Blackfin: sanitize manual control of IPEND[4]
[linux-2.6/linux-2.6-openrd.git] / drivers / net / e1000e / ethtool.c
blob1bf4d2a5d34f8b7421839033c7dd4cedb748bc1c
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
36 #include "e1000.h"
38 struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorc) },
50 { "tx_bytes", E1000_STAT(stats.gotc) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
107 static int e1000_get_settings(struct net_device *netdev,
108 struct ethtool_cmd *ecmd)
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 status;
114 if (hw->phy.media_type == e1000_media_type_copper) {
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
150 status = er32(STATUS);
151 if (status & E1000_STATUS_LU) {
152 if (status & E1000_STATUS_SPEED_1000)
153 ecmd->speed = 1000;
154 else if (status & E1000_STATUS_SPEED_100)
155 ecmd->speed = 100;
156 else
157 ecmd->speed = 10;
159 if (status & E1000_STATUS_FD)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
168 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171 /* MDI-X => 2; MDI =>1; Invalid =>0 */
172 if ((hw->phy.media_type == e1000_media_type_copper) &&
173 !hw->mac.get_link_status)
174 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
175 ETH_TP_MDI;
176 else
177 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
179 return 0;
182 static u32 e1000_get_link(struct net_device *netdev)
184 struct e1000_adapter *adapter = netdev_priv(netdev);
186 return e1000_has_link(adapter);
189 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
191 struct e1000_mac_info *mac = &adapter->hw.mac;
193 mac->autoneg = 0;
195 /* Fiber NICs only allow 1000 gbps Full duplex */
196 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
197 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
198 e_err("Unsupported Speed/Duplex configuration\n");
199 return -EINVAL;
202 switch (spddplx) {
203 case SPEED_10 + DUPLEX_HALF:
204 mac->forced_speed_duplex = ADVERTISE_10_HALF;
205 break;
206 case SPEED_10 + DUPLEX_FULL:
207 mac->forced_speed_duplex = ADVERTISE_10_FULL;
208 break;
209 case SPEED_100 + DUPLEX_HALF:
210 mac->forced_speed_duplex = ADVERTISE_100_HALF;
211 break;
212 case SPEED_100 + DUPLEX_FULL:
213 mac->forced_speed_duplex = ADVERTISE_100_FULL;
214 break;
215 case SPEED_1000 + DUPLEX_FULL:
216 mac->autoneg = 1;
217 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
218 break;
219 case SPEED_1000 + DUPLEX_HALF: /* not supported */
220 default:
221 e_err("Unsupported Speed/Duplex configuration\n");
222 return -EINVAL;
224 return 0;
227 static int e1000_set_settings(struct net_device *netdev,
228 struct ethtool_cmd *ecmd)
230 struct e1000_adapter *adapter = netdev_priv(netdev);
231 struct e1000_hw *hw = &adapter->hw;
234 * When SoL/IDER sessions are active, autoneg/speed/duplex
235 * cannot be changed
237 if (e1000_check_reset_block(hw)) {
238 e_err("Cannot change link characteristics when SoL/IDER is "
239 "active.\n");
240 return -EINVAL;
243 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
244 msleep(1);
246 if (ecmd->autoneg == AUTONEG_ENABLE) {
247 hw->mac.autoneg = 1;
248 if (hw->phy.media_type == e1000_media_type_fiber)
249 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
250 ADVERTISED_FIBRE |
251 ADVERTISED_Autoneg;
252 else
253 hw->phy.autoneg_advertised = ecmd->advertising |
254 ADVERTISED_TP |
255 ADVERTISED_Autoneg;
256 ecmd->advertising = hw->phy.autoneg_advertised;
257 if (adapter->fc_autoneg)
258 hw->fc.requested_mode = e1000_fc_default;
259 } else {
260 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
261 clear_bit(__E1000_RESETTING, &adapter->state);
262 return -EINVAL;
266 /* reset the link */
268 if (netif_running(adapter->netdev)) {
269 e1000e_down(adapter);
270 e1000e_up(adapter);
271 } else {
272 e1000e_reset(adapter);
275 clear_bit(__E1000_RESETTING, &adapter->state);
276 return 0;
279 static void e1000_get_pauseparam(struct net_device *netdev,
280 struct ethtool_pauseparam *pause)
282 struct e1000_adapter *adapter = netdev_priv(netdev);
283 struct e1000_hw *hw = &adapter->hw;
285 pause->autoneg =
286 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
288 if (hw->fc.current_mode == e1000_fc_rx_pause) {
289 pause->rx_pause = 1;
290 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
291 pause->tx_pause = 1;
292 } else if (hw->fc.current_mode == e1000_fc_full) {
293 pause->rx_pause = 1;
294 pause->tx_pause = 1;
298 static int e1000_set_pauseparam(struct net_device *netdev,
299 struct ethtool_pauseparam *pause)
301 struct e1000_adapter *adapter = netdev_priv(netdev);
302 struct e1000_hw *hw = &adapter->hw;
303 int retval = 0;
305 adapter->fc_autoneg = pause->autoneg;
307 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
308 msleep(1);
310 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
311 hw->fc.requested_mode = e1000_fc_default;
312 if (netif_running(adapter->netdev)) {
313 e1000e_down(adapter);
314 e1000e_up(adapter);
315 } else {
316 e1000e_reset(adapter);
318 } else {
319 if (pause->rx_pause && pause->tx_pause)
320 hw->fc.requested_mode = e1000_fc_full;
321 else if (pause->rx_pause && !pause->tx_pause)
322 hw->fc.requested_mode = e1000_fc_rx_pause;
323 else if (!pause->rx_pause && pause->tx_pause)
324 hw->fc.requested_mode = e1000_fc_tx_pause;
325 else if (!pause->rx_pause && !pause->tx_pause)
326 hw->fc.requested_mode = e1000_fc_none;
328 hw->fc.current_mode = hw->fc.requested_mode;
330 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
331 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
334 clear_bit(__E1000_RESETTING, &adapter->state);
335 return retval;
338 static u32 e1000_get_rx_csum(struct net_device *netdev)
340 struct e1000_adapter *adapter = netdev_priv(netdev);
341 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
344 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
346 struct e1000_adapter *adapter = netdev_priv(netdev);
348 if (data)
349 adapter->flags |= FLAG_RX_CSUM_ENABLED;
350 else
351 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
353 if (netif_running(netdev))
354 e1000e_reinit_locked(adapter);
355 else
356 e1000e_reset(adapter);
357 return 0;
360 static u32 e1000_get_tx_csum(struct net_device *netdev)
362 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
365 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
367 if (data)
368 netdev->features |= NETIF_F_HW_CSUM;
369 else
370 netdev->features &= ~NETIF_F_HW_CSUM;
372 return 0;
375 static int e1000_set_tso(struct net_device *netdev, u32 data)
377 struct e1000_adapter *adapter = netdev_priv(netdev);
379 if (data) {
380 netdev->features |= NETIF_F_TSO;
381 netdev->features |= NETIF_F_TSO6;
382 } else {
383 netdev->features &= ~NETIF_F_TSO;
384 netdev->features &= ~NETIF_F_TSO6;
387 e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
388 adapter->flags |= FLAG_TSO_FORCE;
389 return 0;
392 static u32 e1000_get_msglevel(struct net_device *netdev)
394 struct e1000_adapter *adapter = netdev_priv(netdev);
395 return adapter->msg_enable;
398 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
400 struct e1000_adapter *adapter = netdev_priv(netdev);
401 adapter->msg_enable = data;
404 static int e1000_get_regs_len(struct net_device *netdev)
406 #define E1000_REGS_LEN 32 /* overestimate */
407 return E1000_REGS_LEN * sizeof(u32);
410 static void e1000_get_regs(struct net_device *netdev,
411 struct ethtool_regs *regs, void *p)
413 struct e1000_adapter *adapter = netdev_priv(netdev);
414 struct e1000_hw *hw = &adapter->hw;
415 u32 *regs_buff = p;
416 u16 phy_data;
417 u8 revision_id;
419 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
421 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
423 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
425 regs_buff[0] = er32(CTRL);
426 regs_buff[1] = er32(STATUS);
428 regs_buff[2] = er32(RCTL);
429 regs_buff[3] = er32(RDLEN);
430 regs_buff[4] = er32(RDH);
431 regs_buff[5] = er32(RDT);
432 regs_buff[6] = er32(RDTR);
434 regs_buff[7] = er32(TCTL);
435 regs_buff[8] = er32(TDLEN);
436 regs_buff[9] = er32(TDH);
437 regs_buff[10] = er32(TDT);
438 regs_buff[11] = er32(TIDV);
440 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
442 /* ethtool doesn't use anything past this point, so all this
443 * code is likely legacy junk for apps that may or may not
444 * exist */
445 if (hw->phy.type == e1000_phy_m88) {
446 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
447 regs_buff[13] = (u32)phy_data; /* cable length */
448 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
449 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
450 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
451 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
452 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
453 regs_buff[18] = regs_buff[13]; /* cable polarity */
454 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
455 regs_buff[20] = regs_buff[17]; /* polarity correction */
456 /* phy receive errors */
457 regs_buff[22] = adapter->phy_stats.receive_errors;
458 regs_buff[23] = regs_buff[13]; /* mdix mode */
460 regs_buff[21] = 0; /* was idle_errors */
461 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
462 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
463 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
466 static int e1000_get_eeprom_len(struct net_device *netdev)
468 struct e1000_adapter *adapter = netdev_priv(netdev);
469 return adapter->hw.nvm.word_size * 2;
472 static int e1000_get_eeprom(struct net_device *netdev,
473 struct ethtool_eeprom *eeprom, u8 *bytes)
475 struct e1000_adapter *adapter = netdev_priv(netdev);
476 struct e1000_hw *hw = &adapter->hw;
477 u16 *eeprom_buff;
478 int first_word;
479 int last_word;
480 int ret_val = 0;
481 u16 i;
483 if (eeprom->len == 0)
484 return -EINVAL;
486 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
488 first_word = eeprom->offset >> 1;
489 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
491 eeprom_buff = kmalloc(sizeof(u16) *
492 (last_word - first_word + 1), GFP_KERNEL);
493 if (!eeprom_buff)
494 return -ENOMEM;
496 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
497 ret_val = e1000_read_nvm(hw, first_word,
498 last_word - first_word + 1,
499 eeprom_buff);
500 } else {
501 for (i = 0; i < last_word - first_word + 1; i++) {
502 ret_val = e1000_read_nvm(hw, first_word + i, 1,
503 &eeprom_buff[i]);
504 if (ret_val)
505 break;
509 if (ret_val) {
510 /* a read error occurred, throw away the result */
511 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
512 } else {
513 /* Device's eeprom is always little-endian, word addressable */
514 for (i = 0; i < last_word - first_word + 1; i++)
515 le16_to_cpus(&eeprom_buff[i]);
518 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
519 kfree(eeprom_buff);
521 return ret_val;
524 static int e1000_set_eeprom(struct net_device *netdev,
525 struct ethtool_eeprom *eeprom, u8 *bytes)
527 struct e1000_adapter *adapter = netdev_priv(netdev);
528 struct e1000_hw *hw = &adapter->hw;
529 u16 *eeprom_buff;
530 void *ptr;
531 int max_len;
532 int first_word;
533 int last_word;
534 int ret_val = 0;
535 u16 i;
537 if (eeprom->len == 0)
538 return -EOPNOTSUPP;
540 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
541 return -EFAULT;
543 if (adapter->flags & FLAG_READ_ONLY_NVM)
544 return -EINVAL;
546 max_len = hw->nvm.word_size * 2;
548 first_word = eeprom->offset >> 1;
549 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
550 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
551 if (!eeprom_buff)
552 return -ENOMEM;
554 ptr = (void *)eeprom_buff;
556 if (eeprom->offset & 1) {
557 /* need read/modify/write of first changed EEPROM word */
558 /* only the second byte of the word is being modified */
559 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
560 ptr++;
562 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
563 /* need read/modify/write of last changed EEPROM word */
564 /* only the first byte of the word is being modified */
565 ret_val = e1000_read_nvm(hw, last_word, 1,
566 &eeprom_buff[last_word - first_word]);
568 if (ret_val)
569 goto out;
571 /* Device's eeprom is always little-endian, word addressable */
572 for (i = 0; i < last_word - first_word + 1; i++)
573 le16_to_cpus(&eeprom_buff[i]);
575 memcpy(ptr, bytes, eeprom->len);
577 for (i = 0; i < last_word - first_word + 1; i++)
578 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
580 ret_val = e1000_write_nvm(hw, first_word,
581 last_word - first_word + 1, eeprom_buff);
583 if (ret_val)
584 goto out;
587 * Update the checksum over the first part of the EEPROM if needed
588 * and flush shadow RAM for applicable controllers
590 if ((first_word <= NVM_CHECKSUM_REG) ||
591 (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
592 ret_val = e1000e_update_nvm_checksum(hw);
594 out:
595 kfree(eeprom_buff);
596 return ret_val;
599 static void e1000_get_drvinfo(struct net_device *netdev,
600 struct ethtool_drvinfo *drvinfo)
602 struct e1000_adapter *adapter = netdev_priv(netdev);
603 char firmware_version[32];
605 strncpy(drvinfo->driver, e1000e_driver_name, 32);
606 strncpy(drvinfo->version, e1000e_driver_version, 32);
609 * EEPROM image version # is reported as firmware version # for
610 * PCI-E controllers
612 sprintf(firmware_version, "%d.%d-%d",
613 (adapter->eeprom_vers & 0xF000) >> 12,
614 (adapter->eeprom_vers & 0x0FF0) >> 4,
615 (adapter->eeprom_vers & 0x000F));
617 strncpy(drvinfo->fw_version, firmware_version, 32);
618 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
619 drvinfo->regdump_len = e1000_get_regs_len(netdev);
620 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
623 static void e1000_get_ringparam(struct net_device *netdev,
624 struct ethtool_ringparam *ring)
626 struct e1000_adapter *adapter = netdev_priv(netdev);
627 struct e1000_ring *tx_ring = adapter->tx_ring;
628 struct e1000_ring *rx_ring = adapter->rx_ring;
630 ring->rx_max_pending = E1000_MAX_RXD;
631 ring->tx_max_pending = E1000_MAX_TXD;
632 ring->rx_mini_max_pending = 0;
633 ring->rx_jumbo_max_pending = 0;
634 ring->rx_pending = rx_ring->count;
635 ring->tx_pending = tx_ring->count;
636 ring->rx_mini_pending = 0;
637 ring->rx_jumbo_pending = 0;
640 static int e1000_set_ringparam(struct net_device *netdev,
641 struct ethtool_ringparam *ring)
643 struct e1000_adapter *adapter = netdev_priv(netdev);
644 struct e1000_ring *tx_ring, *tx_old;
645 struct e1000_ring *rx_ring, *rx_old;
646 int err;
648 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
649 return -EINVAL;
651 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
652 msleep(1);
654 if (netif_running(adapter->netdev))
655 e1000e_down(adapter);
657 tx_old = adapter->tx_ring;
658 rx_old = adapter->rx_ring;
660 err = -ENOMEM;
661 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
662 if (!tx_ring)
663 goto err_alloc_tx;
665 * use a memcpy to save any previously configured
666 * items like napi structs from having to be
667 * reinitialized
669 memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
671 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
672 if (!rx_ring)
673 goto err_alloc_rx;
674 memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
676 adapter->tx_ring = tx_ring;
677 adapter->rx_ring = rx_ring;
679 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
680 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
681 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
683 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
684 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
685 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
687 if (netif_running(adapter->netdev)) {
688 /* Try to get new resources before deleting old */
689 err = e1000e_setup_rx_resources(adapter);
690 if (err)
691 goto err_setup_rx;
692 err = e1000e_setup_tx_resources(adapter);
693 if (err)
694 goto err_setup_tx;
697 * restore the old in order to free it,
698 * then add in the new
700 adapter->rx_ring = rx_old;
701 adapter->tx_ring = tx_old;
702 e1000e_free_rx_resources(adapter);
703 e1000e_free_tx_resources(adapter);
704 kfree(tx_old);
705 kfree(rx_old);
706 adapter->rx_ring = rx_ring;
707 adapter->tx_ring = tx_ring;
708 err = e1000e_up(adapter);
709 if (err)
710 goto err_setup;
713 clear_bit(__E1000_RESETTING, &adapter->state);
714 return 0;
715 err_setup_tx:
716 e1000e_free_rx_resources(adapter);
717 err_setup_rx:
718 adapter->rx_ring = rx_old;
719 adapter->tx_ring = tx_old;
720 kfree(rx_ring);
721 err_alloc_rx:
722 kfree(tx_ring);
723 err_alloc_tx:
724 e1000e_up(adapter);
725 err_setup:
726 clear_bit(__E1000_RESETTING, &adapter->state);
727 return err;
730 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
731 int reg, int offset, u32 mask, u32 write)
733 u32 pat, val;
734 static const u32 test[] =
735 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
736 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
737 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
738 (test[pat] & write));
739 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
740 if (val != (test[pat] & write & mask)) {
741 e_err("pattern test reg %04X failed: got 0x%08X "
742 "expected 0x%08X\n", reg + offset, val,
743 (test[pat] & write & mask));
744 *data = reg;
745 return 1;
748 return 0;
751 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
752 int reg, u32 mask, u32 write)
754 u32 val;
755 __ew32(&adapter->hw, reg, write & mask);
756 val = __er32(&adapter->hw, reg);
757 if ((write & mask) != (val & mask)) {
758 e_err("set/check reg %04X test failed: got 0x%08X "
759 "expected 0x%08X\n", reg, (val & mask), (write & mask));
760 *data = reg;
761 return 1;
763 return 0;
765 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
766 do { \
767 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
768 return 1; \
769 } while (0)
770 #define REG_PATTERN_TEST(reg, mask, write) \
771 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
773 #define REG_SET_AND_CHECK(reg, mask, write) \
774 do { \
775 if (reg_set_and_check(adapter, data, reg, mask, write)) \
776 return 1; \
777 } while (0)
779 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
781 struct e1000_hw *hw = &adapter->hw;
782 struct e1000_mac_info *mac = &adapter->hw.mac;
783 u32 value;
784 u32 before;
785 u32 after;
786 u32 i;
787 u32 toggle;
788 u32 mask;
791 * The status register is Read Only, so a write should fail.
792 * Some bits that get toggled are ignored.
794 switch (mac->type) {
795 /* there are several bits on newer hardware that are r/w */
796 case e1000_82571:
797 case e1000_82572:
798 case e1000_80003es2lan:
799 toggle = 0x7FFFF3FF;
800 break;
801 default:
802 toggle = 0x7FFFF033;
803 break;
806 before = er32(STATUS);
807 value = (er32(STATUS) & toggle);
808 ew32(STATUS, toggle);
809 after = er32(STATUS) & toggle;
810 if (value != after) {
811 e_err("failed STATUS register test got: 0x%08X expected: "
812 "0x%08X\n", after, value);
813 *data = 1;
814 return 1;
816 /* restore previous status */
817 ew32(STATUS, before);
819 if (!(adapter->flags & FLAG_IS_ICH)) {
820 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
821 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
822 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
823 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
826 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
827 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
828 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
829 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
830 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
831 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
832 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
833 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
834 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
835 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
837 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
839 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
840 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
841 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
843 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
844 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
845 if (!(adapter->flags & FLAG_IS_ICH))
846 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
847 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
848 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
849 mask = 0x8003FFFF;
850 switch (mac->type) {
851 case e1000_ich10lan:
852 case e1000_pchlan:
853 mask |= (1 << 18);
854 break;
855 default:
856 break;
858 for (i = 0; i < mac->rar_entry_count; i++)
859 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
860 mask, 0xFFFFFFFF);
862 for (i = 0; i < mac->mta_reg_count; i++)
863 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
865 *data = 0;
866 return 0;
869 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
871 u16 temp;
872 u16 checksum = 0;
873 u16 i;
875 *data = 0;
876 /* Read and add up the contents of the EEPROM */
877 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
878 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
879 *data = 1;
880 return *data;
882 checksum += temp;
885 /* If Checksum is not Correct return error else test passed */
886 if ((checksum != (u16) NVM_SUM) && !(*data))
887 *data = 2;
889 return *data;
892 static irqreturn_t e1000_test_intr(int irq, void *data)
894 struct net_device *netdev = (struct net_device *) data;
895 struct e1000_adapter *adapter = netdev_priv(netdev);
896 struct e1000_hw *hw = &adapter->hw;
898 adapter->test_icr |= er32(ICR);
900 return IRQ_HANDLED;
903 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
905 struct net_device *netdev = adapter->netdev;
906 struct e1000_hw *hw = &adapter->hw;
907 u32 mask;
908 u32 shared_int = 1;
909 u32 irq = adapter->pdev->irq;
910 int i;
911 int ret_val = 0;
912 int int_mode = E1000E_INT_MODE_LEGACY;
914 *data = 0;
916 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
917 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
918 int_mode = adapter->int_mode;
919 e1000e_reset_interrupt_capability(adapter);
920 adapter->int_mode = E1000E_INT_MODE_LEGACY;
921 e1000e_set_interrupt_capability(adapter);
923 /* Hook up test interrupt handler just for this test */
924 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
925 netdev)) {
926 shared_int = 0;
927 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
928 netdev->name, netdev)) {
929 *data = 1;
930 ret_val = -1;
931 goto out;
933 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
935 /* Disable all the interrupts */
936 ew32(IMC, 0xFFFFFFFF);
937 msleep(10);
939 /* Test each interrupt */
940 for (i = 0; i < 10; i++) {
941 /* Interrupt to test */
942 mask = 1 << i;
944 if (adapter->flags & FLAG_IS_ICH) {
945 switch (mask) {
946 case E1000_ICR_RXSEQ:
947 continue;
948 case 0x00000100:
949 if (adapter->hw.mac.type == e1000_ich8lan ||
950 adapter->hw.mac.type == e1000_ich9lan)
951 continue;
952 break;
953 default:
954 break;
958 if (!shared_int) {
960 * Disable the interrupt to be reported in
961 * the cause register and then force the same
962 * interrupt and see if one gets posted. If
963 * an interrupt was posted to the bus, the
964 * test failed.
966 adapter->test_icr = 0;
967 ew32(IMC, mask);
968 ew32(ICS, mask);
969 msleep(10);
971 if (adapter->test_icr & mask) {
972 *data = 3;
973 break;
978 * Enable the interrupt to be reported in
979 * the cause register and then force the same
980 * interrupt and see if one gets posted. If
981 * an interrupt was not posted to the bus, the
982 * test failed.
984 adapter->test_icr = 0;
985 ew32(IMS, mask);
986 ew32(ICS, mask);
987 msleep(10);
989 if (!(adapter->test_icr & mask)) {
990 *data = 4;
991 break;
994 if (!shared_int) {
996 * Disable the other interrupts to be reported in
997 * the cause register and then force the other
998 * interrupts and see if any get posted. If
999 * an interrupt was posted to the bus, the
1000 * test failed.
1002 adapter->test_icr = 0;
1003 ew32(IMC, ~mask & 0x00007FFF);
1004 ew32(ICS, ~mask & 0x00007FFF);
1005 msleep(10);
1007 if (adapter->test_icr) {
1008 *data = 5;
1009 break;
1014 /* Disable all the interrupts */
1015 ew32(IMC, 0xFFFFFFFF);
1016 msleep(10);
1018 /* Unhook test interrupt handler */
1019 free_irq(irq, netdev);
1021 out:
1022 if (int_mode == E1000E_INT_MODE_MSIX) {
1023 e1000e_reset_interrupt_capability(adapter);
1024 adapter->int_mode = int_mode;
1025 e1000e_set_interrupt_capability(adapter);
1028 return ret_val;
1031 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1033 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1034 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1035 struct pci_dev *pdev = adapter->pdev;
1036 int i;
1038 if (tx_ring->desc && tx_ring->buffer_info) {
1039 for (i = 0; i < tx_ring->count; i++) {
1040 if (tx_ring->buffer_info[i].dma)
1041 pci_unmap_single(pdev,
1042 tx_ring->buffer_info[i].dma,
1043 tx_ring->buffer_info[i].length,
1044 PCI_DMA_TODEVICE);
1045 if (tx_ring->buffer_info[i].skb)
1046 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1050 if (rx_ring->desc && rx_ring->buffer_info) {
1051 for (i = 0; i < rx_ring->count; i++) {
1052 if (rx_ring->buffer_info[i].dma)
1053 pci_unmap_single(pdev,
1054 rx_ring->buffer_info[i].dma,
1055 2048, PCI_DMA_FROMDEVICE);
1056 if (rx_ring->buffer_info[i].skb)
1057 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1061 if (tx_ring->desc) {
1062 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1063 tx_ring->dma);
1064 tx_ring->desc = NULL;
1066 if (rx_ring->desc) {
1067 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1068 rx_ring->dma);
1069 rx_ring->desc = NULL;
1072 kfree(tx_ring->buffer_info);
1073 tx_ring->buffer_info = NULL;
1074 kfree(rx_ring->buffer_info);
1075 rx_ring->buffer_info = NULL;
1078 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1080 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1081 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1082 struct pci_dev *pdev = adapter->pdev;
1083 struct e1000_hw *hw = &adapter->hw;
1084 u32 rctl;
1085 int i;
1086 int ret_val;
1088 /* Setup Tx descriptor ring and Tx buffers */
1090 if (!tx_ring->count)
1091 tx_ring->count = E1000_DEFAULT_TXD;
1093 tx_ring->buffer_info = kcalloc(tx_ring->count,
1094 sizeof(struct e1000_buffer),
1095 GFP_KERNEL);
1096 if (!(tx_ring->buffer_info)) {
1097 ret_val = 1;
1098 goto err_nomem;
1101 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1102 tx_ring->size = ALIGN(tx_ring->size, 4096);
1103 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1104 &tx_ring->dma, GFP_KERNEL);
1105 if (!tx_ring->desc) {
1106 ret_val = 2;
1107 goto err_nomem;
1109 tx_ring->next_to_use = 0;
1110 tx_ring->next_to_clean = 0;
1112 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1113 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1114 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1115 ew32(TDH, 0);
1116 ew32(TDT, 0);
1117 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1118 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1119 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1121 for (i = 0; i < tx_ring->count; i++) {
1122 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1123 struct sk_buff *skb;
1124 unsigned int skb_size = 1024;
1126 skb = alloc_skb(skb_size, GFP_KERNEL);
1127 if (!skb) {
1128 ret_val = 3;
1129 goto err_nomem;
1131 skb_put(skb, skb_size);
1132 tx_ring->buffer_info[i].skb = skb;
1133 tx_ring->buffer_info[i].length = skb->len;
1134 tx_ring->buffer_info[i].dma =
1135 pci_map_single(pdev, skb->data, skb->len,
1136 PCI_DMA_TODEVICE);
1137 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1138 ret_val = 4;
1139 goto err_nomem;
1141 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1142 tx_desc->lower.data = cpu_to_le32(skb->len);
1143 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1144 E1000_TXD_CMD_IFCS |
1145 E1000_TXD_CMD_RS);
1146 tx_desc->upper.data = 0;
1149 /* Setup Rx descriptor ring and Rx buffers */
1151 if (!rx_ring->count)
1152 rx_ring->count = E1000_DEFAULT_RXD;
1154 rx_ring->buffer_info = kcalloc(rx_ring->count,
1155 sizeof(struct e1000_buffer),
1156 GFP_KERNEL);
1157 if (!(rx_ring->buffer_info)) {
1158 ret_val = 5;
1159 goto err_nomem;
1162 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1163 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1164 &rx_ring->dma, GFP_KERNEL);
1165 if (!rx_ring->desc) {
1166 ret_val = 6;
1167 goto err_nomem;
1169 rx_ring->next_to_use = 0;
1170 rx_ring->next_to_clean = 0;
1172 rctl = er32(RCTL);
1173 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1174 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1175 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1176 ew32(RDLEN, rx_ring->size);
1177 ew32(RDH, 0);
1178 ew32(RDT, 0);
1179 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1180 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1181 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1182 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1183 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1184 ew32(RCTL, rctl);
1186 for (i = 0; i < rx_ring->count; i++) {
1187 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1188 struct sk_buff *skb;
1190 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1191 if (!skb) {
1192 ret_val = 7;
1193 goto err_nomem;
1195 skb_reserve(skb, NET_IP_ALIGN);
1196 rx_ring->buffer_info[i].skb = skb;
1197 rx_ring->buffer_info[i].dma =
1198 pci_map_single(pdev, skb->data, 2048,
1199 PCI_DMA_FROMDEVICE);
1200 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1201 ret_val = 8;
1202 goto err_nomem;
1204 rx_desc->buffer_addr =
1205 cpu_to_le64(rx_ring->buffer_info[i].dma);
1206 memset(skb->data, 0x00, skb->len);
1209 return 0;
1211 err_nomem:
1212 e1000_free_desc_rings(adapter);
1213 return ret_val;
1216 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1218 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1219 e1e_wphy(&adapter->hw, 29, 0x001F);
1220 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1221 e1e_wphy(&adapter->hw, 29, 0x001A);
1222 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1225 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1227 struct e1000_hw *hw = &adapter->hw;
1228 u32 ctrl_reg = 0;
1229 u32 stat_reg = 0;
1230 u16 phy_reg = 0;
1232 hw->mac.autoneg = 0;
1234 if (hw->phy.type == e1000_phy_m88) {
1235 /* Auto-MDI/MDIX Off */
1236 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1237 /* reset to update Auto-MDI/MDIX */
1238 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1239 /* autoneg off */
1240 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1241 } else if (hw->phy.type == e1000_phy_gg82563)
1242 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1244 ctrl_reg = er32(CTRL);
1246 switch (hw->phy.type) {
1247 case e1000_phy_ife:
1248 /* force 100, set loopback */
1249 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1251 /* Now set up the MAC to the same speed/duplex as the PHY. */
1252 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1253 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1254 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1255 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1256 E1000_CTRL_FD); /* Force Duplex to FULL */
1257 break;
1258 case e1000_phy_bm:
1259 /* Set Default MAC Interface speed to 1GB */
1260 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1261 phy_reg &= ~0x0007;
1262 phy_reg |= 0x006;
1263 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1264 /* Assert SW reset for above settings to take effect */
1265 e1000e_commit_phy(hw);
1266 mdelay(1);
1267 /* Force Full Duplex */
1268 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1269 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1270 /* Set Link Up (in force link) */
1271 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1272 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1273 /* Force Link */
1274 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1275 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1276 /* Set Early Link Enable */
1277 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1278 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1279 /* fall through */
1280 default:
1281 /* force 1000, set loopback */
1282 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1283 mdelay(250);
1285 /* Now set up the MAC to the same speed/duplex as the PHY. */
1286 ctrl_reg = er32(CTRL);
1287 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1288 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1289 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1290 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1291 E1000_CTRL_FD); /* Force Duplex to FULL */
1293 if (adapter->flags & FLAG_IS_ICH)
1294 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1297 if (hw->phy.media_type == e1000_media_type_copper &&
1298 hw->phy.type == e1000_phy_m88) {
1299 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1300 } else {
1302 * Set the ILOS bit on the fiber Nic if half duplex link is
1303 * detected.
1305 stat_reg = er32(STATUS);
1306 if ((stat_reg & E1000_STATUS_FD) == 0)
1307 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1310 ew32(CTRL, ctrl_reg);
1313 * Disable the receiver on the PHY so when a cable is plugged in, the
1314 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1316 if (hw->phy.type == e1000_phy_m88)
1317 e1000_phy_disable_receiver(adapter);
1319 udelay(500);
1321 return 0;
1324 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1326 struct e1000_hw *hw = &adapter->hw;
1327 u32 ctrl = er32(CTRL);
1328 int link = 0;
1330 /* special requirements for 82571/82572 fiber adapters */
1333 * jump through hoops to make sure link is up because serdes
1334 * link is hardwired up
1336 ctrl |= E1000_CTRL_SLU;
1337 ew32(CTRL, ctrl);
1339 /* disable autoneg */
1340 ctrl = er32(TXCW);
1341 ctrl &= ~(1 << 31);
1342 ew32(TXCW, ctrl);
1344 link = (er32(STATUS) & E1000_STATUS_LU);
1346 if (!link) {
1347 /* set invert loss of signal */
1348 ctrl = er32(CTRL);
1349 ctrl |= E1000_CTRL_ILOS;
1350 ew32(CTRL, ctrl);
1354 * special write to serdes control register to enable SerDes analog
1355 * loopback
1357 #define E1000_SERDES_LB_ON 0x410
1358 ew32(SCTL, E1000_SERDES_LB_ON);
1359 msleep(10);
1361 return 0;
1364 /* only call this for fiber/serdes connections to es2lan */
1365 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1367 struct e1000_hw *hw = &adapter->hw;
1368 u32 ctrlext = er32(CTRL_EXT);
1369 u32 ctrl = er32(CTRL);
1372 * save CTRL_EXT to restore later, reuse an empty variable (unused
1373 * on mac_type 80003es2lan)
1375 adapter->tx_fifo_head = ctrlext;
1377 /* clear the serdes mode bits, putting the device into mac loopback */
1378 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1379 ew32(CTRL_EXT, ctrlext);
1381 /* force speed to 1000/FD, link up */
1382 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1383 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1384 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1385 ew32(CTRL, ctrl);
1387 /* set mac loopback */
1388 ctrl = er32(RCTL);
1389 ctrl |= E1000_RCTL_LBM_MAC;
1390 ew32(RCTL, ctrl);
1392 /* set testing mode parameters (no need to reset later) */
1393 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1394 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1395 ew32(KMRNCTRLSTA,
1396 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1398 return 0;
1401 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1403 struct e1000_hw *hw = &adapter->hw;
1404 u32 rctl;
1406 if (hw->phy.media_type == e1000_media_type_fiber ||
1407 hw->phy.media_type == e1000_media_type_internal_serdes) {
1408 switch (hw->mac.type) {
1409 case e1000_80003es2lan:
1410 return e1000_set_es2lan_mac_loopback(adapter);
1411 break;
1412 case e1000_82571:
1413 case e1000_82572:
1414 return e1000_set_82571_fiber_loopback(adapter);
1415 break;
1416 default:
1417 rctl = er32(RCTL);
1418 rctl |= E1000_RCTL_LBM_TCVR;
1419 ew32(RCTL, rctl);
1420 return 0;
1422 } else if (hw->phy.media_type == e1000_media_type_copper) {
1423 return e1000_integrated_phy_loopback(adapter);
1426 return 7;
1429 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1431 struct e1000_hw *hw = &adapter->hw;
1432 u32 rctl;
1433 u16 phy_reg;
1435 rctl = er32(RCTL);
1436 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1437 ew32(RCTL, rctl);
1439 switch (hw->mac.type) {
1440 case e1000_80003es2lan:
1441 if (hw->phy.media_type == e1000_media_type_fiber ||
1442 hw->phy.media_type == e1000_media_type_internal_serdes) {
1443 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1444 ew32(CTRL_EXT, adapter->tx_fifo_head);
1445 adapter->tx_fifo_head = 0;
1447 /* fall through */
1448 case e1000_82571:
1449 case e1000_82572:
1450 if (hw->phy.media_type == e1000_media_type_fiber ||
1451 hw->phy.media_type == e1000_media_type_internal_serdes) {
1452 #define E1000_SERDES_LB_OFF 0x400
1453 ew32(SCTL, E1000_SERDES_LB_OFF);
1454 msleep(10);
1455 break;
1457 /* Fall Through */
1458 default:
1459 hw->mac.autoneg = 1;
1460 if (hw->phy.type == e1000_phy_gg82563)
1461 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1462 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1463 if (phy_reg & MII_CR_LOOPBACK) {
1464 phy_reg &= ~MII_CR_LOOPBACK;
1465 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1466 e1000e_commit_phy(hw);
1468 break;
1472 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1473 unsigned int frame_size)
1475 memset(skb->data, 0xFF, frame_size);
1476 frame_size &= ~1;
1477 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1478 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1479 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1482 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1483 unsigned int frame_size)
1485 frame_size &= ~1;
1486 if (*(skb->data + 3) == 0xFF)
1487 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1488 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1489 return 0;
1490 return 13;
1493 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1495 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1496 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1497 struct pci_dev *pdev = adapter->pdev;
1498 struct e1000_hw *hw = &adapter->hw;
1499 int i, j, k, l;
1500 int lc;
1501 int good_cnt;
1502 int ret_val = 0;
1503 unsigned long time;
1505 ew32(RDT, rx_ring->count - 1);
1508 * Calculate the loop count based on the largest descriptor ring
1509 * The idea is to wrap the largest ring a number of times using 64
1510 * send/receive pairs during each loop
1513 if (rx_ring->count <= tx_ring->count)
1514 lc = ((tx_ring->count / 64) * 2) + 1;
1515 else
1516 lc = ((rx_ring->count / 64) * 2) + 1;
1518 k = 0;
1519 l = 0;
1520 for (j = 0; j <= lc; j++) { /* loop count loop */
1521 for (i = 0; i < 64; i++) { /* send the packets */
1522 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1523 1024);
1524 pci_dma_sync_single_for_device(pdev,
1525 tx_ring->buffer_info[k].dma,
1526 tx_ring->buffer_info[k].length,
1527 PCI_DMA_TODEVICE);
1528 k++;
1529 if (k == tx_ring->count)
1530 k = 0;
1532 ew32(TDT, k);
1533 msleep(200);
1534 time = jiffies; /* set the start time for the receive */
1535 good_cnt = 0;
1536 do { /* receive the sent packets */
1537 pci_dma_sync_single_for_cpu(pdev,
1538 rx_ring->buffer_info[l].dma, 2048,
1539 PCI_DMA_FROMDEVICE);
1541 ret_val = e1000_check_lbtest_frame(
1542 rx_ring->buffer_info[l].skb, 1024);
1543 if (!ret_val)
1544 good_cnt++;
1545 l++;
1546 if (l == rx_ring->count)
1547 l = 0;
1549 * time + 20 msecs (200 msecs on 2.4) is more than
1550 * enough time to complete the receives, if it's
1551 * exceeded, break and error off
1553 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1554 if (good_cnt != 64) {
1555 ret_val = 13; /* ret_val is the same as mis-compare */
1556 break;
1558 if (jiffies >= (time + 20)) {
1559 ret_val = 14; /* error code for time out error */
1560 break;
1562 } /* end loop count loop */
1563 return ret_val;
1566 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1569 * PHY loopback cannot be performed if SoL/IDER
1570 * sessions are active
1572 if (e1000_check_reset_block(&adapter->hw)) {
1573 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1574 *data = 0;
1575 goto out;
1578 *data = e1000_setup_desc_rings(adapter);
1579 if (*data)
1580 goto out;
1582 *data = e1000_setup_loopback_test(adapter);
1583 if (*data)
1584 goto err_loopback;
1586 *data = e1000_run_loopback_test(adapter);
1587 e1000_loopback_cleanup(adapter);
1589 err_loopback:
1590 e1000_free_desc_rings(adapter);
1591 out:
1592 return *data;
1595 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1597 struct e1000_hw *hw = &adapter->hw;
1599 *data = 0;
1600 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1601 int i = 0;
1602 hw->mac.serdes_has_link = false;
1605 * On some blade server designs, link establishment
1606 * could take as long as 2-3 minutes
1608 do {
1609 hw->mac.ops.check_for_link(hw);
1610 if (hw->mac.serdes_has_link)
1611 return *data;
1612 msleep(20);
1613 } while (i++ < 3750);
1615 *data = 1;
1616 } else {
1617 hw->mac.ops.check_for_link(hw);
1618 if (hw->mac.autoneg)
1619 msleep(4000);
1621 if (!(er32(STATUS) &
1622 E1000_STATUS_LU))
1623 *data = 1;
1625 return *data;
1628 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1630 switch (sset) {
1631 case ETH_SS_TEST:
1632 return E1000_TEST_LEN;
1633 case ETH_SS_STATS:
1634 return E1000_STATS_LEN;
1635 default:
1636 return -EOPNOTSUPP;
1640 static void e1000_diag_test(struct net_device *netdev,
1641 struct ethtool_test *eth_test, u64 *data)
1643 struct e1000_adapter *adapter = netdev_priv(netdev);
1644 u16 autoneg_advertised;
1645 u8 forced_speed_duplex;
1646 u8 autoneg;
1647 bool if_running = netif_running(netdev);
1649 set_bit(__E1000_TESTING, &adapter->state);
1650 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1651 /* Offline tests */
1653 /* save speed, duplex, autoneg settings */
1654 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1655 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1656 autoneg = adapter->hw.mac.autoneg;
1658 e_info("offline testing starting\n");
1661 * Link test performed before hardware reset so autoneg doesn't
1662 * interfere with test result
1664 if (e1000_link_test(adapter, &data[4]))
1665 eth_test->flags |= ETH_TEST_FL_FAILED;
1667 if (if_running)
1668 /* indicate we're in test mode */
1669 dev_close(netdev);
1670 else
1671 e1000e_reset(adapter);
1673 if (e1000_reg_test(adapter, &data[0]))
1674 eth_test->flags |= ETH_TEST_FL_FAILED;
1676 e1000e_reset(adapter);
1677 if (e1000_eeprom_test(adapter, &data[1]))
1678 eth_test->flags |= ETH_TEST_FL_FAILED;
1680 e1000e_reset(adapter);
1681 if (e1000_intr_test(adapter, &data[2]))
1682 eth_test->flags |= ETH_TEST_FL_FAILED;
1684 e1000e_reset(adapter);
1685 /* make sure the phy is powered up */
1686 e1000e_power_up_phy(adapter);
1687 if (e1000_loopback_test(adapter, &data[3]))
1688 eth_test->flags |= ETH_TEST_FL_FAILED;
1690 /* restore speed, duplex, autoneg settings */
1691 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1692 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1693 adapter->hw.mac.autoneg = autoneg;
1695 /* force this routine to wait until autoneg complete/timeout */
1696 adapter->hw.phy.autoneg_wait_to_complete = 1;
1697 e1000e_reset(adapter);
1698 adapter->hw.phy.autoneg_wait_to_complete = 0;
1700 clear_bit(__E1000_TESTING, &adapter->state);
1701 if (if_running)
1702 dev_open(netdev);
1703 } else {
1704 e_info("online testing starting\n");
1705 /* Online tests */
1706 if (e1000_link_test(adapter, &data[4]))
1707 eth_test->flags |= ETH_TEST_FL_FAILED;
1709 /* Online tests aren't run; pass by default */
1710 data[0] = 0;
1711 data[1] = 0;
1712 data[2] = 0;
1713 data[3] = 0;
1715 clear_bit(__E1000_TESTING, &adapter->state);
1717 msleep_interruptible(4 * 1000);
1720 static void e1000_get_wol(struct net_device *netdev,
1721 struct ethtool_wolinfo *wol)
1723 struct e1000_adapter *adapter = netdev_priv(netdev);
1725 wol->supported = 0;
1726 wol->wolopts = 0;
1728 if (!(adapter->flags & FLAG_HAS_WOL) ||
1729 !device_can_wakeup(&adapter->pdev->dev))
1730 return;
1732 wol->supported = WAKE_UCAST | WAKE_MCAST |
1733 WAKE_BCAST | WAKE_MAGIC |
1734 WAKE_PHY | WAKE_ARP;
1736 /* apply any specific unsupported masks here */
1737 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1738 wol->supported &= ~WAKE_UCAST;
1740 if (adapter->wol & E1000_WUFC_EX)
1741 e_err("Interface does not support directed (unicast) "
1742 "frame wake-up packets\n");
1745 if (adapter->wol & E1000_WUFC_EX)
1746 wol->wolopts |= WAKE_UCAST;
1747 if (adapter->wol & E1000_WUFC_MC)
1748 wol->wolopts |= WAKE_MCAST;
1749 if (adapter->wol & E1000_WUFC_BC)
1750 wol->wolopts |= WAKE_BCAST;
1751 if (adapter->wol & E1000_WUFC_MAG)
1752 wol->wolopts |= WAKE_MAGIC;
1753 if (adapter->wol & E1000_WUFC_LNKC)
1754 wol->wolopts |= WAKE_PHY;
1755 if (adapter->wol & E1000_WUFC_ARP)
1756 wol->wolopts |= WAKE_ARP;
1759 static int e1000_set_wol(struct net_device *netdev,
1760 struct ethtool_wolinfo *wol)
1762 struct e1000_adapter *adapter = netdev_priv(netdev);
1764 if (wol->wolopts & WAKE_MAGICSECURE)
1765 return -EOPNOTSUPP;
1767 if (!(adapter->flags & FLAG_HAS_WOL) ||
1768 !device_can_wakeup(&adapter->pdev->dev))
1769 return wol->wolopts ? -EOPNOTSUPP : 0;
1771 /* these settings will always override what we currently have */
1772 adapter->wol = 0;
1774 if (wol->wolopts & WAKE_UCAST)
1775 adapter->wol |= E1000_WUFC_EX;
1776 if (wol->wolopts & WAKE_MCAST)
1777 adapter->wol |= E1000_WUFC_MC;
1778 if (wol->wolopts & WAKE_BCAST)
1779 adapter->wol |= E1000_WUFC_BC;
1780 if (wol->wolopts & WAKE_MAGIC)
1781 adapter->wol |= E1000_WUFC_MAG;
1782 if (wol->wolopts & WAKE_PHY)
1783 adapter->wol |= E1000_WUFC_LNKC;
1784 if (wol->wolopts & WAKE_ARP)
1785 adapter->wol |= E1000_WUFC_ARP;
1787 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1789 return 0;
1792 /* toggle LED 4 times per second = 2 "blinks" per second */
1793 #define E1000_ID_INTERVAL (HZ/4)
1795 /* bit defines for adapter->led_status */
1796 #define E1000_LED_ON 0
1798 static void e1000e_led_blink_task(struct work_struct *work)
1800 struct e1000_adapter *adapter = container_of(work,
1801 struct e1000_adapter, led_blink_task);
1803 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1804 adapter->hw.mac.ops.led_off(&adapter->hw);
1805 else
1806 adapter->hw.mac.ops.led_on(&adapter->hw);
1809 static void e1000_led_blink_callback(unsigned long data)
1811 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1813 schedule_work(&adapter->led_blink_task);
1814 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1817 static int e1000_phys_id(struct net_device *netdev, u32 data)
1819 struct e1000_adapter *adapter = netdev_priv(netdev);
1820 struct e1000_hw *hw = &adapter->hw;
1822 if (!data)
1823 data = INT_MAX;
1825 if ((hw->phy.type == e1000_phy_ife) ||
1826 (hw->mac.type == e1000_pchlan) ||
1827 (hw->mac.type == e1000_82574)) {
1828 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1829 if (!adapter->blink_timer.function) {
1830 init_timer(&adapter->blink_timer);
1831 adapter->blink_timer.function =
1832 e1000_led_blink_callback;
1833 adapter->blink_timer.data = (unsigned long) adapter;
1835 mod_timer(&adapter->blink_timer, jiffies);
1836 msleep_interruptible(data * 1000);
1837 del_timer_sync(&adapter->blink_timer);
1838 if (hw->phy.type == e1000_phy_ife)
1839 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1840 } else {
1841 e1000e_blink_led(hw);
1842 msleep_interruptible(data * 1000);
1845 hw->mac.ops.led_off(hw);
1846 clear_bit(E1000_LED_ON, &adapter->led_status);
1847 hw->mac.ops.cleanup_led(hw);
1849 return 0;
1852 static int e1000_get_coalesce(struct net_device *netdev,
1853 struct ethtool_coalesce *ec)
1855 struct e1000_adapter *adapter = netdev_priv(netdev);
1857 if (adapter->itr_setting <= 3)
1858 ec->rx_coalesce_usecs = adapter->itr_setting;
1859 else
1860 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1862 return 0;
1865 static int e1000_set_coalesce(struct net_device *netdev,
1866 struct ethtool_coalesce *ec)
1868 struct e1000_adapter *adapter = netdev_priv(netdev);
1869 struct e1000_hw *hw = &adapter->hw;
1871 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1872 ((ec->rx_coalesce_usecs > 3) &&
1873 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1874 (ec->rx_coalesce_usecs == 2))
1875 return -EINVAL;
1877 if (ec->rx_coalesce_usecs <= 3) {
1878 adapter->itr = 20000;
1879 adapter->itr_setting = ec->rx_coalesce_usecs;
1880 } else {
1881 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1882 adapter->itr_setting = adapter->itr & ~3;
1885 if (adapter->itr_setting != 0)
1886 ew32(ITR, 1000000000 / (adapter->itr * 256));
1887 else
1888 ew32(ITR, 0);
1890 return 0;
1893 static int e1000_nway_reset(struct net_device *netdev)
1895 struct e1000_adapter *adapter = netdev_priv(netdev);
1896 if (netif_running(netdev))
1897 e1000e_reinit_locked(adapter);
1898 return 0;
1901 static void e1000_get_ethtool_stats(struct net_device *netdev,
1902 struct ethtool_stats *stats,
1903 u64 *data)
1905 struct e1000_adapter *adapter = netdev_priv(netdev);
1906 int i;
1908 e1000e_update_stats(adapter);
1909 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1910 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1911 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1912 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1916 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1917 u8 *data)
1919 u8 *p = data;
1920 int i;
1922 switch (stringset) {
1923 case ETH_SS_TEST:
1924 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1925 break;
1926 case ETH_SS_STATS:
1927 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1928 memcpy(p, e1000_gstrings_stats[i].stat_string,
1929 ETH_GSTRING_LEN);
1930 p += ETH_GSTRING_LEN;
1932 break;
1936 static const struct ethtool_ops e1000_ethtool_ops = {
1937 .get_settings = e1000_get_settings,
1938 .set_settings = e1000_set_settings,
1939 .get_drvinfo = e1000_get_drvinfo,
1940 .get_regs_len = e1000_get_regs_len,
1941 .get_regs = e1000_get_regs,
1942 .get_wol = e1000_get_wol,
1943 .set_wol = e1000_set_wol,
1944 .get_msglevel = e1000_get_msglevel,
1945 .set_msglevel = e1000_set_msglevel,
1946 .nway_reset = e1000_nway_reset,
1947 .get_link = e1000_get_link,
1948 .get_eeprom_len = e1000_get_eeprom_len,
1949 .get_eeprom = e1000_get_eeprom,
1950 .set_eeprom = e1000_set_eeprom,
1951 .get_ringparam = e1000_get_ringparam,
1952 .set_ringparam = e1000_set_ringparam,
1953 .get_pauseparam = e1000_get_pauseparam,
1954 .set_pauseparam = e1000_set_pauseparam,
1955 .get_rx_csum = e1000_get_rx_csum,
1956 .set_rx_csum = e1000_set_rx_csum,
1957 .get_tx_csum = e1000_get_tx_csum,
1958 .set_tx_csum = e1000_set_tx_csum,
1959 .get_sg = ethtool_op_get_sg,
1960 .set_sg = ethtool_op_set_sg,
1961 .get_tso = ethtool_op_get_tso,
1962 .set_tso = e1000_set_tso,
1963 .self_test = e1000_diag_test,
1964 .get_strings = e1000_get_strings,
1965 .phys_id = e1000_phys_id,
1966 .get_ethtool_stats = e1000_get_ethtool_stats,
1967 .get_sset_count = e1000e_get_sset_count,
1968 .get_coalesce = e1000_get_coalesce,
1969 .set_coalesce = e1000_set_coalesce,
1972 void e1000e_set_ethtool_ops(struct net_device *netdev)
1974 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);