Merge branch 'mini2440-dev-unlikely' into mini2440-dev
[linux-2.6/mini2440.git] / drivers / mtd / nand / nand_base.c
blob2957cc70da3d16cb25477c54adcbbaee6d4fcc18
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * Credits:
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <asm/io.h>
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
53 #endif
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8 = {
57 .eccbytes = 3,
58 .eccpos = {0, 1, 2},
59 .oobfree = {
60 {.offset = 3,
61 .length = 2},
62 {.offset = 6,
63 .length = 2}}
66 static struct nand_ecclayout nand_oob_16 = {
67 .eccbytes = 6,
68 .eccpos = {0, 1, 2, 3, 6, 7},
69 .oobfree = {
70 {.offset = 8,
71 . length = 8}}
74 static struct nand_ecclayout nand_oob_64 = {
75 .eccbytes = 24,
76 .eccpos = {
77 40, 41, 42, 43, 44, 45, 46, 47,
78 48, 49, 50, 51, 52, 53, 54, 55,
79 56, 57, 58, 59, 60, 61, 62, 63},
80 .oobfree = {
81 {.offset = 2,
82 .length = 38}}
85 static struct nand_ecclayout nand_oob_128 = {
86 .eccbytes = 48,
87 .eccpos = {
88 80, 81, 82, 83, 84, 85, 86, 87,
89 88, 89, 90, 91, 92, 93, 94, 95,
90 96, 97, 98, 99, 100, 101, 102, 103,
91 104, 105, 106, 107, 108, 109, 110, 111,
92 112, 113, 114, 115, 116, 117, 118, 119,
93 120, 121, 122, 123, 124, 125, 126, 127},
94 .oobfree = {
95 {.offset = 2,
96 .length = 78}}
99 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
100 int new_state);
102 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
103 struct mtd_oob_ops *ops);
106 * For devices which display every fart in the system on a separate LED. Is
107 * compiled away when LED support is disabled.
109 DEFINE_LED_TRIGGER(nand_led_trigger);
112 * nand_release_device - [GENERIC] release chip
113 * @mtd: MTD device structure
115 * Deselect, release chip lock and wake up anyone waiting on the device
117 static void nand_release_device(struct mtd_info *mtd)
119 struct nand_chip *chip = mtd->priv;
121 /* De-select the NAND device */
122 chip->select_chip(mtd, -1);
124 /* Release the controller and the chip */
125 spin_lock(&chip->controller->lock);
126 chip->controller->active = NULL;
127 chip->state = FL_READY;
128 wake_up(&chip->controller->wq);
129 spin_unlock(&chip->controller->lock);
133 * nand_read_byte - [DEFAULT] read one byte from the chip
134 * @mtd: MTD device structure
136 * Default read function for 8bit buswith
138 static uint8_t nand_read_byte(struct mtd_info *mtd)
140 struct nand_chip *chip = mtd->priv;
141 return readb(chip->IO_ADDR_R);
145 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
146 * @mtd: MTD device structure
148 * Default read function for 16bit buswith with
149 * endianess conversion
151 static uint8_t nand_read_byte16(struct mtd_info *mtd)
153 struct nand_chip *chip = mtd->priv;
154 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
158 * nand_read_word - [DEFAULT] read one word from the chip
159 * @mtd: MTD device structure
161 * Default read function for 16bit buswith without
162 * endianess conversion
164 static u16 nand_read_word(struct mtd_info *mtd)
166 struct nand_chip *chip = mtd->priv;
167 return readw(chip->IO_ADDR_R);
171 * nand_select_chip - [DEFAULT] control CE line
172 * @mtd: MTD device structure
173 * @chipnr: chipnumber to select, -1 for deselect
175 * Default select function for 1 chip devices.
177 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
179 struct nand_chip *chip = mtd->priv;
181 switch (chipnr) {
182 case -1:
183 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
184 break;
185 case 0:
186 break;
188 default:
189 BUG();
194 * nand_write_buf - [DEFAULT] write buffer to chip
195 * @mtd: MTD device structure
196 * @buf: data buffer
197 * @len: number of bytes to write
199 * Default write function for 8bit buswith
201 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
203 int i;
204 struct nand_chip *chip = mtd->priv;
206 for (i = 0; i < len; i++)
207 writeb(buf[i], chip->IO_ADDR_W);
211 * nand_read_buf - [DEFAULT] read chip data into buffer
212 * @mtd: MTD device structure
213 * @buf: buffer to store date
214 * @len: number of bytes to read
216 * Default read function for 8bit buswith
218 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
220 int i;
221 struct nand_chip *chip = mtd->priv;
223 for (i = 0; i < len; i++)
224 buf[i] = readb(chip->IO_ADDR_R);
228 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
229 * @mtd: MTD device structure
230 * @buf: buffer containing the data to compare
231 * @len: number of bytes to compare
233 * Default verify function for 8bit buswith
235 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
237 int i;
238 struct nand_chip *chip = mtd->priv;
240 for (i = 0; i < len; i++)
241 if (buf[i] != readb(chip->IO_ADDR_R))
242 return -EFAULT;
243 return 0;
247 * nand_write_buf16 - [DEFAULT] write buffer to chip
248 * @mtd: MTD device structure
249 * @buf: data buffer
250 * @len: number of bytes to write
252 * Default write function for 16bit buswith
254 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
256 int i;
257 struct nand_chip *chip = mtd->priv;
258 u16 *p = (u16 *) buf;
259 len >>= 1;
261 for (i = 0; i < len; i++)
262 writew(p[i], chip->IO_ADDR_W);
267 * nand_read_buf16 - [DEFAULT] read chip data into buffer
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
272 * Default read function for 16bit buswith
274 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
276 int i;
277 struct nand_chip *chip = mtd->priv;
278 u16 *p = (u16 *) buf;
279 len >>= 1;
281 for (i = 0; i < len; i++)
282 p[i] = readw(chip->IO_ADDR_R);
286 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
287 * @mtd: MTD device structure
288 * @buf: buffer containing the data to compare
289 * @len: number of bytes to compare
291 * Default verify function for 16bit buswith
293 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
295 int i;
296 struct nand_chip *chip = mtd->priv;
297 u16 *p = (u16 *) buf;
298 len >>= 1;
300 for (i = 0; i < len; i++)
301 if (p[i] != readw(chip->IO_ADDR_R))
302 return -EFAULT;
304 return 0;
308 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
309 * @mtd: MTD device structure
310 * @ofs: offset from device start
311 * @getchip: 0, if the chip is already selected
313 * Check, if the block is bad.
315 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
317 int page, chipnr, res = 0;
318 struct nand_chip *chip = mtd->priv;
319 u16 bad;
321 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
323 if (getchip) {
324 chipnr = (int)(ofs >> chip->chip_shift);
326 nand_get_device(chip, mtd, FL_READING);
328 /* Select the NAND device */
329 chip->select_chip(mtd, chipnr);
332 if (chip->options & NAND_BUSWIDTH_16) {
333 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
334 page);
335 bad = cpu_to_le16(chip->read_word(mtd));
336 if (chip->badblockpos & 0x1)
337 bad >>= 8;
338 if ((bad & 0xFF) != 0xff)
339 res = 1;
340 } else {
341 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
342 if (chip->read_byte(mtd) != 0xff)
343 res = 1;
346 if (getchip)
347 nand_release_device(mtd);
349 return res;
353 * nand_default_block_markbad - [DEFAULT] mark a block bad
354 * @mtd: MTD device structure
355 * @ofs: offset from device start
357 * This is the default implementation, which can be overridden by
358 * a hardware specific driver.
360 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
362 struct nand_chip *chip = mtd->priv;
363 uint8_t buf[2] = { 0, 0 };
364 int block, ret;
366 /* Get block number */
367 block = (int)(ofs >> chip->bbt_erase_shift);
368 if (chip->bbt)
369 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
371 /* Do we have a flash based bad block table ? */
372 if (chip->options & NAND_USE_FLASH_BBT)
373 ret = nand_update_bbt(mtd, ofs);
374 else {
375 /* We write two bytes, so we dont have to mess with 16 bit
376 * access
378 nand_get_device(chip, mtd, FL_WRITING);
379 ofs += mtd->oobsize;
380 chip->ops.len = chip->ops.ooblen = 2;
381 chip->ops.datbuf = NULL;
382 chip->ops.oobbuf = buf;
383 chip->ops.ooboffs = chip->badblockpos & ~0x01;
385 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
386 nand_release_device(mtd);
388 if (!ret)
389 mtd->ecc_stats.badblocks++;
391 return ret;
395 * nand_check_wp - [GENERIC] check if the chip is write protected
396 * @mtd: MTD device structure
397 * Check, if the device is write protected
399 * The function expects, that the device is already selected
401 static int nand_check_wp(struct mtd_info *mtd)
403 struct nand_chip *chip = mtd->priv;
404 /* Check the WP bit */
405 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
406 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
410 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
411 * @mtd: MTD device structure
412 * @ofs: offset from device start
413 * @getchip: 0, if the chip is already selected
414 * @allowbbt: 1, if its allowed to access the bbt area
416 * Check, if the block is bad. Either by reading the bad block table or
417 * calling of the scan function.
419 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
420 int allowbbt)
422 struct nand_chip *chip = mtd->priv;
424 if (!chip->bbt)
425 return chip->block_bad(mtd, ofs, getchip);
427 /* Return info from the table */
428 return nand_isbad_bbt(mtd, ofs, allowbbt);
432 * Wait for the ready pin, after a command
433 * The timeout is catched later.
435 void nand_wait_ready(struct mtd_info *mtd)
437 struct nand_chip *chip = mtd->priv;
438 unsigned long timeo = jiffies + 2;
440 led_trigger_event(nand_led_trigger, LED_FULL);
441 /* wait until command is processed or timeout occures */
442 do {
443 if (chip->dev_ready(mtd))
444 break;
445 touch_softlockup_watchdog();
446 } while (time_before(jiffies, timeo));
447 led_trigger_event(nand_led_trigger, LED_OFF);
449 EXPORT_SYMBOL_GPL(nand_wait_ready);
452 * nand_command - [DEFAULT] Send command to NAND device
453 * @mtd: MTD device structure
454 * @command: the command to be sent
455 * @column: the column address for this command, -1 if none
456 * @page_addr: the page address for this command, -1 if none
458 * Send command to NAND device. This function is used for small page
459 * devices (256/512 Bytes per page)
461 static void nand_command(struct mtd_info *mtd, unsigned int command,
462 int column, int page_addr)
464 register struct nand_chip *chip = mtd->priv;
465 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
468 * Write out the command to the device.
470 if (command == NAND_CMD_SEQIN) {
471 int readcmd;
473 if (column >= mtd->writesize) {
474 /* OOB area */
475 column -= mtd->writesize;
476 readcmd = NAND_CMD_READOOB;
477 } else if (column < 256) {
478 /* First 256 bytes --> READ0 */
479 readcmd = NAND_CMD_READ0;
480 } else {
481 column -= 256;
482 readcmd = NAND_CMD_READ1;
484 chip->cmd_ctrl(mtd, readcmd, ctrl);
485 ctrl &= ~NAND_CTRL_CHANGE;
487 chip->cmd_ctrl(mtd, command, ctrl);
490 * Address cycle, when necessary
492 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
493 /* Serially input address */
494 if (column != -1) {
495 /* Adjust columns for 16 bit buswidth */
496 if (chip->options & NAND_BUSWIDTH_16)
497 column >>= 1;
498 chip->cmd_ctrl(mtd, column, ctrl);
499 ctrl &= ~NAND_CTRL_CHANGE;
501 if (page_addr != -1) {
502 chip->cmd_ctrl(mtd, page_addr, ctrl);
503 ctrl &= ~NAND_CTRL_CHANGE;
504 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
505 /* One more address cycle for devices > 32MiB */
506 if (chip->chipsize > (32 << 20))
507 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
509 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
512 * program and erase have their own busy handlers
513 * status and sequential in needs no delay
515 switch (command) {
517 case NAND_CMD_PAGEPROG:
518 case NAND_CMD_ERASE1:
519 case NAND_CMD_ERASE2:
520 case NAND_CMD_SEQIN:
521 case NAND_CMD_STATUS:
522 return;
524 case NAND_CMD_RESET:
525 if (chip->dev_ready)
526 break;
527 udelay(chip->chip_delay);
528 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
529 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
530 chip->cmd_ctrl(mtd,
531 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
532 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
533 return;
535 /* This applies to read commands */
536 default:
538 * If we don't have access to the busy pin, we apply the given
539 * command delay
541 if (!chip->dev_ready) {
542 udelay(chip->chip_delay);
543 return;
546 /* Apply this short delay always to ensure that we do wait tWB in
547 * any case on any machine. */
548 ndelay(100);
550 nand_wait_ready(mtd);
554 * nand_command_lp - [DEFAULT] Send command to NAND large page device
555 * @mtd: MTD device structure
556 * @command: the command to be sent
557 * @column: the column address for this command, -1 if none
558 * @page_addr: the page address for this command, -1 if none
560 * Send command to NAND device. This is the version for the new large page
561 * devices We dont have the separate regions as we have in the small page
562 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
564 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
565 int column, int page_addr)
567 register struct nand_chip *chip = mtd->priv;
569 /* Emulate NAND_CMD_READOOB */
570 if (command == NAND_CMD_READOOB) {
571 column += mtd->writesize;
572 command = NAND_CMD_READ0;
575 /* Command latch cycle */
576 chip->cmd_ctrl(mtd, command & 0xff,
577 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
579 if (column != -1 || page_addr != -1) {
580 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
582 /* Serially input address */
583 if (column != -1) {
584 /* Adjust columns for 16 bit buswidth */
585 if (chip->options & NAND_BUSWIDTH_16)
586 column >>= 1;
587 chip->cmd_ctrl(mtd, column, ctrl);
588 ctrl &= ~NAND_CTRL_CHANGE;
589 chip->cmd_ctrl(mtd, column >> 8, ctrl);
591 if (page_addr != -1) {
592 chip->cmd_ctrl(mtd, page_addr, ctrl);
593 chip->cmd_ctrl(mtd, page_addr >> 8,
594 NAND_NCE | NAND_ALE);
595 /* One more address cycle for devices > 128MiB */
596 if (chip->chipsize > (128 << 20))
597 chip->cmd_ctrl(mtd, page_addr >> 16,
598 NAND_NCE | NAND_ALE);
601 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
604 * program and erase have their own busy handlers
605 * status, sequential in, and deplete1 need no delay
607 switch (command) {
609 case NAND_CMD_CACHEDPROG:
610 case NAND_CMD_PAGEPROG:
611 case NAND_CMD_ERASE1:
612 case NAND_CMD_ERASE2:
613 case NAND_CMD_SEQIN:
614 case NAND_CMD_RNDIN:
615 case NAND_CMD_STATUS:
616 case NAND_CMD_DEPLETE1:
617 return;
620 * read error status commands require only a short delay
622 case NAND_CMD_STATUS_ERROR:
623 case NAND_CMD_STATUS_ERROR0:
624 case NAND_CMD_STATUS_ERROR1:
625 case NAND_CMD_STATUS_ERROR2:
626 case NAND_CMD_STATUS_ERROR3:
627 udelay(chip->chip_delay);
628 return;
630 case NAND_CMD_RESET:
631 if (chip->dev_ready)
632 break;
633 udelay(chip->chip_delay);
634 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
635 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
636 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
637 NAND_NCE | NAND_CTRL_CHANGE);
638 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
639 return;
641 case NAND_CMD_RNDOUT:
642 /* No ready / busy check necessary */
643 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
644 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
645 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
646 NAND_NCE | NAND_CTRL_CHANGE);
647 return;
649 case NAND_CMD_READ0:
650 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
651 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
652 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
653 NAND_NCE | NAND_CTRL_CHANGE);
655 /* This applies to read commands */
656 default:
658 * If we don't have access to the busy pin, we apply the given
659 * command delay
661 if (!chip->dev_ready) {
662 udelay(chip->chip_delay);
663 return;
667 /* Apply this short delay always to ensure that we do wait tWB in
668 * any case on any machine. */
669 ndelay(100);
671 nand_wait_ready(mtd);
675 * nand_get_device - [GENERIC] Get chip for selected access
676 * @chip: the nand chip descriptor
677 * @mtd: MTD device structure
678 * @new_state: the state which is requested
680 * Get the device and lock it for exclusive access
682 static int
683 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
685 spinlock_t *lock = &chip->controller->lock;
686 wait_queue_head_t *wq = &chip->controller->wq;
687 DECLARE_WAITQUEUE(wait, current);
688 retry:
689 spin_lock(lock);
691 /* Hardware controller shared among independent devices */
692 if (!chip->controller->active)
693 chip->controller->active = chip;
695 if (chip->controller->active == chip && chip->state == FL_READY) {
696 chip->state = new_state;
697 spin_unlock(lock);
698 return 0;
700 if (new_state == FL_PM_SUSPENDED) {
701 spin_unlock(lock);
702 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
704 set_current_state(TASK_UNINTERRUPTIBLE);
705 add_wait_queue(wq, &wait);
706 spin_unlock(lock);
707 schedule();
708 remove_wait_queue(wq, &wait);
709 goto retry;
713 * nand_wait - [DEFAULT] wait until the command is done
714 * @mtd: MTD device structure
715 * @chip: NAND chip structure
717 * Wait for command done. This applies to erase and program only
718 * Erase can take up to 400ms and program up to 20ms according to
719 * general NAND and SmartMedia specs
721 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
724 unsigned long timeo = jiffies;
725 int status, state = chip->state;
727 if (state == FL_ERASING)
728 timeo += (HZ * 400) / 1000;
729 else
730 timeo += (HZ * 20) / 1000;
732 led_trigger_event(nand_led_trigger, LED_FULL);
734 /* Apply this short delay always to ensure that we do wait tWB in
735 * any case on any machine. */
736 ndelay(100);
738 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
739 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
740 else
741 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
743 while (time_before(jiffies, timeo)) {
744 if (chip->dev_ready) {
745 if (chip->dev_ready(mtd))
746 break;
747 } else {
748 if (chip->read_byte(mtd) & NAND_STATUS_READY)
749 break;
751 cond_resched();
753 led_trigger_event(nand_led_trigger, LED_OFF);
755 status = (int)chip->read_byte(mtd);
756 return status;
760 * nand_read_page_raw - [Intern] read raw page data without ecc
761 * @mtd: mtd info structure
762 * @chip: nand chip info structure
763 * @buf: buffer to store read data
764 * @page: page number to read
766 * Not for syndrome calculating ecc controllers, which use a special oob layout
768 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
769 uint8_t *buf, int page)
771 chip->read_buf(mtd, buf, mtd->writesize);
772 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
773 return 0;
777 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
778 * @mtd: mtd info structure
779 * @chip: nand chip info structure
780 * @buf: buffer to store read data
781 * @page: page number to read
783 * We need a special oob layout and handling even when OOB isn't used.
785 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
786 uint8_t *buf, int page)
788 int eccsize = chip->ecc.size;
789 int eccbytes = chip->ecc.bytes;
790 uint8_t *oob = chip->oob_poi;
791 int steps, size;
793 for (steps = chip->ecc.steps; steps > 0; steps--) {
794 chip->read_buf(mtd, buf, eccsize);
795 buf += eccsize;
797 if (chip->ecc.prepad) {
798 chip->read_buf(mtd, oob, chip->ecc.prepad);
799 oob += chip->ecc.prepad;
802 chip->read_buf(mtd, oob, eccbytes);
803 oob += eccbytes;
805 if (chip->ecc.postpad) {
806 chip->read_buf(mtd, oob, chip->ecc.postpad);
807 oob += chip->ecc.postpad;
811 size = mtd->oobsize - (oob - chip->oob_poi);
812 if (size)
813 chip->read_buf(mtd, oob, size);
815 return 0;
819 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
820 * @mtd: mtd info structure
821 * @chip: nand chip info structure
822 * @buf: buffer to store read data
823 * @page: page number to read
825 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
826 uint8_t *buf, int page)
828 int i, eccsize = chip->ecc.size;
829 int eccbytes = chip->ecc.bytes;
830 int eccsteps = chip->ecc.steps;
831 uint8_t *p = buf;
832 uint8_t *ecc_calc = chip->buffers->ecccalc;
833 uint8_t *ecc_code = chip->buffers->ecccode;
834 uint32_t *eccpos = chip->ecc.layout->eccpos;
836 chip->ecc.read_page_raw(mtd, chip, buf, page);
838 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
839 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
841 for (i = 0; i < chip->ecc.total; i++)
842 ecc_code[i] = chip->oob_poi[eccpos[i]];
844 eccsteps = chip->ecc.steps;
845 p = buf;
847 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
848 int stat;
850 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
851 if (stat < 0)
852 mtd->ecc_stats.failed++;
853 else
854 mtd->ecc_stats.corrected += stat;
856 return 0;
860 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
861 * @mtd: mtd info structure
862 * @chip: nand chip info structure
863 * @data_offs: offset of requested data within the page
864 * @readlen: data length
865 * @bufpoi: buffer to store read data
867 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
869 int start_step, end_step, num_steps;
870 uint32_t *eccpos = chip->ecc.layout->eccpos;
871 uint8_t *p;
872 int data_col_addr, i, gaps = 0;
873 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
874 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
876 /* Column address wihin the page aligned to ECC size (256bytes). */
877 start_step = data_offs / chip->ecc.size;
878 end_step = (data_offs + readlen - 1) / chip->ecc.size;
879 num_steps = end_step - start_step + 1;
881 /* Data size aligned to ECC ecc.size*/
882 datafrag_len = num_steps * chip->ecc.size;
883 eccfrag_len = num_steps * chip->ecc.bytes;
885 data_col_addr = start_step * chip->ecc.size;
886 /* If we read not a page aligned data */
887 if (data_col_addr != 0)
888 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
890 p = bufpoi + data_col_addr;
891 chip->read_buf(mtd, p, datafrag_len);
893 /* Calculate ECC */
894 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
895 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
897 /* The performance is faster if to position offsets
898 according to ecc.pos. Let make sure here that
899 there are no gaps in ecc positions */
900 for (i = 0; i < eccfrag_len - 1; i++) {
901 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
902 eccpos[i + start_step * chip->ecc.bytes + 1]) {
903 gaps = 1;
904 break;
907 if (gaps) {
908 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
909 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
910 } else {
911 /* send the command to read the particular ecc bytes */
912 /* take care about buswidth alignment in read_buf */
913 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
914 aligned_len = eccfrag_len;
915 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
916 aligned_len++;
917 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
918 aligned_len++;
920 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
921 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
924 for (i = 0; i < eccfrag_len; i++)
925 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
927 p = bufpoi + data_col_addr;
928 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
929 int stat;
931 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
932 if (stat == -1)
933 mtd->ecc_stats.failed++;
934 else
935 mtd->ecc_stats.corrected += stat;
937 return 0;
941 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
942 * @mtd: mtd info structure
943 * @chip: nand chip info structure
944 * @buf: buffer to store read data
945 * @page: page number to read
947 * Not for syndrome calculating ecc controllers which need a special oob layout
949 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
950 uint8_t *buf, int page)
952 int i, eccsize = chip->ecc.size;
953 int eccbytes = chip->ecc.bytes;
954 int eccsteps = chip->ecc.steps;
955 uint8_t *p = buf;
956 uint8_t *ecc_calc = chip->buffers->ecccalc;
957 uint8_t *ecc_code = chip->buffers->ecccode;
958 uint32_t *eccpos = chip->ecc.layout->eccpos;
960 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
961 chip->ecc.hwctl(mtd, NAND_ECC_READ);
962 chip->read_buf(mtd, p, eccsize);
963 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
965 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
967 for (i = 0; i < chip->ecc.total; i++)
968 ecc_code[i] = chip->oob_poi[eccpos[i]];
970 eccsteps = chip->ecc.steps;
971 p = buf;
973 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
974 int stat;
976 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
977 if (stat < 0)
978 mtd->ecc_stats.failed++;
979 else
980 mtd->ecc_stats.corrected += stat;
982 return 0;
986 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
987 * @mtd: mtd info structure
988 * @chip: nand chip info structure
989 * @buf: buffer to store read data
990 * @page: page number to read
992 * Hardware ECC for large page chips, require OOB to be read first.
993 * For this ECC mode, the write_page method is re-used from ECC_HW.
994 * These methods read/write ECC from the OOB area, unlike the
995 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
996 * "infix ECC" scheme and reads/writes ECC from the data area, by
997 * overwriting the NAND manufacturer bad block markings.
999 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1000 struct nand_chip *chip, uint8_t *buf, int page)
1002 int i, eccsize = chip->ecc.size;
1003 int eccbytes = chip->ecc.bytes;
1004 int eccsteps = chip->ecc.steps;
1005 uint8_t *p = buf;
1006 uint8_t *ecc_code = chip->buffers->ecccode;
1007 uint32_t *eccpos = chip->ecc.layout->eccpos;
1008 uint8_t *ecc_calc = chip->buffers->ecccalc;
1010 /* Read the OOB area first */
1011 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1012 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1013 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1015 for (i = 0; i < chip->ecc.total; i++)
1016 ecc_code[i] = chip->oob_poi[eccpos[i]];
1018 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1019 int stat;
1021 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1022 chip->read_buf(mtd, p, eccsize);
1023 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1025 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1026 if (stat < 0)
1027 mtd->ecc_stats.failed++;
1028 else
1029 mtd->ecc_stats.corrected += stat;
1031 return 0;
1035 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1036 * @mtd: mtd info structure
1037 * @chip: nand chip info structure
1038 * @buf: buffer to store read data
1039 * @page: page number to read
1041 * The hw generator calculates the error syndrome automatically. Therefor
1042 * we need a special oob layout and handling.
1044 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1045 uint8_t *buf, int page)
1047 int i, eccsize = chip->ecc.size;
1048 int eccbytes = chip->ecc.bytes;
1049 int eccsteps = chip->ecc.steps;
1050 uint8_t *p = buf;
1051 uint8_t *oob = chip->oob_poi;
1053 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1054 int stat;
1056 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1057 chip->read_buf(mtd, p, eccsize);
1059 if (chip->ecc.prepad) {
1060 chip->read_buf(mtd, oob, chip->ecc.prepad);
1061 oob += chip->ecc.prepad;
1064 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1065 chip->read_buf(mtd, oob, eccbytes);
1066 stat = chip->ecc.correct(mtd, p, oob, NULL);
1068 if (stat < 0)
1069 mtd->ecc_stats.failed++;
1070 else
1071 mtd->ecc_stats.corrected += stat;
1073 oob += eccbytes;
1075 if (chip->ecc.postpad) {
1076 chip->read_buf(mtd, oob, chip->ecc.postpad);
1077 oob += chip->ecc.postpad;
1081 /* Calculate remaining oob bytes */
1082 i = mtd->oobsize - (oob - chip->oob_poi);
1083 if (i)
1084 chip->read_buf(mtd, oob, i);
1086 return 0;
1090 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1091 * @chip: nand chip structure
1092 * @oob: oob destination address
1093 * @ops: oob ops structure
1094 * @len: size of oob to transfer
1096 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1097 struct mtd_oob_ops *ops, size_t len)
1099 switch(ops->mode) {
1101 case MTD_OOB_PLACE:
1102 case MTD_OOB_RAW:
1103 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1104 return oob + len;
1106 case MTD_OOB_AUTO: {
1107 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1108 uint32_t boffs = 0, roffs = ops->ooboffs;
1109 size_t bytes = 0;
1111 for(; free->length && len; free++, len -= bytes) {
1112 /* Read request not from offset 0 ? */
1113 if (unlikely(roffs)) {
1114 if (roffs >= free->length) {
1115 roffs -= free->length;
1116 continue;
1118 boffs = free->offset + roffs;
1119 bytes = min_t(size_t, len,
1120 (free->length - roffs));
1121 roffs = 0;
1122 } else {
1123 bytes = min_t(size_t, len, free->length);
1124 boffs = free->offset;
1126 memcpy(oob, chip->oob_poi + boffs, bytes);
1127 oob += bytes;
1129 return oob;
1131 default:
1132 BUG();
1134 return NULL;
1138 * nand_do_read_ops - [Internal] Read data with ECC
1140 * @mtd: MTD device structure
1141 * @from: offset to read from
1142 * @ops: oob ops structure
1144 * Internal function. Called with chip held.
1146 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1147 struct mtd_oob_ops *ops)
1149 int chipnr, page, realpage, col, bytes, aligned;
1150 struct nand_chip *chip = mtd->priv;
1151 struct mtd_ecc_stats stats;
1152 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1153 int sndcmd = 1;
1154 int ret = 0;
1155 uint32_t readlen = ops->len;
1156 uint32_t oobreadlen = ops->ooblen;
1157 uint8_t *bufpoi, *oob, *buf;
1159 stats = mtd->ecc_stats;
1161 chipnr = (int)(from >> chip->chip_shift);
1162 chip->select_chip(mtd, chipnr);
1164 realpage = (int)(from >> chip->page_shift);
1165 page = realpage & chip->pagemask;
1167 col = (int)(from & (mtd->writesize - 1));
1169 buf = ops->datbuf;
1170 oob = ops->oobbuf;
1172 while(1) {
1173 bytes = min(mtd->writesize - col, readlen);
1174 aligned = (bytes == mtd->writesize);
1176 /* Is the current page in the buffer ? */
1177 if (realpage != chip->pagebuf || oob) {
1178 bufpoi = aligned ? buf : chip->buffers->databuf;
1180 if (likely(sndcmd)) {
1181 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1182 sndcmd = 0;
1185 /* Now read the page into the buffer */
1186 if (unlikely(ops->mode == MTD_OOB_RAW))
1187 ret = chip->ecc.read_page_raw(mtd, chip,
1188 bufpoi, page);
1189 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1190 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1191 else
1192 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1193 page);
1194 if (ret < 0)
1195 break;
1197 /* Transfer not aligned data */
1198 if (!aligned) {
1199 if (!NAND_SUBPAGE_READ(chip) && !oob)
1200 chip->pagebuf = realpage;
1201 memcpy(buf, chip->buffers->databuf + col, bytes);
1204 buf += bytes;
1206 if (unlikely(oob)) {
1207 /* Raw mode does data:oob:data:oob */
1208 if (ops->mode != MTD_OOB_RAW) {
1209 int toread = min(oobreadlen,
1210 chip->ecc.layout->oobavail);
1211 if (toread) {
1212 oob = nand_transfer_oob(chip,
1213 oob, ops, toread);
1214 oobreadlen -= toread;
1216 } else
1217 buf = nand_transfer_oob(chip,
1218 buf, ops, mtd->oobsize);
1221 if (!(chip->options & NAND_NO_READRDY)) {
1223 * Apply delay or wait for ready/busy pin. Do
1224 * this before the AUTOINCR check, so no
1225 * problems arise if a chip which does auto
1226 * increment is marked as NOAUTOINCR by the
1227 * board driver.
1229 if (!chip->dev_ready)
1230 udelay(chip->chip_delay);
1231 else
1232 nand_wait_ready(mtd);
1234 } else {
1235 memcpy(buf, chip->buffers->databuf + col, bytes);
1236 buf += bytes;
1239 readlen -= bytes;
1241 if (!readlen)
1242 break;
1244 /* For subsequent reads align to page boundary. */
1245 col = 0;
1246 /* Increment page address */
1247 realpage++;
1249 page = realpage & chip->pagemask;
1250 /* Check, if we cross a chip boundary */
1251 if (!page) {
1252 chipnr++;
1253 chip->select_chip(mtd, -1);
1254 chip->select_chip(mtd, chipnr);
1257 /* Check, if the chip supports auto page increment
1258 * or if we have hit a block boundary.
1260 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1261 sndcmd = 1;
1264 ops->retlen = ops->len - (size_t) readlen;
1265 if (oob)
1266 ops->oobretlen = ops->ooblen - oobreadlen;
1268 if (ret)
1269 return ret;
1271 if (mtd->ecc_stats.failed - stats.failed)
1272 return -EBADMSG;
1274 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1278 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1279 * @mtd: MTD device structure
1280 * @from: offset to read from
1281 * @len: number of bytes to read
1282 * @retlen: pointer to variable to store the number of read bytes
1283 * @buf: the databuffer to put data
1285 * Get hold of the chip and call nand_do_read
1287 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1288 size_t *retlen, uint8_t *buf)
1290 struct nand_chip *chip = mtd->priv;
1291 int ret;
1293 /* Do not allow reads past end of device */
1294 if ((from + len) > mtd->size)
1295 return -EINVAL;
1296 if (!len)
1297 return 0;
1299 nand_get_device(chip, mtd, FL_READING);
1301 chip->ops.len = len;
1302 chip->ops.datbuf = buf;
1303 chip->ops.oobbuf = NULL;
1305 ret = nand_do_read_ops(mtd, from, &chip->ops);
1307 *retlen = chip->ops.retlen;
1309 nand_release_device(mtd);
1311 return ret;
1315 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1316 * @mtd: mtd info structure
1317 * @chip: nand chip info structure
1318 * @page: page number to read
1319 * @sndcmd: flag whether to issue read command or not
1321 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1322 int page, int sndcmd)
1324 if (sndcmd) {
1325 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1326 sndcmd = 0;
1328 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1329 return sndcmd;
1333 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1334 * with syndromes
1335 * @mtd: mtd info structure
1336 * @chip: nand chip info structure
1337 * @page: page number to read
1338 * @sndcmd: flag whether to issue read command or not
1340 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1341 int page, int sndcmd)
1343 uint8_t *buf = chip->oob_poi;
1344 int length = mtd->oobsize;
1345 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1346 int eccsize = chip->ecc.size;
1347 uint8_t *bufpoi = buf;
1348 int i, toread, sndrnd = 0, pos;
1350 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1351 for (i = 0; i < chip->ecc.steps; i++) {
1352 if (sndrnd) {
1353 pos = eccsize + i * (eccsize + chunk);
1354 if (mtd->writesize > 512)
1355 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1356 else
1357 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1358 } else
1359 sndrnd = 1;
1360 toread = min_t(int, length, chunk);
1361 chip->read_buf(mtd, bufpoi, toread);
1362 bufpoi += toread;
1363 length -= toread;
1365 if (length > 0)
1366 chip->read_buf(mtd, bufpoi, length);
1368 return 1;
1372 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1373 * @mtd: mtd info structure
1374 * @chip: nand chip info structure
1375 * @page: page number to write
1377 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1378 int page)
1380 int status = 0;
1381 const uint8_t *buf = chip->oob_poi;
1382 int length = mtd->oobsize;
1384 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1385 chip->write_buf(mtd, buf, length);
1386 /* Send command to program the OOB data */
1387 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1389 status = chip->waitfunc(mtd, chip);
1391 return status & NAND_STATUS_FAIL ? -EIO : 0;
1395 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1396 * with syndrome - only for large page flash !
1397 * @mtd: mtd info structure
1398 * @chip: nand chip info structure
1399 * @page: page number to write
1401 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1402 struct nand_chip *chip, int page)
1404 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1405 int eccsize = chip->ecc.size, length = mtd->oobsize;
1406 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1407 const uint8_t *bufpoi = chip->oob_poi;
1410 * data-ecc-data-ecc ... ecc-oob
1411 * or
1412 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1414 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1415 pos = steps * (eccsize + chunk);
1416 steps = 0;
1417 } else
1418 pos = eccsize;
1420 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1421 for (i = 0; i < steps; i++) {
1422 if (sndcmd) {
1423 if (mtd->writesize <= 512) {
1424 uint32_t fill = 0xFFFFFFFF;
1426 len = eccsize;
1427 while (len > 0) {
1428 int num = min_t(int, len, 4);
1429 chip->write_buf(mtd, (uint8_t *)&fill,
1430 num);
1431 len -= num;
1433 } else {
1434 pos = eccsize + i * (eccsize + chunk);
1435 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1437 } else
1438 sndcmd = 1;
1439 len = min_t(int, length, chunk);
1440 chip->write_buf(mtd, bufpoi, len);
1441 bufpoi += len;
1442 length -= len;
1444 if (length > 0)
1445 chip->write_buf(mtd, bufpoi, length);
1447 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1448 status = chip->waitfunc(mtd, chip);
1450 return status & NAND_STATUS_FAIL ? -EIO : 0;
1454 * nand_do_read_oob - [Intern] NAND read out-of-band
1455 * @mtd: MTD device structure
1456 * @from: offset to read from
1457 * @ops: oob operations description structure
1459 * NAND read out-of-band data from the spare area
1461 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1462 struct mtd_oob_ops *ops)
1464 int page, realpage, chipnr, sndcmd = 1;
1465 struct nand_chip *chip = mtd->priv;
1466 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1467 int readlen = ops->ooblen;
1468 int len;
1469 uint8_t *buf = ops->oobbuf;
1471 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1472 __func__, (unsigned long long)from, readlen);
1474 if (ops->mode == MTD_OOB_AUTO)
1475 len = chip->ecc.layout->oobavail;
1476 else
1477 len = mtd->oobsize;
1479 if (unlikely(ops->ooboffs >= len)) {
1480 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1481 "outside oob\n", __func__);
1482 return -EINVAL;
1485 /* Do not allow reads past end of device */
1486 if (unlikely(from >= mtd->size ||
1487 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1488 (from >> chip->page_shift)) * len)) {
1489 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1490 "of device\n", __func__);
1491 return -EINVAL;
1494 chipnr = (int)(from >> chip->chip_shift);
1495 chip->select_chip(mtd, chipnr);
1497 /* Shift to get page */
1498 realpage = (int)(from >> chip->page_shift);
1499 page = realpage & chip->pagemask;
1501 while(1) {
1502 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1504 len = min(len, readlen);
1505 buf = nand_transfer_oob(chip, buf, ops, len);
1507 if (!(chip->options & NAND_NO_READRDY)) {
1509 * Apply delay or wait for ready/busy pin. Do this
1510 * before the AUTOINCR check, so no problems arise if a
1511 * chip which does auto increment is marked as
1512 * NOAUTOINCR by the board driver.
1514 if (!chip->dev_ready)
1515 udelay(chip->chip_delay);
1516 else
1517 nand_wait_ready(mtd);
1520 readlen -= len;
1521 if (!readlen)
1522 break;
1524 /* Increment page address */
1525 realpage++;
1527 page = realpage & chip->pagemask;
1528 /* Check, if we cross a chip boundary */
1529 if (!page) {
1530 chipnr++;
1531 chip->select_chip(mtd, -1);
1532 chip->select_chip(mtd, chipnr);
1535 /* Check, if the chip supports auto page increment
1536 * or if we have hit a block boundary.
1538 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1539 sndcmd = 1;
1542 ops->oobretlen = ops->ooblen;
1543 return 0;
1547 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1548 * @mtd: MTD device structure
1549 * @from: offset to read from
1550 * @ops: oob operation description structure
1552 * NAND read data and/or out-of-band data
1554 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1555 struct mtd_oob_ops *ops)
1557 struct nand_chip *chip = mtd->priv;
1558 int ret = -ENOTSUPP;
1560 ops->retlen = 0;
1562 /* Do not allow reads past end of device */
1563 if (ops->datbuf && (from + ops->len) > mtd->size) {
1564 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1565 "beyond end of device\n", __func__);
1566 return -EINVAL;
1569 nand_get_device(chip, mtd, FL_READING);
1571 switch(ops->mode) {
1572 case MTD_OOB_PLACE:
1573 case MTD_OOB_AUTO:
1574 case MTD_OOB_RAW:
1575 break;
1577 default:
1578 goto out;
1581 if (!ops->datbuf)
1582 ret = nand_do_read_oob(mtd, from, ops);
1583 else
1584 ret = nand_do_read_ops(mtd, from, ops);
1586 out:
1587 nand_release_device(mtd);
1588 return ret;
1593 * nand_write_page_raw - [Intern] raw page write function
1594 * @mtd: mtd info structure
1595 * @chip: nand chip info structure
1596 * @buf: data buffer
1598 * Not for syndrome calculating ecc controllers, which use a special oob layout
1600 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1601 const uint8_t *buf)
1603 chip->write_buf(mtd, buf, mtd->writesize);
1604 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1608 * nand_write_page_raw_syndrome - [Intern] raw page write function
1609 * @mtd: mtd info structure
1610 * @chip: nand chip info structure
1611 * @buf: data buffer
1613 * We need a special oob layout and handling even when ECC isn't checked.
1615 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1616 const uint8_t *buf)
1618 int eccsize = chip->ecc.size;
1619 int eccbytes = chip->ecc.bytes;
1620 uint8_t *oob = chip->oob_poi;
1621 int steps, size;
1623 for (steps = chip->ecc.steps; steps > 0; steps--) {
1624 chip->write_buf(mtd, buf, eccsize);
1625 buf += eccsize;
1627 if (chip->ecc.prepad) {
1628 chip->write_buf(mtd, oob, chip->ecc.prepad);
1629 oob += chip->ecc.prepad;
1632 chip->read_buf(mtd, oob, eccbytes);
1633 oob += eccbytes;
1635 if (chip->ecc.postpad) {
1636 chip->write_buf(mtd, oob, chip->ecc.postpad);
1637 oob += chip->ecc.postpad;
1641 size = mtd->oobsize - (oob - chip->oob_poi);
1642 if (size)
1643 chip->write_buf(mtd, oob, size);
1646 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1647 * @mtd: mtd info structure
1648 * @chip: nand chip info structure
1649 * @buf: data buffer
1651 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1652 const uint8_t *buf)
1654 int i, eccsize = chip->ecc.size;
1655 int eccbytes = chip->ecc.bytes;
1656 int eccsteps = chip->ecc.steps;
1657 uint8_t *ecc_calc = chip->buffers->ecccalc;
1658 const uint8_t *p = buf;
1659 uint32_t *eccpos = chip->ecc.layout->eccpos;
1661 /* Software ecc calculation */
1662 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1663 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1665 for (i = 0; i < chip->ecc.total; i++)
1666 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1668 chip->ecc.write_page_raw(mtd, chip, buf);
1672 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1673 * @mtd: mtd info structure
1674 * @chip: nand chip info structure
1675 * @buf: data buffer
1677 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1678 const uint8_t *buf)
1680 int i, eccsize = chip->ecc.size;
1681 int eccbytes = chip->ecc.bytes;
1682 int eccsteps = chip->ecc.steps;
1683 uint8_t *ecc_calc = chip->buffers->ecccalc;
1684 const uint8_t *p = buf;
1685 uint32_t *eccpos = chip->ecc.layout->eccpos;
1687 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1688 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1689 chip->write_buf(mtd, p, eccsize);
1690 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1693 for (i = 0; i < chip->ecc.total; i++)
1694 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1696 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1700 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1701 * @mtd: mtd info structure
1702 * @chip: nand chip info structure
1703 * @buf: data buffer
1705 * The hw generator calculates the error syndrome automatically. Therefor
1706 * we need a special oob layout and handling.
1708 static void nand_write_page_syndrome(struct mtd_info *mtd,
1709 struct nand_chip *chip, const uint8_t *buf)
1711 int i, eccsize = chip->ecc.size;
1712 int eccbytes = chip->ecc.bytes;
1713 int eccsteps = chip->ecc.steps;
1714 const uint8_t *p = buf;
1715 uint8_t *oob = chip->oob_poi;
1717 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1719 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1720 chip->write_buf(mtd, p, eccsize);
1722 if (chip->ecc.prepad) {
1723 chip->write_buf(mtd, oob, chip->ecc.prepad);
1724 oob += chip->ecc.prepad;
1727 chip->ecc.calculate(mtd, p, oob);
1728 chip->write_buf(mtd, oob, eccbytes);
1729 oob += eccbytes;
1731 if (chip->ecc.postpad) {
1732 chip->write_buf(mtd, oob, chip->ecc.postpad);
1733 oob += chip->ecc.postpad;
1737 /* Calculate remaining oob bytes */
1738 i = mtd->oobsize - (oob - chip->oob_poi);
1739 if (i)
1740 chip->write_buf(mtd, oob, i);
1744 * nand_write_page - [REPLACEABLE] write one page
1745 * @mtd: MTD device structure
1746 * @chip: NAND chip descriptor
1747 * @buf: the data to write
1748 * @page: page number to write
1749 * @cached: cached programming
1750 * @raw: use _raw version of write_page
1752 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1753 const uint8_t *buf, int page, int cached, int raw)
1755 int status;
1757 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1759 if (unlikely(raw))
1760 chip->ecc.write_page_raw(mtd, chip, buf);
1761 else
1762 chip->ecc.write_page(mtd, chip, buf);
1765 * Cached progamming disabled for now, Not sure if its worth the
1766 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1768 cached = 0;
1770 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1772 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1773 status = chip->waitfunc(mtd, chip);
1775 * See if operation failed and additional status checks are
1776 * available
1778 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1779 status = chip->errstat(mtd, chip, FL_WRITING, status,
1780 page);
1782 if (status & NAND_STATUS_FAIL)
1783 return -EIO;
1784 } else {
1785 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1786 status = chip->waitfunc(mtd, chip);
1789 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1790 /* Send command to read back the data */
1791 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1793 if (chip->verify_buf(mtd, buf, mtd->writesize))
1794 return -EIO;
1795 #endif
1796 return 0;
1800 * nand_fill_oob - [Internal] Transfer client buffer to oob
1801 * @chip: nand chip structure
1802 * @oob: oob data buffer
1803 * @ops: oob ops structure
1805 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1806 struct mtd_oob_ops *ops)
1808 size_t len = ops->ooblen;
1810 switch(ops->mode) {
1812 case MTD_OOB_PLACE:
1813 case MTD_OOB_RAW:
1814 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1815 return oob + len;
1817 case MTD_OOB_AUTO: {
1818 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1819 uint32_t boffs = 0, woffs = ops->ooboffs;
1820 size_t bytes = 0;
1822 for(; free->length && len; free++, len -= bytes) {
1823 /* Write request not from offset 0 ? */
1824 if (unlikely(woffs)) {
1825 if (woffs >= free->length) {
1826 woffs -= free->length;
1827 continue;
1829 boffs = free->offset + woffs;
1830 bytes = min_t(size_t, len,
1831 (free->length - woffs));
1832 woffs = 0;
1833 } else {
1834 bytes = min_t(size_t, len, free->length);
1835 boffs = free->offset;
1837 memcpy(chip->oob_poi + boffs, oob, bytes);
1838 oob += bytes;
1840 return oob;
1842 default:
1843 BUG();
1845 return NULL;
1848 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1851 * nand_do_write_ops - [Internal] NAND write with ECC
1852 * @mtd: MTD device structure
1853 * @to: offset to write to
1854 * @ops: oob operations description structure
1856 * NAND write with ECC
1858 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1859 struct mtd_oob_ops *ops)
1861 int chipnr, realpage, page, blockmask, column;
1862 struct nand_chip *chip = mtd->priv;
1863 uint32_t writelen = ops->len;
1864 uint8_t *oob = ops->oobbuf;
1865 uint8_t *buf = ops->datbuf;
1866 int ret, subpage;
1868 ops->retlen = 0;
1869 if (!writelen)
1870 return 0;
1872 /* reject writes, which are not page aligned */
1873 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1874 printk(KERN_NOTICE "%s: Attempt to write not "
1875 "page aligned data\n", __func__);
1876 return -EINVAL;
1879 column = to & (mtd->writesize - 1);
1880 subpage = column || (writelen & (mtd->writesize - 1));
1882 if (subpage && oob)
1883 return -EINVAL;
1885 chipnr = (int)(to >> chip->chip_shift);
1886 chip->select_chip(mtd, chipnr);
1888 /* Check, if it is write protected */
1889 if (nand_check_wp(mtd))
1890 return -EIO;
1892 realpage = (int)(to >> chip->page_shift);
1893 page = realpage & chip->pagemask;
1894 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1896 /* Invalidate the page cache, when we write to the cached page */
1897 if (to <= (chip->pagebuf << chip->page_shift) &&
1898 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1899 chip->pagebuf = -1;
1901 /* If we're not given explicit OOB data, let it be 0xFF */
1902 if (likely(!oob))
1903 memset(chip->oob_poi, 0xff, mtd->oobsize);
1905 while(1) {
1906 int bytes = mtd->writesize;
1907 int cached = writelen > bytes && page != blockmask;
1908 uint8_t *wbuf = buf;
1910 /* Partial page write ? */
1911 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1912 cached = 0;
1913 bytes = min_t(int, bytes - column, (int) writelen);
1914 chip->pagebuf = -1;
1915 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1916 memcpy(&chip->buffers->databuf[column], buf, bytes);
1917 wbuf = chip->buffers->databuf;
1920 if (unlikely(oob))
1921 oob = nand_fill_oob(chip, oob, ops);
1923 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1924 (ops->mode == MTD_OOB_RAW));
1925 if (ret)
1926 break;
1928 writelen -= bytes;
1929 if (!writelen)
1930 break;
1932 column = 0;
1933 buf += bytes;
1934 realpage++;
1936 page = realpage & chip->pagemask;
1937 /* Check, if we cross a chip boundary */
1938 if (!page) {
1939 chipnr++;
1940 chip->select_chip(mtd, -1);
1941 chip->select_chip(mtd, chipnr);
1945 ops->retlen = ops->len - writelen;
1946 if (unlikely(oob))
1947 ops->oobretlen = ops->ooblen;
1948 return ret;
1952 * nand_write - [MTD Interface] NAND write with ECC
1953 * @mtd: MTD device structure
1954 * @to: offset to write to
1955 * @len: number of bytes to write
1956 * @retlen: pointer to variable to store the number of written bytes
1957 * @buf: the data to write
1959 * NAND write with ECC
1961 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1962 size_t *retlen, const uint8_t *buf)
1964 struct nand_chip *chip = mtd->priv;
1965 int ret;
1967 /* Do not allow reads past end of device */
1968 if ((to + len) > mtd->size)
1969 return -EINVAL;
1970 if (!len)
1971 return 0;
1973 nand_get_device(chip, mtd, FL_WRITING);
1975 chip->ops.len = len;
1976 chip->ops.datbuf = (uint8_t *)buf;
1977 chip->ops.oobbuf = NULL;
1979 ret = nand_do_write_ops(mtd, to, &chip->ops);
1981 *retlen = chip->ops.retlen;
1983 nand_release_device(mtd);
1985 return ret;
1989 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1990 * @mtd: MTD device structure
1991 * @to: offset to write to
1992 * @ops: oob operation description structure
1994 * NAND write out-of-band
1996 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1997 struct mtd_oob_ops *ops)
1999 int chipnr, page, status, len;
2000 struct nand_chip *chip = mtd->priv;
2002 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2003 __func__, (unsigned int)to, (int)ops->ooblen);
2005 if (ops->mode == MTD_OOB_AUTO)
2006 len = chip->ecc.layout->oobavail;
2007 else
2008 len = mtd->oobsize;
2010 /* Do not allow write past end of page */
2011 if ((ops->ooboffs + ops->ooblen) > len) {
2012 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2013 "past end of page\n", __func__);
2014 return -EINVAL;
2017 if (unlikely(ops->ooboffs >= len)) {
2018 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2019 "write outside oob\n", __func__);
2020 return -EINVAL;
2023 /* Do not allow reads past end of device */
2024 if (unlikely(to >= mtd->size ||
2025 ops->ooboffs + ops->ooblen >
2026 ((mtd->size >> chip->page_shift) -
2027 (to >> chip->page_shift)) * len)) {
2028 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2029 "end of device\n", __func__);
2030 return -EINVAL;
2033 chipnr = (int)(to >> chip->chip_shift);
2034 chip->select_chip(mtd, chipnr);
2036 /* Shift to get page */
2037 page = (int)(to >> chip->page_shift);
2040 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2041 * of my DiskOnChip 2000 test units) will clear the whole data page too
2042 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2043 * it in the doc2000 driver in August 1999. dwmw2.
2045 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2047 /* Check, if it is write protected */
2048 if (nand_check_wp(mtd))
2049 return -EROFS;
2051 /* Invalidate the page cache, if we write to the cached page */
2052 if (page == chip->pagebuf)
2053 chip->pagebuf = -1;
2055 memset(chip->oob_poi, 0xff, mtd->oobsize);
2056 nand_fill_oob(chip, ops->oobbuf, ops);
2057 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2058 memset(chip->oob_poi, 0xff, mtd->oobsize);
2060 if (status)
2061 return status;
2063 ops->oobretlen = ops->ooblen;
2065 return 0;
2069 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2070 * @mtd: MTD device structure
2071 * @to: offset to write to
2072 * @ops: oob operation description structure
2074 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2075 struct mtd_oob_ops *ops)
2077 struct nand_chip *chip = mtd->priv;
2078 int ret = -ENOTSUPP;
2080 ops->retlen = 0;
2082 /* Do not allow writes past end of device */
2083 if (ops->datbuf && (to + ops->len) > mtd->size) {
2084 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2085 "end of device\n", __func__);
2086 return -EINVAL;
2089 nand_get_device(chip, mtd, FL_WRITING);
2091 switch(ops->mode) {
2092 case MTD_OOB_PLACE:
2093 case MTD_OOB_AUTO:
2094 case MTD_OOB_RAW:
2095 break;
2097 default:
2098 goto out;
2101 if (!ops->datbuf)
2102 ret = nand_do_write_oob(mtd, to, ops);
2103 else
2104 ret = nand_do_write_ops(mtd, to, ops);
2106 out:
2107 nand_release_device(mtd);
2108 return ret;
2112 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2113 * @mtd: MTD device structure
2114 * @page: the page address of the block which will be erased
2116 * Standard erase command for NAND chips
2118 static void single_erase_cmd(struct mtd_info *mtd, int page)
2120 struct nand_chip *chip = mtd->priv;
2121 /* Send commands to erase a block */
2122 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2123 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2127 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2128 * @mtd: MTD device structure
2129 * @page: the page address of the block which will be erased
2131 * AND multi block erase command function
2132 * Erase 4 consecutive blocks
2134 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2136 struct nand_chip *chip = mtd->priv;
2137 /* Send commands to erase a block */
2138 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2139 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2140 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2141 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2142 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2146 * nand_erase - [MTD Interface] erase block(s)
2147 * @mtd: MTD device structure
2148 * @instr: erase instruction
2150 * Erase one ore more blocks
2152 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2154 return nand_erase_nand(mtd, instr, 0);
2157 #define BBT_PAGE_MASK 0xffffff3f
2159 * nand_erase_nand - [Internal] erase block(s)
2160 * @mtd: MTD device structure
2161 * @instr: erase instruction
2162 * @allowbbt: allow erasing the bbt area
2164 * Erase one ore more blocks
2166 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2167 int allowbbt)
2169 int page, status, pages_per_block, ret, chipnr;
2170 struct nand_chip *chip = mtd->priv;
2171 loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2172 unsigned int bbt_masked_page = 0xffffffff;
2173 loff_t len;
2175 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2176 __func__, (unsigned long long)instr->addr,
2177 (unsigned long long)instr->len);
2179 /* Start address must align on block boundary */
2180 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2181 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
2182 return -EINVAL;
2185 /* Length must align on block boundary */
2186 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2187 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
2188 __func__);
2189 return -EINVAL;
2192 /* Do not allow erase past end of device */
2193 if ((instr->len + instr->addr) > mtd->size) {
2194 DEBUG(MTD_DEBUG_LEVEL0, "%s: Erase past end of device\n",
2195 __func__);
2196 return -EINVAL;
2199 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2201 /* Grab the lock and see if the device is available */
2202 nand_get_device(chip, mtd, FL_ERASING);
2204 /* Shift to get first page */
2205 page = (int)(instr->addr >> chip->page_shift);
2206 chipnr = (int)(instr->addr >> chip->chip_shift);
2208 /* Calculate pages in each block */
2209 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2211 /* Select the NAND device */
2212 chip->select_chip(mtd, chipnr);
2214 /* Check, if it is write protected */
2215 if (nand_check_wp(mtd)) {
2216 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2217 __func__);
2218 instr->state = MTD_ERASE_FAILED;
2219 goto erase_exit;
2223 * If BBT requires refresh, set the BBT page mask to see if the BBT
2224 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2225 * can not be matched. This is also done when the bbt is actually
2226 * erased to avoid recusrsive updates
2228 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2229 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2231 /* Loop through the pages */
2232 len = instr->len;
2234 instr->state = MTD_ERASING;
2236 while (len) {
2238 * heck if we have a bad block, we do not erase bad blocks !
2240 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2241 chip->page_shift, 0, allowbbt)) {
2242 printk(KERN_WARNING "%s: attempt to erase a bad block "
2243 "at page 0x%08x\n", __func__, page);
2244 instr->state = MTD_ERASE_FAILED;
2245 goto erase_exit;
2249 * Invalidate the page cache, if we erase the block which
2250 * contains the current cached page
2252 if (page <= chip->pagebuf && chip->pagebuf <
2253 (page + pages_per_block))
2254 chip->pagebuf = -1;
2256 chip->erase_cmd(mtd, page & chip->pagemask);
2258 status = chip->waitfunc(mtd, chip);
2261 * See if operation failed and additional status checks are
2262 * available
2264 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2265 status = chip->errstat(mtd, chip, FL_ERASING,
2266 status, page);
2268 /* See if block erase succeeded */
2269 if (status & NAND_STATUS_FAIL) {
2270 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2271 "page 0x%08x\n", __func__, page);
2272 instr->state = MTD_ERASE_FAILED;
2273 instr->fail_addr =
2274 ((loff_t)page << chip->page_shift);
2275 goto erase_exit;
2279 * If BBT requires refresh, set the BBT rewrite flag to the
2280 * page being erased
2282 if (bbt_masked_page != 0xffffffff &&
2283 (page & BBT_PAGE_MASK) == bbt_masked_page)
2284 rewrite_bbt[chipnr] =
2285 ((loff_t)page << chip->page_shift);
2287 /* Increment page address and decrement length */
2288 len -= (1 << chip->phys_erase_shift);
2289 page += pages_per_block;
2291 /* Check, if we cross a chip boundary */
2292 if (len && !(page & chip->pagemask)) {
2293 chipnr++;
2294 chip->select_chip(mtd, -1);
2295 chip->select_chip(mtd, chipnr);
2298 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2299 * page mask to see if this BBT should be rewritten
2301 if (bbt_masked_page != 0xffffffff &&
2302 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2303 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2304 BBT_PAGE_MASK;
2307 instr->state = MTD_ERASE_DONE;
2309 erase_exit:
2311 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2313 /* Deselect and wake up anyone waiting on the device */
2314 nand_release_device(mtd);
2316 /* Do call back function */
2317 if (!ret)
2318 mtd_erase_callback(instr);
2321 * If BBT requires refresh and erase was successful, rewrite any
2322 * selected bad block tables
2324 if (bbt_masked_page == 0xffffffff || ret)
2325 return ret;
2327 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2328 if (!rewrite_bbt[chipnr])
2329 continue;
2330 /* update the BBT for chip */
2331 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2332 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2333 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2334 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2337 /* Return more or less happy */
2338 return ret;
2342 * nand_sync - [MTD Interface] sync
2343 * @mtd: MTD device structure
2345 * Sync is actually a wait for chip ready function
2347 static void nand_sync(struct mtd_info *mtd)
2349 struct nand_chip *chip = mtd->priv;
2351 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2353 /* Grab the lock and see if the device is available */
2354 nand_get_device(chip, mtd, FL_SYNCING);
2355 /* Release it and go back */
2356 nand_release_device(mtd);
2360 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2361 * @mtd: MTD device structure
2362 * @offs: offset relative to mtd start
2364 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2366 /* Check for invalid offset */
2367 if (offs > mtd->size)
2368 return -EINVAL;
2370 return nand_block_checkbad(mtd, offs, 1, 0);
2374 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2375 * @mtd: MTD device structure
2376 * @ofs: offset relative to mtd start
2378 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2380 struct nand_chip *chip = mtd->priv;
2381 int ret;
2383 if ((ret = nand_block_isbad(mtd, ofs))) {
2384 /* If it was bad already, return success and do nothing. */
2385 if (ret > 0)
2386 return 0;
2387 return ret;
2390 return chip->block_markbad(mtd, ofs);
2394 * nand_suspend - [MTD Interface] Suspend the NAND flash
2395 * @mtd: MTD device structure
2397 static int nand_suspend(struct mtd_info *mtd)
2399 struct nand_chip *chip = mtd->priv;
2401 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2405 * nand_resume - [MTD Interface] Resume the NAND flash
2406 * @mtd: MTD device structure
2408 static void nand_resume(struct mtd_info *mtd)
2410 struct nand_chip *chip = mtd->priv;
2412 if (chip->state == FL_PM_SUSPENDED)
2413 nand_release_device(mtd);
2414 else
2415 printk(KERN_ERR "%s called for a chip which is not "
2416 "in suspended state\n", __func__);
2420 * Set default functions
2422 static void nand_set_defaults(struct nand_chip *chip, int busw)
2424 /* check for proper chip_delay setup, set 20us if not */
2425 if (!chip->chip_delay)
2426 chip->chip_delay = 20;
2428 /* check, if a user supplied command function given */
2429 if (chip->cmdfunc == NULL)
2430 chip->cmdfunc = nand_command;
2432 /* check, if a user supplied wait function given */
2433 if (chip->waitfunc == NULL)
2434 chip->waitfunc = nand_wait;
2436 if (!chip->select_chip)
2437 chip->select_chip = nand_select_chip;
2438 if (!chip->read_byte)
2439 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2440 if (!chip->read_word)
2441 chip->read_word = nand_read_word;
2442 if (!chip->block_bad)
2443 chip->block_bad = nand_block_bad;
2444 if (!chip->block_markbad)
2445 chip->block_markbad = nand_default_block_markbad;
2446 if (!chip->write_buf)
2447 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2448 if (!chip->read_buf)
2449 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2450 if (!chip->verify_buf)
2451 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2452 if (!chip->scan_bbt)
2453 chip->scan_bbt = nand_default_bbt;
2455 if (!chip->controller) {
2456 chip->controller = &chip->hwcontrol;
2457 spin_lock_init(&chip->controller->lock);
2458 init_waitqueue_head(&chip->controller->wq);
2464 * Get the flash and manufacturer id and lookup if the type is supported
2466 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2467 struct nand_chip *chip,
2468 int busw, int *maf_id)
2470 struct nand_flash_dev *type = NULL;
2471 int i, dev_id, maf_idx;
2472 int tmp_id, tmp_manf;
2474 /* Select the device */
2475 chip->select_chip(mtd, 0);
2478 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2479 * after power-up
2481 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2483 /* Send the command for reading device ID */
2484 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2486 /* Read manufacturer and device IDs */
2487 *maf_id = chip->read_byte(mtd);
2488 dev_id = chip->read_byte(mtd);
2490 /* Try again to make sure, as some systems the bus-hold or other
2491 * interface concerns can cause random data which looks like a
2492 * possibly credible NAND flash to appear. If the two results do
2493 * not match, ignore the device completely.
2496 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2498 /* Read manufacturer and device IDs */
2500 tmp_manf = chip->read_byte(mtd);
2501 tmp_id = chip->read_byte(mtd);
2503 if (tmp_manf != *maf_id || tmp_id != dev_id) {
2504 printk(KERN_INFO "%s: second ID read did not match "
2505 "%02x,%02x against %02x,%02x\n", __func__,
2506 *maf_id, dev_id, tmp_manf, tmp_id);
2507 return ERR_PTR(-ENODEV);
2510 /* Lookup the flash id */
2511 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2512 if (dev_id == nand_flash_ids[i].id) {
2513 type = &nand_flash_ids[i];
2514 break;
2518 if (!type)
2519 return ERR_PTR(-ENODEV);
2521 if (!mtd->name)
2522 mtd->name = type->name;
2524 chip->chipsize = (uint64_t)type->chipsize << 20;
2526 /* Newer devices have all the information in additional id bytes */
2527 if (!type->pagesize) {
2528 int extid;
2529 /* The 3rd id byte holds MLC / multichip data */
2530 chip->cellinfo = chip->read_byte(mtd);
2531 /* The 4th id byte is the important one */
2532 extid = chip->read_byte(mtd);
2533 /* Calc pagesize */
2534 mtd->writesize = 1024 << (extid & 0x3);
2535 extid >>= 2;
2536 /* Calc oobsize */
2537 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2538 extid >>= 2;
2539 /* Calc blocksize. Blocksize is multiples of 64KiB */
2540 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2541 extid >>= 2;
2542 /* Get buswidth information */
2543 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2545 } else {
2547 * Old devices have chip data hardcoded in the device id table
2549 mtd->erasesize = type->erasesize;
2550 mtd->writesize = type->pagesize;
2551 mtd->oobsize = mtd->writesize / 32;
2552 busw = type->options & NAND_BUSWIDTH_16;
2555 /* Try to identify manufacturer */
2556 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2557 if (nand_manuf_ids[maf_idx].id == *maf_id)
2558 break;
2562 * Check, if buswidth is correct. Hardware drivers should set
2563 * chip correct !
2565 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2566 printk(KERN_INFO "NAND device: Manufacturer ID:"
2567 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2568 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2569 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2570 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2571 busw ? 16 : 8);
2572 return ERR_PTR(-EINVAL);
2575 /* Calculate the address shift from the page size */
2576 chip->page_shift = ffs(mtd->writesize) - 1;
2577 /* Convert chipsize to number of pages per chip -1. */
2578 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2580 chip->bbt_erase_shift = chip->phys_erase_shift =
2581 ffs(mtd->erasesize) - 1;
2582 if (chip->chipsize & 0xffffffff)
2583 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2584 else
2585 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2587 /* Set the bad block position */
2588 chip->badblockpos = mtd->writesize > 512 ?
2589 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2591 /* Get chip options, preserve non chip based options */
2592 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2593 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2596 * Set chip as a default. Board drivers can override it, if necessary
2598 chip->options |= NAND_NO_AUTOINCR;
2600 /* Check if chip is a not a samsung device. Do not clear the
2601 * options for chips which are not having an extended id.
2603 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2604 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2606 /* Check for AND chips with 4 page planes */
2607 if (chip->options & NAND_4PAGE_ARRAY)
2608 chip->erase_cmd = multi_erase_cmd;
2609 else
2610 chip->erase_cmd = single_erase_cmd;
2612 /* Do not replace user supplied command function ! */
2613 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2614 chip->cmdfunc = nand_command_lp;
2616 printk(KERN_INFO "NAND device: Manufacturer ID:"
2617 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2618 nand_manuf_ids[maf_idx].name, type->name);
2620 return type;
2624 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2625 * @mtd: MTD device structure
2626 * @maxchips: Number of chips to scan for
2628 * This is the first phase of the normal nand_scan() function. It
2629 * reads the flash ID and sets up MTD fields accordingly.
2631 * The mtd->owner field must be set to the module of the caller.
2633 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2635 int i, busw, nand_maf_id;
2636 struct nand_chip *chip = mtd->priv;
2637 struct nand_flash_dev *type;
2639 /* Get buswidth to select the correct functions */
2640 busw = chip->options & NAND_BUSWIDTH_16;
2641 /* Set the default functions */
2642 nand_set_defaults(chip, busw);
2644 /* Read the flash type */
2645 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2647 if (IS_ERR(type)) {
2648 printk(KERN_WARNING "No NAND device found!!!\n");
2649 chip->select_chip(mtd, -1);
2650 return PTR_ERR(type);
2653 /* Check for a chip array */
2654 for (i = 1; i < maxchips; i++) {
2655 chip->select_chip(mtd, i);
2656 /* See comment in nand_get_flash_type for reset */
2657 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2658 /* Send the command for reading device ID */
2659 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2660 /* Read manufacturer and device IDs */
2661 if (nand_maf_id != chip->read_byte(mtd) ||
2662 type->id != chip->read_byte(mtd))
2663 break;
2665 if (i > 1)
2666 printk(KERN_INFO "%d NAND chips detected\n", i);
2668 /* Store the number of chips and calc total size for mtd */
2669 chip->numchips = i;
2670 mtd->size = i * chip->chipsize;
2672 return 0;
2677 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2678 * @mtd: MTD device structure
2680 * This is the second phase of the normal nand_scan() function. It
2681 * fills out all the uninitialized function pointers with the defaults
2682 * and scans for a bad block table if appropriate.
2684 int nand_scan_tail(struct mtd_info *mtd)
2686 int i;
2687 struct nand_chip *chip = mtd->priv;
2689 if (!(chip->options & NAND_OWN_BUFFERS))
2690 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2691 if (!chip->buffers)
2692 return -ENOMEM;
2694 /* Set the internal oob buffer location, just after the page data */
2695 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2698 * If no default placement scheme is given, select an appropriate one
2700 if (!chip->ecc.layout) {
2701 switch (mtd->oobsize) {
2702 case 8:
2703 chip->ecc.layout = &nand_oob_8;
2704 break;
2705 case 16:
2706 chip->ecc.layout = &nand_oob_16;
2707 break;
2708 case 64:
2709 chip->ecc.layout = &nand_oob_64;
2710 break;
2711 case 128:
2712 chip->ecc.layout = &nand_oob_128;
2713 break;
2714 default:
2715 printk(KERN_WARNING "No oob scheme defined for "
2716 "oobsize %d\n", mtd->oobsize);
2717 BUG();
2721 if (!chip->write_page)
2722 chip->write_page = nand_write_page;
2725 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2726 * selected and we have 256 byte pagesize fallback to software ECC
2729 switch (chip->ecc.mode) {
2730 case NAND_ECC_HW_OOB_FIRST:
2731 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2732 if (!chip->ecc.calculate || !chip->ecc.correct ||
2733 !chip->ecc.hwctl) {
2734 printk(KERN_WARNING "No ECC functions supplied; "
2735 "Hardware ECC not possible\n");
2736 BUG();
2738 if (!chip->ecc.read_page)
2739 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
2741 case NAND_ECC_HW:
2742 /* Use standard hwecc read page function ? */
2743 if (!chip->ecc.read_page)
2744 chip->ecc.read_page = nand_read_page_hwecc;
2745 if (!chip->ecc.write_page)
2746 chip->ecc.write_page = nand_write_page_hwecc;
2747 if (!chip->ecc.read_page_raw)
2748 chip->ecc.read_page_raw = nand_read_page_raw;
2749 if (!chip->ecc.write_page_raw)
2750 chip->ecc.write_page_raw = nand_write_page_raw;
2751 if (!chip->ecc.read_oob)
2752 chip->ecc.read_oob = nand_read_oob_std;
2753 if (!chip->ecc.write_oob)
2754 chip->ecc.write_oob = nand_write_oob_std;
2756 case NAND_ECC_HW_SYNDROME:
2757 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2758 !chip->ecc.hwctl) &&
2759 (!chip->ecc.read_page ||
2760 chip->ecc.read_page == nand_read_page_hwecc ||
2761 !chip->ecc.write_page ||
2762 chip->ecc.write_page == nand_write_page_hwecc)) {
2763 printk(KERN_WARNING "No ECC functions supplied; "
2764 "Hardware ECC not possible\n");
2765 BUG();
2767 /* Use standard syndrome read/write page function ? */
2768 if (!chip->ecc.read_page)
2769 chip->ecc.read_page = nand_read_page_syndrome;
2770 if (!chip->ecc.write_page)
2771 chip->ecc.write_page = nand_write_page_syndrome;
2772 if (!chip->ecc.read_page_raw)
2773 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
2774 if (!chip->ecc.write_page_raw)
2775 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
2776 if (!chip->ecc.read_oob)
2777 chip->ecc.read_oob = nand_read_oob_syndrome;
2778 if (!chip->ecc.write_oob)
2779 chip->ecc.write_oob = nand_write_oob_syndrome;
2781 if (mtd->writesize >= chip->ecc.size)
2782 break;
2783 printk(KERN_WARNING "%d byte HW ECC not possible on "
2784 "%d byte page size, fallback to SW ECC\n",
2785 chip->ecc.size, mtd->writesize);
2786 chip->ecc.mode = NAND_ECC_SOFT;
2788 case NAND_ECC_SOFT:
2789 chip->ecc.calculate = nand_calculate_ecc;
2790 chip->ecc.correct = nand_correct_data;
2791 chip->ecc.read_page = nand_read_page_swecc;
2792 chip->ecc.read_subpage = nand_read_subpage;
2793 chip->ecc.write_page = nand_write_page_swecc;
2794 chip->ecc.read_page_raw = nand_read_page_raw;
2795 chip->ecc.write_page_raw = nand_write_page_raw;
2796 chip->ecc.read_oob = nand_read_oob_std;
2797 chip->ecc.write_oob = nand_write_oob_std;
2798 if (!chip->ecc.size)
2799 chip->ecc.size = 256;
2800 chip->ecc.bytes = 3;
2801 break;
2803 case NAND_ECC_NONE:
2804 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2805 "This is not recommended !!\n");
2806 chip->ecc.read_page = nand_read_page_raw;
2807 chip->ecc.write_page = nand_write_page_raw;
2808 chip->ecc.read_oob = nand_read_oob_std;
2809 chip->ecc.read_page_raw = nand_read_page_raw;
2810 chip->ecc.write_page_raw = nand_write_page_raw;
2811 chip->ecc.write_oob = nand_write_oob_std;
2812 chip->ecc.size = mtd->writesize;
2813 chip->ecc.bytes = 0;
2814 break;
2816 default:
2817 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2818 chip->ecc.mode);
2819 BUG();
2823 * The number of bytes available for a client to place data into
2824 * the out of band area
2826 chip->ecc.layout->oobavail = 0;
2827 for (i = 0; chip->ecc.layout->oobfree[i].length
2828 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
2829 chip->ecc.layout->oobavail +=
2830 chip->ecc.layout->oobfree[i].length;
2831 mtd->oobavail = chip->ecc.layout->oobavail;
2834 * Set the number of read / write steps for one page depending on ECC
2835 * mode
2837 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2838 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2839 printk(KERN_WARNING "Invalid ecc parameters\n");
2840 BUG();
2842 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2845 * Allow subpage writes up to ecc.steps. Not possible for MLC
2846 * FLASH.
2848 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2849 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2850 switch(chip->ecc.steps) {
2851 case 2:
2852 mtd->subpage_sft = 1;
2853 break;
2854 case 4:
2855 case 8:
2856 case 16:
2857 mtd->subpage_sft = 2;
2858 break;
2861 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2863 /* Initialize state */
2864 chip->state = FL_READY;
2866 /* De-select the device */
2867 chip->select_chip(mtd, -1);
2869 /* Invalidate the pagebuffer reference */
2870 chip->pagebuf = -1;
2872 /* Fill in remaining MTD driver data */
2873 mtd->type = MTD_NANDFLASH;
2874 mtd->flags = MTD_CAP_NANDFLASH;
2875 mtd->erase = nand_erase;
2876 mtd->point = NULL;
2877 mtd->unpoint = NULL;
2878 mtd->read = nand_read;
2879 mtd->write = nand_write;
2880 mtd->read_oob = nand_read_oob;
2881 mtd->write_oob = nand_write_oob;
2882 mtd->sync = nand_sync;
2883 mtd->lock = NULL;
2884 mtd->unlock = NULL;
2885 mtd->suspend = nand_suspend;
2886 mtd->resume = nand_resume;
2887 mtd->block_isbad = nand_block_isbad;
2888 mtd->block_markbad = nand_block_markbad;
2890 /* propagate ecc.layout to mtd_info */
2891 mtd->ecclayout = chip->ecc.layout;
2893 /* Check, if we should skip the bad block table scan */
2894 if (chip->options & NAND_SKIP_BBTSCAN)
2895 return 0;
2897 /* Build bad block table */
2898 return chip->scan_bbt(mtd);
2901 /* is_module_text_address() isn't exported, and it's mostly a pointless
2902 test if this is a module _anyway_ -- they'd have to try _really_ hard
2903 to call us from in-kernel code if the core NAND support is modular. */
2904 #ifdef MODULE
2905 #define caller_is_module() (1)
2906 #else
2907 #define caller_is_module() \
2908 is_module_text_address((unsigned long)__builtin_return_address(0))
2909 #endif
2912 * nand_scan - [NAND Interface] Scan for the NAND device
2913 * @mtd: MTD device structure
2914 * @maxchips: Number of chips to scan for
2916 * This fills out all the uninitialized function pointers
2917 * with the defaults.
2918 * The flash ID is read and the mtd/chip structures are
2919 * filled with the appropriate values.
2920 * The mtd->owner field must be set to the module of the caller
2923 int nand_scan(struct mtd_info *mtd, int maxchips)
2925 int ret;
2927 /* Many callers got this wrong, so check for it for a while... */
2928 if (!mtd->owner && caller_is_module()) {
2929 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
2930 __func__);
2931 BUG();
2934 ret = nand_scan_ident(mtd, maxchips);
2935 if (!ret)
2936 ret = nand_scan_tail(mtd);
2937 return ret;
2941 * nand_release - [NAND Interface] Free resources held by the NAND device
2942 * @mtd: MTD device structure
2944 void nand_release(struct mtd_info *mtd)
2946 struct nand_chip *chip = mtd->priv;
2948 #ifdef CONFIG_MTD_PARTITIONS
2949 /* Deregister partitions */
2950 del_mtd_partitions(mtd);
2951 #endif
2952 /* Deregister the device */
2953 del_mtd_device(mtd);
2955 /* Free bad block table memory */
2956 kfree(chip->bbt);
2957 if (!(chip->options & NAND_OWN_BUFFERS))
2958 kfree(chip->buffers);
2961 EXPORT_SYMBOL_GPL(nand_scan);
2962 EXPORT_SYMBOL_GPL(nand_scan_ident);
2963 EXPORT_SYMBOL_GPL(nand_scan_tail);
2964 EXPORT_SYMBOL_GPL(nand_release);
2966 static int __init nand_base_init(void)
2968 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2969 return 0;
2972 static void __exit nand_base_exit(void)
2974 led_trigger_unregister_simple(nand_led_trigger);
2977 module_init(nand_base_init);
2978 module_exit(nand_base_exit);
2980 MODULE_LICENSE("GPL");
2981 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2982 MODULE_DESCRIPTION("Generic NAND flash driver code");