1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
38 enum {NETDEV_STATS
, E1000_STATS
};
41 char stat_string
[ETH_GSTRING_LEN
];
47 #define E1000_STAT(m) E1000_STATS, \
48 sizeof(((struct e1000_adapter *)0)->m), \
49 offsetof(struct e1000_adapter, m)
50 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
51 sizeof(((struct net_device *)0)->m), \
52 offsetof(struct net_device, m)
54 static const struct e1000_stats e1000_gstrings_stats
[] = {
55 { "rx_packets", E1000_STAT(stats
.gprc
) },
56 { "tx_packets", E1000_STAT(stats
.gptc
) },
57 { "rx_bytes", E1000_STAT(stats
.gorc
) },
58 { "tx_bytes", E1000_STAT(stats
.gotc
) },
59 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
60 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
61 { "rx_multicast", E1000_STAT(stats
.mprc
) },
62 { "tx_multicast", E1000_STAT(stats
.mptc
) },
63 { "rx_errors", E1000_NETDEV_STAT(stats
.rx_errors
) },
64 { "tx_errors", E1000_NETDEV_STAT(stats
.tx_errors
) },
65 { "tx_dropped", E1000_NETDEV_STAT(stats
.tx_dropped
) },
66 { "multicast", E1000_STAT(stats
.mprc
) },
67 { "collisions", E1000_STAT(stats
.colc
) },
68 { "rx_length_errors", E1000_NETDEV_STAT(stats
.rx_length_errors
) },
69 { "rx_over_errors", E1000_NETDEV_STAT(stats
.rx_over_errors
) },
70 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
71 { "rx_frame_errors", E1000_NETDEV_STAT(stats
.rx_frame_errors
) },
72 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
73 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
74 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
75 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
76 { "tx_fifo_errors", E1000_NETDEV_STAT(stats
.tx_fifo_errors
) },
77 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats
.tx_heartbeat_errors
) },
78 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
79 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
80 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
81 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
82 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
83 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
84 { "tx_restart_queue", E1000_STAT(restart_queue
) },
85 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
86 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
87 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
88 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
89 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
90 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
91 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
92 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
93 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
94 { "rx_long_byte_count", E1000_STAT(stats
.gorc
) },
95 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
96 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
97 { "rx_header_split", E1000_STAT(rx_hdr_split
) },
98 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
99 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
100 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
101 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
102 { "rx_dma_failed", E1000_STAT(rx_dma_failed
) },
103 { "tx_dma_failed", E1000_STAT(tx_dma_failed
) },
106 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
108 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
109 "Register test (offline)", "Eeprom test (offline)",
110 "Interrupt test (offline)", "Loopback test (offline)",
111 "Link test (on/offline)"
113 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
115 static int e1000_get_settings(struct net_device
*netdev
,
116 struct ethtool_cmd
*ecmd
)
118 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
119 struct e1000_hw
*hw
= &adapter
->hw
;
122 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
124 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
125 SUPPORTED_10baseT_Full
|
126 SUPPORTED_100baseT_Half
|
127 SUPPORTED_100baseT_Full
|
128 SUPPORTED_1000baseT_Full
|
131 if (hw
->phy
.type
== e1000_phy_ife
)
132 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
133 ecmd
->advertising
= ADVERTISED_TP
;
135 if (hw
->mac
.autoneg
== 1) {
136 ecmd
->advertising
|= ADVERTISED_Autoneg
;
137 /* the e1000 autoneg seems to match ethtool nicely */
138 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
141 ecmd
->port
= PORT_TP
;
142 ecmd
->phy_address
= hw
->phy
.addr
;
143 ecmd
->transceiver
= XCVR_INTERNAL
;
146 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
150 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
154 ecmd
->port
= PORT_FIBRE
;
155 ecmd
->transceiver
= XCVR_EXTERNAL
;
158 status
= er32(STATUS
);
159 if (status
& E1000_STATUS_LU
) {
160 if (status
& E1000_STATUS_SPEED_1000
)
162 else if (status
& E1000_STATUS_SPEED_100
)
167 if (status
& E1000_STATUS_FD
)
168 ecmd
->duplex
= DUPLEX_FULL
;
170 ecmd
->duplex
= DUPLEX_HALF
;
176 ecmd
->autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
177 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
179 /* MDI-X => 2; MDI =>1; Invalid =>0 */
180 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
181 !hw
->mac
.get_link_status
)
182 ecmd
->eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
:
185 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
190 static u32
e1000_get_link(struct net_device
*netdev
)
192 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
193 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
196 * If the link is not reported up to netdev, interrupts are disabled,
197 * and so the physical link state may have changed since we last
198 * looked. Set get_link_status to make sure that the true link
199 * state is interrogated, rather than pulling a cached and possibly
200 * stale link state from the driver.
202 if (!netif_carrier_ok(netdev
))
203 mac
->get_link_status
= 1;
205 return e1000_has_link(adapter
);
208 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
210 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
214 /* Fiber NICs only allow 1000 gbps Full duplex */
215 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
216 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
217 e_err("Unsupported Speed/Duplex configuration\n");
222 case SPEED_10
+ DUPLEX_HALF
:
223 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
225 case SPEED_10
+ DUPLEX_FULL
:
226 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
228 case SPEED_100
+ DUPLEX_HALF
:
229 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
231 case SPEED_100
+ DUPLEX_FULL
:
232 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
234 case SPEED_1000
+ DUPLEX_FULL
:
236 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
238 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
240 e_err("Unsupported Speed/Duplex configuration\n");
246 static int e1000_set_settings(struct net_device
*netdev
,
247 struct ethtool_cmd
*ecmd
)
249 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
250 struct e1000_hw
*hw
= &adapter
->hw
;
253 * When SoL/IDER sessions are active, autoneg/speed/duplex
256 if (e1000_check_reset_block(hw
)) {
257 e_err("Cannot change link characteristics when SoL/IDER is "
262 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
265 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
267 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
268 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
272 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
275 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
276 if (adapter
->fc_autoneg
)
277 hw
->fc
.requested_mode
= e1000_fc_default
;
279 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
280 clear_bit(__E1000_RESETTING
, &adapter
->state
);
287 if (netif_running(adapter
->netdev
)) {
288 e1000e_down(adapter
);
291 e1000e_reset(adapter
);
294 clear_bit(__E1000_RESETTING
, &adapter
->state
);
298 static void e1000_get_pauseparam(struct net_device
*netdev
,
299 struct ethtool_pauseparam
*pause
)
301 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
302 struct e1000_hw
*hw
= &adapter
->hw
;
305 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
307 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
) {
309 } else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
) {
311 } else if (hw
->fc
.current_mode
== e1000_fc_full
) {
317 static int e1000_set_pauseparam(struct net_device
*netdev
,
318 struct ethtool_pauseparam
*pause
)
320 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
321 struct e1000_hw
*hw
= &adapter
->hw
;
324 adapter
->fc_autoneg
= pause
->autoneg
;
326 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
329 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
330 hw
->fc
.requested_mode
= e1000_fc_default
;
331 if (netif_running(adapter
->netdev
)) {
332 e1000e_down(adapter
);
335 e1000e_reset(adapter
);
338 if (pause
->rx_pause
&& pause
->tx_pause
)
339 hw
->fc
.requested_mode
= e1000_fc_full
;
340 else if (pause
->rx_pause
&& !pause
->tx_pause
)
341 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
342 else if (!pause
->rx_pause
&& pause
->tx_pause
)
343 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
344 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
345 hw
->fc
.requested_mode
= e1000_fc_none
;
347 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
349 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
350 retval
= hw
->mac
.ops
.setup_link(hw
);
351 /* implicit goto out */
353 retval
= e1000e_force_mac_fc(hw
);
356 e1000e_set_fc_watermarks(hw
);
361 clear_bit(__E1000_RESETTING
, &adapter
->state
);
365 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
367 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
368 return (adapter
->flags
& FLAG_RX_CSUM_ENABLED
);
371 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
373 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
376 adapter
->flags
|= FLAG_RX_CSUM_ENABLED
;
378 adapter
->flags
&= ~FLAG_RX_CSUM_ENABLED
;
380 if (netif_running(netdev
))
381 e1000e_reinit_locked(adapter
);
383 e1000e_reset(adapter
);
387 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
389 return ((netdev
->features
& NETIF_F_HW_CSUM
) != 0);
392 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
395 netdev
->features
|= NETIF_F_HW_CSUM
;
397 netdev
->features
&= ~NETIF_F_HW_CSUM
;
402 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
404 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
407 netdev
->features
|= NETIF_F_TSO
;
408 netdev
->features
|= NETIF_F_TSO6
;
410 netdev
->features
&= ~NETIF_F_TSO
;
411 netdev
->features
&= ~NETIF_F_TSO6
;
414 e_info("TSO is %s\n", data
? "Enabled" : "Disabled");
415 adapter
->flags
|= FLAG_TSO_FORCE
;
419 static u32
e1000_get_msglevel(struct net_device
*netdev
)
421 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
422 return adapter
->msg_enable
;
425 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
427 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
428 adapter
->msg_enable
= data
;
431 static int e1000_get_regs_len(struct net_device
*netdev
)
433 #define E1000_REGS_LEN 32 /* overestimate */
434 return E1000_REGS_LEN
* sizeof(u32
);
437 static void e1000_get_regs(struct net_device
*netdev
,
438 struct ethtool_regs
*regs
, void *p
)
440 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
441 struct e1000_hw
*hw
= &adapter
->hw
;
446 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
448 pci_read_config_byte(adapter
->pdev
, PCI_REVISION_ID
, &revision_id
);
450 regs
->version
= (1 << 24) | (revision_id
<< 16) | adapter
->pdev
->device
;
452 regs_buff
[0] = er32(CTRL
);
453 regs_buff
[1] = er32(STATUS
);
455 regs_buff
[2] = er32(RCTL
);
456 regs_buff
[3] = er32(RDLEN
);
457 regs_buff
[4] = er32(RDH
);
458 regs_buff
[5] = er32(RDT
);
459 regs_buff
[6] = er32(RDTR
);
461 regs_buff
[7] = er32(TCTL
);
462 regs_buff
[8] = er32(TDLEN
);
463 regs_buff
[9] = er32(TDH
);
464 regs_buff
[10] = er32(TDT
);
465 regs_buff
[11] = er32(TIDV
);
467 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
469 /* ethtool doesn't use anything past this point, so all this
470 * code is likely legacy junk for apps that may or may not
472 if (hw
->phy
.type
== e1000_phy_m88
) {
473 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
474 regs_buff
[13] = (u32
)phy_data
; /* cable length */
475 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
476 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
477 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
479 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
480 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
481 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
482 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
483 /* phy receive errors */
484 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
485 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
487 regs_buff
[21] = 0; /* was idle_errors */
488 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
489 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
490 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
493 static int e1000_get_eeprom_len(struct net_device
*netdev
)
495 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
496 return adapter
->hw
.nvm
.word_size
* 2;
499 static int e1000_get_eeprom(struct net_device
*netdev
,
500 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
502 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
503 struct e1000_hw
*hw
= &adapter
->hw
;
510 if (eeprom
->len
== 0)
513 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
515 first_word
= eeprom
->offset
>> 1;
516 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
518 eeprom_buff
= kmalloc(sizeof(u16
) *
519 (last_word
- first_word
+ 1), GFP_KERNEL
);
523 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
524 ret_val
= e1000_read_nvm(hw
, first_word
,
525 last_word
- first_word
+ 1,
528 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
529 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
537 /* a read error occurred, throw away the result */
538 memset(eeprom_buff
, 0xff, sizeof(u16
) *
539 (last_word
- first_word
+ 1));
541 /* Device's eeprom is always little-endian, word addressable */
542 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
543 le16_to_cpus(&eeprom_buff
[i
]);
546 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
552 static int e1000_set_eeprom(struct net_device
*netdev
,
553 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
555 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
556 struct e1000_hw
*hw
= &adapter
->hw
;
565 if (eeprom
->len
== 0)
568 if (eeprom
->magic
!= (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
571 if (adapter
->flags
& FLAG_READ_ONLY_NVM
)
574 max_len
= hw
->nvm
.word_size
* 2;
576 first_word
= eeprom
->offset
>> 1;
577 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
578 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
582 ptr
= (void *)eeprom_buff
;
584 if (eeprom
->offset
& 1) {
585 /* need read/modify/write of first changed EEPROM word */
586 /* only the second byte of the word is being modified */
587 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
590 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0))
591 /* need read/modify/write of last changed EEPROM word */
592 /* only the first byte of the word is being modified */
593 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
594 &eeprom_buff
[last_word
- first_word
]);
599 /* Device's eeprom is always little-endian, word addressable */
600 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
601 le16_to_cpus(&eeprom_buff
[i
]);
603 memcpy(ptr
, bytes
, eeprom
->len
);
605 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
606 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
608 ret_val
= e1000_write_nvm(hw
, first_word
,
609 last_word
- first_word
+ 1, eeprom_buff
);
615 * Update the checksum over the first part of the EEPROM if needed
616 * and flush shadow RAM for applicable controllers
618 if ((first_word
<= NVM_CHECKSUM_REG
) ||
619 (hw
->mac
.type
== e1000_82583
) ||
620 (hw
->mac
.type
== e1000_82574
) ||
621 (hw
->mac
.type
== e1000_82573
))
622 ret_val
= e1000e_update_nvm_checksum(hw
);
629 static void e1000_get_drvinfo(struct net_device
*netdev
,
630 struct ethtool_drvinfo
*drvinfo
)
632 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
633 char firmware_version
[32];
635 strncpy(drvinfo
->driver
, e1000e_driver_name
, 32);
636 strncpy(drvinfo
->version
, e1000e_driver_version
, 32);
639 * EEPROM image version # is reported as firmware version # for
642 sprintf(firmware_version
, "%d.%d-%d",
643 (adapter
->eeprom_vers
& 0xF000) >> 12,
644 (adapter
->eeprom_vers
& 0x0FF0) >> 4,
645 (adapter
->eeprom_vers
& 0x000F));
647 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
648 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
649 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
650 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
653 static void e1000_get_ringparam(struct net_device
*netdev
,
654 struct ethtool_ringparam
*ring
)
656 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
657 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
658 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
660 ring
->rx_max_pending
= E1000_MAX_RXD
;
661 ring
->tx_max_pending
= E1000_MAX_TXD
;
662 ring
->rx_mini_max_pending
= 0;
663 ring
->rx_jumbo_max_pending
= 0;
664 ring
->rx_pending
= rx_ring
->count
;
665 ring
->tx_pending
= tx_ring
->count
;
666 ring
->rx_mini_pending
= 0;
667 ring
->rx_jumbo_pending
= 0;
670 static int e1000_set_ringparam(struct net_device
*netdev
,
671 struct ethtool_ringparam
*ring
)
673 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
674 struct e1000_ring
*tx_ring
, *tx_old
;
675 struct e1000_ring
*rx_ring
, *rx_old
;
678 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
681 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
684 if (netif_running(adapter
->netdev
))
685 e1000e_down(adapter
);
687 tx_old
= adapter
->tx_ring
;
688 rx_old
= adapter
->rx_ring
;
691 tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
695 * use a memcpy to save any previously configured
696 * items like napi structs from having to be
699 memcpy(tx_ring
, tx_old
, sizeof(struct e1000_ring
));
701 rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
704 memcpy(rx_ring
, rx_old
, sizeof(struct e1000_ring
));
706 adapter
->tx_ring
= tx_ring
;
707 adapter
->rx_ring
= rx_ring
;
709 rx_ring
->count
= max(ring
->rx_pending
, (u32
)E1000_MIN_RXD
);
710 rx_ring
->count
= min(rx_ring
->count
, (u32
)(E1000_MAX_RXD
));
711 rx_ring
->count
= ALIGN(rx_ring
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
713 tx_ring
->count
= max(ring
->tx_pending
, (u32
)E1000_MIN_TXD
);
714 tx_ring
->count
= min(tx_ring
->count
, (u32
)(E1000_MAX_TXD
));
715 tx_ring
->count
= ALIGN(tx_ring
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
717 if (netif_running(adapter
->netdev
)) {
718 /* Try to get new resources before deleting old */
719 err
= e1000e_setup_rx_resources(adapter
);
722 err
= e1000e_setup_tx_resources(adapter
);
727 * restore the old in order to free it,
728 * then add in the new
730 adapter
->rx_ring
= rx_old
;
731 adapter
->tx_ring
= tx_old
;
732 e1000e_free_rx_resources(adapter
);
733 e1000e_free_tx_resources(adapter
);
736 adapter
->rx_ring
= rx_ring
;
737 adapter
->tx_ring
= tx_ring
;
738 err
= e1000e_up(adapter
);
743 clear_bit(__E1000_RESETTING
, &adapter
->state
);
746 e1000e_free_rx_resources(adapter
);
748 adapter
->rx_ring
= rx_old
;
749 adapter
->tx_ring
= tx_old
;
756 clear_bit(__E1000_RESETTING
, &adapter
->state
);
760 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
,
761 int reg
, int offset
, u32 mask
, u32 write
)
764 static const u32 test
[] =
765 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
766 for (pat
= 0; pat
< ARRAY_SIZE(test
); pat
++) {
767 E1000_WRITE_REG_ARRAY(&adapter
->hw
, reg
, offset
,
768 (test
[pat
] & write
));
769 val
= E1000_READ_REG_ARRAY(&adapter
->hw
, reg
, offset
);
770 if (val
!= (test
[pat
] & write
& mask
)) {
771 e_err("pattern test reg %04X failed: got 0x%08X "
772 "expected 0x%08X\n", reg
+ offset
, val
,
773 (test
[pat
] & write
& mask
));
781 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
,
782 int reg
, u32 mask
, u32 write
)
785 __ew32(&adapter
->hw
, reg
, write
& mask
);
786 val
= __er32(&adapter
->hw
, reg
);
787 if ((write
& mask
) != (val
& mask
)) {
788 e_err("set/check reg %04X test failed: got 0x%08X "
789 "expected 0x%08X\n", reg
, (val
& mask
), (write
& mask
));
795 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
797 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
800 #define REG_PATTERN_TEST(reg, mask, write) \
801 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
803 #define REG_SET_AND_CHECK(reg, mask, write) \
805 if (reg_set_and_check(adapter, data, reg, mask, write)) \
809 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
811 struct e1000_hw
*hw
= &adapter
->hw
;
812 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
821 * The status register is Read Only, so a write should fail.
822 * Some bits that get toggled are ignored.
825 /* there are several bits on newer hardware that are r/w */
828 case e1000_80003es2lan
:
836 before
= er32(STATUS
);
837 value
= (er32(STATUS
) & toggle
);
838 ew32(STATUS
, toggle
);
839 after
= er32(STATUS
) & toggle
;
840 if (value
!= after
) {
841 e_err("failed STATUS register test got: 0x%08X expected: "
842 "0x%08X\n", after
, value
);
846 /* restore previous status */
847 ew32(STATUS
, before
);
849 if (!(adapter
->flags
& FLAG_IS_ICH
)) {
850 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
851 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
852 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
853 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
856 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
857 REG_PATTERN_TEST(E1000_RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
858 REG_PATTERN_TEST(E1000_RDLEN
, 0x000FFF80, 0x000FFFFF);
859 REG_PATTERN_TEST(E1000_RDH
, 0x0000FFFF, 0x0000FFFF);
860 REG_PATTERN_TEST(E1000_RDT
, 0x0000FFFF, 0x0000FFFF);
861 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
862 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
863 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
864 REG_PATTERN_TEST(E1000_TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
865 REG_PATTERN_TEST(E1000_TDLEN
, 0x000FFF80, 0x000FFFFF);
867 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
869 before
= ((adapter
->flags
& FLAG_IS_ICH
) ? 0x06C3B33E : 0x06DFB3FE);
870 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
871 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
873 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
875 if (!(adapter
->flags
& FLAG_IS_ICH
))
876 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
877 REG_PATTERN_TEST(E1000_TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
888 for (i
= 0; i
< mac
->rar_entry_count
; i
++)
889 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1),
892 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
893 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
899 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
906 /* Read and add up the contents of the EEPROM */
907 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
908 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
915 /* If Checksum is not Correct return error else test passed */
916 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
922 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
924 struct net_device
*netdev
= (struct net_device
*) data
;
925 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
926 struct e1000_hw
*hw
= &adapter
->hw
;
928 adapter
->test_icr
|= er32(ICR
);
933 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
935 struct net_device
*netdev
= adapter
->netdev
;
936 struct e1000_hw
*hw
= &adapter
->hw
;
939 u32 irq
= adapter
->pdev
->irq
;
942 int int_mode
= E1000E_INT_MODE_LEGACY
;
946 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
947 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
) {
948 int_mode
= adapter
->int_mode
;
949 e1000e_reset_interrupt_capability(adapter
);
950 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
951 e1000e_set_interrupt_capability(adapter
);
953 /* Hook up test interrupt handler just for this test */
954 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
957 } else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
,
958 netdev
->name
, netdev
)) {
963 e_info("testing %s interrupt\n", (shared_int
? "shared" : "unshared"));
965 /* Disable all the interrupts */
966 ew32(IMC
, 0xFFFFFFFF);
969 /* Test each interrupt */
970 for (i
= 0; i
< 10; i
++) {
971 /* Interrupt to test */
974 if (adapter
->flags
& FLAG_IS_ICH
) {
976 case E1000_ICR_RXSEQ
:
979 if (adapter
->hw
.mac
.type
== e1000_ich8lan
||
980 adapter
->hw
.mac
.type
== e1000_ich9lan
)
990 * Disable the interrupt to be reported in
991 * the cause register and then force the same
992 * interrupt and see if one gets posted. If
993 * an interrupt was posted to the bus, the
996 adapter
->test_icr
= 0;
1001 if (adapter
->test_icr
& mask
) {
1008 * Enable the interrupt to be reported in
1009 * the cause register and then force the same
1010 * interrupt and see if one gets posted. If
1011 * an interrupt was not posted to the bus, the
1014 adapter
->test_icr
= 0;
1019 if (!(adapter
->test_icr
& mask
)) {
1026 * Disable the other interrupts to be reported in
1027 * the cause register and then force the other
1028 * interrupts and see if any get posted. If
1029 * an interrupt was posted to the bus, the
1032 adapter
->test_icr
= 0;
1033 ew32(IMC
, ~mask
& 0x00007FFF);
1034 ew32(ICS
, ~mask
& 0x00007FFF);
1037 if (adapter
->test_icr
) {
1044 /* Disable all the interrupts */
1045 ew32(IMC
, 0xFFFFFFFF);
1048 /* Unhook test interrupt handler */
1049 free_irq(irq
, netdev
);
1052 if (int_mode
== E1000E_INT_MODE_MSIX
) {
1053 e1000e_reset_interrupt_capability(adapter
);
1054 adapter
->int_mode
= int_mode
;
1055 e1000e_set_interrupt_capability(adapter
);
1061 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1063 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1064 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1065 struct pci_dev
*pdev
= adapter
->pdev
;
1068 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1069 for (i
= 0; i
< tx_ring
->count
; i
++) {
1070 if (tx_ring
->buffer_info
[i
].dma
)
1071 pci_unmap_single(pdev
,
1072 tx_ring
->buffer_info
[i
].dma
,
1073 tx_ring
->buffer_info
[i
].length
,
1075 if (tx_ring
->buffer_info
[i
].skb
)
1076 dev_kfree_skb(tx_ring
->buffer_info
[i
].skb
);
1080 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1081 for (i
= 0; i
< rx_ring
->count
; i
++) {
1082 if (rx_ring
->buffer_info
[i
].dma
)
1083 pci_unmap_single(pdev
,
1084 rx_ring
->buffer_info
[i
].dma
,
1085 2048, PCI_DMA_FROMDEVICE
);
1086 if (rx_ring
->buffer_info
[i
].skb
)
1087 dev_kfree_skb(rx_ring
->buffer_info
[i
].skb
);
1091 if (tx_ring
->desc
) {
1092 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1094 tx_ring
->desc
= NULL
;
1096 if (rx_ring
->desc
) {
1097 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1099 rx_ring
->desc
= NULL
;
1102 kfree(tx_ring
->buffer_info
);
1103 tx_ring
->buffer_info
= NULL
;
1104 kfree(rx_ring
->buffer_info
);
1105 rx_ring
->buffer_info
= NULL
;
1108 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1110 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1111 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1112 struct pci_dev
*pdev
= adapter
->pdev
;
1113 struct e1000_hw
*hw
= &adapter
->hw
;
1118 /* Setup Tx descriptor ring and Tx buffers */
1120 if (!tx_ring
->count
)
1121 tx_ring
->count
= E1000_DEFAULT_TXD
;
1123 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1124 sizeof(struct e1000_buffer
),
1126 if (!(tx_ring
->buffer_info
)) {
1131 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1132 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1133 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1134 &tx_ring
->dma
, GFP_KERNEL
);
1135 if (!tx_ring
->desc
) {
1139 tx_ring
->next_to_use
= 0;
1140 tx_ring
->next_to_clean
= 0;
1142 ew32(TDBAL
, ((u64
) tx_ring
->dma
& 0x00000000FFFFFFFF));
1143 ew32(TDBAH
, ((u64
) tx_ring
->dma
>> 32));
1144 ew32(TDLEN
, tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1147 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
| E1000_TCTL_MULR
|
1148 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1149 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1151 for (i
= 0; i
< tx_ring
->count
; i
++) {
1152 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1153 struct sk_buff
*skb
;
1154 unsigned int skb_size
= 1024;
1156 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1161 skb_put(skb
, skb_size
);
1162 tx_ring
->buffer_info
[i
].skb
= skb
;
1163 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1164 tx_ring
->buffer_info
[i
].dma
=
1165 pci_map_single(pdev
, skb
->data
, skb
->len
,
1167 if (pci_dma_mapping_error(pdev
, tx_ring
->buffer_info
[i
].dma
)) {
1171 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1172 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1173 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1174 E1000_TXD_CMD_IFCS
|
1176 tx_desc
->upper
.data
= 0;
1179 /* Setup Rx descriptor ring and Rx buffers */
1181 if (!rx_ring
->count
)
1182 rx_ring
->count
= E1000_DEFAULT_RXD
;
1184 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1185 sizeof(struct e1000_buffer
),
1187 if (!(rx_ring
->buffer_info
)) {
1192 rx_ring
->size
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
1193 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1194 &rx_ring
->dma
, GFP_KERNEL
);
1195 if (!rx_ring
->desc
) {
1199 rx_ring
->next_to_use
= 0;
1200 rx_ring
->next_to_clean
= 0;
1203 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1204 ew32(RDBAL
, ((u64
) rx_ring
->dma
& 0xFFFFFFFF));
1205 ew32(RDBAH
, ((u64
) rx_ring
->dma
>> 32));
1206 ew32(RDLEN
, rx_ring
->size
);
1209 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1210 E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_LPE
|
1211 E1000_RCTL_SBP
| E1000_RCTL_SECRC
|
1212 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1213 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1216 for (i
= 0; i
< rx_ring
->count
; i
++) {
1217 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1218 struct sk_buff
*skb
;
1220 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1225 skb_reserve(skb
, NET_IP_ALIGN
);
1226 rx_ring
->buffer_info
[i
].skb
= skb
;
1227 rx_ring
->buffer_info
[i
].dma
=
1228 pci_map_single(pdev
, skb
->data
, 2048,
1229 PCI_DMA_FROMDEVICE
);
1230 if (pci_dma_mapping_error(pdev
, rx_ring
->buffer_info
[i
].dma
)) {
1234 rx_desc
->buffer_addr
=
1235 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1236 memset(skb
->data
, 0x00, skb
->len
);
1242 e1000_free_desc_rings(adapter
);
1246 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1248 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1249 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1250 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1251 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1252 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1255 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1257 struct e1000_hw
*hw
= &adapter
->hw
;
1262 hw
->mac
.autoneg
= 0;
1264 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1265 if (hw
->mac
.type
== e1000_pchlan
)
1266 e1000_configure_k1_ich8lan(hw
, false);
1268 if (hw
->phy
.type
== e1000_phy_m88
) {
1269 /* Auto-MDI/MDIX Off */
1270 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1271 /* reset to update Auto-MDI/MDIX */
1272 e1e_wphy(hw
, PHY_CONTROL
, 0x9140);
1274 e1e_wphy(hw
, PHY_CONTROL
, 0x8140);
1275 } else if (hw
->phy
.type
== e1000_phy_gg82563
)
1276 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1278 ctrl_reg
= er32(CTRL
);
1280 switch (hw
->phy
.type
) {
1282 /* force 100, set loopback */
1283 e1e_wphy(hw
, PHY_CONTROL
, 0x6100);
1285 /* Now set up the MAC to the same speed/duplex as the PHY. */
1286 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1287 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1288 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1289 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1290 E1000_CTRL_FD
); /* Force Duplex to FULL */
1293 /* Set Default MAC Interface speed to 1GB */
1294 e1e_rphy(hw
, PHY_REG(2, 21), &phy_reg
);
1297 e1e_wphy(hw
, PHY_REG(2, 21), phy_reg
);
1298 /* Assert SW reset for above settings to take effect */
1299 e1000e_commit_phy(hw
);
1301 /* Force Full Duplex */
1302 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1303 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x000C);
1304 /* Set Link Up (in force link) */
1305 e1e_rphy(hw
, PHY_REG(776, 16), &phy_reg
);
1306 e1e_wphy(hw
, PHY_REG(776, 16), phy_reg
| 0x0040);
1308 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1309 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x0040);
1310 /* Set Early Link Enable */
1311 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1312 e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| 0x0400);
1315 /* force 1000, set loopback */
1316 e1e_wphy(hw
, PHY_CONTROL
, 0x4140);
1319 /* Now set up the MAC to the same speed/duplex as the PHY. */
1320 ctrl_reg
= er32(CTRL
);
1321 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1322 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1323 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1324 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1325 E1000_CTRL_FD
); /* Force Duplex to FULL */
1327 if (adapter
->flags
& FLAG_IS_ICH
)
1328 ctrl_reg
|= E1000_CTRL_SLU
; /* Set Link Up */
1331 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1332 hw
->phy
.type
== e1000_phy_m88
) {
1333 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1336 * Set the ILOS bit on the fiber Nic if half duplex link is
1339 stat_reg
= er32(STATUS
);
1340 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1341 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1344 ew32(CTRL
, ctrl_reg
);
1347 * Disable the receiver on the PHY so when a cable is plugged in, the
1348 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1350 if (hw
->phy
.type
== e1000_phy_m88
)
1351 e1000_phy_disable_receiver(adapter
);
1358 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1360 struct e1000_hw
*hw
= &adapter
->hw
;
1361 u32 ctrl
= er32(CTRL
);
1364 /* special requirements for 82571/82572 fiber adapters */
1367 * jump through hoops to make sure link is up because serdes
1368 * link is hardwired up
1370 ctrl
|= E1000_CTRL_SLU
;
1373 /* disable autoneg */
1378 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1381 /* set invert loss of signal */
1383 ctrl
|= E1000_CTRL_ILOS
;
1388 * special write to serdes control register to enable SerDes analog
1391 #define E1000_SERDES_LB_ON 0x410
1392 ew32(SCTL
, E1000_SERDES_LB_ON
);
1398 /* only call this for fiber/serdes connections to es2lan */
1399 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1401 struct e1000_hw
*hw
= &adapter
->hw
;
1402 u32 ctrlext
= er32(CTRL_EXT
);
1403 u32 ctrl
= er32(CTRL
);
1406 * save CTRL_EXT to restore later, reuse an empty variable (unused
1407 * on mac_type 80003es2lan)
1409 adapter
->tx_fifo_head
= ctrlext
;
1411 /* clear the serdes mode bits, putting the device into mac loopback */
1412 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1413 ew32(CTRL_EXT
, ctrlext
);
1415 /* force speed to 1000/FD, link up */
1416 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1417 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1418 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1421 /* set mac loopback */
1423 ctrl
|= E1000_RCTL_LBM_MAC
;
1426 /* set testing mode parameters (no need to reset later) */
1427 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1428 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1430 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1435 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1437 struct e1000_hw
*hw
= &adapter
->hw
;
1440 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1441 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1442 switch (hw
->mac
.type
) {
1443 case e1000_80003es2lan
:
1444 return e1000_set_es2lan_mac_loopback(adapter
);
1448 return e1000_set_82571_fiber_loopback(adapter
);
1452 rctl
|= E1000_RCTL_LBM_TCVR
;
1456 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1457 return e1000_integrated_phy_loopback(adapter
);
1463 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1465 struct e1000_hw
*hw
= &adapter
->hw
;
1470 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1473 switch (hw
->mac
.type
) {
1474 case e1000_80003es2lan
:
1475 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1476 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1477 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1478 ew32(CTRL_EXT
, adapter
->tx_fifo_head
);
1479 adapter
->tx_fifo_head
= 0;
1484 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1485 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1486 #define E1000_SERDES_LB_OFF 0x400
1487 ew32(SCTL
, E1000_SERDES_LB_OFF
);
1493 hw
->mac
.autoneg
= 1;
1494 if (hw
->phy
.type
== e1000_phy_gg82563
)
1495 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1496 e1e_rphy(hw
, PHY_CONTROL
, &phy_reg
);
1497 if (phy_reg
& MII_CR_LOOPBACK
) {
1498 phy_reg
&= ~MII_CR_LOOPBACK
;
1499 e1e_wphy(hw
, PHY_CONTROL
, phy_reg
);
1500 e1000e_commit_phy(hw
);
1506 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1507 unsigned int frame_size
)
1509 memset(skb
->data
, 0xFF, frame_size
);
1511 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1512 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1513 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1516 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1517 unsigned int frame_size
)
1520 if (*(skb
->data
+ 3) == 0xFF)
1521 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1522 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1527 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1529 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1530 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1531 struct pci_dev
*pdev
= adapter
->pdev
;
1532 struct e1000_hw
*hw
= &adapter
->hw
;
1539 ew32(RDT
, rx_ring
->count
- 1);
1542 * Calculate the loop count based on the largest descriptor ring
1543 * The idea is to wrap the largest ring a number of times using 64
1544 * send/receive pairs during each loop
1547 if (rx_ring
->count
<= tx_ring
->count
)
1548 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1550 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1554 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1555 for (i
= 0; i
< 64; i
++) { /* send the packets */
1556 e1000_create_lbtest_frame(tx_ring
->buffer_info
[k
].skb
,
1558 pci_dma_sync_single_for_device(pdev
,
1559 tx_ring
->buffer_info
[k
].dma
,
1560 tx_ring
->buffer_info
[k
].length
,
1563 if (k
== tx_ring
->count
)
1568 time
= jiffies
; /* set the start time for the receive */
1570 do { /* receive the sent packets */
1571 pci_dma_sync_single_for_cpu(pdev
,
1572 rx_ring
->buffer_info
[l
].dma
, 2048,
1573 PCI_DMA_FROMDEVICE
);
1575 ret_val
= e1000_check_lbtest_frame(
1576 rx_ring
->buffer_info
[l
].skb
, 1024);
1580 if (l
== rx_ring
->count
)
1583 * time + 20 msecs (200 msecs on 2.4) is more than
1584 * enough time to complete the receives, if it's
1585 * exceeded, break and error off
1587 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1588 if (good_cnt
!= 64) {
1589 ret_val
= 13; /* ret_val is the same as mis-compare */
1592 if (jiffies
>= (time
+ 20)) {
1593 ret_val
= 14; /* error code for time out error */
1596 } /* end loop count loop */
1600 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1603 * PHY loopback cannot be performed if SoL/IDER
1604 * sessions are active
1606 if (e1000_check_reset_block(&adapter
->hw
)) {
1607 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1612 *data
= e1000_setup_desc_rings(adapter
);
1616 *data
= e1000_setup_loopback_test(adapter
);
1620 *data
= e1000_run_loopback_test(adapter
);
1621 e1000_loopback_cleanup(adapter
);
1624 e1000_free_desc_rings(adapter
);
1629 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1631 struct e1000_hw
*hw
= &adapter
->hw
;
1634 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1636 hw
->mac
.serdes_has_link
= false;
1639 * On some blade server designs, link establishment
1640 * could take as long as 2-3 minutes
1643 hw
->mac
.ops
.check_for_link(hw
);
1644 if (hw
->mac
.serdes_has_link
)
1647 } while (i
++ < 3750);
1651 hw
->mac
.ops
.check_for_link(hw
);
1652 if (hw
->mac
.autoneg
)
1655 if (!(er32(STATUS
) &
1662 static int e1000e_get_sset_count(struct net_device
*netdev
, int sset
)
1666 return E1000_TEST_LEN
;
1668 return E1000_STATS_LEN
;
1674 static void e1000_diag_test(struct net_device
*netdev
,
1675 struct ethtool_test
*eth_test
, u64
*data
)
1677 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1678 u16 autoneg_advertised
;
1679 u8 forced_speed_duplex
;
1681 bool if_running
= netif_running(netdev
);
1683 set_bit(__E1000_TESTING
, &adapter
->state
);
1684 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1687 /* save speed, duplex, autoneg settings */
1688 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1689 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1690 autoneg
= adapter
->hw
.mac
.autoneg
;
1692 e_info("offline testing starting\n");
1695 * Link test performed before hardware reset so autoneg doesn't
1696 * interfere with test result
1698 if (e1000_link_test(adapter
, &data
[4]))
1699 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1702 /* indicate we're in test mode */
1705 e1000e_reset(adapter
);
1707 if (e1000_reg_test(adapter
, &data
[0]))
1708 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1710 e1000e_reset(adapter
);
1711 if (e1000_eeprom_test(adapter
, &data
[1]))
1712 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1714 e1000e_reset(adapter
);
1715 if (e1000_intr_test(adapter
, &data
[2]))
1716 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1718 e1000e_reset(adapter
);
1719 /* make sure the phy is powered up */
1720 e1000e_power_up_phy(adapter
);
1721 if (e1000_loopback_test(adapter
, &data
[3]))
1722 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1724 /* restore speed, duplex, autoneg settings */
1725 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1726 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1727 adapter
->hw
.mac
.autoneg
= autoneg
;
1729 /* force this routine to wait until autoneg complete/timeout */
1730 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1731 e1000e_reset(adapter
);
1732 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1734 clear_bit(__E1000_TESTING
, &adapter
->state
);
1738 e_info("online testing starting\n");
1740 if (e1000_link_test(adapter
, &data
[4]))
1741 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1743 /* Online tests aren't run; pass by default */
1749 clear_bit(__E1000_TESTING
, &adapter
->state
);
1751 msleep_interruptible(4 * 1000);
1754 static void e1000_get_wol(struct net_device
*netdev
,
1755 struct ethtool_wolinfo
*wol
)
1757 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1762 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1763 !device_can_wakeup(&adapter
->pdev
->dev
))
1766 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1767 WAKE_BCAST
| WAKE_MAGIC
|
1768 WAKE_PHY
| WAKE_ARP
;
1770 /* apply any specific unsupported masks here */
1771 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1772 wol
->supported
&= ~WAKE_UCAST
;
1774 if (adapter
->wol
& E1000_WUFC_EX
)
1775 e_err("Interface does not support directed (unicast) "
1776 "frame wake-up packets\n");
1779 if (adapter
->wol
& E1000_WUFC_EX
)
1780 wol
->wolopts
|= WAKE_UCAST
;
1781 if (adapter
->wol
& E1000_WUFC_MC
)
1782 wol
->wolopts
|= WAKE_MCAST
;
1783 if (adapter
->wol
& E1000_WUFC_BC
)
1784 wol
->wolopts
|= WAKE_BCAST
;
1785 if (adapter
->wol
& E1000_WUFC_MAG
)
1786 wol
->wolopts
|= WAKE_MAGIC
;
1787 if (adapter
->wol
& E1000_WUFC_LNKC
)
1788 wol
->wolopts
|= WAKE_PHY
;
1789 if (adapter
->wol
& E1000_WUFC_ARP
)
1790 wol
->wolopts
|= WAKE_ARP
;
1793 static int e1000_set_wol(struct net_device
*netdev
,
1794 struct ethtool_wolinfo
*wol
)
1796 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1798 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1799 !device_can_wakeup(&adapter
->pdev
->dev
) ||
1800 (wol
->wolopts
& ~(WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
|
1801 WAKE_MAGIC
| WAKE_PHY
| WAKE_ARP
)))
1804 /* these settings will always override what we currently have */
1807 if (wol
->wolopts
& WAKE_UCAST
)
1808 adapter
->wol
|= E1000_WUFC_EX
;
1809 if (wol
->wolopts
& WAKE_MCAST
)
1810 adapter
->wol
|= E1000_WUFC_MC
;
1811 if (wol
->wolopts
& WAKE_BCAST
)
1812 adapter
->wol
|= E1000_WUFC_BC
;
1813 if (wol
->wolopts
& WAKE_MAGIC
)
1814 adapter
->wol
|= E1000_WUFC_MAG
;
1815 if (wol
->wolopts
& WAKE_PHY
)
1816 adapter
->wol
|= E1000_WUFC_LNKC
;
1817 if (wol
->wolopts
& WAKE_ARP
)
1818 adapter
->wol
|= E1000_WUFC_ARP
;
1820 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1825 /* toggle LED 4 times per second = 2 "blinks" per second */
1826 #define E1000_ID_INTERVAL (HZ/4)
1828 /* bit defines for adapter->led_status */
1829 #define E1000_LED_ON 0
1831 static void e1000e_led_blink_task(struct work_struct
*work
)
1833 struct e1000_adapter
*adapter
= container_of(work
,
1834 struct e1000_adapter
, led_blink_task
);
1836 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1837 adapter
->hw
.mac
.ops
.led_off(&adapter
->hw
);
1839 adapter
->hw
.mac
.ops
.led_on(&adapter
->hw
);
1842 static void e1000_led_blink_callback(unsigned long data
)
1844 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1846 schedule_work(&adapter
->led_blink_task
);
1847 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1850 static int e1000_phys_id(struct net_device
*netdev
, u32 data
)
1852 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1853 struct e1000_hw
*hw
= &adapter
->hw
;
1858 if ((hw
->phy
.type
== e1000_phy_ife
) ||
1859 (hw
->mac
.type
== e1000_pchlan
) ||
1860 (hw
->mac
.type
== e1000_82583
) ||
1861 (hw
->mac
.type
== e1000_82574
)) {
1862 INIT_WORK(&adapter
->led_blink_task
, e1000e_led_blink_task
);
1863 if (!adapter
->blink_timer
.function
) {
1864 init_timer(&adapter
->blink_timer
);
1865 adapter
->blink_timer
.function
=
1866 e1000_led_blink_callback
;
1867 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1869 mod_timer(&adapter
->blink_timer
, jiffies
);
1870 msleep_interruptible(data
* 1000);
1871 del_timer_sync(&adapter
->blink_timer
);
1872 if (hw
->phy
.type
== e1000_phy_ife
)
1873 e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1875 e1000e_blink_led(hw
);
1876 msleep_interruptible(data
* 1000);
1879 hw
->mac
.ops
.led_off(hw
);
1880 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1881 hw
->mac
.ops
.cleanup_led(hw
);
1886 static int e1000_get_coalesce(struct net_device
*netdev
,
1887 struct ethtool_coalesce
*ec
)
1889 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1891 if (adapter
->itr_setting
<= 3)
1892 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1894 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1899 static int e1000_set_coalesce(struct net_device
*netdev
,
1900 struct ethtool_coalesce
*ec
)
1902 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1903 struct e1000_hw
*hw
= &adapter
->hw
;
1905 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1906 ((ec
->rx_coalesce_usecs
> 3) &&
1907 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1908 (ec
->rx_coalesce_usecs
== 2))
1911 if (ec
->rx_coalesce_usecs
<= 3) {
1912 adapter
->itr
= 20000;
1913 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1915 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1916 adapter
->itr_setting
= adapter
->itr
& ~3;
1919 if (adapter
->itr_setting
!= 0)
1920 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1927 static int e1000_nway_reset(struct net_device
*netdev
)
1929 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1930 if (netif_running(netdev
))
1931 e1000e_reinit_locked(adapter
);
1935 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1936 struct ethtool_stats
*stats
,
1939 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1943 e1000e_update_stats(adapter
);
1944 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1945 switch (e1000_gstrings_stats
[i
].type
) {
1947 p
= (char *) netdev
+
1948 e1000_gstrings_stats
[i
].stat_offset
;
1951 p
= (char *) adapter
+
1952 e1000_gstrings_stats
[i
].stat_offset
;
1956 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1957 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1961 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1967 switch (stringset
) {
1969 memcpy(data
, *e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
1972 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1973 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1975 p
+= ETH_GSTRING_LEN
;
1981 static const struct ethtool_ops e1000_ethtool_ops
= {
1982 .get_settings
= e1000_get_settings
,
1983 .set_settings
= e1000_set_settings
,
1984 .get_drvinfo
= e1000_get_drvinfo
,
1985 .get_regs_len
= e1000_get_regs_len
,
1986 .get_regs
= e1000_get_regs
,
1987 .get_wol
= e1000_get_wol
,
1988 .set_wol
= e1000_set_wol
,
1989 .get_msglevel
= e1000_get_msglevel
,
1990 .set_msglevel
= e1000_set_msglevel
,
1991 .nway_reset
= e1000_nway_reset
,
1992 .get_link
= e1000_get_link
,
1993 .get_eeprom_len
= e1000_get_eeprom_len
,
1994 .get_eeprom
= e1000_get_eeprom
,
1995 .set_eeprom
= e1000_set_eeprom
,
1996 .get_ringparam
= e1000_get_ringparam
,
1997 .set_ringparam
= e1000_set_ringparam
,
1998 .get_pauseparam
= e1000_get_pauseparam
,
1999 .set_pauseparam
= e1000_set_pauseparam
,
2000 .get_rx_csum
= e1000_get_rx_csum
,
2001 .set_rx_csum
= e1000_set_rx_csum
,
2002 .get_tx_csum
= e1000_get_tx_csum
,
2003 .set_tx_csum
= e1000_set_tx_csum
,
2004 .get_sg
= ethtool_op_get_sg
,
2005 .set_sg
= ethtool_op_set_sg
,
2006 .get_tso
= ethtool_op_get_tso
,
2007 .set_tso
= e1000_set_tso
,
2008 .self_test
= e1000_diag_test
,
2009 .get_strings
= e1000_get_strings
,
2010 .phys_id
= e1000_phys_id
,
2011 .get_ethtool_stats
= e1000_get_ethtool_stats
,
2012 .get_sset_count
= e1000e_get_sset_count
,
2013 .get_coalesce
= e1000_get_coalesce
,
2014 .set_coalesce
= e1000_set_coalesce
,
2015 .get_flags
= ethtool_op_get_flags
,
2016 .set_flags
= ethtool_op_set_flags
,
2019 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
2021 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);