2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
35 #include <asm/virtext.h>
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
45 static int __read_mostly bypass_guest_pf
= 1;
46 module_param(bypass_guest_pf
, bool, S_IRUGO
);
48 static int __read_mostly enable_vpid
= 1;
49 module_param_named(vpid
, enable_vpid
, bool, 0444);
51 static int __read_mostly flexpriority_enabled
= 1;
52 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
54 static int __read_mostly enable_ept
= 1;
55 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
57 static int __read_mostly enable_unrestricted_guest
= 1;
58 module_param_named(unrestricted_guest
,
59 enable_unrestricted_guest
, bool, S_IRUGO
);
61 static int __read_mostly emulate_invalid_guest_state
= 0;
62 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
65 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
66 * ple_gap: upper bound on the amount of time between two successive
67 * executions of PAUSE in a loop. Also indicate if ple enabled.
68 * According to test, this time is usually small than 41 cycles.
69 * ple_window: upper bound on the amount of time a guest is allowed to execute
70 * in a PAUSE loop. Tests indicate that most spinlocks are held for
71 * less than 2^12 cycles
72 * Time is measured based on a counter that runs at the same rate as the TSC,
73 * refer SDM volume 3b section 21.6.13 & 22.1.3.
75 #define KVM_VMX_DEFAULT_PLE_GAP 41
76 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
77 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
78 module_param(ple_gap
, int, S_IRUGO
);
80 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
81 module_param(ple_window
, int, S_IRUGO
);
91 struct list_head local_vcpus_link
;
92 unsigned long host_rsp
;
95 u32 idt_vectoring_info
;
96 struct kvm_msr_entry
*guest_msrs
;
97 struct kvm_msr_entry
*host_msrs
;
102 int msr_offset_kernel_gs_base
;
107 u16 fs_sel
, gs_sel
, ldt_sel
;
108 int gs_ldt_reload_needed
;
109 int fs_reload_needed
;
110 int guest_efer_loaded
;
115 struct kvm_save_segment
{
120 } tr
, es
, ds
, fs
, gs
;
128 bool emulation_required
;
130 /* Support for vnmi-less CPUs */
131 int soft_vnmi_blocked
;
133 s64 vnmi_blocked_time
;
137 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
139 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
142 static int init_rmode(struct kvm
*kvm
);
143 static u64
construct_eptp(unsigned long root_hpa
);
145 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
146 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
147 static DEFINE_PER_CPU(struct list_head
, vcpus_on_cpu
);
149 static unsigned long *vmx_io_bitmap_a
;
150 static unsigned long *vmx_io_bitmap_b
;
151 static unsigned long *vmx_msr_bitmap_legacy
;
152 static unsigned long *vmx_msr_bitmap_longmode
;
154 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
155 static DEFINE_SPINLOCK(vmx_vpid_lock
);
157 static struct vmcs_config
{
161 u32 pin_based_exec_ctrl
;
162 u32 cpu_based_exec_ctrl
;
163 u32 cpu_based_2nd_exec_ctrl
;
168 static struct vmx_capability
{
173 #define VMX_SEGMENT_FIELD(seg) \
174 [VCPU_SREG_##seg] = { \
175 .selector = GUEST_##seg##_SELECTOR, \
176 .base = GUEST_##seg##_BASE, \
177 .limit = GUEST_##seg##_LIMIT, \
178 .ar_bytes = GUEST_##seg##_AR_BYTES, \
181 static struct kvm_vmx_segment_field
{
186 } kvm_vmx_segment_fields
[] = {
187 VMX_SEGMENT_FIELD(CS
),
188 VMX_SEGMENT_FIELD(DS
),
189 VMX_SEGMENT_FIELD(ES
),
190 VMX_SEGMENT_FIELD(FS
),
191 VMX_SEGMENT_FIELD(GS
),
192 VMX_SEGMENT_FIELD(SS
),
193 VMX_SEGMENT_FIELD(TR
),
194 VMX_SEGMENT_FIELD(LDTR
),
197 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
200 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
201 * away by decrementing the array size.
203 static const u32 vmx_msr_index
[] = {
205 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
207 MSR_EFER
, MSR_K6_STAR
,
209 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
211 static void load_msrs(struct kvm_msr_entry
*e
, int n
)
215 for (i
= 0; i
< n
; ++i
)
216 wrmsrl(e
[i
].index
, e
[i
].data
);
219 static void save_msrs(struct kvm_msr_entry
*e
, int n
)
223 for (i
= 0; i
< n
; ++i
)
224 rdmsrl(e
[i
].index
, e
[i
].data
);
227 static inline int is_page_fault(u32 intr_info
)
229 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
230 INTR_INFO_VALID_MASK
)) ==
231 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
234 static inline int is_no_device(u32 intr_info
)
236 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
237 INTR_INFO_VALID_MASK
)) ==
238 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
241 static inline int is_invalid_opcode(u32 intr_info
)
243 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
244 INTR_INFO_VALID_MASK
)) ==
245 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
248 static inline int is_external_interrupt(u32 intr_info
)
250 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
251 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
254 static inline int is_machine_check(u32 intr_info
)
256 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
257 INTR_INFO_VALID_MASK
)) ==
258 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
261 static inline int cpu_has_vmx_msr_bitmap(void)
263 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
266 static inline int cpu_has_vmx_tpr_shadow(void)
268 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
271 static inline int vm_need_tpr_shadow(struct kvm
*kvm
)
273 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
276 static inline int cpu_has_secondary_exec_ctrls(void)
278 return vmcs_config
.cpu_based_exec_ctrl
&
279 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
282 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
284 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
285 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
288 static inline bool cpu_has_vmx_flexpriority(void)
290 return cpu_has_vmx_tpr_shadow() &&
291 cpu_has_vmx_virtualize_apic_accesses();
294 static inline bool cpu_has_vmx_ept_execute_only(void)
296 return !!(vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
);
299 static inline bool cpu_has_vmx_eptp_uncacheable(void)
301 return !!(vmx_capability
.ept
& VMX_EPTP_UC_BIT
);
304 static inline bool cpu_has_vmx_eptp_writeback(void)
306 return !!(vmx_capability
.ept
& VMX_EPTP_WB_BIT
);
309 static inline bool cpu_has_vmx_ept_2m_page(void)
311 return !!(vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
);
314 static inline int cpu_has_vmx_invept_individual_addr(void)
316 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_INDIVIDUAL_BIT
);
319 static inline int cpu_has_vmx_invept_context(void)
321 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
);
324 static inline int cpu_has_vmx_invept_global(void)
326 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
);
329 static inline int cpu_has_vmx_ept(void)
331 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
332 SECONDARY_EXEC_ENABLE_EPT
;
335 static inline int cpu_has_vmx_unrestricted_guest(void)
337 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
338 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
341 static inline int cpu_has_vmx_ple(void)
343 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
344 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
347 static inline int vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
349 return flexpriority_enabled
&&
350 (cpu_has_vmx_virtualize_apic_accesses()) &&
351 (irqchip_in_kernel(kvm
));
354 static inline int cpu_has_vmx_vpid(void)
356 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
357 SECONDARY_EXEC_ENABLE_VPID
;
360 static inline int cpu_has_virtual_nmis(void)
362 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
365 static inline bool report_flexpriority(void)
367 return flexpriority_enabled
;
370 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
374 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
375 if (vmx
->guest_msrs
[i
].index
== msr
)
380 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
386 } operand
= { vpid
, 0, gva
};
388 asm volatile (__ex(ASM_VMX_INVVPID
)
389 /* CF==1 or ZF==1 --> rc = -1 */
391 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
394 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
398 } operand
= {eptp
, gpa
};
400 asm volatile (__ex(ASM_VMX_INVEPT
)
401 /* CF==1 or ZF==1 --> rc = -1 */
402 "; ja 1f ; ud2 ; 1:\n"
403 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
406 static struct kvm_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
410 i
= __find_msr_index(vmx
, msr
);
412 return &vmx
->guest_msrs
[i
];
416 static void vmcs_clear(struct vmcs
*vmcs
)
418 u64 phys_addr
= __pa(vmcs
);
421 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
422 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
425 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
429 static void __vcpu_clear(void *arg
)
431 struct vcpu_vmx
*vmx
= arg
;
432 int cpu
= raw_smp_processor_id();
434 if (vmx
->vcpu
.cpu
== cpu
)
435 vmcs_clear(vmx
->vmcs
);
436 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
437 per_cpu(current_vmcs
, cpu
) = NULL
;
438 rdtscll(vmx
->vcpu
.arch
.host_tsc
);
439 list_del(&vmx
->local_vcpus_link
);
444 static void vcpu_clear(struct vcpu_vmx
*vmx
)
446 if (vmx
->vcpu
.cpu
== -1)
448 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
, vmx
, 1);
451 static inline void vpid_sync_vcpu_all(struct vcpu_vmx
*vmx
)
456 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
459 static inline void ept_sync_global(void)
461 if (cpu_has_vmx_invept_global())
462 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
465 static inline void ept_sync_context(u64 eptp
)
468 if (cpu_has_vmx_invept_context())
469 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
475 static inline void ept_sync_individual_addr(u64 eptp
, gpa_t gpa
)
478 if (cpu_has_vmx_invept_individual_addr())
479 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR
,
482 ept_sync_context(eptp
);
486 static unsigned long vmcs_readl(unsigned long field
)
490 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX
)
491 : "=a"(value
) : "d"(field
) : "cc");
495 static u16
vmcs_read16(unsigned long field
)
497 return vmcs_readl(field
);
500 static u32
vmcs_read32(unsigned long field
)
502 return vmcs_readl(field
);
505 static u64
vmcs_read64(unsigned long field
)
508 return vmcs_readl(field
);
510 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
514 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
516 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
517 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
521 static void vmcs_writel(unsigned long field
, unsigned long value
)
525 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
526 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
528 vmwrite_error(field
, value
);
531 static void vmcs_write16(unsigned long field
, u16 value
)
533 vmcs_writel(field
, value
);
536 static void vmcs_write32(unsigned long field
, u32 value
)
538 vmcs_writel(field
, value
);
541 static void vmcs_write64(unsigned long field
, u64 value
)
543 vmcs_writel(field
, value
);
544 #ifndef CONFIG_X86_64
546 vmcs_writel(field
+1, value
>> 32);
550 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
552 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
555 static void vmcs_set_bits(unsigned long field
, u32 mask
)
557 vmcs_writel(field
, vmcs_readl(field
) | mask
);
560 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
564 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
);
565 if (!vcpu
->fpu_active
)
566 eb
|= 1u << NM_VECTOR
;
568 * Unconditionally intercept #DB so we can maintain dr6 without
569 * reading it every exit.
571 eb
|= 1u << DB_VECTOR
;
572 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
573 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
574 eb
|= 1u << BP_VECTOR
;
576 if (to_vmx(vcpu
)->rmode
.vm86_active
)
579 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
580 vmcs_write32(EXCEPTION_BITMAP
, eb
);
583 static void reload_tss(void)
586 * VT restores TR but not its size. Useless.
588 struct descriptor_table gdt
;
589 struct desc_struct
*descs
;
592 descs
= (void *)gdt
.base
;
593 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
597 static void load_transition_efer(struct vcpu_vmx
*vmx
)
599 int efer_offset
= vmx
->msr_offset_efer
;
606 host_efer
= vmx
->host_msrs
[efer_offset
].data
;
607 guest_efer
= vmx
->guest_msrs
[efer_offset
].data
;
610 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
613 ignore_bits
= EFER_NX
| EFER_SCE
;
615 ignore_bits
|= EFER_LMA
| EFER_LME
;
616 /* SCE is meaningful only in long mode on Intel */
617 if (guest_efer
& EFER_LMA
)
618 ignore_bits
&= ~(u64
)EFER_SCE
;
620 if ((guest_efer
& ~ignore_bits
) == (host_efer
& ~ignore_bits
))
623 vmx
->host_state
.guest_efer_loaded
= 1;
624 guest_efer
&= ~ignore_bits
;
625 guest_efer
|= host_efer
& ignore_bits
;
626 wrmsrl(MSR_EFER
, guest_efer
);
627 vmx
->vcpu
.stat
.efer_reload
++;
630 static void reload_host_efer(struct vcpu_vmx
*vmx
)
632 if (vmx
->host_state
.guest_efer_loaded
) {
633 vmx
->host_state
.guest_efer_loaded
= 0;
634 load_msrs(vmx
->host_msrs
+ vmx
->msr_offset_efer
, 1);
638 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
640 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
642 if (vmx
->host_state
.loaded
)
645 vmx
->host_state
.loaded
= 1;
647 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
648 * allow segment selectors with cpl > 0 or ti == 1.
650 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
651 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
652 vmx
->host_state
.fs_sel
= kvm_read_fs();
653 if (!(vmx
->host_state
.fs_sel
& 7)) {
654 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
655 vmx
->host_state
.fs_reload_needed
= 0;
657 vmcs_write16(HOST_FS_SELECTOR
, 0);
658 vmx
->host_state
.fs_reload_needed
= 1;
660 vmx
->host_state
.gs_sel
= kvm_read_gs();
661 if (!(vmx
->host_state
.gs_sel
& 7))
662 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
664 vmcs_write16(HOST_GS_SELECTOR
, 0);
665 vmx
->host_state
.gs_ldt_reload_needed
= 1;
669 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
670 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
672 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
673 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
677 if (is_long_mode(&vmx
->vcpu
))
678 save_msrs(vmx
->host_msrs
+
679 vmx
->msr_offset_kernel_gs_base
, 1);
682 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
683 load_transition_efer(vmx
);
686 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
690 if (!vmx
->host_state
.loaded
)
693 ++vmx
->vcpu
.stat
.host_state_reload
;
694 vmx
->host_state
.loaded
= 0;
695 if (vmx
->host_state
.fs_reload_needed
)
696 kvm_load_fs(vmx
->host_state
.fs_sel
);
697 if (vmx
->host_state
.gs_ldt_reload_needed
) {
698 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
700 * If we have to reload gs, we must take care to
701 * preserve our gs base.
703 local_irq_save(flags
);
704 kvm_load_gs(vmx
->host_state
.gs_sel
);
706 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
708 local_irq_restore(flags
);
711 save_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
712 load_msrs(vmx
->host_msrs
, vmx
->save_nmsrs
);
713 reload_host_efer(vmx
);
716 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
719 __vmx_load_host_state(vmx
);
724 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
725 * vcpu mutex is already taken.
727 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
729 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
730 u64 phys_addr
= __pa(vmx
->vmcs
);
731 u64 tsc_this
, delta
, new_offset
;
733 if (vcpu
->cpu
!= cpu
) {
735 kvm_migrate_timers(vcpu
);
736 set_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
);
738 list_add(&vmx
->local_vcpus_link
,
739 &per_cpu(vcpus_on_cpu
, cpu
));
743 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
746 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
747 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
748 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
751 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
752 vmx
->vmcs
, phys_addr
);
755 if (vcpu
->cpu
!= cpu
) {
756 struct descriptor_table dt
;
757 unsigned long sysenter_esp
;
761 * Linux uses per-cpu TSS and GDT, so set these when switching
764 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
766 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
768 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
769 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
772 * Make sure the time stamp counter is monotonous.
775 if (tsc_this
< vcpu
->arch
.host_tsc
) {
776 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
777 new_offset
= vmcs_read64(TSC_OFFSET
) + delta
;
778 vmcs_write64(TSC_OFFSET
, new_offset
);
783 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
785 __vmx_load_host_state(to_vmx(vcpu
));
788 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
790 if (vcpu
->fpu_active
)
792 vcpu
->fpu_active
= 1;
793 vmcs_clear_bits(GUEST_CR0
, X86_CR0_TS
);
794 if (vcpu
->arch
.cr0
& X86_CR0_TS
)
795 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
796 update_exception_bitmap(vcpu
);
799 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
801 if (!vcpu
->fpu_active
)
803 vcpu
->fpu_active
= 0;
804 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
805 update_exception_bitmap(vcpu
);
808 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
810 unsigned long rflags
;
812 rflags
= vmcs_readl(GUEST_RFLAGS
);
813 if (to_vmx(vcpu
)->rmode
.vm86_active
)
814 rflags
&= ~(unsigned long)(X86_EFLAGS_IOPL
| X86_EFLAGS_VM
);
818 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
820 if (to_vmx(vcpu
)->rmode
.vm86_active
)
821 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
822 vmcs_writel(GUEST_RFLAGS
, rflags
);
825 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
827 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
830 if (interruptibility
& GUEST_INTR_STATE_STI
)
831 ret
|= X86_SHADOW_INT_STI
;
832 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
833 ret
|= X86_SHADOW_INT_MOV_SS
;
838 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
840 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
841 u32 interruptibility
= interruptibility_old
;
843 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
845 if (mask
& X86_SHADOW_INT_MOV_SS
)
846 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
847 if (mask
& X86_SHADOW_INT_STI
)
848 interruptibility
|= GUEST_INTR_STATE_STI
;
850 if ((interruptibility
!= interruptibility_old
))
851 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
854 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
858 rip
= kvm_rip_read(vcpu
);
859 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
860 kvm_rip_write(vcpu
, rip
);
862 /* skipping an emulated instruction also counts */
863 vmx_set_interrupt_shadow(vcpu
, 0);
866 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
867 bool has_error_code
, u32 error_code
)
869 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
870 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
872 if (has_error_code
) {
873 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
874 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
877 if (vmx
->rmode
.vm86_active
) {
878 vmx
->rmode
.irq
.pending
= true;
879 vmx
->rmode
.irq
.vector
= nr
;
880 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
881 if (kvm_exception_is_soft(nr
))
882 vmx
->rmode
.irq
.rip
+=
883 vmx
->vcpu
.arch
.event_exit_inst_len
;
884 intr_info
|= INTR_TYPE_SOFT_INTR
;
885 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
886 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
887 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
891 if (kvm_exception_is_soft(nr
)) {
892 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
893 vmx
->vcpu
.arch
.event_exit_inst_len
);
894 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
896 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
898 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
902 * Swap MSR entry in host/guest MSR entry array.
905 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
907 struct kvm_msr_entry tmp
;
909 tmp
= vmx
->guest_msrs
[to
];
910 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
911 vmx
->guest_msrs
[from
] = tmp
;
912 tmp
= vmx
->host_msrs
[to
];
913 vmx
->host_msrs
[to
] = vmx
->host_msrs
[from
];
914 vmx
->host_msrs
[from
] = tmp
;
919 * Set up the vmcs to automatically save and restore system
920 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
921 * mode, as fiddling with msrs is very expensive.
923 static void setup_msrs(struct vcpu_vmx
*vmx
)
926 unsigned long *msr_bitmap
;
928 vmx_load_host_state(vmx
);
931 if (is_long_mode(&vmx
->vcpu
)) {
934 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
936 move_msr_up(vmx
, index
, save_nmsrs
++);
937 index
= __find_msr_index(vmx
, MSR_LSTAR
);
939 move_msr_up(vmx
, index
, save_nmsrs
++);
940 index
= __find_msr_index(vmx
, MSR_CSTAR
);
942 move_msr_up(vmx
, index
, save_nmsrs
++);
943 index
= __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
945 move_msr_up(vmx
, index
, save_nmsrs
++);
947 * MSR_K6_STAR is only needed on long mode guests, and only
948 * if efer.sce is enabled.
950 index
= __find_msr_index(vmx
, MSR_K6_STAR
);
951 if ((index
>= 0) && (vmx
->vcpu
.arch
.shadow_efer
& EFER_SCE
))
952 move_msr_up(vmx
, index
, save_nmsrs
++);
955 vmx
->save_nmsrs
= save_nmsrs
;
958 vmx
->msr_offset_kernel_gs_base
=
959 __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
961 vmx
->msr_offset_efer
= __find_msr_index(vmx
, MSR_EFER
);
963 if (cpu_has_vmx_msr_bitmap()) {
964 if (is_long_mode(&vmx
->vcpu
))
965 msr_bitmap
= vmx_msr_bitmap_longmode
;
967 msr_bitmap
= vmx_msr_bitmap_legacy
;
969 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
974 * reads and returns guest's timestamp counter "register"
975 * guest_tsc = host_tsc + tsc_offset -- 21.3
977 static u64
guest_read_tsc(void)
979 u64 host_tsc
, tsc_offset
;
982 tsc_offset
= vmcs_read64(TSC_OFFSET
);
983 return host_tsc
+ tsc_offset
;
987 * writes 'guest_tsc' into guest's timestamp counter "register"
988 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
990 static void guest_write_tsc(u64 guest_tsc
, u64 host_tsc
)
992 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
996 * Reads an msr value (of 'msr_index') into 'pdata'.
997 * Returns 0 on success, non-0 otherwise.
998 * Assumes vcpu_load() was already called.
1000 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1003 struct kvm_msr_entry
*msr
;
1006 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
1010 switch (msr_index
) {
1011 #ifdef CONFIG_X86_64
1013 data
= vmcs_readl(GUEST_FS_BASE
);
1016 data
= vmcs_readl(GUEST_GS_BASE
);
1019 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
1022 data
= guest_read_tsc();
1024 case MSR_IA32_SYSENTER_CS
:
1025 data
= vmcs_read32(GUEST_SYSENTER_CS
);
1027 case MSR_IA32_SYSENTER_EIP
:
1028 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
1030 case MSR_IA32_SYSENTER_ESP
:
1031 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
1034 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
1036 vmx_load_host_state(to_vmx(vcpu
));
1040 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
1048 * Writes msr value into into the appropriate "register".
1049 * Returns 0 on success, non-0 otherwise.
1050 * Assumes vcpu_load() was already called.
1052 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1054 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1055 struct kvm_msr_entry
*msr
;
1059 switch (msr_index
) {
1061 vmx_load_host_state(vmx
);
1062 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1064 #ifdef CONFIG_X86_64
1066 vmcs_writel(GUEST_FS_BASE
, data
);
1069 vmcs_writel(GUEST_GS_BASE
, data
);
1072 case MSR_IA32_SYSENTER_CS
:
1073 vmcs_write32(GUEST_SYSENTER_CS
, data
);
1075 case MSR_IA32_SYSENTER_EIP
:
1076 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
1078 case MSR_IA32_SYSENTER_ESP
:
1079 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
1083 guest_write_tsc(data
, host_tsc
);
1085 case MSR_IA32_CR_PAT
:
1086 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
1087 vmcs_write64(GUEST_IA32_PAT
, data
);
1088 vcpu
->arch
.pat
= data
;
1091 /* Otherwise falls through to kvm_set_msr_common */
1093 msr
= find_msr_entry(vmx
, msr_index
);
1095 vmx_load_host_state(vmx
);
1099 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1105 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1107 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
1110 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
1113 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
1115 case VCPU_EXREG_PDPTR
:
1117 ept_save_pdptrs(vcpu
);
1124 static void set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1126 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1127 vmcs_writel(GUEST_DR7
, dbg
->arch
.debugreg
[7]);
1129 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
1131 update_exception_bitmap(vcpu
);
1134 static __init
int cpu_has_kvm_support(void)
1136 return cpu_has_vmx();
1139 static __init
int vmx_disabled_by_bios(void)
1143 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
1144 return (msr
& (FEATURE_CONTROL_LOCKED
|
1145 FEATURE_CONTROL_VMXON_ENABLED
))
1146 == FEATURE_CONTROL_LOCKED
;
1147 /* locked but not enabled */
1150 static int hardware_enable(void *garbage
)
1152 int cpu
= raw_smp_processor_id();
1153 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1156 if (read_cr4() & X86_CR4_VMXE
)
1159 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu
, cpu
));
1160 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
1161 if ((old
& (FEATURE_CONTROL_LOCKED
|
1162 FEATURE_CONTROL_VMXON_ENABLED
))
1163 != (FEATURE_CONTROL_LOCKED
|
1164 FEATURE_CONTROL_VMXON_ENABLED
))
1165 /* enable and lock */
1166 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
|
1167 FEATURE_CONTROL_LOCKED
|
1168 FEATURE_CONTROL_VMXON_ENABLED
);
1169 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
1170 asm volatile (ASM_VMX_VMXON_RAX
1171 : : "a"(&phys_addr
), "m"(phys_addr
)
1179 static void vmclear_local_vcpus(void)
1181 int cpu
= raw_smp_processor_id();
1182 struct vcpu_vmx
*vmx
, *n
;
1184 list_for_each_entry_safe(vmx
, n
, &per_cpu(vcpus_on_cpu
, cpu
),
1190 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1193 static void kvm_cpu_vmxoff(void)
1195 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
1196 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
1199 static void hardware_disable(void *garbage
)
1201 vmclear_local_vcpus();
1205 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
1206 u32 msr
, u32
*result
)
1208 u32 vmx_msr_low
, vmx_msr_high
;
1209 u32 ctl
= ctl_min
| ctl_opt
;
1211 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
1213 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
1214 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
1216 /* Ensure minimum (required) set of control bits are supported. */
1224 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
1226 u32 vmx_msr_low
, vmx_msr_high
;
1227 u32 min
, opt
, min2
, opt2
;
1228 u32 _pin_based_exec_control
= 0;
1229 u32 _cpu_based_exec_control
= 0;
1230 u32 _cpu_based_2nd_exec_control
= 0;
1231 u32 _vmexit_control
= 0;
1232 u32 _vmentry_control
= 0;
1234 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
1235 opt
= PIN_BASED_VIRTUAL_NMIS
;
1236 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
1237 &_pin_based_exec_control
) < 0)
1240 min
= CPU_BASED_HLT_EXITING
|
1241 #ifdef CONFIG_X86_64
1242 CPU_BASED_CR8_LOAD_EXITING
|
1243 CPU_BASED_CR8_STORE_EXITING
|
1245 CPU_BASED_CR3_LOAD_EXITING
|
1246 CPU_BASED_CR3_STORE_EXITING
|
1247 CPU_BASED_USE_IO_BITMAPS
|
1248 CPU_BASED_MOV_DR_EXITING
|
1249 CPU_BASED_USE_TSC_OFFSETING
|
1250 CPU_BASED_INVLPG_EXITING
;
1251 opt
= CPU_BASED_TPR_SHADOW
|
1252 CPU_BASED_USE_MSR_BITMAPS
|
1253 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1254 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1255 &_cpu_based_exec_control
) < 0)
1257 #ifdef CONFIG_X86_64
1258 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
1259 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
1260 ~CPU_BASED_CR8_STORE_EXITING
;
1262 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
1264 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
1265 SECONDARY_EXEC_WBINVD_EXITING
|
1266 SECONDARY_EXEC_ENABLE_VPID
|
1267 SECONDARY_EXEC_ENABLE_EPT
|
1268 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
1269 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
1270 if (adjust_vmx_controls(min2
, opt2
,
1271 MSR_IA32_VMX_PROCBASED_CTLS2
,
1272 &_cpu_based_2nd_exec_control
) < 0)
1275 #ifndef CONFIG_X86_64
1276 if (!(_cpu_based_2nd_exec_control
&
1277 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
1278 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1280 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
1281 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1283 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
1284 CPU_BASED_CR3_STORE_EXITING
|
1285 CPU_BASED_INVLPG_EXITING
);
1286 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
1287 vmx_capability
.ept
, vmx_capability
.vpid
);
1291 #ifdef CONFIG_X86_64
1292 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
1294 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
;
1295 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
1296 &_vmexit_control
) < 0)
1300 opt
= VM_ENTRY_LOAD_IA32_PAT
;
1301 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
1302 &_vmentry_control
) < 0)
1305 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
1307 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1308 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
1311 #ifdef CONFIG_X86_64
1312 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1313 if (vmx_msr_high
& (1u<<16))
1317 /* Require Write-Back (WB) memory type for VMCS accesses. */
1318 if (((vmx_msr_high
>> 18) & 15) != 6)
1321 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
1322 vmcs_conf
->order
= get_order(vmcs_config
.size
);
1323 vmcs_conf
->revision_id
= vmx_msr_low
;
1325 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
1326 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
1327 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
1328 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
1329 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
1334 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
1336 int node
= cpu_to_node(cpu
);
1340 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
1343 vmcs
= page_address(pages
);
1344 memset(vmcs
, 0, vmcs_config
.size
);
1345 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
1349 static struct vmcs
*alloc_vmcs(void)
1351 return alloc_vmcs_cpu(raw_smp_processor_id());
1354 static void free_vmcs(struct vmcs
*vmcs
)
1356 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
1359 static void free_kvm_area(void)
1363 for_each_possible_cpu(cpu
) {
1364 free_vmcs(per_cpu(vmxarea
, cpu
));
1365 per_cpu(vmxarea
, cpu
) = NULL
;
1369 static __init
int alloc_kvm_area(void)
1373 for_each_possible_cpu(cpu
) {
1376 vmcs
= alloc_vmcs_cpu(cpu
);
1382 per_cpu(vmxarea
, cpu
) = vmcs
;
1387 static __init
int hardware_setup(void)
1389 if (setup_vmcs_config(&vmcs_config
) < 0)
1392 if (boot_cpu_has(X86_FEATURE_NX
))
1393 kvm_enable_efer_bits(EFER_NX
);
1395 if (!cpu_has_vmx_vpid())
1398 if (!cpu_has_vmx_ept()) {
1400 enable_unrestricted_guest
= 0;
1403 if (!cpu_has_vmx_unrestricted_guest())
1404 enable_unrestricted_guest
= 0;
1406 if (!cpu_has_vmx_flexpriority())
1407 flexpriority_enabled
= 0;
1409 if (!cpu_has_vmx_tpr_shadow())
1410 kvm_x86_ops
->update_cr8_intercept
= NULL
;
1412 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
1413 kvm_disable_largepages();
1415 if (!cpu_has_vmx_ple())
1418 return alloc_kvm_area();
1421 static __exit
void hardware_unsetup(void)
1426 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1428 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1430 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1431 vmcs_write16(sf
->selector
, save
->selector
);
1432 vmcs_writel(sf
->base
, save
->base
);
1433 vmcs_write32(sf
->limit
, save
->limit
);
1434 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1436 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1438 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1442 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1444 unsigned long flags
;
1445 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1447 vmx
->emulation_required
= 1;
1448 vmx
->rmode
.vm86_active
= 0;
1450 vmcs_writel(GUEST_TR_BASE
, vmx
->rmode
.tr
.base
);
1451 vmcs_write32(GUEST_TR_LIMIT
, vmx
->rmode
.tr
.limit
);
1452 vmcs_write32(GUEST_TR_AR_BYTES
, vmx
->rmode
.tr
.ar
);
1454 flags
= vmcs_readl(GUEST_RFLAGS
);
1455 flags
&= ~(X86_EFLAGS_IOPL
| X86_EFLAGS_VM
);
1456 flags
|= (vmx
->rmode
.save_iopl
<< IOPL_SHIFT
);
1457 vmcs_writel(GUEST_RFLAGS
, flags
);
1459 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1460 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1462 update_exception_bitmap(vcpu
);
1464 if (emulate_invalid_guest_state
)
1467 fix_pmode_dataseg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1468 fix_pmode_dataseg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1469 fix_pmode_dataseg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1470 fix_pmode_dataseg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1472 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1473 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1475 vmcs_write16(GUEST_CS_SELECTOR
,
1476 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1477 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1480 static gva_t
rmode_tss_base(struct kvm
*kvm
)
1482 if (!kvm
->arch
.tss_addr
) {
1483 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+
1484 kvm
->memslots
[0].npages
- 3;
1485 return base_gfn
<< PAGE_SHIFT
;
1487 return kvm
->arch
.tss_addr
;
1490 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1492 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1494 save
->selector
= vmcs_read16(sf
->selector
);
1495 save
->base
= vmcs_readl(sf
->base
);
1496 save
->limit
= vmcs_read32(sf
->limit
);
1497 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1498 vmcs_write16(sf
->selector
, save
->base
>> 4);
1499 vmcs_write32(sf
->base
, save
->base
& 0xfffff);
1500 vmcs_write32(sf
->limit
, 0xffff);
1501 vmcs_write32(sf
->ar_bytes
, 0xf3);
1504 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1506 unsigned long flags
;
1507 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1509 if (enable_unrestricted_guest
)
1512 vmx
->emulation_required
= 1;
1513 vmx
->rmode
.vm86_active
= 1;
1515 vmx
->rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1516 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1518 vmx
->rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1519 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1521 vmx
->rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1522 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1524 flags
= vmcs_readl(GUEST_RFLAGS
);
1525 vmx
->rmode
.save_iopl
1526 = (flags
& X86_EFLAGS_IOPL
) >> IOPL_SHIFT
;
1528 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1530 vmcs_writel(GUEST_RFLAGS
, flags
);
1531 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1532 update_exception_bitmap(vcpu
);
1534 if (emulate_invalid_guest_state
)
1535 goto continue_rmode
;
1537 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1538 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1539 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1541 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1542 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1543 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1544 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1545 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1547 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1548 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1549 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1550 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1553 kvm_mmu_reset_context(vcpu
);
1554 init_rmode(vcpu
->kvm
);
1557 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1559 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1560 struct kvm_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1562 vcpu
->arch
.shadow_efer
= efer
;
1565 if (efer
& EFER_LMA
) {
1566 vmcs_write32(VM_ENTRY_CONTROLS
,
1567 vmcs_read32(VM_ENTRY_CONTROLS
) |
1568 VM_ENTRY_IA32E_MODE
);
1571 vmcs_write32(VM_ENTRY_CONTROLS
,
1572 vmcs_read32(VM_ENTRY_CONTROLS
) &
1573 ~VM_ENTRY_IA32E_MODE
);
1575 msr
->data
= efer
& ~EFER_LME
;
1580 #ifdef CONFIG_X86_64
1582 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1586 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1587 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1588 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1590 vmcs_write32(GUEST_TR_AR_BYTES
,
1591 (guest_tr_ar
& ~AR_TYPE_MASK
)
1592 | AR_TYPE_BUSY_64_TSS
);
1594 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
1595 vmx_set_efer(vcpu
, vcpu
->arch
.shadow_efer
);
1598 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1600 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
1602 vmcs_write32(VM_ENTRY_CONTROLS
,
1603 vmcs_read32(VM_ENTRY_CONTROLS
)
1604 & ~VM_ENTRY_IA32E_MODE
);
1609 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
1611 vpid_sync_vcpu_all(to_vmx(vcpu
));
1613 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
1616 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1618 vcpu
->arch
.cr4
&= KVM_GUEST_CR4_MASK
;
1619 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
1622 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
1624 if (!test_bit(VCPU_EXREG_PDPTR
,
1625 (unsigned long *)&vcpu
->arch
.regs_dirty
))
1628 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1629 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.pdptrs
[0]);
1630 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.pdptrs
[1]);
1631 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.pdptrs
[2]);
1632 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.pdptrs
[3]);
1636 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
1638 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1639 vcpu
->arch
.pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
1640 vcpu
->arch
.pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
1641 vcpu
->arch
.pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
1642 vcpu
->arch
.pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
1645 __set_bit(VCPU_EXREG_PDPTR
,
1646 (unsigned long *)&vcpu
->arch
.regs_avail
);
1647 __set_bit(VCPU_EXREG_PDPTR
,
1648 (unsigned long *)&vcpu
->arch
.regs_dirty
);
1651 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
1653 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
1655 struct kvm_vcpu
*vcpu
)
1657 if (!(cr0
& X86_CR0_PG
)) {
1658 /* From paging/starting to nonpaging */
1659 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1660 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
1661 (CPU_BASED_CR3_LOAD_EXITING
|
1662 CPU_BASED_CR3_STORE_EXITING
));
1663 vcpu
->arch
.cr0
= cr0
;
1664 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1665 } else if (!is_paging(vcpu
)) {
1666 /* From nonpaging to paging */
1667 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1668 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
1669 ~(CPU_BASED_CR3_LOAD_EXITING
|
1670 CPU_BASED_CR3_STORE_EXITING
));
1671 vcpu
->arch
.cr0
= cr0
;
1672 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1675 if (!(cr0
& X86_CR0_WP
))
1676 *hw_cr0
&= ~X86_CR0_WP
;
1679 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4
,
1680 struct kvm_vcpu
*vcpu
)
1682 if (!is_paging(vcpu
)) {
1683 *hw_cr4
&= ~X86_CR4_PAE
;
1684 *hw_cr4
|= X86_CR4_PSE
;
1685 } else if (!(vcpu
->arch
.cr4
& X86_CR4_PAE
))
1686 *hw_cr4
&= ~X86_CR4_PAE
;
1689 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1691 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1692 unsigned long hw_cr0
;
1694 if (enable_unrestricted_guest
)
1695 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST
)
1696 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
1698 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
;
1700 vmx_fpu_deactivate(vcpu
);
1702 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
1705 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
1708 #ifdef CONFIG_X86_64
1709 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
1710 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1712 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1718 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
1720 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1721 vmcs_writel(GUEST_CR0
, hw_cr0
);
1722 vcpu
->arch
.cr0
= cr0
;
1724 if (!(cr0
& X86_CR0_TS
) || !(cr0
& X86_CR0_PE
))
1725 vmx_fpu_activate(vcpu
);
1728 static u64
construct_eptp(unsigned long root_hpa
)
1732 /* TODO write the value reading from MSR */
1733 eptp
= VMX_EPT_DEFAULT_MT
|
1734 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
1735 eptp
|= (root_hpa
& PAGE_MASK
);
1740 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1742 unsigned long guest_cr3
;
1747 eptp
= construct_eptp(cr3
);
1748 vmcs_write64(EPT_POINTER
, eptp
);
1749 guest_cr3
= is_paging(vcpu
) ? vcpu
->arch
.cr3
:
1750 vcpu
->kvm
->arch
.ept_identity_map_addr
;
1753 vmx_flush_tlb(vcpu
);
1754 vmcs_writel(GUEST_CR3
, guest_cr3
);
1755 if (vcpu
->arch
.cr0
& X86_CR0_PE
)
1756 vmx_fpu_deactivate(vcpu
);
1759 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1761 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
1762 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
1764 vcpu
->arch
.cr4
= cr4
;
1766 ept_update_paging_mode_cr4(&hw_cr4
, vcpu
);
1768 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1769 vmcs_writel(GUEST_CR4
, hw_cr4
);
1772 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1774 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1776 return vmcs_readl(sf
->base
);
1779 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1780 struct kvm_segment
*var
, int seg
)
1782 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1785 var
->base
= vmcs_readl(sf
->base
);
1786 var
->limit
= vmcs_read32(sf
->limit
);
1787 var
->selector
= vmcs_read16(sf
->selector
);
1788 ar
= vmcs_read32(sf
->ar_bytes
);
1789 if ((ar
& AR_UNUSABLE_MASK
) && !emulate_invalid_guest_state
)
1791 var
->type
= ar
& 15;
1792 var
->s
= (ar
>> 4) & 1;
1793 var
->dpl
= (ar
>> 5) & 3;
1794 var
->present
= (ar
>> 7) & 1;
1795 var
->avl
= (ar
>> 12) & 1;
1796 var
->l
= (ar
>> 13) & 1;
1797 var
->db
= (ar
>> 14) & 1;
1798 var
->g
= (ar
>> 15) & 1;
1799 var
->unusable
= (ar
>> 16) & 1;
1802 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
1804 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) /* if real mode */
1807 if (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) /* if virtual 8086 */
1810 return vmcs_read16(GUEST_CS_SELECTOR
) & 3;
1813 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
1820 ar
= var
->type
& 15;
1821 ar
|= (var
->s
& 1) << 4;
1822 ar
|= (var
->dpl
& 3) << 5;
1823 ar
|= (var
->present
& 1) << 7;
1824 ar
|= (var
->avl
& 1) << 12;
1825 ar
|= (var
->l
& 1) << 13;
1826 ar
|= (var
->db
& 1) << 14;
1827 ar
|= (var
->g
& 1) << 15;
1829 if (ar
== 0) /* a 0 value means unusable */
1830 ar
= AR_UNUSABLE_MASK
;
1835 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1836 struct kvm_segment
*var
, int seg
)
1838 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1839 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1842 if (vmx
->rmode
.vm86_active
&& seg
== VCPU_SREG_TR
) {
1843 vmx
->rmode
.tr
.selector
= var
->selector
;
1844 vmx
->rmode
.tr
.base
= var
->base
;
1845 vmx
->rmode
.tr
.limit
= var
->limit
;
1846 vmx
->rmode
.tr
.ar
= vmx_segment_access_rights(var
);
1849 vmcs_writel(sf
->base
, var
->base
);
1850 vmcs_write32(sf
->limit
, var
->limit
);
1851 vmcs_write16(sf
->selector
, var
->selector
);
1852 if (vmx
->rmode
.vm86_active
&& var
->s
) {
1854 * Hack real-mode segments into vm86 compatibility.
1856 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
1857 vmcs_writel(sf
->base
, 0xf0000);
1860 ar
= vmx_segment_access_rights(var
);
1863 * Fix the "Accessed" bit in AR field of segment registers for older
1865 * IA32 arch specifies that at the time of processor reset the
1866 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1867 * is setting it to 0 in the usedland code. This causes invalid guest
1868 * state vmexit when "unrestricted guest" mode is turned on.
1869 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1870 * tree. Newer qemu binaries with that qemu fix would not need this
1873 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
1874 ar
|= 0x1; /* Accessed */
1876 vmcs_write32(sf
->ar_bytes
, ar
);
1879 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
1881 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1883 *db
= (ar
>> 14) & 1;
1884 *l
= (ar
>> 13) & 1;
1887 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1889 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
1890 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
1893 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1895 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
1896 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
1899 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1901 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
1902 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
1905 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1907 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1908 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1911 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1913 struct kvm_segment var
;
1916 vmx_get_segment(vcpu
, &var
, seg
);
1917 ar
= vmx_segment_access_rights(&var
);
1919 if (var
.base
!= (var
.selector
<< 4))
1921 if (var
.limit
!= 0xffff)
1929 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
1931 struct kvm_segment cs
;
1932 unsigned int cs_rpl
;
1934 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
1935 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
1939 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
1943 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
1944 if (cs
.dpl
> cs_rpl
)
1947 if (cs
.dpl
!= cs_rpl
)
1953 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1957 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
1959 struct kvm_segment ss
;
1960 unsigned int ss_rpl
;
1962 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
1963 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
1967 if (ss
.type
!= 3 && ss
.type
!= 7)
1971 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
1979 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1981 struct kvm_segment var
;
1984 vmx_get_segment(vcpu
, &var
, seg
);
1985 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
1993 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
1994 if (var
.dpl
< rpl
) /* DPL < RPL */
1998 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2004 static bool tr_valid(struct kvm_vcpu
*vcpu
)
2006 struct kvm_segment tr
;
2008 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
2012 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
2014 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
2022 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
2024 struct kvm_segment ldtr
;
2026 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
2030 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
2040 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
2042 struct kvm_segment cs
, ss
;
2044 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2045 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
2047 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
2048 (ss
.selector
& SELECTOR_RPL_MASK
));
2052 * Check if guest state is valid. Returns true if valid, false if
2054 * We assume that registers are always usable
2056 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
2058 /* real mode guest state checks */
2059 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) {
2060 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
2062 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
2064 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
2066 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
2068 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
2070 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
2073 /* protected mode guest state checks */
2074 if (!cs_ss_rpl_check(vcpu
))
2076 if (!code_segment_valid(vcpu
))
2078 if (!stack_segment_valid(vcpu
))
2080 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
2082 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
2084 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
2086 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
2088 if (!tr_valid(vcpu
))
2090 if (!ldtr_valid(vcpu
))
2094 * - Add checks on RIP
2095 * - Add checks on RFLAGS
2101 static int init_rmode_tss(struct kvm
*kvm
)
2103 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
2108 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2111 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
2112 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
2113 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
2116 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
2119 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2123 r
= kvm_write_guest_page(kvm
, fn
, &data
,
2124 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
2134 static int init_rmode_identity_map(struct kvm
*kvm
)
2137 pfn_t identity_map_pfn
;
2142 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
2143 printk(KERN_ERR
"EPT: identity-mapping pagetable "
2144 "haven't been allocated!\n");
2147 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
2150 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
2151 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
2154 /* Set up identity-mapping pagetable for EPT in real mode */
2155 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
2156 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
2157 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
2158 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
2159 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
2163 kvm
->arch
.ept_identity_pagetable_done
= true;
2169 static void seg_setup(int seg
)
2171 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2174 vmcs_write16(sf
->selector
, 0);
2175 vmcs_writel(sf
->base
, 0);
2176 vmcs_write32(sf
->limit
, 0xffff);
2177 if (enable_unrestricted_guest
) {
2179 if (seg
== VCPU_SREG_CS
)
2180 ar
|= 0x08; /* code segment */
2184 vmcs_write32(sf
->ar_bytes
, ar
);
2187 static int alloc_apic_access_page(struct kvm
*kvm
)
2189 struct kvm_userspace_memory_region kvm_userspace_mem
;
2192 down_write(&kvm
->slots_lock
);
2193 if (kvm
->arch
.apic_access_page
)
2195 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
2196 kvm_userspace_mem
.flags
= 0;
2197 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
2198 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2199 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2203 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
2205 up_write(&kvm
->slots_lock
);
2209 static int alloc_identity_pagetable(struct kvm
*kvm
)
2211 struct kvm_userspace_memory_region kvm_userspace_mem
;
2214 down_write(&kvm
->slots_lock
);
2215 if (kvm
->arch
.ept_identity_pagetable
)
2217 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
2218 kvm_userspace_mem
.flags
= 0;
2219 kvm_userspace_mem
.guest_phys_addr
=
2220 kvm
->arch
.ept_identity_map_addr
;
2221 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2222 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2226 kvm
->arch
.ept_identity_pagetable
= gfn_to_page(kvm
,
2227 kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
);
2229 up_write(&kvm
->slots_lock
);
2233 static void allocate_vpid(struct vcpu_vmx
*vmx
)
2240 spin_lock(&vmx_vpid_lock
);
2241 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
2242 if (vpid
< VMX_NR_VPIDS
) {
2244 __set_bit(vpid
, vmx_vpid_bitmap
);
2246 spin_unlock(&vmx_vpid_lock
);
2249 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
, u32 msr
)
2251 int f
= sizeof(unsigned long);
2253 if (!cpu_has_vmx_msr_bitmap())
2257 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2258 * have the write-low and read-high bitmap offsets the wrong way round.
2259 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2261 if (msr
<= 0x1fff) {
2262 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
); /* read-low */
2263 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
); /* write-low */
2264 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
2266 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
); /* read-high */
2267 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
); /* write-high */
2271 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
2274 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
, msr
);
2275 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
, msr
);
2279 * Sets up the vmcs for emulated real mode.
2281 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
2283 u32 host_sysenter_cs
, msr_low
, msr_high
;
2285 u64 host_pat
, tsc_this
, tsc_base
;
2287 struct descriptor_table dt
;
2289 unsigned long kvm_vmx_return
;
2293 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
2294 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
2296 if (cpu_has_vmx_msr_bitmap())
2297 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
2299 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
2302 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
2303 vmcs_config
.pin_based_exec_ctrl
);
2305 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
2306 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
2307 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2308 #ifdef CONFIG_X86_64
2309 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
2310 CPU_BASED_CR8_LOAD_EXITING
;
2314 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
2315 CPU_BASED_CR3_LOAD_EXITING
|
2316 CPU_BASED_INVLPG_EXITING
;
2317 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
2319 if (cpu_has_secondary_exec_ctrls()) {
2320 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
2321 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2323 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
2325 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
2327 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
2328 if (!enable_unrestricted_guest
)
2329 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2331 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
2332 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
2336 vmcs_write32(PLE_GAP
, ple_gap
);
2337 vmcs_write32(PLE_WINDOW
, ple_window
);
2340 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, !!bypass_guest_pf
);
2341 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, !!bypass_guest_pf
);
2342 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
2344 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
2345 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
2346 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2348 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
2349 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2350 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2351 vmcs_write16(HOST_FS_SELECTOR
, kvm_read_fs()); /* 22.2.4 */
2352 vmcs_write16(HOST_GS_SELECTOR
, kvm_read_gs()); /* 22.2.4 */
2353 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2354 #ifdef CONFIG_X86_64
2355 rdmsrl(MSR_FS_BASE
, a
);
2356 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
2357 rdmsrl(MSR_GS_BASE
, a
);
2358 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
2360 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
2361 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
2364 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
2367 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
2369 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
2370 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
2371 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
2372 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
2373 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
2375 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
2376 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
2377 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
2378 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
2379 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
2380 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
2382 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
2383 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2384 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2385 vmcs_write64(HOST_IA32_PAT
, host_pat
);
2387 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2388 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2389 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2390 /* Write the default value follow host pat */
2391 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
2392 /* Keep arch.pat sync with GUEST_IA32_PAT */
2393 vmx
->vcpu
.arch
.pat
= host_pat
;
2396 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
2397 u32 index
= vmx_msr_index
[i
];
2398 u32 data_low
, data_high
;
2402 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
2404 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
2406 data
= data_low
| ((u64
)data_high
<< 32);
2407 vmx
->host_msrs
[j
].index
= index
;
2408 vmx
->host_msrs
[j
].reserved
= 0;
2409 vmx
->host_msrs
[j
].data
= data
;
2410 vmx
->guest_msrs
[j
] = vmx
->host_msrs
[j
];
2414 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
2416 /* 22.2.1, 20.8.1 */
2417 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
2419 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
2420 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
2422 tsc_base
= vmx
->vcpu
.kvm
->arch
.vm_init_tsc
;
2424 if (tsc_this
< vmx
->vcpu
.kvm
->arch
.vm_init_tsc
)
2425 tsc_base
= tsc_this
;
2427 guest_write_tsc(0, tsc_base
);
2432 static int init_rmode(struct kvm
*kvm
)
2434 if (!init_rmode_tss(kvm
))
2436 if (!init_rmode_identity_map(kvm
))
2441 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
2443 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2447 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
2448 down_read(&vcpu
->kvm
->slots_lock
);
2449 if (!init_rmode(vmx
->vcpu
.kvm
)) {
2454 vmx
->rmode
.vm86_active
= 0;
2456 vmx
->soft_vnmi_blocked
= 0;
2458 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
2459 kvm_set_cr8(&vmx
->vcpu
, 0);
2460 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
2461 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2462 msr
|= MSR_IA32_APICBASE_BSP
;
2463 kvm_set_apic_base(&vmx
->vcpu
, msr
);
2465 fx_init(&vmx
->vcpu
);
2467 seg_setup(VCPU_SREG_CS
);
2469 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2470 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2472 if (kvm_vcpu_is_bsp(&vmx
->vcpu
)) {
2473 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
2474 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
2476 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
2477 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
2480 seg_setup(VCPU_SREG_DS
);
2481 seg_setup(VCPU_SREG_ES
);
2482 seg_setup(VCPU_SREG_FS
);
2483 seg_setup(VCPU_SREG_GS
);
2484 seg_setup(VCPU_SREG_SS
);
2486 vmcs_write16(GUEST_TR_SELECTOR
, 0);
2487 vmcs_writel(GUEST_TR_BASE
, 0);
2488 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
2489 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2491 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
2492 vmcs_writel(GUEST_LDTR_BASE
, 0);
2493 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
2494 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
2496 vmcs_write32(GUEST_SYSENTER_CS
, 0);
2497 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
2498 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
2500 vmcs_writel(GUEST_RFLAGS
, 0x02);
2501 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2502 kvm_rip_write(vcpu
, 0xfff0);
2504 kvm_rip_write(vcpu
, 0);
2505 kvm_register_write(vcpu
, VCPU_REGS_RSP
, 0);
2507 vmcs_writel(GUEST_DR7
, 0x400);
2509 vmcs_writel(GUEST_GDTR_BASE
, 0);
2510 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
2512 vmcs_writel(GUEST_IDTR_BASE
, 0);
2513 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
2515 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
2516 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
2517 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
2519 /* Special registers */
2520 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
2524 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
2526 if (cpu_has_vmx_tpr_shadow()) {
2527 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
2528 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
2529 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
2530 page_to_phys(vmx
->vcpu
.arch
.apic
->regs_page
));
2531 vmcs_write32(TPR_THRESHOLD
, 0);
2534 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2535 vmcs_write64(APIC_ACCESS_ADDR
,
2536 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
2539 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
2541 vmx
->vcpu
.arch
.cr0
= 0x60000010;
2542 vmx_set_cr0(&vmx
->vcpu
, vmx
->vcpu
.arch
.cr0
); /* enter rmode */
2543 vmx_set_cr4(&vmx
->vcpu
, 0);
2544 vmx_set_efer(&vmx
->vcpu
, 0);
2545 vmx_fpu_activate(&vmx
->vcpu
);
2546 update_exception_bitmap(&vmx
->vcpu
);
2548 vpid_sync_vcpu_all(vmx
);
2552 /* HACK: Don't enable emulation on guest boot/reset */
2553 vmx
->emulation_required
= 0;
2556 up_read(&vcpu
->kvm
->slots_lock
);
2560 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2562 u32 cpu_based_vm_exec_control
;
2564 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2565 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2566 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2569 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2571 u32 cpu_based_vm_exec_control
;
2573 if (!cpu_has_virtual_nmis()) {
2574 enable_irq_window(vcpu
);
2578 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2579 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
2580 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2583 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
2585 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2587 int irq
= vcpu
->arch
.interrupt
.nr
;
2589 trace_kvm_inj_virq(irq
);
2591 ++vcpu
->stat
.irq_injections
;
2592 if (vmx
->rmode
.vm86_active
) {
2593 vmx
->rmode
.irq
.pending
= true;
2594 vmx
->rmode
.irq
.vector
= irq
;
2595 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2596 if (vcpu
->arch
.interrupt
.soft
)
2597 vmx
->rmode
.irq
.rip
+=
2598 vmx
->vcpu
.arch
.event_exit_inst_len
;
2599 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2600 irq
| INTR_TYPE_SOFT_INTR
| INTR_INFO_VALID_MASK
);
2601 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2602 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2605 intr
= irq
| INTR_INFO_VALID_MASK
;
2606 if (vcpu
->arch
.interrupt
.soft
) {
2607 intr
|= INTR_TYPE_SOFT_INTR
;
2608 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2609 vmx
->vcpu
.arch
.event_exit_inst_len
);
2611 intr
|= INTR_TYPE_EXT_INTR
;
2612 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
2615 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
2617 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2619 if (!cpu_has_virtual_nmis()) {
2621 * Tracking the NMI-blocked state in software is built upon
2622 * finding the next open IRQ window. This, in turn, depends on
2623 * well-behaving guests: They have to keep IRQs disabled at
2624 * least as long as the NMI handler runs. Otherwise we may
2625 * cause NMI nesting, maybe breaking the guest. But as this is
2626 * highly unlikely, we can live with the residual risk.
2628 vmx
->soft_vnmi_blocked
= 1;
2629 vmx
->vnmi_blocked_time
= 0;
2632 ++vcpu
->stat
.nmi_injections
;
2633 if (vmx
->rmode
.vm86_active
) {
2634 vmx
->rmode
.irq
.pending
= true;
2635 vmx
->rmode
.irq
.vector
= NMI_VECTOR
;
2636 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2637 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2638 NMI_VECTOR
| INTR_TYPE_SOFT_INTR
|
2639 INTR_INFO_VALID_MASK
);
2640 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2641 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2644 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2645 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
2648 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
2650 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
2653 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2654 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
|
2655 GUEST_INTR_STATE_NMI
));
2658 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2660 return (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2661 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2662 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
2665 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2668 struct kvm_userspace_memory_region tss_mem
= {
2669 .slot
= TSS_PRIVATE_MEMSLOT
,
2670 .guest_phys_addr
= addr
,
2671 .memory_size
= PAGE_SIZE
* 3,
2675 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
2678 kvm
->arch
.tss_addr
= addr
;
2682 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
2683 int vec
, u32 err_code
)
2686 * Instruction with address size override prefix opcode 0x67
2687 * Cause the #SS fault with 0 error code in VM86 mode.
2689 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
2690 if (emulate_instruction(vcpu
, 0, 0, 0) == EMULATE_DONE
)
2693 * Forward all other exceptions that are valid in real mode.
2694 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2695 * the required debugging infrastructure rework.
2699 if (vcpu
->guest_debug
&
2700 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
2702 kvm_queue_exception(vcpu
, vec
);
2705 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
2716 kvm_queue_exception(vcpu
, vec
);
2723 * Trigger machine check on the host. We assume all the MSRs are already set up
2724 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2725 * We pass a fake environment to the machine check handler because we want
2726 * the guest to be always treated like user space, no matter what context
2727 * it used internally.
2729 static void kvm_machine_check(void)
2731 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2732 struct pt_regs regs
= {
2733 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
2734 .flags
= X86_EFLAGS_IF
,
2737 do_machine_check(®s
, 0);
2741 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
2743 /* already handled by vcpu_run */
2747 static int handle_exception(struct kvm_vcpu
*vcpu
)
2749 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2750 struct kvm_run
*kvm_run
= vcpu
->run
;
2751 u32 intr_info
, ex_no
, error_code
;
2752 unsigned long cr2
, rip
, dr6
;
2754 enum emulation_result er
;
2756 vect_info
= vmx
->idt_vectoring_info
;
2757 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
2759 if (is_machine_check(intr_info
))
2760 return handle_machine_check(vcpu
);
2762 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
2763 !is_page_fault(intr_info
))
2764 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
2765 "intr info 0x%x\n", __func__
, vect_info
, intr_info
);
2767 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
2768 return 1; /* already handled by vmx_vcpu_run() */
2770 if (is_no_device(intr_info
)) {
2771 vmx_fpu_activate(vcpu
);
2775 if (is_invalid_opcode(intr_info
)) {
2776 er
= emulate_instruction(vcpu
, 0, 0, EMULTYPE_TRAP_UD
);
2777 if (er
!= EMULATE_DONE
)
2778 kvm_queue_exception(vcpu
, UD_VECTOR
);
2783 rip
= kvm_rip_read(vcpu
);
2784 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
2785 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
2786 if (is_page_fault(intr_info
)) {
2787 /* EPT won't cause page fault directly */
2790 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
2791 trace_kvm_page_fault(cr2
, error_code
);
2793 if (kvm_event_needs_reinjection(vcpu
))
2794 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
2795 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
2798 if (vmx
->rmode
.vm86_active
&&
2799 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
2801 if (vcpu
->arch
.halt_request
) {
2802 vcpu
->arch
.halt_request
= 0;
2803 return kvm_emulate_halt(vcpu
);
2808 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
2811 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
2812 if (!(vcpu
->guest_debug
&
2813 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
2814 vcpu
->arch
.dr6
= dr6
| DR6_FIXED_1
;
2815 kvm_queue_exception(vcpu
, DB_VECTOR
);
2818 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
2819 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
2822 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2823 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
2824 kvm_run
->debug
.arch
.exception
= ex_no
;
2827 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
2828 kvm_run
->ex
.exception
= ex_no
;
2829 kvm_run
->ex
.error_code
= error_code
;
2835 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
2837 ++vcpu
->stat
.irq_exits
;
2841 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
2843 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2847 static int handle_io(struct kvm_vcpu
*vcpu
)
2849 unsigned long exit_qualification
;
2850 int size
, in
, string
;
2853 ++vcpu
->stat
.io_exits
;
2854 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2855 string
= (exit_qualification
& 16) != 0;
2858 if (emulate_instruction(vcpu
, 0, 0, 0) == EMULATE_DO_MMIO
)
2863 size
= (exit_qualification
& 7) + 1;
2864 in
= (exit_qualification
& 8) != 0;
2865 port
= exit_qualification
>> 16;
2867 skip_emulated_instruction(vcpu
);
2868 return kvm_emulate_pio(vcpu
, in
, size
, port
);
2872 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2875 * Patch in the VMCALL instruction:
2877 hypercall
[0] = 0x0f;
2878 hypercall
[1] = 0x01;
2879 hypercall
[2] = 0xc1;
2882 static int handle_cr(struct kvm_vcpu
*vcpu
)
2884 unsigned long exit_qualification
, val
;
2888 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2889 cr
= exit_qualification
& 15;
2890 reg
= (exit_qualification
>> 8) & 15;
2891 switch ((exit_qualification
>> 4) & 3) {
2892 case 0: /* mov to cr */
2893 val
= kvm_register_read(vcpu
, reg
);
2894 trace_kvm_cr_write(cr
, val
);
2897 kvm_set_cr0(vcpu
, val
);
2898 skip_emulated_instruction(vcpu
);
2901 kvm_set_cr3(vcpu
, val
);
2902 skip_emulated_instruction(vcpu
);
2905 kvm_set_cr4(vcpu
, val
);
2906 skip_emulated_instruction(vcpu
);
2909 u8 cr8_prev
= kvm_get_cr8(vcpu
);
2910 u8 cr8
= kvm_register_read(vcpu
, reg
);
2911 kvm_set_cr8(vcpu
, cr8
);
2912 skip_emulated_instruction(vcpu
);
2913 if (irqchip_in_kernel(vcpu
->kvm
))
2915 if (cr8_prev
<= cr8
)
2917 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
2923 vmx_fpu_deactivate(vcpu
);
2924 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
2925 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
2926 vmx_fpu_activate(vcpu
);
2927 skip_emulated_instruction(vcpu
);
2929 case 1: /*mov from cr*/
2932 kvm_register_write(vcpu
, reg
, vcpu
->arch
.cr3
);
2933 trace_kvm_cr_read(cr
, vcpu
->arch
.cr3
);
2934 skip_emulated_instruction(vcpu
);
2937 val
= kvm_get_cr8(vcpu
);
2938 kvm_register_write(vcpu
, reg
, val
);
2939 trace_kvm_cr_read(cr
, val
);
2940 skip_emulated_instruction(vcpu
);
2945 kvm_lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
2947 skip_emulated_instruction(vcpu
);
2952 vcpu
->run
->exit_reason
= 0;
2953 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
2954 (int)(exit_qualification
>> 4) & 3, cr
);
2958 static int handle_dr(struct kvm_vcpu
*vcpu
)
2960 unsigned long exit_qualification
;
2964 if (!kvm_require_cpl(vcpu
, 0))
2966 dr
= vmcs_readl(GUEST_DR7
);
2969 * As the vm-exit takes precedence over the debug trap, we
2970 * need to emulate the latter, either for the host or the
2971 * guest debugging itself.
2973 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
2974 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
2975 vcpu
->run
->debug
.arch
.dr7
= dr
;
2976 vcpu
->run
->debug
.arch
.pc
=
2977 vmcs_readl(GUEST_CS_BASE
) +
2978 vmcs_readl(GUEST_RIP
);
2979 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
2980 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
2983 vcpu
->arch
.dr7
&= ~DR7_GD
;
2984 vcpu
->arch
.dr6
|= DR6_BD
;
2985 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
2986 kvm_queue_exception(vcpu
, DB_VECTOR
);
2991 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2992 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
2993 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
2994 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
2997 val
= vcpu
->arch
.db
[dr
];
3000 val
= vcpu
->arch
.dr6
;
3003 val
= vcpu
->arch
.dr7
;
3008 kvm_register_write(vcpu
, reg
, val
);
3010 val
= vcpu
->arch
.regs
[reg
];
3013 vcpu
->arch
.db
[dr
] = val
;
3014 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
3015 vcpu
->arch
.eff_db
[dr
] = val
;
3018 if (vcpu
->arch
.cr4
& X86_CR4_DE
)
3019 kvm_queue_exception(vcpu
, UD_VECTOR
);
3022 if (val
& 0xffffffff00000000ULL
) {
3023 kvm_queue_exception(vcpu
, GP_VECTOR
);
3026 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
3029 if (val
& 0xffffffff00000000ULL
) {
3030 kvm_queue_exception(vcpu
, GP_VECTOR
);
3033 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
3034 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
3035 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
3036 vcpu
->arch
.switch_db_regs
=
3037 (val
& DR7_BP_EN_MASK
);
3042 skip_emulated_instruction(vcpu
);
3046 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
3048 kvm_emulate_cpuid(vcpu
);
3052 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
3054 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3057 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
3058 kvm_inject_gp(vcpu
, 0);
3062 trace_kvm_msr_read(ecx
, data
);
3064 /* FIXME: handling of bits 32:63 of rax, rdx */
3065 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
3066 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
3067 skip_emulated_instruction(vcpu
);
3071 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
3073 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3074 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
3075 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
3077 trace_kvm_msr_write(ecx
, data
);
3079 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
3080 kvm_inject_gp(vcpu
, 0);
3084 skip_emulated_instruction(vcpu
);
3088 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
3093 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
3095 u32 cpu_based_vm_exec_control
;
3097 /* clear pending irq */
3098 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3099 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
3100 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3102 ++vcpu
->stat
.irq_window_exits
;
3105 * If the user space waits to inject interrupts, exit as soon as
3108 if (!irqchip_in_kernel(vcpu
->kvm
) &&
3109 vcpu
->run
->request_interrupt_window
&&
3110 !kvm_cpu_has_interrupt(vcpu
)) {
3111 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3117 static int handle_halt(struct kvm_vcpu
*vcpu
)
3119 skip_emulated_instruction(vcpu
);
3120 return kvm_emulate_halt(vcpu
);
3123 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
3125 skip_emulated_instruction(vcpu
);
3126 kvm_emulate_hypercall(vcpu
);
3130 static int handle_vmx_insn(struct kvm_vcpu
*vcpu
)
3132 kvm_queue_exception(vcpu
, UD_VECTOR
);
3136 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
3138 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3140 kvm_mmu_invlpg(vcpu
, exit_qualification
);
3141 skip_emulated_instruction(vcpu
);
3145 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
3147 skip_emulated_instruction(vcpu
);
3148 /* TODO: Add support for VT-d/pass-through device */
3152 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
3154 unsigned long exit_qualification
;
3155 enum emulation_result er
;
3156 unsigned long offset
;
3158 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3159 offset
= exit_qualification
& 0xffful
;
3161 er
= emulate_instruction(vcpu
, 0, 0, 0);
3163 if (er
!= EMULATE_DONE
) {
3165 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3172 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
3174 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3175 unsigned long exit_qualification
;
3177 int reason
, type
, idt_v
;
3179 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
3180 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
3182 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3184 reason
= (u32
)exit_qualification
>> 30;
3185 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
3187 case INTR_TYPE_NMI_INTR
:
3188 vcpu
->arch
.nmi_injected
= false;
3189 if (cpu_has_virtual_nmis())
3190 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3191 GUEST_INTR_STATE_NMI
);
3193 case INTR_TYPE_EXT_INTR
:
3194 case INTR_TYPE_SOFT_INTR
:
3195 kvm_clear_interrupt_queue(vcpu
);
3197 case INTR_TYPE_HARD_EXCEPTION
:
3198 case INTR_TYPE_SOFT_EXCEPTION
:
3199 kvm_clear_exception_queue(vcpu
);
3205 tss_selector
= exit_qualification
;
3207 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
3208 type
!= INTR_TYPE_EXT_INTR
&&
3209 type
!= INTR_TYPE_NMI_INTR
))
3210 skip_emulated_instruction(vcpu
);
3212 if (!kvm_task_switch(vcpu
, tss_selector
, reason
))
3215 /* clear all local breakpoint enable flags */
3216 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~55);
3219 * TODO: What about debug traps on tss switch?
3220 * Are we supposed to inject them and update dr6?
3226 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
3228 unsigned long exit_qualification
;
3232 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3234 if (exit_qualification
& (1 << 6)) {
3235 printk(KERN_ERR
"EPT: GPA exceeds GAW!\n");
3239 gla_validity
= (exit_qualification
>> 7) & 0x3;
3240 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
3241 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
3242 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3243 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
3244 vmcs_readl(GUEST_LINEAR_ADDRESS
));
3245 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
3246 (long unsigned int)exit_qualification
);
3247 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3248 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
3252 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3253 trace_kvm_page_fault(gpa
, exit_qualification
);
3254 return kvm_mmu_page_fault(vcpu
, gpa
& PAGE_MASK
, 0);
3257 static u64
ept_rsvd_mask(u64 spte
, int level
)
3262 for (i
= 51; i
> boot_cpu_data
.x86_phys_bits
; i
--)
3263 mask
|= (1ULL << i
);
3266 /* bits 7:3 reserved */
3268 else if (level
== 2) {
3269 if (spte
& (1ULL << 7))
3270 /* 2MB ref, bits 20:12 reserved */
3273 /* bits 6:3 reserved */
3280 static void ept_misconfig_inspect_spte(struct kvm_vcpu
*vcpu
, u64 spte
,
3283 printk(KERN_ERR
"%s: spte 0x%llx level %d\n", __func__
, spte
, level
);
3285 /* 010b (write-only) */
3286 WARN_ON((spte
& 0x7) == 0x2);
3288 /* 110b (write/execute) */
3289 WARN_ON((spte
& 0x7) == 0x6);
3291 /* 100b (execute-only) and value not supported by logical processor */
3292 if (!cpu_has_vmx_ept_execute_only())
3293 WARN_ON((spte
& 0x7) == 0x4);
3297 u64 rsvd_bits
= spte
& ept_rsvd_mask(spte
, level
);
3299 if (rsvd_bits
!= 0) {
3300 printk(KERN_ERR
"%s: rsvd_bits = 0x%llx\n",
3301 __func__
, rsvd_bits
);
3305 if (level
== 1 || (level
== 2 && (spte
& (1ULL << 7)))) {
3306 u64 ept_mem_type
= (spte
& 0x38) >> 3;
3308 if (ept_mem_type
== 2 || ept_mem_type
== 3 ||
3309 ept_mem_type
== 7) {
3310 printk(KERN_ERR
"%s: ept_mem_type=0x%llx\n",
3311 __func__
, ept_mem_type
);
3318 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
3324 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3326 printk(KERN_ERR
"EPT: Misconfiguration.\n");
3327 printk(KERN_ERR
"EPT: GPA: 0x%llx\n", gpa
);
3329 nr_sptes
= kvm_mmu_get_spte_hierarchy(vcpu
, gpa
, sptes
);
3331 for (i
= PT64_ROOT_LEVEL
; i
> PT64_ROOT_LEVEL
- nr_sptes
; --i
)
3332 ept_misconfig_inspect_spte(vcpu
, sptes
[i
-1], i
);
3334 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3335 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
3340 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
3342 u32 cpu_based_vm_exec_control
;
3344 /* clear pending NMI */
3345 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3346 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
3347 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3348 ++vcpu
->stat
.nmi_window_exits
;
3353 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
3355 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3356 enum emulation_result err
= EMULATE_DONE
;
3359 while (!guest_state_valid(vcpu
)) {
3360 err
= emulate_instruction(vcpu
, 0, 0, 0);
3362 if (err
== EMULATE_DO_MMIO
) {
3367 if (err
!= EMULATE_DONE
) {
3368 kvm_report_emulation_failure(vcpu
, "emulation failure");
3369 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3370 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
3375 if (signal_pending(current
))
3381 vmx
->emulation_required
= 0;
3387 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3388 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3390 static int handle_pause(struct kvm_vcpu
*vcpu
)
3392 skip_emulated_instruction(vcpu
);
3393 kvm_vcpu_on_spin(vcpu
);
3399 * The exit handlers return 1 if the exit was handled fully and guest execution
3400 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3401 * to be done to userspace and return 0.
3403 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
3404 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
3405 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
3406 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
3407 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
3408 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
3409 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
3410 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
3411 [EXIT_REASON_CPUID
] = handle_cpuid
,
3412 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
3413 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
3414 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
3415 [EXIT_REASON_HLT
] = handle_halt
,
3416 [EXIT_REASON_INVLPG
] = handle_invlpg
,
3417 [EXIT_REASON_VMCALL
] = handle_vmcall
,
3418 [EXIT_REASON_VMCLEAR
] = handle_vmx_insn
,
3419 [EXIT_REASON_VMLAUNCH
] = handle_vmx_insn
,
3420 [EXIT_REASON_VMPTRLD
] = handle_vmx_insn
,
3421 [EXIT_REASON_VMPTRST
] = handle_vmx_insn
,
3422 [EXIT_REASON_VMREAD
] = handle_vmx_insn
,
3423 [EXIT_REASON_VMRESUME
] = handle_vmx_insn
,
3424 [EXIT_REASON_VMWRITE
] = handle_vmx_insn
,
3425 [EXIT_REASON_VMOFF
] = handle_vmx_insn
,
3426 [EXIT_REASON_VMON
] = handle_vmx_insn
,
3427 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
3428 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
3429 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
3430 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
3431 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
3432 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
3433 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
3434 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
3437 static const int kvm_vmx_max_exit_handlers
=
3438 ARRAY_SIZE(kvm_vmx_exit_handlers
);
3441 * The guest has exited. See if we can fix it or if we need userspace
3444 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
3446 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3447 u32 exit_reason
= vmx
->exit_reason
;
3448 u32 vectoring_info
= vmx
->idt_vectoring_info
;
3450 trace_kvm_exit(exit_reason
, kvm_rip_read(vcpu
));
3452 /* If guest state is invalid, start emulating */
3453 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
3454 return handle_invalid_guest_state(vcpu
);
3456 /* Access CR3 don't cause VMExit in paging mode, so we need
3457 * to sync with guest real CR3. */
3458 if (enable_ept
&& is_paging(vcpu
))
3459 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3461 if (unlikely(vmx
->fail
)) {
3462 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3463 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
3464 = vmcs_read32(VM_INSTRUCTION_ERROR
);
3468 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
3469 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
3470 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
3471 exit_reason
!= EXIT_REASON_TASK_SWITCH
))
3472 printk(KERN_WARNING
"%s: unexpected, valid vectoring info "
3473 "(0x%x) and exit reason is 0x%x\n",
3474 __func__
, vectoring_info
, exit_reason
);
3476 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
)) {
3477 if (vmx_interrupt_allowed(vcpu
)) {
3478 vmx
->soft_vnmi_blocked
= 0;
3479 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
3480 vcpu
->arch
.nmi_pending
) {
3482 * This CPU don't support us in finding the end of an
3483 * NMI-blocked window if the guest runs with IRQs
3484 * disabled. So we pull the trigger after 1 s of
3485 * futile waiting, but inform the user about this.
3487 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
3488 "state on VCPU %d after 1 s timeout\n",
3489 __func__
, vcpu
->vcpu_id
);
3490 vmx
->soft_vnmi_blocked
= 0;
3494 if (exit_reason
< kvm_vmx_max_exit_handlers
3495 && kvm_vmx_exit_handlers
[exit_reason
])
3496 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
3498 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3499 vcpu
->run
->hw
.hardware_exit_reason
= exit_reason
;
3504 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3506 if (irr
== -1 || tpr
< irr
) {
3507 vmcs_write32(TPR_THRESHOLD
, 0);
3511 vmcs_write32(TPR_THRESHOLD
, irr
);
3514 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
3517 u32 idt_vectoring_info
= vmx
->idt_vectoring_info
;
3521 bool idtv_info_valid
;
3523 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
3525 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
3527 /* Handle machine checks before interrupts are enabled */
3528 if ((vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
)
3529 || (vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
3530 && is_machine_check(exit_intr_info
)))
3531 kvm_machine_check();
3533 /* We need to handle NMIs before interrupts are enabled */
3534 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
3535 (exit_intr_info
& INTR_INFO_VALID_MASK
))
3538 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
3540 if (cpu_has_virtual_nmis()) {
3541 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
3542 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
3544 * SDM 3: 27.7.1.2 (September 2008)
3545 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3546 * a guest IRET fault.
3547 * SDM 3: 23.2.2 (September 2008)
3548 * Bit 12 is undefined in any of the following cases:
3549 * If the VM exit sets the valid bit in the IDT-vectoring
3550 * information field.
3551 * If the VM exit is due to a double fault.
3553 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
3554 vector
!= DF_VECTOR
&& !idtv_info_valid
)
3555 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3556 GUEST_INTR_STATE_NMI
);
3557 } else if (unlikely(vmx
->soft_vnmi_blocked
))
3558 vmx
->vnmi_blocked_time
+=
3559 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
3561 vmx
->vcpu
.arch
.nmi_injected
= false;
3562 kvm_clear_exception_queue(&vmx
->vcpu
);
3563 kvm_clear_interrupt_queue(&vmx
->vcpu
);
3565 if (!idtv_info_valid
)
3568 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
3569 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
3572 case INTR_TYPE_NMI_INTR
:
3573 vmx
->vcpu
.arch
.nmi_injected
= true;
3575 * SDM 3: 27.7.1.2 (September 2008)
3576 * Clear bit "block by NMI" before VM entry if a NMI
3579 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
3580 GUEST_INTR_STATE_NMI
);
3582 case INTR_TYPE_SOFT_EXCEPTION
:
3583 vmx
->vcpu
.arch
.event_exit_inst_len
=
3584 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3586 case INTR_TYPE_HARD_EXCEPTION
:
3587 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
3588 u32 err
= vmcs_read32(IDT_VECTORING_ERROR_CODE
);
3589 kvm_queue_exception_e(&vmx
->vcpu
, vector
, err
);
3591 kvm_queue_exception(&vmx
->vcpu
, vector
);
3593 case INTR_TYPE_SOFT_INTR
:
3594 vmx
->vcpu
.arch
.event_exit_inst_len
=
3595 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3597 case INTR_TYPE_EXT_INTR
:
3598 kvm_queue_interrupt(&vmx
->vcpu
, vector
,
3599 type
== INTR_TYPE_SOFT_INTR
);
3607 * Failure to inject an interrupt should give us the information
3608 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3609 * when fetching the interrupt redirection bitmap in the real-mode
3610 * tss, this doesn't happen. So we do it ourselves.
3612 static void fixup_rmode_irq(struct vcpu_vmx
*vmx
)
3614 vmx
->rmode
.irq
.pending
= 0;
3615 if (kvm_rip_read(&vmx
->vcpu
) + 1 != vmx
->rmode
.irq
.rip
)
3617 kvm_rip_write(&vmx
->vcpu
, vmx
->rmode
.irq
.rip
);
3618 if (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) {
3619 vmx
->idt_vectoring_info
&= ~VECTORING_INFO_TYPE_MASK
;
3620 vmx
->idt_vectoring_info
|= INTR_TYPE_EXT_INTR
;
3623 vmx
->idt_vectoring_info
=
3624 VECTORING_INFO_VALID_MASK
3625 | INTR_TYPE_EXT_INTR
3626 | vmx
->rmode
.irq
.vector
;
3629 #ifdef CONFIG_X86_64
3637 static void vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
3639 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3641 if (enable_ept
&& is_paging(vcpu
)) {
3642 vmcs_writel(GUEST_CR3
, vcpu
->arch
.cr3
);
3643 ept_load_pdptrs(vcpu
);
3645 /* Record the guest's net vcpu time for enforced NMI injections. */
3646 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
3647 vmx
->entry_time
= ktime_get();
3649 /* Don't enter VMX if guest state is invalid, let the exit handler
3650 start emulation until we arrive back to a valid state */
3651 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
3654 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3655 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
3656 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3657 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
3659 /* When single-stepping over STI and MOV SS, we must clear the
3660 * corresponding interruptibility bits in the guest state. Otherwise
3661 * vmentry fails as it then expects bit 14 (BS) in pending debug
3662 * exceptions being set, but that's not correct for the guest debugging
3664 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3665 vmx_set_interrupt_shadow(vcpu
, 0);
3668 * Loading guest fpu may have cleared host cr0.ts
3670 vmcs_writel(HOST_CR0
, read_cr0());
3672 if (vcpu
->arch
.switch_db_regs
)
3673 set_debugreg(vcpu
->arch
.dr6
, 6);
3676 /* Store host registers */
3677 "push %%"R
"dx; push %%"R
"bp;"
3679 "cmp %%"R
"sp, %c[host_rsp](%0) \n\t"
3681 "mov %%"R
"sp, %c[host_rsp](%0) \n\t"
3682 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
3684 /* Reload cr2 if changed */
3685 "mov %c[cr2](%0), %%"R
"ax \n\t"
3686 "mov %%cr2, %%"R
"dx \n\t"
3687 "cmp %%"R
"ax, %%"R
"dx \n\t"
3689 "mov %%"R
"ax, %%cr2 \n\t"
3691 /* Check if vmlaunch of vmresume is needed */
3692 "cmpl $0, %c[launched](%0) \n\t"
3693 /* Load guest registers. Don't clobber flags. */
3694 "mov %c[rax](%0), %%"R
"ax \n\t"
3695 "mov %c[rbx](%0), %%"R
"bx \n\t"
3696 "mov %c[rdx](%0), %%"R
"dx \n\t"
3697 "mov %c[rsi](%0), %%"R
"si \n\t"
3698 "mov %c[rdi](%0), %%"R
"di \n\t"
3699 "mov %c[rbp](%0), %%"R
"bp \n\t"
3700 #ifdef CONFIG_X86_64
3701 "mov %c[r8](%0), %%r8 \n\t"
3702 "mov %c[r9](%0), %%r9 \n\t"
3703 "mov %c[r10](%0), %%r10 \n\t"
3704 "mov %c[r11](%0), %%r11 \n\t"
3705 "mov %c[r12](%0), %%r12 \n\t"
3706 "mov %c[r13](%0), %%r13 \n\t"
3707 "mov %c[r14](%0), %%r14 \n\t"
3708 "mov %c[r15](%0), %%r15 \n\t"
3710 "mov %c[rcx](%0), %%"R
"cx \n\t" /* kills %0 (ecx) */
3712 /* Enter guest mode */
3713 "jne .Llaunched \n\t"
3714 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
3715 "jmp .Lkvm_vmx_return \n\t"
3716 ".Llaunched: " __ex(ASM_VMX_VMRESUME
) "\n\t"
3717 ".Lkvm_vmx_return: "
3718 /* Save guest registers, load host registers, keep flags */
3719 "xchg %0, (%%"R
"sp) \n\t"
3720 "mov %%"R
"ax, %c[rax](%0) \n\t"
3721 "mov %%"R
"bx, %c[rbx](%0) \n\t"
3722 "push"Q
" (%%"R
"sp); pop"Q
" %c[rcx](%0) \n\t"
3723 "mov %%"R
"dx, %c[rdx](%0) \n\t"
3724 "mov %%"R
"si, %c[rsi](%0) \n\t"
3725 "mov %%"R
"di, %c[rdi](%0) \n\t"
3726 "mov %%"R
"bp, %c[rbp](%0) \n\t"
3727 #ifdef CONFIG_X86_64
3728 "mov %%r8, %c[r8](%0) \n\t"
3729 "mov %%r9, %c[r9](%0) \n\t"
3730 "mov %%r10, %c[r10](%0) \n\t"
3731 "mov %%r11, %c[r11](%0) \n\t"
3732 "mov %%r12, %c[r12](%0) \n\t"
3733 "mov %%r13, %c[r13](%0) \n\t"
3734 "mov %%r14, %c[r14](%0) \n\t"
3735 "mov %%r15, %c[r15](%0) \n\t"
3737 "mov %%cr2, %%"R
"ax \n\t"
3738 "mov %%"R
"ax, %c[cr2](%0) \n\t"
3740 "pop %%"R
"bp; pop %%"R
"bp; pop %%"R
"dx \n\t"
3741 "setbe %c[fail](%0) \n\t"
3742 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
3743 [launched
]"i"(offsetof(struct vcpu_vmx
, launched
)),
3744 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
3745 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
3746 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
3747 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3748 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3749 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3750 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3751 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3752 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
3753 #ifdef CONFIG_X86_64
3754 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3755 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3756 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3757 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3758 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3759 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3760 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3761 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
3763 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
))
3765 , R
"bx", R
"di", R
"si"
3766 #ifdef CONFIG_X86_64
3767 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3771 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
3772 | (1 << VCPU_EXREG_PDPTR
));
3773 vcpu
->arch
.regs_dirty
= 0;
3775 if (vcpu
->arch
.switch_db_regs
)
3776 get_debugreg(vcpu
->arch
.dr6
, 6);
3778 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
3779 if (vmx
->rmode
.irq
.pending
)
3780 fixup_rmode_irq(vmx
);
3782 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
3785 vmx_complete_interrupts(vmx
);
3791 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
3793 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3797 free_vmcs(vmx
->vmcs
);
3802 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
3804 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3806 spin_lock(&vmx_vpid_lock
);
3808 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
3809 spin_unlock(&vmx_vpid_lock
);
3810 vmx_free_vmcs(vcpu
);
3811 kfree(vmx
->host_msrs
);
3812 kfree(vmx
->guest_msrs
);
3813 kvm_vcpu_uninit(vcpu
);
3814 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3817 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
3820 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
3824 return ERR_PTR(-ENOMEM
);
3828 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
3832 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3833 if (!vmx
->guest_msrs
) {
3838 vmx
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3839 if (!vmx
->host_msrs
)
3840 goto free_guest_msrs
;
3842 vmx
->vmcs
= alloc_vmcs();
3846 vmcs_clear(vmx
->vmcs
);
3849 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
3850 err
= vmx_vcpu_setup(vmx
);
3851 vmx_vcpu_put(&vmx
->vcpu
);
3855 if (vm_need_virtualize_apic_accesses(kvm
))
3856 if (alloc_apic_access_page(kvm
) != 0)
3860 if (!kvm
->arch
.ept_identity_map_addr
)
3861 kvm
->arch
.ept_identity_map_addr
=
3862 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
3863 if (alloc_identity_pagetable(kvm
) != 0)
3870 free_vmcs(vmx
->vmcs
);
3872 kfree(vmx
->host_msrs
);
3874 kfree(vmx
->guest_msrs
);
3876 kvm_vcpu_uninit(&vmx
->vcpu
);
3878 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3879 return ERR_PTR(err
);
3882 static void __init
vmx_check_processor_compat(void *rtn
)
3884 struct vmcs_config vmcs_conf
;
3887 if (setup_vmcs_config(&vmcs_conf
) < 0)
3889 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
3890 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
3891 smp_processor_id());
3896 static int get_ept_level(void)
3898 return VMX_EPT_DEFAULT_GAW
+ 1;
3901 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
3905 /* For VT-d and EPT combination
3906 * 1. MMIO: always map as UC
3908 * a. VT-d without snooping control feature: can't guarantee the
3909 * result, try to trust guest.
3910 * b. VT-d with snooping control feature: snooping control feature of
3911 * VT-d engine can guarantee the cache correctness. Just set it
3912 * to WB to keep consistent with host. So the same as item 3.
3913 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3914 * consistent with host MTRR
3917 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
3918 else if (vcpu
->kvm
->arch
.iommu_domain
&&
3919 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
))
3920 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
3921 VMX_EPT_MT_EPTE_SHIFT
;
3923 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
3929 static const struct trace_print_flags vmx_exit_reasons_str
[] = {
3930 { EXIT_REASON_EXCEPTION_NMI
, "exception" },
3931 { EXIT_REASON_EXTERNAL_INTERRUPT
, "ext_irq" },
3932 { EXIT_REASON_TRIPLE_FAULT
, "triple_fault" },
3933 { EXIT_REASON_NMI_WINDOW
, "nmi_window" },
3934 { EXIT_REASON_IO_INSTRUCTION
, "io_instruction" },
3935 { EXIT_REASON_CR_ACCESS
, "cr_access" },
3936 { EXIT_REASON_DR_ACCESS
, "dr_access" },
3937 { EXIT_REASON_CPUID
, "cpuid" },
3938 { EXIT_REASON_MSR_READ
, "rdmsr" },
3939 { EXIT_REASON_MSR_WRITE
, "wrmsr" },
3940 { EXIT_REASON_PENDING_INTERRUPT
, "interrupt_window" },
3941 { EXIT_REASON_HLT
, "halt" },
3942 { EXIT_REASON_INVLPG
, "invlpg" },
3943 { EXIT_REASON_VMCALL
, "hypercall" },
3944 { EXIT_REASON_TPR_BELOW_THRESHOLD
, "tpr_below_thres" },
3945 { EXIT_REASON_APIC_ACCESS
, "apic_access" },
3946 { EXIT_REASON_WBINVD
, "wbinvd" },
3947 { EXIT_REASON_TASK_SWITCH
, "task_switch" },
3948 { EXIT_REASON_EPT_VIOLATION
, "ept_violation" },
3952 static bool vmx_gb_page_enable(void)
3957 static struct kvm_x86_ops vmx_x86_ops
= {
3958 .cpu_has_kvm_support
= cpu_has_kvm_support
,
3959 .disabled_by_bios
= vmx_disabled_by_bios
,
3960 .hardware_setup
= hardware_setup
,
3961 .hardware_unsetup
= hardware_unsetup
,
3962 .check_processor_compatibility
= vmx_check_processor_compat
,
3963 .hardware_enable
= hardware_enable
,
3964 .hardware_disable
= hardware_disable
,
3965 .cpu_has_accelerated_tpr
= report_flexpriority
,
3967 .vcpu_create
= vmx_create_vcpu
,
3968 .vcpu_free
= vmx_free_vcpu
,
3969 .vcpu_reset
= vmx_vcpu_reset
,
3971 .prepare_guest_switch
= vmx_save_host_state
,
3972 .vcpu_load
= vmx_vcpu_load
,
3973 .vcpu_put
= vmx_vcpu_put
,
3975 .set_guest_debug
= set_guest_debug
,
3976 .get_msr
= vmx_get_msr
,
3977 .set_msr
= vmx_set_msr
,
3978 .get_segment_base
= vmx_get_segment_base
,
3979 .get_segment
= vmx_get_segment
,
3980 .set_segment
= vmx_set_segment
,
3981 .get_cpl
= vmx_get_cpl
,
3982 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
3983 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
3984 .set_cr0
= vmx_set_cr0
,
3985 .set_cr3
= vmx_set_cr3
,
3986 .set_cr4
= vmx_set_cr4
,
3987 .set_efer
= vmx_set_efer
,
3988 .get_idt
= vmx_get_idt
,
3989 .set_idt
= vmx_set_idt
,
3990 .get_gdt
= vmx_get_gdt
,
3991 .set_gdt
= vmx_set_gdt
,
3992 .cache_reg
= vmx_cache_reg
,
3993 .get_rflags
= vmx_get_rflags
,
3994 .set_rflags
= vmx_set_rflags
,
3996 .tlb_flush
= vmx_flush_tlb
,
3998 .run
= vmx_vcpu_run
,
3999 .handle_exit
= vmx_handle_exit
,
4000 .skip_emulated_instruction
= skip_emulated_instruction
,
4001 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
4002 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
4003 .patch_hypercall
= vmx_patch_hypercall
,
4004 .set_irq
= vmx_inject_irq
,
4005 .set_nmi
= vmx_inject_nmi
,
4006 .queue_exception
= vmx_queue_exception
,
4007 .interrupt_allowed
= vmx_interrupt_allowed
,
4008 .nmi_allowed
= vmx_nmi_allowed
,
4009 .enable_nmi_window
= enable_nmi_window
,
4010 .enable_irq_window
= enable_irq_window
,
4011 .update_cr8_intercept
= update_cr8_intercept
,
4013 .set_tss_addr
= vmx_set_tss_addr
,
4014 .get_tdp_level
= get_ept_level
,
4015 .get_mt_mask
= vmx_get_mt_mask
,
4017 .exit_reasons_str
= vmx_exit_reasons_str
,
4018 .gb_page_enable
= vmx_gb_page_enable
,
4021 static int __init
vmx_init(void)
4025 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4026 if (!vmx_io_bitmap_a
)
4029 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4030 if (!vmx_io_bitmap_b
) {
4035 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4036 if (!vmx_msr_bitmap_legacy
) {
4041 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4042 if (!vmx_msr_bitmap_longmode
) {
4048 * Allow direct access to the PC debug port (it is often used for I/O
4049 * delays, but the vmexits simply slow things down).
4051 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
4052 clear_bit(0x80, vmx_io_bitmap_a
);
4054 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
4056 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
4057 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
4059 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
4061 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
), THIS_MODULE
);
4065 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
4066 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
4067 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
4068 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
4069 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
4070 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
4073 bypass_guest_pf
= 0;
4074 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK
|
4075 VMX_EPT_WRITABLE_MASK
);
4076 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4077 VMX_EPT_EXECUTABLE_MASK
);
4082 if (bypass_guest_pf
)
4083 kvm_mmu_set_nonpresent_ptes(~0xffeull
, 0ull);
4088 free_page((unsigned long)vmx_msr_bitmap_longmode
);
4090 free_page((unsigned long)vmx_msr_bitmap_legacy
);
4092 free_page((unsigned long)vmx_io_bitmap_b
);
4094 free_page((unsigned long)vmx_io_bitmap_a
);
4098 static void __exit
vmx_exit(void)
4100 free_page((unsigned long)vmx_msr_bitmap_legacy
);
4101 free_page((unsigned long)vmx_msr_bitmap_longmode
);
4102 free_page((unsigned long)vmx_io_bitmap_b
);
4103 free_page((unsigned long)vmx_io_bitmap_a
);
4108 module_init(vmx_init
)
4109 module_exit(vmx_exit
)