x86: bugfix wbinvd() model check instead of family check
[linux-2.6/mini2440.git] / arch / x86 / mm / pageattr.c
blob2cc019a3f71b536901d58616411d55c79a0a8e29
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
15 #include <asm/e820.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/uaccess.h>
21 #include <asm/pgalloc.h>
22 #include <asm/proto.h>
23 #include <asm/pat.h>
26 * The current flushing context - we pass it instead of 5 arguments:
28 struct cpa_data {
29 unsigned long *vaddr;
30 pgprot_t mask_set;
31 pgprot_t mask_clr;
32 int numpages;
33 int flags;
34 unsigned long pfn;
35 unsigned force_split : 1;
36 int curpage;
37 struct page **pages;
41 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
42 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
43 * entries change the page attribute in parallel to some other cpu
44 * splitting a large page entry along with changing the attribute.
46 static DEFINE_SPINLOCK(cpa_lock);
48 #define CPA_FLUSHTLB 1
49 #define CPA_ARRAY 2
50 #define CPA_PAGES_ARRAY 4
52 #ifdef CONFIG_PROC_FS
53 static unsigned long direct_pages_count[PG_LEVEL_NUM];
55 void update_page_count(int level, unsigned long pages)
57 unsigned long flags;
59 /* Protect against CPA */
60 spin_lock_irqsave(&pgd_lock, flags);
61 direct_pages_count[level] += pages;
62 spin_unlock_irqrestore(&pgd_lock, flags);
65 static void split_page_count(int level)
67 direct_pages_count[level]--;
68 direct_pages_count[level - 1] += PTRS_PER_PTE;
71 void arch_report_meminfo(struct seq_file *m)
73 seq_printf(m, "DirectMap4k: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_4K] << 2);
75 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
76 seq_printf(m, "DirectMap2M: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_2M] << 11);
78 #else
79 seq_printf(m, "DirectMap4M: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_2M] << 12);
81 #endif
82 #ifdef CONFIG_X86_64
83 if (direct_gbpages)
84 seq_printf(m, "DirectMap1G: %8lu kB\n",
85 direct_pages_count[PG_LEVEL_1G] << 20);
86 #endif
88 #else
89 static inline void split_page_count(int level) { }
90 #endif
92 #ifdef CONFIG_X86_64
94 static inline unsigned long highmap_start_pfn(void)
96 return __pa(_text) >> PAGE_SHIFT;
99 static inline unsigned long highmap_end_pfn(void)
101 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 #endif
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
112 static inline int
113 within(unsigned long addr, unsigned long start, unsigned long end)
115 return addr >= start && addr < end;
119 * Flushing functions
123 * clflush_cache_range - flush a cache range with clflush
124 * @addr: virtual start address
125 * @size: number of bytes to flush
127 * clflush is an unordered instruction which needs fencing with mfence
128 * to avoid ordering issues.
130 void clflush_cache_range(void *vaddr, unsigned int size)
132 void *vend = vaddr + size - 1;
134 mb();
136 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
137 clflush(vaddr);
139 * Flush any possible final partial cacheline:
141 clflush(vend);
143 mb();
146 static void __cpa_flush_all(void *arg)
148 unsigned long cache = (unsigned long)arg;
151 * Flush all to work around Errata in early athlons regarding
152 * large page flushing.
154 __flush_tlb_all();
156 if (cache && boot_cpu_data.x86 >= 4)
157 wbinvd();
160 static void cpa_flush_all(unsigned long cache)
162 BUG_ON(irqs_disabled());
164 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 static void __cpa_flush_range(void *arg)
170 * We could optimize that further and do individual per page
171 * tlb invalidates for a low number of pages. Caveat: we must
172 * flush the high aliases on 64bit as well.
174 __flush_tlb_all();
177 static void cpa_flush_range(unsigned long start, int numpages, int cache)
179 unsigned int i, level;
180 unsigned long addr;
182 BUG_ON(irqs_disabled());
183 WARN_ON(PAGE_ALIGN(start) != start);
185 on_each_cpu(__cpa_flush_range, NULL, 1);
187 if (!cache)
188 return;
191 * We only need to flush on one CPU,
192 * clflush is a MESI-coherent instruction that
193 * will cause all other CPUs to flush the same
194 * cachelines:
196 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
197 pte_t *pte = lookup_address(addr, &level);
200 * Only flush present addresses:
202 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
203 clflush_cache_range((void *) addr, PAGE_SIZE);
207 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
208 int in_flags, struct page **pages)
210 unsigned int i, level;
212 BUG_ON(irqs_disabled());
214 on_each_cpu(__cpa_flush_range, NULL, 1);
216 if (!cache)
217 return;
219 /* 4M threshold */
220 if (numpages >= 1024) {
221 if (boot_cpu_data.x86 >= 4)
222 wbinvd();
223 return;
226 * We only need to flush on one CPU,
227 * clflush is a MESI-coherent instruction that
228 * will cause all other CPUs to flush the same
229 * cachelines:
231 for (i = 0; i < numpages; i++) {
232 unsigned long addr;
233 pte_t *pte;
235 if (in_flags & CPA_PAGES_ARRAY)
236 addr = (unsigned long)page_address(pages[i]);
237 else
238 addr = start[i];
240 pte = lookup_address(addr, &level);
243 * Only flush present addresses:
245 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
246 clflush_cache_range((void *)addr, PAGE_SIZE);
251 * Certain areas of memory on x86 require very specific protection flags,
252 * for example the BIOS area or kernel text. Callers don't always get this
253 * right (again, ioremap() on BIOS memory is not uncommon) so this function
254 * checks and fixes these known static required protection bits.
256 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
257 unsigned long pfn)
259 pgprot_t forbidden = __pgprot(0);
262 * The BIOS area between 640k and 1Mb needs to be executable for
263 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
265 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
266 pgprot_val(forbidden) |= _PAGE_NX;
269 * The kernel text needs to be executable for obvious reasons
270 * Does not cover __inittext since that is gone later on. On
271 * 64bit we do not enforce !NX on the low mapping
273 if (within(address, (unsigned long)_text, (unsigned long)_etext))
274 pgprot_val(forbidden) |= _PAGE_NX;
277 * The .rodata section needs to be read-only. Using the pfn
278 * catches all aliases.
280 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
281 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
282 pgprot_val(forbidden) |= _PAGE_RW;
284 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
286 return prot;
290 * Lookup the page table entry for a virtual address. Return a pointer
291 * to the entry and the level of the mapping.
293 * Note: We return pud and pmd either when the entry is marked large
294 * or when the present bit is not set. Otherwise we would return a
295 * pointer to a nonexisting mapping.
297 pte_t *lookup_address(unsigned long address, unsigned int *level)
299 pgd_t *pgd = pgd_offset_k(address);
300 pud_t *pud;
301 pmd_t *pmd;
303 *level = PG_LEVEL_NONE;
305 if (pgd_none(*pgd))
306 return NULL;
308 pud = pud_offset(pgd, address);
309 if (pud_none(*pud))
310 return NULL;
312 *level = PG_LEVEL_1G;
313 if (pud_large(*pud) || !pud_present(*pud))
314 return (pte_t *)pud;
316 pmd = pmd_offset(pud, address);
317 if (pmd_none(*pmd))
318 return NULL;
320 *level = PG_LEVEL_2M;
321 if (pmd_large(*pmd) || !pmd_present(*pmd))
322 return (pte_t *)pmd;
324 *level = PG_LEVEL_4K;
326 return pte_offset_kernel(pmd, address);
328 EXPORT_SYMBOL_GPL(lookup_address);
331 * Set the new pmd in all the pgds we know about:
333 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
335 /* change init_mm */
336 set_pte_atomic(kpte, pte);
337 #ifdef CONFIG_X86_32
338 if (!SHARED_KERNEL_PMD) {
339 struct page *page;
341 list_for_each_entry(page, &pgd_list, lru) {
342 pgd_t *pgd;
343 pud_t *pud;
344 pmd_t *pmd;
346 pgd = (pgd_t *)page_address(page) + pgd_index(address);
347 pud = pud_offset(pgd, address);
348 pmd = pmd_offset(pud, address);
349 set_pte_atomic((pte_t *)pmd, pte);
352 #endif
355 static int
356 try_preserve_large_page(pte_t *kpte, unsigned long address,
357 struct cpa_data *cpa)
359 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
360 pte_t new_pte, old_pte, *tmp;
361 pgprot_t old_prot, new_prot;
362 int i, do_split = 1;
363 unsigned int level;
365 if (cpa->force_split)
366 return 1;
368 spin_lock_irqsave(&pgd_lock, flags);
370 * Check for races, another CPU might have split this page
371 * up already:
373 tmp = lookup_address(address, &level);
374 if (tmp != kpte)
375 goto out_unlock;
377 switch (level) {
378 case PG_LEVEL_2M:
379 psize = PMD_PAGE_SIZE;
380 pmask = PMD_PAGE_MASK;
381 break;
382 #ifdef CONFIG_X86_64
383 case PG_LEVEL_1G:
384 psize = PUD_PAGE_SIZE;
385 pmask = PUD_PAGE_MASK;
386 break;
387 #endif
388 default:
389 do_split = -EINVAL;
390 goto out_unlock;
394 * Calculate the number of pages, which fit into this large
395 * page starting at address:
397 nextpage_addr = (address + psize) & pmask;
398 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
399 if (numpages < cpa->numpages)
400 cpa->numpages = numpages;
403 * We are safe now. Check whether the new pgprot is the same:
405 old_pte = *kpte;
406 old_prot = new_prot = pte_pgprot(old_pte);
408 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
409 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
412 * old_pte points to the large page base address. So we need
413 * to add the offset of the virtual address:
415 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
416 cpa->pfn = pfn;
418 new_prot = static_protections(new_prot, address, pfn);
421 * We need to check the full range, whether
422 * static_protection() requires a different pgprot for one of
423 * the pages in the range we try to preserve:
425 addr = address + PAGE_SIZE;
426 pfn++;
427 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
428 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
430 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
431 goto out_unlock;
435 * If there are no changes, return. maxpages has been updated
436 * above:
438 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
439 do_split = 0;
440 goto out_unlock;
444 * We need to change the attributes. Check, whether we can
445 * change the large page in one go. We request a split, when
446 * the address is not aligned and the number of pages is
447 * smaller than the number of pages in the large page. Note
448 * that we limited the number of possible pages already to
449 * the number of pages in the large page.
451 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
453 * The address is aligned and the number of pages
454 * covers the full page.
456 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
457 __set_pmd_pte(kpte, address, new_pte);
458 cpa->flags |= CPA_FLUSHTLB;
459 do_split = 0;
462 out_unlock:
463 spin_unlock_irqrestore(&pgd_lock, flags);
465 return do_split;
468 static int split_large_page(pte_t *kpte, unsigned long address)
470 unsigned long flags, pfn, pfninc = 1;
471 unsigned int i, level;
472 pte_t *pbase, *tmp;
473 pgprot_t ref_prot;
474 struct page *base;
476 if (!debug_pagealloc)
477 spin_unlock(&cpa_lock);
478 base = alloc_pages(GFP_KERNEL, 0);
479 if (!debug_pagealloc)
480 spin_lock(&cpa_lock);
481 if (!base)
482 return -ENOMEM;
484 spin_lock_irqsave(&pgd_lock, flags);
486 * Check for races, another CPU might have split this page
487 * up for us already:
489 tmp = lookup_address(address, &level);
490 if (tmp != kpte)
491 goto out_unlock;
493 pbase = (pte_t *)page_address(base);
494 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
495 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
497 * If we ever want to utilize the PAT bit, we need to
498 * update this function to make sure it's converted from
499 * bit 12 to bit 7 when we cross from the 2MB level to
500 * the 4K level:
502 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
504 #ifdef CONFIG_X86_64
505 if (level == PG_LEVEL_1G) {
506 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
507 pgprot_val(ref_prot) |= _PAGE_PSE;
509 #endif
512 * Get the target pfn from the original entry:
514 pfn = pte_pfn(*kpte);
515 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
516 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
518 if (address >= (unsigned long)__va(0) &&
519 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
520 split_page_count(level);
522 #ifdef CONFIG_X86_64
523 if (address >= (unsigned long)__va(1UL<<32) &&
524 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
525 split_page_count(level);
526 #endif
529 * Install the new, split up pagetable.
531 * We use the standard kernel pagetable protections for the new
532 * pagetable protections, the actual ptes set above control the
533 * primary protection behavior:
535 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
538 * Intel Atom errata AAH41 workaround.
540 * The real fix should be in hw or in a microcode update, but
541 * we also probabilistically try to reduce the window of having
542 * a large TLB mixed with 4K TLBs while instruction fetches are
543 * going on.
545 __flush_tlb_all();
547 base = NULL;
549 out_unlock:
551 * If we dropped out via the lookup_address check under
552 * pgd_lock then stick the page back into the pool:
554 if (base)
555 __free_page(base);
556 spin_unlock_irqrestore(&pgd_lock, flags);
558 return 0;
561 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
562 int primary)
565 * Ignore all non primary paths.
567 if (!primary)
568 return 0;
571 * Ignore the NULL PTE for kernel identity mapping, as it is expected
572 * to have holes.
573 * Also set numpages to '1' indicating that we processed cpa req for
574 * one virtual address page and its pfn. TBD: numpages can be set based
575 * on the initial value and the level returned by lookup_address().
577 if (within(vaddr, PAGE_OFFSET,
578 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
579 cpa->numpages = 1;
580 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
581 return 0;
582 } else {
583 WARN(1, KERN_WARNING "CPA: called for zero pte. "
584 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
585 *cpa->vaddr);
587 return -EFAULT;
591 static int __change_page_attr(struct cpa_data *cpa, int primary)
593 unsigned long address;
594 int do_split, err;
595 unsigned int level;
596 pte_t *kpte, old_pte;
598 if (cpa->flags & CPA_PAGES_ARRAY)
599 address = (unsigned long)page_address(cpa->pages[cpa->curpage]);
600 else if (cpa->flags & CPA_ARRAY)
601 address = cpa->vaddr[cpa->curpage];
602 else
603 address = *cpa->vaddr;
604 repeat:
605 kpte = lookup_address(address, &level);
606 if (!kpte)
607 return __cpa_process_fault(cpa, address, primary);
609 old_pte = *kpte;
610 if (!pte_val(old_pte))
611 return __cpa_process_fault(cpa, address, primary);
613 if (level == PG_LEVEL_4K) {
614 pte_t new_pte;
615 pgprot_t new_prot = pte_pgprot(old_pte);
616 unsigned long pfn = pte_pfn(old_pte);
618 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
619 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
621 new_prot = static_protections(new_prot, address, pfn);
624 * We need to keep the pfn from the existing PTE,
625 * after all we're only going to change it's attributes
626 * not the memory it points to
628 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
629 cpa->pfn = pfn;
631 * Do we really change anything ?
633 if (pte_val(old_pte) != pte_val(new_pte)) {
634 set_pte_atomic(kpte, new_pte);
635 cpa->flags |= CPA_FLUSHTLB;
637 cpa->numpages = 1;
638 return 0;
642 * Check, whether we can keep the large page intact
643 * and just change the pte:
645 do_split = try_preserve_large_page(kpte, address, cpa);
647 * When the range fits into the existing large page,
648 * return. cp->numpages and cpa->tlbflush have been updated in
649 * try_large_page:
651 if (do_split <= 0)
652 return do_split;
655 * We have to split the large page:
657 err = split_large_page(kpte, address);
658 if (!err) {
660 * Do a global flush tlb after splitting the large page
661 * and before we do the actual change page attribute in the PTE.
663 * With out this, we violate the TLB application note, that says
664 * "The TLBs may contain both ordinary and large-page
665 * translations for a 4-KByte range of linear addresses. This
666 * may occur if software modifies the paging structures so that
667 * the page size used for the address range changes. If the two
668 * translations differ with respect to page frame or attributes
669 * (e.g., permissions), processor behavior is undefined and may
670 * be implementation-specific."
672 * We do this global tlb flush inside the cpa_lock, so that we
673 * don't allow any other cpu, with stale tlb entries change the
674 * page attribute in parallel, that also falls into the
675 * just split large page entry.
677 flush_tlb_all();
678 goto repeat;
681 return err;
684 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
686 static int cpa_process_alias(struct cpa_data *cpa)
688 struct cpa_data alias_cpa;
689 int ret = 0;
690 unsigned long temp_cpa_vaddr, vaddr;
692 if (cpa->pfn >= max_pfn_mapped)
693 return 0;
695 #ifdef CONFIG_X86_64
696 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
697 return 0;
698 #endif
700 * No need to redo, when the primary call touched the direct
701 * mapping already:
703 if (cpa->flags & CPA_PAGES_ARRAY)
704 vaddr = (unsigned long)page_address(cpa->pages[cpa->curpage]);
705 else if (cpa->flags & CPA_ARRAY)
706 vaddr = cpa->vaddr[cpa->curpage];
707 else
708 vaddr = *cpa->vaddr;
710 if (!(within(vaddr, PAGE_OFFSET,
711 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
713 alias_cpa = *cpa;
714 temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
715 alias_cpa.vaddr = &temp_cpa_vaddr;
716 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
719 ret = __change_page_attr_set_clr(&alias_cpa, 0);
722 #ifdef CONFIG_X86_64
723 if (ret)
724 return ret;
726 * No need to redo, when the primary call touched the high
727 * mapping already:
729 if (within(vaddr, (unsigned long) _text, _brk_end))
730 return 0;
733 * If the physical address is inside the kernel map, we need
734 * to touch the high mapped kernel as well:
736 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
737 return 0;
739 alias_cpa = *cpa;
740 temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
741 alias_cpa.vaddr = &temp_cpa_vaddr;
742 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
745 * The high mapping range is imprecise, so ignore the return value.
747 __change_page_attr_set_clr(&alias_cpa, 0);
748 #endif
749 return ret;
752 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
754 int ret, numpages = cpa->numpages;
756 while (numpages) {
758 * Store the remaining nr of pages for the large page
759 * preservation check.
761 cpa->numpages = numpages;
762 /* for array changes, we can't use large page */
763 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
764 cpa->numpages = 1;
766 if (!debug_pagealloc)
767 spin_lock(&cpa_lock);
768 ret = __change_page_attr(cpa, checkalias);
769 if (!debug_pagealloc)
770 spin_unlock(&cpa_lock);
771 if (ret)
772 return ret;
774 if (checkalias) {
775 ret = cpa_process_alias(cpa);
776 if (ret)
777 return ret;
781 * Adjust the number of pages with the result of the
782 * CPA operation. Either a large page has been
783 * preserved or a single page update happened.
785 BUG_ON(cpa->numpages > numpages);
786 numpages -= cpa->numpages;
787 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
788 cpa->curpage++;
789 else
790 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
793 return 0;
796 static inline int cache_attr(pgprot_t attr)
798 return pgprot_val(attr) &
799 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
802 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
803 pgprot_t mask_set, pgprot_t mask_clr,
804 int force_split, int in_flag,
805 struct page **pages)
807 struct cpa_data cpa;
808 int ret, cache, checkalias;
811 * Check, if we are requested to change a not supported
812 * feature:
814 mask_set = canon_pgprot(mask_set);
815 mask_clr = canon_pgprot(mask_clr);
816 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
817 return 0;
819 /* Ensure we are PAGE_SIZE aligned */
820 if (in_flag & CPA_ARRAY) {
821 int i;
822 for (i = 0; i < numpages; i++) {
823 if (addr[i] & ~PAGE_MASK) {
824 addr[i] &= PAGE_MASK;
825 WARN_ON_ONCE(1);
828 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
830 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
831 * No need to cehck in that case
833 if (*addr & ~PAGE_MASK) {
834 *addr &= PAGE_MASK;
836 * People should not be passing in unaligned addresses:
838 WARN_ON_ONCE(1);
842 /* Must avoid aliasing mappings in the highmem code */
843 kmap_flush_unused();
845 vm_unmap_aliases();
848 * If we're called with lazy mmu updates enabled, the
849 * in-memory pte state may be stale. Flush pending updates to
850 * bring them up to date.
852 arch_flush_lazy_mmu_mode();
854 cpa.vaddr = addr;
855 cpa.pages = pages;
856 cpa.numpages = numpages;
857 cpa.mask_set = mask_set;
858 cpa.mask_clr = mask_clr;
859 cpa.flags = 0;
860 cpa.curpage = 0;
861 cpa.force_split = force_split;
863 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
864 cpa.flags |= in_flag;
866 /* No alias checking for _NX bit modifications */
867 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
869 ret = __change_page_attr_set_clr(&cpa, checkalias);
872 * Check whether we really changed something:
874 if (!(cpa.flags & CPA_FLUSHTLB))
875 goto out;
878 * No need to flush, when we did not set any of the caching
879 * attributes:
881 cache = cache_attr(mask_set);
884 * On success we use clflush, when the CPU supports it to
885 * avoid the wbindv. If the CPU does not support it and in the
886 * error case we fall back to cpa_flush_all (which uses
887 * wbindv):
889 if (!ret && cpu_has_clflush) {
890 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
891 cpa_flush_array(addr, numpages, cache,
892 cpa.flags, pages);
893 } else
894 cpa_flush_range(*addr, numpages, cache);
895 } else
896 cpa_flush_all(cache);
899 * If we've been called with lazy mmu updates enabled, then
900 * make sure that everything gets flushed out before we
901 * return.
903 arch_flush_lazy_mmu_mode();
905 out:
906 return ret;
909 static inline int change_page_attr_set(unsigned long *addr, int numpages,
910 pgprot_t mask, int array)
912 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
913 (array ? CPA_ARRAY : 0), NULL);
916 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
917 pgprot_t mask, int array)
919 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
920 (array ? CPA_ARRAY : 0), NULL);
923 static inline int cpa_set_pages_array(struct page **pages, int numpages,
924 pgprot_t mask)
926 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
927 CPA_PAGES_ARRAY, pages);
930 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
931 pgprot_t mask)
933 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
934 CPA_PAGES_ARRAY, pages);
937 int _set_memory_uc(unsigned long addr, int numpages)
940 * for now UC MINUS. see comments in ioremap_nocache()
942 return change_page_attr_set(&addr, numpages,
943 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
946 int set_memory_uc(unsigned long addr, int numpages)
948 int ret;
951 * for now UC MINUS. see comments in ioremap_nocache()
953 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
954 _PAGE_CACHE_UC_MINUS, NULL);
955 if (ret)
956 goto out_err;
958 ret = _set_memory_uc(addr, numpages);
959 if (ret)
960 goto out_free;
962 return 0;
964 out_free:
965 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
966 out_err:
967 return ret;
969 EXPORT_SYMBOL(set_memory_uc);
971 int set_memory_array_uc(unsigned long *addr, int addrinarray)
973 int i, j;
974 int ret;
977 * for now UC MINUS. see comments in ioremap_nocache()
979 for (i = 0; i < addrinarray; i++) {
980 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
981 _PAGE_CACHE_UC_MINUS, NULL);
982 if (ret)
983 goto out_free;
986 ret = change_page_attr_set(addr, addrinarray,
987 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
988 if (ret)
989 goto out_free;
991 return 0;
993 out_free:
994 for (j = 0; j < i; j++)
995 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
997 return ret;
999 EXPORT_SYMBOL(set_memory_array_uc);
1001 int _set_memory_wc(unsigned long addr, int numpages)
1003 int ret;
1004 ret = change_page_attr_set(&addr, numpages,
1005 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1007 if (!ret) {
1008 ret = change_page_attr_set(&addr, numpages,
1009 __pgprot(_PAGE_CACHE_WC), 0);
1011 return ret;
1014 int set_memory_wc(unsigned long addr, int numpages)
1016 int ret;
1018 if (!pat_enabled)
1019 return set_memory_uc(addr, numpages);
1021 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1022 _PAGE_CACHE_WC, NULL);
1023 if (ret)
1024 goto out_err;
1026 ret = _set_memory_wc(addr, numpages);
1027 if (ret)
1028 goto out_free;
1030 return 0;
1032 out_free:
1033 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1034 out_err:
1035 return ret;
1037 EXPORT_SYMBOL(set_memory_wc);
1039 int _set_memory_wb(unsigned long addr, int numpages)
1041 return change_page_attr_clear(&addr, numpages,
1042 __pgprot(_PAGE_CACHE_MASK), 0);
1045 int set_memory_wb(unsigned long addr, int numpages)
1047 int ret;
1049 ret = _set_memory_wb(addr, numpages);
1050 if (ret)
1051 return ret;
1053 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1054 return 0;
1056 EXPORT_SYMBOL(set_memory_wb);
1058 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1060 int i;
1061 int ret;
1063 ret = change_page_attr_clear(addr, addrinarray,
1064 __pgprot(_PAGE_CACHE_MASK), 1);
1065 if (ret)
1066 return ret;
1068 for (i = 0; i < addrinarray; i++)
1069 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1071 return 0;
1073 EXPORT_SYMBOL(set_memory_array_wb);
1075 int set_memory_x(unsigned long addr, int numpages)
1077 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1079 EXPORT_SYMBOL(set_memory_x);
1081 int set_memory_nx(unsigned long addr, int numpages)
1083 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1085 EXPORT_SYMBOL(set_memory_nx);
1087 int set_memory_ro(unsigned long addr, int numpages)
1089 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1091 EXPORT_SYMBOL_GPL(set_memory_ro);
1093 int set_memory_rw(unsigned long addr, int numpages)
1095 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1097 EXPORT_SYMBOL_GPL(set_memory_rw);
1099 int set_memory_np(unsigned long addr, int numpages)
1101 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1104 int set_memory_4k(unsigned long addr, int numpages)
1106 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1107 __pgprot(0), 1, 0, NULL);
1110 int set_pages_uc(struct page *page, int numpages)
1112 unsigned long addr = (unsigned long)page_address(page);
1114 return set_memory_uc(addr, numpages);
1116 EXPORT_SYMBOL(set_pages_uc);
1118 int set_pages_array_uc(struct page **pages, int addrinarray)
1120 unsigned long start;
1121 unsigned long end;
1122 int i;
1123 int free_idx;
1125 for (i = 0; i < addrinarray; i++) {
1126 start = (unsigned long)page_address(pages[i]);
1127 end = start + PAGE_SIZE;
1128 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1129 goto err_out;
1132 if (cpa_set_pages_array(pages, addrinarray,
1133 __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1134 return 0; /* Success */
1136 err_out:
1137 free_idx = i;
1138 for (i = 0; i < free_idx; i++) {
1139 start = (unsigned long)page_address(pages[i]);
1140 end = start + PAGE_SIZE;
1141 free_memtype(start, end);
1143 return -EINVAL;
1145 EXPORT_SYMBOL(set_pages_array_uc);
1147 int set_pages_wb(struct page *page, int numpages)
1149 unsigned long addr = (unsigned long)page_address(page);
1151 return set_memory_wb(addr, numpages);
1153 EXPORT_SYMBOL(set_pages_wb);
1155 int set_pages_array_wb(struct page **pages, int addrinarray)
1157 int retval;
1158 unsigned long start;
1159 unsigned long end;
1160 int i;
1162 retval = cpa_clear_pages_array(pages, addrinarray,
1163 __pgprot(_PAGE_CACHE_MASK));
1164 if (retval)
1165 return retval;
1167 for (i = 0; i < addrinarray; i++) {
1168 start = (unsigned long)page_address(pages[i]);
1169 end = start + PAGE_SIZE;
1170 free_memtype(start, end);
1173 return 0;
1175 EXPORT_SYMBOL(set_pages_array_wb);
1177 int set_pages_x(struct page *page, int numpages)
1179 unsigned long addr = (unsigned long)page_address(page);
1181 return set_memory_x(addr, numpages);
1183 EXPORT_SYMBOL(set_pages_x);
1185 int set_pages_nx(struct page *page, int numpages)
1187 unsigned long addr = (unsigned long)page_address(page);
1189 return set_memory_nx(addr, numpages);
1191 EXPORT_SYMBOL(set_pages_nx);
1193 int set_pages_ro(struct page *page, int numpages)
1195 unsigned long addr = (unsigned long)page_address(page);
1197 return set_memory_ro(addr, numpages);
1200 int set_pages_rw(struct page *page, int numpages)
1202 unsigned long addr = (unsigned long)page_address(page);
1204 return set_memory_rw(addr, numpages);
1207 #ifdef CONFIG_DEBUG_PAGEALLOC
1209 static int __set_pages_p(struct page *page, int numpages)
1211 unsigned long tempaddr = (unsigned long) page_address(page);
1212 struct cpa_data cpa = { .vaddr = &tempaddr,
1213 .numpages = numpages,
1214 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1215 .mask_clr = __pgprot(0),
1216 .flags = 0};
1219 * No alias checking needed for setting present flag. otherwise,
1220 * we may need to break large pages for 64-bit kernel text
1221 * mappings (this adds to complexity if we want to do this from
1222 * atomic context especially). Let's keep it simple!
1224 return __change_page_attr_set_clr(&cpa, 0);
1227 static int __set_pages_np(struct page *page, int numpages)
1229 unsigned long tempaddr = (unsigned long) page_address(page);
1230 struct cpa_data cpa = { .vaddr = &tempaddr,
1231 .numpages = numpages,
1232 .mask_set = __pgprot(0),
1233 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1234 .flags = 0};
1237 * No alias checking needed for setting not present flag. otherwise,
1238 * we may need to break large pages for 64-bit kernel text
1239 * mappings (this adds to complexity if we want to do this from
1240 * atomic context especially). Let's keep it simple!
1242 return __change_page_attr_set_clr(&cpa, 0);
1245 void kernel_map_pages(struct page *page, int numpages, int enable)
1247 if (PageHighMem(page))
1248 return;
1249 if (!enable) {
1250 debug_check_no_locks_freed(page_address(page),
1251 numpages * PAGE_SIZE);
1255 * If page allocator is not up yet then do not call c_p_a():
1257 if (!debug_pagealloc_enabled)
1258 return;
1261 * The return value is ignored as the calls cannot fail.
1262 * Large pages for identity mappings are not used at boot time
1263 * and hence no memory allocations during large page split.
1265 if (enable)
1266 __set_pages_p(page, numpages);
1267 else
1268 __set_pages_np(page, numpages);
1271 * We should perform an IPI and flush all tlbs,
1272 * but that can deadlock->flush only current cpu:
1274 __flush_tlb_all();
1277 #ifdef CONFIG_HIBERNATION
1279 bool kernel_page_present(struct page *page)
1281 unsigned int level;
1282 pte_t *pte;
1284 if (PageHighMem(page))
1285 return false;
1287 pte = lookup_address((unsigned long)page_address(page), &level);
1288 return (pte_val(*pte) & _PAGE_PRESENT);
1291 #endif /* CONFIG_HIBERNATION */
1293 #endif /* CONFIG_DEBUG_PAGEALLOC */
1296 * The testcases use internal knowledge of the implementation that shouldn't
1297 * be exposed to the rest of the kernel. Include these directly here.
1299 #ifdef CONFIG_CPA_DEBUG
1300 #include "pageattr-test.c"
1301 #endif