[MTD NAND] Allocate chip->buffers separately to allow it to be overridden
[linux-2.6/mini2440.git] / drivers / mtd / nand / nand_base.c
blobe1e81a9543e8581ea3e16d48bd03ffd3599bed40
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * Credits:
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
65 static struct nand_ecclayout nand_oob_16 = {
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
73 static struct nand_ecclayout nand_oob_64 = {
74 .eccbytes = 24,
75 .eccpos = {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85 int new_state);
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88 struct mtd_oob_ops *ops);
91 * For devices which display every fart in the system on a seperate LED. Is
92 * compiled away when LED support is disabled.
94 DEFINE_LED_TRIGGER(nand_led_trigger);
96 /**
97 * nand_release_device - [GENERIC] release chip
98 * @mtd: MTD device structure
100 * Deselect, release chip lock and wake up anyone waiting on the device
102 static void nand_release_device(struct mtd_info *mtd)
104 struct nand_chip *chip = mtd->priv;
106 /* De-select the NAND device */
107 chip->select_chip(mtd, -1);
109 /* Release the controller and the chip */
110 spin_lock(&chip->controller->lock);
111 chip->controller->active = NULL;
112 chip->state = FL_READY;
113 wake_up(&chip->controller->wq);
114 spin_unlock(&chip->controller->lock);
118 * nand_read_byte - [DEFAULT] read one byte from the chip
119 * @mtd: MTD device structure
121 * Default read function for 8bit buswith
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
125 struct nand_chip *chip = mtd->priv;
126 return readb(chip->IO_ADDR_R);
130 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131 * @mtd: MTD device structure
133 * Default read function for 16bit buswith with
134 * endianess conversion
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
138 struct nand_chip *chip = mtd->priv;
139 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
143 * nand_read_word - [DEFAULT] read one word from the chip
144 * @mtd: MTD device structure
146 * Default read function for 16bit buswith without
147 * endianess conversion
149 static u16 nand_read_word(struct mtd_info *mtd)
151 struct nand_chip *chip = mtd->priv;
152 return readw(chip->IO_ADDR_R);
156 * nand_select_chip - [DEFAULT] control CE line
157 * @mtd: MTD device structure
158 * @chipnr: chipnumber to select, -1 for deselect
160 * Default select function for 1 chip devices.
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
164 struct nand_chip *chip = mtd->priv;
166 switch (chipnr) {
167 case -1:
168 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169 break;
170 case 0:
171 break;
173 default:
174 BUG();
179 * nand_write_buf - [DEFAULT] write buffer to chip
180 * @mtd: MTD device structure
181 * @buf: data buffer
182 * @len: number of bytes to write
184 * Default write function for 8bit buswith
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
188 int i;
189 struct nand_chip *chip = mtd->priv;
191 for (i = 0; i < len; i++)
192 writeb(buf[i], chip->IO_ADDR_W);
196 * nand_read_buf - [DEFAULT] read chip data into buffer
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
201 * Default read function for 8bit buswith
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
205 int i;
206 struct nand_chip *chip = mtd->priv;
208 for (i = 0; i < len; i++)
209 buf[i] = readb(chip->IO_ADDR_R);
213 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214 * @mtd: MTD device structure
215 * @buf: buffer containing the data to compare
216 * @len: number of bytes to compare
218 * Default verify function for 8bit buswith
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
222 int i;
223 struct nand_chip *chip = mtd->priv;
225 for (i = 0; i < len; i++)
226 if (buf[i] != readb(chip->IO_ADDR_R))
227 return -EFAULT;
228 return 0;
232 * nand_write_buf16 - [DEFAULT] write buffer to chip
233 * @mtd: MTD device structure
234 * @buf: data buffer
235 * @len: number of bytes to write
237 * Default write function for 16bit buswith
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
241 int i;
242 struct nand_chip *chip = mtd->priv;
243 u16 *p = (u16 *) buf;
244 len >>= 1;
246 for (i = 0; i < len; i++)
247 writew(p[i], chip->IO_ADDR_W);
252 * nand_read_buf16 - [DEFAULT] read chip data into buffer
253 * @mtd: MTD device structure
254 * @buf: buffer to store date
255 * @len: number of bytes to read
257 * Default read function for 16bit buswith
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
261 int i;
262 struct nand_chip *chip = mtd->priv;
263 u16 *p = (u16 *) buf;
264 len >>= 1;
266 for (i = 0; i < len; i++)
267 p[i] = readw(chip->IO_ADDR_R);
271 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272 * @mtd: MTD device structure
273 * @buf: buffer containing the data to compare
274 * @len: number of bytes to compare
276 * Default verify function for 16bit buswith
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
280 int i;
281 struct nand_chip *chip = mtd->priv;
282 u16 *p = (u16 *) buf;
283 len >>= 1;
285 for (i = 0; i < len; i++)
286 if (p[i] != readw(chip->IO_ADDR_R))
287 return -EFAULT;
289 return 0;
293 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294 * @mtd: MTD device structure
295 * @ofs: offset from device start
296 * @getchip: 0, if the chip is already selected
298 * Check, if the block is bad.
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
302 int page, chipnr, res = 0;
303 struct nand_chip *chip = mtd->priv;
304 u16 bad;
306 if (getchip) {
307 page = (int)(ofs >> chip->page_shift);
308 chipnr = (int)(ofs >> chip->chip_shift);
310 nand_get_device(chip, mtd, FL_READING);
312 /* Select the NAND device */
313 chip->select_chip(mtd, chipnr);
314 } else
315 page = (int)ofs;
317 if (chip->options & NAND_BUSWIDTH_16) {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319 page & chip->pagemask);
320 bad = cpu_to_le16(chip->read_word(mtd));
321 if (chip->badblockpos & 0x1)
322 bad >>= 8;
323 if ((bad & 0xFF) != 0xff)
324 res = 1;
325 } else {
326 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327 page & chip->pagemask);
328 if (chip->read_byte(mtd) != 0xff)
329 res = 1;
332 if (getchip)
333 nand_release_device(mtd);
335 return res;
339 * nand_default_block_markbad - [DEFAULT] mark a block bad
340 * @mtd: MTD device structure
341 * @ofs: offset from device start
343 * This is the default implementation, which can be overridden by
344 * a hardware specific driver.
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
348 struct nand_chip *chip = mtd->priv;
349 uint8_t buf[2] = { 0, 0 };
350 int block, ret;
352 /* Get block number */
353 block = ((int)ofs) >> chip->bbt_erase_shift;
354 if (chip->bbt)
355 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
357 /* Do we have a flash based bad block table ? */
358 if (chip->options & NAND_USE_FLASH_BBT)
359 ret = nand_update_bbt(mtd, ofs);
360 else {
361 /* We write two bytes, so we dont have to mess with 16 bit
362 * access
364 ofs += mtd->oobsize;
365 chip->ops.len = 2;
366 chip->ops.datbuf = NULL;
367 chip->ops.oobbuf = buf;
368 chip->ops.ooboffs = chip->badblockpos & ~0x01;
370 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
372 if (!ret)
373 mtd->ecc_stats.badblocks++;
374 return ret;
378 * nand_check_wp - [GENERIC] check if the chip is write protected
379 * @mtd: MTD device structure
380 * Check, if the device is write protected
382 * The function expects, that the device is already selected
384 static int nand_check_wp(struct mtd_info *mtd)
386 struct nand_chip *chip = mtd->priv;
387 /* Check the WP bit */
388 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
393 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
396 * @getchip: 0, if the chip is already selected
397 * @allowbbt: 1, if its allowed to access the bbt area
399 * Check, if the block is bad. Either by reading the bad block table or
400 * calling of the scan function.
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403 int allowbbt)
405 struct nand_chip *chip = mtd->priv;
407 if (!chip->bbt)
408 return chip->block_bad(mtd, ofs, getchip);
410 /* Return info from the table */
411 return nand_isbad_bbt(mtd, ofs, allowbbt);
415 * Wait for the ready pin, after a command
416 * The timeout is catched later.
418 void nand_wait_ready(struct mtd_info *mtd)
420 struct nand_chip *chip = mtd->priv;
421 unsigned long timeo = jiffies + 2;
423 led_trigger_event(nand_led_trigger, LED_FULL);
424 /* wait until command is processed or timeout occures */
425 do {
426 if (chip->dev_ready(mtd))
427 break;
428 touch_softlockup_watchdog();
429 } while (time_before(jiffies, timeo));
430 led_trigger_event(nand_led_trigger, LED_OFF);
432 EXPORT_SYMBOL_GPL(nand_wait_ready);
435 * nand_command - [DEFAULT] Send command to NAND device
436 * @mtd: MTD device structure
437 * @command: the command to be sent
438 * @column: the column address for this command, -1 if none
439 * @page_addr: the page address for this command, -1 if none
441 * Send command to NAND device. This function is used for small page
442 * devices (256/512 Bytes per page)
444 static void nand_command(struct mtd_info *mtd, unsigned int command,
445 int column, int page_addr)
447 register struct nand_chip *chip = mtd->priv;
448 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
451 * Write out the command to the device.
453 if (command == NAND_CMD_SEQIN) {
454 int readcmd;
456 if (column >= mtd->writesize) {
457 /* OOB area */
458 column -= mtd->writesize;
459 readcmd = NAND_CMD_READOOB;
460 } else if (column < 256) {
461 /* First 256 bytes --> READ0 */
462 readcmd = NAND_CMD_READ0;
463 } else {
464 column -= 256;
465 readcmd = NAND_CMD_READ1;
467 chip->cmd_ctrl(mtd, readcmd, ctrl);
468 ctrl &= ~NAND_CTRL_CHANGE;
470 chip->cmd_ctrl(mtd, command, ctrl);
473 * Address cycle, when necessary
475 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
476 /* Serially input address */
477 if (column != -1) {
478 /* Adjust columns for 16 bit buswidth */
479 if (chip->options & NAND_BUSWIDTH_16)
480 column >>= 1;
481 chip->cmd_ctrl(mtd, column, ctrl);
482 ctrl &= ~NAND_CTRL_CHANGE;
484 if (page_addr != -1) {
485 chip->cmd_ctrl(mtd, page_addr, ctrl);
486 ctrl &= ~NAND_CTRL_CHANGE;
487 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
488 /* One more address cycle for devices > 32MiB */
489 if (chip->chipsize > (32 << 20))
490 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
492 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
495 * program and erase have their own busy handlers
496 * status and sequential in needs no delay
498 switch (command) {
500 case NAND_CMD_PAGEPROG:
501 case NAND_CMD_ERASE1:
502 case NAND_CMD_ERASE2:
503 case NAND_CMD_SEQIN:
504 case NAND_CMD_STATUS:
505 return;
507 case NAND_CMD_RESET:
508 if (chip->dev_ready)
509 break;
510 udelay(chip->chip_delay);
511 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
512 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
513 chip->cmd_ctrl(mtd,
514 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
515 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
516 return;
518 /* This applies to read commands */
519 default:
521 * If we don't have access to the busy pin, we apply the given
522 * command delay
524 if (!chip->dev_ready) {
525 udelay(chip->chip_delay);
526 return;
529 /* Apply this short delay always to ensure that we do wait tWB in
530 * any case on any machine. */
531 ndelay(100);
533 nand_wait_ready(mtd);
537 * nand_command_lp - [DEFAULT] Send command to NAND large page device
538 * @mtd: MTD device structure
539 * @command: the command to be sent
540 * @column: the column address for this command, -1 if none
541 * @page_addr: the page address for this command, -1 if none
543 * Send command to NAND device. This is the version for the new large page
544 * devices We dont have the separate regions as we have in the small page
545 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
547 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
548 int column, int page_addr)
550 register struct nand_chip *chip = mtd->priv;
552 /* Emulate NAND_CMD_READOOB */
553 if (command == NAND_CMD_READOOB) {
554 column += mtd->writesize;
555 command = NAND_CMD_READ0;
558 /* Command latch cycle */
559 chip->cmd_ctrl(mtd, command & 0xff,
560 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
562 if (column != -1 || page_addr != -1) {
563 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
565 /* Serially input address */
566 if (column != -1) {
567 /* Adjust columns for 16 bit buswidth */
568 if (chip->options & NAND_BUSWIDTH_16)
569 column >>= 1;
570 chip->cmd_ctrl(mtd, column, ctrl);
571 ctrl &= ~NAND_CTRL_CHANGE;
572 chip->cmd_ctrl(mtd, column >> 8, ctrl);
574 if (page_addr != -1) {
575 chip->cmd_ctrl(mtd, page_addr, ctrl);
576 chip->cmd_ctrl(mtd, page_addr >> 8,
577 NAND_NCE | NAND_ALE);
578 /* One more address cycle for devices > 128MiB */
579 if (chip->chipsize > (128 << 20))
580 chip->cmd_ctrl(mtd, page_addr >> 16,
581 NAND_NCE | NAND_ALE);
584 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
587 * program and erase have their own busy handlers
588 * status, sequential in, and deplete1 need no delay
590 switch (command) {
592 case NAND_CMD_CACHEDPROG:
593 case NAND_CMD_PAGEPROG:
594 case NAND_CMD_ERASE1:
595 case NAND_CMD_ERASE2:
596 case NAND_CMD_SEQIN:
597 case NAND_CMD_RNDIN:
598 case NAND_CMD_STATUS:
599 case NAND_CMD_DEPLETE1:
600 return;
603 * read error status commands require only a short delay
605 case NAND_CMD_STATUS_ERROR:
606 case NAND_CMD_STATUS_ERROR0:
607 case NAND_CMD_STATUS_ERROR1:
608 case NAND_CMD_STATUS_ERROR2:
609 case NAND_CMD_STATUS_ERROR3:
610 udelay(chip->chip_delay);
611 return;
613 case NAND_CMD_RESET:
614 if (chip->dev_ready)
615 break;
616 udelay(chip->chip_delay);
617 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
618 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
619 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
620 NAND_NCE | NAND_CTRL_CHANGE);
621 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
622 return;
624 case NAND_CMD_RNDOUT:
625 /* No ready / busy check necessary */
626 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
627 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
628 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
629 NAND_NCE | NAND_CTRL_CHANGE);
630 return;
632 case NAND_CMD_READ0:
633 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
634 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
635 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
636 NAND_NCE | NAND_CTRL_CHANGE);
638 /* This applies to read commands */
639 default:
641 * If we don't have access to the busy pin, we apply the given
642 * command delay
644 if (!chip->dev_ready) {
645 udelay(chip->chip_delay);
646 return;
650 /* Apply this short delay always to ensure that we do wait tWB in
651 * any case on any machine. */
652 ndelay(100);
654 nand_wait_ready(mtd);
658 * nand_get_device - [GENERIC] Get chip for selected access
659 * @chip: the nand chip descriptor
660 * @mtd: MTD device structure
661 * @new_state: the state which is requested
663 * Get the device and lock it for exclusive access
665 static int
666 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
668 spinlock_t *lock = &chip->controller->lock;
669 wait_queue_head_t *wq = &chip->controller->wq;
670 DECLARE_WAITQUEUE(wait, current);
671 retry:
672 spin_lock(lock);
674 /* Hardware controller shared among independend devices */
675 /* Hardware controller shared among independend devices */
676 if (!chip->controller->active)
677 chip->controller->active = chip;
679 if (chip->controller->active == chip && chip->state == FL_READY) {
680 chip->state = new_state;
681 spin_unlock(lock);
682 return 0;
684 if (new_state == FL_PM_SUSPENDED) {
685 spin_unlock(lock);
686 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
688 set_current_state(TASK_UNINTERRUPTIBLE);
689 add_wait_queue(wq, &wait);
690 spin_unlock(lock);
691 schedule();
692 remove_wait_queue(wq, &wait);
693 goto retry;
697 * nand_wait - [DEFAULT] wait until the command is done
698 * @mtd: MTD device structure
699 * @chip: NAND chip structure
701 * Wait for command done. This applies to erase and program only
702 * Erase can take up to 400ms and program up to 20ms according to
703 * general NAND and SmartMedia specs
705 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
708 unsigned long timeo = jiffies;
709 int status, state = chip->state;
711 if (state == FL_ERASING)
712 timeo += (HZ * 400) / 1000;
713 else
714 timeo += (HZ * 20) / 1000;
716 led_trigger_event(nand_led_trigger, LED_FULL);
718 /* Apply this short delay always to ensure that we do wait tWB in
719 * any case on any machine. */
720 ndelay(100);
722 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
723 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
724 else
725 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
727 while (time_before(jiffies, timeo)) {
728 if (chip->dev_ready) {
729 if (chip->dev_ready(mtd))
730 break;
731 } else {
732 if (chip->read_byte(mtd) & NAND_STATUS_READY)
733 break;
735 cond_resched();
737 led_trigger_event(nand_led_trigger, LED_OFF);
739 status = (int)chip->read_byte(mtd);
740 return status;
744 * nand_read_page_raw - [Intern] read raw page data without ecc
745 * @mtd: mtd info structure
746 * @chip: nand chip info structure
747 * @buf: buffer to store read data
749 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
750 uint8_t *buf)
752 chip->read_buf(mtd, buf, mtd->writesize);
753 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
754 return 0;
758 * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
759 * @mtd: mtd info structure
760 * @chip: nand chip info structure
761 * @buf: buffer to store read data
763 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
764 uint8_t *buf)
766 int i, eccsize = chip->ecc.size;
767 int eccbytes = chip->ecc.bytes;
768 int eccsteps = chip->ecc.steps;
769 uint8_t *p = buf;
770 uint8_t *ecc_calc = chip->buffers->ecccalc;
771 uint8_t *ecc_code = chip->buffers->ecccode;
772 int *eccpos = chip->ecc.layout->eccpos;
774 nand_read_page_raw(mtd, chip, buf);
776 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
777 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
779 for (i = 0; i < chip->ecc.total; i++)
780 ecc_code[i] = chip->oob_poi[eccpos[i]];
782 eccsteps = chip->ecc.steps;
783 p = buf;
785 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
786 int stat;
788 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
789 if (stat == -1)
790 mtd->ecc_stats.failed++;
791 else
792 mtd->ecc_stats.corrected += stat;
794 return 0;
798 * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
799 * @mtd: mtd info structure
800 * @chip: nand chip info structure
801 * @buf: buffer to store read data
803 * Not for syndrome calculating ecc controllers which need a special oob layout
805 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
806 uint8_t *buf)
808 int i, eccsize = chip->ecc.size;
809 int eccbytes = chip->ecc.bytes;
810 int eccsteps = chip->ecc.steps;
811 uint8_t *p = buf;
812 uint8_t *ecc_calc = chip->buffers->ecccalc;
813 uint8_t *ecc_code = chip->buffers->ecccode;
814 int *eccpos = chip->ecc.layout->eccpos;
816 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
817 chip->ecc.hwctl(mtd, NAND_ECC_READ);
818 chip->read_buf(mtd, p, eccsize);
819 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
821 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
823 for (i = 0; i < chip->ecc.total; i++)
824 ecc_code[i] = chip->oob_poi[eccpos[i]];
826 eccsteps = chip->ecc.steps;
827 p = buf;
829 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
830 int stat;
832 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
833 if (stat == -1)
834 mtd->ecc_stats.failed++;
835 else
836 mtd->ecc_stats.corrected += stat;
838 return 0;
842 * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
843 * @mtd: mtd info structure
844 * @chip: nand chip info structure
845 * @buf: buffer to store read data
847 * The hw generator calculates the error syndrome automatically. Therefor
848 * we need a special oob layout and handling.
850 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
851 uint8_t *buf)
853 int i, eccsize = chip->ecc.size;
854 int eccbytes = chip->ecc.bytes;
855 int eccsteps = chip->ecc.steps;
856 uint8_t *p = buf;
857 uint8_t *oob = chip->oob_poi;
859 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
860 int stat;
862 chip->ecc.hwctl(mtd, NAND_ECC_READ);
863 chip->read_buf(mtd, p, eccsize);
865 if (chip->ecc.prepad) {
866 chip->read_buf(mtd, oob, chip->ecc.prepad);
867 oob += chip->ecc.prepad;
870 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
871 chip->read_buf(mtd, oob, eccbytes);
872 stat = chip->ecc.correct(mtd, p, oob, NULL);
874 if (stat == -1)
875 mtd->ecc_stats.failed++;
876 else
877 mtd->ecc_stats.corrected += stat;
879 oob += eccbytes;
881 if (chip->ecc.postpad) {
882 chip->read_buf(mtd, oob, chip->ecc.postpad);
883 oob += chip->ecc.postpad;
887 /* Calculate remaining oob bytes */
888 i = mtd->oobsize - (oob - chip->oob_poi);
889 if (i)
890 chip->read_buf(mtd, oob, i);
892 return 0;
896 * nand_transfer_oob - [Internal] Transfer oob to client buffer
897 * @chip: nand chip structure
898 * @oob: oob destination address
899 * @ops: oob ops structure
901 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
902 struct mtd_oob_ops *ops)
904 size_t len = ops->ooblen;
906 switch(ops->mode) {
908 case MTD_OOB_PLACE:
909 case MTD_OOB_RAW:
910 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
911 return oob + len;
913 case MTD_OOB_AUTO: {
914 struct nand_oobfree *free = chip->ecc.layout->oobfree;
915 uint32_t boffs = 0, roffs = ops->ooboffs;
916 size_t bytes = 0;
918 for(; free->length && len; free++, len -= bytes) {
919 /* Read request not from offset 0 ? */
920 if (unlikely(roffs)) {
921 if (roffs >= free->length) {
922 roffs -= free->length;
923 continue;
925 boffs = free->offset + roffs;
926 bytes = min_t(size_t, len,
927 (free->length - roffs));
928 roffs = 0;
929 } else {
930 bytes = min_t(size_t, len, free->length);
931 boffs = free->offset;
933 memcpy(oob, chip->oob_poi + boffs, bytes);
934 oob += bytes;
936 return oob;
938 default:
939 BUG();
941 return NULL;
945 * nand_do_read_ops - [Internal] Read data with ECC
947 * @mtd: MTD device structure
948 * @from: offset to read from
949 * @ops: oob ops structure
951 * Internal function. Called with chip held.
953 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
954 struct mtd_oob_ops *ops)
956 int chipnr, page, realpage, col, bytes, aligned;
957 struct nand_chip *chip = mtd->priv;
958 struct mtd_ecc_stats stats;
959 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
960 int sndcmd = 1;
961 int ret = 0;
962 uint32_t readlen = ops->len;
963 uint8_t *bufpoi, *oob, *buf;
965 stats = mtd->ecc_stats;
967 chipnr = (int)(from >> chip->chip_shift);
968 chip->select_chip(mtd, chipnr);
970 realpage = (int)(from >> chip->page_shift);
971 page = realpage & chip->pagemask;
973 col = (int)(from & (mtd->writesize - 1));
974 chip->oob_poi = chip->buffers->oobrbuf;
976 buf = ops->datbuf;
977 oob = ops->oobbuf;
979 while(1) {
980 bytes = min(mtd->writesize - col, readlen);
981 aligned = (bytes == mtd->writesize);
983 /* Is the current page in the buffer ? */
984 if (realpage != chip->pagebuf || oob) {
985 bufpoi = aligned ? buf : chip->buffers->databuf;
987 if (likely(sndcmd)) {
988 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
989 sndcmd = 0;
992 /* Now read the page into the buffer */
993 ret = chip->ecc.read_page(mtd, chip, bufpoi);
994 if (ret < 0)
995 break;
997 /* Transfer not aligned data */
998 if (!aligned) {
999 chip->pagebuf = realpage;
1000 memcpy(buf, chip->buffers->databuf + col, bytes);
1003 buf += bytes;
1005 if (unlikely(oob)) {
1006 /* Raw mode does data:oob:data:oob */
1007 if (ops->mode != MTD_OOB_RAW)
1008 oob = nand_transfer_oob(chip, oob, ops);
1009 else
1010 buf = nand_transfer_oob(chip, buf, ops);
1013 if (!(chip->options & NAND_NO_READRDY)) {
1015 * Apply delay or wait for ready/busy pin. Do
1016 * this before the AUTOINCR check, so no
1017 * problems arise if a chip which does auto
1018 * increment is marked as NOAUTOINCR by the
1019 * board driver.
1021 if (!chip->dev_ready)
1022 udelay(chip->chip_delay);
1023 else
1024 nand_wait_ready(mtd);
1026 } else {
1027 memcpy(buf, chip->buffers->databuf + col, bytes);
1028 buf += bytes;
1031 readlen -= bytes;
1033 if (!readlen)
1034 break;
1036 /* For subsequent reads align to page boundary. */
1037 col = 0;
1038 /* Increment page address */
1039 realpage++;
1041 page = realpage & chip->pagemask;
1042 /* Check, if we cross a chip boundary */
1043 if (!page) {
1044 chipnr++;
1045 chip->select_chip(mtd, -1);
1046 chip->select_chip(mtd, chipnr);
1049 /* Check, if the chip supports auto page increment
1050 * or if we have hit a block boundary.
1052 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1053 sndcmd = 1;
1056 ops->retlen = ops->len - (size_t) readlen;
1058 if (ret)
1059 return ret;
1061 if (mtd->ecc_stats.failed - stats.failed)
1062 return -EBADMSG;
1064 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1068 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1069 * @mtd: MTD device structure
1070 * @from: offset to read from
1071 * @len: number of bytes to read
1072 * @retlen: pointer to variable to store the number of read bytes
1073 * @buf: the databuffer to put data
1075 * Get hold of the chip and call nand_do_read
1077 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1078 size_t *retlen, uint8_t *buf)
1080 struct nand_chip *chip = mtd->priv;
1081 int ret;
1083 /* Do not allow reads past end of device */
1084 if ((from + len) > mtd->size)
1085 return -EINVAL;
1086 if (!len)
1087 return 0;
1089 nand_get_device(chip, mtd, FL_READING);
1091 chip->ops.len = len;
1092 chip->ops.datbuf = buf;
1093 chip->ops.oobbuf = NULL;
1095 ret = nand_do_read_ops(mtd, from, &chip->ops);
1097 *retlen = chip->ops.retlen;
1099 nand_release_device(mtd);
1101 return ret;
1105 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1106 * @mtd: mtd info structure
1107 * @chip: nand chip info structure
1108 * @page: page number to read
1109 * @sndcmd: flag whether to issue read command or not
1111 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1112 int page, int sndcmd)
1114 if (sndcmd) {
1115 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1116 sndcmd = 0;
1118 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1119 return sndcmd;
1123 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1124 * with syndromes
1125 * @mtd: mtd info structure
1126 * @chip: nand chip info structure
1127 * @page: page number to read
1128 * @sndcmd: flag whether to issue read command or not
1130 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1131 int page, int sndcmd)
1133 uint8_t *buf = chip->oob_poi;
1134 int length = mtd->oobsize;
1135 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1136 int eccsize = chip->ecc.size;
1137 uint8_t *bufpoi = buf;
1138 int i, toread, sndrnd = 0, pos;
1140 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1141 for (i = 0; i < chip->ecc.steps; i++) {
1142 if (sndrnd) {
1143 pos = eccsize + i * (eccsize + chunk);
1144 if (mtd->writesize > 512)
1145 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1146 else
1147 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1148 } else
1149 sndrnd = 1;
1150 toread = min_t(int, length, chunk);
1151 chip->read_buf(mtd, bufpoi, toread);
1152 bufpoi += toread;
1153 length -= toread;
1155 if (length > 0)
1156 chip->read_buf(mtd, bufpoi, length);
1158 return 1;
1162 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1163 * @mtd: mtd info structure
1164 * @chip: nand chip info structure
1165 * @page: page number to write
1167 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1168 int page)
1170 int status = 0;
1171 const uint8_t *buf = chip->oob_poi;
1172 int length = mtd->oobsize;
1174 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1175 chip->write_buf(mtd, buf, length);
1176 /* Send command to program the OOB data */
1177 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1179 status = chip->waitfunc(mtd, chip);
1181 return status & NAND_STATUS_FAIL ? -EIO : 0;
1185 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1186 * with syndrome - only for large page flash !
1187 * @mtd: mtd info structure
1188 * @chip: nand chip info structure
1189 * @page: page number to write
1191 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1192 struct nand_chip *chip, int page)
1194 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1195 int eccsize = chip->ecc.size, length = mtd->oobsize;
1196 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1197 const uint8_t *bufpoi = chip->oob_poi;
1200 * data-ecc-data-ecc ... ecc-oob
1201 * or
1202 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1204 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1205 pos = steps * (eccsize + chunk);
1206 steps = 0;
1207 } else
1208 pos = eccsize;
1210 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1211 for (i = 0; i < steps; i++) {
1212 if (sndcmd) {
1213 if (mtd->writesize <= 512) {
1214 uint32_t fill = 0xFFFFFFFF;
1216 len = eccsize;
1217 while (len > 0) {
1218 int num = min_t(int, len, 4);
1219 chip->write_buf(mtd, (uint8_t *)&fill,
1220 num);
1221 len -= num;
1223 } else {
1224 pos = eccsize + i * (eccsize + chunk);
1225 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1227 } else
1228 sndcmd = 1;
1229 len = min_t(int, length, chunk);
1230 chip->write_buf(mtd, bufpoi, len);
1231 bufpoi += len;
1232 length -= len;
1234 if (length > 0)
1235 chip->write_buf(mtd, bufpoi, length);
1237 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1238 status = chip->waitfunc(mtd, chip);
1240 return status & NAND_STATUS_FAIL ? -EIO : 0;
1244 * nand_do_read_oob - [Intern] NAND read out-of-band
1245 * @mtd: MTD device structure
1246 * @from: offset to read from
1247 * @ops: oob operations description structure
1249 * NAND read out-of-band data from the spare area
1251 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1252 struct mtd_oob_ops *ops)
1254 int page, realpage, chipnr, sndcmd = 1;
1255 struct nand_chip *chip = mtd->priv;
1256 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1257 int readlen = ops->len;
1258 uint8_t *buf = ops->oobbuf;
1260 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1261 (unsigned long long)from, readlen);
1263 chipnr = (int)(from >> chip->chip_shift);
1264 chip->select_chip(mtd, chipnr);
1266 /* Shift to get page */
1267 realpage = (int)(from >> chip->page_shift);
1268 page = realpage & chip->pagemask;
1270 chip->oob_poi = chip->buffers->oobrbuf;
1272 while(1) {
1273 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1274 buf = nand_transfer_oob(chip, buf, ops);
1276 if (!(chip->options & NAND_NO_READRDY)) {
1278 * Apply delay or wait for ready/busy pin. Do this
1279 * before the AUTOINCR check, so no problems arise if a
1280 * chip which does auto increment is marked as
1281 * NOAUTOINCR by the board driver.
1283 if (!chip->dev_ready)
1284 udelay(chip->chip_delay);
1285 else
1286 nand_wait_ready(mtd);
1289 readlen -= ops->ooblen;
1290 if (!readlen)
1291 break;
1293 /* Increment page address */
1294 realpage++;
1296 page = realpage & chip->pagemask;
1297 /* Check, if we cross a chip boundary */
1298 if (!page) {
1299 chipnr++;
1300 chip->select_chip(mtd, -1);
1301 chip->select_chip(mtd, chipnr);
1304 /* Check, if the chip supports auto page increment
1305 * or if we have hit a block boundary.
1307 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1308 sndcmd = 1;
1311 ops->retlen = ops->len;
1312 return 0;
1316 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1317 * @mtd: MTD device structure
1318 * @from: offset to read from
1319 * @ops: oob operation description structure
1321 * NAND read data and/or out-of-band data
1323 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1324 struct mtd_oob_ops *ops)
1326 int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
1327 uint8_t *buf) = NULL;
1328 struct nand_chip *chip = mtd->priv;
1329 int ret = -ENOTSUPP;
1331 ops->retlen = 0;
1333 /* Do not allow reads past end of device */
1334 if ((from + ops->len) > mtd->size) {
1335 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1336 "Attempt read beyond end of device\n");
1337 return -EINVAL;
1340 nand_get_device(chip, mtd, FL_READING);
1342 switch(ops->mode) {
1343 case MTD_OOB_PLACE:
1344 case MTD_OOB_AUTO:
1345 break;
1347 case MTD_OOB_RAW:
1348 /* Replace the read_page algorithm temporary */
1349 read_page = chip->ecc.read_page;
1350 chip->ecc.read_page = nand_read_page_raw;
1351 break;
1353 default:
1354 goto out;
1357 if (!ops->datbuf)
1358 ret = nand_do_read_oob(mtd, from, ops);
1359 else
1360 ret = nand_do_read_ops(mtd, from, ops);
1362 if (unlikely(ops->mode == MTD_OOB_RAW))
1363 chip->ecc.read_page = read_page;
1364 out:
1365 nand_release_device(mtd);
1366 return ret;
1371 * nand_write_page_raw - [Intern] raw page write function
1372 * @mtd: mtd info structure
1373 * @chip: nand chip info structure
1374 * @buf: data buffer
1376 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1377 const uint8_t *buf)
1379 chip->write_buf(mtd, buf, mtd->writesize);
1380 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1384 * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1385 * @mtd: mtd info structure
1386 * @chip: nand chip info structure
1387 * @buf: data buffer
1389 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1390 const uint8_t *buf)
1392 int i, eccsize = chip->ecc.size;
1393 int eccbytes = chip->ecc.bytes;
1394 int eccsteps = chip->ecc.steps;
1395 uint8_t *ecc_calc = chip->buffers->ecccalc;
1396 const uint8_t *p = buf;
1397 int *eccpos = chip->ecc.layout->eccpos;
1399 /* Software ecc calculation */
1400 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1401 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1403 for (i = 0; i < chip->ecc.total; i++)
1404 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1406 nand_write_page_raw(mtd, chip, buf);
1410 * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1411 * @mtd: mtd info structure
1412 * @chip: nand chip info structure
1413 * @buf: data buffer
1415 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1416 const uint8_t *buf)
1418 int i, eccsize = chip->ecc.size;
1419 int eccbytes = chip->ecc.bytes;
1420 int eccsteps = chip->ecc.steps;
1421 uint8_t *ecc_calc = chip->buffers->ecccalc;
1422 const uint8_t *p = buf;
1423 int *eccpos = chip->ecc.layout->eccpos;
1425 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1426 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1427 chip->write_buf(mtd, p, eccsize);
1428 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1431 for (i = 0; i < chip->ecc.total; i++)
1432 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1434 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1438 * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1439 * @mtd: mtd info structure
1440 * @chip: nand chip info structure
1441 * @buf: data buffer
1443 * The hw generator calculates the error syndrome automatically. Therefor
1444 * we need a special oob layout and handling.
1446 static void nand_write_page_syndrome(struct mtd_info *mtd,
1447 struct nand_chip *chip, const uint8_t *buf)
1449 int i, eccsize = chip->ecc.size;
1450 int eccbytes = chip->ecc.bytes;
1451 int eccsteps = chip->ecc.steps;
1452 const uint8_t *p = buf;
1453 uint8_t *oob = chip->oob_poi;
1455 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1457 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1458 chip->write_buf(mtd, p, eccsize);
1460 if (chip->ecc.prepad) {
1461 chip->write_buf(mtd, oob, chip->ecc.prepad);
1462 oob += chip->ecc.prepad;
1465 chip->ecc.calculate(mtd, p, oob);
1466 chip->write_buf(mtd, oob, eccbytes);
1467 oob += eccbytes;
1469 if (chip->ecc.postpad) {
1470 chip->write_buf(mtd, oob, chip->ecc.postpad);
1471 oob += chip->ecc.postpad;
1475 /* Calculate remaining oob bytes */
1476 i = mtd->oobsize - (oob - chip->oob_poi);
1477 if (i)
1478 chip->write_buf(mtd, oob, i);
1482 * nand_write_page - [INTERNAL] write one page
1483 * @mtd: MTD device structure
1484 * @chip: NAND chip descriptor
1485 * @buf: the data to write
1486 * @page: page number to write
1487 * @cached: cached programming
1489 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1490 const uint8_t *buf, int page, int cached)
1492 int status;
1494 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1496 chip->ecc.write_page(mtd, chip, buf);
1499 * Cached progamming disabled for now, Not sure if its worth the
1500 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1502 cached = 0;
1504 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1506 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1507 status = chip->waitfunc(mtd, chip);
1509 * See if operation failed and additional status checks are
1510 * available
1512 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1513 status = chip->errstat(mtd, chip, FL_WRITING, status,
1514 page);
1516 if (status & NAND_STATUS_FAIL)
1517 return -EIO;
1518 } else {
1519 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1520 status = chip->waitfunc(mtd, chip);
1523 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1524 /* Send command to read back the data */
1525 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1527 if (chip->verify_buf(mtd, buf, mtd->writesize))
1528 return -EIO;
1529 #endif
1530 return 0;
1534 * nand_fill_oob - [Internal] Transfer client buffer to oob
1535 * @chip: nand chip structure
1536 * @oob: oob data buffer
1537 * @ops: oob ops structure
1539 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1540 struct mtd_oob_ops *ops)
1542 size_t len = ops->ooblen;
1544 switch(ops->mode) {
1546 case MTD_OOB_PLACE:
1547 case MTD_OOB_RAW:
1548 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1549 return oob + len;
1551 case MTD_OOB_AUTO: {
1552 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1553 uint32_t boffs = 0, woffs = ops->ooboffs;
1554 size_t bytes = 0;
1556 for(; free->length && len; free++, len -= bytes) {
1557 /* Write request not from offset 0 ? */
1558 if (unlikely(woffs)) {
1559 if (woffs >= free->length) {
1560 woffs -= free->length;
1561 continue;
1563 boffs = free->offset + woffs;
1564 bytes = min_t(size_t, len,
1565 (free->length - woffs));
1566 woffs = 0;
1567 } else {
1568 bytes = min_t(size_t, len, free->length);
1569 boffs = free->offset;
1571 memcpy(chip->oob_poi + boffs, oob, bytes);
1572 oob += bytes;
1574 return oob;
1576 default:
1577 BUG();
1579 return NULL;
1582 #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1585 * nand_do_write_ops - [Internal] NAND write with ECC
1586 * @mtd: MTD device structure
1587 * @to: offset to write to
1588 * @ops: oob operations description structure
1590 * NAND write with ECC
1592 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1593 struct mtd_oob_ops *ops)
1595 int chipnr, realpage, page, blockmask;
1596 struct nand_chip *chip = mtd->priv;
1597 uint32_t writelen = ops->len;
1598 uint8_t *oob = ops->oobbuf;
1599 uint8_t *buf = ops->datbuf;
1600 int bytes = mtd->writesize;
1601 int ret;
1603 ops->retlen = 0;
1605 /* reject writes, which are not page aligned */
1606 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1607 printk(KERN_NOTICE "nand_write: "
1608 "Attempt to write not page aligned data\n");
1609 return -EINVAL;
1612 if (!writelen)
1613 return 0;
1615 chipnr = (int)(to >> chip->chip_shift);
1616 chip->select_chip(mtd, chipnr);
1618 /* Check, if it is write protected */
1619 if (nand_check_wp(mtd))
1620 return -EIO;
1622 realpage = (int)(to >> chip->page_shift);
1623 page = realpage & chip->pagemask;
1624 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1626 /* Invalidate the page cache, when we write to the cached page */
1627 if (to <= (chip->pagebuf << chip->page_shift) &&
1628 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1629 chip->pagebuf = -1;
1631 chip->oob_poi = chip->buffers->oobwbuf;
1633 while(1) {
1634 int cached = writelen > bytes && page != blockmask;
1636 if (unlikely(oob))
1637 oob = nand_fill_oob(chip, oob, ops);
1639 ret = nand_write_page(mtd, chip, buf, page, cached);
1640 if (ret)
1641 break;
1643 writelen -= bytes;
1644 if (!writelen)
1645 break;
1647 buf += bytes;
1648 realpage++;
1650 page = realpage & chip->pagemask;
1651 /* Check, if we cross a chip boundary */
1652 if (!page) {
1653 chipnr++;
1654 chip->select_chip(mtd, -1);
1655 chip->select_chip(mtd, chipnr);
1659 if (unlikely(oob))
1660 memset(chip->oob_poi, 0xff, mtd->oobsize);
1662 ops->retlen = ops->len - writelen;
1663 return ret;
1667 * nand_write - [MTD Interface] NAND write with ECC
1668 * @mtd: MTD device structure
1669 * @to: offset to write to
1670 * @len: number of bytes to write
1671 * @retlen: pointer to variable to store the number of written bytes
1672 * @buf: the data to write
1674 * NAND write with ECC
1676 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1677 size_t *retlen, const uint8_t *buf)
1679 struct nand_chip *chip = mtd->priv;
1680 int ret;
1682 /* Do not allow reads past end of device */
1683 if ((to + len) > mtd->size)
1684 return -EINVAL;
1685 if (!len)
1686 return 0;
1688 nand_get_device(chip, mtd, FL_WRITING);
1690 chip->ops.len = len;
1691 chip->ops.datbuf = (uint8_t *)buf;
1692 chip->ops.oobbuf = NULL;
1694 ret = nand_do_write_ops(mtd, to, &chip->ops);
1696 *retlen = chip->ops.retlen;
1698 nand_release_device(mtd);
1700 return ret;
1704 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1705 * @mtd: MTD device structure
1706 * @to: offset to write to
1707 * @ops: oob operation description structure
1709 * NAND write out-of-band
1711 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1712 struct mtd_oob_ops *ops)
1714 int chipnr, page, status;
1715 struct nand_chip *chip = mtd->priv;
1717 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1718 (unsigned int)to, (int)ops->len);
1720 /* Do not allow write past end of page */
1721 if ((ops->ooboffs + ops->len) > mtd->oobsize) {
1722 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1723 "Attempt to write past end of page\n");
1724 return -EINVAL;
1727 chipnr = (int)(to >> chip->chip_shift);
1728 chip->select_chip(mtd, chipnr);
1730 /* Shift to get page */
1731 page = (int)(to >> chip->page_shift);
1734 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1735 * of my DiskOnChip 2000 test units) will clear the whole data page too
1736 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1737 * it in the doc2000 driver in August 1999. dwmw2.
1739 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1741 /* Check, if it is write protected */
1742 if (nand_check_wp(mtd))
1743 return -EROFS;
1745 /* Invalidate the page cache, if we write to the cached page */
1746 if (page == chip->pagebuf)
1747 chip->pagebuf = -1;
1749 chip->oob_poi = chip->buffers->oobwbuf;
1750 memset(chip->oob_poi, 0xff, mtd->oobsize);
1751 nand_fill_oob(chip, ops->oobbuf, ops);
1752 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1753 memset(chip->oob_poi, 0xff, mtd->oobsize);
1755 if (status)
1756 return status;
1758 ops->retlen = ops->len;
1760 return 0;
1764 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1765 * @mtd: MTD device structure
1766 * @to: offset to write to
1767 * @ops: oob operation description structure
1769 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1770 struct mtd_oob_ops *ops)
1772 void (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
1773 const uint8_t *buf) = NULL;
1774 struct nand_chip *chip = mtd->priv;
1775 int ret = -ENOTSUPP;
1777 ops->retlen = 0;
1779 /* Do not allow writes past end of device */
1780 if ((to + ops->len) > mtd->size) {
1781 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1782 "Attempt read beyond end of device\n");
1783 return -EINVAL;
1786 nand_get_device(chip, mtd, FL_WRITING);
1788 switch(ops->mode) {
1789 case MTD_OOB_PLACE:
1790 case MTD_OOB_AUTO:
1791 break;
1793 case MTD_OOB_RAW:
1794 /* Replace the write_page algorithm temporary */
1795 write_page = chip->ecc.write_page;
1796 chip->ecc.write_page = nand_write_page_raw;
1797 break;
1799 default:
1800 goto out;
1803 if (!ops->datbuf)
1804 ret = nand_do_write_oob(mtd, to, ops);
1805 else
1806 ret = nand_do_write_ops(mtd, to, ops);
1808 if (unlikely(ops->mode == MTD_OOB_RAW))
1809 chip->ecc.write_page = write_page;
1810 out:
1811 nand_release_device(mtd);
1812 return ret;
1816 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1817 * @mtd: MTD device structure
1818 * @page: the page address of the block which will be erased
1820 * Standard erase command for NAND chips
1822 static void single_erase_cmd(struct mtd_info *mtd, int page)
1824 struct nand_chip *chip = mtd->priv;
1825 /* Send commands to erase a block */
1826 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1827 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1831 * multi_erease_cmd - [GENERIC] AND specific block erase command function
1832 * @mtd: MTD device structure
1833 * @page: the page address of the block which will be erased
1835 * AND multi block erase command function
1836 * Erase 4 consecutive blocks
1838 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1840 struct nand_chip *chip = mtd->priv;
1841 /* Send commands to erase a block */
1842 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1843 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1844 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1845 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1846 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1850 * nand_erase - [MTD Interface] erase block(s)
1851 * @mtd: MTD device structure
1852 * @instr: erase instruction
1854 * Erase one ore more blocks
1856 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1858 return nand_erase_nand(mtd, instr, 0);
1861 #define BBT_PAGE_MASK 0xffffff3f
1863 * nand_erase_nand - [Internal] erase block(s)
1864 * @mtd: MTD device structure
1865 * @instr: erase instruction
1866 * @allowbbt: allow erasing the bbt area
1868 * Erase one ore more blocks
1870 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1871 int allowbbt)
1873 int page, len, status, pages_per_block, ret, chipnr;
1874 struct nand_chip *chip = mtd->priv;
1875 int rewrite_bbt[NAND_MAX_CHIPS]={0};
1876 unsigned int bbt_masked_page = 0xffffffff;
1878 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1879 (unsigned int)instr->addr, (unsigned int)instr->len);
1881 /* Start address must align on block boundary */
1882 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1883 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1884 return -EINVAL;
1887 /* Length must align on block boundary */
1888 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1889 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1890 "Length not block aligned\n");
1891 return -EINVAL;
1894 /* Do not allow erase past end of device */
1895 if ((instr->len + instr->addr) > mtd->size) {
1896 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1897 "Erase past end of device\n");
1898 return -EINVAL;
1901 instr->fail_addr = 0xffffffff;
1903 /* Grab the lock and see if the device is available */
1904 nand_get_device(chip, mtd, FL_ERASING);
1906 /* Shift to get first page */
1907 page = (int)(instr->addr >> chip->page_shift);
1908 chipnr = (int)(instr->addr >> chip->chip_shift);
1910 /* Calculate pages in each block */
1911 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1913 /* Select the NAND device */
1914 chip->select_chip(mtd, chipnr);
1916 /* Check, if it is write protected */
1917 if (nand_check_wp(mtd)) {
1918 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1919 "Device is write protected!!!\n");
1920 instr->state = MTD_ERASE_FAILED;
1921 goto erase_exit;
1925 * If BBT requires refresh, set the BBT page mask to see if the BBT
1926 * should be rewritten. Otherwise the mask is set to 0xffffffff which
1927 * can not be matched. This is also done when the bbt is actually
1928 * erased to avoid recusrsive updates
1930 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1931 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1933 /* Loop through the pages */
1934 len = instr->len;
1936 instr->state = MTD_ERASING;
1938 while (len) {
1940 * heck if we have a bad block, we do not erase bad blocks !
1942 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1943 chip->page_shift, 0, allowbbt)) {
1944 printk(KERN_WARNING "nand_erase: attempt to erase a "
1945 "bad block at page 0x%08x\n", page);
1946 instr->state = MTD_ERASE_FAILED;
1947 goto erase_exit;
1951 * Invalidate the page cache, if we erase the block which
1952 * contains the current cached page
1954 if (page <= chip->pagebuf && chip->pagebuf <
1955 (page + pages_per_block))
1956 chip->pagebuf = -1;
1958 chip->erase_cmd(mtd, page & chip->pagemask);
1960 status = chip->waitfunc(mtd, chip);
1963 * See if operation failed and additional status checks are
1964 * available
1966 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1967 status = chip->errstat(mtd, chip, FL_ERASING,
1968 status, page);
1970 /* See if block erase succeeded */
1971 if (status & NAND_STATUS_FAIL) {
1972 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1973 "Failed erase, page 0x%08x\n", page);
1974 instr->state = MTD_ERASE_FAILED;
1975 instr->fail_addr = (page << chip->page_shift);
1976 goto erase_exit;
1980 * If BBT requires refresh, set the BBT rewrite flag to the
1981 * page being erased
1983 if (bbt_masked_page != 0xffffffff &&
1984 (page & BBT_PAGE_MASK) == bbt_masked_page)
1985 rewrite_bbt[chipnr] = (page << chip->page_shift);
1987 /* Increment page address and decrement length */
1988 len -= (1 << chip->phys_erase_shift);
1989 page += pages_per_block;
1991 /* Check, if we cross a chip boundary */
1992 if (len && !(page & chip->pagemask)) {
1993 chipnr++;
1994 chip->select_chip(mtd, -1);
1995 chip->select_chip(mtd, chipnr);
1998 * If BBT requires refresh and BBT-PERCHIP, set the BBT
1999 * page mask to see if this BBT should be rewritten
2001 if (bbt_masked_page != 0xffffffff &&
2002 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2003 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2004 BBT_PAGE_MASK;
2007 instr->state = MTD_ERASE_DONE;
2009 erase_exit:
2011 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2012 /* Do call back function */
2013 if (!ret)
2014 mtd_erase_callback(instr);
2016 /* Deselect and wake up anyone waiting on the device */
2017 nand_release_device(mtd);
2020 * If BBT requires refresh and erase was successful, rewrite any
2021 * selected bad block tables
2023 if (bbt_masked_page == 0xffffffff || ret)
2024 return ret;
2026 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2027 if (!rewrite_bbt[chipnr])
2028 continue;
2029 /* update the BBT for chip */
2030 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2031 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2032 chip->bbt_td->pages[chipnr]);
2033 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2036 /* Return more or less happy */
2037 return ret;
2041 * nand_sync - [MTD Interface] sync
2042 * @mtd: MTD device structure
2044 * Sync is actually a wait for chip ready function
2046 static void nand_sync(struct mtd_info *mtd)
2048 struct nand_chip *chip = mtd->priv;
2050 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2052 /* Grab the lock and see if the device is available */
2053 nand_get_device(chip, mtd, FL_SYNCING);
2054 /* Release it and go back */
2055 nand_release_device(mtd);
2059 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2060 * @mtd: MTD device structure
2061 * @offs: offset relative to mtd start
2063 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2065 /* Check for invalid offset */
2066 if (offs > mtd->size)
2067 return -EINVAL;
2069 return nand_block_checkbad(mtd, offs, 1, 0);
2073 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2074 * @mtd: MTD device structure
2075 * @ofs: offset relative to mtd start
2077 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2079 struct nand_chip *chip = mtd->priv;
2080 int ret;
2082 if ((ret = nand_block_isbad(mtd, ofs))) {
2083 /* If it was bad already, return success and do nothing. */
2084 if (ret > 0)
2085 return 0;
2086 return ret;
2089 return chip->block_markbad(mtd, ofs);
2093 * nand_suspend - [MTD Interface] Suspend the NAND flash
2094 * @mtd: MTD device structure
2096 static int nand_suspend(struct mtd_info *mtd)
2098 struct nand_chip *chip = mtd->priv;
2100 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2104 * nand_resume - [MTD Interface] Resume the NAND flash
2105 * @mtd: MTD device structure
2107 static void nand_resume(struct mtd_info *mtd)
2109 struct nand_chip *chip = mtd->priv;
2111 if (chip->state == FL_PM_SUSPENDED)
2112 nand_release_device(mtd);
2113 else
2114 printk(KERN_ERR "nand_resume() called for a chip which is not "
2115 "in suspended state\n");
2119 * Set default functions
2121 static void nand_set_defaults(struct nand_chip *chip, int busw)
2123 /* check for proper chip_delay setup, set 20us if not */
2124 if (!chip->chip_delay)
2125 chip->chip_delay = 20;
2127 /* check, if a user supplied command function given */
2128 if (chip->cmdfunc == NULL)
2129 chip->cmdfunc = nand_command;
2131 /* check, if a user supplied wait function given */
2132 if (chip->waitfunc == NULL)
2133 chip->waitfunc = nand_wait;
2135 if (!chip->select_chip)
2136 chip->select_chip = nand_select_chip;
2137 if (!chip->read_byte)
2138 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2139 if (!chip->read_word)
2140 chip->read_word = nand_read_word;
2141 if (!chip->block_bad)
2142 chip->block_bad = nand_block_bad;
2143 if (!chip->block_markbad)
2144 chip->block_markbad = nand_default_block_markbad;
2145 if (!chip->write_buf)
2146 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2147 if (!chip->read_buf)
2148 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2149 if (!chip->verify_buf)
2150 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2151 if (!chip->scan_bbt)
2152 chip->scan_bbt = nand_default_bbt;
2154 if (!chip->controller) {
2155 chip->controller = &chip->hwcontrol;
2156 spin_lock_init(&chip->controller->lock);
2157 init_waitqueue_head(&chip->controller->wq);
2163 * Get the flash and manufacturer id and lookup if the type is supported
2165 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2166 struct nand_chip *chip,
2167 int busw, int *maf_id)
2169 struct nand_flash_dev *type = NULL;
2170 int i, dev_id, maf_idx;
2172 /* Select the device */
2173 chip->select_chip(mtd, 0);
2175 /* Send the command for reading device ID */
2176 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2178 /* Read manufacturer and device IDs */
2179 *maf_id = chip->read_byte(mtd);
2180 dev_id = chip->read_byte(mtd);
2182 /* Lookup the flash id */
2183 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2184 if (dev_id == nand_flash_ids[i].id) {
2185 type = &nand_flash_ids[i];
2186 break;
2190 if (!type)
2191 return ERR_PTR(-ENODEV);
2193 if (!mtd->name)
2194 mtd->name = type->name;
2196 chip->chipsize = type->chipsize << 20;
2198 /* Newer devices have all the information in additional id bytes */
2199 if (!type->pagesize) {
2200 int extid;
2201 /* The 3rd id byte contains non relevant data ATM */
2202 extid = chip->read_byte(mtd);
2203 /* The 4th id byte is the important one */
2204 extid = chip->read_byte(mtd);
2205 /* Calc pagesize */
2206 mtd->writesize = 1024 << (extid & 0x3);
2207 extid >>= 2;
2208 /* Calc oobsize */
2209 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2210 extid >>= 2;
2211 /* Calc blocksize. Blocksize is multiples of 64KiB */
2212 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2213 extid >>= 2;
2214 /* Get buswidth information */
2215 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2217 } else {
2219 * Old devices have chip data hardcoded in the device id table
2221 mtd->erasesize = type->erasesize;
2222 mtd->writesize = type->pagesize;
2223 mtd->oobsize = mtd->writesize / 32;
2224 busw = type->options & NAND_BUSWIDTH_16;
2227 /* Try to identify manufacturer */
2228 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2229 if (nand_manuf_ids[maf_idx].id == *maf_id)
2230 break;
2234 * Check, if buswidth is correct. Hardware drivers should set
2235 * chip correct !
2237 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2238 printk(KERN_INFO "NAND device: Manufacturer ID:"
2239 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2240 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2241 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2242 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2243 busw ? 16 : 8);
2244 return ERR_PTR(-EINVAL);
2247 /* Calculate the address shift from the page size */
2248 chip->page_shift = ffs(mtd->writesize) - 1;
2249 /* Convert chipsize to number of pages per chip -1. */
2250 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2252 chip->bbt_erase_shift = chip->phys_erase_shift =
2253 ffs(mtd->erasesize) - 1;
2254 chip->chip_shift = ffs(chip->chipsize) - 1;
2256 /* Set the bad block position */
2257 chip->badblockpos = mtd->writesize > 512 ?
2258 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2260 /* Get chip options, preserve non chip based options */
2261 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2262 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2265 * Set chip as a default. Board drivers can override it, if necessary
2267 chip->options |= NAND_NO_AUTOINCR;
2269 /* Check if chip is a not a samsung device. Do not clear the
2270 * options for chips which are not having an extended id.
2272 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2273 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2275 /* Check for AND chips with 4 page planes */
2276 if (chip->options & NAND_4PAGE_ARRAY)
2277 chip->erase_cmd = multi_erase_cmd;
2278 else
2279 chip->erase_cmd = single_erase_cmd;
2281 /* Do not replace user supplied command function ! */
2282 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2283 chip->cmdfunc = nand_command_lp;
2285 printk(KERN_INFO "NAND device: Manufacturer ID:"
2286 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2287 nand_manuf_ids[maf_idx].name, type->name);
2289 return type;
2293 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2294 * @mtd: MTD device structure
2295 * @maxchips: Number of chips to scan for
2297 * This is the first phase of the normal nand_scan() function. It
2298 * reads the flash ID and sets up MTD fields accordingly.
2300 * The mtd->owner field must be set to the module of the caller.
2302 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2304 int i, busw, nand_maf_id;
2305 struct nand_chip *chip = mtd->priv;
2306 struct nand_flash_dev *type;
2308 /* Get buswidth to select the correct functions */
2309 busw = chip->options & NAND_BUSWIDTH_16;
2310 /* Set the default functions */
2311 nand_set_defaults(chip, busw);
2313 /* Read the flash type */
2314 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2316 if (IS_ERR(type)) {
2317 printk(KERN_WARNING "No NAND device found!!!\n");
2318 chip->select_chip(mtd, -1);
2319 return PTR_ERR(type);
2322 /* Check for a chip array */
2323 for (i = 1; i < maxchips; i++) {
2324 chip->select_chip(mtd, i);
2325 /* Send the command for reading device ID */
2326 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2327 /* Read manufacturer and device IDs */
2328 if (nand_maf_id != chip->read_byte(mtd) ||
2329 type->id != chip->read_byte(mtd))
2330 break;
2332 if (i > 1)
2333 printk(KERN_INFO "%d NAND chips detected\n", i);
2335 /* Store the number of chips and calc total size for mtd */
2336 chip->numchips = i;
2337 mtd->size = i * chip->chipsize;
2339 return 0;
2344 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2345 * @mtd: MTD device structure
2346 * @maxchips: Number of chips to scan for
2348 * This is the second phase of the normal nand_scan() function. It
2349 * fills out all the uninitialized function pointers with the defaults
2350 * and scans for a bad block table if appropriate.
2352 int nand_scan_tail(struct mtd_info *mtd)
2354 int i;
2355 struct nand_chip *chip = mtd->priv;
2357 if (!(chip->options & NAND_OWN_BUFFERS))
2358 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2359 if (!chip->buffers)
2360 return -ENOMEM;
2362 /* Preset the internal oob write buffer */
2363 memset(chip->buffers->oobwbuf, 0xff, mtd->oobsize);
2366 * If no default placement scheme is given, select an appropriate one
2368 if (!chip->ecc.layout) {
2369 switch (mtd->oobsize) {
2370 case 8:
2371 chip->ecc.layout = &nand_oob_8;
2372 break;
2373 case 16:
2374 chip->ecc.layout = &nand_oob_16;
2375 break;
2376 case 64:
2377 chip->ecc.layout = &nand_oob_64;
2378 break;
2379 default:
2380 printk(KERN_WARNING "No oob scheme defined for "
2381 "oobsize %d\n", mtd->oobsize);
2382 BUG();
2387 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2388 * selected and we have 256 byte pagesize fallback to software ECC
2390 switch (chip->ecc.mode) {
2391 case NAND_ECC_HW:
2392 /* Use standard hwecc read page function ? */
2393 if (!chip->ecc.read_page)
2394 chip->ecc.read_page = nand_read_page_hwecc;
2395 if (!chip->ecc.write_page)
2396 chip->ecc.write_page = nand_write_page_hwecc;
2397 if (!chip->ecc.read_oob)
2398 chip->ecc.read_oob = nand_read_oob_std;
2399 if (!chip->ecc.write_oob)
2400 chip->ecc.write_oob = nand_write_oob_std;
2402 case NAND_ECC_HW_SYNDROME:
2403 if (!chip->ecc.calculate || !chip->ecc.correct ||
2404 !chip->ecc.hwctl) {
2405 printk(KERN_WARNING "No ECC functions supplied, "
2406 "Hardware ECC not possible\n");
2407 BUG();
2409 /* Use standard syndrome read/write page function ? */
2410 if (!chip->ecc.read_page)
2411 chip->ecc.read_page = nand_read_page_syndrome;
2412 if (!chip->ecc.write_page)
2413 chip->ecc.write_page = nand_write_page_syndrome;
2414 if (!chip->ecc.read_oob)
2415 chip->ecc.read_oob = nand_read_oob_syndrome;
2416 if (!chip->ecc.write_oob)
2417 chip->ecc.write_oob = nand_write_oob_syndrome;
2419 if (mtd->writesize >= chip->ecc.size)
2420 break;
2421 printk(KERN_WARNING "%d byte HW ECC not possible on "
2422 "%d byte page size, fallback to SW ECC\n",
2423 chip->ecc.size, mtd->writesize);
2424 chip->ecc.mode = NAND_ECC_SOFT;
2426 case NAND_ECC_SOFT:
2427 chip->ecc.calculate = nand_calculate_ecc;
2428 chip->ecc.correct = nand_correct_data;
2429 chip->ecc.read_page = nand_read_page_swecc;
2430 chip->ecc.write_page = nand_write_page_swecc;
2431 chip->ecc.read_oob = nand_read_oob_std;
2432 chip->ecc.write_oob = nand_write_oob_std;
2433 chip->ecc.size = 256;
2434 chip->ecc.bytes = 3;
2435 break;
2437 case NAND_ECC_NONE:
2438 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2439 "This is not recommended !!\n");
2440 chip->ecc.read_page = nand_read_page_raw;
2441 chip->ecc.write_page = nand_write_page_raw;
2442 chip->ecc.read_oob = nand_read_oob_std;
2443 chip->ecc.write_oob = nand_write_oob_std;
2444 chip->ecc.size = mtd->writesize;
2445 chip->ecc.bytes = 0;
2446 break;
2447 default:
2448 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2449 chip->ecc.mode);
2450 BUG();
2454 * The number of bytes available for a client to place data into
2455 * the out of band area
2457 chip->ecc.layout->oobavail = 0;
2458 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2459 chip->ecc.layout->oobavail +=
2460 chip->ecc.layout->oobfree[i].length;
2463 * Set the number of read / write steps for one page depending on ECC
2464 * mode
2466 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2467 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2468 printk(KERN_WARNING "Invalid ecc parameters\n");
2469 BUG();
2471 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2473 /* Initialize state */
2474 chip->state = FL_READY;
2476 /* De-select the device */
2477 chip->select_chip(mtd, -1);
2479 /* Invalidate the pagebuffer reference */
2480 chip->pagebuf = -1;
2482 /* Fill in remaining MTD driver data */
2483 mtd->type = MTD_NANDFLASH;
2484 mtd->flags = MTD_CAP_NANDFLASH;
2485 mtd->ecctype = MTD_ECC_SW;
2486 mtd->erase = nand_erase;
2487 mtd->point = NULL;
2488 mtd->unpoint = NULL;
2489 mtd->read = nand_read;
2490 mtd->write = nand_write;
2491 mtd->read_oob = nand_read_oob;
2492 mtd->write_oob = nand_write_oob;
2493 mtd->sync = nand_sync;
2494 mtd->lock = NULL;
2495 mtd->unlock = NULL;
2496 mtd->suspend = nand_suspend;
2497 mtd->resume = nand_resume;
2498 mtd->block_isbad = nand_block_isbad;
2499 mtd->block_markbad = nand_block_markbad;
2501 /* propagate ecc.layout to mtd_info */
2502 mtd->ecclayout = chip->ecc.layout;
2504 /* Check, if we should skip the bad block table scan */
2505 if (chip->options & NAND_SKIP_BBTSCAN)
2506 return 0;
2508 /* Build bad block table */
2509 return chip->scan_bbt(mtd);
2512 /* module_text_address() isn't exported, and it's mostly a pointless
2513 test if this is a module _anyway_ -- they'd have to try _really_ hard
2514 to call us from in-kernel code if the core NAND support is modular. */
2515 #ifdef MODULE
2516 #define caller_is_module() (1)
2517 #else
2518 #define caller_is_module() \
2519 module_text_address((unsigned long)__builtin_return_address(0))
2520 #endif
2523 * nand_scan - [NAND Interface] Scan for the NAND device
2524 * @mtd: MTD device structure
2525 * @maxchips: Number of chips to scan for
2527 * This fills out all the uninitialized function pointers
2528 * with the defaults.
2529 * The flash ID is read and the mtd/chip structures are
2530 * filled with the appropriate values.
2531 * The mtd->owner field must be set to the module of the caller
2534 int nand_scan(struct mtd_info *mtd, int maxchips)
2536 int ret;
2538 /* Many callers got this wrong, so check for it for a while... */
2539 if (!mtd->owner && caller_is_module()) {
2540 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2541 BUG();
2544 ret = nand_scan_ident(mtd, maxchips);
2545 if (!ret)
2546 ret = nand_scan_tail(mtd);
2547 return ret;
2551 * nand_release - [NAND Interface] Free resources held by the NAND device
2552 * @mtd: MTD device structure
2554 void nand_release(struct mtd_info *mtd)
2556 struct nand_chip *chip = mtd->priv;
2558 #ifdef CONFIG_MTD_PARTITIONS
2559 /* Deregister partitions */
2560 del_mtd_partitions(mtd);
2561 #endif
2562 /* Deregister the device */
2563 del_mtd_device(mtd);
2565 /* Free bad block table memory */
2566 kfree(chip->bbt);
2567 if (!(chip->options & NAND_OWN_BUFFERS))
2568 kfree(chip->buffers);
2571 EXPORT_SYMBOL_GPL(nand_scan);
2572 EXPORT_SYMBOL_GPL(nand_scan_ident);
2573 EXPORT_SYMBOL_GPL(nand_scan_tail);
2574 EXPORT_SYMBOL_GPL(nand_release);
2576 static int __init nand_base_init(void)
2578 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2579 return 0;
2582 static void __exit nand_base_exit(void)
2584 led_trigger_unregister_simple(nand_led_trigger);
2587 module_init(nand_base_init);
2588 module_exit(nand_base_exit);
2590 MODULE_LICENSE("GPL");
2591 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2592 MODULE_DESCRIPTION("Generic NAND flash driver code");