Merge branch 'mini2440-dev-unlikely' into mini2440-dev
[linux-2.6/mini2440.git] / drivers / char / rtc.c
blobbc4ab3e54550fb25252424e17891b99126422707
1 /*
2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
51 * 1.12b David John: Remove calls to the BKL.
54 #define RTC_VERSION "1.12b"
57 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 * design of the RTC, we don't want two different things trying to
60 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 * this driver.)
64 #include <linux/interrupt.h>
65 #include <linux/module.h>
66 #include <linux/kernel.h>
67 #include <linux/types.h>
68 #include <linux/miscdevice.h>
69 #include <linux/ioport.h>
70 #include <linux/fcntl.h>
71 #include <linux/mc146818rtc.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/proc_fs.h>
75 #include <linux/seq_file.h>
76 #include <linux/spinlock.h>
77 #include <linux/sched.h>
78 #include <linux/sysctl.h>
79 #include <linux/wait.h>
80 #include <linux/bcd.h>
81 #include <linux/delay.h>
82 #include <linux/uaccess.h>
84 #include <asm/current.h>
85 #include <asm/system.h>
87 #ifdef CONFIG_X86
88 #include <asm/hpet.h>
89 #endif
91 #ifdef CONFIG_SPARC32
92 #include <linux/of.h>
93 #include <linux/of_device.h>
94 #include <asm/io.h>
96 static unsigned long rtc_port;
97 static int rtc_irq;
98 #endif
100 #ifdef CONFIG_HPET_EMULATE_RTC
101 #undef RTC_IRQ
102 #endif
104 #ifdef RTC_IRQ
105 static int rtc_has_irq = 1;
106 #endif
108 #ifndef CONFIG_HPET_EMULATE_RTC
109 #define is_hpet_enabled() 0
110 #define hpet_set_alarm_time(hrs, min, sec) 0
111 #define hpet_set_periodic_freq(arg) 0
112 #define hpet_mask_rtc_irq_bit(arg) 0
113 #define hpet_set_rtc_irq_bit(arg) 0
114 #define hpet_rtc_timer_init() do { } while (0)
115 #define hpet_rtc_dropped_irq() 0
116 #define hpet_register_irq_handler(h) ({ 0; })
117 #define hpet_unregister_irq_handler(h) ({ 0; })
118 #ifdef RTC_IRQ
119 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
121 return 0;
123 #endif
124 #endif
127 * We sponge a minor off of the misc major. No need slurping
128 * up another valuable major dev number for this. If you add
129 * an ioctl, make sure you don't conflict with SPARC's RTC
130 * ioctls.
133 static struct fasync_struct *rtc_async_queue;
135 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
137 #ifdef RTC_IRQ
138 static void rtc_dropped_irq(unsigned long data);
140 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
141 #endif
143 static ssize_t rtc_read(struct file *file, char __user *buf,
144 size_t count, loff_t *ppos);
146 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
149 #ifdef RTC_IRQ
150 static unsigned int rtc_poll(struct file *file, poll_table *wait);
151 #endif
153 static void get_rtc_alm_time(struct rtc_time *alm_tm);
154 #ifdef RTC_IRQ
155 static void set_rtc_irq_bit_locked(unsigned char bit);
156 static void mask_rtc_irq_bit_locked(unsigned char bit);
158 static inline void set_rtc_irq_bit(unsigned char bit)
160 spin_lock_irq(&rtc_lock);
161 set_rtc_irq_bit_locked(bit);
162 spin_unlock_irq(&rtc_lock);
165 static void mask_rtc_irq_bit(unsigned char bit)
167 spin_lock_irq(&rtc_lock);
168 mask_rtc_irq_bit_locked(bit);
169 spin_unlock_irq(&rtc_lock);
171 #endif
173 #ifdef CONFIG_PROC_FS
174 static int rtc_proc_open(struct inode *inode, struct file *file);
175 #endif
178 * Bits in rtc_status. (6 bits of room for future expansion)
181 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
182 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186 * protected by the spin lock rtc_lock. However, ioctl can still disable the
187 * timer in rtc_status and then with del_timer after the interrupt has read
188 * rtc_status but before mod_timer is called, which would then reenable the
189 * timer (but you would need to have an awful timing before you'd trip on it)
191 static unsigned long rtc_status; /* bitmapped status byte. */
192 static unsigned long rtc_freq; /* Current periodic IRQ rate */
193 static unsigned long rtc_irq_data; /* our output to the world */
194 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
196 #ifdef RTC_IRQ
198 * rtc_task_lock nests inside rtc_lock.
200 static DEFINE_SPINLOCK(rtc_task_lock);
201 static rtc_task_t *rtc_callback;
202 #endif
205 * If this driver ever becomes modularised, it will be really nice
206 * to make the epoch retain its value across module reload...
209 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
211 static const unsigned char days_in_mo[] =
212 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
215 * Returns true if a clock update is in progress
217 static inline unsigned char rtc_is_updating(void)
219 unsigned long flags;
220 unsigned char uip;
222 spin_lock_irqsave(&rtc_lock, flags);
223 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
224 spin_unlock_irqrestore(&rtc_lock, flags);
225 return uip;
228 #ifdef RTC_IRQ
230 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
231 * but there is possibility of conflicting with the set_rtc_mmss()
232 * call (the rtc irq and the timer irq can easily run at the same
233 * time in two different CPUs). So we need to serialize
234 * accesses to the chip with the rtc_lock spinlock that each
235 * architecture should implement in the timer code.
236 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
239 static irqreturn_t rtc_interrupt(int irq, void *dev_id)
242 * Can be an alarm interrupt, update complete interrupt,
243 * or a periodic interrupt. We store the status in the
244 * low byte and the number of interrupts received since
245 * the last read in the remainder of rtc_irq_data.
248 spin_lock(&rtc_lock);
249 rtc_irq_data += 0x100;
250 rtc_irq_data &= ~0xff;
251 if (is_hpet_enabled()) {
253 * In this case it is HPET RTC interrupt handler
254 * calling us, with the interrupt information
255 * passed as arg1, instead of irq.
257 rtc_irq_data |= (unsigned long)irq & 0xF0;
258 } else {
259 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
262 if (rtc_status & RTC_TIMER_ON)
263 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
265 spin_unlock(&rtc_lock);
267 /* Now do the rest of the actions */
268 spin_lock(&rtc_task_lock);
269 if (rtc_callback)
270 rtc_callback->func(rtc_callback->private_data);
271 spin_unlock(&rtc_task_lock);
272 wake_up_interruptible(&rtc_wait);
274 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
276 return IRQ_HANDLED;
278 #endif
281 * sysctl-tuning infrastructure.
283 static ctl_table rtc_table[] = {
285 .ctl_name = CTL_UNNUMBERED,
286 .procname = "max-user-freq",
287 .data = &rtc_max_user_freq,
288 .maxlen = sizeof(int),
289 .mode = 0644,
290 .proc_handler = &proc_dointvec,
292 { .ctl_name = 0 }
295 static ctl_table rtc_root[] = {
297 .ctl_name = CTL_UNNUMBERED,
298 .procname = "rtc",
299 .mode = 0555,
300 .child = rtc_table,
302 { .ctl_name = 0 }
305 static ctl_table dev_root[] = {
307 .ctl_name = CTL_DEV,
308 .procname = "dev",
309 .mode = 0555,
310 .child = rtc_root,
312 { .ctl_name = 0 }
315 static struct ctl_table_header *sysctl_header;
317 static int __init init_sysctl(void)
319 sysctl_header = register_sysctl_table(dev_root);
320 return 0;
323 static void __exit cleanup_sysctl(void)
325 unregister_sysctl_table(sysctl_header);
329 * Now all the various file operations that we export.
332 static ssize_t rtc_read(struct file *file, char __user *buf,
333 size_t count, loff_t *ppos)
335 #ifndef RTC_IRQ
336 return -EIO;
337 #else
338 DECLARE_WAITQUEUE(wait, current);
339 unsigned long data;
340 ssize_t retval;
342 if (rtc_has_irq == 0)
343 return -EIO;
346 * Historically this function used to assume that sizeof(unsigned long)
347 * is the same in userspace and kernelspace. This lead to problems
348 * for configurations with multiple ABIs such a the MIPS o32 and 64
349 * ABIs supported on the same kernel. So now we support read of both
350 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
351 * userspace ABI.
353 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
354 return -EINVAL;
356 add_wait_queue(&rtc_wait, &wait);
358 do {
359 /* First make it right. Then make it fast. Putting this whole
360 * block within the parentheses of a while would be too
361 * confusing. And no, xchg() is not the answer. */
363 __set_current_state(TASK_INTERRUPTIBLE);
365 spin_lock_irq(&rtc_lock);
366 data = rtc_irq_data;
367 rtc_irq_data = 0;
368 spin_unlock_irq(&rtc_lock);
370 if (data != 0)
371 break;
373 if (file->f_flags & O_NONBLOCK) {
374 retval = -EAGAIN;
375 goto out;
377 if (signal_pending(current)) {
378 retval = -ERESTARTSYS;
379 goto out;
381 schedule();
382 } while (1);
384 if (count == sizeof(unsigned int)) {
385 retval = put_user(data,
386 (unsigned int __user *)buf) ?: sizeof(int);
387 } else {
388 retval = put_user(data,
389 (unsigned long __user *)buf) ?: sizeof(long);
391 if (!retval)
392 retval = count;
393 out:
394 __set_current_state(TASK_RUNNING);
395 remove_wait_queue(&rtc_wait, &wait);
397 return retval;
398 #endif
401 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
403 struct rtc_time wtime;
405 #ifdef RTC_IRQ
406 if (rtc_has_irq == 0) {
407 switch (cmd) {
408 case RTC_AIE_OFF:
409 case RTC_AIE_ON:
410 case RTC_PIE_OFF:
411 case RTC_PIE_ON:
412 case RTC_UIE_OFF:
413 case RTC_UIE_ON:
414 case RTC_IRQP_READ:
415 case RTC_IRQP_SET:
416 return -EINVAL;
419 #endif
421 switch (cmd) {
422 #ifdef RTC_IRQ
423 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
425 mask_rtc_irq_bit(RTC_AIE);
426 return 0;
428 case RTC_AIE_ON: /* Allow alarm interrupts. */
430 set_rtc_irq_bit(RTC_AIE);
431 return 0;
433 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
435 /* can be called from isr via rtc_control() */
436 unsigned long flags;
438 spin_lock_irqsave(&rtc_lock, flags);
439 mask_rtc_irq_bit_locked(RTC_PIE);
440 if (rtc_status & RTC_TIMER_ON) {
441 rtc_status &= ~RTC_TIMER_ON;
442 del_timer(&rtc_irq_timer);
444 spin_unlock_irqrestore(&rtc_lock, flags);
446 return 0;
448 case RTC_PIE_ON: /* Allow periodic ints */
450 /* can be called from isr via rtc_control() */
451 unsigned long flags;
454 * We don't really want Joe User enabling more
455 * than 64Hz of interrupts on a multi-user machine.
457 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
458 (!capable(CAP_SYS_RESOURCE)))
459 return -EACCES;
461 spin_lock_irqsave(&rtc_lock, flags);
462 if (!(rtc_status & RTC_TIMER_ON)) {
463 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
464 2*HZ/100);
465 rtc_status |= RTC_TIMER_ON;
467 set_rtc_irq_bit_locked(RTC_PIE);
468 spin_unlock_irqrestore(&rtc_lock, flags);
470 return 0;
472 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
474 mask_rtc_irq_bit(RTC_UIE);
475 return 0;
477 case RTC_UIE_ON: /* Allow ints for RTC updates. */
479 set_rtc_irq_bit(RTC_UIE);
480 return 0;
482 #endif
483 case RTC_ALM_READ: /* Read the present alarm time */
486 * This returns a struct rtc_time. Reading >= 0xc0
487 * means "don't care" or "match all". Only the tm_hour,
488 * tm_min, and tm_sec values are filled in.
490 memset(&wtime, 0, sizeof(struct rtc_time));
491 get_rtc_alm_time(&wtime);
492 break;
494 case RTC_ALM_SET: /* Store a time into the alarm */
497 * This expects a struct rtc_time. Writing 0xff means
498 * "don't care" or "match all". Only the tm_hour,
499 * tm_min and tm_sec are used.
501 unsigned char hrs, min, sec;
502 struct rtc_time alm_tm;
504 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
505 sizeof(struct rtc_time)))
506 return -EFAULT;
508 hrs = alm_tm.tm_hour;
509 min = alm_tm.tm_min;
510 sec = alm_tm.tm_sec;
512 spin_lock_irq(&rtc_lock);
513 if (hpet_set_alarm_time(hrs, min, sec)) {
515 * Fallthru and set alarm time in CMOS too,
516 * so that we will get proper value in RTC_ALM_READ
519 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
520 RTC_ALWAYS_BCD) {
521 if (sec < 60)
522 sec = bin2bcd(sec);
523 else
524 sec = 0xff;
526 if (min < 60)
527 min = bin2bcd(min);
528 else
529 min = 0xff;
531 if (hrs < 24)
532 hrs = bin2bcd(hrs);
533 else
534 hrs = 0xff;
536 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
537 CMOS_WRITE(min, RTC_MINUTES_ALARM);
538 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
539 spin_unlock_irq(&rtc_lock);
541 return 0;
543 case RTC_RD_TIME: /* Read the time/date from RTC */
545 memset(&wtime, 0, sizeof(struct rtc_time));
546 rtc_get_rtc_time(&wtime);
547 break;
549 case RTC_SET_TIME: /* Set the RTC */
551 struct rtc_time rtc_tm;
552 unsigned char mon, day, hrs, min, sec, leap_yr;
553 unsigned char save_control, save_freq_select;
554 unsigned int yrs;
555 #ifdef CONFIG_MACH_DECSTATION
556 unsigned int real_yrs;
557 #endif
559 if (!capable(CAP_SYS_TIME))
560 return -EACCES;
562 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
563 sizeof(struct rtc_time)))
564 return -EFAULT;
566 yrs = rtc_tm.tm_year + 1900;
567 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
568 day = rtc_tm.tm_mday;
569 hrs = rtc_tm.tm_hour;
570 min = rtc_tm.tm_min;
571 sec = rtc_tm.tm_sec;
573 if (yrs < 1970)
574 return -EINVAL;
576 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
578 if ((mon > 12) || (day == 0))
579 return -EINVAL;
581 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
582 return -EINVAL;
584 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
585 return -EINVAL;
587 yrs -= epoch;
588 if (yrs > 255) /* They are unsigned */
589 return -EINVAL;
591 spin_lock_irq(&rtc_lock);
592 #ifdef CONFIG_MACH_DECSTATION
593 real_yrs = yrs;
594 yrs = 72;
597 * We want to keep the year set to 73 until March
598 * for non-leap years, so that Feb, 29th is handled
599 * correctly.
601 if (!leap_yr && mon < 3) {
602 real_yrs--;
603 yrs = 73;
605 #endif
606 /* These limits and adjustments are independent of
607 * whether the chip is in binary mode or not.
609 if (yrs > 169) {
610 spin_unlock_irq(&rtc_lock);
611 return -EINVAL;
613 if (yrs >= 100)
614 yrs -= 100;
616 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
617 || RTC_ALWAYS_BCD) {
618 sec = bin2bcd(sec);
619 min = bin2bcd(min);
620 hrs = bin2bcd(hrs);
621 day = bin2bcd(day);
622 mon = bin2bcd(mon);
623 yrs = bin2bcd(yrs);
626 save_control = CMOS_READ(RTC_CONTROL);
627 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
628 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
629 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
631 #ifdef CONFIG_MACH_DECSTATION
632 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
633 #endif
634 CMOS_WRITE(yrs, RTC_YEAR);
635 CMOS_WRITE(mon, RTC_MONTH);
636 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
637 CMOS_WRITE(hrs, RTC_HOURS);
638 CMOS_WRITE(min, RTC_MINUTES);
639 CMOS_WRITE(sec, RTC_SECONDS);
641 CMOS_WRITE(save_control, RTC_CONTROL);
642 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
644 spin_unlock_irq(&rtc_lock);
645 return 0;
647 #ifdef RTC_IRQ
648 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
650 return put_user(rtc_freq, (unsigned long __user *)arg);
652 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
654 int tmp = 0;
655 unsigned char val;
656 /* can be called from isr via rtc_control() */
657 unsigned long flags;
660 * The max we can do is 8192Hz.
662 if ((arg < 2) || (arg > 8192))
663 return -EINVAL;
665 * We don't really want Joe User generating more
666 * than 64Hz of interrupts on a multi-user machine.
668 if (!kernel && (arg > rtc_max_user_freq) &&
669 !capable(CAP_SYS_RESOURCE))
670 return -EACCES;
672 while (arg > (1<<tmp))
673 tmp++;
676 * Check that the input was really a power of 2.
678 if (arg != (1<<tmp))
679 return -EINVAL;
681 rtc_freq = arg;
683 spin_lock_irqsave(&rtc_lock, flags);
684 if (hpet_set_periodic_freq(arg)) {
685 spin_unlock_irqrestore(&rtc_lock, flags);
686 return 0;
689 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
690 val |= (16 - tmp);
691 CMOS_WRITE(val, RTC_FREQ_SELECT);
692 spin_unlock_irqrestore(&rtc_lock, flags);
693 return 0;
695 #endif
696 case RTC_EPOCH_READ: /* Read the epoch. */
698 return put_user(epoch, (unsigned long __user *)arg);
700 case RTC_EPOCH_SET: /* Set the epoch. */
703 * There were no RTC clocks before 1900.
705 if (arg < 1900)
706 return -EINVAL;
708 if (!capable(CAP_SYS_TIME))
709 return -EACCES;
711 epoch = arg;
712 return 0;
714 default:
715 return -ENOTTY;
717 return copy_to_user((void __user *)arg,
718 &wtime, sizeof wtime) ? -EFAULT : 0;
721 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
723 long ret;
724 ret = rtc_do_ioctl(cmd, arg, 0);
725 return ret;
729 * We enforce only one user at a time here with the open/close.
730 * Also clear the previous interrupt data on an open, and clean
731 * up things on a close.
733 static int rtc_open(struct inode *inode, struct file *file)
735 spin_lock_irq(&rtc_lock);
737 if (rtc_status & RTC_IS_OPEN)
738 goto out_busy;
740 rtc_status |= RTC_IS_OPEN;
742 rtc_irq_data = 0;
743 spin_unlock_irq(&rtc_lock);
744 return 0;
746 out_busy:
747 spin_unlock_irq(&rtc_lock);
748 return -EBUSY;
751 static int rtc_fasync(int fd, struct file *filp, int on)
753 return fasync_helper(fd, filp, on, &rtc_async_queue);
756 static int rtc_release(struct inode *inode, struct file *file)
758 #ifdef RTC_IRQ
759 unsigned char tmp;
761 if (rtc_has_irq == 0)
762 goto no_irq;
765 * Turn off all interrupts once the device is no longer
766 * in use, and clear the data.
769 spin_lock_irq(&rtc_lock);
770 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
771 tmp = CMOS_READ(RTC_CONTROL);
772 tmp &= ~RTC_PIE;
773 tmp &= ~RTC_AIE;
774 tmp &= ~RTC_UIE;
775 CMOS_WRITE(tmp, RTC_CONTROL);
776 CMOS_READ(RTC_INTR_FLAGS);
778 if (rtc_status & RTC_TIMER_ON) {
779 rtc_status &= ~RTC_TIMER_ON;
780 del_timer(&rtc_irq_timer);
782 spin_unlock_irq(&rtc_lock);
784 no_irq:
785 #endif
787 spin_lock_irq(&rtc_lock);
788 rtc_irq_data = 0;
789 rtc_status &= ~RTC_IS_OPEN;
790 spin_unlock_irq(&rtc_lock);
792 return 0;
795 #ifdef RTC_IRQ
796 static unsigned int rtc_poll(struct file *file, poll_table *wait)
798 unsigned long l;
800 if (rtc_has_irq == 0)
801 return 0;
803 poll_wait(file, &rtc_wait, wait);
805 spin_lock_irq(&rtc_lock);
806 l = rtc_irq_data;
807 spin_unlock_irq(&rtc_lock);
809 if (l != 0)
810 return POLLIN | POLLRDNORM;
811 return 0;
813 #endif
815 int rtc_register(rtc_task_t *task)
817 #ifndef RTC_IRQ
818 return -EIO;
819 #else
820 if (task == NULL || task->func == NULL)
821 return -EINVAL;
822 spin_lock_irq(&rtc_lock);
823 if (rtc_status & RTC_IS_OPEN) {
824 spin_unlock_irq(&rtc_lock);
825 return -EBUSY;
827 spin_lock(&rtc_task_lock);
828 if (rtc_callback) {
829 spin_unlock(&rtc_task_lock);
830 spin_unlock_irq(&rtc_lock);
831 return -EBUSY;
833 rtc_status |= RTC_IS_OPEN;
834 rtc_callback = task;
835 spin_unlock(&rtc_task_lock);
836 spin_unlock_irq(&rtc_lock);
837 return 0;
838 #endif
840 EXPORT_SYMBOL(rtc_register);
842 int rtc_unregister(rtc_task_t *task)
844 #ifndef RTC_IRQ
845 return -EIO;
846 #else
847 unsigned char tmp;
849 spin_lock_irq(&rtc_lock);
850 spin_lock(&rtc_task_lock);
851 if (rtc_callback != task) {
852 spin_unlock(&rtc_task_lock);
853 spin_unlock_irq(&rtc_lock);
854 return -ENXIO;
856 rtc_callback = NULL;
858 /* disable controls */
859 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
860 tmp = CMOS_READ(RTC_CONTROL);
861 tmp &= ~RTC_PIE;
862 tmp &= ~RTC_AIE;
863 tmp &= ~RTC_UIE;
864 CMOS_WRITE(tmp, RTC_CONTROL);
865 CMOS_READ(RTC_INTR_FLAGS);
867 if (rtc_status & RTC_TIMER_ON) {
868 rtc_status &= ~RTC_TIMER_ON;
869 del_timer(&rtc_irq_timer);
871 rtc_status &= ~RTC_IS_OPEN;
872 spin_unlock(&rtc_task_lock);
873 spin_unlock_irq(&rtc_lock);
874 return 0;
875 #endif
877 EXPORT_SYMBOL(rtc_unregister);
879 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
881 #ifndef RTC_IRQ
882 return -EIO;
883 #else
884 unsigned long flags;
885 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
886 return -EINVAL;
887 spin_lock_irqsave(&rtc_task_lock, flags);
888 if (rtc_callback != task) {
889 spin_unlock_irqrestore(&rtc_task_lock, flags);
890 return -ENXIO;
892 spin_unlock_irqrestore(&rtc_task_lock, flags);
893 return rtc_do_ioctl(cmd, arg, 1);
894 #endif
896 EXPORT_SYMBOL(rtc_control);
899 * The various file operations we support.
902 static const struct file_operations rtc_fops = {
903 .owner = THIS_MODULE,
904 .llseek = no_llseek,
905 .read = rtc_read,
906 #ifdef RTC_IRQ
907 .poll = rtc_poll,
908 #endif
909 .unlocked_ioctl = rtc_ioctl,
910 .open = rtc_open,
911 .release = rtc_release,
912 .fasync = rtc_fasync,
915 static struct miscdevice rtc_dev = {
916 .minor = RTC_MINOR,
917 .name = "rtc",
918 .fops = &rtc_fops,
921 #ifdef CONFIG_PROC_FS
922 static const struct file_operations rtc_proc_fops = {
923 .owner = THIS_MODULE,
924 .open = rtc_proc_open,
925 .read = seq_read,
926 .llseek = seq_lseek,
927 .release = single_release,
929 #endif
931 static resource_size_t rtc_size;
933 static struct resource * __init rtc_request_region(resource_size_t size)
935 struct resource *r;
937 if (RTC_IOMAPPED)
938 r = request_region(RTC_PORT(0), size, "rtc");
939 else
940 r = request_mem_region(RTC_PORT(0), size, "rtc");
942 if (r)
943 rtc_size = size;
945 return r;
948 static void rtc_release_region(void)
950 if (RTC_IOMAPPED)
951 release_region(RTC_PORT(0), rtc_size);
952 else
953 release_mem_region(RTC_PORT(0), rtc_size);
956 static int __init rtc_init(void)
958 #ifdef CONFIG_PROC_FS
959 struct proc_dir_entry *ent;
960 #endif
961 #if defined(__alpha__) || defined(__mips__)
962 unsigned int year, ctrl;
963 char *guess = NULL;
964 #endif
965 #ifdef CONFIG_SPARC32
966 struct device_node *ebus_dp;
967 struct of_device *op;
968 #else
969 void *r;
970 #ifdef RTC_IRQ
971 irq_handler_t rtc_int_handler_ptr;
972 #endif
973 #endif
975 #ifdef CONFIG_SPARC32
976 for_each_node_by_name(ebus_dp, "ebus") {
977 struct device_node *dp;
978 for (dp = ebus_dp; dp; dp = dp->sibling) {
979 if (!strcmp(dp->name, "rtc")) {
980 op = of_find_device_by_node(dp);
981 if (op) {
982 rtc_port = op->resource[0].start;
983 rtc_irq = op->irqs[0];
984 goto found;
989 rtc_has_irq = 0;
990 printk(KERN_ERR "rtc_init: no PC rtc found\n");
991 return -EIO;
993 found:
994 if (!rtc_irq) {
995 rtc_has_irq = 0;
996 goto no_irq;
1000 * XXX Interrupt pin #7 in Espresso is shared between RTC and
1001 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1003 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1004 (void *)&rtc_port)) {
1005 rtc_has_irq = 0;
1006 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1007 return -EIO;
1009 no_irq:
1010 #else
1011 r = rtc_request_region(RTC_IO_EXTENT);
1014 * If we've already requested a smaller range (for example, because
1015 * PNPBIOS or ACPI told us how the device is configured), the request
1016 * above might fail because it's too big.
1018 * If so, request just the range we actually use.
1020 if (!r)
1021 r = rtc_request_region(RTC_IO_EXTENT_USED);
1022 if (!r) {
1023 #ifdef RTC_IRQ
1024 rtc_has_irq = 0;
1025 #endif
1026 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1027 (long)(RTC_PORT(0)));
1028 return -EIO;
1031 #ifdef RTC_IRQ
1032 if (is_hpet_enabled()) {
1033 int err;
1035 rtc_int_handler_ptr = hpet_rtc_interrupt;
1036 err = hpet_register_irq_handler(rtc_interrupt);
1037 if (err != 0) {
1038 printk(KERN_WARNING "hpet_register_irq_handler failed "
1039 "in rtc_init().");
1040 return err;
1042 } else {
1043 rtc_int_handler_ptr = rtc_interrupt;
1046 if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1047 "rtc", NULL)) {
1048 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1049 rtc_has_irq = 0;
1050 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1051 rtc_release_region();
1053 return -EIO;
1055 hpet_rtc_timer_init();
1057 #endif
1059 #endif /* CONFIG_SPARC32 vs. others */
1061 if (misc_register(&rtc_dev)) {
1062 #ifdef RTC_IRQ
1063 free_irq(RTC_IRQ, NULL);
1064 hpet_unregister_irq_handler(rtc_interrupt);
1065 rtc_has_irq = 0;
1066 #endif
1067 rtc_release_region();
1068 return -ENODEV;
1071 #ifdef CONFIG_PROC_FS
1072 ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1073 if (!ent)
1074 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1075 #endif
1077 #if defined(__alpha__) || defined(__mips__)
1078 rtc_freq = HZ;
1080 /* Each operating system on an Alpha uses its own epoch.
1081 Let's try to guess which one we are using now. */
1083 if (rtc_is_updating() != 0)
1084 msleep(20);
1086 spin_lock_irq(&rtc_lock);
1087 year = CMOS_READ(RTC_YEAR);
1088 ctrl = CMOS_READ(RTC_CONTROL);
1089 spin_unlock_irq(&rtc_lock);
1091 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1092 year = bcd2bin(year); /* This should never happen... */
1094 if (year < 20) {
1095 epoch = 2000;
1096 guess = "SRM (post-2000)";
1097 } else if (year >= 20 && year < 48) {
1098 epoch = 1980;
1099 guess = "ARC console";
1100 } else if (year >= 48 && year < 72) {
1101 epoch = 1952;
1102 guess = "Digital UNIX";
1103 #if defined(__mips__)
1104 } else if (year >= 72 && year < 74) {
1105 epoch = 2000;
1106 guess = "Digital DECstation";
1107 #else
1108 } else if (year >= 70) {
1109 epoch = 1900;
1110 guess = "Standard PC (1900)";
1111 #endif
1113 if (guess)
1114 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1115 guess, epoch);
1116 #endif
1117 #ifdef RTC_IRQ
1118 if (rtc_has_irq == 0)
1119 goto no_irq2;
1121 spin_lock_irq(&rtc_lock);
1122 rtc_freq = 1024;
1123 if (!hpet_set_periodic_freq(rtc_freq)) {
1125 * Initialize periodic frequency to CMOS reset default,
1126 * which is 1024Hz
1128 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1129 RTC_FREQ_SELECT);
1131 spin_unlock_irq(&rtc_lock);
1132 no_irq2:
1133 #endif
1135 (void) init_sysctl();
1137 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1139 return 0;
1142 static void __exit rtc_exit(void)
1144 cleanup_sysctl();
1145 remove_proc_entry("driver/rtc", NULL);
1146 misc_deregister(&rtc_dev);
1148 #ifdef CONFIG_SPARC32
1149 if (rtc_has_irq)
1150 free_irq(rtc_irq, &rtc_port);
1151 #else
1152 rtc_release_region();
1153 #ifdef RTC_IRQ
1154 if (rtc_has_irq) {
1155 free_irq(RTC_IRQ, NULL);
1156 hpet_unregister_irq_handler(hpet_rtc_interrupt);
1158 #endif
1159 #endif /* CONFIG_SPARC32 */
1162 module_init(rtc_init);
1163 module_exit(rtc_exit);
1165 #ifdef RTC_IRQ
1167 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1168 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1169 * Since the interrupt handler doesn't get called, the IRQ status
1170 * byte doesn't get read, and the RTC stops generating interrupts.
1171 * A timer is set, and will call this function if/when that happens.
1172 * To get it out of this stalled state, we just read the status.
1173 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1174 * (You *really* shouldn't be trying to use a non-realtime system
1175 * for something that requires a steady > 1KHz signal anyways.)
1178 static void rtc_dropped_irq(unsigned long data)
1180 unsigned long freq;
1182 spin_lock_irq(&rtc_lock);
1184 if (hpet_rtc_dropped_irq()) {
1185 spin_unlock_irq(&rtc_lock);
1186 return;
1189 /* Just in case someone disabled the timer from behind our back... */
1190 if (rtc_status & RTC_TIMER_ON)
1191 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1193 rtc_irq_data += ((rtc_freq/HZ)<<8);
1194 rtc_irq_data &= ~0xff;
1195 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1197 freq = rtc_freq;
1199 spin_unlock_irq(&rtc_lock);
1201 if (printk_ratelimit()) {
1202 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1203 freq);
1206 /* Now we have new data */
1207 wake_up_interruptible(&rtc_wait);
1209 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1211 #endif
1213 #ifdef CONFIG_PROC_FS
1215 * Info exported via "/proc/driver/rtc".
1218 static int rtc_proc_show(struct seq_file *seq, void *v)
1220 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1221 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1222 struct rtc_time tm;
1223 unsigned char batt, ctrl;
1224 unsigned long freq;
1226 spin_lock_irq(&rtc_lock);
1227 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1228 ctrl = CMOS_READ(RTC_CONTROL);
1229 freq = rtc_freq;
1230 spin_unlock_irq(&rtc_lock);
1233 rtc_get_rtc_time(&tm);
1236 * There is no way to tell if the luser has the RTC set for local
1237 * time or for Universal Standard Time (GMT). Probably local though.
1239 seq_printf(seq,
1240 "rtc_time\t: %02d:%02d:%02d\n"
1241 "rtc_date\t: %04d-%02d-%02d\n"
1242 "rtc_epoch\t: %04lu\n",
1243 tm.tm_hour, tm.tm_min, tm.tm_sec,
1244 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1246 get_rtc_alm_time(&tm);
1249 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1250 * match any value for that particular field. Values that are
1251 * greater than a valid time, but less than 0xc0 shouldn't appear.
1253 seq_puts(seq, "alarm\t\t: ");
1254 if (tm.tm_hour <= 24)
1255 seq_printf(seq, "%02d:", tm.tm_hour);
1256 else
1257 seq_puts(seq, "**:");
1259 if (tm.tm_min <= 59)
1260 seq_printf(seq, "%02d:", tm.tm_min);
1261 else
1262 seq_puts(seq, "**:");
1264 if (tm.tm_sec <= 59)
1265 seq_printf(seq, "%02d\n", tm.tm_sec);
1266 else
1267 seq_puts(seq, "**\n");
1269 seq_printf(seq,
1270 "DST_enable\t: %s\n"
1271 "BCD\t\t: %s\n"
1272 "24hr\t\t: %s\n"
1273 "square_wave\t: %s\n"
1274 "alarm_IRQ\t: %s\n"
1275 "update_IRQ\t: %s\n"
1276 "periodic_IRQ\t: %s\n"
1277 "periodic_freq\t: %ld\n"
1278 "batt_status\t: %s\n",
1279 YN(RTC_DST_EN),
1280 NY(RTC_DM_BINARY),
1281 YN(RTC_24H),
1282 YN(RTC_SQWE),
1283 YN(RTC_AIE),
1284 YN(RTC_UIE),
1285 YN(RTC_PIE),
1286 freq,
1287 batt ? "okay" : "dead");
1289 return 0;
1290 #undef YN
1291 #undef NY
1294 static int rtc_proc_open(struct inode *inode, struct file *file)
1296 return single_open(file, rtc_proc_show, NULL);
1298 #endif
1300 static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1302 unsigned long uip_watchdog = jiffies, flags;
1303 unsigned char ctrl;
1304 #ifdef CONFIG_MACH_DECSTATION
1305 unsigned int real_year;
1306 #endif
1309 * read RTC once any update in progress is done. The update
1310 * can take just over 2ms. We wait 20ms. There is no need to
1311 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1312 * If you need to know *exactly* when a second has started, enable
1313 * periodic update complete interrupts, (via ioctl) and then
1314 * immediately read /dev/rtc which will block until you get the IRQ.
1315 * Once the read clears, read the RTC time (again via ioctl). Easy.
1318 while (rtc_is_updating() != 0 &&
1319 time_before(jiffies, uip_watchdog + 2*HZ/100))
1320 cpu_relax();
1323 * Only the values that we read from the RTC are set. We leave
1324 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1325 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1326 * only updated by the RTC when initially set to a non-zero value.
1328 spin_lock_irqsave(&rtc_lock, flags);
1329 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1330 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1331 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1332 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1333 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1334 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1335 /* Only set from 2.6.16 onwards */
1336 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1338 #ifdef CONFIG_MACH_DECSTATION
1339 real_year = CMOS_READ(RTC_DEC_YEAR);
1340 #endif
1341 ctrl = CMOS_READ(RTC_CONTROL);
1342 spin_unlock_irqrestore(&rtc_lock, flags);
1344 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1345 rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1346 rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1347 rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1348 rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1349 rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1350 rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1351 rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1354 #ifdef CONFIG_MACH_DECSTATION
1355 rtc_tm->tm_year += real_year - 72;
1356 #endif
1359 * Account for differences between how the RTC uses the values
1360 * and how they are defined in a struct rtc_time;
1362 rtc_tm->tm_year += epoch - 1900;
1363 if (rtc_tm->tm_year <= 69)
1364 rtc_tm->tm_year += 100;
1366 rtc_tm->tm_mon--;
1369 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1371 unsigned char ctrl;
1374 * Only the values that we read from the RTC are set. That
1375 * means only tm_hour, tm_min, and tm_sec.
1377 spin_lock_irq(&rtc_lock);
1378 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1379 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1380 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1381 ctrl = CMOS_READ(RTC_CONTROL);
1382 spin_unlock_irq(&rtc_lock);
1384 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1385 alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1386 alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1387 alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1391 #ifdef RTC_IRQ
1393 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1394 * Rumour has it that if you frob the interrupt enable/disable
1395 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1396 * ensure you actually start getting interrupts. Probably for
1397 * compatibility with older/broken chipset RTC implementations.
1398 * We also clear out any old irq data after an ioctl() that
1399 * meddles with the interrupt enable/disable bits.
1402 static void mask_rtc_irq_bit_locked(unsigned char bit)
1404 unsigned char val;
1406 if (hpet_mask_rtc_irq_bit(bit))
1407 return;
1408 val = CMOS_READ(RTC_CONTROL);
1409 val &= ~bit;
1410 CMOS_WRITE(val, RTC_CONTROL);
1411 CMOS_READ(RTC_INTR_FLAGS);
1413 rtc_irq_data = 0;
1416 static void set_rtc_irq_bit_locked(unsigned char bit)
1418 unsigned char val;
1420 if (hpet_set_rtc_irq_bit(bit))
1421 return;
1422 val = CMOS_READ(RTC_CONTROL);
1423 val |= bit;
1424 CMOS_WRITE(val, RTC_CONTROL);
1425 CMOS_READ(RTC_INTR_FLAGS);
1427 rtc_irq_data = 0;
1429 #endif
1431 MODULE_AUTHOR("Paul Gortmaker");
1432 MODULE_LICENSE("GPL");
1433 MODULE_ALIAS_MISCDEV(RTC_MINOR);