113 tty_class = class_create(THIS_MODULE, "tty");
3114 if (IS_ERR(tty_class))
3115 return PTR_ERR(tty_class);
3116 return 0;
3119 postcore_initcall(tty_class_init);
3121 /* 3/2004 jmc: why do these devices exist? */
3123 static struct cdev tty_cdev, console_cdev;
3126 * Ok, now we can initialize the rest of the tty devices and can count
3127 * on memory allocations, interrupts etc..
3129 static int __init tty_init(void)
3131 cdev_init(&tty_cdev, &tty_fops);
3132 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3133 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3134 panic("Couldn't register /dev/tty driver\n");
3135 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3136 "tty");
3138 cdev_init(&console_cdev, &console_fops);
3139 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3140 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3141 panic("Couldn't register /dev/console driver\n");
3142 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3143 "console");
3145 #ifdef CONFIG_VT
3146 vty_init(&console_fops);
3147 #endif
3148 return 0;
3150 module_init(tty_init);