x86: microcode_amd: don't pass superfluous function pointer for get_ucode_data
[linux-2.6/mini2440.git] / drivers / char / rtc.c
blob20d6efb6324ef4f8dc9da36eba4c77d24df0d9cd
1 /*
2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
53 #define RTC_VERSION "1.12ac"
56 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 * design of the RTC, we don't want two different things trying to
59 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 * this driver.)
63 #include <linux/interrupt.h>
64 #include <linux/module.h>
65 #include <linux/kernel.h>
66 #include <linux/types.h>
67 #include <linux/miscdevice.h>
68 #include <linux/ioport.h>
69 #include <linux/fcntl.h>
70 #include <linux/mc146818rtc.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/proc_fs.h>
74 #include <linux/seq_file.h>
75 #include <linux/spinlock.h>
76 #include <linux/smp_lock.h>
77 #include <linux/sysctl.h>
78 #include <linux/wait.h>
79 #include <linux/bcd.h>
80 #include <linux/delay.h>
81 #include <linux/uaccess.h>
83 #include <asm/current.h>
84 #include <asm/system.h>
86 #ifdef CONFIG_X86
87 #include <asm/hpet.h>
88 #endif
90 #ifdef CONFIG_SPARC32
91 #include <linux/of.h>
92 #include <linux/of_device.h>
93 #include <asm/io.h>
95 static unsigned long rtc_port;
96 static int rtc_irq;
97 #endif
99 #ifdef CONFIG_HPET_EMULATE_RTC
100 #undef RTC_IRQ
101 #endif
103 #ifdef RTC_IRQ
104 static int rtc_has_irq = 1;
105 #endif
107 #ifndef CONFIG_HPET_EMULATE_RTC
108 #define is_hpet_enabled() 0
109 #define hpet_set_alarm_time(hrs, min, sec) 0
110 #define hpet_set_periodic_freq(arg) 0
111 #define hpet_mask_rtc_irq_bit(arg) 0
112 #define hpet_set_rtc_irq_bit(arg) 0
113 #define hpet_rtc_timer_init() do { } while (0)
114 #define hpet_rtc_dropped_irq() 0
115 #define hpet_register_irq_handler(h) ({ 0; })
116 #define hpet_unregister_irq_handler(h) ({ 0; })
117 #ifdef RTC_IRQ
118 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
120 return 0;
122 #endif
123 #endif
126 * We sponge a minor off of the misc major. No need slurping
127 * up another valuable major dev number for this. If you add
128 * an ioctl, make sure you don't conflict with SPARC's RTC
129 * ioctls.
132 static struct fasync_struct *rtc_async_queue;
134 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136 #ifdef RTC_IRQ
137 static void rtc_dropped_irq(unsigned long data);
139 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
140 #endif
142 static ssize_t rtc_read(struct file *file, char __user *buf,
143 size_t count, loff_t *ppos);
145 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
148 #ifdef RTC_IRQ
149 static unsigned int rtc_poll(struct file *file, poll_table *wait);
150 #endif
152 static void get_rtc_alm_time(struct rtc_time *alm_tm);
153 #ifdef RTC_IRQ
154 static void set_rtc_irq_bit_locked(unsigned char bit);
155 static void mask_rtc_irq_bit_locked(unsigned char bit);
157 static inline void set_rtc_irq_bit(unsigned char bit)
159 spin_lock_irq(&rtc_lock);
160 set_rtc_irq_bit_locked(bit);
161 spin_unlock_irq(&rtc_lock);
164 static void mask_rtc_irq_bit(unsigned char bit)
166 spin_lock_irq(&rtc_lock);
167 mask_rtc_irq_bit_locked(bit);
168 spin_unlock_irq(&rtc_lock);
170 #endif
172 #ifdef CONFIG_PROC_FS
173 static int rtc_proc_open(struct inode *inode, struct file *file);
174 #endif
177 * Bits in rtc_status. (6 bits of room for future expansion)
180 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
181 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
184 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
185 * protected by the big kernel lock. However, ioctl can still disable the timer
186 * in rtc_status and then with del_timer after the interrupt has read
187 * rtc_status but before mod_timer is called, which would then reenable the
188 * timer (but you would need to have an awful timing before you'd trip on it)
190 static unsigned long rtc_status; /* bitmapped status byte. */
191 static unsigned long rtc_freq; /* Current periodic IRQ rate */
192 static unsigned long rtc_irq_data; /* our output to the world */
193 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
195 #ifdef RTC_IRQ
197 * rtc_task_lock nests inside rtc_lock.
199 static DEFINE_SPINLOCK(rtc_task_lock);
200 static rtc_task_t *rtc_callback;
201 #endif
204 * If this driver ever becomes modularised, it will be really nice
205 * to make the epoch retain its value across module reload...
208 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
210 static const unsigned char days_in_mo[] =
211 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
214 * Returns true if a clock update is in progress
216 static inline unsigned char rtc_is_updating(void)
218 unsigned long flags;
219 unsigned char uip;
221 spin_lock_irqsave(&rtc_lock, flags);
222 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
223 spin_unlock_irqrestore(&rtc_lock, flags);
224 return uip;
227 #ifdef RTC_IRQ
229 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
230 * but there is possibility of conflicting with the set_rtc_mmss()
231 * call (the rtc irq and the timer irq can easily run at the same
232 * time in two different CPUs). So we need to serialize
233 * accesses to the chip with the rtc_lock spinlock that each
234 * architecture should implement in the timer code.
235 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
238 static irqreturn_t rtc_interrupt(int irq, void *dev_id)
241 * Can be an alarm interrupt, update complete interrupt,
242 * or a periodic interrupt. We store the status in the
243 * low byte and the number of interrupts received since
244 * the last read in the remainder of rtc_irq_data.
247 spin_lock(&rtc_lock);
248 rtc_irq_data += 0x100;
249 rtc_irq_data &= ~0xff;
250 if (is_hpet_enabled()) {
252 * In this case it is HPET RTC interrupt handler
253 * calling us, with the interrupt information
254 * passed as arg1, instead of irq.
256 rtc_irq_data |= (unsigned long)irq & 0xF0;
257 } else {
258 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
261 if (rtc_status & RTC_TIMER_ON)
262 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
264 spin_unlock(&rtc_lock);
266 /* Now do the rest of the actions */
267 spin_lock(&rtc_task_lock);
268 if (rtc_callback)
269 rtc_callback->func(rtc_callback->private_data);
270 spin_unlock(&rtc_task_lock);
271 wake_up_interruptible(&rtc_wait);
273 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
275 return IRQ_HANDLED;
277 #endif
280 * sysctl-tuning infrastructure.
282 static ctl_table rtc_table[] = {
284 .ctl_name = CTL_UNNUMBERED,
285 .procname = "max-user-freq",
286 .data = &rtc_max_user_freq,
287 .maxlen = sizeof(int),
288 .mode = 0644,
289 .proc_handler = &proc_dointvec,
291 { .ctl_name = 0 }
294 static ctl_table rtc_root[] = {
296 .ctl_name = CTL_UNNUMBERED,
297 .procname = "rtc",
298 .mode = 0555,
299 .child = rtc_table,
301 { .ctl_name = 0 }
304 static ctl_table dev_root[] = {
306 .ctl_name = CTL_DEV,
307 .procname = "dev",
308 .mode = 0555,
309 .child = rtc_root,
311 { .ctl_name = 0 }
314 static struct ctl_table_header *sysctl_header;
316 static int __init init_sysctl(void)
318 sysctl_header = register_sysctl_table(dev_root);
319 return 0;
322 static void __exit cleanup_sysctl(void)
324 unregister_sysctl_table(sysctl_header);
328 * Now all the various file operations that we export.
331 static ssize_t rtc_read(struct file *file, char __user *buf,
332 size_t count, loff_t *ppos)
334 #ifndef RTC_IRQ
335 return -EIO;
336 #else
337 DECLARE_WAITQUEUE(wait, current);
338 unsigned long data;
339 ssize_t retval;
341 if (rtc_has_irq == 0)
342 return -EIO;
345 * Historically this function used to assume that sizeof(unsigned long)
346 * is the same in userspace and kernelspace. This lead to problems
347 * for configurations with multiple ABIs such a the MIPS o32 and 64
348 * ABIs supported on the same kernel. So now we support read of both
349 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
350 * userspace ABI.
352 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
353 return -EINVAL;
355 add_wait_queue(&rtc_wait, &wait);
357 do {
358 /* First make it right. Then make it fast. Putting this whole
359 * block within the parentheses of a while would be too
360 * confusing. And no, xchg() is not the answer. */
362 __set_current_state(TASK_INTERRUPTIBLE);
364 spin_lock_irq(&rtc_lock);
365 data = rtc_irq_data;
366 rtc_irq_data = 0;
367 spin_unlock_irq(&rtc_lock);
369 if (data != 0)
370 break;
372 if (file->f_flags & O_NONBLOCK) {
373 retval = -EAGAIN;
374 goto out;
376 if (signal_pending(current)) {
377 retval = -ERESTARTSYS;
378 goto out;
380 schedule();
381 } while (1);
383 if (count == sizeof(unsigned int)) {
384 retval = put_user(data,
385 (unsigned int __user *)buf) ?: sizeof(int);
386 } else {
387 retval = put_user(data,
388 (unsigned long __user *)buf) ?: sizeof(long);
390 if (!retval)
391 retval = count;
392 out:
393 __set_current_state(TASK_RUNNING);
394 remove_wait_queue(&rtc_wait, &wait);
396 return retval;
397 #endif
400 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
402 struct rtc_time wtime;
404 #ifdef RTC_IRQ
405 if (rtc_has_irq == 0) {
406 switch (cmd) {
407 case RTC_AIE_OFF:
408 case RTC_AIE_ON:
409 case RTC_PIE_OFF:
410 case RTC_PIE_ON:
411 case RTC_UIE_OFF:
412 case RTC_UIE_ON:
413 case RTC_IRQP_READ:
414 case RTC_IRQP_SET:
415 return -EINVAL;
418 #endif
420 switch (cmd) {
421 #ifdef RTC_IRQ
422 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
424 mask_rtc_irq_bit(RTC_AIE);
425 return 0;
427 case RTC_AIE_ON: /* Allow alarm interrupts. */
429 set_rtc_irq_bit(RTC_AIE);
430 return 0;
432 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
434 /* can be called from isr via rtc_control() */
435 unsigned long flags;
437 spin_lock_irqsave(&rtc_lock, flags);
438 mask_rtc_irq_bit_locked(RTC_PIE);
439 if (rtc_status & RTC_TIMER_ON) {
440 rtc_status &= ~RTC_TIMER_ON;
441 del_timer(&rtc_irq_timer);
443 spin_unlock_irqrestore(&rtc_lock, flags);
445 return 0;
447 case RTC_PIE_ON: /* Allow periodic ints */
449 /* can be called from isr via rtc_control() */
450 unsigned long flags;
453 * We don't really want Joe User enabling more
454 * than 64Hz of interrupts on a multi-user machine.
456 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
457 (!capable(CAP_SYS_RESOURCE)))
458 return -EACCES;
460 spin_lock_irqsave(&rtc_lock, flags);
461 if (!(rtc_status & RTC_TIMER_ON)) {
462 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
463 2*HZ/100);
464 rtc_status |= RTC_TIMER_ON;
466 set_rtc_irq_bit_locked(RTC_PIE);
467 spin_unlock_irqrestore(&rtc_lock, flags);
469 return 0;
471 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
473 mask_rtc_irq_bit(RTC_UIE);
474 return 0;
476 case RTC_UIE_ON: /* Allow ints for RTC updates. */
478 set_rtc_irq_bit(RTC_UIE);
479 return 0;
481 #endif
482 case RTC_ALM_READ: /* Read the present alarm time */
485 * This returns a struct rtc_time. Reading >= 0xc0
486 * means "don't care" or "match all". Only the tm_hour,
487 * tm_min, and tm_sec values are filled in.
489 memset(&wtime, 0, sizeof(struct rtc_time));
490 get_rtc_alm_time(&wtime);
491 break;
493 case RTC_ALM_SET: /* Store a time into the alarm */
496 * This expects a struct rtc_time. Writing 0xff means
497 * "don't care" or "match all". Only the tm_hour,
498 * tm_min and tm_sec are used.
500 unsigned char hrs, min, sec;
501 struct rtc_time alm_tm;
503 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
504 sizeof(struct rtc_time)))
505 return -EFAULT;
507 hrs = alm_tm.tm_hour;
508 min = alm_tm.tm_min;
509 sec = alm_tm.tm_sec;
511 spin_lock_irq(&rtc_lock);
512 if (hpet_set_alarm_time(hrs, min, sec)) {
514 * Fallthru and set alarm time in CMOS too,
515 * so that we will get proper value in RTC_ALM_READ
518 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
519 RTC_ALWAYS_BCD) {
520 if (sec < 60)
521 sec = bin2bcd(sec);
522 else
523 sec = 0xff;
525 if (min < 60)
526 min = bin2bcd(min);
527 else
528 min = 0xff;
530 if (hrs < 24)
531 hrs = bin2bcd(hrs);
532 else
533 hrs = 0xff;
535 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
536 CMOS_WRITE(min, RTC_MINUTES_ALARM);
537 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
538 spin_unlock_irq(&rtc_lock);
540 return 0;
542 case RTC_RD_TIME: /* Read the time/date from RTC */
544 memset(&wtime, 0, sizeof(struct rtc_time));
545 rtc_get_rtc_time(&wtime);
546 break;
548 case RTC_SET_TIME: /* Set the RTC */
550 struct rtc_time rtc_tm;
551 unsigned char mon, day, hrs, min, sec, leap_yr;
552 unsigned char save_control, save_freq_select;
553 unsigned int yrs;
554 #ifdef CONFIG_MACH_DECSTATION
555 unsigned int real_yrs;
556 #endif
558 if (!capable(CAP_SYS_TIME))
559 return -EACCES;
561 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
562 sizeof(struct rtc_time)))
563 return -EFAULT;
565 yrs = rtc_tm.tm_year + 1900;
566 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
567 day = rtc_tm.tm_mday;
568 hrs = rtc_tm.tm_hour;
569 min = rtc_tm.tm_min;
570 sec = rtc_tm.tm_sec;
572 if (yrs < 1970)
573 return -EINVAL;
575 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
577 if ((mon > 12) || (day == 0))
578 return -EINVAL;
580 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
581 return -EINVAL;
583 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
584 return -EINVAL;
586 yrs -= epoch;
587 if (yrs > 255) /* They are unsigned */
588 return -EINVAL;
590 spin_lock_irq(&rtc_lock);
591 #ifdef CONFIG_MACH_DECSTATION
592 real_yrs = yrs;
593 yrs = 72;
596 * We want to keep the year set to 73 until March
597 * for non-leap years, so that Feb, 29th is handled
598 * correctly.
600 if (!leap_yr && mon < 3) {
601 real_yrs--;
602 yrs = 73;
604 #endif
605 /* These limits and adjustments are independent of
606 * whether the chip is in binary mode or not.
608 if (yrs > 169) {
609 spin_unlock_irq(&rtc_lock);
610 return -EINVAL;
612 if (yrs >= 100)
613 yrs -= 100;
615 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
616 || RTC_ALWAYS_BCD) {
617 sec = bin2bcd(sec);
618 min = bin2bcd(min);
619 hrs = bin2bcd(hrs);
620 day = bin2bcd(day);
621 mon = bin2bcd(mon);
622 yrs = bin2bcd(yrs);
625 save_control = CMOS_READ(RTC_CONTROL);
626 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
627 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
628 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
630 #ifdef CONFIG_MACH_DECSTATION
631 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
632 #endif
633 CMOS_WRITE(yrs, RTC_YEAR);
634 CMOS_WRITE(mon, RTC_MONTH);
635 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
636 CMOS_WRITE(hrs, RTC_HOURS);
637 CMOS_WRITE(min, RTC_MINUTES);
638 CMOS_WRITE(sec, RTC_SECONDS);
640 CMOS_WRITE(save_control, RTC_CONTROL);
641 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
643 spin_unlock_irq(&rtc_lock);
644 return 0;
646 #ifdef RTC_IRQ
647 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
649 return put_user(rtc_freq, (unsigned long __user *)arg);
651 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
653 int tmp = 0;
654 unsigned char val;
655 /* can be called from isr via rtc_control() */
656 unsigned long flags;
659 * The max we can do is 8192Hz.
661 if ((arg < 2) || (arg > 8192))
662 return -EINVAL;
664 * We don't really want Joe User generating more
665 * than 64Hz of interrupts on a multi-user machine.
667 if (!kernel && (arg > rtc_max_user_freq) &&
668 !capable(CAP_SYS_RESOURCE))
669 return -EACCES;
671 while (arg > (1<<tmp))
672 tmp++;
675 * Check that the input was really a power of 2.
677 if (arg != (1<<tmp))
678 return -EINVAL;
680 rtc_freq = arg;
682 spin_lock_irqsave(&rtc_lock, flags);
683 if (hpet_set_periodic_freq(arg)) {
684 spin_unlock_irqrestore(&rtc_lock, flags);
685 return 0;
688 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
689 val |= (16 - tmp);
690 CMOS_WRITE(val, RTC_FREQ_SELECT);
691 spin_unlock_irqrestore(&rtc_lock, flags);
692 return 0;
694 #endif
695 case RTC_EPOCH_READ: /* Read the epoch. */
697 return put_user(epoch, (unsigned long __user *)arg);
699 case RTC_EPOCH_SET: /* Set the epoch. */
702 * There were no RTC clocks before 1900.
704 if (arg < 1900)
705 return -EINVAL;
707 if (!capable(CAP_SYS_TIME))
708 return -EACCES;
710 epoch = arg;
711 return 0;
713 default:
714 return -ENOTTY;
716 return copy_to_user((void __user *)arg,
717 &wtime, sizeof wtime) ? -EFAULT : 0;
720 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
722 long ret;
723 lock_kernel();
724 ret = rtc_do_ioctl(cmd, arg, 0);
725 unlock_kernel();
726 return ret;
730 * We enforce only one user at a time here with the open/close.
731 * Also clear the previous interrupt data on an open, and clean
732 * up things on a close.
735 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
736 * needed here. Or anywhere else in this driver. */
737 static int rtc_open(struct inode *inode, struct file *file)
739 lock_kernel();
740 spin_lock_irq(&rtc_lock);
742 if (rtc_status & RTC_IS_OPEN)
743 goto out_busy;
745 rtc_status |= RTC_IS_OPEN;
747 rtc_irq_data = 0;
748 spin_unlock_irq(&rtc_lock);
749 unlock_kernel();
750 return 0;
752 out_busy:
753 spin_unlock_irq(&rtc_lock);
754 unlock_kernel();
755 return -EBUSY;
758 static int rtc_fasync(int fd, struct file *filp, int on)
760 return fasync_helper(fd, filp, on, &rtc_async_queue);
763 static int rtc_release(struct inode *inode, struct file *file)
765 #ifdef RTC_IRQ
766 unsigned char tmp;
768 if (rtc_has_irq == 0)
769 goto no_irq;
772 * Turn off all interrupts once the device is no longer
773 * in use, and clear the data.
776 spin_lock_irq(&rtc_lock);
777 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
778 tmp = CMOS_READ(RTC_CONTROL);
779 tmp &= ~RTC_PIE;
780 tmp &= ~RTC_AIE;
781 tmp &= ~RTC_UIE;
782 CMOS_WRITE(tmp, RTC_CONTROL);
783 CMOS_READ(RTC_INTR_FLAGS);
785 if (rtc_status & RTC_TIMER_ON) {
786 rtc_status &= ~RTC_TIMER_ON;
787 del_timer(&rtc_irq_timer);
789 spin_unlock_irq(&rtc_lock);
791 no_irq:
792 #endif
794 spin_lock_irq(&rtc_lock);
795 rtc_irq_data = 0;
796 rtc_status &= ~RTC_IS_OPEN;
797 spin_unlock_irq(&rtc_lock);
799 return 0;
802 #ifdef RTC_IRQ
803 /* Called without the kernel lock - fine */
804 static unsigned int rtc_poll(struct file *file, poll_table *wait)
806 unsigned long l;
808 if (rtc_has_irq == 0)
809 return 0;
811 poll_wait(file, &rtc_wait, wait);
813 spin_lock_irq(&rtc_lock);
814 l = rtc_irq_data;
815 spin_unlock_irq(&rtc_lock);
817 if (l != 0)
818 return POLLIN | POLLRDNORM;
819 return 0;
821 #endif
823 int rtc_register(rtc_task_t *task)
825 #ifndef RTC_IRQ
826 return -EIO;
827 #else
828 if (task == NULL || task->func == NULL)
829 return -EINVAL;
830 spin_lock_irq(&rtc_lock);
831 if (rtc_status & RTC_IS_OPEN) {
832 spin_unlock_irq(&rtc_lock);
833 return -EBUSY;
835 spin_lock(&rtc_task_lock);
836 if (rtc_callback) {
837 spin_unlock(&rtc_task_lock);
838 spin_unlock_irq(&rtc_lock);
839 return -EBUSY;
841 rtc_status |= RTC_IS_OPEN;
842 rtc_callback = task;
843 spin_unlock(&rtc_task_lock);
844 spin_unlock_irq(&rtc_lock);
845 return 0;
846 #endif
848 EXPORT_SYMBOL(rtc_register);
850 int rtc_unregister(rtc_task_t *task)
852 #ifndef RTC_IRQ
853 return -EIO;
854 #else
855 unsigned char tmp;
857 spin_lock_irq(&rtc_lock);
858 spin_lock(&rtc_task_lock);
859 if (rtc_callback != task) {
860 spin_unlock(&rtc_task_lock);
861 spin_unlock_irq(&rtc_lock);
862 return -ENXIO;
864 rtc_callback = NULL;
866 /* disable controls */
867 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
868 tmp = CMOS_READ(RTC_CONTROL);
869 tmp &= ~RTC_PIE;
870 tmp &= ~RTC_AIE;
871 tmp &= ~RTC_UIE;
872 CMOS_WRITE(tmp, RTC_CONTROL);
873 CMOS_READ(RTC_INTR_FLAGS);
875 if (rtc_status & RTC_TIMER_ON) {
876 rtc_status &= ~RTC_TIMER_ON;
877 del_timer(&rtc_irq_timer);
879 rtc_status &= ~RTC_IS_OPEN;
880 spin_unlock(&rtc_task_lock);
881 spin_unlock_irq(&rtc_lock);
882 return 0;
883 #endif
885 EXPORT_SYMBOL(rtc_unregister);
887 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
889 #ifndef RTC_IRQ
890 return -EIO;
891 #else
892 unsigned long flags;
893 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
894 return -EINVAL;
895 spin_lock_irqsave(&rtc_task_lock, flags);
896 if (rtc_callback != task) {
897 spin_unlock_irqrestore(&rtc_task_lock, flags);
898 return -ENXIO;
900 spin_unlock_irqrestore(&rtc_task_lock, flags);
901 return rtc_do_ioctl(cmd, arg, 1);
902 #endif
904 EXPORT_SYMBOL(rtc_control);
907 * The various file operations we support.
910 static const struct file_operations rtc_fops = {
911 .owner = THIS_MODULE,
912 .llseek = no_llseek,
913 .read = rtc_read,
914 #ifdef RTC_IRQ
915 .poll = rtc_poll,
916 #endif
917 .unlocked_ioctl = rtc_ioctl,
918 .open = rtc_open,
919 .release = rtc_release,
920 .fasync = rtc_fasync,
923 static struct miscdevice rtc_dev = {
924 .minor = RTC_MINOR,
925 .name = "rtc",
926 .fops = &rtc_fops,
929 #ifdef CONFIG_PROC_FS
930 static const struct file_operations rtc_proc_fops = {
931 .owner = THIS_MODULE,
932 .open = rtc_proc_open,
933 .read = seq_read,
934 .llseek = seq_lseek,
935 .release = single_release,
937 #endif
939 static resource_size_t rtc_size;
941 static struct resource * __init rtc_request_region(resource_size_t size)
943 struct resource *r;
945 if (RTC_IOMAPPED)
946 r = request_region(RTC_PORT(0), size, "rtc");
947 else
948 r = request_mem_region(RTC_PORT(0), size, "rtc");
950 if (r)
951 rtc_size = size;
953 return r;
956 static void rtc_release_region(void)
958 if (RTC_IOMAPPED)
959 release_region(RTC_PORT(0), rtc_size);
960 else
961 release_mem_region(RTC_PORT(0), rtc_size);
964 static int __init rtc_init(void)
966 #ifdef CONFIG_PROC_FS
967 struct proc_dir_entry *ent;
968 #endif
969 #if defined(__alpha__) || defined(__mips__)
970 unsigned int year, ctrl;
971 char *guess = NULL;
972 #endif
973 #ifdef CONFIG_SPARC32
974 struct device_node *ebus_dp;
975 struct of_device *op;
976 #else
977 void *r;
978 #ifdef RTC_IRQ
979 irq_handler_t rtc_int_handler_ptr;
980 #endif
981 #endif
983 #ifdef CONFIG_SPARC32
984 for_each_node_by_name(ebus_dp, "ebus") {
985 struct device_node *dp;
986 for (dp = ebus_dp; dp; dp = dp->sibling) {
987 if (!strcmp(dp->name, "rtc")) {
988 op = of_find_device_by_node(dp);
989 if (op) {
990 rtc_port = op->resource[0].start;
991 rtc_irq = op->irqs[0];
992 goto found;
997 rtc_has_irq = 0;
998 printk(KERN_ERR "rtc_init: no PC rtc found\n");
999 return -EIO;
1001 found:
1002 if (!rtc_irq) {
1003 rtc_has_irq = 0;
1004 goto no_irq;
1008 * XXX Interrupt pin #7 in Espresso is shared between RTC and
1009 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1011 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1012 (void *)&rtc_port)) {
1013 rtc_has_irq = 0;
1014 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1015 return -EIO;
1017 no_irq:
1018 #else
1019 r = rtc_request_region(RTC_IO_EXTENT);
1022 * If we've already requested a smaller range (for example, because
1023 * PNPBIOS or ACPI told us how the device is configured), the request
1024 * above might fail because it's too big.
1026 * If so, request just the range we actually use.
1028 if (!r)
1029 r = rtc_request_region(RTC_IO_EXTENT_USED);
1030 if (!r) {
1031 #ifdef RTC_IRQ
1032 rtc_has_irq = 0;
1033 #endif
1034 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1035 (long)(RTC_PORT(0)));
1036 return -EIO;
1039 #ifdef RTC_IRQ
1040 if (is_hpet_enabled()) {
1041 int err;
1043 rtc_int_handler_ptr = hpet_rtc_interrupt;
1044 err = hpet_register_irq_handler(rtc_interrupt);
1045 if (err != 0) {
1046 printk(KERN_WARNING "hpet_register_irq_handler failed "
1047 "in rtc_init().");
1048 return err;
1050 } else {
1051 rtc_int_handler_ptr = rtc_interrupt;
1054 if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1055 "rtc", NULL)) {
1056 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1057 rtc_has_irq = 0;
1058 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1059 rtc_release_region();
1061 return -EIO;
1063 hpet_rtc_timer_init();
1065 #endif
1067 #endif /* CONFIG_SPARC32 vs. others */
1069 if (misc_register(&rtc_dev)) {
1070 #ifdef RTC_IRQ
1071 free_irq(RTC_IRQ, NULL);
1072 hpet_unregister_irq_handler(rtc_interrupt);
1073 rtc_has_irq = 0;
1074 #endif
1075 rtc_release_region();
1076 return -ENODEV;
1079 #ifdef CONFIG_PROC_FS
1080 ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1081 if (!ent)
1082 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1083 #endif
1085 #if defined(__alpha__) || defined(__mips__)
1086 rtc_freq = HZ;
1088 /* Each operating system on an Alpha uses its own epoch.
1089 Let's try to guess which one we are using now. */
1091 if (rtc_is_updating() != 0)
1092 msleep(20);
1094 spin_lock_irq(&rtc_lock);
1095 year = CMOS_READ(RTC_YEAR);
1096 ctrl = CMOS_READ(RTC_CONTROL);
1097 spin_unlock_irq(&rtc_lock);
1099 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1100 year = bcd2bin(year); /* This should never happen... */
1102 if (year < 20) {
1103 epoch = 2000;
1104 guess = "SRM (post-2000)";
1105 } else if (year >= 20 && year < 48) {
1106 epoch = 1980;
1107 guess = "ARC console";
1108 } else if (year >= 48 && year < 72) {
1109 epoch = 1952;
1110 guess = "Digital UNIX";
1111 #if defined(__mips__)
1112 } else if (year >= 72 && year < 74) {
1113 epoch = 2000;
1114 guess = "Digital DECstation";
1115 #else
1116 } else if (year >= 70) {
1117 epoch = 1900;
1118 guess = "Standard PC (1900)";
1119 #endif
1121 if (guess)
1122 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1123 guess, epoch);
1124 #endif
1125 #ifdef RTC_IRQ
1126 if (rtc_has_irq == 0)
1127 goto no_irq2;
1129 spin_lock_irq(&rtc_lock);
1130 rtc_freq = 1024;
1131 if (!hpet_set_periodic_freq(rtc_freq)) {
1133 * Initialize periodic frequency to CMOS reset default,
1134 * which is 1024Hz
1136 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1137 RTC_FREQ_SELECT);
1139 spin_unlock_irq(&rtc_lock);
1140 no_irq2:
1141 #endif
1143 (void) init_sysctl();
1145 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1147 return 0;
1150 static void __exit rtc_exit(void)
1152 cleanup_sysctl();
1153 remove_proc_entry("driver/rtc", NULL);
1154 misc_deregister(&rtc_dev);
1156 #ifdef CONFIG_SPARC32
1157 if (rtc_has_irq)
1158 free_irq(rtc_irq, &rtc_port);
1159 #else
1160 rtc_release_region();
1161 #ifdef RTC_IRQ
1162 if (rtc_has_irq) {
1163 free_irq(RTC_IRQ, NULL);
1164 hpet_unregister_irq_handler(hpet_rtc_interrupt);
1166 #endif
1167 #endif /* CONFIG_SPARC32 */
1170 module_init(rtc_init);
1171 module_exit(rtc_exit);
1173 #ifdef RTC_IRQ
1175 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1176 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1177 * Since the interrupt handler doesn't get called, the IRQ status
1178 * byte doesn't get read, and the RTC stops generating interrupts.
1179 * A timer is set, and will call this function if/when that happens.
1180 * To get it out of this stalled state, we just read the status.
1181 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1182 * (You *really* shouldn't be trying to use a non-realtime system
1183 * for something that requires a steady > 1KHz signal anyways.)
1186 static void rtc_dropped_irq(unsigned long data)
1188 unsigned long freq;
1190 spin_lock_irq(&rtc_lock);
1192 if (hpet_rtc_dropped_irq()) {
1193 spin_unlock_irq(&rtc_lock);
1194 return;
1197 /* Just in case someone disabled the timer from behind our back... */
1198 if (rtc_status & RTC_TIMER_ON)
1199 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1201 rtc_irq_data += ((rtc_freq/HZ)<<8);
1202 rtc_irq_data &= ~0xff;
1203 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1205 freq = rtc_freq;
1207 spin_unlock_irq(&rtc_lock);
1209 if (printk_ratelimit()) {
1210 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1211 freq);
1214 /* Now we have new data */
1215 wake_up_interruptible(&rtc_wait);
1217 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1219 #endif
1221 #ifdef CONFIG_PROC_FS
1223 * Info exported via "/proc/driver/rtc".
1226 static int rtc_proc_show(struct seq_file *seq, void *v)
1228 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1229 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1230 struct rtc_time tm;
1231 unsigned char batt, ctrl;
1232 unsigned long freq;
1234 spin_lock_irq(&rtc_lock);
1235 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1236 ctrl = CMOS_READ(RTC_CONTROL);
1237 freq = rtc_freq;
1238 spin_unlock_irq(&rtc_lock);
1241 rtc_get_rtc_time(&tm);
1244 * There is no way to tell if the luser has the RTC set for local
1245 * time or for Universal Standard Time (GMT). Probably local though.
1247 seq_printf(seq,
1248 "rtc_time\t: %02d:%02d:%02d\n"
1249 "rtc_date\t: %04d-%02d-%02d\n"
1250 "rtc_epoch\t: %04lu\n",
1251 tm.tm_hour, tm.tm_min, tm.tm_sec,
1252 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1254 get_rtc_alm_time(&tm);
1257 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1258 * match any value for that particular field. Values that are
1259 * greater than a valid time, but less than 0xc0 shouldn't appear.
1261 seq_puts(seq, "alarm\t\t: ");
1262 if (tm.tm_hour <= 24)
1263 seq_printf(seq, "%02d:", tm.tm_hour);
1264 else
1265 seq_puts(seq, "**:");
1267 if (tm.tm_min <= 59)
1268 seq_printf(seq, "%02d:", tm.tm_min);
1269 else
1270 seq_puts(seq, "**:");
1272 if (tm.tm_sec <= 59)
1273 seq_printf(seq, "%02d\n", tm.tm_sec);
1274 else
1275 seq_puts(seq, "**\n");
1277 seq_printf(seq,
1278 "DST_enable\t: %s\n"
1279 "BCD\t\t: %s\n"
1280 "24hr\t\t: %s\n"
1281 "square_wave\t: %s\n"
1282 "alarm_IRQ\t: %s\n"
1283 "update_IRQ\t: %s\n"
1284 "periodic_IRQ\t: %s\n"
1285 "periodic_freq\t: %ld\n"
1286 "batt_status\t: %s\n",
1287 YN(RTC_DST_EN),
1288 NY(RTC_DM_BINARY),
1289 YN(RTC_24H),
1290 YN(RTC_SQWE),
1291 YN(RTC_AIE),
1292 YN(RTC_UIE),
1293 YN(RTC_PIE),
1294 freq,
1295 batt ? "okay" : "dead");
1297 return 0;
1298 #undef YN
1299 #undef NY
1302 static int rtc_proc_open(struct inode *inode, struct file *file)
1304 return single_open(file, rtc_proc_show, NULL);
1306 #endif
1308 static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1310 unsigned long uip_watchdog = jiffies, flags;
1311 unsigned char ctrl;
1312 #ifdef CONFIG_MACH_DECSTATION
1313 unsigned int real_year;
1314 #endif
1317 * read RTC once any update in progress is done. The update
1318 * can take just over 2ms. We wait 20ms. There is no need to
1319 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1320 * If you need to know *exactly* when a second has started, enable
1321 * periodic update complete interrupts, (via ioctl) and then
1322 * immediately read /dev/rtc which will block until you get the IRQ.
1323 * Once the read clears, read the RTC time (again via ioctl). Easy.
1326 while (rtc_is_updating() != 0 &&
1327 time_before(jiffies, uip_watchdog + 2*HZ/100))
1328 cpu_relax();
1331 * Only the values that we read from the RTC are set. We leave
1332 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1333 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1334 * only updated by the RTC when initially set to a non-zero value.
1336 spin_lock_irqsave(&rtc_lock, flags);
1337 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1338 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1339 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1340 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1341 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1342 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1343 /* Only set from 2.6.16 onwards */
1344 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1346 #ifdef CONFIG_MACH_DECSTATION
1347 real_year = CMOS_READ(RTC_DEC_YEAR);
1348 #endif
1349 ctrl = CMOS_READ(RTC_CONTROL);
1350 spin_unlock_irqrestore(&rtc_lock, flags);
1352 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1353 rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1354 rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1355 rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1356 rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1357 rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1358 rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1359 rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1362 #ifdef CONFIG_MACH_DECSTATION
1363 rtc_tm->tm_year += real_year - 72;
1364 #endif
1367 * Account for differences between how the RTC uses the values
1368 * and how they are defined in a struct rtc_time;
1370 rtc_tm->tm_year += epoch - 1900;
1371 if (rtc_tm->tm_year <= 69)
1372 rtc_tm->tm_year += 100;
1374 rtc_tm->tm_mon--;
1377 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1379 unsigned char ctrl;
1382 * Only the values that we read from the RTC are set. That
1383 * means only tm_hour, tm_min, and tm_sec.
1385 spin_lock_irq(&rtc_lock);
1386 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1387 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1388 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1389 ctrl = CMOS_READ(RTC_CONTROL);
1390 spin_unlock_irq(&rtc_lock);
1392 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1393 alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1394 alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1395 alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1399 #ifdef RTC_IRQ
1401 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1402 * Rumour has it that if you frob the interrupt enable/disable
1403 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1404 * ensure you actually start getting interrupts. Probably for
1405 * compatibility with older/broken chipset RTC implementations.
1406 * We also clear out any old irq data after an ioctl() that
1407 * meddles with the interrupt enable/disable bits.
1410 static void mask_rtc_irq_bit_locked(unsigned char bit)
1412 unsigned char val;
1414 if (hpet_mask_rtc_irq_bit(bit))
1415 return;
1416 val = CMOS_READ(RTC_CONTROL);
1417 val &= ~bit;
1418 CMOS_WRITE(val, RTC_CONTROL);
1419 CMOS_READ(RTC_INTR_FLAGS);
1421 rtc_irq_data = 0;
1424 static void set_rtc_irq_bit_locked(unsigned char bit)
1426 unsigned char val;
1428 if (hpet_set_rtc_irq_bit(bit))
1429 return;
1430 val = CMOS_READ(RTC_CONTROL);
1431 val |= bit;
1432 CMOS_WRITE(val, RTC_CONTROL);
1433 CMOS_READ(RTC_INTR_FLAGS);
1435 rtc_irq_data = 0;
1437 #endif
1439 MODULE_AUTHOR("Paul Gortmaker");
1440 MODULE_LICENSE("GPL");
1441 MODULE_ALIAS_MISCDEV(RTC_MINOR);