5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8
= {
66 static struct nand_ecclayout nand_oob_16
= {
68 .eccpos
= {0, 1, 2, 3, 6, 7},
74 static struct nand_ecclayout nand_oob_64
= {
77 40, 41, 42, 43, 44, 45, 46, 47,
78 48, 49, 50, 51, 52, 53, 54, 55,
79 56, 57, 58, 59, 60, 61, 62, 63},
85 static struct nand_ecclayout nand_oob_128
= {
88 80, 81, 82, 83, 84, 85, 86, 87,
89 88, 89, 90, 91, 92, 93, 94, 95,
90 96, 97, 98, 99, 100, 101, 102, 103,
91 104, 105, 106, 107, 108, 109, 110, 111,
92 112, 113, 114, 115, 116, 117, 118, 119,
93 120, 121, 122, 123, 124, 125, 126, 127},
99 static int nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
,
102 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
103 struct mtd_oob_ops
*ops
);
106 * For devices which display every fart in the system on a separate LED. Is
107 * compiled away when LED support is disabled.
109 DEFINE_LED_TRIGGER(nand_led_trigger
);
112 * nand_release_device - [GENERIC] release chip
113 * @mtd: MTD device structure
115 * Deselect, release chip lock and wake up anyone waiting on the device
117 static void nand_release_device(struct mtd_info
*mtd
)
119 struct nand_chip
*chip
= mtd
->priv
;
121 /* De-select the NAND device */
122 chip
->select_chip(mtd
, -1);
124 /* Release the controller and the chip */
125 spin_lock(&chip
->controller
->lock
);
126 chip
->controller
->active
= NULL
;
127 chip
->state
= FL_READY
;
128 wake_up(&chip
->controller
->wq
);
129 spin_unlock(&chip
->controller
->lock
);
133 * nand_read_byte - [DEFAULT] read one byte from the chip
134 * @mtd: MTD device structure
136 * Default read function for 8bit buswith
138 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
140 struct nand_chip
*chip
= mtd
->priv
;
141 return readb(chip
->IO_ADDR_R
);
145 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
146 * @mtd: MTD device structure
148 * Default read function for 16bit buswith with
149 * endianess conversion
151 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
153 struct nand_chip
*chip
= mtd
->priv
;
154 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
158 * nand_read_word - [DEFAULT] read one word from the chip
159 * @mtd: MTD device structure
161 * Default read function for 16bit buswith without
162 * endianess conversion
164 static u16
nand_read_word(struct mtd_info
*mtd
)
166 struct nand_chip
*chip
= mtd
->priv
;
167 return readw(chip
->IO_ADDR_R
);
171 * nand_select_chip - [DEFAULT] control CE line
172 * @mtd: MTD device structure
173 * @chipnr: chipnumber to select, -1 for deselect
175 * Default select function for 1 chip devices.
177 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
179 struct nand_chip
*chip
= mtd
->priv
;
183 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
194 * nand_write_buf - [DEFAULT] write buffer to chip
195 * @mtd: MTD device structure
197 * @len: number of bytes to write
199 * Default write function for 8bit buswith
201 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
204 struct nand_chip
*chip
= mtd
->priv
;
206 for (i
= 0; i
< len
; i
++)
207 writeb(buf
[i
], chip
->IO_ADDR_W
);
211 * nand_read_buf - [DEFAULT] read chip data into buffer
212 * @mtd: MTD device structure
213 * @buf: buffer to store date
214 * @len: number of bytes to read
216 * Default read function for 8bit buswith
218 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
221 struct nand_chip
*chip
= mtd
->priv
;
223 for (i
= 0; i
< len
; i
++)
224 buf
[i
] = readb(chip
->IO_ADDR_R
);
228 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
229 * @mtd: MTD device structure
230 * @buf: buffer containing the data to compare
231 * @len: number of bytes to compare
233 * Default verify function for 8bit buswith
235 static int nand_verify_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
238 struct nand_chip
*chip
= mtd
->priv
;
240 for (i
= 0; i
< len
; i
++)
241 if (buf
[i
] != readb(chip
->IO_ADDR_R
))
247 * nand_write_buf16 - [DEFAULT] write buffer to chip
248 * @mtd: MTD device structure
250 * @len: number of bytes to write
252 * Default write function for 16bit buswith
254 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
257 struct nand_chip
*chip
= mtd
->priv
;
258 u16
*p
= (u16
*) buf
;
261 for (i
= 0; i
< len
; i
++)
262 writew(p
[i
], chip
->IO_ADDR_W
);
267 * nand_read_buf16 - [DEFAULT] read chip data into buffer
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
272 * Default read function for 16bit buswith
274 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
277 struct nand_chip
*chip
= mtd
->priv
;
278 u16
*p
= (u16
*) buf
;
281 for (i
= 0; i
< len
; i
++)
282 p
[i
] = readw(chip
->IO_ADDR_R
);
286 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
287 * @mtd: MTD device structure
288 * @buf: buffer containing the data to compare
289 * @len: number of bytes to compare
291 * Default verify function for 16bit buswith
293 static int nand_verify_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
296 struct nand_chip
*chip
= mtd
->priv
;
297 u16
*p
= (u16
*) buf
;
300 for (i
= 0; i
< len
; i
++)
301 if (p
[i
] != readw(chip
->IO_ADDR_R
))
308 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
309 * @mtd: MTD device structure
310 * @ofs: offset from device start
311 * @getchip: 0, if the chip is already selected
313 * Check, if the block is bad.
315 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
317 int page
, chipnr
, res
= 0;
318 struct nand_chip
*chip
= mtd
->priv
;
321 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
324 chipnr
= (int)(ofs
>> chip
->chip_shift
);
326 nand_get_device(chip
, mtd
, FL_READING
);
328 /* Select the NAND device */
329 chip
->select_chip(mtd
, chipnr
);
332 if (chip
->options
& NAND_BUSWIDTH_16
) {
333 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
& 0xFE,
335 bad
= cpu_to_le16(chip
->read_word(mtd
));
336 if (chip
->badblockpos
& 0x1)
338 if ((bad
& 0xFF) != 0xff)
341 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
, page
);
342 if (chip
->read_byte(mtd
) != 0xff)
347 nand_release_device(mtd
);
353 * nand_default_block_markbad - [DEFAULT] mark a block bad
354 * @mtd: MTD device structure
355 * @ofs: offset from device start
357 * This is the default implementation, which can be overridden by
358 * a hardware specific driver.
360 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
362 struct nand_chip
*chip
= mtd
->priv
;
363 uint8_t buf
[2] = { 0, 0 };
366 /* Get block number */
367 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
369 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
371 /* Do we have a flash based bad block table ? */
372 if (chip
->options
& NAND_USE_FLASH_BBT
)
373 ret
= nand_update_bbt(mtd
, ofs
);
375 /* We write two bytes, so we dont have to mess with 16 bit
378 nand_get_device(chip
, mtd
, FL_WRITING
);
380 chip
->ops
.len
= chip
->ops
.ooblen
= 2;
381 chip
->ops
.datbuf
= NULL
;
382 chip
->ops
.oobbuf
= buf
;
383 chip
->ops
.ooboffs
= chip
->badblockpos
& ~0x01;
385 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
386 nand_release_device(mtd
);
389 mtd
->ecc_stats
.badblocks
++;
395 * nand_check_wp - [GENERIC] check if the chip is write protected
396 * @mtd: MTD device structure
397 * Check, if the device is write protected
399 * The function expects, that the device is already selected
401 static int nand_check_wp(struct mtd_info
*mtd
)
403 struct nand_chip
*chip
= mtd
->priv
;
404 /* Check the WP bit */
405 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
406 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
410 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
411 * @mtd: MTD device structure
412 * @ofs: offset from device start
413 * @getchip: 0, if the chip is already selected
414 * @allowbbt: 1, if its allowed to access the bbt area
416 * Check, if the block is bad. Either by reading the bad block table or
417 * calling of the scan function.
419 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
422 struct nand_chip
*chip
= mtd
->priv
;
425 return chip
->block_bad(mtd
, ofs
, getchip
);
427 /* Return info from the table */
428 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
432 * Wait for the ready pin, after a command
433 * The timeout is catched later.
435 void nand_wait_ready(struct mtd_info
*mtd
)
437 struct nand_chip
*chip
= mtd
->priv
;
438 unsigned long timeo
= jiffies
+ 2;
440 led_trigger_event(nand_led_trigger
, LED_FULL
);
441 /* wait until command is processed or timeout occures */
443 if (chip
->dev_ready(mtd
))
445 touch_softlockup_watchdog();
446 } while (time_before(jiffies
, timeo
));
447 led_trigger_event(nand_led_trigger
, LED_OFF
);
449 EXPORT_SYMBOL_GPL(nand_wait_ready
);
452 * nand_command - [DEFAULT] Send command to NAND device
453 * @mtd: MTD device structure
454 * @command: the command to be sent
455 * @column: the column address for this command, -1 if none
456 * @page_addr: the page address for this command, -1 if none
458 * Send command to NAND device. This function is used for small page
459 * devices (256/512 Bytes per page)
461 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
462 int column
, int page_addr
)
464 register struct nand_chip
*chip
= mtd
->priv
;
465 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
468 * Write out the command to the device.
470 if (command
== NAND_CMD_SEQIN
) {
473 if (column
>= mtd
->writesize
) {
475 column
-= mtd
->writesize
;
476 readcmd
= NAND_CMD_READOOB
;
477 } else if (column
< 256) {
478 /* First 256 bytes --> READ0 */
479 readcmd
= NAND_CMD_READ0
;
482 readcmd
= NAND_CMD_READ1
;
484 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
485 ctrl
&= ~NAND_CTRL_CHANGE
;
487 chip
->cmd_ctrl(mtd
, command
, ctrl
);
490 * Address cycle, when necessary
492 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
493 /* Serially input address */
495 /* Adjust columns for 16 bit buswidth */
496 if (chip
->options
& NAND_BUSWIDTH_16
)
498 chip
->cmd_ctrl(mtd
, column
, ctrl
);
499 ctrl
&= ~NAND_CTRL_CHANGE
;
501 if (page_addr
!= -1) {
502 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
503 ctrl
&= ~NAND_CTRL_CHANGE
;
504 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
505 /* One more address cycle for devices > 32MiB */
506 if (chip
->chipsize
> (32 << 20))
507 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
509 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
512 * program and erase have their own busy handlers
513 * status and sequential in needs no delay
517 case NAND_CMD_PAGEPROG
:
518 case NAND_CMD_ERASE1
:
519 case NAND_CMD_ERASE2
:
521 case NAND_CMD_STATUS
:
527 udelay(chip
->chip_delay
);
528 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
529 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
531 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
532 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
535 /* This applies to read commands */
538 * If we don't have access to the busy pin, we apply the given
541 if (!chip
->dev_ready
) {
542 udelay(chip
->chip_delay
);
546 /* Apply this short delay always to ensure that we do wait tWB in
547 * any case on any machine. */
550 nand_wait_ready(mtd
);
554 * nand_command_lp - [DEFAULT] Send command to NAND large page device
555 * @mtd: MTD device structure
556 * @command: the command to be sent
557 * @column: the column address for this command, -1 if none
558 * @page_addr: the page address for this command, -1 if none
560 * Send command to NAND device. This is the version for the new large page
561 * devices We dont have the separate regions as we have in the small page
562 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
564 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
565 int column
, int page_addr
)
567 register struct nand_chip
*chip
= mtd
->priv
;
569 /* Emulate NAND_CMD_READOOB */
570 if (command
== NAND_CMD_READOOB
) {
571 column
+= mtd
->writesize
;
572 command
= NAND_CMD_READ0
;
575 /* Command latch cycle */
576 chip
->cmd_ctrl(mtd
, command
& 0xff,
577 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
579 if (column
!= -1 || page_addr
!= -1) {
580 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
582 /* Serially input address */
584 /* Adjust columns for 16 bit buswidth */
585 if (chip
->options
& NAND_BUSWIDTH_16
)
587 chip
->cmd_ctrl(mtd
, column
, ctrl
);
588 ctrl
&= ~NAND_CTRL_CHANGE
;
589 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
591 if (page_addr
!= -1) {
592 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
593 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
594 NAND_NCE
| NAND_ALE
);
595 /* One more address cycle for devices > 128MiB */
596 if (chip
->chipsize
> (128 << 20))
597 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
598 NAND_NCE
| NAND_ALE
);
601 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
604 * program and erase have their own busy handlers
605 * status, sequential in, and deplete1 need no delay
609 case NAND_CMD_CACHEDPROG
:
610 case NAND_CMD_PAGEPROG
:
611 case NAND_CMD_ERASE1
:
612 case NAND_CMD_ERASE2
:
615 case NAND_CMD_STATUS
:
616 case NAND_CMD_DEPLETE1
:
620 * read error status commands require only a short delay
622 case NAND_CMD_STATUS_ERROR
:
623 case NAND_CMD_STATUS_ERROR0
:
624 case NAND_CMD_STATUS_ERROR1
:
625 case NAND_CMD_STATUS_ERROR2
:
626 case NAND_CMD_STATUS_ERROR3
:
627 udelay(chip
->chip_delay
);
633 udelay(chip
->chip_delay
);
634 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
635 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
636 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
637 NAND_NCE
| NAND_CTRL_CHANGE
);
638 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
641 case NAND_CMD_RNDOUT
:
642 /* No ready / busy check necessary */
643 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
644 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
645 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
646 NAND_NCE
| NAND_CTRL_CHANGE
);
650 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
651 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
652 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
653 NAND_NCE
| NAND_CTRL_CHANGE
);
655 /* This applies to read commands */
658 * If we don't have access to the busy pin, we apply the given
661 if (!chip
->dev_ready
) {
662 udelay(chip
->chip_delay
);
667 /* Apply this short delay always to ensure that we do wait tWB in
668 * any case on any machine. */
671 nand_wait_ready(mtd
);
675 * nand_get_device - [GENERIC] Get chip for selected access
676 * @chip: the nand chip descriptor
677 * @mtd: MTD device structure
678 * @new_state: the state which is requested
680 * Get the device and lock it for exclusive access
683 nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
, int new_state
)
685 spinlock_t
*lock
= &chip
->controller
->lock
;
686 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
687 DECLARE_WAITQUEUE(wait
, current
);
691 /* Hardware controller shared among independend devices */
692 /* Hardware controller shared among independend devices */
693 if (!chip
->controller
->active
)
694 chip
->controller
->active
= chip
;
696 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
697 chip
->state
= new_state
;
701 if (new_state
== FL_PM_SUSPENDED
) {
703 return (chip
->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
705 set_current_state(TASK_UNINTERRUPTIBLE
);
706 add_wait_queue(wq
, &wait
);
709 remove_wait_queue(wq
, &wait
);
714 * nand_wait - [DEFAULT] wait until the command is done
715 * @mtd: MTD device structure
716 * @chip: NAND chip structure
718 * Wait for command done. This applies to erase and program only
719 * Erase can take up to 400ms and program up to 20ms according to
720 * general NAND and SmartMedia specs
722 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
725 unsigned long timeo
= jiffies
;
726 int status
, state
= chip
->state
;
728 if (state
== FL_ERASING
)
729 timeo
+= (HZ
* 400) / 1000;
731 timeo
+= (HZ
* 20) / 1000;
733 led_trigger_event(nand_led_trigger
, LED_FULL
);
735 /* Apply this short delay always to ensure that we do wait tWB in
736 * any case on any machine. */
739 if ((state
== FL_ERASING
) && (chip
->options
& NAND_IS_AND
))
740 chip
->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
742 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
744 while (time_before(jiffies
, timeo
)) {
745 if (chip
->dev_ready
) {
746 if (chip
->dev_ready(mtd
))
749 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
754 led_trigger_event(nand_led_trigger
, LED_OFF
);
756 status
= (int)chip
->read_byte(mtd
);
761 * nand_read_page_raw - [Intern] read raw page data without ecc
762 * @mtd: mtd info structure
763 * @chip: nand chip info structure
764 * @buf: buffer to store read data
766 * Not for syndrome calculating ecc controllers, which use a special oob layout
768 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
771 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
772 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
777 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
778 * @mtd: mtd info structure
779 * @chip: nand chip info structure
780 * @buf: buffer to store read data
782 * We need a special oob layout and handling even when OOB isn't used.
784 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
787 int eccsize
= chip
->ecc
.size
;
788 int eccbytes
= chip
->ecc
.bytes
;
789 uint8_t *oob
= chip
->oob_poi
;
792 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
793 chip
->read_buf(mtd
, buf
, eccsize
);
796 if (chip
->ecc
.prepad
) {
797 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
798 oob
+= chip
->ecc
.prepad
;
801 chip
->read_buf(mtd
, oob
, eccbytes
);
804 if (chip
->ecc
.postpad
) {
805 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
806 oob
+= chip
->ecc
.postpad
;
810 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
812 chip
->read_buf(mtd
, oob
, size
);
818 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
819 * @mtd: mtd info structure
820 * @chip: nand chip info structure
821 * @buf: buffer to store read data
823 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
826 int i
, eccsize
= chip
->ecc
.size
;
827 int eccbytes
= chip
->ecc
.bytes
;
828 int eccsteps
= chip
->ecc
.steps
;
830 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
831 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
832 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
834 chip
->ecc
.read_page_raw(mtd
, chip
, buf
);
836 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
837 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
839 for (i
= 0; i
< chip
->ecc
.total
; i
++)
840 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
842 eccsteps
= chip
->ecc
.steps
;
845 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
848 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
850 mtd
->ecc_stats
.failed
++;
852 mtd
->ecc_stats
.corrected
+= stat
;
858 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
859 * @mtd: mtd info structure
860 * @chip: nand chip info structure
861 * @data_offs: offset of requested data within the page
862 * @readlen: data length
863 * @bufpoi: buffer to store read data
865 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
, uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
867 int start_step
, end_step
, num_steps
;
868 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
870 int data_col_addr
, i
, gaps
= 0;
871 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
872 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
874 /* Column address wihin the page aligned to ECC size (256bytes). */
875 start_step
= data_offs
/ chip
->ecc
.size
;
876 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
877 num_steps
= end_step
- start_step
+ 1;
879 /* Data size aligned to ECC ecc.size*/
880 datafrag_len
= num_steps
* chip
->ecc
.size
;
881 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
883 data_col_addr
= start_step
* chip
->ecc
.size
;
884 /* If we read not a page aligned data */
885 if (data_col_addr
!= 0)
886 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
888 p
= bufpoi
+ data_col_addr
;
889 chip
->read_buf(mtd
, p
, datafrag_len
);
892 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
893 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
895 /* The performance is faster if to position offsets
896 according to ecc.pos. Let make sure here that
897 there are no gaps in ecc positions */
898 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
899 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
900 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
906 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
907 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
909 /* send the command to read the particular ecc bytes */
910 /* take care about buswidth alignment in read_buf */
911 aligned_pos
= eccpos
[start_step
* chip
->ecc
.bytes
] & ~(busw
- 1);
912 aligned_len
= eccfrag_len
;
913 if (eccpos
[start_step
* chip
->ecc
.bytes
] & (busw
- 1))
915 if (eccpos
[(start_step
+ num_steps
) * chip
->ecc
.bytes
] & (busw
- 1))
918 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
+ aligned_pos
, -1);
919 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
922 for (i
= 0; i
< eccfrag_len
; i
++)
923 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ start_step
* chip
->ecc
.bytes
]];
925 p
= bufpoi
+ data_col_addr
;
926 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
929 stat
= chip
->ecc
.correct(mtd
, p
, &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
931 mtd
->ecc_stats
.failed
++;
933 mtd
->ecc_stats
.corrected
+= stat
;
939 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
940 * @mtd: mtd info structure
941 * @chip: nand chip info structure
942 * @buf: buffer to store read data
944 * Not for syndrome calculating ecc controllers which need a special oob layout
946 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
949 int i
, eccsize
= chip
->ecc
.size
;
950 int eccbytes
= chip
->ecc
.bytes
;
951 int eccsteps
= chip
->ecc
.steps
;
953 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
954 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
955 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
957 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
958 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
959 chip
->read_buf(mtd
, p
, eccsize
);
960 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
962 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
964 for (i
= 0; i
< chip
->ecc
.total
; i
++)
965 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
967 eccsteps
= chip
->ecc
.steps
;
970 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
973 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
975 mtd
->ecc_stats
.failed
++;
977 mtd
->ecc_stats
.corrected
+= stat
;
983 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
984 * @mtd: mtd info structure
985 * @chip: nand chip info structure
986 * @buf: buffer to store read data
988 * The hw generator calculates the error syndrome automatically. Therefor
989 * we need a special oob layout and handling.
991 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
994 int i
, eccsize
= chip
->ecc
.size
;
995 int eccbytes
= chip
->ecc
.bytes
;
996 int eccsteps
= chip
->ecc
.steps
;
998 uint8_t *oob
= chip
->oob_poi
;
1000 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1003 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1004 chip
->read_buf(mtd
, p
, eccsize
);
1006 if (chip
->ecc
.prepad
) {
1007 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1008 oob
+= chip
->ecc
.prepad
;
1011 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1012 chip
->read_buf(mtd
, oob
, eccbytes
);
1013 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1016 mtd
->ecc_stats
.failed
++;
1018 mtd
->ecc_stats
.corrected
+= stat
;
1022 if (chip
->ecc
.postpad
) {
1023 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1024 oob
+= chip
->ecc
.postpad
;
1028 /* Calculate remaining oob bytes */
1029 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1031 chip
->read_buf(mtd
, oob
, i
);
1037 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1038 * @chip: nand chip structure
1039 * @oob: oob destination address
1040 * @ops: oob ops structure
1041 * @len: size of oob to transfer
1043 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1044 struct mtd_oob_ops
*ops
, size_t len
)
1050 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1053 case MTD_OOB_AUTO
: {
1054 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1055 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1058 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1059 /* Read request not from offset 0 ? */
1060 if (unlikely(roffs
)) {
1061 if (roffs
>= free
->length
) {
1062 roffs
-= free
->length
;
1065 boffs
= free
->offset
+ roffs
;
1066 bytes
= min_t(size_t, len
,
1067 (free
->length
- roffs
));
1070 bytes
= min_t(size_t, len
, free
->length
);
1071 boffs
= free
->offset
;
1073 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1085 * nand_do_read_ops - [Internal] Read data with ECC
1087 * @mtd: MTD device structure
1088 * @from: offset to read from
1089 * @ops: oob ops structure
1091 * Internal function. Called with chip held.
1093 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1094 struct mtd_oob_ops
*ops
)
1096 int chipnr
, page
, realpage
, col
, bytes
, aligned
;
1097 struct nand_chip
*chip
= mtd
->priv
;
1098 struct mtd_ecc_stats stats
;
1099 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1102 uint32_t readlen
= ops
->len
;
1103 uint32_t oobreadlen
= ops
->ooblen
;
1104 uint8_t *bufpoi
, *oob
, *buf
;
1106 stats
= mtd
->ecc_stats
;
1108 chipnr
= (int)(from
>> chip
->chip_shift
);
1109 chip
->select_chip(mtd
, chipnr
);
1111 realpage
= (int)(from
>> chip
->page_shift
);
1112 page
= realpage
& chip
->pagemask
;
1114 col
= (int)(from
& (mtd
->writesize
- 1));
1120 bytes
= min(mtd
->writesize
- col
, readlen
);
1121 aligned
= (bytes
== mtd
->writesize
);
1123 /* Is the current page in the buffer ? */
1124 if (realpage
!= chip
->pagebuf
|| oob
) {
1125 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1127 if (likely(sndcmd
)) {
1128 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1132 /* Now read the page into the buffer */
1133 if (unlikely(ops
->mode
== MTD_OOB_RAW
))
1134 ret
= chip
->ecc
.read_page_raw(mtd
, chip
, bufpoi
);
1135 else if (!aligned
&& NAND_SUBPAGE_READ(chip
) && !oob
)
1136 ret
= chip
->ecc
.read_subpage(mtd
, chip
, col
, bytes
, bufpoi
);
1138 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
);
1142 /* Transfer not aligned data */
1144 if (!NAND_SUBPAGE_READ(chip
) && !oob
)
1145 chip
->pagebuf
= realpage
;
1146 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1151 if (unlikely(oob
)) {
1152 /* Raw mode does data:oob:data:oob */
1153 if (ops
->mode
!= MTD_OOB_RAW
) {
1154 int toread
= min(oobreadlen
,
1155 chip
->ecc
.layout
->oobavail
);
1157 oob
= nand_transfer_oob(chip
,
1159 oobreadlen
-= toread
;
1162 buf
= nand_transfer_oob(chip
,
1163 buf
, ops
, mtd
->oobsize
);
1166 if (!(chip
->options
& NAND_NO_READRDY
)) {
1168 * Apply delay or wait for ready/busy pin. Do
1169 * this before the AUTOINCR check, so no
1170 * problems arise if a chip which does auto
1171 * increment is marked as NOAUTOINCR by the
1174 if (!chip
->dev_ready
)
1175 udelay(chip
->chip_delay
);
1177 nand_wait_ready(mtd
);
1180 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1189 /* For subsequent reads align to page boundary. */
1191 /* Increment page address */
1194 page
= realpage
& chip
->pagemask
;
1195 /* Check, if we cross a chip boundary */
1198 chip
->select_chip(mtd
, -1);
1199 chip
->select_chip(mtd
, chipnr
);
1202 /* Check, if the chip supports auto page increment
1203 * or if we have hit a block boundary.
1205 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1209 ops
->retlen
= ops
->len
- (size_t) readlen
;
1211 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1216 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1219 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1223 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1224 * @mtd: MTD device structure
1225 * @from: offset to read from
1226 * @len: number of bytes to read
1227 * @retlen: pointer to variable to store the number of read bytes
1228 * @buf: the databuffer to put data
1230 * Get hold of the chip and call nand_do_read
1232 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1233 size_t *retlen
, uint8_t *buf
)
1235 struct nand_chip
*chip
= mtd
->priv
;
1238 /* Do not allow reads past end of device */
1239 if ((from
+ len
) > mtd
->size
)
1244 nand_get_device(chip
, mtd
, FL_READING
);
1246 chip
->ops
.len
= len
;
1247 chip
->ops
.datbuf
= buf
;
1248 chip
->ops
.oobbuf
= NULL
;
1250 ret
= nand_do_read_ops(mtd
, from
, &chip
->ops
);
1252 *retlen
= chip
->ops
.retlen
;
1254 nand_release_device(mtd
);
1260 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1261 * @mtd: mtd info structure
1262 * @chip: nand chip info structure
1263 * @page: page number to read
1264 * @sndcmd: flag whether to issue read command or not
1266 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1267 int page
, int sndcmd
)
1270 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1273 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1278 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1280 * @mtd: mtd info structure
1281 * @chip: nand chip info structure
1282 * @page: page number to read
1283 * @sndcmd: flag whether to issue read command or not
1285 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1286 int page
, int sndcmd
)
1288 uint8_t *buf
= chip
->oob_poi
;
1289 int length
= mtd
->oobsize
;
1290 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1291 int eccsize
= chip
->ecc
.size
;
1292 uint8_t *bufpoi
= buf
;
1293 int i
, toread
, sndrnd
= 0, pos
;
1295 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1296 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1298 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1299 if (mtd
->writesize
> 512)
1300 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1302 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1305 toread
= min_t(int, length
, chunk
);
1306 chip
->read_buf(mtd
, bufpoi
, toread
);
1311 chip
->read_buf(mtd
, bufpoi
, length
);
1317 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1318 * @mtd: mtd info structure
1319 * @chip: nand chip info structure
1320 * @page: page number to write
1322 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1326 const uint8_t *buf
= chip
->oob_poi
;
1327 int length
= mtd
->oobsize
;
1329 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1330 chip
->write_buf(mtd
, buf
, length
);
1331 /* Send command to program the OOB data */
1332 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1334 status
= chip
->waitfunc(mtd
, chip
);
1336 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1340 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1341 * with syndrome - only for large page flash !
1342 * @mtd: mtd info structure
1343 * @chip: nand chip info structure
1344 * @page: page number to write
1346 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1347 struct nand_chip
*chip
, int page
)
1349 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1350 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1351 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1352 const uint8_t *bufpoi
= chip
->oob_poi
;
1355 * data-ecc-data-ecc ... ecc-oob
1357 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1359 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1360 pos
= steps
* (eccsize
+ chunk
);
1365 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1366 for (i
= 0; i
< steps
; i
++) {
1368 if (mtd
->writesize
<= 512) {
1369 uint32_t fill
= 0xFFFFFFFF;
1373 int num
= min_t(int, len
, 4);
1374 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1379 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1380 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1384 len
= min_t(int, length
, chunk
);
1385 chip
->write_buf(mtd
, bufpoi
, len
);
1390 chip
->write_buf(mtd
, bufpoi
, length
);
1392 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1393 status
= chip
->waitfunc(mtd
, chip
);
1395 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1399 * nand_do_read_oob - [Intern] NAND read out-of-band
1400 * @mtd: MTD device structure
1401 * @from: offset to read from
1402 * @ops: oob operations description structure
1404 * NAND read out-of-band data from the spare area
1406 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1407 struct mtd_oob_ops
*ops
)
1409 int page
, realpage
, chipnr
, sndcmd
= 1;
1410 struct nand_chip
*chip
= mtd
->priv
;
1411 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1412 int readlen
= ops
->ooblen
;
1414 uint8_t *buf
= ops
->oobbuf
;
1416 DEBUG(MTD_DEBUG_LEVEL3
, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1417 (unsigned long long)from
, readlen
);
1419 if (ops
->mode
== MTD_OOB_AUTO
)
1420 len
= chip
->ecc
.layout
->oobavail
;
1424 if (unlikely(ops
->ooboffs
>= len
)) {
1425 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: "
1426 "Attempt to start read outside oob\n");
1430 /* Do not allow reads past end of device */
1431 if (unlikely(from
>= mtd
->size
||
1432 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1433 (from
>> chip
->page_shift
)) * len
)) {
1434 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: "
1435 "Attempt read beyond end of device\n");
1439 chipnr
= (int)(from
>> chip
->chip_shift
);
1440 chip
->select_chip(mtd
, chipnr
);
1442 /* Shift to get page */
1443 realpage
= (int)(from
>> chip
->page_shift
);
1444 page
= realpage
& chip
->pagemask
;
1447 sndcmd
= chip
->ecc
.read_oob(mtd
, chip
, page
, sndcmd
);
1449 len
= min(len
, readlen
);
1450 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1452 if (!(chip
->options
& NAND_NO_READRDY
)) {
1454 * Apply delay or wait for ready/busy pin. Do this
1455 * before the AUTOINCR check, so no problems arise if a
1456 * chip which does auto increment is marked as
1457 * NOAUTOINCR by the board driver.
1459 if (!chip
->dev_ready
)
1460 udelay(chip
->chip_delay
);
1462 nand_wait_ready(mtd
);
1469 /* Increment page address */
1472 page
= realpage
& chip
->pagemask
;
1473 /* Check, if we cross a chip boundary */
1476 chip
->select_chip(mtd
, -1);
1477 chip
->select_chip(mtd
, chipnr
);
1480 /* Check, if the chip supports auto page increment
1481 * or if we have hit a block boundary.
1483 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1487 ops
->oobretlen
= ops
->ooblen
;
1492 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1493 * @mtd: MTD device structure
1494 * @from: offset to read from
1495 * @ops: oob operation description structure
1497 * NAND read data and/or out-of-band data
1499 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1500 struct mtd_oob_ops
*ops
)
1502 struct nand_chip
*chip
= mtd
->priv
;
1503 int ret
= -ENOTSUPP
;
1507 /* Do not allow reads past end of device */
1508 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1509 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: "
1510 "Attempt read beyond end of device\n");
1514 nand_get_device(chip
, mtd
, FL_READING
);
1527 ret
= nand_do_read_oob(mtd
, from
, ops
);
1529 ret
= nand_do_read_ops(mtd
, from
, ops
);
1532 nand_release_device(mtd
);
1538 * nand_write_page_raw - [Intern] raw page write function
1539 * @mtd: mtd info structure
1540 * @chip: nand chip info structure
1543 * Not for syndrome calculating ecc controllers, which use a special oob layout
1545 static void nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1548 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1549 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1553 * nand_write_page_raw_syndrome - [Intern] raw page write function
1554 * @mtd: mtd info structure
1555 * @chip: nand chip info structure
1558 * We need a special oob layout and handling even when ECC isn't checked.
1560 static void nand_write_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1563 int eccsize
= chip
->ecc
.size
;
1564 int eccbytes
= chip
->ecc
.bytes
;
1565 uint8_t *oob
= chip
->oob_poi
;
1568 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1569 chip
->write_buf(mtd
, buf
, eccsize
);
1572 if (chip
->ecc
.prepad
) {
1573 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1574 oob
+= chip
->ecc
.prepad
;
1577 chip
->read_buf(mtd
, oob
, eccbytes
);
1580 if (chip
->ecc
.postpad
) {
1581 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1582 oob
+= chip
->ecc
.postpad
;
1586 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1588 chip
->write_buf(mtd
, oob
, size
);
1591 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1592 * @mtd: mtd info structure
1593 * @chip: nand chip info structure
1596 static void nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1599 int i
, eccsize
= chip
->ecc
.size
;
1600 int eccbytes
= chip
->ecc
.bytes
;
1601 int eccsteps
= chip
->ecc
.steps
;
1602 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1603 const uint8_t *p
= buf
;
1604 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1606 /* Software ecc calculation */
1607 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1608 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1610 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1611 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1613 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1617 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1618 * @mtd: mtd info structure
1619 * @chip: nand chip info structure
1622 static void nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1625 int i
, eccsize
= chip
->ecc
.size
;
1626 int eccbytes
= chip
->ecc
.bytes
;
1627 int eccsteps
= chip
->ecc
.steps
;
1628 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1629 const uint8_t *p
= buf
;
1630 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1632 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1633 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1634 chip
->write_buf(mtd
, p
, eccsize
);
1635 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1638 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1639 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1641 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1645 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1646 * @mtd: mtd info structure
1647 * @chip: nand chip info structure
1650 * The hw generator calculates the error syndrome automatically. Therefor
1651 * we need a special oob layout and handling.
1653 static void nand_write_page_syndrome(struct mtd_info
*mtd
,
1654 struct nand_chip
*chip
, const uint8_t *buf
)
1656 int i
, eccsize
= chip
->ecc
.size
;
1657 int eccbytes
= chip
->ecc
.bytes
;
1658 int eccsteps
= chip
->ecc
.steps
;
1659 const uint8_t *p
= buf
;
1660 uint8_t *oob
= chip
->oob_poi
;
1662 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1664 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1665 chip
->write_buf(mtd
, p
, eccsize
);
1667 if (chip
->ecc
.prepad
) {
1668 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1669 oob
+= chip
->ecc
.prepad
;
1672 chip
->ecc
.calculate(mtd
, p
, oob
);
1673 chip
->write_buf(mtd
, oob
, eccbytes
);
1676 if (chip
->ecc
.postpad
) {
1677 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1678 oob
+= chip
->ecc
.postpad
;
1682 /* Calculate remaining oob bytes */
1683 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1685 chip
->write_buf(mtd
, oob
, i
);
1689 * nand_write_page - [REPLACEABLE] write one page
1690 * @mtd: MTD device structure
1691 * @chip: NAND chip descriptor
1692 * @buf: the data to write
1693 * @page: page number to write
1694 * @cached: cached programming
1695 * @raw: use _raw version of write_page
1697 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1698 const uint8_t *buf
, int page
, int cached
, int raw
)
1702 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1705 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1707 chip
->ecc
.write_page(mtd
, chip
, buf
);
1710 * Cached progamming disabled for now, Not sure if its worth the
1711 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1715 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
1717 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1718 status
= chip
->waitfunc(mtd
, chip
);
1720 * See if operation failed and additional status checks are
1723 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
1724 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
1727 if (status
& NAND_STATUS_FAIL
)
1730 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
1731 status
= chip
->waitfunc(mtd
, chip
);
1734 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1735 /* Send command to read back the data */
1736 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1738 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
1745 * nand_fill_oob - [Internal] Transfer client buffer to oob
1746 * @chip: nand chip structure
1747 * @oob: oob data buffer
1748 * @ops: oob ops structure
1750 static uint8_t *nand_fill_oob(struct nand_chip
*chip
, uint8_t *oob
,
1751 struct mtd_oob_ops
*ops
)
1753 size_t len
= ops
->ooblen
;
1759 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
1762 case MTD_OOB_AUTO
: {
1763 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1764 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
1767 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1768 /* Write request not from offset 0 ? */
1769 if (unlikely(woffs
)) {
1770 if (woffs
>= free
->length
) {
1771 woffs
-= free
->length
;
1774 boffs
= free
->offset
+ woffs
;
1775 bytes
= min_t(size_t, len
,
1776 (free
->length
- woffs
));
1779 bytes
= min_t(size_t, len
, free
->length
);
1780 boffs
= free
->offset
;
1782 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
1793 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1796 * nand_do_write_ops - [Internal] NAND write with ECC
1797 * @mtd: MTD device structure
1798 * @to: offset to write to
1799 * @ops: oob operations description structure
1801 * NAND write with ECC
1803 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
1804 struct mtd_oob_ops
*ops
)
1806 int chipnr
, realpage
, page
, blockmask
, column
;
1807 struct nand_chip
*chip
= mtd
->priv
;
1808 uint32_t writelen
= ops
->len
;
1809 uint8_t *oob
= ops
->oobbuf
;
1810 uint8_t *buf
= ops
->datbuf
;
1817 /* reject writes, which are not page aligned */
1818 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
1819 printk(KERN_NOTICE
"nand_write: "
1820 "Attempt to write not page aligned data\n");
1824 column
= to
& (mtd
->writesize
- 1);
1825 subpage
= column
|| (writelen
& (mtd
->writesize
- 1));
1830 chipnr
= (int)(to
>> chip
->chip_shift
);
1831 chip
->select_chip(mtd
, chipnr
);
1833 /* Check, if it is write protected */
1834 if (nand_check_wp(mtd
))
1837 realpage
= (int)(to
>> chip
->page_shift
);
1838 page
= realpage
& chip
->pagemask
;
1839 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1841 /* Invalidate the page cache, when we write to the cached page */
1842 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
1843 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
1846 /* If we're not given explicit OOB data, let it be 0xFF */
1848 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
1851 int bytes
= mtd
->writesize
;
1852 int cached
= writelen
> bytes
&& page
!= blockmask
;
1853 uint8_t *wbuf
= buf
;
1855 /* Partial page write ? */
1856 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
1858 bytes
= min_t(int, bytes
- column
, (int) writelen
);
1860 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
1861 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
1862 wbuf
= chip
->buffers
->databuf
;
1866 oob
= nand_fill_oob(chip
, oob
, ops
);
1868 ret
= chip
->write_page(mtd
, chip
, wbuf
, page
, cached
,
1869 (ops
->mode
== MTD_OOB_RAW
));
1881 page
= realpage
& chip
->pagemask
;
1882 /* Check, if we cross a chip boundary */
1885 chip
->select_chip(mtd
, -1);
1886 chip
->select_chip(mtd
, chipnr
);
1890 ops
->retlen
= ops
->len
- writelen
;
1892 ops
->oobretlen
= ops
->ooblen
;
1897 * nand_write - [MTD Interface] NAND write with ECC
1898 * @mtd: MTD device structure
1899 * @to: offset to write to
1900 * @len: number of bytes to write
1901 * @retlen: pointer to variable to store the number of written bytes
1902 * @buf: the data to write
1904 * NAND write with ECC
1906 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1907 size_t *retlen
, const uint8_t *buf
)
1909 struct nand_chip
*chip
= mtd
->priv
;
1912 /* Do not allow reads past end of device */
1913 if ((to
+ len
) > mtd
->size
)
1918 nand_get_device(chip
, mtd
, FL_WRITING
);
1920 chip
->ops
.len
= len
;
1921 chip
->ops
.datbuf
= (uint8_t *)buf
;
1922 chip
->ops
.oobbuf
= NULL
;
1924 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
1926 *retlen
= chip
->ops
.retlen
;
1928 nand_release_device(mtd
);
1934 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1935 * @mtd: MTD device structure
1936 * @to: offset to write to
1937 * @ops: oob operation description structure
1939 * NAND write out-of-band
1941 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
1942 struct mtd_oob_ops
*ops
)
1944 int chipnr
, page
, status
, len
;
1945 struct nand_chip
*chip
= mtd
->priv
;
1947 DEBUG(MTD_DEBUG_LEVEL3
, "nand_write_oob: to = 0x%08x, len = %i\n",
1948 (unsigned int)to
, (int)ops
->ooblen
);
1950 if (ops
->mode
== MTD_OOB_AUTO
)
1951 len
= chip
->ecc
.layout
->oobavail
;
1955 /* Do not allow write past end of page */
1956 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
1957 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_oob: "
1958 "Attempt to write past end of page\n");
1962 if (unlikely(ops
->ooboffs
>= len
)) {
1963 DEBUG(MTD_DEBUG_LEVEL0
, "nand_do_write_oob: "
1964 "Attempt to start write outside oob\n");
1968 /* Do not allow reads past end of device */
1969 if (unlikely(to
>= mtd
->size
||
1970 ops
->ooboffs
+ ops
->ooblen
>
1971 ((mtd
->size
>> chip
->page_shift
) -
1972 (to
>> chip
->page_shift
)) * len
)) {
1973 DEBUG(MTD_DEBUG_LEVEL0
, "nand_do_write_oob: "
1974 "Attempt write beyond end of device\n");
1978 chipnr
= (int)(to
>> chip
->chip_shift
);
1979 chip
->select_chip(mtd
, chipnr
);
1981 /* Shift to get page */
1982 page
= (int)(to
>> chip
->page_shift
);
1985 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1986 * of my DiskOnChip 2000 test units) will clear the whole data page too
1987 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1988 * it in the doc2000 driver in August 1999. dwmw2.
1990 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1992 /* Check, if it is write protected */
1993 if (nand_check_wp(mtd
))
1996 /* Invalidate the page cache, if we write to the cached page */
1997 if (page
== chip
->pagebuf
)
2000 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2001 nand_fill_oob(chip
, ops
->oobbuf
, ops
);
2002 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2003 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2008 ops
->oobretlen
= ops
->ooblen
;
2014 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2015 * @mtd: MTD device structure
2016 * @to: offset to write to
2017 * @ops: oob operation description structure
2019 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2020 struct mtd_oob_ops
*ops
)
2022 struct nand_chip
*chip
= mtd
->priv
;
2023 int ret
= -ENOTSUPP
;
2027 /* Do not allow writes past end of device */
2028 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2029 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_oob: "
2030 "Attempt write beyond end of device\n");
2034 nand_get_device(chip
, mtd
, FL_WRITING
);
2047 ret
= nand_do_write_oob(mtd
, to
, ops
);
2049 ret
= nand_do_write_ops(mtd
, to
, ops
);
2052 nand_release_device(mtd
);
2057 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2058 * @mtd: MTD device structure
2059 * @page: the page address of the block which will be erased
2061 * Standard erase command for NAND chips
2063 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2065 struct nand_chip
*chip
= mtd
->priv
;
2066 /* Send commands to erase a block */
2067 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2068 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2072 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2073 * @mtd: MTD device structure
2074 * @page: the page address of the block which will be erased
2076 * AND multi block erase command function
2077 * Erase 4 consecutive blocks
2079 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
2081 struct nand_chip
*chip
= mtd
->priv
;
2082 /* Send commands to erase a block */
2083 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2084 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2085 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2086 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2087 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2091 * nand_erase - [MTD Interface] erase block(s)
2092 * @mtd: MTD device structure
2093 * @instr: erase instruction
2095 * Erase one ore more blocks
2097 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2099 return nand_erase_nand(mtd
, instr
, 0);
2102 #define BBT_PAGE_MASK 0xffffff3f
2104 * nand_erase_nand - [Internal] erase block(s)
2105 * @mtd: MTD device structure
2106 * @instr: erase instruction
2107 * @allowbbt: allow erasing the bbt area
2109 * Erase one ore more blocks
2111 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2114 int page
, status
, pages_per_block
, ret
, chipnr
;
2115 struct nand_chip
*chip
= mtd
->priv
;
2116 loff_t rewrite_bbt
[NAND_MAX_CHIPS
]={0};
2117 unsigned int bbt_masked_page
= 0xffffffff;
2120 DEBUG(MTD_DEBUG_LEVEL3
, "nand_erase: start = 0x%012llx, len = %llu\n",
2121 (unsigned long long)instr
->addr
, (unsigned long long)instr
->len
);
2123 /* Start address must align on block boundary */
2124 if (instr
->addr
& ((1 << chip
->phys_erase_shift
) - 1)) {
2125 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: Unaligned address\n");
2129 /* Length must align on block boundary */
2130 if (instr
->len
& ((1 << chip
->phys_erase_shift
) - 1)) {
2131 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: "
2132 "Length not block aligned\n");
2136 /* Do not allow erase past end of device */
2137 if ((instr
->len
+ instr
->addr
) > mtd
->size
) {
2138 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: "
2139 "Erase past end of device\n");
2143 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2145 /* Grab the lock and see if the device is available */
2146 nand_get_device(chip
, mtd
, FL_ERASING
);
2148 /* Shift to get first page */
2149 page
= (int)(instr
->addr
>> chip
->page_shift
);
2150 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2152 /* Calculate pages in each block */
2153 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2155 /* Select the NAND device */
2156 chip
->select_chip(mtd
, chipnr
);
2158 /* Check, if it is write protected */
2159 if (nand_check_wp(mtd
)) {
2160 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: "
2161 "Device is write protected!!!\n");
2162 instr
->state
= MTD_ERASE_FAILED
;
2167 * If BBT requires refresh, set the BBT page mask to see if the BBT
2168 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2169 * can not be matched. This is also done when the bbt is actually
2170 * erased to avoid recusrsive updates
2172 if (chip
->options
& BBT_AUTO_REFRESH
&& !allowbbt
)
2173 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2175 /* Loop through the pages */
2178 instr
->state
= MTD_ERASING
;
2182 * heck if we have a bad block, we do not erase bad blocks !
2184 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2185 chip
->page_shift
, 0, allowbbt
)) {
2186 printk(KERN_WARNING
"nand_erase: attempt to erase a "
2187 "bad block at page 0x%08x\n", page
);
2188 instr
->state
= MTD_ERASE_FAILED
;
2193 * Invalidate the page cache, if we erase the block which
2194 * contains the current cached page
2196 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2197 (page
+ pages_per_block
))
2200 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2202 status
= chip
->waitfunc(mtd
, chip
);
2205 * See if operation failed and additional status checks are
2208 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2209 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2212 /* See if block erase succeeded */
2213 if (status
& NAND_STATUS_FAIL
) {
2214 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: "
2215 "Failed erase, page 0x%08x\n", page
);
2216 instr
->state
= MTD_ERASE_FAILED
;
2218 ((loff_t
)page
<< chip
->page_shift
);
2223 * If BBT requires refresh, set the BBT rewrite flag to the
2226 if (bbt_masked_page
!= 0xffffffff &&
2227 (page
& BBT_PAGE_MASK
) == bbt_masked_page
)
2228 rewrite_bbt
[chipnr
] =
2229 ((loff_t
)page
<< chip
->page_shift
);
2231 /* Increment page address and decrement length */
2232 len
-= (1 << chip
->phys_erase_shift
);
2233 page
+= pages_per_block
;
2235 /* Check, if we cross a chip boundary */
2236 if (len
&& !(page
& chip
->pagemask
)) {
2238 chip
->select_chip(mtd
, -1);
2239 chip
->select_chip(mtd
, chipnr
);
2242 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2243 * page mask to see if this BBT should be rewritten
2245 if (bbt_masked_page
!= 0xffffffff &&
2246 (chip
->bbt_td
->options
& NAND_BBT_PERCHIP
))
2247 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] &
2251 instr
->state
= MTD_ERASE_DONE
;
2255 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2257 /* Deselect and wake up anyone waiting on the device */
2258 nand_release_device(mtd
);
2260 /* Do call back function */
2262 mtd_erase_callback(instr
);
2265 * If BBT requires refresh and erase was successful, rewrite any
2266 * selected bad block tables
2268 if (bbt_masked_page
== 0xffffffff || ret
)
2271 for (chipnr
= 0; chipnr
< chip
->numchips
; chipnr
++) {
2272 if (!rewrite_bbt
[chipnr
])
2274 /* update the BBT for chip */
2275 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase_nand: nand_update_bbt "
2276 "(%d:0x%0llx 0x%0x)\n", chipnr
, rewrite_bbt
[chipnr
],
2277 chip
->bbt_td
->pages
[chipnr
]);
2278 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2281 /* Return more or less happy */
2286 * nand_sync - [MTD Interface] sync
2287 * @mtd: MTD device structure
2289 * Sync is actually a wait for chip ready function
2291 static void nand_sync(struct mtd_info
*mtd
)
2293 struct nand_chip
*chip
= mtd
->priv
;
2295 DEBUG(MTD_DEBUG_LEVEL3
, "nand_sync: called\n");
2297 /* Grab the lock and see if the device is available */
2298 nand_get_device(chip
, mtd
, FL_SYNCING
);
2299 /* Release it and go back */
2300 nand_release_device(mtd
);
2304 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2305 * @mtd: MTD device structure
2306 * @offs: offset relative to mtd start
2308 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2310 /* Check for invalid offset */
2311 if (offs
> mtd
->size
)
2314 return nand_block_checkbad(mtd
, offs
, 1, 0);
2318 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2319 * @mtd: MTD device structure
2320 * @ofs: offset relative to mtd start
2322 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2324 struct nand_chip
*chip
= mtd
->priv
;
2327 if ((ret
= nand_block_isbad(mtd
, ofs
))) {
2328 /* If it was bad already, return success and do nothing. */
2334 return chip
->block_markbad(mtd
, ofs
);
2338 * nand_suspend - [MTD Interface] Suspend the NAND flash
2339 * @mtd: MTD device structure
2341 static int nand_suspend(struct mtd_info
*mtd
)
2343 struct nand_chip
*chip
= mtd
->priv
;
2345 return nand_get_device(chip
, mtd
, FL_PM_SUSPENDED
);
2349 * nand_resume - [MTD Interface] Resume the NAND flash
2350 * @mtd: MTD device structure
2352 static void nand_resume(struct mtd_info
*mtd
)
2354 struct nand_chip
*chip
= mtd
->priv
;
2356 if (chip
->state
== FL_PM_SUSPENDED
)
2357 nand_release_device(mtd
);
2359 printk(KERN_ERR
"nand_resume() called for a chip which is not "
2360 "in suspended state\n");
2364 * Set default functions
2366 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2368 /* check for proper chip_delay setup, set 20us if not */
2369 if (!chip
->chip_delay
)
2370 chip
->chip_delay
= 20;
2372 /* check, if a user supplied command function given */
2373 if (chip
->cmdfunc
== NULL
)
2374 chip
->cmdfunc
= nand_command
;
2376 /* check, if a user supplied wait function given */
2377 if (chip
->waitfunc
== NULL
)
2378 chip
->waitfunc
= nand_wait
;
2380 if (!chip
->select_chip
)
2381 chip
->select_chip
= nand_select_chip
;
2382 if (!chip
->read_byte
)
2383 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2384 if (!chip
->read_word
)
2385 chip
->read_word
= nand_read_word
;
2386 if (!chip
->block_bad
)
2387 chip
->block_bad
= nand_block_bad
;
2388 if (!chip
->block_markbad
)
2389 chip
->block_markbad
= nand_default_block_markbad
;
2390 if (!chip
->write_buf
)
2391 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2392 if (!chip
->read_buf
)
2393 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2394 if (!chip
->verify_buf
)
2395 chip
->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2396 if (!chip
->scan_bbt
)
2397 chip
->scan_bbt
= nand_default_bbt
;
2399 if (!chip
->controller
) {
2400 chip
->controller
= &chip
->hwcontrol
;
2401 spin_lock_init(&chip
->controller
->lock
);
2402 init_waitqueue_head(&chip
->controller
->wq
);
2408 * Get the flash and manufacturer id and lookup if the type is supported
2410 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
2411 struct nand_chip
*chip
,
2412 int busw
, int *maf_id
)
2414 struct nand_flash_dev
*type
= NULL
;
2415 int i
, dev_id
, maf_idx
;
2416 int tmp_id
, tmp_manf
;
2418 /* Select the device */
2419 chip
->select_chip(mtd
, 0);
2422 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2425 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2427 /* Send the command for reading device ID */
2428 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2430 /* Read manufacturer and device IDs */
2431 *maf_id
= chip
->read_byte(mtd
);
2432 dev_id
= chip
->read_byte(mtd
);
2434 /* Try again to make sure, as some systems the bus-hold or other
2435 * interface concerns can cause random data which looks like a
2436 * possibly credible NAND flash to appear. If the two results do
2437 * not match, ignore the device completely.
2440 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2442 /* Read manufacturer and device IDs */
2444 tmp_manf
= chip
->read_byte(mtd
);
2445 tmp_id
= chip
->read_byte(mtd
);
2447 if (tmp_manf
!= *maf_id
|| tmp_id
!= dev_id
) {
2448 printk(KERN_INFO
"%s: second ID read did not match "
2449 "%02x,%02x against %02x,%02x\n", __func__
,
2450 *maf_id
, dev_id
, tmp_manf
, tmp_id
);
2451 return ERR_PTR(-ENODEV
);
2454 /* Lookup the flash id */
2455 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
2456 if (dev_id
== nand_flash_ids
[i
].id
) {
2457 type
= &nand_flash_ids
[i
];
2463 return ERR_PTR(-ENODEV
);
2466 mtd
->name
= type
->name
;
2468 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
2470 /* Newer devices have all the information in additional id bytes */
2471 if (!type
->pagesize
) {
2473 /* The 3rd id byte holds MLC / multichip data */
2474 chip
->cellinfo
= chip
->read_byte(mtd
);
2475 /* The 4th id byte is the important one */
2476 extid
= chip
->read_byte(mtd
);
2478 mtd
->writesize
= 1024 << (extid
& 0x3);
2481 mtd
->oobsize
= (8 << (extid
& 0x01)) * (mtd
->writesize
>> 9);
2483 /* Calc blocksize. Blocksize is multiples of 64KiB */
2484 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
2486 /* Get buswidth information */
2487 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
2491 * Old devices have chip data hardcoded in the device id table
2493 mtd
->erasesize
= type
->erasesize
;
2494 mtd
->writesize
= type
->pagesize
;
2495 mtd
->oobsize
= mtd
->writesize
/ 32;
2496 busw
= type
->options
& NAND_BUSWIDTH_16
;
2499 /* Try to identify manufacturer */
2500 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
2501 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
2506 * Check, if buswidth is correct. Hardware drivers should set
2509 if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
2510 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2511 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
2512 dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
2513 printk(KERN_WARNING
"NAND bus width %d instead %d bit\n",
2514 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
2516 return ERR_PTR(-EINVAL
);
2519 /* Calculate the address shift from the page size */
2520 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
2521 /* Convert chipsize to number of pages per chip -1. */
2522 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2524 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
2525 ffs(mtd
->erasesize
) - 1;
2526 if (chip
->chipsize
& 0xffffffff)
2527 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
2529 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32)) + 32 - 1;
2531 /* Set the bad block position */
2532 chip
->badblockpos
= mtd
->writesize
> 512 ?
2533 NAND_LARGE_BADBLOCK_POS
: NAND_SMALL_BADBLOCK_POS
;
2535 /* Get chip options, preserve non chip based options */
2536 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
2537 chip
->options
|= type
->options
& NAND_CHIPOPTIONS_MSK
;
2540 * Set chip as a default. Board drivers can override it, if necessary
2542 chip
->options
|= NAND_NO_AUTOINCR
;
2544 /* Check if chip is a not a samsung device. Do not clear the
2545 * options for chips which are not having an extended id.
2547 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
2548 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
2550 /* Check for AND chips with 4 page planes */
2551 if (chip
->options
& NAND_4PAGE_ARRAY
)
2552 chip
->erase_cmd
= multi_erase_cmd
;
2554 chip
->erase_cmd
= single_erase_cmd
;
2556 /* Do not replace user supplied command function ! */
2557 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
2558 chip
->cmdfunc
= nand_command_lp
;
2560 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2561 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
, dev_id
,
2562 nand_manuf_ids
[maf_idx
].name
, type
->name
);
2568 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2569 * @mtd: MTD device structure
2570 * @maxchips: Number of chips to scan for
2572 * This is the first phase of the normal nand_scan() function. It
2573 * reads the flash ID and sets up MTD fields accordingly.
2575 * The mtd->owner field must be set to the module of the caller.
2577 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
)
2579 int i
, busw
, nand_maf_id
;
2580 struct nand_chip
*chip
= mtd
->priv
;
2581 struct nand_flash_dev
*type
;
2583 /* Get buswidth to select the correct functions */
2584 busw
= chip
->options
& NAND_BUSWIDTH_16
;
2585 /* Set the default functions */
2586 nand_set_defaults(chip
, busw
);
2588 /* Read the flash type */
2589 type
= nand_get_flash_type(mtd
, chip
, busw
, &nand_maf_id
);
2592 printk(KERN_WARNING
"No NAND device found!!!\n");
2593 chip
->select_chip(mtd
, -1);
2594 return PTR_ERR(type
);
2597 /* Check for a chip array */
2598 for (i
= 1; i
< maxchips
; i
++) {
2599 chip
->select_chip(mtd
, i
);
2600 /* See comment in nand_get_flash_type for reset */
2601 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2602 /* Send the command for reading device ID */
2603 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2604 /* Read manufacturer and device IDs */
2605 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
2606 type
->id
!= chip
->read_byte(mtd
))
2610 printk(KERN_INFO
"%d NAND chips detected\n", i
);
2612 /* Store the number of chips and calc total size for mtd */
2614 mtd
->size
= i
* chip
->chipsize
;
2621 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2622 * @mtd: MTD device structure
2624 * This is the second phase of the normal nand_scan() function. It
2625 * fills out all the uninitialized function pointers with the defaults
2626 * and scans for a bad block table if appropriate.
2628 int nand_scan_tail(struct mtd_info
*mtd
)
2631 struct nand_chip
*chip
= mtd
->priv
;
2633 if (!(chip
->options
& NAND_OWN_BUFFERS
))
2634 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
2638 /* Set the internal oob buffer location, just after the page data */
2639 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
2642 * If no default placement scheme is given, select an appropriate one
2644 if (!chip
->ecc
.layout
) {
2645 switch (mtd
->oobsize
) {
2647 chip
->ecc
.layout
= &nand_oob_8
;
2650 chip
->ecc
.layout
= &nand_oob_16
;
2653 chip
->ecc
.layout
= &nand_oob_64
;
2656 chip
->ecc
.layout
= &nand_oob_128
;
2659 printk(KERN_WARNING
"No oob scheme defined for "
2660 "oobsize %d\n", mtd
->oobsize
);
2665 if (!chip
->write_page
)
2666 chip
->write_page
= nand_write_page
;
2669 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2670 * selected and we have 256 byte pagesize fallback to software ECC
2673 switch (chip
->ecc
.mode
) {
2675 /* Use standard hwecc read page function ? */
2676 if (!chip
->ecc
.read_page
)
2677 chip
->ecc
.read_page
= nand_read_page_hwecc
;
2678 if (!chip
->ecc
.write_page
)
2679 chip
->ecc
.write_page
= nand_write_page_hwecc
;
2680 if (!chip
->ecc
.read_page_raw
)
2681 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2682 if (!chip
->ecc
.write_page_raw
)
2683 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2684 if (!chip
->ecc
.read_oob
)
2685 chip
->ecc
.read_oob
= nand_read_oob_std
;
2686 if (!chip
->ecc
.write_oob
)
2687 chip
->ecc
.write_oob
= nand_write_oob_std
;
2689 case NAND_ECC_HW_SYNDROME
:
2690 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
2691 !chip
->ecc
.hwctl
) &&
2692 (!chip
->ecc
.read_page
||
2693 chip
->ecc
.read_page
== nand_read_page_hwecc
||
2694 !chip
->ecc
.write_page
||
2695 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
2696 printk(KERN_WARNING
"No ECC functions supplied, "
2697 "Hardware ECC not possible\n");
2700 /* Use standard syndrome read/write page function ? */
2701 if (!chip
->ecc
.read_page
)
2702 chip
->ecc
.read_page
= nand_read_page_syndrome
;
2703 if (!chip
->ecc
.write_page
)
2704 chip
->ecc
.write_page
= nand_write_page_syndrome
;
2705 if (!chip
->ecc
.read_page_raw
)
2706 chip
->ecc
.read_page_raw
= nand_read_page_raw_syndrome
;
2707 if (!chip
->ecc
.write_page_raw
)
2708 chip
->ecc
.write_page_raw
= nand_write_page_raw_syndrome
;
2709 if (!chip
->ecc
.read_oob
)
2710 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
2711 if (!chip
->ecc
.write_oob
)
2712 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
2714 if (mtd
->writesize
>= chip
->ecc
.size
)
2716 printk(KERN_WARNING
"%d byte HW ECC not possible on "
2717 "%d byte page size, fallback to SW ECC\n",
2718 chip
->ecc
.size
, mtd
->writesize
);
2719 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2722 chip
->ecc
.calculate
= nand_calculate_ecc
;
2723 chip
->ecc
.correct
= nand_correct_data
;
2724 chip
->ecc
.read_page
= nand_read_page_swecc
;
2725 chip
->ecc
.read_subpage
= nand_read_subpage
;
2726 chip
->ecc
.write_page
= nand_write_page_swecc
;
2727 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2728 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2729 chip
->ecc
.read_oob
= nand_read_oob_std
;
2730 chip
->ecc
.write_oob
= nand_write_oob_std
;
2731 chip
->ecc
.size
= 256;
2732 chip
->ecc
.bytes
= 3;
2736 printk(KERN_WARNING
"NAND_ECC_NONE selected by board driver. "
2737 "This is not recommended !!\n");
2738 chip
->ecc
.read_page
= nand_read_page_raw
;
2739 chip
->ecc
.write_page
= nand_write_page_raw
;
2740 chip
->ecc
.read_oob
= nand_read_oob_std
;
2741 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2742 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2743 chip
->ecc
.write_oob
= nand_write_oob_std
;
2744 chip
->ecc
.size
= mtd
->writesize
;
2745 chip
->ecc
.bytes
= 0;
2749 printk(KERN_WARNING
"Invalid NAND_ECC_MODE %d\n",
2755 * The number of bytes available for a client to place data into
2756 * the out of band area
2758 chip
->ecc
.layout
->oobavail
= 0;
2759 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
2760 && i
< ARRAY_SIZE(chip
->ecc
.layout
->oobfree
); i
++)
2761 chip
->ecc
.layout
->oobavail
+=
2762 chip
->ecc
.layout
->oobfree
[i
].length
;
2763 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
2766 * Set the number of read / write steps for one page depending on ECC
2769 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
2770 if(chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
2771 printk(KERN_WARNING
"Invalid ecc parameters\n");
2774 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
2777 * Allow subpage writes up to ecc.steps. Not possible for MLC
2780 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2781 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
2782 switch(chip
->ecc
.steps
) {
2784 mtd
->subpage_sft
= 1;
2789 mtd
->subpage_sft
= 2;
2793 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
2795 /* Initialize state */
2796 chip
->state
= FL_READY
;
2798 /* De-select the device */
2799 chip
->select_chip(mtd
, -1);
2801 /* Invalidate the pagebuffer reference */
2804 /* Fill in remaining MTD driver data */
2805 mtd
->type
= MTD_NANDFLASH
;
2806 mtd
->flags
= MTD_CAP_NANDFLASH
;
2807 mtd
->erase
= nand_erase
;
2809 mtd
->unpoint
= NULL
;
2810 mtd
->read
= nand_read
;
2811 mtd
->write
= nand_write
;
2812 mtd
->read_oob
= nand_read_oob
;
2813 mtd
->write_oob
= nand_write_oob
;
2814 mtd
->sync
= nand_sync
;
2817 mtd
->suspend
= nand_suspend
;
2818 mtd
->resume
= nand_resume
;
2819 mtd
->block_isbad
= nand_block_isbad
;
2820 mtd
->block_markbad
= nand_block_markbad
;
2822 /* propagate ecc.layout to mtd_info */
2823 mtd
->ecclayout
= chip
->ecc
.layout
;
2825 /* Check, if we should skip the bad block table scan */
2826 if (chip
->options
& NAND_SKIP_BBTSCAN
)
2829 /* Build bad block table */
2830 return chip
->scan_bbt(mtd
);
2833 /* is_module_text_address() isn't exported, and it's mostly a pointless
2834 test if this is a module _anyway_ -- they'd have to try _really_ hard
2835 to call us from in-kernel code if the core NAND support is modular. */
2837 #define caller_is_module() (1)
2839 #define caller_is_module() \
2840 is_module_text_address((unsigned long)__builtin_return_address(0))
2844 * nand_scan - [NAND Interface] Scan for the NAND device
2845 * @mtd: MTD device structure
2846 * @maxchips: Number of chips to scan for
2848 * This fills out all the uninitialized function pointers
2849 * with the defaults.
2850 * The flash ID is read and the mtd/chip structures are
2851 * filled with the appropriate values.
2852 * The mtd->owner field must be set to the module of the caller
2855 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
2859 /* Many callers got this wrong, so check for it for a while... */
2860 if (!mtd
->owner
&& caller_is_module()) {
2861 printk(KERN_CRIT
"nand_scan() called with NULL mtd->owner!\n");
2865 ret
= nand_scan_ident(mtd
, maxchips
);
2867 ret
= nand_scan_tail(mtd
);
2872 * nand_release - [NAND Interface] Free resources held by the NAND device
2873 * @mtd: MTD device structure
2875 void nand_release(struct mtd_info
*mtd
)
2877 struct nand_chip
*chip
= mtd
->priv
;
2879 #ifdef CONFIG_MTD_PARTITIONS
2880 /* Deregister partitions */
2881 del_mtd_partitions(mtd
);
2883 /* Deregister the device */
2884 del_mtd_device(mtd
);
2886 /* Free bad block table memory */
2888 if (!(chip
->options
& NAND_OWN_BUFFERS
))
2889 kfree(chip
->buffers
);
2892 EXPORT_SYMBOL_GPL(nand_scan
);
2893 EXPORT_SYMBOL_GPL(nand_scan_ident
);
2894 EXPORT_SYMBOL_GPL(nand_scan_tail
);
2895 EXPORT_SYMBOL_GPL(nand_release
);
2897 static int __init
nand_base_init(void)
2899 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
2903 static void __exit
nand_base_exit(void)
2905 led_trigger_unregister_simple(nand_led_trigger
);
2908 module_init(nand_base_init
);
2909 module_exit(nand_base_exit
);
2911 MODULE_LICENSE("GPL");
2912 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2913 MODULE_DESCRIPTION("Generic NAND flash driver code");