Merge branch 'mini2440-dev-unlikely' into mini2440-dev
[linux-2.6/mini2440.git] / drivers / char / tty_io.c
blob59499ee0fe6a11850eb851ad829dbb1a1b0d6dbc
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
126 EXPORT_SYMBOL(tty_std_termios);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 * alloc_tty_struct - allocate a tty object
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
164 * Locking: none
167 struct tty_struct *alloc_tty_struct(void)
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
176 * Free the write buffers, tty queue and tty memory itself.
178 * Locking: none. Must be called after tty is definitely unused
181 void free_tty_struct(struct tty_struct *tty)
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
198 * Locking: none
201 char *tty_name(struct tty_struct *tty, char *buf)
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
210 EXPORT_SYMBOL(tty_name);
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
228 #endif
229 return 0;
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
253 #endif
254 return 0;
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
265 * Locking: caller must hold tty_mutex
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
270 struct tty_driver *p;
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
279 return NULL;
282 #ifdef CONFIG_CONSOLE_POLL
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str, *stp;
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 stp = str;
315 if (*stp == ',')
316 stp++;
317 if (*stp == '\0')
318 stp = NULL;
320 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322 res = tty_driver_kref_get(p);
323 *line = tty_line;
324 break;
327 mutex_unlock(&tty_mutex);
329 return res;
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332 #endif
335 * tty_check_change - check for POSIX terminal changes
336 * @tty: tty to check
338 * If we try to write to, or set the state of, a terminal and we're
339 * not in the foreground, send a SIGTTOU. If the signal is blocked or
340 * ignored, go ahead and perform the operation. (POSIX 7.2)
342 * Locking: ctrl_lock
345 int tty_check_change(struct tty_struct *tty)
347 unsigned long flags;
348 int ret = 0;
350 if (current->signal->tty != tty)
351 return 0;
353 spin_lock_irqsave(&tty->ctrl_lock, flags);
355 if (!tty->pgrp) {
356 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357 goto out_unlock;
359 if (task_pgrp(current) == tty->pgrp)
360 goto out_unlock;
361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362 if (is_ignored(SIGTTOU))
363 goto out;
364 if (is_current_pgrp_orphaned()) {
365 ret = -EIO;
366 goto out;
368 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369 set_thread_flag(TIF_SIGPENDING);
370 ret = -ERESTARTSYS;
371 out:
372 return ret;
373 out_unlock:
374 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375 return ret;
378 EXPORT_SYMBOL(tty_check_change);
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381 size_t count, loff_t *ppos)
383 return 0;
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387 size_t count, loff_t *ppos)
389 return -EIO;
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
395 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399 unsigned long arg)
401 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
404 static long hung_up_tty_compat_ioctl(struct file *file,
405 unsigned int cmd, unsigned long arg)
407 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
410 static const struct file_operations tty_fops = {
411 .llseek = no_llseek,
412 .read = tty_read,
413 .write = tty_write,
414 .poll = tty_poll,
415 .unlocked_ioctl = tty_ioctl,
416 .compat_ioctl = tty_compat_ioctl,
417 .open = tty_open,
418 .release = tty_release,
419 .fasync = tty_fasync,
422 static const struct file_operations console_fops = {
423 .llseek = no_llseek,
424 .read = tty_read,
425 .write = redirected_tty_write,
426 .poll = tty_poll,
427 .unlocked_ioctl = tty_ioctl,
428 .compat_ioctl = tty_compat_ioctl,
429 .open = tty_open,
430 .release = tty_release,
431 .fasync = tty_fasync,
434 static const struct file_operations hung_up_tty_fops = {
435 .llseek = no_llseek,
436 .read = hung_up_tty_read,
437 .write = hung_up_tty_write,
438 .poll = hung_up_tty_poll,
439 .unlocked_ioctl = hung_up_tty_ioctl,
440 .compat_ioctl = hung_up_tty_compat_ioctl,
441 .release = tty_release,
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
448 * tty_wakeup - request more data
449 * @tty: terminal
451 * Internal and external helper for wakeups of tty. This function
452 * informs the line discipline if present that the driver is ready
453 * to receive more output data.
456 void tty_wakeup(struct tty_struct *tty)
458 struct tty_ldisc *ld;
460 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461 ld = tty_ldisc_ref(tty);
462 if (ld) {
463 if (ld->ops->write_wakeup)
464 ld->ops->write_wakeup(tty);
465 tty_ldisc_deref(ld);
468 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
471 EXPORT_SYMBOL_GPL(tty_wakeup);
474 * do_tty_hangup - actual handler for hangup events
475 * @work: tty device
477 * This can be called by the "eventd" kernel thread. That is process
478 * synchronous but doesn't hold any locks, so we need to make sure we
479 * have the appropriate locks for what we're doing.
481 * The hangup event clears any pending redirections onto the hung up
482 * device. It ensures future writes will error and it does the needed
483 * line discipline hangup and signal delivery. The tty object itself
484 * remains intact.
486 * Locking:
487 * BKL
488 * redirect lock for undoing redirection
489 * file list lock for manipulating list of ttys
490 * tty_ldisc_lock from called functions
491 * termios_mutex resetting termios data
492 * tasklist_lock to walk task list for hangup event
493 * ->siglock to protect ->signal/->sighand
495 static void do_tty_hangup(struct work_struct *work)
497 struct tty_struct *tty =
498 container_of(work, struct tty_struct, hangup_work);
499 struct file *cons_filp = NULL;
500 struct file *filp, *f = NULL;
501 struct task_struct *p;
502 int closecount = 0, n;
503 unsigned long flags;
504 int refs = 0;
506 if (!tty)
507 return;
509 /* inuse_filps is protected by the single kernel lock */
510 lock_kernel();
512 spin_lock(&redirect_lock);
513 if (redirect && redirect->private_data == tty) {
514 f = redirect;
515 redirect = NULL;
517 spin_unlock(&redirect_lock);
519 check_tty_count(tty, "do_tty_hangup");
520 file_list_lock();
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
524 cons_filp = filp;
525 if (filp->f_op->write != tty_write)
526 continue;
527 closecount++;
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
531 file_list_unlock();
533 tty_ldisc_hangup(tty);
535 read_lock(&tasklist_lock);
536 if (tty->session) {
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
542 the tasklist lock */
543 refs++;
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
547 continue;
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
553 if (tty->pgrp)
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
559 read_unlock(&tasklist_lock);
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
566 put_pid(tty->pgrp);
567 tty->session = NULL;
568 tty->pgrp = NULL;
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
573 /* Account for the p->signal references we killed */
574 while (refs--)
575 tty_kref_put(tty);
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
583 if (cons_filp) {
584 if (tty->ops->close)
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
597 unlock_kernel();
598 if (f)
599 fput(f);
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
610 void tty_hangup(struct tty_struct *tty)
612 #ifdef TTY_DEBUG_HANGUP
613 char buf[64];
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615 #endif
616 schedule_work(&tty->hangup_work);
619 EXPORT_SYMBOL(tty_hangup);
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
630 void tty_vhangup(struct tty_struct *tty)
632 #ifdef TTY_DEBUG_HANGUP
633 char buf[64];
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636 #endif
637 do_tty_hangup(&tty->hangup_work);
640 EXPORT_SYMBOL(tty_vhangup);
643 * tty_vhangup_self - process vhangup for own ctty
645 * Perform a vhangup on the current controlling tty
648 void tty_vhangup_self(void)
650 struct tty_struct *tty;
652 tty = get_current_tty();
653 if (tty) {
654 tty_vhangup(tty);
655 tty_kref_put(tty);
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
663 * Return true if the tty has been subject to a vhangup or a carrier
664 * loss
667 int tty_hung_up_p(struct file *filp)
669 return (filp->f_op == &hung_up_tty_fops);
672 EXPORT_SYMBOL(tty_hung_up_p);
674 static void session_clear_tty(struct pid *session)
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
678 proc_clear_tty(p);
679 } while_each_pid_task(session, PIDTYPE_SID, p);
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
693 * session group.
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
698 * Locking:
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
706 void disassociate_ctty(int on_exit)
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
712 tty = get_current_tty();
713 if (tty) {
714 tty_pgrp = get_pid(tty->pgrp);
715 lock_kernel();
716 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
717 tty_vhangup(tty);
718 unlock_kernel();
719 tty_kref_put(tty);
720 } else if (on_exit) {
721 struct pid *old_pgrp;
722 spin_lock_irq(&current->sighand->siglock);
723 old_pgrp = current->signal->tty_old_pgrp;
724 current->signal->tty_old_pgrp = NULL;
725 spin_unlock_irq(&current->sighand->siglock);
726 if (old_pgrp) {
727 kill_pgrp(old_pgrp, SIGHUP, on_exit);
728 kill_pgrp(old_pgrp, SIGCONT, on_exit);
729 put_pid(old_pgrp);
731 return;
733 if (tty_pgrp) {
734 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
735 if (!on_exit)
736 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
737 put_pid(tty_pgrp);
740 spin_lock_irq(&current->sighand->siglock);
741 put_pid(current->signal->tty_old_pgrp);
742 current->signal->tty_old_pgrp = NULL;
743 spin_unlock_irq(&current->sighand->siglock);
745 tty = get_current_tty();
746 if (tty) {
747 unsigned long flags;
748 spin_lock_irqsave(&tty->ctrl_lock, flags);
749 put_pid(tty->session);
750 put_pid(tty->pgrp);
751 tty->session = NULL;
752 tty->pgrp = NULL;
753 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
754 tty_kref_put(tty);
755 } else {
756 #ifdef TTY_DEBUG_HANGUP
757 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
758 " = NULL", tty);
759 #endif
762 /* Now clear signal->tty under the lock */
763 read_lock(&tasklist_lock);
764 session_clear_tty(task_session(current));
765 read_unlock(&tasklist_lock);
770 * no_tty - Ensure the current process does not have a controlling tty
772 void no_tty(void)
774 struct task_struct *tsk = current;
775 lock_kernel();
776 if (tsk->signal->leader)
777 disassociate_ctty(0);
778 unlock_kernel();
779 proc_clear_tty(tsk);
784 * stop_tty - propagate flow control
785 * @tty: tty to stop
787 * Perform flow control to the driver. For PTY/TTY pairs we
788 * must also propagate the TIOCKPKT status. May be called
789 * on an already stopped device and will not re-call the driver
790 * method.
792 * This functionality is used by both the line disciplines for
793 * halting incoming flow and by the driver. It may therefore be
794 * called from any context, may be under the tty atomic_write_lock
795 * but not always.
797 * Locking:
798 * Uses the tty control lock internally
801 void stop_tty(struct tty_struct *tty)
803 unsigned long flags;
804 spin_lock_irqsave(&tty->ctrl_lock, flags);
805 if (tty->stopped) {
806 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
807 return;
809 tty->stopped = 1;
810 if (tty->link && tty->link->packet) {
811 tty->ctrl_status &= ~TIOCPKT_START;
812 tty->ctrl_status |= TIOCPKT_STOP;
813 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
815 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
816 if (tty->ops->stop)
817 (tty->ops->stop)(tty);
820 EXPORT_SYMBOL(stop_tty);
823 * start_tty - propagate flow control
824 * @tty: tty to start
826 * Start a tty that has been stopped if at all possible. Perform
827 * any necessary wakeups and propagate the TIOCPKT status. If this
828 * is the tty was previous stopped and is being started then the
829 * driver start method is invoked and the line discipline woken.
831 * Locking:
832 * ctrl_lock
835 void start_tty(struct tty_struct *tty)
837 unsigned long flags;
838 spin_lock_irqsave(&tty->ctrl_lock, flags);
839 if (!tty->stopped || tty->flow_stopped) {
840 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841 return;
843 tty->stopped = 0;
844 if (tty->link && tty->link->packet) {
845 tty->ctrl_status &= ~TIOCPKT_STOP;
846 tty->ctrl_status |= TIOCPKT_START;
847 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
849 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
850 if (tty->ops->start)
851 (tty->ops->start)(tty);
852 /* If we have a running line discipline it may need kicking */
853 tty_wakeup(tty);
856 EXPORT_SYMBOL(start_tty);
859 * tty_read - read method for tty device files
860 * @file: pointer to tty file
861 * @buf: user buffer
862 * @count: size of user buffer
863 * @ppos: unused
865 * Perform the read system call function on this terminal device. Checks
866 * for hung up devices before calling the line discipline method.
868 * Locking:
869 * Locks the line discipline internally while needed. Multiple
870 * read calls may be outstanding in parallel.
873 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
874 loff_t *ppos)
876 int i;
877 struct tty_struct *tty;
878 struct inode *inode;
879 struct tty_ldisc *ld;
881 tty = (struct tty_struct *)file->private_data;
882 inode = file->f_path.dentry->d_inode;
883 if (tty_paranoia_check(tty, inode, "tty_read"))
884 return -EIO;
885 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
886 return -EIO;
888 /* We want to wait for the line discipline to sort out in this
889 situation */
890 ld = tty_ldisc_ref_wait(tty);
891 if (ld->ops->read)
892 i = (ld->ops->read)(tty, file, buf, count);
893 else
894 i = -EIO;
895 tty_ldisc_deref(ld);
896 if (i > 0)
897 inode->i_atime = current_fs_time(inode->i_sb);
898 return i;
901 void tty_write_unlock(struct tty_struct *tty)
903 mutex_unlock(&tty->atomic_write_lock);
904 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
907 int tty_write_lock(struct tty_struct *tty, int ndelay)
909 if (!mutex_trylock(&tty->atomic_write_lock)) {
910 if (ndelay)
911 return -EAGAIN;
912 if (mutex_lock_interruptible(&tty->atomic_write_lock))
913 return -ERESTARTSYS;
915 return 0;
919 * Split writes up in sane blocksizes to avoid
920 * denial-of-service type attacks
922 static inline ssize_t do_tty_write(
923 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
924 struct tty_struct *tty,
925 struct file *file,
926 const char __user *buf,
927 size_t count)
929 ssize_t ret, written = 0;
930 unsigned int chunk;
932 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
933 if (ret < 0)
934 return ret;
937 * We chunk up writes into a temporary buffer. This
938 * simplifies low-level drivers immensely, since they
939 * don't have locking issues and user mode accesses.
941 * But if TTY_NO_WRITE_SPLIT is set, we should use a
942 * big chunk-size..
944 * The default chunk-size is 2kB, because the NTTY
945 * layer has problems with bigger chunks. It will
946 * claim to be able to handle more characters than
947 * it actually does.
949 * FIXME: This can probably go away now except that 64K chunks
950 * are too likely to fail unless switched to vmalloc...
952 chunk = 2048;
953 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
954 chunk = 65536;
955 if (count < chunk)
956 chunk = count;
958 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
959 if (tty->write_cnt < chunk) {
960 unsigned char *buf_chunk;
962 if (chunk < 1024)
963 chunk = 1024;
965 buf_chunk = kmalloc(chunk, GFP_KERNEL);
966 if (!buf_chunk) {
967 ret = -ENOMEM;
968 goto out;
970 kfree(tty->write_buf);
971 tty->write_cnt = chunk;
972 tty->write_buf = buf_chunk;
975 /* Do the write .. */
976 for (;;) {
977 size_t size = count;
978 if (size > chunk)
979 size = chunk;
980 ret = -EFAULT;
981 if (copy_from_user(tty->write_buf, buf, size))
982 break;
983 ret = write(tty, file, tty->write_buf, size);
984 if (ret <= 0)
985 break;
986 written += ret;
987 buf += ret;
988 count -= ret;
989 if (!count)
990 break;
991 ret = -ERESTARTSYS;
992 if (signal_pending(current))
993 break;
994 cond_resched();
996 if (written) {
997 struct inode *inode = file->f_path.dentry->d_inode;
998 inode->i_mtime = current_fs_time(inode->i_sb);
999 ret = written;
1001 out:
1002 tty_write_unlock(tty);
1003 return ret;
1007 * tty_write_message - write a message to a certain tty, not just the console.
1008 * @tty: the destination tty_struct
1009 * @msg: the message to write
1011 * This is used for messages that need to be redirected to a specific tty.
1012 * We don't put it into the syslog queue right now maybe in the future if
1013 * really needed.
1015 * We must still hold the BKL and test the CLOSING flag for the moment.
1018 void tty_write_message(struct tty_struct *tty, char *msg)
1020 lock_kernel();
1021 if (tty) {
1022 mutex_lock(&tty->atomic_write_lock);
1023 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1024 tty->ops->write(tty, msg, strlen(msg));
1025 tty_write_unlock(tty);
1027 unlock_kernel();
1028 return;
1033 * tty_write - write method for tty device file
1034 * @file: tty file pointer
1035 * @buf: user data to write
1036 * @count: bytes to write
1037 * @ppos: unused
1039 * Write data to a tty device via the line discipline.
1041 * Locking:
1042 * Locks the line discipline as required
1043 * Writes to the tty driver are serialized by the atomic_write_lock
1044 * and are then processed in chunks to the device. The line discipline
1045 * write method will not be invoked in parallel for each device.
1048 static ssize_t tty_write(struct file *file, const char __user *buf,
1049 size_t count, loff_t *ppos)
1051 struct tty_struct *tty;
1052 struct inode *inode = file->f_path.dentry->d_inode;
1053 ssize_t ret;
1054 struct tty_ldisc *ld;
1056 tty = (struct tty_struct *)file->private_data;
1057 if (tty_paranoia_check(tty, inode, "tty_write"))
1058 return -EIO;
1059 if (!tty || !tty->ops->write ||
1060 (test_bit(TTY_IO_ERROR, &tty->flags)))
1061 return -EIO;
1062 /* Short term debug to catch buggy drivers */
1063 if (tty->ops->write_room == NULL)
1064 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1065 tty->driver->name);
1066 ld = tty_ldisc_ref_wait(tty);
1067 if (!ld->ops->write)
1068 ret = -EIO;
1069 else
1070 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1071 tty_ldisc_deref(ld);
1072 return ret;
1075 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1076 size_t count, loff_t *ppos)
1078 struct file *p = NULL;
1080 spin_lock(&redirect_lock);
1081 if (redirect) {
1082 get_file(redirect);
1083 p = redirect;
1085 spin_unlock(&redirect_lock);
1087 if (p) {
1088 ssize_t res;
1089 res = vfs_write(p, buf, count, &p->f_pos);
1090 fput(p);
1091 return res;
1093 return tty_write(file, buf, count, ppos);
1096 static char ptychar[] = "pqrstuvwxyzabcde";
1099 * pty_line_name - generate name for a pty
1100 * @driver: the tty driver in use
1101 * @index: the minor number
1102 * @p: output buffer of at least 6 bytes
1104 * Generate a name from a driver reference and write it to the output
1105 * buffer.
1107 * Locking: None
1109 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1111 int i = index + driver->name_base;
1112 /* ->name is initialized to "ttyp", but "tty" is expected */
1113 sprintf(p, "%s%c%x",
1114 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1115 ptychar[i >> 4 & 0xf], i & 0xf);
1119 * tty_line_name - generate name for a tty
1120 * @driver: the tty driver in use
1121 * @index: the minor number
1122 * @p: output buffer of at least 7 bytes
1124 * Generate a name from a driver reference and write it to the output
1125 * buffer.
1127 * Locking: None
1129 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1131 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1135 * tty_driver_lookup_tty() - find an existing tty, if any
1136 * @driver: the driver for the tty
1137 * @idx: the minor number
1139 * Return the tty, if found or ERR_PTR() otherwise.
1141 * Locking: tty_mutex must be held. If tty is found, the mutex must
1142 * be held until the 'fast-open' is also done. Will change once we
1143 * have refcounting in the driver and per driver locking
1145 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1146 struct inode *inode, int idx)
1148 struct tty_struct *tty;
1150 if (driver->ops->lookup)
1151 return driver->ops->lookup(driver, inode, idx);
1153 tty = driver->ttys[idx];
1154 return tty;
1158 * tty_init_termios - helper for termios setup
1159 * @tty: the tty to set up
1161 * Initialise the termios structures for this tty. Thus runs under
1162 * the tty_mutex currently so we can be relaxed about ordering.
1165 int tty_init_termios(struct tty_struct *tty)
1167 struct ktermios *tp;
1168 int idx = tty->index;
1170 tp = tty->driver->termios[idx];
1171 if (tp == NULL) {
1172 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1173 if (tp == NULL)
1174 return -ENOMEM;
1175 memcpy(tp, &tty->driver->init_termios,
1176 sizeof(struct ktermios));
1177 tty->driver->termios[idx] = tp;
1179 tty->termios = tp;
1180 tty->termios_locked = tp + 1;
1182 /* Compatibility until drivers always set this */
1183 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1184 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1185 return 0;
1187 EXPORT_SYMBOL_GPL(tty_init_termios);
1190 * tty_driver_install_tty() - install a tty entry in the driver
1191 * @driver: the driver for the tty
1192 * @tty: the tty
1194 * Install a tty object into the driver tables. The tty->index field
1195 * will be set by the time this is called. This method is responsible
1196 * for ensuring any need additional structures are allocated and
1197 * configured.
1199 * Locking: tty_mutex for now
1201 static int tty_driver_install_tty(struct tty_driver *driver,
1202 struct tty_struct *tty)
1204 int idx = tty->index;
1206 if (driver->ops->install)
1207 return driver->ops->install(driver, tty);
1209 if (tty_init_termios(tty) == 0) {
1210 tty_driver_kref_get(driver);
1211 tty->count++;
1212 driver->ttys[idx] = tty;
1213 return 0;
1215 return -ENOMEM;
1219 * tty_driver_remove_tty() - remove a tty from the driver tables
1220 * @driver: the driver for the tty
1221 * @idx: the minor number
1223 * Remvoe a tty object from the driver tables. The tty->index field
1224 * will be set by the time this is called.
1226 * Locking: tty_mutex for now
1228 static void tty_driver_remove_tty(struct tty_driver *driver,
1229 struct tty_struct *tty)
1231 if (driver->ops->remove)
1232 driver->ops->remove(driver, tty);
1233 else
1234 driver->ttys[tty->index] = NULL;
1238 * tty_reopen() - fast re-open of an open tty
1239 * @tty - the tty to open
1241 * Return 0 on success, -errno on error.
1243 * Locking: tty_mutex must be held from the time the tty was found
1244 * till this open completes.
1246 static int tty_reopen(struct tty_struct *tty)
1248 struct tty_driver *driver = tty->driver;
1250 if (test_bit(TTY_CLOSING, &tty->flags))
1251 return -EIO;
1253 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1254 driver->subtype == PTY_TYPE_MASTER) {
1256 * special case for PTY masters: only one open permitted,
1257 * and the slave side open count is incremented as well.
1259 if (tty->count)
1260 return -EIO;
1262 tty->link->count++;
1264 tty->count++;
1265 tty->driver = driver; /* N.B. why do this every time?? */
1267 mutex_lock(&tty->ldisc_mutex);
1268 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1269 mutex_unlock(&tty->ldisc_mutex);
1271 return 0;
1275 * tty_init_dev - initialise a tty device
1276 * @driver: tty driver we are opening a device on
1277 * @idx: device index
1278 * @ret_tty: returned tty structure
1279 * @first_ok: ok to open a new device (used by ptmx)
1281 * Prepare a tty device. This may not be a "new" clean device but
1282 * could also be an active device. The pty drivers require special
1283 * handling because of this.
1285 * Locking:
1286 * The function is called under the tty_mutex, which
1287 * protects us from the tty struct or driver itself going away.
1289 * On exit the tty device has the line discipline attached and
1290 * a reference count of 1. If a pair was created for pty/tty use
1291 * and the other was a pty master then it too has a reference count of 1.
1293 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1294 * failed open. The new code protects the open with a mutex, so it's
1295 * really quite straightforward. The mutex locking can probably be
1296 * relaxed for the (most common) case of reopening a tty.
1299 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1300 int first_ok)
1302 struct tty_struct *tty;
1303 int retval;
1305 /* Check if pty master is being opened multiple times */
1306 if (driver->subtype == PTY_TYPE_MASTER &&
1307 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1308 return ERR_PTR(-EIO);
1311 * First time open is complex, especially for PTY devices.
1312 * This code guarantees that either everything succeeds and the
1313 * TTY is ready for operation, or else the table slots are vacated
1314 * and the allocated memory released. (Except that the termios
1315 * and locked termios may be retained.)
1318 if (!try_module_get(driver->owner))
1319 return ERR_PTR(-ENODEV);
1321 tty = alloc_tty_struct();
1322 if (!tty)
1323 goto fail_no_mem;
1324 initialize_tty_struct(tty, driver, idx);
1326 retval = tty_driver_install_tty(driver, tty);
1327 if (retval < 0) {
1328 free_tty_struct(tty);
1329 module_put(driver->owner);
1330 return ERR_PTR(retval);
1334 * Structures all installed ... call the ldisc open routines.
1335 * If we fail here just call release_tty to clean up. No need
1336 * to decrement the use counts, as release_tty doesn't care.
1339 retval = tty_ldisc_setup(tty, tty->link);
1340 if (retval)
1341 goto release_mem_out;
1342 return tty;
1344 fail_no_mem:
1345 module_put(driver->owner);
1346 return ERR_PTR(-ENOMEM);
1348 /* call the tty release_tty routine to clean out this slot */
1349 release_mem_out:
1350 if (printk_ratelimit())
1351 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1352 "clearing slot %d\n", idx);
1353 release_tty(tty, idx);
1354 return ERR_PTR(retval);
1357 void tty_free_termios(struct tty_struct *tty)
1359 struct ktermios *tp;
1360 int idx = tty->index;
1361 /* Kill this flag and push into drivers for locking etc */
1362 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1363 /* FIXME: Locking on ->termios array */
1364 tp = tty->termios;
1365 tty->driver->termios[idx] = NULL;
1366 kfree(tp);
1369 EXPORT_SYMBOL(tty_free_termios);
1371 void tty_shutdown(struct tty_struct *tty)
1373 tty_driver_remove_tty(tty->driver, tty);
1374 tty_free_termios(tty);
1376 EXPORT_SYMBOL(tty_shutdown);
1379 * release_one_tty - release tty structure memory
1380 * @kref: kref of tty we are obliterating
1382 * Releases memory associated with a tty structure, and clears out the
1383 * driver table slots. This function is called when a device is no longer
1384 * in use. It also gets called when setup of a device fails.
1386 * Locking:
1387 * tty_mutex - sometimes only
1388 * takes the file list lock internally when working on the list
1389 * of ttys that the driver keeps.
1391 * This method gets called from a work queue so that the driver private
1392 * cleanup ops can sleep (needed for USB at least)
1394 static void release_one_tty(struct work_struct *work)
1396 struct tty_struct *tty =
1397 container_of(work, struct tty_struct, hangup_work);
1398 struct tty_driver *driver = tty->driver;
1400 if (tty->ops->cleanup)
1401 tty->ops->cleanup(tty);
1403 tty->magic = 0;
1404 tty_driver_kref_put(driver);
1405 module_put(driver->owner);
1407 file_list_lock();
1408 list_del_init(&tty->tty_files);
1409 file_list_unlock();
1411 free_tty_struct(tty);
1414 static void queue_release_one_tty(struct kref *kref)
1416 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1418 if (tty->ops->shutdown)
1419 tty->ops->shutdown(tty);
1420 else
1421 tty_shutdown(tty);
1423 /* The hangup queue is now free so we can reuse it rather than
1424 waste a chunk of memory for each port */
1425 INIT_WORK(&tty->hangup_work, release_one_tty);
1426 schedule_work(&tty->hangup_work);
1430 * tty_kref_put - release a tty kref
1431 * @tty: tty device
1433 * Release a reference to a tty device and if need be let the kref
1434 * layer destruct the object for us
1437 void tty_kref_put(struct tty_struct *tty)
1439 if (tty)
1440 kref_put(&tty->kref, queue_release_one_tty);
1442 EXPORT_SYMBOL(tty_kref_put);
1445 * release_tty - release tty structure memory
1447 * Release both @tty and a possible linked partner (think pty pair),
1448 * and decrement the refcount of the backing module.
1450 * Locking:
1451 * tty_mutex - sometimes only
1452 * takes the file list lock internally when working on the list
1453 * of ttys that the driver keeps.
1454 * FIXME: should we require tty_mutex is held here ??
1457 static void release_tty(struct tty_struct *tty, int idx)
1459 /* This should always be true but check for the moment */
1460 WARN_ON(tty->index != idx);
1462 if (tty->link)
1463 tty_kref_put(tty->link);
1464 tty_kref_put(tty);
1468 * Even releasing the tty structures is a tricky business.. We have
1469 * to be very careful that the structures are all released at the
1470 * same time, as interrupts might otherwise get the wrong pointers.
1472 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1473 * lead to double frees or releasing memory still in use.
1475 void tty_release_dev(struct file *filp)
1477 struct tty_struct *tty, *o_tty;
1478 int pty_master, tty_closing, o_tty_closing, do_sleep;
1479 int devpts;
1480 int idx;
1481 char buf[64];
1482 struct inode *inode;
1484 inode = filp->f_path.dentry->d_inode;
1485 tty = (struct tty_struct *)filp->private_data;
1486 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1487 return;
1489 check_tty_count(tty, "tty_release_dev");
1491 tty_fasync(-1, filp, 0);
1493 idx = tty->index;
1494 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1495 tty->driver->subtype == PTY_TYPE_MASTER);
1496 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1497 o_tty = tty->link;
1499 #ifdef TTY_PARANOIA_CHECK
1500 if (idx < 0 || idx >= tty->driver->num) {
1501 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1502 "free (%s)\n", tty->name);
1503 return;
1505 if (!devpts) {
1506 if (tty != tty->driver->ttys[idx]) {
1507 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1508 "for (%s)\n", idx, tty->name);
1509 return;
1511 if (tty->termios != tty->driver->termios[idx]) {
1512 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1513 "for (%s)\n",
1514 idx, tty->name);
1515 return;
1518 #endif
1520 #ifdef TTY_DEBUG_HANGUP
1521 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1522 tty_name(tty, buf), tty->count);
1523 #endif
1525 #ifdef TTY_PARANOIA_CHECK
1526 if (tty->driver->other &&
1527 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1528 if (o_tty != tty->driver->other->ttys[idx]) {
1529 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1530 "not o_tty for (%s)\n",
1531 idx, tty->name);
1532 return;
1534 if (o_tty->termios != tty->driver->other->termios[idx]) {
1535 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1536 "not o_termios for (%s)\n",
1537 idx, tty->name);
1538 return;
1540 if (o_tty->link != tty) {
1541 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1542 return;
1545 #endif
1546 if (tty->ops->close)
1547 tty->ops->close(tty, filp);
1550 * Sanity check: if tty->count is going to zero, there shouldn't be
1551 * any waiters on tty->read_wait or tty->write_wait. We test the
1552 * wait queues and kick everyone out _before_ actually starting to
1553 * close. This ensures that we won't block while releasing the tty
1554 * structure.
1556 * The test for the o_tty closing is necessary, since the master and
1557 * slave sides may close in any order. If the slave side closes out
1558 * first, its count will be one, since the master side holds an open.
1559 * Thus this test wouldn't be triggered at the time the slave closes,
1560 * so we do it now.
1562 * Note that it's possible for the tty to be opened again while we're
1563 * flushing out waiters. By recalculating the closing flags before
1564 * each iteration we avoid any problems.
1566 while (1) {
1567 /* Guard against races with tty->count changes elsewhere and
1568 opens on /dev/tty */
1570 mutex_lock(&tty_mutex);
1571 tty_closing = tty->count <= 1;
1572 o_tty_closing = o_tty &&
1573 (o_tty->count <= (pty_master ? 1 : 0));
1574 do_sleep = 0;
1576 if (tty_closing) {
1577 if (waitqueue_active(&tty->read_wait)) {
1578 wake_up_poll(&tty->read_wait, POLLIN);
1579 do_sleep++;
1581 if (waitqueue_active(&tty->write_wait)) {
1582 wake_up_poll(&tty->write_wait, POLLOUT);
1583 do_sleep++;
1586 if (o_tty_closing) {
1587 if (waitqueue_active(&o_tty->read_wait)) {
1588 wake_up_poll(&o_tty->read_wait, POLLIN);
1589 do_sleep++;
1591 if (waitqueue_active(&o_tty->write_wait)) {
1592 wake_up_poll(&o_tty->write_wait, POLLOUT);
1593 do_sleep++;
1596 if (!do_sleep)
1597 break;
1599 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1600 "active!\n", tty_name(tty, buf));
1601 mutex_unlock(&tty_mutex);
1602 schedule();
1606 * The closing flags are now consistent with the open counts on
1607 * both sides, and we've completed the last operation that could
1608 * block, so it's safe to proceed with closing.
1610 if (pty_master) {
1611 if (--o_tty->count < 0) {
1612 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1613 "(%d) for %s\n",
1614 o_tty->count, tty_name(o_tty, buf));
1615 o_tty->count = 0;
1618 if (--tty->count < 0) {
1619 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1620 tty->count, tty_name(tty, buf));
1621 tty->count = 0;
1625 * We've decremented tty->count, so we need to remove this file
1626 * descriptor off the tty->tty_files list; this serves two
1627 * purposes:
1628 * - check_tty_count sees the correct number of file descriptors
1629 * associated with this tty.
1630 * - do_tty_hangup no longer sees this file descriptor as
1631 * something that needs to be handled for hangups.
1633 file_kill(filp);
1634 filp->private_data = NULL;
1637 * Perform some housekeeping before deciding whether to return.
1639 * Set the TTY_CLOSING flag if this was the last open. In the
1640 * case of a pty we may have to wait around for the other side
1641 * to close, and TTY_CLOSING makes sure we can't be reopened.
1643 if (tty_closing)
1644 set_bit(TTY_CLOSING, &tty->flags);
1645 if (o_tty_closing)
1646 set_bit(TTY_CLOSING, &o_tty->flags);
1649 * If _either_ side is closing, make sure there aren't any
1650 * processes that still think tty or o_tty is their controlling
1651 * tty.
1653 if (tty_closing || o_tty_closing) {
1654 read_lock(&tasklist_lock);
1655 session_clear_tty(tty->session);
1656 if (o_tty)
1657 session_clear_tty(o_tty->session);
1658 read_unlock(&tasklist_lock);
1661 mutex_unlock(&tty_mutex);
1663 /* check whether both sides are closing ... */
1664 if (!tty_closing || (o_tty && !o_tty_closing))
1665 return;
1667 #ifdef TTY_DEBUG_HANGUP
1668 printk(KERN_DEBUG "freeing tty structure...");
1669 #endif
1671 * Ask the line discipline code to release its structures
1673 tty_ldisc_release(tty, o_tty);
1675 * The release_tty function takes care of the details of clearing
1676 * the slots and preserving the termios structure.
1678 release_tty(tty, idx);
1680 /* Make this pty number available for reallocation */
1681 if (devpts)
1682 devpts_kill_index(inode, idx);
1686 * __tty_open - open a tty device
1687 * @inode: inode of device file
1688 * @filp: file pointer to tty
1690 * tty_open and tty_release keep up the tty count that contains the
1691 * number of opens done on a tty. We cannot use the inode-count, as
1692 * different inodes might point to the same tty.
1694 * Open-counting is needed for pty masters, as well as for keeping
1695 * track of serial lines: DTR is dropped when the last close happens.
1696 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1698 * The termios state of a pty is reset on first open so that
1699 * settings don't persist across reuse.
1701 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1702 * tty->count should protect the rest.
1703 * ->siglock protects ->signal/->sighand
1706 static int __tty_open(struct inode *inode, struct file *filp)
1708 struct tty_struct *tty = NULL;
1709 int noctty, retval;
1710 struct tty_driver *driver;
1711 int index;
1712 dev_t device = inode->i_rdev;
1713 unsigned saved_flags = filp->f_flags;
1715 nonseekable_open(inode, filp);
1717 retry_open:
1718 noctty = filp->f_flags & O_NOCTTY;
1719 index = -1;
1720 retval = 0;
1722 mutex_lock(&tty_mutex);
1724 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1725 tty = get_current_tty();
1726 if (!tty) {
1727 mutex_unlock(&tty_mutex);
1728 return -ENXIO;
1730 driver = tty_driver_kref_get(tty->driver);
1731 index = tty->index;
1732 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1733 /* noctty = 1; */
1734 /* FIXME: Should we take a driver reference ? */
1735 tty_kref_put(tty);
1736 goto got_driver;
1738 #ifdef CONFIG_VT
1739 if (device == MKDEV(TTY_MAJOR, 0)) {
1740 extern struct tty_driver *console_driver;
1741 driver = tty_driver_kref_get(console_driver);
1742 index = fg_console;
1743 noctty = 1;
1744 goto got_driver;
1746 #endif
1747 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1748 struct tty_driver *console_driver = console_device(&index);
1749 if (console_driver) {
1750 driver = tty_driver_kref_get(console_driver);
1751 if (driver) {
1752 /* Don't let /dev/console block */
1753 filp->f_flags |= O_NONBLOCK;
1754 noctty = 1;
1755 goto got_driver;
1758 mutex_unlock(&tty_mutex);
1759 return -ENODEV;
1762 driver = get_tty_driver(device, &index);
1763 if (!driver) {
1764 mutex_unlock(&tty_mutex);
1765 return -ENODEV;
1767 got_driver:
1768 if (!tty) {
1769 /* check whether we're reopening an existing tty */
1770 tty = tty_driver_lookup_tty(driver, inode, index);
1772 if (IS_ERR(tty)) {
1773 mutex_unlock(&tty_mutex);
1774 return PTR_ERR(tty);
1778 if (tty) {
1779 retval = tty_reopen(tty);
1780 if (retval)
1781 tty = ERR_PTR(retval);
1782 } else
1783 tty = tty_init_dev(driver, index, 0);
1785 mutex_unlock(&tty_mutex);
1786 tty_driver_kref_put(driver);
1787 if (IS_ERR(tty))
1788 return PTR_ERR(tty);
1790 filp->private_data = tty;
1791 file_move(filp, &tty->tty_files);
1792 check_tty_count(tty, "tty_open");
1793 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1794 tty->driver->subtype == PTY_TYPE_MASTER)
1795 noctty = 1;
1796 #ifdef TTY_DEBUG_HANGUP
1797 printk(KERN_DEBUG "opening %s...", tty->name);
1798 #endif
1799 if (!retval) {
1800 if (tty->ops->open)
1801 retval = tty->ops->open(tty, filp);
1802 else
1803 retval = -ENODEV;
1805 filp->f_flags = saved_flags;
1807 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1808 !capable(CAP_SYS_ADMIN))
1809 retval = -EBUSY;
1811 if (retval) {
1812 #ifdef TTY_DEBUG_HANGUP
1813 printk(KERN_DEBUG "error %d in opening %s...", retval,
1814 tty->name);
1815 #endif
1816 tty_release_dev(filp);
1817 if (retval != -ERESTARTSYS)
1818 return retval;
1819 if (signal_pending(current))
1820 return retval;
1821 schedule();
1823 * Need to reset f_op in case a hangup happened.
1825 if (filp->f_op == &hung_up_tty_fops)
1826 filp->f_op = &tty_fops;
1827 goto retry_open;
1830 mutex_lock(&tty_mutex);
1831 spin_lock_irq(&current->sighand->siglock);
1832 if (!noctty &&
1833 current->signal->leader &&
1834 !current->signal->tty &&
1835 tty->session == NULL)
1836 __proc_set_tty(current, tty);
1837 spin_unlock_irq(&current->sighand->siglock);
1838 mutex_unlock(&tty_mutex);
1839 return 0;
1842 /* BKL pushdown: scary code avoidance wrapper */
1843 static int tty_open(struct inode *inode, struct file *filp)
1845 int ret;
1847 lock_kernel();
1848 ret = __tty_open(inode, filp);
1849 unlock_kernel();
1850 return ret;
1857 * tty_release - vfs callback for close
1858 * @inode: inode of tty
1859 * @filp: file pointer for handle to tty
1861 * Called the last time each file handle is closed that references
1862 * this tty. There may however be several such references.
1864 * Locking:
1865 * Takes bkl. See tty_release_dev
1868 static int tty_release(struct inode *inode, struct file *filp)
1870 lock_kernel();
1871 tty_release_dev(filp);
1872 unlock_kernel();
1873 return 0;
1877 * tty_poll - check tty status
1878 * @filp: file being polled
1879 * @wait: poll wait structures to update
1881 * Call the line discipline polling method to obtain the poll
1882 * status of the device.
1884 * Locking: locks called line discipline but ldisc poll method
1885 * may be re-entered freely by other callers.
1888 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1890 struct tty_struct *tty;
1891 struct tty_ldisc *ld;
1892 int ret = 0;
1894 tty = (struct tty_struct *)filp->private_data;
1895 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1896 return 0;
1898 ld = tty_ldisc_ref_wait(tty);
1899 if (ld->ops->poll)
1900 ret = (ld->ops->poll)(tty, filp, wait);
1901 tty_ldisc_deref(ld);
1902 return ret;
1905 static int tty_fasync(int fd, struct file *filp, int on)
1907 struct tty_struct *tty;
1908 unsigned long flags;
1909 int retval = 0;
1911 lock_kernel();
1912 tty = (struct tty_struct *)filp->private_data;
1913 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1914 goto out;
1916 retval = fasync_helper(fd, filp, on, &tty->fasync);
1917 if (retval <= 0)
1918 goto out;
1920 if (on) {
1921 enum pid_type type;
1922 struct pid *pid;
1923 if (!waitqueue_active(&tty->read_wait))
1924 tty->minimum_to_wake = 1;
1925 spin_lock_irqsave(&tty->ctrl_lock, flags);
1926 if (tty->pgrp) {
1927 pid = tty->pgrp;
1928 type = PIDTYPE_PGID;
1929 } else {
1930 pid = task_pid(current);
1931 type = PIDTYPE_PID;
1933 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1934 retval = __f_setown(filp, pid, type, 0);
1935 if (retval)
1936 goto out;
1937 } else {
1938 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1939 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1941 retval = 0;
1942 out:
1943 unlock_kernel();
1944 return retval;
1948 * tiocsti - fake input character
1949 * @tty: tty to fake input into
1950 * @p: pointer to character
1952 * Fake input to a tty device. Does the necessary locking and
1953 * input management.
1955 * FIXME: does not honour flow control ??
1957 * Locking:
1958 * Called functions take tty_ldisc_lock
1959 * current->signal->tty check is safe without locks
1961 * FIXME: may race normal receive processing
1964 static int tiocsti(struct tty_struct *tty, char __user *p)
1966 char ch, mbz = 0;
1967 struct tty_ldisc *ld;
1969 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1970 return -EPERM;
1971 if (get_user(ch, p))
1972 return -EFAULT;
1973 tty_audit_tiocsti(tty, ch);
1974 ld = tty_ldisc_ref_wait(tty);
1975 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1976 tty_ldisc_deref(ld);
1977 return 0;
1981 * tiocgwinsz - implement window query ioctl
1982 * @tty; tty
1983 * @arg: user buffer for result
1985 * Copies the kernel idea of the window size into the user buffer.
1987 * Locking: tty->termios_mutex is taken to ensure the winsize data
1988 * is consistent.
1991 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
1993 int err;
1995 mutex_lock(&tty->termios_mutex);
1996 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
1997 mutex_unlock(&tty->termios_mutex);
1999 return err ? -EFAULT: 0;
2003 * tty_do_resize - resize event
2004 * @tty: tty being resized
2005 * @rows: rows (character)
2006 * @cols: cols (character)
2008 * Update the termios variables and send the neccessary signals to
2009 * peform a terminal resize correctly
2012 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2014 struct pid *pgrp;
2015 unsigned long flags;
2017 /* Lock the tty */
2018 mutex_lock(&tty->termios_mutex);
2019 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2020 goto done;
2021 /* Get the PID values and reference them so we can
2022 avoid holding the tty ctrl lock while sending signals */
2023 spin_lock_irqsave(&tty->ctrl_lock, flags);
2024 pgrp = get_pid(tty->pgrp);
2025 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2027 if (pgrp)
2028 kill_pgrp(pgrp, SIGWINCH, 1);
2029 put_pid(pgrp);
2031 tty->winsize = *ws;
2032 done:
2033 mutex_unlock(&tty->termios_mutex);
2034 return 0;
2038 * tiocswinsz - implement window size set ioctl
2039 * @tty; tty side of tty
2040 * @arg: user buffer for result
2042 * Copies the user idea of the window size to the kernel. Traditionally
2043 * this is just advisory information but for the Linux console it
2044 * actually has driver level meaning and triggers a VC resize.
2046 * Locking:
2047 * Driver dependant. The default do_resize method takes the
2048 * tty termios mutex and ctrl_lock. The console takes its own lock
2049 * then calls into the default method.
2052 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2054 struct winsize tmp_ws;
2055 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2056 return -EFAULT;
2058 if (tty->ops->resize)
2059 return tty->ops->resize(tty, &tmp_ws);
2060 else
2061 return tty_do_resize(tty, &tmp_ws);
2065 * tioccons - allow admin to move logical console
2066 * @file: the file to become console
2068 * Allow the adminstrator to move the redirected console device
2070 * Locking: uses redirect_lock to guard the redirect information
2073 static int tioccons(struct file *file)
2075 if (!capable(CAP_SYS_ADMIN))
2076 return -EPERM;
2077 if (file->f_op->write == redirected_tty_write) {
2078 struct file *f;
2079 spin_lock(&redirect_lock);
2080 f = redirect;
2081 redirect = NULL;
2082 spin_unlock(&redirect_lock);
2083 if (f)
2084 fput(f);
2085 return 0;
2087 spin_lock(&redirect_lock);
2088 if (redirect) {
2089 spin_unlock(&redirect_lock);
2090 return -EBUSY;
2092 get_file(file);
2093 redirect = file;
2094 spin_unlock(&redirect_lock);
2095 return 0;
2099 * fionbio - non blocking ioctl
2100 * @file: file to set blocking value
2101 * @p: user parameter
2103 * Historical tty interfaces had a blocking control ioctl before
2104 * the generic functionality existed. This piece of history is preserved
2105 * in the expected tty API of posix OS's.
2107 * Locking: none, the open file handle ensures it won't go away.
2110 static int fionbio(struct file *file, int __user *p)
2112 int nonblock;
2114 if (get_user(nonblock, p))
2115 return -EFAULT;
2117 spin_lock(&file->f_lock);
2118 if (nonblock)
2119 file->f_flags |= O_NONBLOCK;
2120 else
2121 file->f_flags &= ~O_NONBLOCK;
2122 spin_unlock(&file->f_lock);
2123 return 0;
2127 * tiocsctty - set controlling tty
2128 * @tty: tty structure
2129 * @arg: user argument
2131 * This ioctl is used to manage job control. It permits a session
2132 * leader to set this tty as the controlling tty for the session.
2134 * Locking:
2135 * Takes tty_mutex() to protect tty instance
2136 * Takes tasklist_lock internally to walk sessions
2137 * Takes ->siglock() when updating signal->tty
2140 static int tiocsctty(struct tty_struct *tty, int arg)
2142 int ret = 0;
2143 if (current->signal->leader && (task_session(current) == tty->session))
2144 return ret;
2146 mutex_lock(&tty_mutex);
2148 * The process must be a session leader and
2149 * not have a controlling tty already.
2151 if (!current->signal->leader || current->signal->tty) {
2152 ret = -EPERM;
2153 goto unlock;
2156 if (tty->session) {
2158 * This tty is already the controlling
2159 * tty for another session group!
2161 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2163 * Steal it away
2165 read_lock(&tasklist_lock);
2166 session_clear_tty(tty->session);
2167 read_unlock(&tasklist_lock);
2168 } else {
2169 ret = -EPERM;
2170 goto unlock;
2173 proc_set_tty(current, tty);
2174 unlock:
2175 mutex_unlock(&tty_mutex);
2176 return ret;
2180 * tty_get_pgrp - return a ref counted pgrp pid
2181 * @tty: tty to read
2183 * Returns a refcounted instance of the pid struct for the process
2184 * group controlling the tty.
2187 struct pid *tty_get_pgrp(struct tty_struct *tty)
2189 unsigned long flags;
2190 struct pid *pgrp;
2192 spin_lock_irqsave(&tty->ctrl_lock, flags);
2193 pgrp = get_pid(tty->pgrp);
2194 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2196 return pgrp;
2198 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2201 * tiocgpgrp - get process group
2202 * @tty: tty passed by user
2203 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2204 * @p: returned pid
2206 * Obtain the process group of the tty. If there is no process group
2207 * return an error.
2209 * Locking: none. Reference to current->signal->tty is safe.
2212 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2214 struct pid *pid;
2215 int ret;
2217 * (tty == real_tty) is a cheap way of
2218 * testing if the tty is NOT a master pty.
2220 if (tty == real_tty && current->signal->tty != real_tty)
2221 return -ENOTTY;
2222 pid = tty_get_pgrp(real_tty);
2223 ret = put_user(pid_vnr(pid), p);
2224 put_pid(pid);
2225 return ret;
2229 * tiocspgrp - attempt to set process group
2230 * @tty: tty passed by user
2231 * @real_tty: tty side device matching tty passed by user
2232 * @p: pid pointer
2234 * Set the process group of the tty to the session passed. Only
2235 * permitted where the tty session is our session.
2237 * Locking: RCU, ctrl lock
2240 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2242 struct pid *pgrp;
2243 pid_t pgrp_nr;
2244 int retval = tty_check_change(real_tty);
2245 unsigned long flags;
2247 if (retval == -EIO)
2248 return -ENOTTY;
2249 if (retval)
2250 return retval;
2251 if (!current->signal->tty ||
2252 (current->signal->tty != real_tty) ||
2253 (real_tty->session != task_session(current)))
2254 return -ENOTTY;
2255 if (get_user(pgrp_nr, p))
2256 return -EFAULT;
2257 if (pgrp_nr < 0)
2258 return -EINVAL;
2259 rcu_read_lock();
2260 pgrp = find_vpid(pgrp_nr);
2261 retval = -ESRCH;
2262 if (!pgrp)
2263 goto out_unlock;
2264 retval = -EPERM;
2265 if (session_of_pgrp(pgrp) != task_session(current))
2266 goto out_unlock;
2267 retval = 0;
2268 spin_lock_irqsave(&tty->ctrl_lock, flags);
2269 put_pid(real_tty->pgrp);
2270 real_tty->pgrp = get_pid(pgrp);
2271 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2272 out_unlock:
2273 rcu_read_unlock();
2274 return retval;
2278 * tiocgsid - get session id
2279 * @tty: tty passed by user
2280 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2281 * @p: pointer to returned session id
2283 * Obtain the session id of the tty. If there is no session
2284 * return an error.
2286 * Locking: none. Reference to current->signal->tty is safe.
2289 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2292 * (tty == real_tty) is a cheap way of
2293 * testing if the tty is NOT a master pty.
2295 if (tty == real_tty && current->signal->tty != real_tty)
2296 return -ENOTTY;
2297 if (!real_tty->session)
2298 return -ENOTTY;
2299 return put_user(pid_vnr(real_tty->session), p);
2303 * tiocsetd - set line discipline
2304 * @tty: tty device
2305 * @p: pointer to user data
2307 * Set the line discipline according to user request.
2309 * Locking: see tty_set_ldisc, this function is just a helper
2312 static int tiocsetd(struct tty_struct *tty, int __user *p)
2314 int ldisc;
2315 int ret;
2317 if (get_user(ldisc, p))
2318 return -EFAULT;
2320 lock_kernel();
2321 ret = tty_set_ldisc(tty, ldisc);
2322 unlock_kernel();
2324 return ret;
2328 * send_break - performed time break
2329 * @tty: device to break on
2330 * @duration: timeout in mS
2332 * Perform a timed break on hardware that lacks its own driver level
2333 * timed break functionality.
2335 * Locking:
2336 * atomic_write_lock serializes
2340 static int send_break(struct tty_struct *tty, unsigned int duration)
2342 int retval;
2344 if (tty->ops->break_ctl == NULL)
2345 return 0;
2347 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2348 retval = tty->ops->break_ctl(tty, duration);
2349 else {
2350 /* Do the work ourselves */
2351 if (tty_write_lock(tty, 0) < 0)
2352 return -EINTR;
2353 retval = tty->ops->break_ctl(tty, -1);
2354 if (retval)
2355 goto out;
2356 if (!signal_pending(current))
2357 msleep_interruptible(duration);
2358 retval = tty->ops->break_ctl(tty, 0);
2359 out:
2360 tty_write_unlock(tty);
2361 if (signal_pending(current))
2362 retval = -EINTR;
2364 return retval;
2368 * tty_tiocmget - get modem status
2369 * @tty: tty device
2370 * @file: user file pointer
2371 * @p: pointer to result
2373 * Obtain the modem status bits from the tty driver if the feature
2374 * is supported. Return -EINVAL if it is not available.
2376 * Locking: none (up to the driver)
2379 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2381 int retval = -EINVAL;
2383 if (tty->ops->tiocmget) {
2384 retval = tty->ops->tiocmget(tty, file);
2386 if (retval >= 0)
2387 retval = put_user(retval, p);
2389 return retval;
2393 * tty_tiocmset - set modem status
2394 * @tty: tty device
2395 * @file: user file pointer
2396 * @cmd: command - clear bits, set bits or set all
2397 * @p: pointer to desired bits
2399 * Set the modem status bits from the tty driver if the feature
2400 * is supported. Return -EINVAL if it is not available.
2402 * Locking: none (up to the driver)
2405 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2406 unsigned __user *p)
2408 int retval;
2409 unsigned int set, clear, val;
2411 if (tty->ops->tiocmset == NULL)
2412 return -EINVAL;
2414 retval = get_user(val, p);
2415 if (retval)
2416 return retval;
2417 set = clear = 0;
2418 switch (cmd) {
2419 case TIOCMBIS:
2420 set = val;
2421 break;
2422 case TIOCMBIC:
2423 clear = val;
2424 break;
2425 case TIOCMSET:
2426 set = val;
2427 clear = ~val;
2428 break;
2430 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2431 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2432 return tty->ops->tiocmset(tty, file, set, clear);
2435 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2437 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2438 tty->driver->subtype == PTY_TYPE_MASTER)
2439 tty = tty->link;
2440 return tty;
2442 EXPORT_SYMBOL(tty_pair_get_tty);
2444 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2446 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2447 tty->driver->subtype == PTY_TYPE_MASTER)
2448 return tty;
2449 return tty->link;
2451 EXPORT_SYMBOL(tty_pair_get_pty);
2454 * Split this up, as gcc can choke on it otherwise..
2456 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2458 struct tty_struct *tty, *real_tty;
2459 void __user *p = (void __user *)arg;
2460 int retval;
2461 struct tty_ldisc *ld;
2462 struct inode *inode = file->f_dentry->d_inode;
2464 tty = (struct tty_struct *)file->private_data;
2465 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2466 return -EINVAL;
2468 real_tty = tty_pair_get_tty(tty);
2471 * Factor out some common prep work
2473 switch (cmd) {
2474 case TIOCSETD:
2475 case TIOCSBRK:
2476 case TIOCCBRK:
2477 case TCSBRK:
2478 case TCSBRKP:
2479 retval = tty_check_change(tty);
2480 if (retval)
2481 return retval;
2482 if (cmd != TIOCCBRK) {
2483 tty_wait_until_sent(tty, 0);
2484 if (signal_pending(current))
2485 return -EINTR;
2487 break;
2491 * Now do the stuff.
2493 switch (cmd) {
2494 case TIOCSTI:
2495 return tiocsti(tty, p);
2496 case TIOCGWINSZ:
2497 return tiocgwinsz(real_tty, p);
2498 case TIOCSWINSZ:
2499 return tiocswinsz(real_tty, p);
2500 case TIOCCONS:
2501 return real_tty != tty ? -EINVAL : tioccons(file);
2502 case FIONBIO:
2503 return fionbio(file, p);
2504 case TIOCEXCL:
2505 set_bit(TTY_EXCLUSIVE, &tty->flags);
2506 return 0;
2507 case TIOCNXCL:
2508 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2509 return 0;
2510 case TIOCNOTTY:
2511 if (current->signal->tty != tty)
2512 return -ENOTTY;
2513 no_tty();
2514 return 0;
2515 case TIOCSCTTY:
2516 return tiocsctty(tty, arg);
2517 case TIOCGPGRP:
2518 return tiocgpgrp(tty, real_tty, p);
2519 case TIOCSPGRP:
2520 return tiocspgrp(tty, real_tty, p);
2521 case TIOCGSID:
2522 return tiocgsid(tty, real_tty, p);
2523 case TIOCGETD:
2524 return put_user(tty->ldisc->ops->num, (int __user *)p);
2525 case TIOCSETD:
2526 return tiocsetd(tty, p);
2528 * Break handling
2530 case TIOCSBRK: /* Turn break on, unconditionally */
2531 if (tty->ops->break_ctl)
2532 return tty->ops->break_ctl(tty, -1);
2533 return 0;
2534 case TIOCCBRK: /* Turn break off, unconditionally */
2535 if (tty->ops->break_ctl)
2536 return tty->ops->break_ctl(tty, 0);
2537 return 0;
2538 case TCSBRK: /* SVID version: non-zero arg --> no break */
2539 /* non-zero arg means wait for all output data
2540 * to be sent (performed above) but don't send break.
2541 * This is used by the tcdrain() termios function.
2543 if (!arg)
2544 return send_break(tty, 250);
2545 return 0;
2546 case TCSBRKP: /* support for POSIX tcsendbreak() */
2547 return send_break(tty, arg ? arg*100 : 250);
2549 case TIOCMGET:
2550 return tty_tiocmget(tty, file, p);
2551 case TIOCMSET:
2552 case TIOCMBIC:
2553 case TIOCMBIS:
2554 return tty_tiocmset(tty, file, cmd, p);
2555 case TCFLSH:
2556 switch (arg) {
2557 case TCIFLUSH:
2558 case TCIOFLUSH:
2559 /* flush tty buffer and allow ldisc to process ioctl */
2560 tty_buffer_flush(tty);
2561 break;
2563 break;
2565 if (tty->ops->ioctl) {
2566 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2567 if (retval != -ENOIOCTLCMD)
2568 return retval;
2570 ld = tty_ldisc_ref_wait(tty);
2571 retval = -EINVAL;
2572 if (ld->ops->ioctl) {
2573 retval = ld->ops->ioctl(tty, file, cmd, arg);
2574 if (retval == -ENOIOCTLCMD)
2575 retval = -EINVAL;
2577 tty_ldisc_deref(ld);
2578 return retval;
2581 #ifdef CONFIG_COMPAT
2582 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2583 unsigned long arg)
2585 struct inode *inode = file->f_dentry->d_inode;
2586 struct tty_struct *tty = file->private_data;
2587 struct tty_ldisc *ld;
2588 int retval = -ENOIOCTLCMD;
2590 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2591 return -EINVAL;
2593 if (tty->ops->compat_ioctl) {
2594 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2595 if (retval != -ENOIOCTLCMD)
2596 return retval;
2599 ld = tty_ldisc_ref_wait(tty);
2600 if (ld->ops->compat_ioctl)
2601 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2602 tty_ldisc_deref(ld);
2604 return retval;
2606 #endif
2609 * This implements the "Secure Attention Key" --- the idea is to
2610 * prevent trojan horses by killing all processes associated with this
2611 * tty when the user hits the "Secure Attention Key". Required for
2612 * super-paranoid applications --- see the Orange Book for more details.
2614 * This code could be nicer; ideally it should send a HUP, wait a few
2615 * seconds, then send a INT, and then a KILL signal. But you then
2616 * have to coordinate with the init process, since all processes associated
2617 * with the current tty must be dead before the new getty is allowed
2618 * to spawn.
2620 * Now, if it would be correct ;-/ The current code has a nasty hole -
2621 * it doesn't catch files in flight. We may send the descriptor to ourselves
2622 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2624 * Nasty bug: do_SAK is being called in interrupt context. This can
2625 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2627 void __do_SAK(struct tty_struct *tty)
2629 #ifdef TTY_SOFT_SAK
2630 tty_hangup(tty);
2631 #else
2632 struct task_struct *g, *p;
2633 struct pid *session;
2634 int i;
2635 struct file *filp;
2636 struct fdtable *fdt;
2638 if (!tty)
2639 return;
2640 session = tty->session;
2642 tty_ldisc_flush(tty);
2644 tty_driver_flush_buffer(tty);
2646 read_lock(&tasklist_lock);
2647 /* Kill the entire session */
2648 do_each_pid_task(session, PIDTYPE_SID, p) {
2649 printk(KERN_NOTICE "SAK: killed process %d"
2650 " (%s): task_session(p)==tty->session\n",
2651 task_pid_nr(p), p->comm);
2652 send_sig(SIGKILL, p, 1);
2653 } while_each_pid_task(session, PIDTYPE_SID, p);
2654 /* Now kill any processes that happen to have the
2655 * tty open.
2657 do_each_thread(g, p) {
2658 if (p->signal->tty == tty) {
2659 printk(KERN_NOTICE "SAK: killed process %d"
2660 " (%s): task_session(p)==tty->session\n",
2661 task_pid_nr(p), p->comm);
2662 send_sig(SIGKILL, p, 1);
2663 continue;
2665 task_lock(p);
2666 if (p->files) {
2668 * We don't take a ref to the file, so we must
2669 * hold ->file_lock instead.
2671 spin_lock(&p->files->file_lock);
2672 fdt = files_fdtable(p->files);
2673 for (i = 0; i < fdt->max_fds; i++) {
2674 filp = fcheck_files(p->files, i);
2675 if (!filp)
2676 continue;
2677 if (filp->f_op->read == tty_read &&
2678 filp->private_data == tty) {
2679 printk(KERN_NOTICE "SAK: killed process %d"
2680 " (%s): fd#%d opened to the tty\n",
2681 task_pid_nr(p), p->comm, i);
2682 force_sig(SIGKILL, p);
2683 break;
2686 spin_unlock(&p->files->file_lock);
2688 task_unlock(p);
2689 } while_each_thread(g, p);
2690 read_unlock(&tasklist_lock);
2691 #endif
2694 static void do_SAK_work(struct work_struct *work)
2696 struct tty_struct *tty =
2697 container_of(work, struct tty_struct, SAK_work);
2698 __do_SAK(tty);
2702 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2703 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2704 * the values which we write to it will be identical to the values which it
2705 * already has. --akpm
2707 void do_SAK(struct tty_struct *tty)
2709 if (!tty)
2710 return;
2711 schedule_work(&tty->SAK_work);
2714 EXPORT_SYMBOL(do_SAK);
2717 * initialize_tty_struct
2718 * @tty: tty to initialize
2720 * This subroutine initializes a tty structure that has been newly
2721 * allocated.
2723 * Locking: none - tty in question must not be exposed at this point
2726 void initialize_tty_struct(struct tty_struct *tty,
2727 struct tty_driver *driver, int idx)
2729 memset(tty, 0, sizeof(struct tty_struct));
2730 kref_init(&tty->kref);
2731 tty->magic = TTY_MAGIC;
2732 tty_ldisc_init(tty);
2733 tty->session = NULL;
2734 tty->pgrp = NULL;
2735 tty->overrun_time = jiffies;
2736 tty->buf.head = tty->buf.tail = NULL;
2737 tty_buffer_init(tty);
2738 mutex_init(&tty->termios_mutex);
2739 mutex_init(&tty->ldisc_mutex);
2740 init_waitqueue_head(&tty->write_wait);
2741 init_waitqueue_head(&tty->read_wait);
2742 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2743 mutex_init(&tty->atomic_read_lock);
2744 mutex_init(&tty->atomic_write_lock);
2745 mutex_init(&tty->output_lock);
2746 mutex_init(&tty->echo_lock);
2747 spin_lock_init(&tty->read_lock);
2748 spin_lock_init(&tty->ctrl_lock);
2749 INIT_LIST_HEAD(&tty->tty_files);
2750 INIT_WORK(&tty->SAK_work, do_SAK_work);
2752 tty->driver = driver;
2753 tty->ops = driver->ops;
2754 tty->index = idx;
2755 tty_line_name(driver, idx, tty->name);
2759 * tty_put_char - write one character to a tty
2760 * @tty: tty
2761 * @ch: character
2763 * Write one byte to the tty using the provided put_char method
2764 * if present. Returns the number of characters successfully output.
2766 * Note: the specific put_char operation in the driver layer may go
2767 * away soon. Don't call it directly, use this method
2770 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2772 if (tty->ops->put_char)
2773 return tty->ops->put_char(tty, ch);
2774 return tty->ops->write(tty, &ch, 1);
2776 EXPORT_SYMBOL_GPL(tty_put_char);
2778 struct class *tty_class;
2781 * tty_register_device - register a tty device
2782 * @driver: the tty driver that describes the tty device
2783 * @index: the index in the tty driver for this tty device
2784 * @device: a struct device that is associated with this tty device.
2785 * This field is optional, if there is no known struct device
2786 * for this tty device it can be set to NULL safely.
2788 * Returns a pointer to the struct device for this tty device
2789 * (or ERR_PTR(-EFOO) on error).
2791 * This call is required to be made to register an individual tty device
2792 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2793 * that bit is not set, this function should not be called by a tty
2794 * driver.
2796 * Locking: ??
2799 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2800 struct device *device)
2802 char name[64];
2803 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2805 if (index >= driver->num) {
2806 printk(KERN_ERR "Attempt to register invalid tty line number "
2807 " (%d).\n", index);
2808 return ERR_PTR(-EINVAL);
2811 if (driver->type == TTY_DRIVER_TYPE_PTY)
2812 pty_line_name(driver, index, name);
2813 else
2814 tty_line_name(driver, index, name);
2816 return device_create(tty_class, device, dev, NULL, name);
2818 EXPORT_SYMBOL(tty_register_device);
2821 * tty_unregister_device - unregister a tty device
2822 * @driver: the tty driver that describes the tty device
2823 * @index: the index in the tty driver for this tty device
2825 * If a tty device is registered with a call to tty_register_device() then
2826 * this function must be called when the tty device is gone.
2828 * Locking: ??
2831 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2833 device_destroy(tty_class,
2834 MKDEV(driver->major, driver->minor_start) + index);
2836 EXPORT_SYMBOL(tty_unregister_device);
2838 struct tty_driver *alloc_tty_driver(int lines)
2840 struct tty_driver *driver;
2842 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2843 if (driver) {
2844 kref_init(&driver->kref);
2845 driver->magic = TTY_DRIVER_MAGIC;
2846 driver->num = lines;
2847 /* later we'll move allocation of tables here */
2849 return driver;
2851 EXPORT_SYMBOL(alloc_tty_driver);
2853 static void destruct_tty_driver(struct kref *kref)
2855 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2856 int i;
2857 struct ktermios *tp;
2858 void *p;
2860 if (driver->flags & TTY_DRIVER_INSTALLED) {
2862 * Free the termios and termios_locked structures because
2863 * we don't want to get memory leaks when modular tty
2864 * drivers are removed from the kernel.
2866 for (i = 0; i < driver->num; i++) {
2867 tp = driver->termios[i];
2868 if (tp) {
2869 driver->termios[i] = NULL;
2870 kfree(tp);
2872 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2873 tty_unregister_device(driver, i);
2875 p = driver->ttys;
2876 proc_tty_unregister_driver(driver);
2877 driver->ttys = NULL;
2878 driver->termios = NULL;
2879 kfree(p);
2880 cdev_del(&driver->cdev);
2882 kfree(driver);
2885 void tty_driver_kref_put(struct tty_driver *driver)
2887 kref_put(&driver->kref, destruct_tty_driver);
2889 EXPORT_SYMBOL(tty_driver_kref_put);
2891 void tty_set_operations(struct tty_driver *driver,
2892 const struct tty_operations *op)
2894 driver->ops = op;
2896 EXPORT_SYMBOL(tty_set_operations);
2898 void put_tty_driver(struct tty_driver *d)
2900 tty_driver_kref_put(d);
2902 EXPORT_SYMBOL(put_tty_driver);
2905 * Called by a tty driver to register itself.
2907 int tty_register_driver(struct tty_driver *driver)
2909 int error;
2910 int i;
2911 dev_t dev;
2912 void **p = NULL;
2914 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2915 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2916 if (!p)
2917 return -ENOMEM;
2920 if (!driver->major) {
2921 error = alloc_chrdev_region(&dev, driver->minor_start,
2922 driver->num, driver->name);
2923 if (!error) {
2924 driver->major = MAJOR(dev);
2925 driver->minor_start = MINOR(dev);
2927 } else {
2928 dev = MKDEV(driver->major, driver->minor_start);
2929 error = register_chrdev_region(dev, driver->num, driver->name);
2931 if (error < 0) {
2932 kfree(p);
2933 return error;
2936 if (p) {
2937 driver->ttys = (struct tty_struct **)p;
2938 driver->termios = (struct ktermios **)(p + driver->num);
2939 } else {
2940 driver->ttys = NULL;
2941 driver->termios = NULL;
2944 cdev_init(&driver->cdev, &tty_fops);
2945 driver->cdev.owner = driver->owner;
2946 error = cdev_add(&driver->cdev, dev, driver->num);
2947 if (error) {
2948 unregister_chrdev_region(dev, driver->num);
2949 driver->ttys = NULL;
2950 driver->termios = NULL;
2951 kfree(p);
2952 return error;
2955 mutex_lock(&tty_mutex);
2956 list_add(&driver->tty_drivers, &tty_drivers);
2957 mutex_unlock(&tty_mutex);
2959 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2960 for (i = 0; i < driver->num; i++)
2961 tty_register_device(driver, i, NULL);
2963 proc_tty_register_driver(driver);
2964 driver->flags |= TTY_DRIVER_INSTALLED;
2965 return 0;
2968 EXPORT_SYMBOL(tty_register_driver);
2971 * Called by a tty driver to unregister itself.
2973 int tty_unregister_driver(struct tty_driver *driver)
2975 #if 0
2976 /* FIXME */
2977 if (driver->refcount)
2978 return -EBUSY;
2979 #endif
2980 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
2981 driver->num);
2982 mutex_lock(&tty_mutex);
2983 list_del(&driver->tty_drivers);
2984 mutex_unlock(&tty_mutex);
2985 return 0;
2988 EXPORT_SYMBOL(tty_unregister_driver);
2990 dev_t tty_devnum(struct tty_struct *tty)
2992 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
2994 EXPORT_SYMBOL(tty_devnum);
2996 void proc_clear_tty(struct task_struct *p)
2998 unsigned long flags;
2999 struct tty_struct *tty;
3000 spin_lock_irqsave(&p->sighand->siglock, flags);
3001 tty = p->signal->tty;
3002 p->signal->tty = NULL;
3003 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3004 tty_kref_put(tty);
3007 /* Called under the sighand lock */
3009 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3011 if (tty) {
3012 unsigned long flags;
3013 /* We should not have a session or pgrp to put here but.... */
3014 spin_lock_irqsave(&tty->ctrl_lock, flags);
3015 put_pid(tty->session);
3016 put_pid(tty->pgrp);
3017 tty->pgrp = get_pid(task_pgrp(tsk));
3018 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3019 tty->session = get_pid(task_session(tsk));
3020 if (tsk->signal->tty) {
3021 printk(KERN_DEBUG "tty not NULL!!\n");
3022 tty_kref_put(tsk->signal->tty);
3025 put_pid(tsk->signal->tty_old_pgrp);
3026 tsk->signal->tty = tty_kref_get(tty);
3027 tsk->signal->tty_old_pgrp = NULL;
3030 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3032 spin_lock_irq(&tsk->sighand->siglock);
3033 __proc_set_tty(tsk, tty);
3034 spin_unlock_irq(&tsk->sighand->siglock);
3037 struct tty_struct *get_current_tty(void)
3039 struct tty_struct *tty;
3040 unsigned long flags;
3042 spin_lock_irqsave(&current->sighand->siglock, flags);
3043 tty = tty_kref_get(current->signal->tty);
3044 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3045 return tty;
3047 EXPORT_SYMBOL_GPL(get_current_tty);
3049 void tty_default_fops(struct file_operations *fops)
3051 *fops = tty_fops;
3055 * Initialize the console device. This is called *early*, so
3056 * we can't necessarily depend on lots of kernel help here.
3057 * Just do some early initializations, and do the complex setup
3058 * later.
3060 void __init console_init(void)
3062 initcall_t *call;
3064 /* Setup the default TTY line discipline. */
3065 tty_ldisc_begin();
3068 * set up the console device so that later boot sequences can
3069 * inform about problems etc..
3071 call = __con_initcall_start;
3072 while (call < __con_initcall_end) {
3073 (*call)();
3074 call++;
3078 static char *tty_devnode(struct device *dev, mode_t *mode)
3080 if (!mode)
3081 return NULL;
3082 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3083 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3084 *mode = 0666;
3085 return NULL;
3088 static int __init tty_class_init(void)
3090 tty_class = class_create(THIS_MODULE, "tty");
3091 if (IS_ERR(tty_class))
3092 return PTR_ERR(tty_class);
3093 tty_class->devnode = tty_devnode;
3094 return 0;
3097 postcore_initcall(tty_class_init);
3099 /* 3/2004 jmc: why do these devices exist? */
3101 static struct cdev tty_cdev, console_cdev;
3104 * Ok, now we can initialize the rest of the tty devices and can count
3105 * on memory allocations, interrupts etc..
3107 static int __init tty_init(void)
3109 cdev_init(&tty_cdev, &tty_fops);
3110 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3111 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3112 panic("Couldn't register /dev/tty driver\n");
3113 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3114 "tty");
3116 cdev_init(&console_cdev, &console_fops);
3117 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3118 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3119 panic("Couldn't register /dev/console driver\n");
3120 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3121 "console");
3123 #ifdef CONFIG_VT
3124 vty_init(&console_fops);
3125 #endif
3126 return 0;
3128 module_init(tty_init);