5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
16 * pages on read / read_oob
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
23 * 04-14-2004 tglx: first working version for 2k page size chips
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
31 * 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
32 * Basically, any block not rewritten may lose data when surrounding blocks
33 * are rewritten many times. JFFS2 ensures this doesn't happen for blocks
34 * it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
35 * do not lose data, force them to be rewritten when some of the surrounding
36 * blocks are erased. Rather than tracking a specific nearby block (which
37 * could itself go bad), use a page address 'mask' to select several blocks
38 * in the same area, and rewrite the BBT when any of them are erased.
40 * 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
41 * AG-AND chips. If there was a sudden loss of power during an erase operation,
42 * a "device recovery" operation must be performed when power is restored
43 * to ensure correct operation.
45 * 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
46 * perform extra error status checks on erase and write failures. This required
47 * adding a wrapper function for nand_read_ecc.
49 * 08-20-2005 vwool: suspend/resume added
52 * David Woodhouse for adding multichip support
54 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
55 * rework for 2K page size chips
58 * Enable cached programming for 2k page size chips
59 * Check, if mtd->ecctype should be set to MTD_ECC_HW
60 * if we have HW ecc support.
61 * The AG-AND chips have nice features for speed improvement,
62 * which are not supported yet. Read / program 4 pages in one go.
64 * $Id: nand_base.c,v 1.150 2005/09/15 13:58:48 vwool Exp $
66 * This program is free software; you can redistribute it and/or modify
67 * it under the terms of the GNU General Public License version 2 as
68 * published by the Free Software Foundation.
72 #include <linux/module.h>
73 #include <linux/delay.h>
74 #include <linux/errno.h>
75 #include <linux/sched.h>
76 #include <linux/slab.h>
77 #include <linux/types.h>
78 #include <linux/mtd/mtd.h>
79 #include <linux/mtd/nand.h>
80 #include <linux/mtd/nand_ecc.h>
81 #include <linux/mtd/compatmac.h>
82 #include <linux/interrupt.h>
83 #include <linux/bitops.h>
84 #include <linux/leds.h>
87 #ifdef CONFIG_MTD_PARTITIONS
88 #include <linux/mtd/partitions.h>
91 /* Define default oob placement schemes for large and small page devices */
92 static struct nand_oobinfo nand_oob_8
= {
93 .useecc
= MTD_NANDECC_AUTOPLACE
,
96 .oobfree
= {{3, 2}, {6, 2}}
99 static struct nand_oobinfo nand_oob_16
= {
100 .useecc
= MTD_NANDECC_AUTOPLACE
,
102 .eccpos
= {0, 1, 2, 3, 6, 7},
106 static struct nand_oobinfo nand_oob_64
= {
107 .useecc
= MTD_NANDECC_AUTOPLACE
,
110 40, 41, 42, 43, 44, 45, 46, 47,
111 48, 49, 50, 51, 52, 53, 54, 55,
112 56, 57, 58, 59, 60, 61, 62, 63},
116 /* This is used for padding purposes in nand_write_oob */
117 static u_char ffchars
[] = {
118 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
129 * NAND low-level MTD interface functions
131 static void nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
);
132 static void nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
);
133 static int nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
);
135 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
);
136 static int nand_read_ecc(struct mtd_info
*mtd
, loff_t from
, size_t len
,
137 size_t *retlen
, u_char
*buf
, u_char
*eccbuf
, struct nand_oobinfo
*oobsel
);
138 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
);
139 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
, const u_char
*buf
);
140 static int nand_write_ecc(struct mtd_info
*mtd
, loff_t to
, size_t len
,
141 size_t *retlen
, const u_char
*buf
, u_char
*eccbuf
, struct nand_oobinfo
*oobsel
);
142 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
, const u_char
*buf
);
143 static int nand_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
, unsigned long count
, loff_t to
, size_t *retlen
);
144 static int nand_writev_ecc(struct mtd_info
*mtd
, const struct kvec
*vecs
,
145 unsigned long count
, loff_t to
, size_t *retlen
, u_char
*eccbuf
,
146 struct nand_oobinfo
*oobsel
);
147 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
);
148 static void nand_sync(struct mtd_info
*mtd
);
150 /* Some internal functions */
151 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*this, int page
, u_char
* oob_buf
,
152 struct nand_oobinfo
*oobsel
, int mode
);
153 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
154 static int nand_verify_pages(struct mtd_info
*mtd
, struct nand_chip
*this, int page
, int numpages
,
155 u_char
*oob_buf
, struct nand_oobinfo
*oobsel
, int chipnr
, int oobmode
);
157 #define nand_verify_pages(...) (0)
160 static int nand_get_device(struct nand_chip
*this, struct mtd_info
*mtd
, int new_state
);
163 * nand_release_device - [GENERIC] release chip
164 * @mtd: MTD device structure
166 * Deselect, release chip lock and wake up anyone waiting on the device
168 static void nand_release_device(struct mtd_info
*mtd
)
170 struct nand_chip
*this = mtd
->priv
;
172 /* De-select the NAND device */
173 this->select_chip(mtd
, -1);
175 if (this->controller
) {
176 /* Release the controller and the chip */
177 spin_lock(&this->controller
->lock
);
178 this->controller
->active
= NULL
;
179 this->state
= FL_READY
;
180 wake_up(&this->controller
->wq
);
181 spin_unlock(&this->controller
->lock
);
183 /* Release the chip */
184 spin_lock(&this->chip_lock
);
185 this->state
= FL_READY
;
187 spin_unlock(&this->chip_lock
);
192 * nand_read_byte - [DEFAULT] read one byte from the chip
193 * @mtd: MTD device structure
195 * Default read function for 8bit buswith
197 static u_char
nand_read_byte(struct mtd_info
*mtd
)
199 struct nand_chip
*this = mtd
->priv
;
200 return readb(this->IO_ADDR_R
);
204 * nand_write_byte - [DEFAULT] write one byte to the chip
205 * @mtd: MTD device structure
206 * @byte: pointer to data byte to write
208 * Default write function for 8it buswith
210 static void nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
212 struct nand_chip
*this = mtd
->priv
;
213 writeb(byte
, this->IO_ADDR_W
);
217 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
218 * @mtd: MTD device structure
220 * Default read function for 16bit buswith with
221 * endianess conversion
223 static u_char
nand_read_byte16(struct mtd_info
*mtd
)
225 struct nand_chip
*this = mtd
->priv
;
226 return (u_char
) cpu_to_le16(readw(this->IO_ADDR_R
));
230 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
231 * @mtd: MTD device structure
232 * @byte: pointer to data byte to write
234 * Default write function for 16bit buswith with
235 * endianess conversion
237 static void nand_write_byte16(struct mtd_info
*mtd
, u_char byte
)
239 struct nand_chip
*this = mtd
->priv
;
240 writew(le16_to_cpu((u16
) byte
), this->IO_ADDR_W
);
244 * nand_read_word - [DEFAULT] read one word from the chip
245 * @mtd: MTD device structure
247 * Default read function for 16bit buswith without
248 * endianess conversion
250 static u16
nand_read_word(struct mtd_info
*mtd
)
252 struct nand_chip
*this = mtd
->priv
;
253 return readw(this->IO_ADDR_R
);
257 * nand_write_word - [DEFAULT] write one word to the chip
258 * @mtd: MTD device structure
259 * @word: data word to write
261 * Default write function for 16bit buswith without
262 * endianess conversion
264 static void nand_write_word(struct mtd_info
*mtd
, u16 word
)
266 struct nand_chip
*this = mtd
->priv
;
267 writew(word
, this->IO_ADDR_W
);
271 * nand_select_chip - [DEFAULT] control CE line
272 * @mtd: MTD device structure
273 * @chip: chipnumber to select, -1 for deselect
275 * Default select function for 1 chip devices.
277 static void nand_select_chip(struct mtd_info
*mtd
, int chip
)
279 struct nand_chip
*this = mtd
->priv
;
282 this->hwcontrol(mtd
, NAND_CTL_CLRNCE
);
285 this->hwcontrol(mtd
, NAND_CTL_SETNCE
);
294 * nand_write_buf - [DEFAULT] write buffer to chip
295 * @mtd: MTD device structure
297 * @len: number of bytes to write
299 * Default write function for 8bit buswith
301 static void nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
304 struct nand_chip
*this = mtd
->priv
;
306 for (i
= 0; i
< len
; i
++)
307 writeb(buf
[i
], this->IO_ADDR_W
);
311 * nand_read_buf - [DEFAULT] read chip data into buffer
312 * @mtd: MTD device structure
313 * @buf: buffer to store date
314 * @len: number of bytes to read
316 * Default read function for 8bit buswith
318 static void nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
321 struct nand_chip
*this = mtd
->priv
;
323 for (i
= 0; i
< len
; i
++)
324 buf
[i
] = readb(this->IO_ADDR_R
);
328 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
329 * @mtd: MTD device structure
330 * @buf: buffer containing the data to compare
331 * @len: number of bytes to compare
333 * Default verify function for 8bit buswith
335 static int nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
338 struct nand_chip
*this = mtd
->priv
;
340 for (i
= 0; i
< len
; i
++)
341 if (buf
[i
] != readb(this->IO_ADDR_R
))
348 * nand_write_buf16 - [DEFAULT] write buffer to chip
349 * @mtd: MTD device structure
351 * @len: number of bytes to write
353 * Default write function for 16bit buswith
355 static void nand_write_buf16(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
358 struct nand_chip
*this = mtd
->priv
;
359 u16
*p
= (u16
*) buf
;
362 for (i
= 0; i
< len
; i
++)
363 writew(p
[i
], this->IO_ADDR_W
);
368 * nand_read_buf16 - [DEFAULT] read chip data into buffer
369 * @mtd: MTD device structure
370 * @buf: buffer to store date
371 * @len: number of bytes to read
373 * Default read function for 16bit buswith
375 static void nand_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
378 struct nand_chip
*this = mtd
->priv
;
379 u16
*p
= (u16
*) buf
;
382 for (i
= 0; i
< len
; i
++)
383 p
[i
] = readw(this->IO_ADDR_R
);
387 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
388 * @mtd: MTD device structure
389 * @buf: buffer containing the data to compare
390 * @len: number of bytes to compare
392 * Default verify function for 16bit buswith
394 static int nand_verify_buf16(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
397 struct nand_chip
*this = mtd
->priv
;
398 u16
*p
= (u16
*) buf
;
401 for (i
= 0; i
< len
; i
++)
402 if (p
[i
] != readw(this->IO_ADDR_R
))
409 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
410 * @mtd: MTD device structure
411 * @ofs: offset from device start
412 * @getchip: 0, if the chip is already selected
414 * Check, if the block is bad.
416 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
418 int page
, chipnr
, res
= 0;
419 struct nand_chip
*this = mtd
->priv
;
423 page
= (int)(ofs
>> this->page_shift
);
424 chipnr
= (int)(ofs
>> this->chip_shift
);
426 /* Grab the lock and see if the device is available */
427 nand_get_device(this, mtd
, FL_READING
);
429 /* Select the NAND device */
430 this->select_chip(mtd
, chipnr
);
434 if (this->options
& NAND_BUSWIDTH_16
) {
435 this->cmdfunc(mtd
, NAND_CMD_READOOB
, this->badblockpos
& 0xFE, page
& this->pagemask
);
436 bad
= cpu_to_le16(this->read_word(mtd
));
437 if (this->badblockpos
& 0x1)
439 if ((bad
& 0xFF) != 0xff)
442 this->cmdfunc(mtd
, NAND_CMD_READOOB
, this->badblockpos
, page
& this->pagemask
);
443 if (this->read_byte(mtd
) != 0xff)
448 /* Deselect and wake up anyone waiting on the device */
449 nand_release_device(mtd
);
456 * nand_default_block_markbad - [DEFAULT] mark a block bad
457 * @mtd: MTD device structure
458 * @ofs: offset from device start
460 * This is the default implementation, which can be overridden by
461 * a hardware specific driver.
463 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
465 struct nand_chip
*this = mtd
->priv
;
466 u_char buf
[2] = { 0, 0 };
470 /* Get block number */
471 block
= ((int)ofs
) >> this->bbt_erase_shift
;
473 this->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
475 /* Do we have a flash based bad block table ? */
476 if (this->options
& NAND_USE_FLASH_BBT
)
477 return nand_update_bbt(mtd
, ofs
);
479 /* We write two bytes, so we dont have to mess with 16 bit access */
480 ofs
+= mtd
->oobsize
+ (this->badblockpos
& ~0x01);
481 return nand_write_oob(mtd
, ofs
, 2, &retlen
, buf
);
485 * nand_check_wp - [GENERIC] check if the chip is write protected
486 * @mtd: MTD device structure
487 * Check, if the device is write protected
489 * The function expects, that the device is already selected
491 static int nand_check_wp(struct mtd_info
*mtd
)
493 struct nand_chip
*this = mtd
->priv
;
494 /* Check the WP bit */
495 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
496 return (this->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
500 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
501 * @mtd: MTD device structure
502 * @ofs: offset from device start
503 * @getchip: 0, if the chip is already selected
504 * @allowbbt: 1, if its allowed to access the bbt area
506 * Check, if the block is bad. Either by reading the bad block table or
507 * calling of the scan function.
509 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
, int allowbbt
)
511 struct nand_chip
*this = mtd
->priv
;
514 return this->block_bad(mtd
, ofs
, getchip
);
516 /* Return info from the table */
517 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
520 DEFINE_LED_TRIGGER(nand_led_trigger
);
523 * Wait for the ready pin, after a command
524 * The timeout is catched later.
526 static void nand_wait_ready(struct mtd_info
*mtd
)
528 struct nand_chip
*this = mtd
->priv
;
529 unsigned long timeo
= jiffies
+ 2;
531 led_trigger_event(nand_led_trigger
, LED_FULL
);
532 /* wait until command is processed or timeout occures */
534 if (this->dev_ready(mtd
))
536 touch_softlockup_watchdog();
537 } while (time_before(jiffies
, timeo
));
538 led_trigger_event(nand_led_trigger
, LED_OFF
);
542 * nand_command - [DEFAULT] Send command to NAND device
543 * @mtd: MTD device structure
544 * @command: the command to be sent
545 * @column: the column address for this command, -1 if none
546 * @page_addr: the page address for this command, -1 if none
548 * Send command to NAND device. This function is used for small page
549 * devices (256/512 Bytes per page)
551 static void nand_command(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
553 register struct nand_chip
*this = mtd
->priv
;
555 /* Begin command latch cycle */
556 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
558 * Write out the command to the device.
560 if (command
== NAND_CMD_SEQIN
) {
563 if (column
>= mtd
->oobblock
) {
565 column
-= mtd
->oobblock
;
566 readcmd
= NAND_CMD_READOOB
;
567 } else if (column
< 256) {
568 /* First 256 bytes --> READ0 */
569 readcmd
= NAND_CMD_READ0
;
572 readcmd
= NAND_CMD_READ1
;
574 this->write_byte(mtd
, readcmd
);
576 this->write_byte(mtd
, command
);
578 /* Set ALE and clear CLE to start address cycle */
579 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
581 if (column
!= -1 || page_addr
!= -1) {
582 this->hwcontrol(mtd
, NAND_CTL_SETALE
);
584 /* Serially input address */
586 /* Adjust columns for 16 bit buswidth */
587 if (this->options
& NAND_BUSWIDTH_16
)
589 this->write_byte(mtd
, column
);
591 if (page_addr
!= -1) {
592 this->write_byte(mtd
, (unsigned char)(page_addr
& 0xff));
593 this->write_byte(mtd
, (unsigned char)((page_addr
>> 8) & 0xff));
594 /* One more address cycle for devices > 32MiB */
595 if (this->chipsize
> (32 << 20))
596 this->write_byte(mtd
, (unsigned char)((page_addr
>> 16) & 0x0f));
598 /* Latch in address */
599 this->hwcontrol(mtd
, NAND_CTL_CLRALE
);
603 * program and erase have their own busy handlers
604 * status and sequential in needs no delay
608 case NAND_CMD_PAGEPROG
:
609 case NAND_CMD_ERASE1
:
610 case NAND_CMD_ERASE2
:
612 case NAND_CMD_STATUS
:
618 udelay(this->chip_delay
);
619 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
620 this->write_byte(mtd
, NAND_CMD_STATUS
);
621 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
622 while (!(this->read_byte(mtd
) & NAND_STATUS_READY
)) ;
625 /* This applies to read commands */
628 * If we don't have access to the busy pin, we apply the given
631 if (!this->dev_ready
) {
632 udelay(this->chip_delay
);
636 /* Apply this short delay always to ensure that we do wait tWB in
637 * any case on any machine. */
640 nand_wait_ready(mtd
);
644 * nand_command_lp - [DEFAULT] Send command to NAND large page device
645 * @mtd: MTD device structure
646 * @command: the command to be sent
647 * @column: the column address for this command, -1 if none
648 * @page_addr: the page address for this command, -1 if none
650 * Send command to NAND device. This is the version for the new large page devices
651 * We dont have the separate regions as we have in the small page devices.
652 * We must emulate NAND_CMD_READOOB to keep the code compatible.
655 static void nand_command_lp(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
657 register struct nand_chip
*this = mtd
->priv
;
659 /* Emulate NAND_CMD_READOOB */
660 if (command
== NAND_CMD_READOOB
) {
661 column
+= mtd
->oobblock
;
662 command
= NAND_CMD_READ0
;
665 /* Begin command latch cycle */
666 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
667 /* Write out the command to the device. */
668 this->write_byte(mtd
, (command
& 0xff));
669 /* End command latch cycle */
670 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
672 if (column
!= -1 || page_addr
!= -1) {
673 this->hwcontrol(mtd
, NAND_CTL_SETALE
);
675 /* Serially input address */
677 /* Adjust columns for 16 bit buswidth */
678 if (this->options
& NAND_BUSWIDTH_16
)
680 this->write_byte(mtd
, column
& 0xff);
681 this->write_byte(mtd
, column
>> 8);
683 if (page_addr
!= -1) {
684 this->write_byte(mtd
, (unsigned char)(page_addr
& 0xff));
685 this->write_byte(mtd
, (unsigned char)((page_addr
>> 8) & 0xff));
686 /* One more address cycle for devices > 128MiB */
687 if (this->chipsize
> (128 << 20))
688 this->write_byte(mtd
, (unsigned char)((page_addr
>> 16) & 0xff));
690 /* Latch in address */
691 this->hwcontrol(mtd
, NAND_CTL_CLRALE
);
695 * program and erase have their own busy handlers
696 * status, sequential in, and deplete1 need no delay
700 case NAND_CMD_CACHEDPROG
:
701 case NAND_CMD_PAGEPROG
:
702 case NAND_CMD_ERASE1
:
703 case NAND_CMD_ERASE2
:
705 case NAND_CMD_STATUS
:
706 case NAND_CMD_DEPLETE1
:
710 * read error status commands require only a short delay
712 case NAND_CMD_STATUS_ERROR
:
713 case NAND_CMD_STATUS_ERROR0
:
714 case NAND_CMD_STATUS_ERROR1
:
715 case NAND_CMD_STATUS_ERROR2
:
716 case NAND_CMD_STATUS_ERROR3
:
717 udelay(this->chip_delay
);
723 udelay(this->chip_delay
);
724 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
725 this->write_byte(mtd
, NAND_CMD_STATUS
);
726 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
727 while (!(this->read_byte(mtd
) & NAND_STATUS_READY
)) ;
731 /* Begin command latch cycle */
732 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
733 /* Write out the start read command */
734 this->write_byte(mtd
, NAND_CMD_READSTART
);
735 /* End command latch cycle */
736 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
737 /* Fall through into ready check */
739 /* This applies to read commands */
742 * If we don't have access to the busy pin, we apply the given
745 if (!this->dev_ready
) {
746 udelay(this->chip_delay
);
751 /* Apply this short delay always to ensure that we do wait tWB in
752 * any case on any machine. */
755 nand_wait_ready(mtd
);
759 * nand_get_device - [GENERIC] Get chip for selected access
760 * @this: the nand chip descriptor
761 * @mtd: MTD device structure
762 * @new_state: the state which is requested
764 * Get the device and lock it for exclusive access
766 static int nand_get_device(struct nand_chip
*this, struct mtd_info
*mtd
, int new_state
)
768 struct nand_chip
*active
;
770 wait_queue_head_t
*wq
;
771 DECLARE_WAITQUEUE(wait
, current
);
773 lock
= (this->controller
) ? &this->controller
->lock
: &this->chip_lock
;
774 wq
= (this->controller
) ? &this->controller
->wq
: &this->wq
;
779 /* Hardware controller shared among independend devices */
780 if (this->controller
) {
781 if (this->controller
->active
)
782 active
= this->controller
->active
;
784 this->controller
->active
= this;
786 if (active
== this && this->state
== FL_READY
) {
787 this->state
= new_state
;
791 if (new_state
== FL_PM_SUSPENDED
) {
793 return (this->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
795 set_current_state(TASK_UNINTERRUPTIBLE
);
796 add_wait_queue(wq
, &wait
);
799 remove_wait_queue(wq
, &wait
);
804 * nand_wait - [DEFAULT] wait until the command is done
805 * @mtd: MTD device structure
806 * @this: NAND chip structure
807 * @state: state to select the max. timeout value
809 * Wait for command done. This applies to erase and program only
810 * Erase can take up to 400ms and program up to 20ms according to
811 * general NAND and SmartMedia specs
814 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*this, int state
)
817 unsigned long timeo
= jiffies
;
820 if (state
== FL_ERASING
)
821 timeo
+= (HZ
* 400) / 1000;
823 timeo
+= (HZ
* 20) / 1000;
825 led_trigger_event(nand_led_trigger
, LED_FULL
);
827 /* Apply this short delay always to ensure that we do wait tWB in
828 * any case on any machine. */
831 if ((state
== FL_ERASING
) && (this->options
& NAND_IS_AND
))
832 this->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
834 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
836 while (time_before(jiffies
, timeo
)) {
837 /* Check, if we were interrupted */
838 if (this->state
!= state
)
841 if (this->dev_ready
) {
842 if (this->dev_ready(mtd
))
845 if (this->read_byte(mtd
) & NAND_STATUS_READY
)
850 led_trigger_event(nand_led_trigger
, LED_OFF
);
852 status
= (int)this->read_byte(mtd
);
857 * nand_write_page - [GENERIC] write one page
858 * @mtd: MTD device structure
859 * @this: NAND chip structure
860 * @page: startpage inside the chip, must be called with (page & this->pagemask)
861 * @oob_buf: out of band data buffer
862 * @oobsel: out of band selecttion structre
863 * @cached: 1 = enable cached programming if supported by chip
865 * Nand_page_program function is used for write and writev !
866 * This function will always program a full page of data
867 * If you call it with a non page aligned buffer, you're lost :)
869 * Cached programming is not supported yet.
871 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*this, int page
,
872 u_char
*oob_buf
, struct nand_oobinfo
*oobsel
, int cached
)
876 int eccmode
= oobsel
->useecc
? this->eccmode
: NAND_ECC_NONE
;
877 int *oob_config
= oobsel
->eccpos
;
878 int datidx
= 0, eccidx
= 0, eccsteps
= this->eccsteps
;
881 /* FIXME: Enable cached programming */
884 /* Send command to begin auto page programming */
885 this->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
887 /* Write out complete page of data, take care of eccmode */
889 /* No ecc, write all */
891 printk(KERN_WARNING
"Writing data without ECC to NAND-FLASH is not recommended\n");
892 this->write_buf(mtd
, this->data_poi
, mtd
->oobblock
);
895 /* Software ecc 3/256, write all */
897 for (; eccsteps
; eccsteps
--) {
898 this->calculate_ecc(mtd
, &this->data_poi
[datidx
], ecc_code
);
899 for (i
= 0; i
< 3; i
++, eccidx
++)
900 oob_buf
[oob_config
[eccidx
]] = ecc_code
[i
];
901 datidx
+= this->eccsize
;
903 this->write_buf(mtd
, this->data_poi
, mtd
->oobblock
);
906 eccbytes
= this->eccbytes
;
907 for (; eccsteps
; eccsteps
--) {
908 /* enable hardware ecc logic for write */
909 this->enable_hwecc(mtd
, NAND_ECC_WRITE
);
910 this->write_buf(mtd
, &this->data_poi
[datidx
], this->eccsize
);
911 this->calculate_ecc(mtd
, &this->data_poi
[datidx
], ecc_code
);
912 for (i
= 0; i
< eccbytes
; i
++, eccidx
++)
913 oob_buf
[oob_config
[eccidx
]] = ecc_code
[i
];
914 /* If the hardware ecc provides syndromes then
915 * the ecc code must be written immidiately after
916 * the data bytes (words) */
917 if (this->options
& NAND_HWECC_SYNDROME
)
918 this->write_buf(mtd
, ecc_code
, eccbytes
);
919 datidx
+= this->eccsize
;
924 /* Write out OOB data */
925 if (this->options
& NAND_HWECC_SYNDROME
)
926 this->write_buf(mtd
, &oob_buf
[oobsel
->eccbytes
], mtd
->oobsize
- oobsel
->eccbytes
);
928 this->write_buf(mtd
, oob_buf
, mtd
->oobsize
);
930 /* Send command to actually program the data */
931 this->cmdfunc(mtd
, cached
? NAND_CMD_CACHEDPROG
: NAND_CMD_PAGEPROG
, -1, -1);
934 /* call wait ready function */
935 status
= this->waitfunc(mtd
, this, FL_WRITING
);
937 /* See if operation failed and additional status checks are available */
938 if ((status
& NAND_STATUS_FAIL
) && (this->errstat
)) {
939 status
= this->errstat(mtd
, this, FL_WRITING
, status
, page
);
942 /* See if device thinks it succeeded */
943 if (status
& NAND_STATUS_FAIL
) {
944 DEBUG(MTD_DEBUG_LEVEL0
, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__
, page
);
948 /* FIXME: Implement cached programming ! */
949 /* wait until cache is ready */
950 // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
955 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
957 * nand_verify_pages - [GENERIC] verify the chip contents after a write
958 * @mtd: MTD device structure
959 * @this: NAND chip structure
960 * @page: startpage inside the chip, must be called with (page & this->pagemask)
961 * @numpages: number of pages to verify
962 * @oob_buf: out of band data buffer
963 * @oobsel: out of band selecttion structre
964 * @chipnr: number of the current chip
965 * @oobmode: 1 = full buffer verify, 0 = ecc only
967 * The NAND device assumes that it is always writing to a cleanly erased page.
968 * Hence, it performs its internal write verification only on bits that
969 * transitioned from 1 to 0. The device does NOT verify the whole page on a
970 * byte by byte basis. It is possible that the page was not completely erased
971 * or the page is becoming unusable due to wear. The read with ECC would catch
972 * the error later when the ECC page check fails, but we would rather catch
973 * it early in the page write stage. Better to write no data than invalid data.
975 static int nand_verify_pages(struct mtd_info
*mtd
, struct nand_chip
*this, int page
, int numpages
,
976 u_char
*oob_buf
, struct nand_oobinfo
*oobsel
, int chipnr
, int oobmode
)
978 int i
, j
, datidx
= 0, oobofs
= 0, res
= -EIO
;
979 int eccsteps
= this->eccsteps
;
983 hweccbytes
= (this->options
& NAND_HWECC_SYNDROME
) ? (oobsel
->eccbytes
/ eccsteps
) : 0;
985 /* Send command to read back the first page */
986 this->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
989 for (j
= 0; j
< eccsteps
; j
++) {
990 /* Loop through and verify the data */
991 if (this->verify_buf(mtd
, &this->data_poi
[datidx
], mtd
->eccsize
)) {
992 DEBUG(MTD_DEBUG_LEVEL0
, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__
, page
);
995 datidx
+= mtd
->eccsize
;
996 /* Have we a hw generator layout ? */
999 if (this->verify_buf(mtd
, &this->oob_buf
[oobofs
], hweccbytes
)) {
1000 DEBUG(MTD_DEBUG_LEVEL0
, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__
, page
);
1003 oobofs
+= hweccbytes
;
1006 /* check, if we must compare all data or if we just have to
1007 * compare the ecc bytes
1010 if (this->verify_buf(mtd
, &oob_buf
[oobofs
], mtd
->oobsize
- hweccbytes
* eccsteps
)) {
1011 DEBUG(MTD_DEBUG_LEVEL0
, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__
, page
);
1015 /* Read always, else autoincrement fails */
1016 this->read_buf(mtd
, oobdata
, mtd
->oobsize
- hweccbytes
* eccsteps
);
1018 if (oobsel
->useecc
!= MTD_NANDECC_OFF
&& !hweccbytes
) {
1019 int ecccnt
= oobsel
->eccbytes
;
1021 for (i
= 0; i
< ecccnt
; i
++) {
1022 int idx
= oobsel
->eccpos
[i
];
1023 if (oobdata
[idx
] != oob_buf
[oobofs
+ idx
]) {
1024 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Failed ECC write verify, page 0x%08x, %6i bytes were succesful\n",
1025 __FUNCTION__
, page
, i
);
1031 oobofs
+= mtd
->oobsize
- hweccbytes
* eccsteps
;
1035 /* Apply delay or wait for ready/busy pin
1036 * Do this before the AUTOINCR check, so no problems
1037 * arise if a chip which does auto increment
1038 * is marked as NOAUTOINCR by the board driver.
1039 * Do this also before returning, so the chip is
1040 * ready for the next command.
1042 if (!this->dev_ready
)
1043 udelay(this->chip_delay
);
1045 nand_wait_ready(mtd
);
1047 /* All done, return happy */
1051 /* Check, if the chip supports auto page increment */
1052 if (!NAND_CANAUTOINCR(this))
1053 this->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1056 * Terminate the read command. We come here in case of an error
1057 * So we must issue a reset command.
1060 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1066 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1067 * @mtd: MTD device structure
1068 * @from: offset to read from
1069 * @len: number of bytes to read
1070 * @retlen: pointer to variable to store the number of read bytes
1071 * @buf: the databuffer to put data
1073 * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
1076 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1078 return nand_do_read_ecc(mtd
, from
, len
, retlen
, buf
, NULL
, &mtd
->oobinfo
, 0xff);
1082 * nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
1083 * @mtd: MTD device structure
1084 * @from: offset to read from
1085 * @len: number of bytes to read
1086 * @retlen: pointer to variable to store the number of read bytes
1087 * @buf: the databuffer to put data
1088 * @oob_buf: filesystem supplied oob data buffer
1089 * @oobsel: oob selection structure
1091 * This function simply calls nand_do_read_ecc with flags = 0xff
1093 static int nand_read_ecc(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1094 size_t *retlen
, u_char
*buf
, u_char
*oob_buf
, struct nand_oobinfo
*oobsel
)
1096 /* use userspace supplied oobinfo, if zero */
1098 oobsel
= &mtd
->oobinfo
;
1099 return nand_do_read_ecc(mtd
, from
, len
, retlen
, buf
, oob_buf
, oobsel
, 0xff);
1103 * nand_do_read_ecc - [MTD Interface] Read data with ECC
1104 * @mtd: MTD device structure
1105 * @from: offset to read from
1106 * @len: number of bytes to read
1107 * @retlen: pointer to variable to store the number of read bytes
1108 * @buf: the databuffer to put data
1109 * @oob_buf: filesystem supplied oob data buffer (can be NULL)
1110 * @oobsel: oob selection structure
1111 * @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
1112 * and how many corrected error bits are acceptable:
1113 * bits 0..7 - number of tolerable errors
1114 * bit 8 - 0 == do not get/release chip, 1 == get/release chip
1116 * NAND read with ECC
1118 int nand_do_read_ecc(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1119 size_t *retlen
, u_char
*buf
, u_char
*oob_buf
, struct nand_oobinfo
*oobsel
, int flags
)
1122 int i
, j
, col
, realpage
, page
, end
, ecc
, chipnr
, sndcmd
= 1;
1123 int read
= 0, oob
= 0, ecc_status
= 0, ecc_failed
= 0;
1124 struct nand_chip
*this = mtd
->priv
;
1125 u_char
*data_poi
, *oob_data
= oob_buf
;
1126 u_char ecc_calc
[32];
1127 u_char ecc_code
[32];
1128 int eccmode
, eccsteps
;
1129 int *oob_config
, datidx
;
1130 int blockcheck
= (1 << (this->phys_erase_shift
- this->page_shift
)) - 1;
1135 DEBUG(MTD_DEBUG_LEVEL3
, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int)from
, (int)len
);
1137 /* Do not allow reads past end of device */
1138 if ((from
+ len
) > mtd
->size
) {
1139 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_ecc: Attempt read beyond end of device\n");
1144 /* Grab the lock and see if the device is available */
1145 if (flags
& NAND_GET_DEVICE
)
1146 nand_get_device(this, mtd
, FL_READING
);
1148 /* Autoplace of oob data ? Use the default placement scheme */
1149 if (oobsel
->useecc
== MTD_NANDECC_AUTOPLACE
)
1150 oobsel
= this->autooob
;
1152 eccmode
= oobsel
->useecc
? this->eccmode
: NAND_ECC_NONE
;
1153 oob_config
= oobsel
->eccpos
;
1155 /* Select the NAND device */
1156 chipnr
= (int)(from
>> this->chip_shift
);
1157 this->select_chip(mtd
, chipnr
);
1159 /* First we calculate the starting page */
1160 realpage
= (int)(from
>> this->page_shift
);
1161 page
= realpage
& this->pagemask
;
1163 /* Get raw starting column */
1164 col
= from
& (mtd
->oobblock
- 1);
1166 end
= mtd
->oobblock
;
1167 ecc
= this->eccsize
;
1168 eccbytes
= this->eccbytes
;
1170 if ((eccmode
== NAND_ECC_NONE
) || (this->options
& NAND_HWECC_SYNDROME
))
1173 oobreadlen
= mtd
->oobsize
;
1174 if (this->options
& NAND_HWECC_SYNDROME
)
1175 oobreadlen
-= oobsel
->eccbytes
;
1177 /* Loop until all data read */
1178 while (read
< len
) {
1180 int aligned
= (!col
&& (len
- read
) >= end
);
1182 * If the read is not page aligned, we have to read into data buffer
1183 * due to ecc, else we read into return buffer direct
1186 data_poi
= &buf
[read
];
1188 data_poi
= this->data_buf
;
1190 /* Check, if we have this page in the buffer
1192 * FIXME: Make it work when we must provide oob data too,
1193 * check the usage of data_buf oob field
1195 if (realpage
== this->pagebuf
&& !oob_buf
) {
1196 /* aligned read ? */
1198 memcpy(data_poi
, this->data_buf
, end
);
1202 /* Check, if we must send the read command */
1204 this->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1208 /* get oob area, if we have no oob buffer from fs-driver */
1209 if (!oob_buf
|| oobsel
->useecc
== MTD_NANDECC_AUTOPLACE
||
1210 oobsel
->useecc
== MTD_NANDECC_AUTOPL_USR
)
1211 oob_data
= &this->data_buf
[end
];
1213 eccsteps
= this->eccsteps
;
1216 case NAND_ECC_NONE
:{
1217 /* No ECC, Read in a page */
1218 static unsigned long lastwhinge
= 0;
1219 if ((lastwhinge
/ HZ
) != (jiffies
/ HZ
)) {
1221 "Reading data from NAND FLASH without ECC is not recommended\n");
1222 lastwhinge
= jiffies
;
1224 this->read_buf(mtd
, data_poi
, end
);
1228 case NAND_ECC_SOFT
: /* Software ECC 3/256: Read in a page + oob data */
1229 this->read_buf(mtd
, data_poi
, end
);
1230 for (i
= 0, datidx
= 0; eccsteps
; eccsteps
--, i
+= 3, datidx
+= ecc
)
1231 this->calculate_ecc(mtd
, &data_poi
[datidx
], &ecc_calc
[i
]);
1235 for (i
= 0, datidx
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, datidx
+= ecc
) {
1236 this->enable_hwecc(mtd
, NAND_ECC_READ
);
1237 this->read_buf(mtd
, &data_poi
[datidx
], ecc
);
1239 /* HW ecc with syndrome calculation must read the
1240 * syndrome from flash immidiately after the data */
1242 /* Some hw ecc generators need to know when the
1243 * syndrome is read from flash */
1244 this->enable_hwecc(mtd
, NAND_ECC_READSYN
);
1245 this->read_buf(mtd
, &oob_data
[i
], eccbytes
);
1246 /* We calc error correction directly, it checks the hw
1247 * generator for an error, reads back the syndrome and
1248 * does the error correction on the fly */
1249 ecc_status
= this->correct_data(mtd
, &data_poi
[datidx
], &oob_data
[i
], &ecc_code
[i
]);
1250 if ((ecc_status
== -1) || (ecc_status
> (flags
&& 0xff))) {
1251 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_ecc: "
1252 "Failed ECC read, page 0x%08x on chip %d\n", page
, chipnr
);
1256 this->calculate_ecc(mtd
, &data_poi
[datidx
], &ecc_calc
[i
]);
1263 this->read_buf(mtd
, &oob_data
[mtd
->oobsize
- oobreadlen
], oobreadlen
);
1265 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1269 /* Pick the ECC bytes out of the oob data */
1270 for (j
= 0; j
< oobsel
->eccbytes
; j
++)
1271 ecc_code
[j
] = oob_data
[oob_config
[j
]];
1273 /* correct data, if necessary */
1274 for (i
= 0, j
= 0, datidx
= 0; i
< this->eccsteps
; i
++, datidx
+= ecc
) {
1275 ecc_status
= this->correct_data(mtd
, &data_poi
[datidx
], &ecc_code
[j
], &ecc_calc
[j
]);
1277 /* Get next chunk of ecc bytes */
1280 /* Check, if we have a fs supplied oob-buffer,
1281 * This is the legacy mode. Used by YAFFS1
1282 * Should go away some day
1284 if (oob_buf
&& oobsel
->useecc
== MTD_NANDECC_PLACE
) {
1285 int *p
= (int *)(&oob_data
[mtd
->oobsize
]);
1289 if ((ecc_status
== -1) || (ecc_status
> (flags
&& 0xff))) {
1290 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page
);
1296 /* check, if we have a fs supplied oob-buffer */
1298 /* without autoplace. Legacy mode used by YAFFS1 */
1299 switch (oobsel
->useecc
) {
1300 case MTD_NANDECC_AUTOPLACE
:
1301 case MTD_NANDECC_AUTOPL_USR
:
1302 /* Walk through the autoplace chunks */
1303 for (i
= 0; oobsel
->oobfree
[i
][1]; i
++) {
1304 int from
= oobsel
->oobfree
[i
][0];
1305 int num
= oobsel
->oobfree
[i
][1];
1306 memcpy(&oob_buf
[oob
], &oob_data
[from
], num
);
1310 case MTD_NANDECC_PLACE
:
1311 /* YAFFS1 legacy mode */
1312 oob_data
+= this->eccsteps
* sizeof(int);
1314 oob_data
+= mtd
->oobsize
;
1318 /* Partial page read, transfer data into fs buffer */
1320 for (j
= col
; j
< end
&& read
< len
; j
++)
1321 buf
[read
++] = data_poi
[j
];
1322 this->pagebuf
= realpage
;
1324 read
+= mtd
->oobblock
;
1326 /* Apply delay or wait for ready/busy pin
1327 * Do this before the AUTOINCR check, so no problems
1328 * arise if a chip which does auto increment
1329 * is marked as NOAUTOINCR by the board driver.
1331 if (!this->dev_ready
)
1332 udelay(this->chip_delay
);
1334 nand_wait_ready(mtd
);
1339 /* For subsequent reads align to page boundary. */
1341 /* Increment page address */
1344 page
= realpage
& this->pagemask
;
1345 /* Check, if we cross a chip boundary */
1348 this->select_chip(mtd
, -1);
1349 this->select_chip(mtd
, chipnr
);
1351 /* Check, if the chip supports auto page increment
1352 * or if we have hit a block boundary.
1354 if (!NAND_CANAUTOINCR(this) || !(page
& blockcheck
))
1358 /* Deselect and wake up anyone waiting on the device */
1359 if (flags
& NAND_GET_DEVICE
)
1360 nand_release_device(mtd
);
1363 * Return success, if no ECC failures, else -EBADMSG
1364 * fs driver will take care of that, because
1365 * retlen == desired len and result == -EBADMSG
1368 return ecc_failed
? -EBADMSG
: 0;
1372 * nand_read_oob - [MTD Interface] NAND read out-of-band
1373 * @mtd: MTD device structure
1374 * @from: offset to read from
1375 * @len: number of bytes to read
1376 * @retlen: pointer to variable to store the number of read bytes
1377 * @buf: the databuffer to put data
1379 * NAND read out-of-band data from the spare area
1381 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1383 int i
, col
, page
, chipnr
;
1384 struct nand_chip
*this = mtd
->priv
;
1385 int blockcheck
= (1 << (this->phys_erase_shift
- this->page_shift
)) - 1;
1387 DEBUG(MTD_DEBUG_LEVEL3
, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int)from
, (int)len
);
1389 /* Shift to get page */
1390 page
= (int)(from
>> this->page_shift
);
1391 chipnr
= (int)(from
>> this->chip_shift
);
1393 /* Mask to get column */
1394 col
= from
& (mtd
->oobsize
- 1);
1396 /* Initialize return length value */
1399 /* Do not allow reads past end of device */
1400 if ((from
+ len
) > mtd
->size
) {
1401 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: Attempt read beyond end of device\n");
1406 /* Grab the lock and see if the device is available */
1407 nand_get_device(this, mtd
, FL_READING
);
1409 /* Select the NAND device */
1410 this->select_chip(mtd
, chipnr
);
1412 /* Send the read command */
1413 this->cmdfunc(mtd
, NAND_CMD_READOOB
, col
, page
& this->pagemask
);
1415 * Read the data, if we read more than one page
1416 * oob data, let the device transfer the data !
1420 int thislen
= mtd
->oobsize
- col
;
1421 thislen
= min_t(int, thislen
, len
);
1422 this->read_buf(mtd
, &buf
[i
], thislen
);
1430 /* Check, if we cross a chip boundary */
1431 if (!(page
& this->pagemask
)) {
1433 this->select_chip(mtd
, -1);
1434 this->select_chip(mtd
, chipnr
);
1437 /* Apply delay or wait for ready/busy pin
1438 * Do this before the AUTOINCR check, so no problems
1439 * arise if a chip which does auto increment
1440 * is marked as NOAUTOINCR by the board driver.
1442 if (!this->dev_ready
)
1443 udelay(this->chip_delay
);
1445 nand_wait_ready(mtd
);
1447 /* Check, if the chip supports auto page increment
1448 * or if we have hit a block boundary.
1450 if (!NAND_CANAUTOINCR(this) || !(page
& blockcheck
)) {
1451 /* For subsequent page reads set offset to 0 */
1452 this->cmdfunc(mtd
, NAND_CMD_READOOB
, 0x0, page
& this->pagemask
);
1457 /* Deselect and wake up anyone waiting on the device */
1458 nand_release_device(mtd
);
1466 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1467 * @mtd: MTD device structure
1468 * @buf: temporary buffer
1469 * @from: offset to read from
1470 * @len: number of bytes to read
1471 * @ooblen: number of oob data bytes to read
1473 * Read raw data including oob into buffer
1475 int nand_read_raw(struct mtd_info
*mtd
, uint8_t *buf
, loff_t from
, size_t len
, size_t ooblen
)
1477 struct nand_chip
*this = mtd
->priv
;
1478 int page
= (int)(from
>> this->page_shift
);
1479 int chip
= (int)(from
>> this->chip_shift
);
1482 int pagesize
= mtd
->oobblock
+ mtd
->oobsize
;
1483 int blockcheck
= (1 << (this->phys_erase_shift
- this->page_shift
)) - 1;
1485 /* Do not allow reads past end of device */
1486 if ((from
+ len
) > mtd
->size
) {
1487 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_raw: Attempt read beyond end of device\n");
1491 /* Grab the lock and see if the device is available */
1492 nand_get_device(this, mtd
, FL_READING
);
1494 this->select_chip(mtd
, chip
);
1496 /* Add requested oob length */
1501 this->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
& this->pagemask
);
1504 this->read_buf(mtd
, &buf
[cnt
], pagesize
);
1510 if (!this->dev_ready
)
1511 udelay(this->chip_delay
);
1513 nand_wait_ready(mtd
);
1515 /* Check, if the chip supports auto page increment */
1516 if (!NAND_CANAUTOINCR(this) || !(page
& blockcheck
))
1520 /* Deselect and wake up anyone waiting on the device */
1521 nand_release_device(mtd
);
1526 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1527 * @mtd: MTD device structure
1528 * @fsbuf: buffer given by fs driver
1529 * @oobsel: out of band selection structre
1530 * @autoplace: 1 = place given buffer into the oob bytes
1531 * @numpages: number of pages to prepare
1534 * 1. Filesystem buffer available and autoplacement is off,
1535 * return filesystem buffer
1536 * 2. No filesystem buffer or autoplace is off, return internal
1538 * 3. Filesystem buffer is given and autoplace selected
1539 * put data from fs buffer into internal buffer and
1540 * retrun internal buffer
1542 * Note: The internal buffer is filled with 0xff. This must
1543 * be done only once, when no autoplacement happens
1544 * Autoplacement sets the buffer dirty flag, which
1545 * forces the 0xff fill before using the buffer again.
1548 static u_char
*nand_prepare_oobbuf(struct mtd_info
*mtd
, u_char
*fsbuf
, struct nand_oobinfo
*oobsel
,
1549 int autoplace
, int numpages
)
1551 struct nand_chip
*this = mtd
->priv
;
1554 /* Zero copy fs supplied buffer */
1555 if (fsbuf
&& !autoplace
)
1558 /* Check, if the buffer must be filled with ff again */
1559 if (this->oobdirty
) {
1560 memset(this->oob_buf
, 0xff, mtd
->oobsize
<< (this->phys_erase_shift
- this->page_shift
));
1564 /* If we have no autoplacement or no fs buffer use the internal one */
1565 if (!autoplace
|| !fsbuf
)
1566 return this->oob_buf
;
1568 /* Walk through the pages and place the data */
1571 while (numpages
--) {
1572 for (i
= 0, len
= 0; len
< mtd
->oobavail
; i
++) {
1573 int to
= ofs
+ oobsel
->oobfree
[i
][0];
1574 int num
= oobsel
->oobfree
[i
][1];
1575 memcpy(&this->oob_buf
[to
], fsbuf
, num
);
1579 ofs
+= mtd
->oobavail
;
1581 return this->oob_buf
;
1584 #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1587 * nand_write - [MTD Interface] compability function for nand_write_ecc
1588 * @mtd: MTD device structure
1589 * @to: offset to write to
1590 * @len: number of bytes to write
1591 * @retlen: pointer to variable to store the number of written bytes
1592 * @buf: the data to write
1594 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1597 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
, const u_char
*buf
)
1599 return (nand_write_ecc(mtd
, to
, len
, retlen
, buf
, NULL
, NULL
));
1603 * nand_write_ecc - [MTD Interface] NAND write with ECC
1604 * @mtd: MTD device structure
1605 * @to: offset to write to
1606 * @len: number of bytes to write
1607 * @retlen: pointer to variable to store the number of written bytes
1608 * @buf: the data to write
1609 * @eccbuf: filesystem supplied oob data buffer
1610 * @oobsel: oob selection structure
1612 * NAND write with ECC
1614 static int nand_write_ecc(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1615 size_t *retlen
, const u_char
*buf
, u_char
*eccbuf
,
1616 struct nand_oobinfo
*oobsel
)
1618 int startpage
, page
, ret
= -EIO
, oob
= 0, written
= 0, chipnr
;
1619 int autoplace
= 0, numpages
, totalpages
;
1620 struct nand_chip
*this = mtd
->priv
;
1621 u_char
*oobbuf
, *bufstart
;
1622 int ppblock
= (1 << (this->phys_erase_shift
- this->page_shift
));
1624 DEBUG(MTD_DEBUG_LEVEL3
, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int)to
, (int)len
);
1626 /* Initialize retlen, in case of early exit */
1629 /* Do not allow write past end of device */
1630 if ((to
+ len
) > mtd
->size
) {
1631 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_ecc: Attempt to write past end of page\n");
1635 /* reject writes, which are not page aligned */
1636 if (NOTALIGNED(to
) || NOTALIGNED(len
)) {
1637 printk(KERN_NOTICE
"nand_write_ecc: Attempt to write not page aligned data\n");
1641 /* Grab the lock and see if the device is available */
1642 nand_get_device(this, mtd
, FL_WRITING
);
1644 /* Calculate chipnr */
1645 chipnr
= (int)(to
>> this->chip_shift
);
1646 /* Select the NAND device */
1647 this->select_chip(mtd
, chipnr
);
1649 /* Check, if it is write protected */
1650 if (nand_check_wp(mtd
))
1653 /* if oobsel is NULL, use chip defaults */
1655 oobsel
= &mtd
->oobinfo
;
1657 /* Autoplace of oob data ? Use the default placement scheme */
1658 if (oobsel
->useecc
== MTD_NANDECC_AUTOPLACE
) {
1659 oobsel
= this->autooob
;
1662 if (oobsel
->useecc
== MTD_NANDECC_AUTOPL_USR
)
1665 /* Setup variables and oob buffer */
1666 totalpages
= len
>> this->page_shift
;
1667 page
= (int)(to
>> this->page_shift
);
1668 /* Invalidate the page cache, if we write to the cached page */
1669 if (page
<= this->pagebuf
&& this->pagebuf
< (page
+ totalpages
))
1672 /* Set it relative to chip */
1673 page
&= this->pagemask
;
1675 /* Calc number of pages we can write in one go */
1676 numpages
= min(ppblock
- (startpage
& (ppblock
- 1)), totalpages
);
1677 oobbuf
= nand_prepare_oobbuf(mtd
, eccbuf
, oobsel
, autoplace
, numpages
);
1678 bufstart
= (u_char
*) buf
;
1680 /* Loop until all data is written */
1681 while (written
< len
) {
1683 this->data_poi
= (u_char
*) &buf
[written
];
1684 /* Write one page. If this is the last page to write
1685 * or the last page in this block, then use the
1686 * real pageprogram command, else select cached programming
1687 * if supported by the chip.
1689 ret
= nand_write_page(mtd
, this, page
, &oobbuf
[oob
], oobsel
, (--numpages
> 0));
1691 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_ecc: write_page failed %d\n", ret
);
1695 oob
+= mtd
->oobsize
;
1696 /* Update written bytes count */
1697 written
+= mtd
->oobblock
;
1701 /* Increment page address */
1704 /* Have we hit a block boundary ? Then we have to verify and
1705 * if verify is ok, we have to setup the oob buffer for
1708 if (!(page
& (ppblock
- 1))) {
1710 this->data_poi
= bufstart
;
1711 ret
= nand_verify_pages(mtd
, this, startpage
, page
- startpage
,
1712 oobbuf
, oobsel
, chipnr
, (eccbuf
!= NULL
));
1714 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_ecc: verify_pages failed %d\n", ret
);
1719 ofs
= autoplace
? mtd
->oobavail
: mtd
->oobsize
;
1721 eccbuf
+= (page
- startpage
) * ofs
;
1722 totalpages
-= page
- startpage
;
1723 numpages
= min(totalpages
, ppblock
);
1724 page
&= this->pagemask
;
1726 oobbuf
= nand_prepare_oobbuf(mtd
, eccbuf
, oobsel
, autoplace
, numpages
);
1728 /* Check, if we cross a chip boundary */
1731 this->select_chip(mtd
, -1);
1732 this->select_chip(mtd
, chipnr
);
1736 /* Verify the remaining pages */
1738 this->data_poi
= bufstart
;
1739 ret
= nand_verify_pages(mtd
, this, startpage
, totalpages
, oobbuf
, oobsel
, chipnr
, (eccbuf
!= NULL
));
1743 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_ecc: verify_pages failed %d\n", ret
);
1746 /* Deselect and wake up anyone waiting on the device */
1747 nand_release_device(mtd
);
1753 * nand_write_oob - [MTD Interface] NAND write out-of-band
1754 * @mtd: MTD device structure
1755 * @to: offset to write to
1756 * @len: number of bytes to write
1757 * @retlen: pointer to variable to store the number of written bytes
1758 * @buf: the data to write
1760 * NAND write out-of-band
1762 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
, const u_char
*buf
)
1764 int column
, page
, status
, ret
= -EIO
, chipnr
;
1765 struct nand_chip
*this = mtd
->priv
;
1767 DEBUG(MTD_DEBUG_LEVEL3
, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int)to
, (int)len
);
1769 /* Shift to get page */
1770 page
= (int)(to
>> this->page_shift
);
1771 chipnr
= (int)(to
>> this->chip_shift
);
1773 /* Mask to get column */
1774 column
= to
& (mtd
->oobsize
- 1);
1776 /* Initialize return length value */
1779 /* Do not allow write past end of page */
1780 if ((column
+ len
) > mtd
->oobsize
) {
1781 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_oob: Attempt to write past end of page\n");
1785 /* Grab the lock and see if the device is available */
1786 nand_get_device(this, mtd
, FL_WRITING
);
1788 /* Select the NAND device */
1789 this->select_chip(mtd
, chipnr
);
1791 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1792 in one of my DiskOnChip 2000 test units) will clear the whole
1793 data page too if we don't do this. I have no clue why, but
1794 I seem to have 'fixed' it in the doc2000 driver in
1795 August 1999. dwmw2. */
1796 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1798 /* Check, if it is write protected */
1799 if (nand_check_wp(mtd
))
1802 /* Invalidate the page cache, if we write to the cached page */
1803 if (page
== this->pagebuf
)
1806 if (NAND_MUST_PAD(this)) {
1807 /* Write out desired data */
1808 this->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->oobblock
, page
& this->pagemask
);
1809 /* prepad 0xff for partial programming */
1810 this->write_buf(mtd
, ffchars
, column
);
1812 this->write_buf(mtd
, buf
, len
);
1813 /* postpad 0xff for partial programming */
1814 this->write_buf(mtd
, ffchars
, mtd
->oobsize
- (len
+ column
));
1816 /* Write out desired data */
1817 this->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->oobblock
+ column
, page
& this->pagemask
);
1819 this->write_buf(mtd
, buf
, len
);
1821 /* Send command to program the OOB data */
1822 this->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1824 status
= this->waitfunc(mtd
, this, FL_WRITING
);
1826 /* See if device thinks it succeeded */
1827 if (status
& NAND_STATUS_FAIL
) {
1828 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_oob: " "Failed write, page 0x%08x\n", page
);
1835 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1836 /* Send command to read back the data */
1837 this->cmdfunc(mtd
, NAND_CMD_READOOB
, column
, page
& this->pagemask
);
1839 if (this->verify_buf(mtd
, buf
, len
)) {
1840 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page
);
1847 /* Deselect and wake up anyone waiting on the device */
1848 nand_release_device(mtd
);
1854 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1855 * @mtd: MTD device structure
1856 * @vecs: the iovectors to write
1857 * @count: number of vectors
1858 * @to: offset to write to
1859 * @retlen: pointer to variable to store the number of written bytes
1861 * NAND write with kvec. This just calls the ecc function
1863 static int nand_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
, unsigned long count
,
1864 loff_t to
, size_t *retlen
)
1866 return (nand_writev_ecc(mtd
, vecs
, count
, to
, retlen
, NULL
, NULL
));
1870 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1871 * @mtd: MTD device structure
1872 * @vecs: the iovectors to write
1873 * @count: number of vectors
1874 * @to: offset to write to
1875 * @retlen: pointer to variable to store the number of written bytes
1876 * @eccbuf: filesystem supplied oob data buffer
1877 * @oobsel: oob selection structure
1879 * NAND write with iovec with ecc
1881 static int nand_writev_ecc(struct mtd_info
*mtd
, const struct kvec
*vecs
, unsigned long count
,
1882 loff_t to
, size_t *retlen
, u_char
*eccbuf
, struct nand_oobinfo
*oobsel
)
1884 int i
, page
, len
, total_len
, ret
= -EIO
, written
= 0, chipnr
;
1885 int oob
, numpages
, autoplace
= 0, startpage
;
1886 struct nand_chip
*this = mtd
->priv
;
1887 int ppblock
= (1 << (this->phys_erase_shift
- this->page_shift
));
1888 u_char
*oobbuf
, *bufstart
;
1890 /* Preset written len for early exit */
1893 /* Calculate total length of data */
1895 for (i
= 0; i
< count
; i
++)
1896 total_len
+= (int)vecs
[i
].iov_len
;
1898 DEBUG(MTD_DEBUG_LEVEL3
, "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int)to
, (unsigned int)total_len
, count
);
1900 /* Do not allow write past end of page */
1901 if ((to
+ total_len
) > mtd
->size
) {
1902 DEBUG(MTD_DEBUG_LEVEL0
, "nand_writev: Attempted write past end of device\n");
1906 /* reject writes, which are not page aligned */
1907 if (NOTALIGNED(to
) || NOTALIGNED(total_len
)) {
1908 printk(KERN_NOTICE
"nand_write_ecc: Attempt to write not page aligned data\n");
1912 /* Grab the lock and see if the device is available */
1913 nand_get_device(this, mtd
, FL_WRITING
);
1915 /* Get the current chip-nr */
1916 chipnr
= (int)(to
>> this->chip_shift
);
1917 /* Select the NAND device */
1918 this->select_chip(mtd
, chipnr
);
1920 /* Check, if it is write protected */
1921 if (nand_check_wp(mtd
))
1924 /* if oobsel is NULL, use chip defaults */
1926 oobsel
= &mtd
->oobinfo
;
1928 /* Autoplace of oob data ? Use the default placement scheme */
1929 if (oobsel
->useecc
== MTD_NANDECC_AUTOPLACE
) {
1930 oobsel
= this->autooob
;
1933 if (oobsel
->useecc
== MTD_NANDECC_AUTOPL_USR
)
1936 /* Setup start page */
1937 page
= (int)(to
>> this->page_shift
);
1938 /* Invalidate the page cache, if we write to the cached page */
1939 if (page
<= this->pagebuf
&& this->pagebuf
< ((to
+ total_len
) >> this->page_shift
))
1942 startpage
= page
& this->pagemask
;
1944 /* Loop until all kvec' data has been written */
1947 /* If the given tuple is >= pagesize then
1948 * write it out from the iov
1950 if ((vecs
->iov_len
- len
) >= mtd
->oobblock
) {
1951 /* Calc number of pages we can write
1952 * out of this iov in one go */
1953 numpages
= (vecs
->iov_len
- len
) >> this->page_shift
;
1954 /* Do not cross block boundaries */
1955 numpages
= min(ppblock
- (startpage
& (ppblock
- 1)), numpages
);
1956 oobbuf
= nand_prepare_oobbuf(mtd
, NULL
, oobsel
, autoplace
, numpages
);
1957 bufstart
= (u_char
*) vecs
->iov_base
;
1959 this->data_poi
= bufstart
;
1961 for (i
= 1; i
<= numpages
; i
++) {
1962 /* Write one page. If this is the last page to write
1963 * then use the real pageprogram command, else select
1964 * cached programming if supported by the chip.
1966 ret
= nand_write_page(mtd
, this, page
& this->pagemask
,
1967 &oobbuf
[oob
], oobsel
, i
!= numpages
);
1970 this->data_poi
+= mtd
->oobblock
;
1971 len
+= mtd
->oobblock
;
1972 oob
+= mtd
->oobsize
;
1975 /* Check, if we have to switch to the next tuple */
1976 if (len
>= (int)vecs
->iov_len
) {
1982 /* We must use the internal buffer, read data out of each
1983 * tuple until we have a full page to write
1986 while (cnt
< mtd
->oobblock
) {
1987 if (vecs
->iov_base
!= NULL
&& vecs
->iov_len
)
1988 this->data_buf
[cnt
++] = ((u_char
*) vecs
->iov_base
)[len
++];
1989 /* Check, if we have to switch to the next tuple */
1990 if (len
>= (int)vecs
->iov_len
) {
1996 this->pagebuf
= page
;
1997 this->data_poi
= this->data_buf
;
1998 bufstart
= this->data_poi
;
2000 oobbuf
= nand_prepare_oobbuf(mtd
, NULL
, oobsel
, autoplace
, numpages
);
2001 ret
= nand_write_page(mtd
, this, page
& this->pagemask
, oobbuf
, oobsel
, 0);
2007 this->data_poi
= bufstart
;
2008 ret
= nand_verify_pages(mtd
, this, startpage
, numpages
, oobbuf
, oobsel
, chipnr
, 0);
2012 written
+= mtd
->oobblock
* numpages
;
2017 startpage
= page
& this->pagemask
;
2018 /* Check, if we cross a chip boundary */
2021 this->select_chip(mtd
, -1);
2022 this->select_chip(mtd
, chipnr
);
2027 /* Deselect and wake up anyone waiting on the device */
2028 nand_release_device(mtd
);
2035 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2036 * @mtd: MTD device structure
2037 * @page: the page address of the block which will be erased
2039 * Standard erase command for NAND chips
2041 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2043 struct nand_chip
*this = mtd
->priv
;
2044 /* Send commands to erase a block */
2045 this->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2046 this->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2050 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2051 * @mtd: MTD device structure
2052 * @page: the page address of the block which will be erased
2054 * AND multi block erase command function
2055 * Erase 4 consecutive blocks
2057 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
2059 struct nand_chip
*this = mtd
->priv
;
2060 /* Send commands to erase a block */
2061 this->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2062 this->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2063 this->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2064 this->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2065 this->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2069 * nand_erase - [MTD Interface] erase block(s)
2070 * @mtd: MTD device structure
2071 * @instr: erase instruction
2073 * Erase one ore more blocks
2075 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2077 return nand_erase_nand(mtd
, instr
, 0);
2080 #define BBT_PAGE_MASK 0xffffff3f
2082 * nand_erase_intern - [NAND Interface] erase block(s)
2083 * @mtd: MTD device structure
2084 * @instr: erase instruction
2085 * @allowbbt: allow erasing the bbt area
2087 * Erase one ore more blocks
2089 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
, int allowbbt
)
2091 int page
, len
, status
, pages_per_block
, ret
, chipnr
;
2092 struct nand_chip
*this = mtd
->priv
;
2093 int rewrite_bbt
[NAND_MAX_CHIPS
]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
2094 unsigned int bbt_masked_page
; /* bbt mask to compare to page being erased. */
2095 /* It is used to see if the current page is in the same */
2096 /* 256 block group and the same bank as the bbt. */
2098 DEBUG(MTD_DEBUG_LEVEL3
, "nand_erase: start = 0x%08x, len = %i\n", (unsigned int)instr
->addr
, (unsigned int)instr
->len
);
2100 /* Start address must align on block boundary */
2101 if (instr
->addr
& ((1 << this->phys_erase_shift
) - 1)) {
2102 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: Unaligned address\n");
2106 /* Length must align on block boundary */
2107 if (instr
->len
& ((1 << this->phys_erase_shift
) - 1)) {
2108 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: Length not block aligned\n");
2112 /* Do not allow erase past end of device */
2113 if ((instr
->len
+ instr
->addr
) > mtd
->size
) {
2114 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: Erase past end of device\n");
2118 instr
->fail_addr
= 0xffffffff;
2120 /* Grab the lock and see if the device is available */
2121 nand_get_device(this, mtd
, FL_ERASING
);
2123 /* Shift to get first page */
2124 page
= (int)(instr
->addr
>> this->page_shift
);
2125 chipnr
= (int)(instr
->addr
>> this->chip_shift
);
2127 /* Calculate pages in each block */
2128 pages_per_block
= 1 << (this->phys_erase_shift
- this->page_shift
);
2130 /* Select the NAND device */
2131 this->select_chip(mtd
, chipnr
);
2133 /* Check the WP bit */
2134 /* Check, if it is write protected */
2135 if (nand_check_wp(mtd
)) {
2136 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: Device is write protected!!!\n");
2137 instr
->state
= MTD_ERASE_FAILED
;
2141 /* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
2142 if (this->options
& BBT_AUTO_REFRESH
) {
2143 bbt_masked_page
= this->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2145 bbt_masked_page
= 0xffffffff; /* should not match anything */
2148 /* Loop through the pages */
2151 instr
->state
= MTD_ERASING
;
2154 /* Check if we have a bad block, we do not erase bad blocks ! */
2155 if (nand_block_checkbad(mtd
, ((loff_t
) page
) << this->page_shift
, 0, allowbbt
)) {
2156 printk(KERN_WARNING
"nand_erase: attempt to erase a bad block at page 0x%08x\n", page
);
2157 instr
->state
= MTD_ERASE_FAILED
;
2161 /* Invalidate the page cache, if we erase the block which contains
2162 the current cached page */
2163 if (page
<= this->pagebuf
&& this->pagebuf
< (page
+ pages_per_block
))
2166 this->erase_cmd(mtd
, page
& this->pagemask
);
2168 status
= this->waitfunc(mtd
, this, FL_ERASING
);
2170 /* See if operation failed and additional status checks are available */
2171 if ((status
& NAND_STATUS_FAIL
) && (this->errstat
)) {
2172 status
= this->errstat(mtd
, this, FL_ERASING
, status
, page
);
2175 /* See if block erase succeeded */
2176 if (status
& NAND_STATUS_FAIL
) {
2177 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: " "Failed erase, page 0x%08x\n", page
);
2178 instr
->state
= MTD_ERASE_FAILED
;
2179 instr
->fail_addr
= (page
<< this->page_shift
);
2183 /* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
2184 if (this->options
& BBT_AUTO_REFRESH
) {
2185 if (((page
& BBT_PAGE_MASK
) == bbt_masked_page
) &&
2186 (page
!= this->bbt_td
->pages
[chipnr
])) {
2187 rewrite_bbt
[chipnr
] = (page
<< this->page_shift
);
2191 /* Increment page address and decrement length */
2192 len
-= (1 << this->phys_erase_shift
);
2193 page
+= pages_per_block
;
2195 /* Check, if we cross a chip boundary */
2196 if (len
&& !(page
& this->pagemask
)) {
2198 this->select_chip(mtd
, -1);
2199 this->select_chip(mtd
, chipnr
);
2201 /* if BBT requires refresh and BBT-PERCHIP,
2202 * set the BBT page mask to see if this BBT should be rewritten */
2203 if ((this->options
& BBT_AUTO_REFRESH
) && (this->bbt_td
->options
& NAND_BBT_PERCHIP
)) {
2204 bbt_masked_page
= this->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2209 instr
->state
= MTD_ERASE_DONE
;
2213 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2214 /* Do call back function */
2216 mtd_erase_callback(instr
);
2218 /* Deselect and wake up anyone waiting on the device */
2219 nand_release_device(mtd
);
2221 /* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
2222 if ((this->options
& BBT_AUTO_REFRESH
) && (!ret
)) {
2223 for (chipnr
= 0; chipnr
< this->numchips
; chipnr
++) {
2224 if (rewrite_bbt
[chipnr
]) {
2225 /* update the BBT for chip */
2226 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
2227 chipnr
, rewrite_bbt
[chipnr
], this->bbt_td
->pages
[chipnr
]);
2228 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2233 /* Return more or less happy */
2238 * nand_sync - [MTD Interface] sync
2239 * @mtd: MTD device structure
2241 * Sync is actually a wait for chip ready function
2243 static void nand_sync(struct mtd_info
*mtd
)
2245 struct nand_chip
*this = mtd
->priv
;
2247 DEBUG(MTD_DEBUG_LEVEL3
, "nand_sync: called\n");
2249 /* Grab the lock and see if the device is available */
2250 nand_get_device(this, mtd
, FL_SYNCING
);
2251 /* Release it and go back */
2252 nand_release_device(mtd
);
2256 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2257 * @mtd: MTD device structure
2258 * @ofs: offset relative to mtd start
2260 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
2262 /* Check for invalid offset */
2263 if (ofs
> mtd
->size
)
2266 return nand_block_checkbad(mtd
, ofs
, 1, 0);
2270 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2271 * @mtd: MTD device structure
2272 * @ofs: offset relative to mtd start
2274 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2276 struct nand_chip
*this = mtd
->priv
;
2279 if ((ret
= nand_block_isbad(mtd
, ofs
))) {
2280 /* If it was bad already, return success and do nothing. */
2286 return this->block_markbad(mtd
, ofs
);
2290 * nand_suspend - [MTD Interface] Suspend the NAND flash
2291 * @mtd: MTD device structure
2293 static int nand_suspend(struct mtd_info
*mtd
)
2295 struct nand_chip
*this = mtd
->priv
;
2297 return nand_get_device(this, mtd
, FL_PM_SUSPENDED
);
2301 * nand_resume - [MTD Interface] Resume the NAND flash
2302 * @mtd: MTD device structure
2304 static void nand_resume(struct mtd_info
*mtd
)
2306 struct nand_chip
*this = mtd
->priv
;
2308 if (this->state
== FL_PM_SUSPENDED
)
2309 nand_release_device(mtd
);
2311 printk(KERN_ERR
"resume() called for the chip which is not in suspended state\n");
2316 * nand_scan - [NAND Interface] Scan for the NAND device
2317 * @mtd: MTD device structure
2318 * @maxchips: Number of chips to scan for
2320 * This fills out all the uninitialized function pointers
2321 * with the defaults.
2322 * The flash ID is read and the mtd/chip structures are
2323 * filled with the appropriate values. Buffers are allocated if
2324 * they are not provided by the board driver
2325 * The mtd->owner field must be set to the module of the caller
2328 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
2330 int i
, nand_maf_id
, nand_dev_id
, busw
, maf_id
;
2331 struct nand_chip
*this = mtd
->priv
;
2333 /* module_text_address() isn't exported. But if _this_ is a module,
2334 it's a fairly safe bet that its caller is a module too... and
2335 that means the call to module_text_address() gets optimised out
2336 without having to resort to ifdefs */
2337 if (!mtd
->owner
&& (THIS_MODULE
||
2338 module_text_address((unsigned long)__builtin_return_address(0)))) {
2339 printk(KERN_CRIT
"nand_scan() called with NULL mtd->owner!\n");
2343 /* Get buswidth to select the correct functions */
2344 busw
= this->options
& NAND_BUSWIDTH_16
;
2346 /* check for proper chip_delay setup, set 20us if not */
2347 if (!this->chip_delay
)
2348 this->chip_delay
= 20;
2350 /* check, if a user supplied command function given */
2351 if (this->cmdfunc
== NULL
)
2352 this->cmdfunc
= nand_command
;
2354 /* check, if a user supplied wait function given */
2355 if (this->waitfunc
== NULL
)
2356 this->waitfunc
= nand_wait
;
2358 if (!this->select_chip
)
2359 this->select_chip
= nand_select_chip
;
2360 if (!this->write_byte
)
2361 this->write_byte
= busw
? nand_write_byte16
: nand_write_byte
;
2362 if (!this->read_byte
)
2363 this->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2364 if (!this->write_word
)
2365 this->write_word
= nand_write_word
;
2366 if (!this->read_word
)
2367 this->read_word
= nand_read_word
;
2368 if (!this->block_bad
)
2369 this->block_bad
= nand_block_bad
;
2370 if (!this->block_markbad
)
2371 this->block_markbad
= nand_default_block_markbad
;
2372 if (!this->write_buf
)
2373 this->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2374 if (!this->read_buf
)
2375 this->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2376 if (!this->verify_buf
)
2377 this->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2378 if (!this->scan_bbt
)
2379 this->scan_bbt
= nand_default_bbt
;
2381 /* Select the device */
2382 this->select_chip(mtd
, 0);
2384 /* Send the command for reading device ID */
2385 this->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2387 /* Read manufacturer and device IDs */
2388 nand_maf_id
= this->read_byte(mtd
);
2389 nand_dev_id
= this->read_byte(mtd
);
2391 /* Print and store flash device information */
2392 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
2394 if (nand_dev_id
!= nand_flash_ids
[i
].id
)
2398 mtd
->name
= nand_flash_ids
[i
].name
;
2399 this->chipsize
= nand_flash_ids
[i
].chipsize
<< 20;
2401 /* New devices have all the information in additional id bytes */
2402 if (!nand_flash_ids
[i
].pagesize
) {
2404 /* The 3rd id byte contains non relevant data ATM */
2405 extid
= this->read_byte(mtd
);
2406 /* The 4th id byte is the important one */
2407 extid
= this->read_byte(mtd
);
2409 mtd
->oobblock
= 1024 << (extid
& 0x3);
2412 mtd
->oobsize
= (8 << (extid
& 0x01)) * (mtd
->oobblock
>> 9);
2414 /* Calc blocksize. Blocksize is multiples of 64KiB */
2415 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
2417 /* Get buswidth information */
2418 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
2421 /* Old devices have this data hardcoded in the
2422 * device id table */
2423 mtd
->erasesize
= nand_flash_ids
[i
].erasesize
;
2424 mtd
->oobblock
= nand_flash_ids
[i
].pagesize
;
2425 mtd
->oobsize
= mtd
->oobblock
/ 32;
2426 busw
= nand_flash_ids
[i
].options
& NAND_BUSWIDTH_16
;
2429 /* Try to identify manufacturer */
2430 for (maf_id
= 0; nand_manuf_ids
[maf_id
].id
!= 0x0; maf_id
++) {
2431 if (nand_manuf_ids
[maf_id
].id
== nand_maf_id
)
2435 /* Check, if buswidth is correct. Hardware drivers should set
2437 if (busw
!= (this->options
& NAND_BUSWIDTH_16
)) {
2438 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2439 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id
, nand_dev_id
,
2440 nand_manuf_ids
[maf_id
].name
, mtd
->name
);
2442 "NAND bus width %d instead %d bit\n",
2443 (this->options
& NAND_BUSWIDTH_16
) ? 16 : 8, busw
? 16 : 8);
2444 this->select_chip(mtd
, -1);
2448 /* Calculate the address shift from the page size */
2449 this->page_shift
= ffs(mtd
->oobblock
) - 1;
2450 this->bbt_erase_shift
= this->phys_erase_shift
= ffs(mtd
->erasesize
) - 1;
2451 this->chip_shift
= ffs(this->chipsize
) - 1;
2453 /* Set the bad block position */
2454 this->badblockpos
= mtd
->oobblock
> 512 ? NAND_LARGE_BADBLOCK_POS
: NAND_SMALL_BADBLOCK_POS
;
2456 /* Get chip options, preserve non chip based options */
2457 this->options
&= ~NAND_CHIPOPTIONS_MSK
;
2458 this->options
|= nand_flash_ids
[i
].options
& NAND_CHIPOPTIONS_MSK
;
2459 /* Set this as a default. Board drivers can override it, if necessary */
2460 this->options
|= NAND_NO_AUTOINCR
;
2461 /* Check if this is a not a samsung device. Do not clear the options
2462 * for chips which are not having an extended id.
2464 if (nand_maf_id
!= NAND_MFR_SAMSUNG
&& !nand_flash_ids
[i
].pagesize
)
2465 this->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
2467 /* Check for AND chips with 4 page planes */
2468 if (this->options
& NAND_4PAGE_ARRAY
)
2469 this->erase_cmd
= multi_erase_cmd
;
2471 this->erase_cmd
= single_erase_cmd
;
2473 /* Do not replace user supplied command function ! */
2474 if (mtd
->oobblock
> 512 && this->cmdfunc
== nand_command
)
2475 this->cmdfunc
= nand_command_lp
;
2477 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2478 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id
, nand_dev_id
,
2479 nand_manuf_ids
[maf_id
].name
, nand_flash_ids
[i
].name
);
2483 if (!nand_flash_ids
[i
].name
) {
2484 printk(KERN_WARNING
"No NAND device found!!!\n");
2485 this->select_chip(mtd
, -1);
2489 for (i
= 1; i
< maxchips
; i
++) {
2490 this->select_chip(mtd
, i
);
2492 /* Send the command for reading device ID */
2493 this->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2495 /* Read manufacturer and device IDs */
2496 if (nand_maf_id
!= this->read_byte(mtd
) ||
2497 nand_dev_id
!= this->read_byte(mtd
))
2501 printk(KERN_INFO
"%d NAND chips detected\n", i
);
2503 /* Allocate buffers, if necessary */
2504 if (!this->oob_buf
) {
2506 len
= mtd
->oobsize
<< (this->phys_erase_shift
- this->page_shift
);
2507 this->oob_buf
= kmalloc(len
, GFP_KERNEL
);
2508 if (!this->oob_buf
) {
2509 printk(KERN_ERR
"nand_scan(): Cannot allocate oob_buf\n");
2512 this->options
|= NAND_OOBBUF_ALLOC
;
2515 if (!this->data_buf
) {
2517 len
= mtd
->oobblock
+ mtd
->oobsize
;
2518 this->data_buf
= kmalloc(len
, GFP_KERNEL
);
2519 if (!this->data_buf
) {
2520 if (this->options
& NAND_OOBBUF_ALLOC
)
2521 kfree(this->oob_buf
);
2522 printk(KERN_ERR
"nand_scan(): Cannot allocate data_buf\n");
2525 this->options
|= NAND_DATABUF_ALLOC
;
2528 /* Store the number of chips and calc total size for mtd */
2530 mtd
->size
= i
* this->chipsize
;
2531 /* Convert chipsize to number of pages per chip -1. */
2532 this->pagemask
= (this->chipsize
>> this->page_shift
) - 1;
2533 /* Preset the internal oob buffer */
2534 memset(this->oob_buf
, 0xff, mtd
->oobsize
<< (this->phys_erase_shift
- this->page_shift
));
2536 /* If no default placement scheme is given, select an
2537 * appropriate one */
2538 if (!this->autooob
) {
2539 /* Select the appropriate default oob placement scheme for
2540 * placement agnostic filesystems */
2541 switch (mtd
->oobsize
) {
2543 this->autooob
= &nand_oob_8
;
2546 this->autooob
= &nand_oob_16
;
2549 this->autooob
= &nand_oob_64
;
2552 printk(KERN_WARNING
"No oob scheme defined for oobsize %d\n", mtd
->oobsize
);
2557 /* The number of bytes available for the filesystem to place fs dependend
2560 for (i
= 0; this->autooob
->oobfree
[i
][1]; i
++)
2561 mtd
->oobavail
+= this->autooob
->oobfree
[i
][1];
2564 * check ECC mode, default to software
2565 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
2566 * fallback to software ECC
2568 this->eccsize
= 256; /* set default eccsize */
2571 switch (this->eccmode
) {
2572 case NAND_ECC_HW12_2048
:
2573 if (mtd
->oobblock
< 2048) {
2574 printk(KERN_WARNING
"2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2576 this->eccmode
= NAND_ECC_SOFT
;
2577 this->calculate_ecc
= nand_calculate_ecc
;
2578 this->correct_data
= nand_correct_data
;
2580 this->eccsize
= 2048;
2583 case NAND_ECC_HW3_512
:
2584 case NAND_ECC_HW6_512
:
2585 case NAND_ECC_HW8_512
:
2586 if (mtd
->oobblock
== 256) {
2587 printk(KERN_WARNING
"512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
2588 this->eccmode
= NAND_ECC_SOFT
;
2589 this->calculate_ecc
= nand_calculate_ecc
;
2590 this->correct_data
= nand_correct_data
;
2592 this->eccsize
= 512; /* set eccsize to 512 */
2595 case NAND_ECC_HW3_256
:
2599 printk(KERN_WARNING
"NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
2600 this->eccmode
= NAND_ECC_NONE
;
2604 this->calculate_ecc
= nand_calculate_ecc
;
2605 this->correct_data
= nand_correct_data
;
2609 printk(KERN_WARNING
"Invalid NAND_ECC_MODE %d\n", this->eccmode
);
2613 /* Check hardware ecc function availability and adjust number of ecc bytes per
2616 switch (this->eccmode
) {
2617 case NAND_ECC_HW12_2048
:
2618 this->eccbytes
+= 4;
2619 case NAND_ECC_HW8_512
:
2620 this->eccbytes
+= 2;
2621 case NAND_ECC_HW6_512
:
2622 this->eccbytes
+= 3;
2623 case NAND_ECC_HW3_512
:
2624 case NAND_ECC_HW3_256
:
2625 if (this->calculate_ecc
&& this->correct_data
&& this->enable_hwecc
)
2627 printk(KERN_WARNING
"No ECC functions supplied, Hardware ECC not possible\n");
2631 mtd
->eccsize
= this->eccsize
;
2633 /* Set the number of read / write steps for one page to ensure ECC generation */
2634 switch (this->eccmode
) {
2635 case NAND_ECC_HW12_2048
:
2636 this->eccsteps
= mtd
->oobblock
/ 2048;
2638 case NAND_ECC_HW3_512
:
2639 case NAND_ECC_HW6_512
:
2640 case NAND_ECC_HW8_512
:
2641 this->eccsteps
= mtd
->oobblock
/ 512;
2643 case NAND_ECC_HW3_256
:
2645 this->eccsteps
= mtd
->oobblock
/ 256;
2653 /* Initialize state, waitqueue and spinlock */
2654 this->state
= FL_READY
;
2655 init_waitqueue_head(&this->wq
);
2656 spin_lock_init(&this->chip_lock
);
2658 /* De-select the device */
2659 this->select_chip(mtd
, -1);
2661 /* Invalidate the pagebuffer reference */
2664 /* Fill in remaining MTD driver data */
2665 mtd
->type
= MTD_NANDFLASH
;
2666 mtd
->flags
= MTD_CAP_NANDFLASH
| MTD_ECC
;
2667 mtd
->ecctype
= MTD_ECC_SW
;
2668 mtd
->erase
= nand_erase
;
2670 mtd
->unpoint
= NULL
;
2671 mtd
->read
= nand_read
;
2672 mtd
->write
= nand_write
;
2673 mtd
->read_ecc
= nand_read_ecc
;
2674 mtd
->write_ecc
= nand_write_ecc
;
2675 mtd
->read_oob
= nand_read_oob
;
2676 mtd
->write_oob
= nand_write_oob
;
2678 mtd
->writev
= nand_writev
;
2679 mtd
->writev_ecc
= nand_writev_ecc
;
2680 mtd
->sync
= nand_sync
;
2683 mtd
->suspend
= nand_suspend
;
2684 mtd
->resume
= nand_resume
;
2685 mtd
->block_isbad
= nand_block_isbad
;
2686 mtd
->block_markbad
= nand_block_markbad
;
2688 /* and make the autooob the default one */
2689 memcpy(&mtd
->oobinfo
, this->autooob
, sizeof(mtd
->oobinfo
));
2691 /* Check, if we should skip the bad block table scan */
2692 if (this->options
& NAND_SKIP_BBTSCAN
)
2695 /* Build bad block table */
2696 return this->scan_bbt(mtd
);
2700 * nand_release - [NAND Interface] Free resources held by the NAND device
2701 * @mtd: MTD device structure
2703 void nand_release(struct mtd_info
*mtd
)
2705 struct nand_chip
*this = mtd
->priv
;
2707 #ifdef CONFIG_MTD_PARTITIONS
2708 /* Deregister partitions */
2709 del_mtd_partitions(mtd
);
2711 /* Deregister the device */
2712 del_mtd_device(mtd
);
2714 /* Free bad block table memory */
2716 /* Buffer allocated by nand_scan ? */
2717 if (this->options
& NAND_OOBBUF_ALLOC
)
2718 kfree(this->oob_buf
);
2719 /* Buffer allocated by nand_scan ? */
2720 if (this->options
& NAND_DATABUF_ALLOC
)
2721 kfree(this->data_buf
);
2724 EXPORT_SYMBOL_GPL(nand_scan
);
2725 EXPORT_SYMBOL_GPL(nand_release
);
2727 static int __init
nand_base_init(void)
2729 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
2733 static void __exit
nand_base_exit(void)
2735 led_trigger_unregister_simple(nand_led_trigger
);
2738 module_init(nand_base_init
);
2739 module_exit(nand_base_exit
);
2741 MODULE_LICENSE("GPL");
2742 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2743 MODULE_DESCRIPTION("Generic NAND flash driver code");