block: avoid unconditionally freeing previously allocated request_queue
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blob5ff4f4850e717ddb319423e9678e0e44cd7f265c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
20 * tunables
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
37 * offset from end of service tree
39 #define CFQ_IDLE_DELAY (HZ / 5)
42 * below this threshold, we consider thinktime immediate
44 #define CFQ_MIN_TT (2)
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
60 static struct kmem_cache *cfq_pool;
61 static struct kmem_cache *cfq_ioc_pool;
63 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64 static struct completion *ioc_gone;
65 static DEFINE_SPINLOCK(ioc_gone_lock);
67 static DEFINE_SPINLOCK(cic_index_lock);
68 static DEFINE_IDA(cic_index_ida);
70 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
71 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
72 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74 #define sample_valid(samples) ((samples) > 80)
75 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
78 * Most of our rbtree usage is for sorting with min extraction, so
79 * if we cache the leftmost node we don't have to walk down the tree
80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
81 * move this into the elevator for the rq sorting as well.
83 struct cfq_rb_root {
84 struct rb_root rb;
85 struct rb_node *left;
86 unsigned count;
87 unsigned total_weight;
88 u64 min_vdisktime;
89 struct rb_node *active;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
97 struct cfq_queue {
98 /* reference count */
99 atomic_t ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
141 pid_t pid;
143 u32 seek_history;
144 sector_t last_request_pos;
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 struct cfq_group *orig_cfqg;
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
163 * Second index in the service_trees.
165 enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173 /* group service_tree member */
174 struct rb_node rb_node;
176 /* group service_tree key */
177 u64 vdisktime;
178 unsigned int weight;
179 bool on_st;
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
196 struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
199 atomic_t ref;
200 #endif
204 * Per block device queue structure
206 struct cfq_data {
207 struct request_queue *queue;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
210 struct cfq_group root_group;
213 * The priority currently being served
215 enum wl_prio_t serving_prio;
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
218 struct cfq_group *serving_group;
219 bool noidle_tree_requires_idle;
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
228 unsigned int busy_queues;
230 int rq_in_driver;
231 int rq_in_flight[2];
234 * queue-depth detection
236 int rq_queued;
237 int hw_tag;
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
248 * idle window management
250 struct timer_list idle_slice_timer;
251 struct work_struct unplug_work;
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
257 * async queue for each priority case
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
262 sector_t last_position;
265 * tunables, see top of file
267 unsigned int cfq_quantum;
268 unsigned int cfq_fifo_expire[2];
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
274 unsigned int cfq_latency;
275 unsigned int cfq_group_isolation;
277 unsigned int cic_index;
278 struct list_head cic_list;
281 * Fallback dummy cfqq for extreme OOM conditions
283 struct cfq_queue oom_cfqq;
285 unsigned long last_delayed_sync;
287 /* List of cfq groups being managed on this device*/
288 struct hlist_head cfqg_list;
289 struct rcu_head rcu;
292 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295 enum wl_prio_t prio,
296 enum wl_type_t type)
298 if (!cfqg)
299 return NULL;
301 if (prio == IDLE_WORKLOAD)
302 return &cfqg->service_tree_idle;
304 return &cfqg->service_trees[prio][type];
307 enum cfqq_state_flags {
308 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
310 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
311 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
312 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
315 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
316 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
317 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
318 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
319 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
320 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
323 #define CFQ_CFQQ_FNS(name) \
324 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
326 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
328 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
330 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
332 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
334 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
337 CFQ_CFQQ_FNS(on_rr);
338 CFQ_CFQQ_FNS(wait_request);
339 CFQ_CFQQ_FNS(must_dispatch);
340 CFQ_CFQQ_FNS(must_alloc_slice);
341 CFQ_CFQQ_FNS(fifo_expire);
342 CFQ_CFQQ_FNS(idle_window);
343 CFQ_CFQQ_FNS(prio_changed);
344 CFQ_CFQQ_FNS(slice_new);
345 CFQ_CFQQ_FNS(sync);
346 CFQ_CFQQ_FNS(coop);
347 CFQ_CFQQ_FNS(split_coop);
348 CFQ_CFQQ_FNS(deep);
349 CFQ_CFQQ_FNS(wait_busy);
350 #undef CFQ_CFQQ_FNS
352 #ifdef CONFIG_CFQ_GROUP_IOSCHED
353 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
358 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
362 #else
363 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
365 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
366 #endif
367 #define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
370 /* Traverses through cfq group service trees */
371 #define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
381 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
383 if (cfq_class_idle(cfqq))
384 return IDLE_WORKLOAD;
385 if (cfq_class_rt(cfqq))
386 return RT_WORKLOAD;
387 return BE_WORKLOAD;
391 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
393 if (!cfq_cfqq_sync(cfqq))
394 return ASYNC_WORKLOAD;
395 if (!cfq_cfqq_idle_window(cfqq))
396 return SYNC_NOIDLE_WORKLOAD;
397 return SYNC_WORKLOAD;
400 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401 struct cfq_data *cfqd,
402 struct cfq_group *cfqg)
404 if (wl == IDLE_WORKLOAD)
405 return cfqg->service_tree_idle.count;
407 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
412 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413 struct cfq_group *cfqg)
415 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
419 static void cfq_dispatch_insert(struct request_queue *, struct request *);
420 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
421 struct io_context *, gfp_t);
422 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
423 struct io_context *);
425 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
426 bool is_sync)
428 return cic->cfqq[is_sync];
431 static inline void cic_set_cfqq(struct cfq_io_context *cic,
432 struct cfq_queue *cfqq, bool is_sync)
434 cic->cfqq[is_sync] = cfqq;
437 #define CIC_DEAD_KEY 1ul
438 #define CIC_DEAD_INDEX_SHIFT 1
440 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
442 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
445 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
447 struct cfq_data *cfqd = cic->key;
449 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
450 return NULL;
452 return cfqd;
456 * We regard a request as SYNC, if it's either a read or has the SYNC bit
457 * set (in which case it could also be direct WRITE).
459 static inline bool cfq_bio_sync(struct bio *bio)
461 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
465 * scheduler run of queue, if there are requests pending and no one in the
466 * driver that will restart queueing
468 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
470 if (cfqd->busy_queues) {
471 cfq_log(cfqd, "schedule dispatch");
472 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
476 static int cfq_queue_empty(struct request_queue *q)
478 struct cfq_data *cfqd = q->elevator->elevator_data;
480 return !cfqd->rq_queued;
484 * Scale schedule slice based on io priority. Use the sync time slice only
485 * if a queue is marked sync and has sync io queued. A sync queue with async
486 * io only, should not get full sync slice length.
488 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
489 unsigned short prio)
491 const int base_slice = cfqd->cfq_slice[sync];
493 WARN_ON(prio >= IOPRIO_BE_NR);
495 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
498 static inline int
499 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
501 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
504 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
506 u64 d = delta << CFQ_SERVICE_SHIFT;
508 d = d * BLKIO_WEIGHT_DEFAULT;
509 do_div(d, cfqg->weight);
510 return d;
513 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
515 s64 delta = (s64)(vdisktime - min_vdisktime);
516 if (delta > 0)
517 min_vdisktime = vdisktime;
519 return min_vdisktime;
522 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
524 s64 delta = (s64)(vdisktime - min_vdisktime);
525 if (delta < 0)
526 min_vdisktime = vdisktime;
528 return min_vdisktime;
531 static void update_min_vdisktime(struct cfq_rb_root *st)
533 u64 vdisktime = st->min_vdisktime;
534 struct cfq_group *cfqg;
536 if (st->active) {
537 cfqg = rb_entry_cfqg(st->active);
538 vdisktime = cfqg->vdisktime;
541 if (st->left) {
542 cfqg = rb_entry_cfqg(st->left);
543 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
546 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
550 * get averaged number of queues of RT/BE priority.
551 * average is updated, with a formula that gives more weight to higher numbers,
552 * to quickly follows sudden increases and decrease slowly
555 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
556 struct cfq_group *cfqg, bool rt)
558 unsigned min_q, max_q;
559 unsigned mult = cfq_hist_divisor - 1;
560 unsigned round = cfq_hist_divisor / 2;
561 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
563 min_q = min(cfqg->busy_queues_avg[rt], busy);
564 max_q = max(cfqg->busy_queues_avg[rt], busy);
565 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
566 cfq_hist_divisor;
567 return cfqg->busy_queues_avg[rt];
570 static inline unsigned
571 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
573 struct cfq_rb_root *st = &cfqd->grp_service_tree;
575 return cfq_target_latency * cfqg->weight / st->total_weight;
578 static inline void
579 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
581 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
582 if (cfqd->cfq_latency) {
584 * interested queues (we consider only the ones with the same
585 * priority class in the cfq group)
587 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
588 cfq_class_rt(cfqq));
589 unsigned sync_slice = cfqd->cfq_slice[1];
590 unsigned expect_latency = sync_slice * iq;
591 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
593 if (expect_latency > group_slice) {
594 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
595 /* scale low_slice according to IO priority
596 * and sync vs async */
597 unsigned low_slice =
598 min(slice, base_low_slice * slice / sync_slice);
599 /* the adapted slice value is scaled to fit all iqs
600 * into the target latency */
601 slice = max(slice * group_slice / expect_latency,
602 low_slice);
605 cfqq->slice_start = jiffies;
606 cfqq->slice_end = jiffies + slice;
607 cfqq->allocated_slice = slice;
608 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
612 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
613 * isn't valid until the first request from the dispatch is activated
614 * and the slice time set.
616 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
618 if (cfq_cfqq_slice_new(cfqq))
619 return 0;
620 if (time_before(jiffies, cfqq->slice_end))
621 return 0;
623 return 1;
627 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
628 * We choose the request that is closest to the head right now. Distance
629 * behind the head is penalized and only allowed to a certain extent.
631 static struct request *
632 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
634 sector_t s1, s2, d1 = 0, d2 = 0;
635 unsigned long back_max;
636 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
637 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
638 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
640 if (rq1 == NULL || rq1 == rq2)
641 return rq2;
642 if (rq2 == NULL)
643 return rq1;
645 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
646 return rq1;
647 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
648 return rq2;
649 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
650 return rq1;
651 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
652 return rq2;
654 s1 = blk_rq_pos(rq1);
655 s2 = blk_rq_pos(rq2);
658 * by definition, 1KiB is 2 sectors
660 back_max = cfqd->cfq_back_max * 2;
663 * Strict one way elevator _except_ in the case where we allow
664 * short backward seeks which are biased as twice the cost of a
665 * similar forward seek.
667 if (s1 >= last)
668 d1 = s1 - last;
669 else if (s1 + back_max >= last)
670 d1 = (last - s1) * cfqd->cfq_back_penalty;
671 else
672 wrap |= CFQ_RQ1_WRAP;
674 if (s2 >= last)
675 d2 = s2 - last;
676 else if (s2 + back_max >= last)
677 d2 = (last - s2) * cfqd->cfq_back_penalty;
678 else
679 wrap |= CFQ_RQ2_WRAP;
681 /* Found required data */
684 * By doing switch() on the bit mask "wrap" we avoid having to
685 * check two variables for all permutations: --> faster!
687 switch (wrap) {
688 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
689 if (d1 < d2)
690 return rq1;
691 else if (d2 < d1)
692 return rq2;
693 else {
694 if (s1 >= s2)
695 return rq1;
696 else
697 return rq2;
700 case CFQ_RQ2_WRAP:
701 return rq1;
702 case CFQ_RQ1_WRAP:
703 return rq2;
704 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
705 default:
707 * Since both rqs are wrapped,
708 * start with the one that's further behind head
709 * (--> only *one* back seek required),
710 * since back seek takes more time than forward.
712 if (s1 <= s2)
713 return rq1;
714 else
715 return rq2;
720 * The below is leftmost cache rbtree addon
722 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
724 /* Service tree is empty */
725 if (!root->count)
726 return NULL;
728 if (!root->left)
729 root->left = rb_first(&root->rb);
731 if (root->left)
732 return rb_entry(root->left, struct cfq_queue, rb_node);
734 return NULL;
737 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
739 if (!root->left)
740 root->left = rb_first(&root->rb);
742 if (root->left)
743 return rb_entry_cfqg(root->left);
745 return NULL;
748 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
750 rb_erase(n, root);
751 RB_CLEAR_NODE(n);
754 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
756 if (root->left == n)
757 root->left = NULL;
758 rb_erase_init(n, &root->rb);
759 --root->count;
763 * would be nice to take fifo expire time into account as well
765 static struct request *
766 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
767 struct request *last)
769 struct rb_node *rbnext = rb_next(&last->rb_node);
770 struct rb_node *rbprev = rb_prev(&last->rb_node);
771 struct request *next = NULL, *prev = NULL;
773 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
775 if (rbprev)
776 prev = rb_entry_rq(rbprev);
778 if (rbnext)
779 next = rb_entry_rq(rbnext);
780 else {
781 rbnext = rb_first(&cfqq->sort_list);
782 if (rbnext && rbnext != &last->rb_node)
783 next = rb_entry_rq(rbnext);
786 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
789 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
790 struct cfq_queue *cfqq)
793 * just an approximation, should be ok.
795 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
796 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
799 static inline s64
800 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
802 return cfqg->vdisktime - st->min_vdisktime;
805 static void
806 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
808 struct rb_node **node = &st->rb.rb_node;
809 struct rb_node *parent = NULL;
810 struct cfq_group *__cfqg;
811 s64 key = cfqg_key(st, cfqg);
812 int left = 1;
814 while (*node != NULL) {
815 parent = *node;
816 __cfqg = rb_entry_cfqg(parent);
818 if (key < cfqg_key(st, __cfqg))
819 node = &parent->rb_left;
820 else {
821 node = &parent->rb_right;
822 left = 0;
826 if (left)
827 st->left = &cfqg->rb_node;
829 rb_link_node(&cfqg->rb_node, parent, node);
830 rb_insert_color(&cfqg->rb_node, &st->rb);
833 static void
834 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
836 struct cfq_rb_root *st = &cfqd->grp_service_tree;
837 struct cfq_group *__cfqg;
838 struct rb_node *n;
840 cfqg->nr_cfqq++;
841 if (cfqg->on_st)
842 return;
845 * Currently put the group at the end. Later implement something
846 * so that groups get lesser vtime based on their weights, so that
847 * if group does not loose all if it was not continously backlogged.
849 n = rb_last(&st->rb);
850 if (n) {
851 __cfqg = rb_entry_cfqg(n);
852 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
853 } else
854 cfqg->vdisktime = st->min_vdisktime;
856 __cfq_group_service_tree_add(st, cfqg);
857 cfqg->on_st = true;
858 st->total_weight += cfqg->weight;
861 static void
862 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
864 struct cfq_rb_root *st = &cfqd->grp_service_tree;
866 if (st->active == &cfqg->rb_node)
867 st->active = NULL;
869 BUG_ON(cfqg->nr_cfqq < 1);
870 cfqg->nr_cfqq--;
872 /* If there are other cfq queues under this group, don't delete it */
873 if (cfqg->nr_cfqq)
874 return;
876 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
877 cfqg->on_st = false;
878 st->total_weight -= cfqg->weight;
879 if (!RB_EMPTY_NODE(&cfqg->rb_node))
880 cfq_rb_erase(&cfqg->rb_node, st);
881 cfqg->saved_workload_slice = 0;
882 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
885 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
887 unsigned int slice_used;
890 * Queue got expired before even a single request completed or
891 * got expired immediately after first request completion.
893 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
895 * Also charge the seek time incurred to the group, otherwise
896 * if there are mutiple queues in the group, each can dispatch
897 * a single request on seeky media and cause lots of seek time
898 * and group will never know it.
900 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
902 } else {
903 slice_used = jiffies - cfqq->slice_start;
904 if (slice_used > cfqq->allocated_slice)
905 slice_used = cfqq->allocated_slice;
908 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
909 return slice_used;
912 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
913 struct cfq_queue *cfqq)
915 struct cfq_rb_root *st = &cfqd->grp_service_tree;
916 unsigned int used_sl, charge_sl;
917 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
918 - cfqg->service_tree_idle.count;
920 BUG_ON(nr_sync < 0);
921 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
923 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
924 charge_sl = cfqq->allocated_slice;
926 /* Can't update vdisktime while group is on service tree */
927 cfq_rb_erase(&cfqg->rb_node, st);
928 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
929 __cfq_group_service_tree_add(st, cfqg);
931 /* This group is being expired. Save the context */
932 if (time_after(cfqd->workload_expires, jiffies)) {
933 cfqg->saved_workload_slice = cfqd->workload_expires
934 - jiffies;
935 cfqg->saved_workload = cfqd->serving_type;
936 cfqg->saved_serving_prio = cfqd->serving_prio;
937 } else
938 cfqg->saved_workload_slice = 0;
940 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
941 st->min_vdisktime);
942 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
943 blkiocg_set_start_empty_time(&cfqg->blkg);
946 #ifdef CONFIG_CFQ_GROUP_IOSCHED
947 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
949 if (blkg)
950 return container_of(blkg, struct cfq_group, blkg);
951 return NULL;
954 void
955 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
957 cfqg_of_blkg(blkg)->weight = weight;
960 static struct cfq_group *
961 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
963 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
964 struct cfq_group *cfqg = NULL;
965 void *key = cfqd;
966 int i, j;
967 struct cfq_rb_root *st;
968 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
969 unsigned int major, minor;
971 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
972 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
973 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
974 cfqg->blkg.dev = MKDEV(major, minor);
975 goto done;
977 if (cfqg || !create)
978 goto done;
980 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
981 if (!cfqg)
982 goto done;
984 for_each_cfqg_st(cfqg, i, j, st)
985 *st = CFQ_RB_ROOT;
986 RB_CLEAR_NODE(&cfqg->rb_node);
989 * Take the initial reference that will be released on destroy
990 * This can be thought of a joint reference by cgroup and
991 * elevator which will be dropped by either elevator exit
992 * or cgroup deletion path depending on who is exiting first.
994 atomic_set(&cfqg->ref, 1);
996 /* Add group onto cgroup list */
997 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
998 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
999 MKDEV(major, minor));
1000 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1002 /* Add group on cfqd list */
1003 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1005 done:
1006 return cfqg;
1010 * Search for the cfq group current task belongs to. If create = 1, then also
1011 * create the cfq group if it does not exist. request_queue lock must be held.
1013 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1015 struct cgroup *cgroup;
1016 struct cfq_group *cfqg = NULL;
1018 rcu_read_lock();
1019 cgroup = task_cgroup(current, blkio_subsys_id);
1020 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1021 if (!cfqg && create)
1022 cfqg = &cfqd->root_group;
1023 rcu_read_unlock();
1024 return cfqg;
1027 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1029 atomic_inc(&cfqg->ref);
1030 return cfqg;
1033 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1035 /* Currently, all async queues are mapped to root group */
1036 if (!cfq_cfqq_sync(cfqq))
1037 cfqg = &cfqq->cfqd->root_group;
1039 cfqq->cfqg = cfqg;
1040 /* cfqq reference on cfqg */
1041 atomic_inc(&cfqq->cfqg->ref);
1044 static void cfq_put_cfqg(struct cfq_group *cfqg)
1046 struct cfq_rb_root *st;
1047 int i, j;
1049 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1050 if (!atomic_dec_and_test(&cfqg->ref))
1051 return;
1052 for_each_cfqg_st(cfqg, i, j, st)
1053 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1054 kfree(cfqg);
1057 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1059 /* Something wrong if we are trying to remove same group twice */
1060 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1062 hlist_del_init(&cfqg->cfqd_node);
1065 * Put the reference taken at the time of creation so that when all
1066 * queues are gone, group can be destroyed.
1068 cfq_put_cfqg(cfqg);
1071 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1073 struct hlist_node *pos, *n;
1074 struct cfq_group *cfqg;
1076 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1078 * If cgroup removal path got to blk_group first and removed
1079 * it from cgroup list, then it will take care of destroying
1080 * cfqg also.
1082 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1083 cfq_destroy_cfqg(cfqd, cfqg);
1088 * Blk cgroup controller notification saying that blkio_group object is being
1089 * delinked as associated cgroup object is going away. That also means that
1090 * no new IO will come in this group. So get rid of this group as soon as
1091 * any pending IO in the group is finished.
1093 * This function is called under rcu_read_lock(). key is the rcu protected
1094 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1095 * read lock.
1097 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1098 * it should not be NULL as even if elevator was exiting, cgroup deltion
1099 * path got to it first.
1101 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1103 unsigned long flags;
1104 struct cfq_data *cfqd = key;
1106 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1107 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1108 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1111 #else /* GROUP_IOSCHED */
1112 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1114 return &cfqd->root_group;
1117 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1119 return cfqg;
1122 static inline void
1123 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1124 cfqq->cfqg = cfqg;
1127 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1128 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1130 #endif /* GROUP_IOSCHED */
1133 * The cfqd->service_trees holds all pending cfq_queue's that have
1134 * requests waiting to be processed. It is sorted in the order that
1135 * we will service the queues.
1137 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1138 bool add_front)
1140 struct rb_node **p, *parent;
1141 struct cfq_queue *__cfqq;
1142 unsigned long rb_key;
1143 struct cfq_rb_root *service_tree;
1144 int left;
1145 int new_cfqq = 1;
1146 int group_changed = 0;
1148 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1149 if (!cfqd->cfq_group_isolation
1150 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1151 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1152 /* Move this cfq to root group */
1153 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1154 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1155 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1156 cfqq->orig_cfqg = cfqq->cfqg;
1157 cfqq->cfqg = &cfqd->root_group;
1158 atomic_inc(&cfqd->root_group.ref);
1159 group_changed = 1;
1160 } else if (!cfqd->cfq_group_isolation
1161 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1162 /* cfqq is sequential now needs to go to its original group */
1163 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1164 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1165 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1166 cfq_put_cfqg(cfqq->cfqg);
1167 cfqq->cfqg = cfqq->orig_cfqg;
1168 cfqq->orig_cfqg = NULL;
1169 group_changed = 1;
1170 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1172 #endif
1174 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1175 cfqq_type(cfqq));
1176 if (cfq_class_idle(cfqq)) {
1177 rb_key = CFQ_IDLE_DELAY;
1178 parent = rb_last(&service_tree->rb);
1179 if (parent && parent != &cfqq->rb_node) {
1180 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1181 rb_key += __cfqq->rb_key;
1182 } else
1183 rb_key += jiffies;
1184 } else if (!add_front) {
1186 * Get our rb key offset. Subtract any residual slice
1187 * value carried from last service. A negative resid
1188 * count indicates slice overrun, and this should position
1189 * the next service time further away in the tree.
1191 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1192 rb_key -= cfqq->slice_resid;
1193 cfqq->slice_resid = 0;
1194 } else {
1195 rb_key = -HZ;
1196 __cfqq = cfq_rb_first(service_tree);
1197 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1200 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1201 new_cfqq = 0;
1203 * same position, nothing more to do
1205 if (rb_key == cfqq->rb_key &&
1206 cfqq->service_tree == service_tree)
1207 return;
1209 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1210 cfqq->service_tree = NULL;
1213 left = 1;
1214 parent = NULL;
1215 cfqq->service_tree = service_tree;
1216 p = &service_tree->rb.rb_node;
1217 while (*p) {
1218 struct rb_node **n;
1220 parent = *p;
1221 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1224 * sort by key, that represents service time.
1226 if (time_before(rb_key, __cfqq->rb_key))
1227 n = &(*p)->rb_left;
1228 else {
1229 n = &(*p)->rb_right;
1230 left = 0;
1233 p = n;
1236 if (left)
1237 service_tree->left = &cfqq->rb_node;
1239 cfqq->rb_key = rb_key;
1240 rb_link_node(&cfqq->rb_node, parent, p);
1241 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1242 service_tree->count++;
1243 if ((add_front || !new_cfqq) && !group_changed)
1244 return;
1245 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1248 static struct cfq_queue *
1249 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1250 sector_t sector, struct rb_node **ret_parent,
1251 struct rb_node ***rb_link)
1253 struct rb_node **p, *parent;
1254 struct cfq_queue *cfqq = NULL;
1256 parent = NULL;
1257 p = &root->rb_node;
1258 while (*p) {
1259 struct rb_node **n;
1261 parent = *p;
1262 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1265 * Sort strictly based on sector. Smallest to the left,
1266 * largest to the right.
1268 if (sector > blk_rq_pos(cfqq->next_rq))
1269 n = &(*p)->rb_right;
1270 else if (sector < blk_rq_pos(cfqq->next_rq))
1271 n = &(*p)->rb_left;
1272 else
1273 break;
1274 p = n;
1275 cfqq = NULL;
1278 *ret_parent = parent;
1279 if (rb_link)
1280 *rb_link = p;
1281 return cfqq;
1284 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1286 struct rb_node **p, *parent;
1287 struct cfq_queue *__cfqq;
1289 if (cfqq->p_root) {
1290 rb_erase(&cfqq->p_node, cfqq->p_root);
1291 cfqq->p_root = NULL;
1294 if (cfq_class_idle(cfqq))
1295 return;
1296 if (!cfqq->next_rq)
1297 return;
1299 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1300 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1301 blk_rq_pos(cfqq->next_rq), &parent, &p);
1302 if (!__cfqq) {
1303 rb_link_node(&cfqq->p_node, parent, p);
1304 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1305 } else
1306 cfqq->p_root = NULL;
1310 * Update cfqq's position in the service tree.
1312 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1315 * Resorting requires the cfqq to be on the RR list already.
1317 if (cfq_cfqq_on_rr(cfqq)) {
1318 cfq_service_tree_add(cfqd, cfqq, 0);
1319 cfq_prio_tree_add(cfqd, cfqq);
1324 * add to busy list of queues for service, trying to be fair in ordering
1325 * the pending list according to last request service
1327 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1329 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1330 BUG_ON(cfq_cfqq_on_rr(cfqq));
1331 cfq_mark_cfqq_on_rr(cfqq);
1332 cfqd->busy_queues++;
1334 cfq_resort_rr_list(cfqd, cfqq);
1338 * Called when the cfqq no longer has requests pending, remove it from
1339 * the service tree.
1341 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1343 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1344 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1345 cfq_clear_cfqq_on_rr(cfqq);
1347 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1348 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1349 cfqq->service_tree = NULL;
1351 if (cfqq->p_root) {
1352 rb_erase(&cfqq->p_node, cfqq->p_root);
1353 cfqq->p_root = NULL;
1356 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1357 BUG_ON(!cfqd->busy_queues);
1358 cfqd->busy_queues--;
1362 * rb tree support functions
1364 static void cfq_del_rq_rb(struct request *rq)
1366 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1367 const int sync = rq_is_sync(rq);
1369 BUG_ON(!cfqq->queued[sync]);
1370 cfqq->queued[sync]--;
1372 elv_rb_del(&cfqq->sort_list, rq);
1374 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1376 * Queue will be deleted from service tree when we actually
1377 * expire it later. Right now just remove it from prio tree
1378 * as it is empty.
1380 if (cfqq->p_root) {
1381 rb_erase(&cfqq->p_node, cfqq->p_root);
1382 cfqq->p_root = NULL;
1387 static void cfq_add_rq_rb(struct request *rq)
1389 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1390 struct cfq_data *cfqd = cfqq->cfqd;
1391 struct request *__alias, *prev;
1393 cfqq->queued[rq_is_sync(rq)]++;
1396 * looks a little odd, but the first insert might return an alias.
1397 * if that happens, put the alias on the dispatch list
1399 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1400 cfq_dispatch_insert(cfqd->queue, __alias);
1402 if (!cfq_cfqq_on_rr(cfqq))
1403 cfq_add_cfqq_rr(cfqd, cfqq);
1406 * check if this request is a better next-serve candidate
1408 prev = cfqq->next_rq;
1409 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1412 * adjust priority tree position, if ->next_rq changes
1414 if (prev != cfqq->next_rq)
1415 cfq_prio_tree_add(cfqd, cfqq);
1417 BUG_ON(!cfqq->next_rq);
1420 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1422 elv_rb_del(&cfqq->sort_list, rq);
1423 cfqq->queued[rq_is_sync(rq)]--;
1424 blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1425 rq_is_sync(rq));
1426 cfq_add_rq_rb(rq);
1427 blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1428 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1429 rq_is_sync(rq));
1432 static struct request *
1433 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1435 struct task_struct *tsk = current;
1436 struct cfq_io_context *cic;
1437 struct cfq_queue *cfqq;
1439 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1440 if (!cic)
1441 return NULL;
1443 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1444 if (cfqq) {
1445 sector_t sector = bio->bi_sector + bio_sectors(bio);
1447 return elv_rb_find(&cfqq->sort_list, sector);
1450 return NULL;
1453 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1455 struct cfq_data *cfqd = q->elevator->elevator_data;
1457 cfqd->rq_in_driver++;
1458 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1459 cfqd->rq_in_driver);
1461 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1464 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1466 struct cfq_data *cfqd = q->elevator->elevator_data;
1468 WARN_ON(!cfqd->rq_in_driver);
1469 cfqd->rq_in_driver--;
1470 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1471 cfqd->rq_in_driver);
1474 static void cfq_remove_request(struct request *rq)
1476 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1478 if (cfqq->next_rq == rq)
1479 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1481 list_del_init(&rq->queuelist);
1482 cfq_del_rq_rb(rq);
1484 cfqq->cfqd->rq_queued--;
1485 blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1486 rq_is_sync(rq));
1487 if (rq_is_meta(rq)) {
1488 WARN_ON(!cfqq->meta_pending);
1489 cfqq->meta_pending--;
1493 static int cfq_merge(struct request_queue *q, struct request **req,
1494 struct bio *bio)
1496 struct cfq_data *cfqd = q->elevator->elevator_data;
1497 struct request *__rq;
1499 __rq = cfq_find_rq_fmerge(cfqd, bio);
1500 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1501 *req = __rq;
1502 return ELEVATOR_FRONT_MERGE;
1505 return ELEVATOR_NO_MERGE;
1508 static void cfq_merged_request(struct request_queue *q, struct request *req,
1509 int type)
1511 if (type == ELEVATOR_FRONT_MERGE) {
1512 struct cfq_queue *cfqq = RQ_CFQQ(req);
1514 cfq_reposition_rq_rb(cfqq, req);
1518 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1519 struct bio *bio)
1521 blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg, bio_data_dir(bio),
1522 cfq_bio_sync(bio));
1525 static void
1526 cfq_merged_requests(struct request_queue *q, struct request *rq,
1527 struct request *next)
1529 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1531 * reposition in fifo if next is older than rq
1533 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1534 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1535 list_move(&rq->queuelist, &next->queuelist);
1536 rq_set_fifo_time(rq, rq_fifo_time(next));
1539 if (cfqq->next_rq == next)
1540 cfqq->next_rq = rq;
1541 cfq_remove_request(next);
1542 blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(next),
1543 rq_is_sync(next));
1546 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1547 struct bio *bio)
1549 struct cfq_data *cfqd = q->elevator->elevator_data;
1550 struct cfq_io_context *cic;
1551 struct cfq_queue *cfqq;
1554 * Disallow merge of a sync bio into an async request.
1556 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1557 return false;
1560 * Lookup the cfqq that this bio will be queued with. Allow
1561 * merge only if rq is queued there.
1563 cic = cfq_cic_lookup(cfqd, current->io_context);
1564 if (!cic)
1565 return false;
1567 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1568 return cfqq == RQ_CFQQ(rq);
1571 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1573 del_timer(&cfqd->idle_slice_timer);
1574 blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1577 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1578 struct cfq_queue *cfqq)
1580 if (cfqq) {
1581 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1582 cfqd->serving_prio, cfqd->serving_type);
1583 blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1584 cfqq->slice_start = 0;
1585 cfqq->dispatch_start = jiffies;
1586 cfqq->allocated_slice = 0;
1587 cfqq->slice_end = 0;
1588 cfqq->slice_dispatch = 0;
1590 cfq_clear_cfqq_wait_request(cfqq);
1591 cfq_clear_cfqq_must_dispatch(cfqq);
1592 cfq_clear_cfqq_must_alloc_slice(cfqq);
1593 cfq_clear_cfqq_fifo_expire(cfqq);
1594 cfq_mark_cfqq_slice_new(cfqq);
1596 cfq_del_timer(cfqd, cfqq);
1599 cfqd->active_queue = cfqq;
1603 * current cfqq expired its slice (or was too idle), select new one
1605 static void
1606 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1607 bool timed_out)
1609 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1611 if (cfq_cfqq_wait_request(cfqq))
1612 cfq_del_timer(cfqd, cfqq);
1614 cfq_clear_cfqq_wait_request(cfqq);
1615 cfq_clear_cfqq_wait_busy(cfqq);
1618 * If this cfqq is shared between multiple processes, check to
1619 * make sure that those processes are still issuing I/Os within
1620 * the mean seek distance. If not, it may be time to break the
1621 * queues apart again.
1623 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1624 cfq_mark_cfqq_split_coop(cfqq);
1627 * store what was left of this slice, if the queue idled/timed out
1629 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1630 cfqq->slice_resid = cfqq->slice_end - jiffies;
1631 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1634 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1636 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1637 cfq_del_cfqq_rr(cfqd, cfqq);
1639 cfq_resort_rr_list(cfqd, cfqq);
1641 if (cfqq == cfqd->active_queue)
1642 cfqd->active_queue = NULL;
1644 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1645 cfqd->grp_service_tree.active = NULL;
1647 if (cfqd->active_cic) {
1648 put_io_context(cfqd->active_cic->ioc);
1649 cfqd->active_cic = NULL;
1653 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1655 struct cfq_queue *cfqq = cfqd->active_queue;
1657 if (cfqq)
1658 __cfq_slice_expired(cfqd, cfqq, timed_out);
1662 * Get next queue for service. Unless we have a queue preemption,
1663 * we'll simply select the first cfqq in the service tree.
1665 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1667 struct cfq_rb_root *service_tree =
1668 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1669 cfqd->serving_type);
1671 if (!cfqd->rq_queued)
1672 return NULL;
1674 /* There is nothing to dispatch */
1675 if (!service_tree)
1676 return NULL;
1677 if (RB_EMPTY_ROOT(&service_tree->rb))
1678 return NULL;
1679 return cfq_rb_first(service_tree);
1682 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1684 struct cfq_group *cfqg;
1685 struct cfq_queue *cfqq;
1686 int i, j;
1687 struct cfq_rb_root *st;
1689 if (!cfqd->rq_queued)
1690 return NULL;
1692 cfqg = cfq_get_next_cfqg(cfqd);
1693 if (!cfqg)
1694 return NULL;
1696 for_each_cfqg_st(cfqg, i, j, st)
1697 if ((cfqq = cfq_rb_first(st)) != NULL)
1698 return cfqq;
1699 return NULL;
1703 * Get and set a new active queue for service.
1705 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1706 struct cfq_queue *cfqq)
1708 if (!cfqq)
1709 cfqq = cfq_get_next_queue(cfqd);
1711 __cfq_set_active_queue(cfqd, cfqq);
1712 return cfqq;
1715 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1716 struct request *rq)
1718 if (blk_rq_pos(rq) >= cfqd->last_position)
1719 return blk_rq_pos(rq) - cfqd->last_position;
1720 else
1721 return cfqd->last_position - blk_rq_pos(rq);
1724 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1725 struct request *rq)
1727 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1730 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1731 struct cfq_queue *cur_cfqq)
1733 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1734 struct rb_node *parent, *node;
1735 struct cfq_queue *__cfqq;
1736 sector_t sector = cfqd->last_position;
1738 if (RB_EMPTY_ROOT(root))
1739 return NULL;
1742 * First, if we find a request starting at the end of the last
1743 * request, choose it.
1745 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1746 if (__cfqq)
1747 return __cfqq;
1750 * If the exact sector wasn't found, the parent of the NULL leaf
1751 * will contain the closest sector.
1753 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1754 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1755 return __cfqq;
1757 if (blk_rq_pos(__cfqq->next_rq) < sector)
1758 node = rb_next(&__cfqq->p_node);
1759 else
1760 node = rb_prev(&__cfqq->p_node);
1761 if (!node)
1762 return NULL;
1764 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1765 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1766 return __cfqq;
1768 return NULL;
1772 * cfqd - obvious
1773 * cur_cfqq - passed in so that we don't decide that the current queue is
1774 * closely cooperating with itself.
1776 * So, basically we're assuming that that cur_cfqq has dispatched at least
1777 * one request, and that cfqd->last_position reflects a position on the disk
1778 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1779 * assumption.
1781 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1782 struct cfq_queue *cur_cfqq)
1784 struct cfq_queue *cfqq;
1786 if (cfq_class_idle(cur_cfqq))
1787 return NULL;
1788 if (!cfq_cfqq_sync(cur_cfqq))
1789 return NULL;
1790 if (CFQQ_SEEKY(cur_cfqq))
1791 return NULL;
1794 * Don't search priority tree if it's the only queue in the group.
1796 if (cur_cfqq->cfqg->nr_cfqq == 1)
1797 return NULL;
1800 * We should notice if some of the queues are cooperating, eg
1801 * working closely on the same area of the disk. In that case,
1802 * we can group them together and don't waste time idling.
1804 cfqq = cfqq_close(cfqd, cur_cfqq);
1805 if (!cfqq)
1806 return NULL;
1808 /* If new queue belongs to different cfq_group, don't choose it */
1809 if (cur_cfqq->cfqg != cfqq->cfqg)
1810 return NULL;
1813 * It only makes sense to merge sync queues.
1815 if (!cfq_cfqq_sync(cfqq))
1816 return NULL;
1817 if (CFQQ_SEEKY(cfqq))
1818 return NULL;
1821 * Do not merge queues of different priority classes
1823 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1824 return NULL;
1826 return cfqq;
1830 * Determine whether we should enforce idle window for this queue.
1833 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1835 enum wl_prio_t prio = cfqq_prio(cfqq);
1836 struct cfq_rb_root *service_tree = cfqq->service_tree;
1838 BUG_ON(!service_tree);
1839 BUG_ON(!service_tree->count);
1841 /* We never do for idle class queues. */
1842 if (prio == IDLE_WORKLOAD)
1843 return false;
1845 /* We do for queues that were marked with idle window flag. */
1846 if (cfq_cfqq_idle_window(cfqq) &&
1847 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1848 return true;
1851 * Otherwise, we do only if they are the last ones
1852 * in their service tree.
1854 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1855 return 1;
1856 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1857 service_tree->count);
1858 return 0;
1861 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1863 struct cfq_queue *cfqq = cfqd->active_queue;
1864 struct cfq_io_context *cic;
1865 unsigned long sl;
1868 * SSD device without seek penalty, disable idling. But only do so
1869 * for devices that support queuing, otherwise we still have a problem
1870 * with sync vs async workloads.
1872 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1873 return;
1875 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1876 WARN_ON(cfq_cfqq_slice_new(cfqq));
1879 * idle is disabled, either manually or by past process history
1881 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1882 return;
1885 * still active requests from this queue, don't idle
1887 if (cfqq->dispatched)
1888 return;
1891 * task has exited, don't wait
1893 cic = cfqd->active_cic;
1894 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1895 return;
1898 * If our average think time is larger than the remaining time
1899 * slice, then don't idle. This avoids overrunning the allotted
1900 * time slice.
1902 if (sample_valid(cic->ttime_samples) &&
1903 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1904 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1905 cic->ttime_mean);
1906 return;
1909 cfq_mark_cfqq_wait_request(cfqq);
1911 sl = cfqd->cfq_slice_idle;
1913 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1914 blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1915 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1919 * Move request from internal lists to the request queue dispatch list.
1921 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1923 struct cfq_data *cfqd = q->elevator->elevator_data;
1924 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1926 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1928 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1929 cfq_remove_request(rq);
1930 cfqq->dispatched++;
1931 elv_dispatch_sort(q, rq);
1933 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1934 blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1935 rq_data_dir(rq), rq_is_sync(rq));
1939 * return expired entry, or NULL to just start from scratch in rbtree
1941 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1943 struct request *rq = NULL;
1945 if (cfq_cfqq_fifo_expire(cfqq))
1946 return NULL;
1948 cfq_mark_cfqq_fifo_expire(cfqq);
1950 if (list_empty(&cfqq->fifo))
1951 return NULL;
1953 rq = rq_entry_fifo(cfqq->fifo.next);
1954 if (time_before(jiffies, rq_fifo_time(rq)))
1955 rq = NULL;
1957 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1958 return rq;
1961 static inline int
1962 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1964 const int base_rq = cfqd->cfq_slice_async_rq;
1966 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1968 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1972 * Must be called with the queue_lock held.
1974 static int cfqq_process_refs(struct cfq_queue *cfqq)
1976 int process_refs, io_refs;
1978 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1979 process_refs = atomic_read(&cfqq->ref) - io_refs;
1980 BUG_ON(process_refs < 0);
1981 return process_refs;
1984 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1986 int process_refs, new_process_refs;
1987 struct cfq_queue *__cfqq;
1989 /* Avoid a circular list and skip interim queue merges */
1990 while ((__cfqq = new_cfqq->new_cfqq)) {
1991 if (__cfqq == cfqq)
1992 return;
1993 new_cfqq = __cfqq;
1996 process_refs = cfqq_process_refs(cfqq);
1998 * If the process for the cfqq has gone away, there is no
1999 * sense in merging the queues.
2001 if (process_refs == 0)
2002 return;
2005 * Merge in the direction of the lesser amount of work.
2007 new_process_refs = cfqq_process_refs(new_cfqq);
2008 if (new_process_refs >= process_refs) {
2009 cfqq->new_cfqq = new_cfqq;
2010 atomic_add(process_refs, &new_cfqq->ref);
2011 } else {
2012 new_cfqq->new_cfqq = cfqq;
2013 atomic_add(new_process_refs, &cfqq->ref);
2017 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2018 struct cfq_group *cfqg, enum wl_prio_t prio)
2020 struct cfq_queue *queue;
2021 int i;
2022 bool key_valid = false;
2023 unsigned long lowest_key = 0;
2024 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2026 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2027 /* select the one with lowest rb_key */
2028 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2029 if (queue &&
2030 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2031 lowest_key = queue->rb_key;
2032 cur_best = i;
2033 key_valid = true;
2037 return cur_best;
2040 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2042 unsigned slice;
2043 unsigned count;
2044 struct cfq_rb_root *st;
2045 unsigned group_slice;
2047 if (!cfqg) {
2048 cfqd->serving_prio = IDLE_WORKLOAD;
2049 cfqd->workload_expires = jiffies + 1;
2050 return;
2053 /* Choose next priority. RT > BE > IDLE */
2054 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2055 cfqd->serving_prio = RT_WORKLOAD;
2056 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2057 cfqd->serving_prio = BE_WORKLOAD;
2058 else {
2059 cfqd->serving_prio = IDLE_WORKLOAD;
2060 cfqd->workload_expires = jiffies + 1;
2061 return;
2065 * For RT and BE, we have to choose also the type
2066 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2067 * expiration time
2069 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2070 count = st->count;
2073 * check workload expiration, and that we still have other queues ready
2075 if (count && !time_after(jiffies, cfqd->workload_expires))
2076 return;
2078 /* otherwise select new workload type */
2079 cfqd->serving_type =
2080 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2081 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2082 count = st->count;
2085 * the workload slice is computed as a fraction of target latency
2086 * proportional to the number of queues in that workload, over
2087 * all the queues in the same priority class
2089 group_slice = cfq_group_slice(cfqd, cfqg);
2091 slice = group_slice * count /
2092 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2093 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2095 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2096 unsigned int tmp;
2099 * Async queues are currently system wide. Just taking
2100 * proportion of queues with-in same group will lead to higher
2101 * async ratio system wide as generally root group is going
2102 * to have higher weight. A more accurate thing would be to
2103 * calculate system wide asnc/sync ratio.
2105 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2106 tmp = tmp/cfqd->busy_queues;
2107 slice = min_t(unsigned, slice, tmp);
2109 /* async workload slice is scaled down according to
2110 * the sync/async slice ratio. */
2111 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2112 } else
2113 /* sync workload slice is at least 2 * cfq_slice_idle */
2114 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2116 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2117 cfq_log(cfqd, "workload slice:%d", slice);
2118 cfqd->workload_expires = jiffies + slice;
2119 cfqd->noidle_tree_requires_idle = false;
2122 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2124 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2125 struct cfq_group *cfqg;
2127 if (RB_EMPTY_ROOT(&st->rb))
2128 return NULL;
2129 cfqg = cfq_rb_first_group(st);
2130 st->active = &cfqg->rb_node;
2131 update_min_vdisktime(st);
2132 return cfqg;
2135 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2137 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2139 cfqd->serving_group = cfqg;
2141 /* Restore the workload type data */
2142 if (cfqg->saved_workload_slice) {
2143 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2144 cfqd->serving_type = cfqg->saved_workload;
2145 cfqd->serving_prio = cfqg->saved_serving_prio;
2146 } else
2147 cfqd->workload_expires = jiffies - 1;
2149 choose_service_tree(cfqd, cfqg);
2153 * Select a queue for service. If we have a current active queue,
2154 * check whether to continue servicing it, or retrieve and set a new one.
2156 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2158 struct cfq_queue *cfqq, *new_cfqq = NULL;
2160 cfqq = cfqd->active_queue;
2161 if (!cfqq)
2162 goto new_queue;
2164 if (!cfqd->rq_queued)
2165 return NULL;
2168 * We were waiting for group to get backlogged. Expire the queue
2170 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2171 goto expire;
2174 * The active queue has run out of time, expire it and select new.
2176 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2178 * If slice had not expired at the completion of last request
2179 * we might not have turned on wait_busy flag. Don't expire
2180 * the queue yet. Allow the group to get backlogged.
2182 * The very fact that we have used the slice, that means we
2183 * have been idling all along on this queue and it should be
2184 * ok to wait for this request to complete.
2186 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2187 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2188 cfqq = NULL;
2189 goto keep_queue;
2190 } else
2191 goto expire;
2195 * The active queue has requests and isn't expired, allow it to
2196 * dispatch.
2198 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2199 goto keep_queue;
2202 * If another queue has a request waiting within our mean seek
2203 * distance, let it run. The expire code will check for close
2204 * cooperators and put the close queue at the front of the service
2205 * tree. If possible, merge the expiring queue with the new cfqq.
2207 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2208 if (new_cfqq) {
2209 if (!cfqq->new_cfqq)
2210 cfq_setup_merge(cfqq, new_cfqq);
2211 goto expire;
2215 * No requests pending. If the active queue still has requests in
2216 * flight or is idling for a new request, allow either of these
2217 * conditions to happen (or time out) before selecting a new queue.
2219 if (timer_pending(&cfqd->idle_slice_timer) ||
2220 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2221 cfqq = NULL;
2222 goto keep_queue;
2225 expire:
2226 cfq_slice_expired(cfqd, 0);
2227 new_queue:
2229 * Current queue expired. Check if we have to switch to a new
2230 * service tree
2232 if (!new_cfqq)
2233 cfq_choose_cfqg(cfqd);
2235 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2236 keep_queue:
2237 return cfqq;
2240 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2242 int dispatched = 0;
2244 while (cfqq->next_rq) {
2245 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2246 dispatched++;
2249 BUG_ON(!list_empty(&cfqq->fifo));
2251 /* By default cfqq is not expired if it is empty. Do it explicitly */
2252 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2253 return dispatched;
2257 * Drain our current requests. Used for barriers and when switching
2258 * io schedulers on-the-fly.
2260 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2262 struct cfq_queue *cfqq;
2263 int dispatched = 0;
2265 /* Expire the timeslice of the current active queue first */
2266 cfq_slice_expired(cfqd, 0);
2267 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2268 __cfq_set_active_queue(cfqd, cfqq);
2269 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2272 BUG_ON(cfqd->busy_queues);
2274 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2275 return dispatched;
2278 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2279 struct cfq_queue *cfqq)
2281 /* the queue hasn't finished any request, can't estimate */
2282 if (cfq_cfqq_slice_new(cfqq))
2283 return 1;
2284 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2285 cfqq->slice_end))
2286 return 1;
2288 return 0;
2291 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2293 unsigned int max_dispatch;
2296 * Drain async requests before we start sync IO
2298 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2299 return false;
2302 * If this is an async queue and we have sync IO in flight, let it wait
2304 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2305 return false;
2307 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2308 if (cfq_class_idle(cfqq))
2309 max_dispatch = 1;
2312 * Does this cfqq already have too much IO in flight?
2314 if (cfqq->dispatched >= max_dispatch) {
2316 * idle queue must always only have a single IO in flight
2318 if (cfq_class_idle(cfqq))
2319 return false;
2322 * We have other queues, don't allow more IO from this one
2324 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2325 return false;
2328 * Sole queue user, no limit
2330 if (cfqd->busy_queues == 1)
2331 max_dispatch = -1;
2332 else
2334 * Normally we start throttling cfqq when cfq_quantum/2
2335 * requests have been dispatched. But we can drive
2336 * deeper queue depths at the beginning of slice
2337 * subjected to upper limit of cfq_quantum.
2338 * */
2339 max_dispatch = cfqd->cfq_quantum;
2343 * Async queues must wait a bit before being allowed dispatch.
2344 * We also ramp up the dispatch depth gradually for async IO,
2345 * based on the last sync IO we serviced
2347 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2348 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2349 unsigned int depth;
2351 depth = last_sync / cfqd->cfq_slice[1];
2352 if (!depth && !cfqq->dispatched)
2353 depth = 1;
2354 if (depth < max_dispatch)
2355 max_dispatch = depth;
2359 * If we're below the current max, allow a dispatch
2361 return cfqq->dispatched < max_dispatch;
2365 * Dispatch a request from cfqq, moving them to the request queue
2366 * dispatch list.
2368 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2370 struct request *rq;
2372 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2374 if (!cfq_may_dispatch(cfqd, cfqq))
2375 return false;
2378 * follow expired path, else get first next available
2380 rq = cfq_check_fifo(cfqq);
2381 if (!rq)
2382 rq = cfqq->next_rq;
2385 * insert request into driver dispatch list
2387 cfq_dispatch_insert(cfqd->queue, rq);
2389 if (!cfqd->active_cic) {
2390 struct cfq_io_context *cic = RQ_CIC(rq);
2392 atomic_long_inc(&cic->ioc->refcount);
2393 cfqd->active_cic = cic;
2396 return true;
2400 * Find the cfqq that we need to service and move a request from that to the
2401 * dispatch list
2403 static int cfq_dispatch_requests(struct request_queue *q, int force)
2405 struct cfq_data *cfqd = q->elevator->elevator_data;
2406 struct cfq_queue *cfqq;
2408 if (!cfqd->busy_queues)
2409 return 0;
2411 if (unlikely(force))
2412 return cfq_forced_dispatch(cfqd);
2414 cfqq = cfq_select_queue(cfqd);
2415 if (!cfqq)
2416 return 0;
2419 * Dispatch a request from this cfqq, if it is allowed
2421 if (!cfq_dispatch_request(cfqd, cfqq))
2422 return 0;
2424 cfqq->slice_dispatch++;
2425 cfq_clear_cfqq_must_dispatch(cfqq);
2428 * expire an async queue immediately if it has used up its slice. idle
2429 * queue always expire after 1 dispatch round.
2431 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2432 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2433 cfq_class_idle(cfqq))) {
2434 cfqq->slice_end = jiffies + 1;
2435 cfq_slice_expired(cfqd, 0);
2438 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2439 return 1;
2443 * task holds one reference to the queue, dropped when task exits. each rq
2444 * in-flight on this queue also holds a reference, dropped when rq is freed.
2446 * Each cfq queue took a reference on the parent group. Drop it now.
2447 * queue lock must be held here.
2449 static void cfq_put_queue(struct cfq_queue *cfqq)
2451 struct cfq_data *cfqd = cfqq->cfqd;
2452 struct cfq_group *cfqg, *orig_cfqg;
2454 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2456 if (!atomic_dec_and_test(&cfqq->ref))
2457 return;
2459 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2460 BUG_ON(rb_first(&cfqq->sort_list));
2461 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2462 cfqg = cfqq->cfqg;
2463 orig_cfqg = cfqq->orig_cfqg;
2465 if (unlikely(cfqd->active_queue == cfqq)) {
2466 __cfq_slice_expired(cfqd, cfqq, 0);
2467 cfq_schedule_dispatch(cfqd);
2470 BUG_ON(cfq_cfqq_on_rr(cfqq));
2471 kmem_cache_free(cfq_pool, cfqq);
2472 cfq_put_cfqg(cfqg);
2473 if (orig_cfqg)
2474 cfq_put_cfqg(orig_cfqg);
2478 * Must always be called with the rcu_read_lock() held
2480 static void
2481 __call_for_each_cic(struct io_context *ioc,
2482 void (*func)(struct io_context *, struct cfq_io_context *))
2484 struct cfq_io_context *cic;
2485 struct hlist_node *n;
2487 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2488 func(ioc, cic);
2492 * Call func for each cic attached to this ioc.
2494 static void
2495 call_for_each_cic(struct io_context *ioc,
2496 void (*func)(struct io_context *, struct cfq_io_context *))
2498 rcu_read_lock();
2499 __call_for_each_cic(ioc, func);
2500 rcu_read_unlock();
2503 static void cfq_cic_free_rcu(struct rcu_head *head)
2505 struct cfq_io_context *cic;
2507 cic = container_of(head, struct cfq_io_context, rcu_head);
2509 kmem_cache_free(cfq_ioc_pool, cic);
2510 elv_ioc_count_dec(cfq_ioc_count);
2512 if (ioc_gone) {
2514 * CFQ scheduler is exiting, grab exit lock and check
2515 * the pending io context count. If it hits zero,
2516 * complete ioc_gone and set it back to NULL
2518 spin_lock(&ioc_gone_lock);
2519 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2520 complete(ioc_gone);
2521 ioc_gone = NULL;
2523 spin_unlock(&ioc_gone_lock);
2527 static void cfq_cic_free(struct cfq_io_context *cic)
2529 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2532 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2534 unsigned long flags;
2535 unsigned long dead_key = (unsigned long) cic->key;
2537 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2539 spin_lock_irqsave(&ioc->lock, flags);
2540 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2541 hlist_del_rcu(&cic->cic_list);
2542 spin_unlock_irqrestore(&ioc->lock, flags);
2544 cfq_cic_free(cic);
2548 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2549 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2550 * and ->trim() which is called with the task lock held
2552 static void cfq_free_io_context(struct io_context *ioc)
2555 * ioc->refcount is zero here, or we are called from elv_unregister(),
2556 * so no more cic's are allowed to be linked into this ioc. So it
2557 * should be ok to iterate over the known list, we will see all cic's
2558 * since no new ones are added.
2560 __call_for_each_cic(ioc, cic_free_func);
2563 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2565 struct cfq_queue *__cfqq, *next;
2568 * If this queue was scheduled to merge with another queue, be
2569 * sure to drop the reference taken on that queue (and others in
2570 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2572 __cfqq = cfqq->new_cfqq;
2573 while (__cfqq) {
2574 if (__cfqq == cfqq) {
2575 WARN(1, "cfqq->new_cfqq loop detected\n");
2576 break;
2578 next = __cfqq->new_cfqq;
2579 cfq_put_queue(__cfqq);
2580 __cfqq = next;
2584 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2586 if (unlikely(cfqq == cfqd->active_queue)) {
2587 __cfq_slice_expired(cfqd, cfqq, 0);
2588 cfq_schedule_dispatch(cfqd);
2591 cfq_put_cooperator(cfqq);
2593 cfq_put_queue(cfqq);
2596 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2597 struct cfq_io_context *cic)
2599 struct io_context *ioc = cic->ioc;
2601 list_del_init(&cic->queue_list);
2604 * Make sure dead mark is seen for dead queues
2606 smp_wmb();
2607 cic->key = cfqd_dead_key(cfqd);
2609 if (ioc->ioc_data == cic)
2610 rcu_assign_pointer(ioc->ioc_data, NULL);
2612 if (cic->cfqq[BLK_RW_ASYNC]) {
2613 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2614 cic->cfqq[BLK_RW_ASYNC] = NULL;
2617 if (cic->cfqq[BLK_RW_SYNC]) {
2618 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2619 cic->cfqq[BLK_RW_SYNC] = NULL;
2623 static void cfq_exit_single_io_context(struct io_context *ioc,
2624 struct cfq_io_context *cic)
2626 struct cfq_data *cfqd = cic_to_cfqd(cic);
2628 if (cfqd) {
2629 struct request_queue *q = cfqd->queue;
2630 unsigned long flags;
2632 spin_lock_irqsave(q->queue_lock, flags);
2635 * Ensure we get a fresh copy of the ->key to prevent
2636 * race between exiting task and queue
2638 smp_read_barrier_depends();
2639 if (cic->key == cfqd)
2640 __cfq_exit_single_io_context(cfqd, cic);
2642 spin_unlock_irqrestore(q->queue_lock, flags);
2647 * The process that ioc belongs to has exited, we need to clean up
2648 * and put the internal structures we have that belongs to that process.
2650 static void cfq_exit_io_context(struct io_context *ioc)
2652 call_for_each_cic(ioc, cfq_exit_single_io_context);
2655 static struct cfq_io_context *
2656 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2658 struct cfq_io_context *cic;
2660 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2661 cfqd->queue->node);
2662 if (cic) {
2663 cic->last_end_request = jiffies;
2664 INIT_LIST_HEAD(&cic->queue_list);
2665 INIT_HLIST_NODE(&cic->cic_list);
2666 cic->dtor = cfq_free_io_context;
2667 cic->exit = cfq_exit_io_context;
2668 elv_ioc_count_inc(cfq_ioc_count);
2671 return cic;
2674 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2676 struct task_struct *tsk = current;
2677 int ioprio_class;
2679 if (!cfq_cfqq_prio_changed(cfqq))
2680 return;
2682 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2683 switch (ioprio_class) {
2684 default:
2685 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2686 case IOPRIO_CLASS_NONE:
2688 * no prio set, inherit CPU scheduling settings
2690 cfqq->ioprio = task_nice_ioprio(tsk);
2691 cfqq->ioprio_class = task_nice_ioclass(tsk);
2692 break;
2693 case IOPRIO_CLASS_RT:
2694 cfqq->ioprio = task_ioprio(ioc);
2695 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2696 break;
2697 case IOPRIO_CLASS_BE:
2698 cfqq->ioprio = task_ioprio(ioc);
2699 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2700 break;
2701 case IOPRIO_CLASS_IDLE:
2702 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2703 cfqq->ioprio = 7;
2704 cfq_clear_cfqq_idle_window(cfqq);
2705 break;
2709 * keep track of original prio settings in case we have to temporarily
2710 * elevate the priority of this queue
2712 cfqq->org_ioprio = cfqq->ioprio;
2713 cfqq->org_ioprio_class = cfqq->ioprio_class;
2714 cfq_clear_cfqq_prio_changed(cfqq);
2717 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2719 struct cfq_data *cfqd = cic_to_cfqd(cic);
2720 struct cfq_queue *cfqq;
2721 unsigned long flags;
2723 if (unlikely(!cfqd))
2724 return;
2726 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2728 cfqq = cic->cfqq[BLK_RW_ASYNC];
2729 if (cfqq) {
2730 struct cfq_queue *new_cfqq;
2731 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2732 GFP_ATOMIC);
2733 if (new_cfqq) {
2734 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2735 cfq_put_queue(cfqq);
2739 cfqq = cic->cfqq[BLK_RW_SYNC];
2740 if (cfqq)
2741 cfq_mark_cfqq_prio_changed(cfqq);
2743 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2746 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2748 call_for_each_cic(ioc, changed_ioprio);
2749 ioc->ioprio_changed = 0;
2752 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2753 pid_t pid, bool is_sync)
2755 RB_CLEAR_NODE(&cfqq->rb_node);
2756 RB_CLEAR_NODE(&cfqq->p_node);
2757 INIT_LIST_HEAD(&cfqq->fifo);
2759 atomic_set(&cfqq->ref, 0);
2760 cfqq->cfqd = cfqd;
2762 cfq_mark_cfqq_prio_changed(cfqq);
2764 if (is_sync) {
2765 if (!cfq_class_idle(cfqq))
2766 cfq_mark_cfqq_idle_window(cfqq);
2767 cfq_mark_cfqq_sync(cfqq);
2769 cfqq->pid = pid;
2772 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2773 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2775 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2776 struct cfq_data *cfqd = cic_to_cfqd(cic);
2777 unsigned long flags;
2778 struct request_queue *q;
2780 if (unlikely(!cfqd))
2781 return;
2783 q = cfqd->queue;
2785 spin_lock_irqsave(q->queue_lock, flags);
2787 if (sync_cfqq) {
2789 * Drop reference to sync queue. A new sync queue will be
2790 * assigned in new group upon arrival of a fresh request.
2792 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2793 cic_set_cfqq(cic, NULL, 1);
2794 cfq_put_queue(sync_cfqq);
2797 spin_unlock_irqrestore(q->queue_lock, flags);
2800 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2802 call_for_each_cic(ioc, changed_cgroup);
2803 ioc->cgroup_changed = 0;
2805 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2807 static struct cfq_queue *
2808 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2809 struct io_context *ioc, gfp_t gfp_mask)
2811 struct cfq_queue *cfqq, *new_cfqq = NULL;
2812 struct cfq_io_context *cic;
2813 struct cfq_group *cfqg;
2815 retry:
2816 cfqg = cfq_get_cfqg(cfqd, 1);
2817 cic = cfq_cic_lookup(cfqd, ioc);
2818 /* cic always exists here */
2819 cfqq = cic_to_cfqq(cic, is_sync);
2822 * Always try a new alloc if we fell back to the OOM cfqq
2823 * originally, since it should just be a temporary situation.
2825 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2826 cfqq = NULL;
2827 if (new_cfqq) {
2828 cfqq = new_cfqq;
2829 new_cfqq = NULL;
2830 } else if (gfp_mask & __GFP_WAIT) {
2831 spin_unlock_irq(cfqd->queue->queue_lock);
2832 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2833 gfp_mask | __GFP_ZERO,
2834 cfqd->queue->node);
2835 spin_lock_irq(cfqd->queue->queue_lock);
2836 if (new_cfqq)
2837 goto retry;
2838 } else {
2839 cfqq = kmem_cache_alloc_node(cfq_pool,
2840 gfp_mask | __GFP_ZERO,
2841 cfqd->queue->node);
2844 if (cfqq) {
2845 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2846 cfq_init_prio_data(cfqq, ioc);
2847 cfq_link_cfqq_cfqg(cfqq, cfqg);
2848 cfq_log_cfqq(cfqd, cfqq, "alloced");
2849 } else
2850 cfqq = &cfqd->oom_cfqq;
2853 if (new_cfqq)
2854 kmem_cache_free(cfq_pool, new_cfqq);
2856 return cfqq;
2859 static struct cfq_queue **
2860 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2862 switch (ioprio_class) {
2863 case IOPRIO_CLASS_RT:
2864 return &cfqd->async_cfqq[0][ioprio];
2865 case IOPRIO_CLASS_BE:
2866 return &cfqd->async_cfqq[1][ioprio];
2867 case IOPRIO_CLASS_IDLE:
2868 return &cfqd->async_idle_cfqq;
2869 default:
2870 BUG();
2874 static struct cfq_queue *
2875 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2876 gfp_t gfp_mask)
2878 const int ioprio = task_ioprio(ioc);
2879 const int ioprio_class = task_ioprio_class(ioc);
2880 struct cfq_queue **async_cfqq = NULL;
2881 struct cfq_queue *cfqq = NULL;
2883 if (!is_sync) {
2884 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2885 cfqq = *async_cfqq;
2888 if (!cfqq)
2889 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2892 * pin the queue now that it's allocated, scheduler exit will prune it
2894 if (!is_sync && !(*async_cfqq)) {
2895 atomic_inc(&cfqq->ref);
2896 *async_cfqq = cfqq;
2899 atomic_inc(&cfqq->ref);
2900 return cfqq;
2904 * We drop cfq io contexts lazily, so we may find a dead one.
2906 static void
2907 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2908 struct cfq_io_context *cic)
2910 unsigned long flags;
2912 WARN_ON(!list_empty(&cic->queue_list));
2913 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2915 spin_lock_irqsave(&ioc->lock, flags);
2917 BUG_ON(ioc->ioc_data == cic);
2919 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
2920 hlist_del_rcu(&cic->cic_list);
2921 spin_unlock_irqrestore(&ioc->lock, flags);
2923 cfq_cic_free(cic);
2926 static struct cfq_io_context *
2927 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2929 struct cfq_io_context *cic;
2930 unsigned long flags;
2932 if (unlikely(!ioc))
2933 return NULL;
2935 rcu_read_lock();
2938 * we maintain a last-hit cache, to avoid browsing over the tree
2940 cic = rcu_dereference(ioc->ioc_data);
2941 if (cic && cic->key == cfqd) {
2942 rcu_read_unlock();
2943 return cic;
2946 do {
2947 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
2948 rcu_read_unlock();
2949 if (!cic)
2950 break;
2951 if (unlikely(cic->key != cfqd)) {
2952 cfq_drop_dead_cic(cfqd, ioc, cic);
2953 rcu_read_lock();
2954 continue;
2957 spin_lock_irqsave(&ioc->lock, flags);
2958 rcu_assign_pointer(ioc->ioc_data, cic);
2959 spin_unlock_irqrestore(&ioc->lock, flags);
2960 break;
2961 } while (1);
2963 return cic;
2967 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2968 * the process specific cfq io context when entered from the block layer.
2969 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2971 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2972 struct cfq_io_context *cic, gfp_t gfp_mask)
2974 unsigned long flags;
2975 int ret;
2977 ret = radix_tree_preload(gfp_mask);
2978 if (!ret) {
2979 cic->ioc = ioc;
2980 cic->key = cfqd;
2982 spin_lock_irqsave(&ioc->lock, flags);
2983 ret = radix_tree_insert(&ioc->radix_root,
2984 cfqd->cic_index, cic);
2985 if (!ret)
2986 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2987 spin_unlock_irqrestore(&ioc->lock, flags);
2989 radix_tree_preload_end();
2991 if (!ret) {
2992 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2993 list_add(&cic->queue_list, &cfqd->cic_list);
2994 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2998 if (ret)
2999 printk(KERN_ERR "cfq: cic link failed!\n");
3001 return ret;
3005 * Setup general io context and cfq io context. There can be several cfq
3006 * io contexts per general io context, if this process is doing io to more
3007 * than one device managed by cfq.
3009 static struct cfq_io_context *
3010 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3012 struct io_context *ioc = NULL;
3013 struct cfq_io_context *cic;
3015 might_sleep_if(gfp_mask & __GFP_WAIT);
3017 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3018 if (!ioc)
3019 return NULL;
3021 cic = cfq_cic_lookup(cfqd, ioc);
3022 if (cic)
3023 goto out;
3025 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3026 if (cic == NULL)
3027 goto err;
3029 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3030 goto err_free;
3032 out:
3033 smp_read_barrier_depends();
3034 if (unlikely(ioc->ioprio_changed))
3035 cfq_ioc_set_ioprio(ioc);
3037 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3038 if (unlikely(ioc->cgroup_changed))
3039 cfq_ioc_set_cgroup(ioc);
3040 #endif
3041 return cic;
3042 err_free:
3043 cfq_cic_free(cic);
3044 err:
3045 put_io_context(ioc);
3046 return NULL;
3049 static void
3050 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3052 unsigned long elapsed = jiffies - cic->last_end_request;
3053 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3055 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3056 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3057 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3060 static void
3061 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3062 struct request *rq)
3064 sector_t sdist = 0;
3065 sector_t n_sec = blk_rq_sectors(rq);
3066 if (cfqq->last_request_pos) {
3067 if (cfqq->last_request_pos < blk_rq_pos(rq))
3068 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3069 else
3070 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3073 cfqq->seek_history <<= 1;
3074 if (blk_queue_nonrot(cfqd->queue))
3075 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3076 else
3077 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3081 * Disable idle window if the process thinks too long or seeks so much that
3082 * it doesn't matter
3084 static void
3085 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3086 struct cfq_io_context *cic)
3088 int old_idle, enable_idle;
3091 * Don't idle for async or idle io prio class
3093 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3094 return;
3096 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3098 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3099 cfq_mark_cfqq_deep(cfqq);
3101 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3102 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3103 enable_idle = 0;
3104 else if (sample_valid(cic->ttime_samples)) {
3105 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3106 enable_idle = 0;
3107 else
3108 enable_idle = 1;
3111 if (old_idle != enable_idle) {
3112 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3113 if (enable_idle)
3114 cfq_mark_cfqq_idle_window(cfqq);
3115 else
3116 cfq_clear_cfqq_idle_window(cfqq);
3121 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3122 * no or if we aren't sure, a 1 will cause a preempt.
3124 static bool
3125 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3126 struct request *rq)
3128 struct cfq_queue *cfqq;
3130 cfqq = cfqd->active_queue;
3131 if (!cfqq)
3132 return false;
3134 if (cfq_class_idle(new_cfqq))
3135 return false;
3137 if (cfq_class_idle(cfqq))
3138 return true;
3141 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3143 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3144 return false;
3147 * if the new request is sync, but the currently running queue is
3148 * not, let the sync request have priority.
3150 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3151 return true;
3153 if (new_cfqq->cfqg != cfqq->cfqg)
3154 return false;
3156 if (cfq_slice_used(cfqq))
3157 return true;
3159 /* Allow preemption only if we are idling on sync-noidle tree */
3160 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3161 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3162 new_cfqq->service_tree->count == 2 &&
3163 RB_EMPTY_ROOT(&cfqq->sort_list))
3164 return true;
3167 * So both queues are sync. Let the new request get disk time if
3168 * it's a metadata request and the current queue is doing regular IO.
3170 if (rq_is_meta(rq) && !cfqq->meta_pending)
3171 return true;
3174 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3176 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3177 return true;
3179 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3180 return false;
3183 * if this request is as-good as one we would expect from the
3184 * current cfqq, let it preempt
3186 if (cfq_rq_close(cfqd, cfqq, rq))
3187 return true;
3189 return false;
3193 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3194 * let it have half of its nominal slice.
3196 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3198 cfq_log_cfqq(cfqd, cfqq, "preempt");
3199 cfq_slice_expired(cfqd, 1);
3202 * Put the new queue at the front of the of the current list,
3203 * so we know that it will be selected next.
3205 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3207 cfq_service_tree_add(cfqd, cfqq, 1);
3209 cfqq->slice_end = 0;
3210 cfq_mark_cfqq_slice_new(cfqq);
3214 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3215 * something we should do about it
3217 static void
3218 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3219 struct request *rq)
3221 struct cfq_io_context *cic = RQ_CIC(rq);
3223 cfqd->rq_queued++;
3224 if (rq_is_meta(rq))
3225 cfqq->meta_pending++;
3227 cfq_update_io_thinktime(cfqd, cic);
3228 cfq_update_io_seektime(cfqd, cfqq, rq);
3229 cfq_update_idle_window(cfqd, cfqq, cic);
3231 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3233 if (cfqq == cfqd->active_queue) {
3235 * Remember that we saw a request from this process, but
3236 * don't start queuing just yet. Otherwise we risk seeing lots
3237 * of tiny requests, because we disrupt the normal plugging
3238 * and merging. If the request is already larger than a single
3239 * page, let it rip immediately. For that case we assume that
3240 * merging is already done. Ditto for a busy system that
3241 * has other work pending, don't risk delaying until the
3242 * idle timer unplug to continue working.
3244 if (cfq_cfqq_wait_request(cfqq)) {
3245 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3246 cfqd->busy_queues > 1) {
3247 cfq_del_timer(cfqd, cfqq);
3248 cfq_clear_cfqq_wait_request(cfqq);
3249 __blk_run_queue(cfqd->queue);
3250 } else {
3251 blkiocg_update_idle_time_stats(
3252 &cfqq->cfqg->blkg);
3253 cfq_mark_cfqq_must_dispatch(cfqq);
3256 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3258 * not the active queue - expire current slice if it is
3259 * idle and has expired it's mean thinktime or this new queue
3260 * has some old slice time left and is of higher priority or
3261 * this new queue is RT and the current one is BE
3263 cfq_preempt_queue(cfqd, cfqq);
3264 __blk_run_queue(cfqd->queue);
3268 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3270 struct cfq_data *cfqd = q->elevator->elevator_data;
3271 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3273 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3274 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3276 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3277 list_add_tail(&rq->queuelist, &cfqq->fifo);
3278 cfq_add_rq_rb(rq);
3279 blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3280 &cfqd->serving_group->blkg, rq_data_dir(rq),
3281 rq_is_sync(rq));
3282 cfq_rq_enqueued(cfqd, cfqq, rq);
3286 * Update hw_tag based on peak queue depth over 50 samples under
3287 * sufficient load.
3289 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3291 struct cfq_queue *cfqq = cfqd->active_queue;
3293 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3294 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3296 if (cfqd->hw_tag == 1)
3297 return;
3299 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3300 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3301 return;
3304 * If active queue hasn't enough requests and can idle, cfq might not
3305 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3306 * case
3308 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3309 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3310 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3311 return;
3313 if (cfqd->hw_tag_samples++ < 50)
3314 return;
3316 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3317 cfqd->hw_tag = 1;
3318 else
3319 cfqd->hw_tag = 0;
3322 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3324 struct cfq_io_context *cic = cfqd->active_cic;
3326 /* If there are other queues in the group, don't wait */
3327 if (cfqq->cfqg->nr_cfqq > 1)
3328 return false;
3330 if (cfq_slice_used(cfqq))
3331 return true;
3333 /* if slice left is less than think time, wait busy */
3334 if (cic && sample_valid(cic->ttime_samples)
3335 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3336 return true;
3339 * If think times is less than a jiffy than ttime_mean=0 and above
3340 * will not be true. It might happen that slice has not expired yet
3341 * but will expire soon (4-5 ns) during select_queue(). To cover the
3342 * case where think time is less than a jiffy, mark the queue wait
3343 * busy if only 1 jiffy is left in the slice.
3345 if (cfqq->slice_end - jiffies == 1)
3346 return true;
3348 return false;
3351 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3353 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3354 struct cfq_data *cfqd = cfqq->cfqd;
3355 const int sync = rq_is_sync(rq);
3356 unsigned long now;
3358 now = jiffies;
3359 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3361 cfq_update_hw_tag(cfqd);
3363 WARN_ON(!cfqd->rq_in_driver);
3364 WARN_ON(!cfqq->dispatched);
3365 cfqd->rq_in_driver--;
3366 cfqq->dispatched--;
3367 blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3368 rq_io_start_time_ns(rq), rq_data_dir(rq),
3369 rq_is_sync(rq));
3371 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3373 if (sync) {
3374 RQ_CIC(rq)->last_end_request = now;
3375 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3376 cfqd->last_delayed_sync = now;
3380 * If this is the active queue, check if it needs to be expired,
3381 * or if we want to idle in case it has no pending requests.
3383 if (cfqd->active_queue == cfqq) {
3384 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3386 if (cfq_cfqq_slice_new(cfqq)) {
3387 cfq_set_prio_slice(cfqd, cfqq);
3388 cfq_clear_cfqq_slice_new(cfqq);
3392 * Should we wait for next request to come in before we expire
3393 * the queue.
3395 if (cfq_should_wait_busy(cfqd, cfqq)) {
3396 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3397 cfq_mark_cfqq_wait_busy(cfqq);
3398 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3402 * Idling is not enabled on:
3403 * - expired queues
3404 * - idle-priority queues
3405 * - async queues
3406 * - queues with still some requests queued
3407 * - when there is a close cooperator
3409 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3410 cfq_slice_expired(cfqd, 1);
3411 else if (sync && cfqq_empty &&
3412 !cfq_close_cooperator(cfqd, cfqq)) {
3413 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3415 * Idling is enabled for SYNC_WORKLOAD.
3416 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3417 * only if we processed at least one !rq_noidle request
3419 if (cfqd->serving_type == SYNC_WORKLOAD
3420 || cfqd->noidle_tree_requires_idle
3421 || cfqq->cfqg->nr_cfqq == 1)
3422 cfq_arm_slice_timer(cfqd);
3426 if (!cfqd->rq_in_driver)
3427 cfq_schedule_dispatch(cfqd);
3431 * we temporarily boost lower priority queues if they are holding fs exclusive
3432 * resources. they are boosted to normal prio (CLASS_BE/4)
3434 static void cfq_prio_boost(struct cfq_queue *cfqq)
3436 if (has_fs_excl()) {
3438 * boost idle prio on transactions that would lock out other
3439 * users of the filesystem
3441 if (cfq_class_idle(cfqq))
3442 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3443 if (cfqq->ioprio > IOPRIO_NORM)
3444 cfqq->ioprio = IOPRIO_NORM;
3445 } else {
3447 * unboost the queue (if needed)
3449 cfqq->ioprio_class = cfqq->org_ioprio_class;
3450 cfqq->ioprio = cfqq->org_ioprio;
3454 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3456 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3457 cfq_mark_cfqq_must_alloc_slice(cfqq);
3458 return ELV_MQUEUE_MUST;
3461 return ELV_MQUEUE_MAY;
3464 static int cfq_may_queue(struct request_queue *q, int rw)
3466 struct cfq_data *cfqd = q->elevator->elevator_data;
3467 struct task_struct *tsk = current;
3468 struct cfq_io_context *cic;
3469 struct cfq_queue *cfqq;
3472 * don't force setup of a queue from here, as a call to may_queue
3473 * does not necessarily imply that a request actually will be queued.
3474 * so just lookup a possibly existing queue, or return 'may queue'
3475 * if that fails
3477 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3478 if (!cic)
3479 return ELV_MQUEUE_MAY;
3481 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3482 if (cfqq) {
3483 cfq_init_prio_data(cfqq, cic->ioc);
3484 cfq_prio_boost(cfqq);
3486 return __cfq_may_queue(cfqq);
3489 return ELV_MQUEUE_MAY;
3493 * queue lock held here
3495 static void cfq_put_request(struct request *rq)
3497 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3499 if (cfqq) {
3500 const int rw = rq_data_dir(rq);
3502 BUG_ON(!cfqq->allocated[rw]);
3503 cfqq->allocated[rw]--;
3505 put_io_context(RQ_CIC(rq)->ioc);
3507 rq->elevator_private = NULL;
3508 rq->elevator_private2 = NULL;
3510 /* Put down rq reference on cfqg */
3511 cfq_put_cfqg(RQ_CFQG(rq));
3512 rq->elevator_private3 = NULL;
3514 cfq_put_queue(cfqq);
3518 static struct cfq_queue *
3519 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3520 struct cfq_queue *cfqq)
3522 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3523 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3524 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3525 cfq_put_queue(cfqq);
3526 return cic_to_cfqq(cic, 1);
3530 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3531 * was the last process referring to said cfqq.
3533 static struct cfq_queue *
3534 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3536 if (cfqq_process_refs(cfqq) == 1) {
3537 cfqq->pid = current->pid;
3538 cfq_clear_cfqq_coop(cfqq);
3539 cfq_clear_cfqq_split_coop(cfqq);
3540 return cfqq;
3543 cic_set_cfqq(cic, NULL, 1);
3545 cfq_put_cooperator(cfqq);
3547 cfq_put_queue(cfqq);
3548 return NULL;
3551 * Allocate cfq data structures associated with this request.
3553 static int
3554 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3556 struct cfq_data *cfqd = q->elevator->elevator_data;
3557 struct cfq_io_context *cic;
3558 const int rw = rq_data_dir(rq);
3559 const bool is_sync = rq_is_sync(rq);
3560 struct cfq_queue *cfqq;
3561 unsigned long flags;
3563 might_sleep_if(gfp_mask & __GFP_WAIT);
3565 cic = cfq_get_io_context(cfqd, gfp_mask);
3567 spin_lock_irqsave(q->queue_lock, flags);
3569 if (!cic)
3570 goto queue_fail;
3572 new_queue:
3573 cfqq = cic_to_cfqq(cic, is_sync);
3574 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3575 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3576 cic_set_cfqq(cic, cfqq, is_sync);
3577 } else {
3579 * If the queue was seeky for too long, break it apart.
3581 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3582 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3583 cfqq = split_cfqq(cic, cfqq);
3584 if (!cfqq)
3585 goto new_queue;
3589 * Check to see if this queue is scheduled to merge with
3590 * another, closely cooperating queue. The merging of
3591 * queues happens here as it must be done in process context.
3592 * The reference on new_cfqq was taken in merge_cfqqs.
3594 if (cfqq->new_cfqq)
3595 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3598 cfqq->allocated[rw]++;
3599 atomic_inc(&cfqq->ref);
3601 spin_unlock_irqrestore(q->queue_lock, flags);
3603 rq->elevator_private = cic;
3604 rq->elevator_private2 = cfqq;
3605 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3606 return 0;
3608 queue_fail:
3609 if (cic)
3610 put_io_context(cic->ioc);
3612 cfq_schedule_dispatch(cfqd);
3613 spin_unlock_irqrestore(q->queue_lock, flags);
3614 cfq_log(cfqd, "set_request fail");
3615 return 1;
3618 static void cfq_kick_queue(struct work_struct *work)
3620 struct cfq_data *cfqd =
3621 container_of(work, struct cfq_data, unplug_work);
3622 struct request_queue *q = cfqd->queue;
3624 spin_lock_irq(q->queue_lock);
3625 __blk_run_queue(cfqd->queue);
3626 spin_unlock_irq(q->queue_lock);
3630 * Timer running if the active_queue is currently idling inside its time slice
3632 static void cfq_idle_slice_timer(unsigned long data)
3634 struct cfq_data *cfqd = (struct cfq_data *) data;
3635 struct cfq_queue *cfqq;
3636 unsigned long flags;
3637 int timed_out = 1;
3639 cfq_log(cfqd, "idle timer fired");
3641 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3643 cfqq = cfqd->active_queue;
3644 if (cfqq) {
3645 timed_out = 0;
3648 * We saw a request before the queue expired, let it through
3650 if (cfq_cfqq_must_dispatch(cfqq))
3651 goto out_kick;
3654 * expired
3656 if (cfq_slice_used(cfqq))
3657 goto expire;
3660 * only expire and reinvoke request handler, if there are
3661 * other queues with pending requests
3663 if (!cfqd->busy_queues)
3664 goto out_cont;
3667 * not expired and it has a request pending, let it dispatch
3669 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3670 goto out_kick;
3673 * Queue depth flag is reset only when the idle didn't succeed
3675 cfq_clear_cfqq_deep(cfqq);
3677 expire:
3678 cfq_slice_expired(cfqd, timed_out);
3679 out_kick:
3680 cfq_schedule_dispatch(cfqd);
3681 out_cont:
3682 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3685 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3687 del_timer_sync(&cfqd->idle_slice_timer);
3688 cancel_work_sync(&cfqd->unplug_work);
3691 static void cfq_put_async_queues(struct cfq_data *cfqd)
3693 int i;
3695 for (i = 0; i < IOPRIO_BE_NR; i++) {
3696 if (cfqd->async_cfqq[0][i])
3697 cfq_put_queue(cfqd->async_cfqq[0][i]);
3698 if (cfqd->async_cfqq[1][i])
3699 cfq_put_queue(cfqd->async_cfqq[1][i]);
3702 if (cfqd->async_idle_cfqq)
3703 cfq_put_queue(cfqd->async_idle_cfqq);
3706 static void cfq_cfqd_free(struct rcu_head *head)
3708 kfree(container_of(head, struct cfq_data, rcu));
3711 static void cfq_exit_queue(struct elevator_queue *e)
3713 struct cfq_data *cfqd = e->elevator_data;
3714 struct request_queue *q = cfqd->queue;
3716 cfq_shutdown_timer_wq(cfqd);
3718 spin_lock_irq(q->queue_lock);
3720 if (cfqd->active_queue)
3721 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3723 while (!list_empty(&cfqd->cic_list)) {
3724 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3725 struct cfq_io_context,
3726 queue_list);
3728 __cfq_exit_single_io_context(cfqd, cic);
3731 cfq_put_async_queues(cfqd);
3732 cfq_release_cfq_groups(cfqd);
3733 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3735 spin_unlock_irq(q->queue_lock);
3737 cfq_shutdown_timer_wq(cfqd);
3739 spin_lock(&cic_index_lock);
3740 ida_remove(&cic_index_ida, cfqd->cic_index);
3741 spin_unlock(&cic_index_lock);
3743 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3744 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3747 static int cfq_alloc_cic_index(void)
3749 int index, error;
3751 do {
3752 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3753 return -ENOMEM;
3755 spin_lock(&cic_index_lock);
3756 error = ida_get_new(&cic_index_ida, &index);
3757 spin_unlock(&cic_index_lock);
3758 if (error && error != -EAGAIN)
3759 return error;
3760 } while (error);
3762 return index;
3765 static void *cfq_init_queue(struct request_queue *q)
3767 struct cfq_data *cfqd;
3768 int i, j;
3769 struct cfq_group *cfqg;
3770 struct cfq_rb_root *st;
3772 i = cfq_alloc_cic_index();
3773 if (i < 0)
3774 return NULL;
3776 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3777 if (!cfqd)
3778 return NULL;
3780 cfqd->cic_index = i;
3782 /* Init root service tree */
3783 cfqd->grp_service_tree = CFQ_RB_ROOT;
3785 /* Init root group */
3786 cfqg = &cfqd->root_group;
3787 for_each_cfqg_st(cfqg, i, j, st)
3788 *st = CFQ_RB_ROOT;
3789 RB_CLEAR_NODE(&cfqg->rb_node);
3791 /* Give preference to root group over other groups */
3792 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3794 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3796 * Take a reference to root group which we never drop. This is just
3797 * to make sure that cfq_put_cfqg() does not try to kfree root group
3799 atomic_set(&cfqg->ref, 1);
3800 rcu_read_lock();
3801 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3803 rcu_read_unlock();
3804 #endif
3806 * Not strictly needed (since RB_ROOT just clears the node and we
3807 * zeroed cfqd on alloc), but better be safe in case someone decides
3808 * to add magic to the rb code
3810 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3811 cfqd->prio_trees[i] = RB_ROOT;
3814 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3815 * Grab a permanent reference to it, so that the normal code flow
3816 * will not attempt to free it.
3818 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3819 atomic_inc(&cfqd->oom_cfqq.ref);
3820 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3822 INIT_LIST_HEAD(&cfqd->cic_list);
3824 cfqd->queue = q;
3826 init_timer(&cfqd->idle_slice_timer);
3827 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3828 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3830 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3832 cfqd->cfq_quantum = cfq_quantum;
3833 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3834 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3835 cfqd->cfq_back_max = cfq_back_max;
3836 cfqd->cfq_back_penalty = cfq_back_penalty;
3837 cfqd->cfq_slice[0] = cfq_slice_async;
3838 cfqd->cfq_slice[1] = cfq_slice_sync;
3839 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3840 cfqd->cfq_slice_idle = cfq_slice_idle;
3841 cfqd->cfq_latency = 1;
3842 cfqd->cfq_group_isolation = 0;
3843 cfqd->hw_tag = -1;
3845 * we optimistically start assuming sync ops weren't delayed in last
3846 * second, in order to have larger depth for async operations.
3848 cfqd->last_delayed_sync = jiffies - HZ;
3849 return cfqd;
3852 static void cfq_slab_kill(void)
3855 * Caller already ensured that pending RCU callbacks are completed,
3856 * so we should have no busy allocations at this point.
3858 if (cfq_pool)
3859 kmem_cache_destroy(cfq_pool);
3860 if (cfq_ioc_pool)
3861 kmem_cache_destroy(cfq_ioc_pool);
3864 static int __init cfq_slab_setup(void)
3866 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3867 if (!cfq_pool)
3868 goto fail;
3870 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3871 if (!cfq_ioc_pool)
3872 goto fail;
3874 return 0;
3875 fail:
3876 cfq_slab_kill();
3877 return -ENOMEM;
3881 * sysfs parts below -->
3883 static ssize_t
3884 cfq_var_show(unsigned int var, char *page)
3886 return sprintf(page, "%d\n", var);
3889 static ssize_t
3890 cfq_var_store(unsigned int *var, const char *page, size_t count)
3892 char *p = (char *) page;
3894 *var = simple_strtoul(p, &p, 10);
3895 return count;
3898 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3899 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3901 struct cfq_data *cfqd = e->elevator_data; \
3902 unsigned int __data = __VAR; \
3903 if (__CONV) \
3904 __data = jiffies_to_msecs(__data); \
3905 return cfq_var_show(__data, (page)); \
3907 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3908 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3909 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3910 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3911 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3912 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3913 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3914 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3915 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3916 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3917 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3918 #undef SHOW_FUNCTION
3920 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3921 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3923 struct cfq_data *cfqd = e->elevator_data; \
3924 unsigned int __data; \
3925 int ret = cfq_var_store(&__data, (page), count); \
3926 if (__data < (MIN)) \
3927 __data = (MIN); \
3928 else if (__data > (MAX)) \
3929 __data = (MAX); \
3930 if (__CONV) \
3931 *(__PTR) = msecs_to_jiffies(__data); \
3932 else \
3933 *(__PTR) = __data; \
3934 return ret; \
3936 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3937 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3938 UINT_MAX, 1);
3939 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3940 UINT_MAX, 1);
3941 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3942 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3943 UINT_MAX, 0);
3944 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3945 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3946 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3947 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3948 UINT_MAX, 0);
3949 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3950 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3951 #undef STORE_FUNCTION
3953 #define CFQ_ATTR(name) \
3954 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3956 static struct elv_fs_entry cfq_attrs[] = {
3957 CFQ_ATTR(quantum),
3958 CFQ_ATTR(fifo_expire_sync),
3959 CFQ_ATTR(fifo_expire_async),
3960 CFQ_ATTR(back_seek_max),
3961 CFQ_ATTR(back_seek_penalty),
3962 CFQ_ATTR(slice_sync),
3963 CFQ_ATTR(slice_async),
3964 CFQ_ATTR(slice_async_rq),
3965 CFQ_ATTR(slice_idle),
3966 CFQ_ATTR(low_latency),
3967 CFQ_ATTR(group_isolation),
3968 __ATTR_NULL
3971 static struct elevator_type iosched_cfq = {
3972 .ops = {
3973 .elevator_merge_fn = cfq_merge,
3974 .elevator_merged_fn = cfq_merged_request,
3975 .elevator_merge_req_fn = cfq_merged_requests,
3976 .elevator_allow_merge_fn = cfq_allow_merge,
3977 .elevator_bio_merged_fn = cfq_bio_merged,
3978 .elevator_dispatch_fn = cfq_dispatch_requests,
3979 .elevator_add_req_fn = cfq_insert_request,
3980 .elevator_activate_req_fn = cfq_activate_request,
3981 .elevator_deactivate_req_fn = cfq_deactivate_request,
3982 .elevator_queue_empty_fn = cfq_queue_empty,
3983 .elevator_completed_req_fn = cfq_completed_request,
3984 .elevator_former_req_fn = elv_rb_former_request,
3985 .elevator_latter_req_fn = elv_rb_latter_request,
3986 .elevator_set_req_fn = cfq_set_request,
3987 .elevator_put_req_fn = cfq_put_request,
3988 .elevator_may_queue_fn = cfq_may_queue,
3989 .elevator_init_fn = cfq_init_queue,
3990 .elevator_exit_fn = cfq_exit_queue,
3991 .trim = cfq_free_io_context,
3993 .elevator_attrs = cfq_attrs,
3994 .elevator_name = "cfq",
3995 .elevator_owner = THIS_MODULE,
3998 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3999 static struct blkio_policy_type blkio_policy_cfq = {
4000 .ops = {
4001 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4002 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4005 #else
4006 static struct blkio_policy_type blkio_policy_cfq;
4007 #endif
4009 static int __init cfq_init(void)
4012 * could be 0 on HZ < 1000 setups
4014 if (!cfq_slice_async)
4015 cfq_slice_async = 1;
4016 if (!cfq_slice_idle)
4017 cfq_slice_idle = 1;
4019 if (cfq_slab_setup())
4020 return -ENOMEM;
4022 elv_register(&iosched_cfq);
4023 blkio_policy_register(&blkio_policy_cfq);
4025 return 0;
4028 static void __exit cfq_exit(void)
4030 DECLARE_COMPLETION_ONSTACK(all_gone);
4031 blkio_policy_unregister(&blkio_policy_cfq);
4032 elv_unregister(&iosched_cfq);
4033 ioc_gone = &all_gone;
4034 /* ioc_gone's update must be visible before reading ioc_count */
4035 smp_wmb();
4038 * this also protects us from entering cfq_slab_kill() with
4039 * pending RCU callbacks
4041 if (elv_ioc_count_read(cfq_ioc_count))
4042 wait_for_completion(&all_gone);
4043 ida_destroy(&cic_index_ida);
4044 cfq_slab_kill();
4047 module_init(cfq_init);
4048 module_exit(cfq_exit);
4050 MODULE_AUTHOR("Jens Axboe");
4051 MODULE_LICENSE("GPL");
4052 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");