KVM: VMX: Simplify module parameter names
[linux-2.6/linux-2.6-openrd.git] / arch / x86 / kvm / vmx.c
bloba69ba6ba42117db2b0a2819ee2b1def2f5ef0df0
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "mmu.h"
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
41 static int bypass_guest_pf = 1;
42 module_param(bypass_guest_pf, bool, S_IRUGO);
44 static int enable_vpid = 1;
45 module_param_named(vpid, enable_vpid, bool, 0444);
47 static int flexpriority_enabled = 1;
48 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
50 static int enable_ept = 1;
51 module_param_named(ept, enable_ept, bool, S_IRUGO);
53 static int emulate_invalid_guest_state = 0;
54 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
56 struct vmcs {
57 u32 revision_id;
58 u32 abort;
59 char data[0];
62 struct vcpu_vmx {
63 struct kvm_vcpu vcpu;
64 struct list_head local_vcpus_link;
65 unsigned long host_rsp;
66 int launched;
67 u8 fail;
68 u32 idt_vectoring_info;
69 struct kvm_msr_entry *guest_msrs;
70 struct kvm_msr_entry *host_msrs;
71 int nmsrs;
72 int save_nmsrs;
73 int msr_offset_efer;
74 #ifdef CONFIG_X86_64
75 int msr_offset_kernel_gs_base;
76 #endif
77 struct vmcs *vmcs;
78 struct {
79 int loaded;
80 u16 fs_sel, gs_sel, ldt_sel;
81 int gs_ldt_reload_needed;
82 int fs_reload_needed;
83 int guest_efer_loaded;
84 } host_state;
85 struct {
86 struct {
87 bool pending;
88 u8 vector;
89 unsigned rip;
90 } irq;
91 } rmode;
92 int vpid;
93 bool emulation_required;
94 enum emulation_result invalid_state_emulation_result;
96 /* Support for vnmi-less CPUs */
97 int soft_vnmi_blocked;
98 ktime_t entry_time;
99 s64 vnmi_blocked_time;
102 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
104 return container_of(vcpu, struct vcpu_vmx, vcpu);
107 static int init_rmode(struct kvm *kvm);
108 static u64 construct_eptp(unsigned long root_hpa);
110 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
111 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
112 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
114 static unsigned long *vmx_io_bitmap_a;
115 static unsigned long *vmx_io_bitmap_b;
116 static unsigned long *vmx_msr_bitmap_legacy;
117 static unsigned long *vmx_msr_bitmap_longmode;
119 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
120 static DEFINE_SPINLOCK(vmx_vpid_lock);
122 static struct vmcs_config {
123 int size;
124 int order;
125 u32 revision_id;
126 u32 pin_based_exec_ctrl;
127 u32 cpu_based_exec_ctrl;
128 u32 cpu_based_2nd_exec_ctrl;
129 u32 vmexit_ctrl;
130 u32 vmentry_ctrl;
131 } vmcs_config;
133 static struct vmx_capability {
134 u32 ept;
135 u32 vpid;
136 } vmx_capability;
138 #define VMX_SEGMENT_FIELD(seg) \
139 [VCPU_SREG_##seg] = { \
140 .selector = GUEST_##seg##_SELECTOR, \
141 .base = GUEST_##seg##_BASE, \
142 .limit = GUEST_##seg##_LIMIT, \
143 .ar_bytes = GUEST_##seg##_AR_BYTES, \
146 static struct kvm_vmx_segment_field {
147 unsigned selector;
148 unsigned base;
149 unsigned limit;
150 unsigned ar_bytes;
151 } kvm_vmx_segment_fields[] = {
152 VMX_SEGMENT_FIELD(CS),
153 VMX_SEGMENT_FIELD(DS),
154 VMX_SEGMENT_FIELD(ES),
155 VMX_SEGMENT_FIELD(FS),
156 VMX_SEGMENT_FIELD(GS),
157 VMX_SEGMENT_FIELD(SS),
158 VMX_SEGMENT_FIELD(TR),
159 VMX_SEGMENT_FIELD(LDTR),
163 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
164 * away by decrementing the array size.
166 static const u32 vmx_msr_index[] = {
167 #ifdef CONFIG_X86_64
168 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
169 #endif
170 MSR_EFER, MSR_K6_STAR,
172 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
174 static void load_msrs(struct kvm_msr_entry *e, int n)
176 int i;
178 for (i = 0; i < n; ++i)
179 wrmsrl(e[i].index, e[i].data);
182 static void save_msrs(struct kvm_msr_entry *e, int n)
184 int i;
186 for (i = 0; i < n; ++i)
187 rdmsrl(e[i].index, e[i].data);
190 static inline int is_page_fault(u32 intr_info)
192 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
193 INTR_INFO_VALID_MASK)) ==
194 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
197 static inline int is_no_device(u32 intr_info)
199 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
200 INTR_INFO_VALID_MASK)) ==
201 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
204 static inline int is_invalid_opcode(u32 intr_info)
206 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
207 INTR_INFO_VALID_MASK)) ==
208 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
211 static inline int is_external_interrupt(u32 intr_info)
213 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
214 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
217 static inline int cpu_has_vmx_msr_bitmap(void)
219 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
222 static inline int cpu_has_vmx_tpr_shadow(void)
224 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
227 static inline int vm_need_tpr_shadow(struct kvm *kvm)
229 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
232 static inline int cpu_has_secondary_exec_ctrls(void)
234 return (vmcs_config.cpu_based_exec_ctrl &
235 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
238 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
240 return flexpriority_enabled
241 && (vmcs_config.cpu_based_2nd_exec_ctrl &
242 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
245 static inline int cpu_has_vmx_invept_individual_addr(void)
247 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
250 static inline int cpu_has_vmx_invept_context(void)
252 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
255 static inline int cpu_has_vmx_invept_global(void)
257 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
260 static inline int cpu_has_vmx_ept(void)
262 return (vmcs_config.cpu_based_2nd_exec_ctrl &
263 SECONDARY_EXEC_ENABLE_EPT);
266 static inline int vm_need_ept(void)
268 return (cpu_has_vmx_ept() && enable_ept);
271 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
273 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
274 (irqchip_in_kernel(kvm)));
277 static inline int cpu_has_vmx_vpid(void)
279 return (vmcs_config.cpu_based_2nd_exec_ctrl &
280 SECONDARY_EXEC_ENABLE_VPID);
283 static inline int cpu_has_virtual_nmis(void)
285 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
288 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
290 int i;
292 for (i = 0; i < vmx->nmsrs; ++i)
293 if (vmx->guest_msrs[i].index == msr)
294 return i;
295 return -1;
298 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
300 struct {
301 u64 vpid : 16;
302 u64 rsvd : 48;
303 u64 gva;
304 } operand = { vpid, 0, gva };
306 asm volatile (__ex(ASM_VMX_INVVPID)
307 /* CF==1 or ZF==1 --> rc = -1 */
308 "; ja 1f ; ud2 ; 1:"
309 : : "a"(&operand), "c"(ext) : "cc", "memory");
312 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
314 struct {
315 u64 eptp, gpa;
316 } operand = {eptp, gpa};
318 asm volatile (__ex(ASM_VMX_INVEPT)
319 /* CF==1 or ZF==1 --> rc = -1 */
320 "; ja 1f ; ud2 ; 1:\n"
321 : : "a" (&operand), "c" (ext) : "cc", "memory");
324 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
326 int i;
328 i = __find_msr_index(vmx, msr);
329 if (i >= 0)
330 return &vmx->guest_msrs[i];
331 return NULL;
334 static void vmcs_clear(struct vmcs *vmcs)
336 u64 phys_addr = __pa(vmcs);
337 u8 error;
339 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
340 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
341 : "cc", "memory");
342 if (error)
343 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
344 vmcs, phys_addr);
347 static void __vcpu_clear(void *arg)
349 struct vcpu_vmx *vmx = arg;
350 int cpu = raw_smp_processor_id();
352 if (vmx->vcpu.cpu == cpu)
353 vmcs_clear(vmx->vmcs);
354 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
355 per_cpu(current_vmcs, cpu) = NULL;
356 rdtscll(vmx->vcpu.arch.host_tsc);
357 list_del(&vmx->local_vcpus_link);
358 vmx->vcpu.cpu = -1;
359 vmx->launched = 0;
362 static void vcpu_clear(struct vcpu_vmx *vmx)
364 if (vmx->vcpu.cpu == -1)
365 return;
366 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
369 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
371 if (vmx->vpid == 0)
372 return;
374 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
377 static inline void ept_sync_global(void)
379 if (cpu_has_vmx_invept_global())
380 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
383 static inline void ept_sync_context(u64 eptp)
385 if (vm_need_ept()) {
386 if (cpu_has_vmx_invept_context())
387 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
388 else
389 ept_sync_global();
393 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
395 if (vm_need_ept()) {
396 if (cpu_has_vmx_invept_individual_addr())
397 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
398 eptp, gpa);
399 else
400 ept_sync_context(eptp);
404 static unsigned long vmcs_readl(unsigned long field)
406 unsigned long value;
408 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
409 : "=a"(value) : "d"(field) : "cc");
410 return value;
413 static u16 vmcs_read16(unsigned long field)
415 return vmcs_readl(field);
418 static u32 vmcs_read32(unsigned long field)
420 return vmcs_readl(field);
423 static u64 vmcs_read64(unsigned long field)
425 #ifdef CONFIG_X86_64
426 return vmcs_readl(field);
427 #else
428 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
429 #endif
432 static noinline void vmwrite_error(unsigned long field, unsigned long value)
434 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
435 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
436 dump_stack();
439 static void vmcs_writel(unsigned long field, unsigned long value)
441 u8 error;
443 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
444 : "=q"(error) : "a"(value), "d"(field) : "cc");
445 if (unlikely(error))
446 vmwrite_error(field, value);
449 static void vmcs_write16(unsigned long field, u16 value)
451 vmcs_writel(field, value);
454 static void vmcs_write32(unsigned long field, u32 value)
456 vmcs_writel(field, value);
459 static void vmcs_write64(unsigned long field, u64 value)
461 vmcs_writel(field, value);
462 #ifndef CONFIG_X86_64
463 asm volatile ("");
464 vmcs_writel(field+1, value >> 32);
465 #endif
468 static void vmcs_clear_bits(unsigned long field, u32 mask)
470 vmcs_writel(field, vmcs_readl(field) & ~mask);
473 static void vmcs_set_bits(unsigned long field, u32 mask)
475 vmcs_writel(field, vmcs_readl(field) | mask);
478 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
480 u32 eb;
482 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
483 if (!vcpu->fpu_active)
484 eb |= 1u << NM_VECTOR;
485 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
486 if (vcpu->guest_debug &
487 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
488 eb |= 1u << DB_VECTOR;
489 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
490 eb |= 1u << BP_VECTOR;
492 if (vcpu->arch.rmode.active)
493 eb = ~0;
494 if (vm_need_ept())
495 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
496 vmcs_write32(EXCEPTION_BITMAP, eb);
499 static void reload_tss(void)
502 * VT restores TR but not its size. Useless.
504 struct descriptor_table gdt;
505 struct desc_struct *descs;
507 kvm_get_gdt(&gdt);
508 descs = (void *)gdt.base;
509 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
510 load_TR_desc();
513 static void load_transition_efer(struct vcpu_vmx *vmx)
515 int efer_offset = vmx->msr_offset_efer;
516 u64 host_efer = vmx->host_msrs[efer_offset].data;
517 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
518 u64 ignore_bits;
520 if (efer_offset < 0)
521 return;
523 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
524 * outside long mode
526 ignore_bits = EFER_NX | EFER_SCE;
527 #ifdef CONFIG_X86_64
528 ignore_bits |= EFER_LMA | EFER_LME;
529 /* SCE is meaningful only in long mode on Intel */
530 if (guest_efer & EFER_LMA)
531 ignore_bits &= ~(u64)EFER_SCE;
532 #endif
533 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
534 return;
536 vmx->host_state.guest_efer_loaded = 1;
537 guest_efer &= ~ignore_bits;
538 guest_efer |= host_efer & ignore_bits;
539 wrmsrl(MSR_EFER, guest_efer);
540 vmx->vcpu.stat.efer_reload++;
543 static void reload_host_efer(struct vcpu_vmx *vmx)
545 if (vmx->host_state.guest_efer_loaded) {
546 vmx->host_state.guest_efer_loaded = 0;
547 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
551 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
553 struct vcpu_vmx *vmx = to_vmx(vcpu);
555 if (vmx->host_state.loaded)
556 return;
558 vmx->host_state.loaded = 1;
560 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
561 * allow segment selectors with cpl > 0 or ti == 1.
563 vmx->host_state.ldt_sel = kvm_read_ldt();
564 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
565 vmx->host_state.fs_sel = kvm_read_fs();
566 if (!(vmx->host_state.fs_sel & 7)) {
567 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
568 vmx->host_state.fs_reload_needed = 0;
569 } else {
570 vmcs_write16(HOST_FS_SELECTOR, 0);
571 vmx->host_state.fs_reload_needed = 1;
573 vmx->host_state.gs_sel = kvm_read_gs();
574 if (!(vmx->host_state.gs_sel & 7))
575 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
576 else {
577 vmcs_write16(HOST_GS_SELECTOR, 0);
578 vmx->host_state.gs_ldt_reload_needed = 1;
581 #ifdef CONFIG_X86_64
582 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
583 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
584 #else
585 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
586 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
587 #endif
589 #ifdef CONFIG_X86_64
590 if (is_long_mode(&vmx->vcpu))
591 save_msrs(vmx->host_msrs +
592 vmx->msr_offset_kernel_gs_base, 1);
594 #endif
595 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
596 load_transition_efer(vmx);
599 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
601 unsigned long flags;
603 if (!vmx->host_state.loaded)
604 return;
606 ++vmx->vcpu.stat.host_state_reload;
607 vmx->host_state.loaded = 0;
608 if (vmx->host_state.fs_reload_needed)
609 kvm_load_fs(vmx->host_state.fs_sel);
610 if (vmx->host_state.gs_ldt_reload_needed) {
611 kvm_load_ldt(vmx->host_state.ldt_sel);
613 * If we have to reload gs, we must take care to
614 * preserve our gs base.
616 local_irq_save(flags);
617 kvm_load_gs(vmx->host_state.gs_sel);
618 #ifdef CONFIG_X86_64
619 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
620 #endif
621 local_irq_restore(flags);
623 reload_tss();
624 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
625 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
626 reload_host_efer(vmx);
629 static void vmx_load_host_state(struct vcpu_vmx *vmx)
631 preempt_disable();
632 __vmx_load_host_state(vmx);
633 preempt_enable();
637 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
638 * vcpu mutex is already taken.
640 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
642 struct vcpu_vmx *vmx = to_vmx(vcpu);
643 u64 phys_addr = __pa(vmx->vmcs);
644 u64 tsc_this, delta, new_offset;
646 if (vcpu->cpu != cpu) {
647 vcpu_clear(vmx);
648 kvm_migrate_timers(vcpu);
649 vpid_sync_vcpu_all(vmx);
650 local_irq_disable();
651 list_add(&vmx->local_vcpus_link,
652 &per_cpu(vcpus_on_cpu, cpu));
653 local_irq_enable();
656 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
657 u8 error;
659 per_cpu(current_vmcs, cpu) = vmx->vmcs;
660 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
661 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
662 : "cc");
663 if (error)
664 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
665 vmx->vmcs, phys_addr);
668 if (vcpu->cpu != cpu) {
669 struct descriptor_table dt;
670 unsigned long sysenter_esp;
672 vcpu->cpu = cpu;
674 * Linux uses per-cpu TSS and GDT, so set these when switching
675 * processors.
677 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
678 kvm_get_gdt(&dt);
679 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
681 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
682 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
685 * Make sure the time stamp counter is monotonous.
687 rdtscll(tsc_this);
688 if (tsc_this < vcpu->arch.host_tsc) {
689 delta = vcpu->arch.host_tsc - tsc_this;
690 new_offset = vmcs_read64(TSC_OFFSET) + delta;
691 vmcs_write64(TSC_OFFSET, new_offset);
696 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
698 __vmx_load_host_state(to_vmx(vcpu));
701 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
703 if (vcpu->fpu_active)
704 return;
705 vcpu->fpu_active = 1;
706 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
707 if (vcpu->arch.cr0 & X86_CR0_TS)
708 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
709 update_exception_bitmap(vcpu);
712 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
714 if (!vcpu->fpu_active)
715 return;
716 vcpu->fpu_active = 0;
717 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
718 update_exception_bitmap(vcpu);
721 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
723 return vmcs_readl(GUEST_RFLAGS);
726 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
728 if (vcpu->arch.rmode.active)
729 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
730 vmcs_writel(GUEST_RFLAGS, rflags);
733 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
735 unsigned long rip;
736 u32 interruptibility;
738 rip = kvm_rip_read(vcpu);
739 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
740 kvm_rip_write(vcpu, rip);
743 * We emulated an instruction, so temporary interrupt blocking
744 * should be removed, if set.
746 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
747 if (interruptibility & 3)
748 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
749 interruptibility & ~3);
750 vcpu->arch.interrupt_window_open = 1;
753 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
754 bool has_error_code, u32 error_code)
756 struct vcpu_vmx *vmx = to_vmx(vcpu);
757 u32 intr_info = nr | INTR_INFO_VALID_MASK;
759 if (has_error_code) {
760 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
761 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
764 if (vcpu->arch.rmode.active) {
765 vmx->rmode.irq.pending = true;
766 vmx->rmode.irq.vector = nr;
767 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
768 if (nr == BP_VECTOR || nr == OF_VECTOR)
769 vmx->rmode.irq.rip++;
770 intr_info |= INTR_TYPE_SOFT_INTR;
771 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
772 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
773 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
774 return;
777 if (nr == BP_VECTOR || nr == OF_VECTOR) {
778 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
779 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
780 } else
781 intr_info |= INTR_TYPE_HARD_EXCEPTION;
783 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
786 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
788 return false;
792 * Swap MSR entry in host/guest MSR entry array.
794 #ifdef CONFIG_X86_64
795 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
797 struct kvm_msr_entry tmp;
799 tmp = vmx->guest_msrs[to];
800 vmx->guest_msrs[to] = vmx->guest_msrs[from];
801 vmx->guest_msrs[from] = tmp;
802 tmp = vmx->host_msrs[to];
803 vmx->host_msrs[to] = vmx->host_msrs[from];
804 vmx->host_msrs[from] = tmp;
806 #endif
809 * Set up the vmcs to automatically save and restore system
810 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
811 * mode, as fiddling with msrs is very expensive.
813 static void setup_msrs(struct vcpu_vmx *vmx)
815 int save_nmsrs;
816 unsigned long *msr_bitmap;
818 vmx_load_host_state(vmx);
819 save_nmsrs = 0;
820 #ifdef CONFIG_X86_64
821 if (is_long_mode(&vmx->vcpu)) {
822 int index;
824 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
825 if (index >= 0)
826 move_msr_up(vmx, index, save_nmsrs++);
827 index = __find_msr_index(vmx, MSR_LSTAR);
828 if (index >= 0)
829 move_msr_up(vmx, index, save_nmsrs++);
830 index = __find_msr_index(vmx, MSR_CSTAR);
831 if (index >= 0)
832 move_msr_up(vmx, index, save_nmsrs++);
833 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
834 if (index >= 0)
835 move_msr_up(vmx, index, save_nmsrs++);
837 * MSR_K6_STAR is only needed on long mode guests, and only
838 * if efer.sce is enabled.
840 index = __find_msr_index(vmx, MSR_K6_STAR);
841 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
842 move_msr_up(vmx, index, save_nmsrs++);
844 #endif
845 vmx->save_nmsrs = save_nmsrs;
847 #ifdef CONFIG_X86_64
848 vmx->msr_offset_kernel_gs_base =
849 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
850 #endif
851 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
853 if (cpu_has_vmx_msr_bitmap()) {
854 if (is_long_mode(&vmx->vcpu))
855 msr_bitmap = vmx_msr_bitmap_longmode;
856 else
857 msr_bitmap = vmx_msr_bitmap_legacy;
859 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
864 * reads and returns guest's timestamp counter "register"
865 * guest_tsc = host_tsc + tsc_offset -- 21.3
867 static u64 guest_read_tsc(void)
869 u64 host_tsc, tsc_offset;
871 rdtscll(host_tsc);
872 tsc_offset = vmcs_read64(TSC_OFFSET);
873 return host_tsc + tsc_offset;
877 * writes 'guest_tsc' into guest's timestamp counter "register"
878 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
880 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
882 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
886 * Reads an msr value (of 'msr_index') into 'pdata'.
887 * Returns 0 on success, non-0 otherwise.
888 * Assumes vcpu_load() was already called.
890 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
892 u64 data;
893 struct kvm_msr_entry *msr;
895 if (!pdata) {
896 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
897 return -EINVAL;
900 switch (msr_index) {
901 #ifdef CONFIG_X86_64
902 case MSR_FS_BASE:
903 data = vmcs_readl(GUEST_FS_BASE);
904 break;
905 case MSR_GS_BASE:
906 data = vmcs_readl(GUEST_GS_BASE);
907 break;
908 case MSR_EFER:
909 return kvm_get_msr_common(vcpu, msr_index, pdata);
910 #endif
911 case MSR_IA32_TIME_STAMP_COUNTER:
912 data = guest_read_tsc();
913 break;
914 case MSR_IA32_SYSENTER_CS:
915 data = vmcs_read32(GUEST_SYSENTER_CS);
916 break;
917 case MSR_IA32_SYSENTER_EIP:
918 data = vmcs_readl(GUEST_SYSENTER_EIP);
919 break;
920 case MSR_IA32_SYSENTER_ESP:
921 data = vmcs_readl(GUEST_SYSENTER_ESP);
922 break;
923 default:
924 vmx_load_host_state(to_vmx(vcpu));
925 msr = find_msr_entry(to_vmx(vcpu), msr_index);
926 if (msr) {
927 data = msr->data;
928 break;
930 return kvm_get_msr_common(vcpu, msr_index, pdata);
933 *pdata = data;
934 return 0;
938 * Writes msr value into into the appropriate "register".
939 * Returns 0 on success, non-0 otherwise.
940 * Assumes vcpu_load() was already called.
942 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
944 struct vcpu_vmx *vmx = to_vmx(vcpu);
945 struct kvm_msr_entry *msr;
946 u64 host_tsc;
947 int ret = 0;
949 switch (msr_index) {
950 case MSR_EFER:
951 vmx_load_host_state(vmx);
952 ret = kvm_set_msr_common(vcpu, msr_index, data);
953 break;
954 #ifdef CONFIG_X86_64
955 case MSR_FS_BASE:
956 vmcs_writel(GUEST_FS_BASE, data);
957 break;
958 case MSR_GS_BASE:
959 vmcs_writel(GUEST_GS_BASE, data);
960 break;
961 #endif
962 case MSR_IA32_SYSENTER_CS:
963 vmcs_write32(GUEST_SYSENTER_CS, data);
964 break;
965 case MSR_IA32_SYSENTER_EIP:
966 vmcs_writel(GUEST_SYSENTER_EIP, data);
967 break;
968 case MSR_IA32_SYSENTER_ESP:
969 vmcs_writel(GUEST_SYSENTER_ESP, data);
970 break;
971 case MSR_IA32_TIME_STAMP_COUNTER:
972 rdtscll(host_tsc);
973 guest_write_tsc(data, host_tsc);
974 break;
975 case MSR_P6_PERFCTR0:
976 case MSR_P6_PERFCTR1:
977 case MSR_P6_EVNTSEL0:
978 case MSR_P6_EVNTSEL1:
980 * Just discard all writes to the performance counters; this
981 * should keep both older linux and windows 64-bit guests
982 * happy
984 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
986 break;
987 case MSR_IA32_CR_PAT:
988 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
989 vmcs_write64(GUEST_IA32_PAT, data);
990 vcpu->arch.pat = data;
991 break;
993 /* Otherwise falls through to kvm_set_msr_common */
994 default:
995 vmx_load_host_state(vmx);
996 msr = find_msr_entry(vmx, msr_index);
997 if (msr) {
998 msr->data = data;
999 break;
1001 ret = kvm_set_msr_common(vcpu, msr_index, data);
1004 return ret;
1007 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1009 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1010 switch (reg) {
1011 case VCPU_REGS_RSP:
1012 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1013 break;
1014 case VCPU_REGS_RIP:
1015 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1016 break;
1017 default:
1018 break;
1022 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1024 int old_debug = vcpu->guest_debug;
1025 unsigned long flags;
1027 vcpu->guest_debug = dbg->control;
1028 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1029 vcpu->guest_debug = 0;
1031 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1032 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1033 else
1034 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1036 flags = vmcs_readl(GUEST_RFLAGS);
1037 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1038 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1039 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1040 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1041 vmcs_writel(GUEST_RFLAGS, flags);
1043 update_exception_bitmap(vcpu);
1045 return 0;
1048 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1050 if (!vcpu->arch.interrupt.pending)
1051 return -1;
1052 return vcpu->arch.interrupt.nr;
1055 static __init int cpu_has_kvm_support(void)
1057 return cpu_has_vmx();
1060 static __init int vmx_disabled_by_bios(void)
1062 u64 msr;
1064 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1065 return (msr & (FEATURE_CONTROL_LOCKED |
1066 FEATURE_CONTROL_VMXON_ENABLED))
1067 == FEATURE_CONTROL_LOCKED;
1068 /* locked but not enabled */
1071 static void hardware_enable(void *garbage)
1073 int cpu = raw_smp_processor_id();
1074 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1075 u64 old;
1077 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1078 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1079 if ((old & (FEATURE_CONTROL_LOCKED |
1080 FEATURE_CONTROL_VMXON_ENABLED))
1081 != (FEATURE_CONTROL_LOCKED |
1082 FEATURE_CONTROL_VMXON_ENABLED))
1083 /* enable and lock */
1084 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1085 FEATURE_CONTROL_LOCKED |
1086 FEATURE_CONTROL_VMXON_ENABLED);
1087 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1088 asm volatile (ASM_VMX_VMXON_RAX
1089 : : "a"(&phys_addr), "m"(phys_addr)
1090 : "memory", "cc");
1093 static void vmclear_local_vcpus(void)
1095 int cpu = raw_smp_processor_id();
1096 struct vcpu_vmx *vmx, *n;
1098 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1099 local_vcpus_link)
1100 __vcpu_clear(vmx);
1104 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1105 * tricks.
1107 static void kvm_cpu_vmxoff(void)
1109 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1110 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1113 static void hardware_disable(void *garbage)
1115 vmclear_local_vcpus();
1116 kvm_cpu_vmxoff();
1119 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1120 u32 msr, u32 *result)
1122 u32 vmx_msr_low, vmx_msr_high;
1123 u32 ctl = ctl_min | ctl_opt;
1125 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1127 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1128 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1130 /* Ensure minimum (required) set of control bits are supported. */
1131 if (ctl_min & ~ctl)
1132 return -EIO;
1134 *result = ctl;
1135 return 0;
1138 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1140 u32 vmx_msr_low, vmx_msr_high;
1141 u32 min, opt, min2, opt2;
1142 u32 _pin_based_exec_control = 0;
1143 u32 _cpu_based_exec_control = 0;
1144 u32 _cpu_based_2nd_exec_control = 0;
1145 u32 _vmexit_control = 0;
1146 u32 _vmentry_control = 0;
1148 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1149 opt = PIN_BASED_VIRTUAL_NMIS;
1150 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1151 &_pin_based_exec_control) < 0)
1152 return -EIO;
1154 min = CPU_BASED_HLT_EXITING |
1155 #ifdef CONFIG_X86_64
1156 CPU_BASED_CR8_LOAD_EXITING |
1157 CPU_BASED_CR8_STORE_EXITING |
1158 #endif
1159 CPU_BASED_CR3_LOAD_EXITING |
1160 CPU_BASED_CR3_STORE_EXITING |
1161 CPU_BASED_USE_IO_BITMAPS |
1162 CPU_BASED_MOV_DR_EXITING |
1163 CPU_BASED_USE_TSC_OFFSETING |
1164 CPU_BASED_INVLPG_EXITING;
1165 opt = CPU_BASED_TPR_SHADOW |
1166 CPU_BASED_USE_MSR_BITMAPS |
1167 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1168 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1169 &_cpu_based_exec_control) < 0)
1170 return -EIO;
1171 #ifdef CONFIG_X86_64
1172 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1173 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1174 ~CPU_BASED_CR8_STORE_EXITING;
1175 #endif
1176 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1177 min2 = 0;
1178 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1179 SECONDARY_EXEC_WBINVD_EXITING |
1180 SECONDARY_EXEC_ENABLE_VPID |
1181 SECONDARY_EXEC_ENABLE_EPT;
1182 if (adjust_vmx_controls(min2, opt2,
1183 MSR_IA32_VMX_PROCBASED_CTLS2,
1184 &_cpu_based_2nd_exec_control) < 0)
1185 return -EIO;
1187 #ifndef CONFIG_X86_64
1188 if (!(_cpu_based_2nd_exec_control &
1189 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1190 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1191 #endif
1192 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1193 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1194 enabled */
1195 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1196 CPU_BASED_CR3_STORE_EXITING |
1197 CPU_BASED_INVLPG_EXITING);
1198 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1199 &_cpu_based_exec_control) < 0)
1200 return -EIO;
1201 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1202 vmx_capability.ept, vmx_capability.vpid);
1205 min = 0;
1206 #ifdef CONFIG_X86_64
1207 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1208 #endif
1209 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1210 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1211 &_vmexit_control) < 0)
1212 return -EIO;
1214 min = 0;
1215 opt = VM_ENTRY_LOAD_IA32_PAT;
1216 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1217 &_vmentry_control) < 0)
1218 return -EIO;
1220 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1222 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1223 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1224 return -EIO;
1226 #ifdef CONFIG_X86_64
1227 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1228 if (vmx_msr_high & (1u<<16))
1229 return -EIO;
1230 #endif
1232 /* Require Write-Back (WB) memory type for VMCS accesses. */
1233 if (((vmx_msr_high >> 18) & 15) != 6)
1234 return -EIO;
1236 vmcs_conf->size = vmx_msr_high & 0x1fff;
1237 vmcs_conf->order = get_order(vmcs_config.size);
1238 vmcs_conf->revision_id = vmx_msr_low;
1240 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1241 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1242 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1243 vmcs_conf->vmexit_ctrl = _vmexit_control;
1244 vmcs_conf->vmentry_ctrl = _vmentry_control;
1246 return 0;
1249 static struct vmcs *alloc_vmcs_cpu(int cpu)
1251 int node = cpu_to_node(cpu);
1252 struct page *pages;
1253 struct vmcs *vmcs;
1255 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1256 if (!pages)
1257 return NULL;
1258 vmcs = page_address(pages);
1259 memset(vmcs, 0, vmcs_config.size);
1260 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1261 return vmcs;
1264 static struct vmcs *alloc_vmcs(void)
1266 return alloc_vmcs_cpu(raw_smp_processor_id());
1269 static void free_vmcs(struct vmcs *vmcs)
1271 free_pages((unsigned long)vmcs, vmcs_config.order);
1274 static void free_kvm_area(void)
1276 int cpu;
1278 for_each_online_cpu(cpu)
1279 free_vmcs(per_cpu(vmxarea, cpu));
1282 static __init int alloc_kvm_area(void)
1284 int cpu;
1286 for_each_online_cpu(cpu) {
1287 struct vmcs *vmcs;
1289 vmcs = alloc_vmcs_cpu(cpu);
1290 if (!vmcs) {
1291 free_kvm_area();
1292 return -ENOMEM;
1295 per_cpu(vmxarea, cpu) = vmcs;
1297 return 0;
1300 static __init int hardware_setup(void)
1302 if (setup_vmcs_config(&vmcs_config) < 0)
1303 return -EIO;
1305 if (boot_cpu_has(X86_FEATURE_NX))
1306 kvm_enable_efer_bits(EFER_NX);
1308 return alloc_kvm_area();
1311 static __exit void hardware_unsetup(void)
1313 free_kvm_area();
1316 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1318 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1320 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1321 vmcs_write16(sf->selector, save->selector);
1322 vmcs_writel(sf->base, save->base);
1323 vmcs_write32(sf->limit, save->limit);
1324 vmcs_write32(sf->ar_bytes, save->ar);
1325 } else {
1326 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1327 << AR_DPL_SHIFT;
1328 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1332 static void enter_pmode(struct kvm_vcpu *vcpu)
1334 unsigned long flags;
1335 struct vcpu_vmx *vmx = to_vmx(vcpu);
1337 vmx->emulation_required = 1;
1338 vcpu->arch.rmode.active = 0;
1340 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1341 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1342 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1344 flags = vmcs_readl(GUEST_RFLAGS);
1345 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1346 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1347 vmcs_writel(GUEST_RFLAGS, flags);
1349 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1350 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1352 update_exception_bitmap(vcpu);
1354 if (emulate_invalid_guest_state)
1355 return;
1357 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1358 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1359 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1360 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1362 vmcs_write16(GUEST_SS_SELECTOR, 0);
1363 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1365 vmcs_write16(GUEST_CS_SELECTOR,
1366 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1367 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1370 static gva_t rmode_tss_base(struct kvm *kvm)
1372 if (!kvm->arch.tss_addr) {
1373 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1374 kvm->memslots[0].npages - 3;
1375 return base_gfn << PAGE_SHIFT;
1377 return kvm->arch.tss_addr;
1380 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1382 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1384 save->selector = vmcs_read16(sf->selector);
1385 save->base = vmcs_readl(sf->base);
1386 save->limit = vmcs_read32(sf->limit);
1387 save->ar = vmcs_read32(sf->ar_bytes);
1388 vmcs_write16(sf->selector, save->base >> 4);
1389 vmcs_write32(sf->base, save->base & 0xfffff);
1390 vmcs_write32(sf->limit, 0xffff);
1391 vmcs_write32(sf->ar_bytes, 0xf3);
1394 static void enter_rmode(struct kvm_vcpu *vcpu)
1396 unsigned long flags;
1397 struct vcpu_vmx *vmx = to_vmx(vcpu);
1399 vmx->emulation_required = 1;
1400 vcpu->arch.rmode.active = 1;
1402 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1403 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1405 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1406 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1408 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1409 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1411 flags = vmcs_readl(GUEST_RFLAGS);
1412 vcpu->arch.rmode.save_iopl
1413 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1415 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1417 vmcs_writel(GUEST_RFLAGS, flags);
1418 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1419 update_exception_bitmap(vcpu);
1421 if (emulate_invalid_guest_state)
1422 goto continue_rmode;
1424 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1425 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1426 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1428 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1429 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1430 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1431 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1432 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1434 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1435 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1436 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1437 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1439 continue_rmode:
1440 kvm_mmu_reset_context(vcpu);
1441 init_rmode(vcpu->kvm);
1444 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1446 struct vcpu_vmx *vmx = to_vmx(vcpu);
1447 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1449 vcpu->arch.shadow_efer = efer;
1450 if (!msr)
1451 return;
1452 if (efer & EFER_LMA) {
1453 vmcs_write32(VM_ENTRY_CONTROLS,
1454 vmcs_read32(VM_ENTRY_CONTROLS) |
1455 VM_ENTRY_IA32E_MODE);
1456 msr->data = efer;
1457 } else {
1458 vmcs_write32(VM_ENTRY_CONTROLS,
1459 vmcs_read32(VM_ENTRY_CONTROLS) &
1460 ~VM_ENTRY_IA32E_MODE);
1462 msr->data = efer & ~EFER_LME;
1464 setup_msrs(vmx);
1467 #ifdef CONFIG_X86_64
1469 static void enter_lmode(struct kvm_vcpu *vcpu)
1471 u32 guest_tr_ar;
1473 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1474 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1475 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1476 __func__);
1477 vmcs_write32(GUEST_TR_AR_BYTES,
1478 (guest_tr_ar & ~AR_TYPE_MASK)
1479 | AR_TYPE_BUSY_64_TSS);
1481 vcpu->arch.shadow_efer |= EFER_LMA;
1482 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1485 static void exit_lmode(struct kvm_vcpu *vcpu)
1487 vcpu->arch.shadow_efer &= ~EFER_LMA;
1489 vmcs_write32(VM_ENTRY_CONTROLS,
1490 vmcs_read32(VM_ENTRY_CONTROLS)
1491 & ~VM_ENTRY_IA32E_MODE);
1494 #endif
1496 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1498 vpid_sync_vcpu_all(to_vmx(vcpu));
1499 if (vm_need_ept())
1500 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1503 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1505 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1506 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1509 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1511 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1512 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1513 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1514 return;
1516 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1517 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1518 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1519 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1523 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1525 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1526 unsigned long cr0,
1527 struct kvm_vcpu *vcpu)
1529 if (!(cr0 & X86_CR0_PG)) {
1530 /* From paging/starting to nonpaging */
1531 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1532 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1533 (CPU_BASED_CR3_LOAD_EXITING |
1534 CPU_BASED_CR3_STORE_EXITING));
1535 vcpu->arch.cr0 = cr0;
1536 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1537 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1538 *hw_cr0 &= ~X86_CR0_WP;
1539 } else if (!is_paging(vcpu)) {
1540 /* From nonpaging to paging */
1541 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1542 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1543 ~(CPU_BASED_CR3_LOAD_EXITING |
1544 CPU_BASED_CR3_STORE_EXITING));
1545 vcpu->arch.cr0 = cr0;
1546 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1547 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1548 *hw_cr0 &= ~X86_CR0_WP;
1552 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1553 struct kvm_vcpu *vcpu)
1555 if (!is_paging(vcpu)) {
1556 *hw_cr4 &= ~X86_CR4_PAE;
1557 *hw_cr4 |= X86_CR4_PSE;
1558 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1559 *hw_cr4 &= ~X86_CR4_PAE;
1562 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1564 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1565 KVM_VM_CR0_ALWAYS_ON;
1567 vmx_fpu_deactivate(vcpu);
1569 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1570 enter_pmode(vcpu);
1572 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1573 enter_rmode(vcpu);
1575 #ifdef CONFIG_X86_64
1576 if (vcpu->arch.shadow_efer & EFER_LME) {
1577 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1578 enter_lmode(vcpu);
1579 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1580 exit_lmode(vcpu);
1582 #endif
1584 if (vm_need_ept())
1585 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1587 vmcs_writel(CR0_READ_SHADOW, cr0);
1588 vmcs_writel(GUEST_CR0, hw_cr0);
1589 vcpu->arch.cr0 = cr0;
1591 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1592 vmx_fpu_activate(vcpu);
1595 static u64 construct_eptp(unsigned long root_hpa)
1597 u64 eptp;
1599 /* TODO write the value reading from MSR */
1600 eptp = VMX_EPT_DEFAULT_MT |
1601 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1602 eptp |= (root_hpa & PAGE_MASK);
1604 return eptp;
1607 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1609 unsigned long guest_cr3;
1610 u64 eptp;
1612 guest_cr3 = cr3;
1613 if (vm_need_ept()) {
1614 eptp = construct_eptp(cr3);
1615 vmcs_write64(EPT_POINTER, eptp);
1616 ept_sync_context(eptp);
1617 ept_load_pdptrs(vcpu);
1618 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1619 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1622 vmx_flush_tlb(vcpu);
1623 vmcs_writel(GUEST_CR3, guest_cr3);
1624 if (vcpu->arch.cr0 & X86_CR0_PE)
1625 vmx_fpu_deactivate(vcpu);
1628 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1630 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1631 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1633 vcpu->arch.cr4 = cr4;
1634 if (vm_need_ept())
1635 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1637 vmcs_writel(CR4_READ_SHADOW, cr4);
1638 vmcs_writel(GUEST_CR4, hw_cr4);
1641 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1643 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1645 return vmcs_readl(sf->base);
1648 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1649 struct kvm_segment *var, int seg)
1651 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1652 u32 ar;
1654 var->base = vmcs_readl(sf->base);
1655 var->limit = vmcs_read32(sf->limit);
1656 var->selector = vmcs_read16(sf->selector);
1657 ar = vmcs_read32(sf->ar_bytes);
1658 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1659 ar = 0;
1660 var->type = ar & 15;
1661 var->s = (ar >> 4) & 1;
1662 var->dpl = (ar >> 5) & 3;
1663 var->present = (ar >> 7) & 1;
1664 var->avl = (ar >> 12) & 1;
1665 var->l = (ar >> 13) & 1;
1666 var->db = (ar >> 14) & 1;
1667 var->g = (ar >> 15) & 1;
1668 var->unusable = (ar >> 16) & 1;
1671 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1673 struct kvm_segment kvm_seg;
1675 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1676 return 0;
1678 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1679 return 3;
1681 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1682 return kvm_seg.selector & 3;
1685 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1687 u32 ar;
1689 if (var->unusable)
1690 ar = 1 << 16;
1691 else {
1692 ar = var->type & 15;
1693 ar |= (var->s & 1) << 4;
1694 ar |= (var->dpl & 3) << 5;
1695 ar |= (var->present & 1) << 7;
1696 ar |= (var->avl & 1) << 12;
1697 ar |= (var->l & 1) << 13;
1698 ar |= (var->db & 1) << 14;
1699 ar |= (var->g & 1) << 15;
1701 if (ar == 0) /* a 0 value means unusable */
1702 ar = AR_UNUSABLE_MASK;
1704 return ar;
1707 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1708 struct kvm_segment *var, int seg)
1710 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1711 u32 ar;
1713 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1714 vcpu->arch.rmode.tr.selector = var->selector;
1715 vcpu->arch.rmode.tr.base = var->base;
1716 vcpu->arch.rmode.tr.limit = var->limit;
1717 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1718 return;
1720 vmcs_writel(sf->base, var->base);
1721 vmcs_write32(sf->limit, var->limit);
1722 vmcs_write16(sf->selector, var->selector);
1723 if (vcpu->arch.rmode.active && var->s) {
1725 * Hack real-mode segments into vm86 compatibility.
1727 if (var->base == 0xffff0000 && var->selector == 0xf000)
1728 vmcs_writel(sf->base, 0xf0000);
1729 ar = 0xf3;
1730 } else
1731 ar = vmx_segment_access_rights(var);
1732 vmcs_write32(sf->ar_bytes, ar);
1735 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1737 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1739 *db = (ar >> 14) & 1;
1740 *l = (ar >> 13) & 1;
1743 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1745 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1746 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1749 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1751 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1752 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1755 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1757 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1758 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1761 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1763 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1764 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1767 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1769 struct kvm_segment var;
1770 u32 ar;
1772 vmx_get_segment(vcpu, &var, seg);
1773 ar = vmx_segment_access_rights(&var);
1775 if (var.base != (var.selector << 4))
1776 return false;
1777 if (var.limit != 0xffff)
1778 return false;
1779 if (ar != 0xf3)
1780 return false;
1782 return true;
1785 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1787 struct kvm_segment cs;
1788 unsigned int cs_rpl;
1790 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1791 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1793 if (cs.unusable)
1794 return false;
1795 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1796 return false;
1797 if (!cs.s)
1798 return false;
1799 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1800 if (cs.dpl > cs_rpl)
1801 return false;
1802 } else {
1803 if (cs.dpl != cs_rpl)
1804 return false;
1806 if (!cs.present)
1807 return false;
1809 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1810 return true;
1813 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1815 struct kvm_segment ss;
1816 unsigned int ss_rpl;
1818 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1819 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1821 if (ss.unusable)
1822 return true;
1823 if (ss.type != 3 && ss.type != 7)
1824 return false;
1825 if (!ss.s)
1826 return false;
1827 if (ss.dpl != ss_rpl) /* DPL != RPL */
1828 return false;
1829 if (!ss.present)
1830 return false;
1832 return true;
1835 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1837 struct kvm_segment var;
1838 unsigned int rpl;
1840 vmx_get_segment(vcpu, &var, seg);
1841 rpl = var.selector & SELECTOR_RPL_MASK;
1843 if (var.unusable)
1844 return true;
1845 if (!var.s)
1846 return false;
1847 if (!var.present)
1848 return false;
1849 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1850 if (var.dpl < rpl) /* DPL < RPL */
1851 return false;
1854 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1855 * rights flags
1857 return true;
1860 static bool tr_valid(struct kvm_vcpu *vcpu)
1862 struct kvm_segment tr;
1864 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1866 if (tr.unusable)
1867 return false;
1868 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1869 return false;
1870 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1871 return false;
1872 if (!tr.present)
1873 return false;
1875 return true;
1878 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1880 struct kvm_segment ldtr;
1882 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1884 if (ldtr.unusable)
1885 return true;
1886 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1887 return false;
1888 if (ldtr.type != 2)
1889 return false;
1890 if (!ldtr.present)
1891 return false;
1893 return true;
1896 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1898 struct kvm_segment cs, ss;
1900 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1901 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1903 return ((cs.selector & SELECTOR_RPL_MASK) ==
1904 (ss.selector & SELECTOR_RPL_MASK));
1908 * Check if guest state is valid. Returns true if valid, false if
1909 * not.
1910 * We assume that registers are always usable
1912 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1914 /* real mode guest state checks */
1915 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1916 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1917 return false;
1918 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1919 return false;
1920 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1921 return false;
1922 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1923 return false;
1924 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1925 return false;
1926 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1927 return false;
1928 } else {
1929 /* protected mode guest state checks */
1930 if (!cs_ss_rpl_check(vcpu))
1931 return false;
1932 if (!code_segment_valid(vcpu))
1933 return false;
1934 if (!stack_segment_valid(vcpu))
1935 return false;
1936 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1937 return false;
1938 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1939 return false;
1940 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1941 return false;
1942 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1943 return false;
1944 if (!tr_valid(vcpu))
1945 return false;
1946 if (!ldtr_valid(vcpu))
1947 return false;
1949 /* TODO:
1950 * - Add checks on RIP
1951 * - Add checks on RFLAGS
1954 return true;
1957 static int init_rmode_tss(struct kvm *kvm)
1959 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1960 u16 data = 0;
1961 int ret = 0;
1962 int r;
1964 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1965 if (r < 0)
1966 goto out;
1967 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1968 r = kvm_write_guest_page(kvm, fn++, &data,
1969 TSS_IOPB_BASE_OFFSET, sizeof(u16));
1970 if (r < 0)
1971 goto out;
1972 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1973 if (r < 0)
1974 goto out;
1975 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1976 if (r < 0)
1977 goto out;
1978 data = ~0;
1979 r = kvm_write_guest_page(kvm, fn, &data,
1980 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1981 sizeof(u8));
1982 if (r < 0)
1983 goto out;
1985 ret = 1;
1986 out:
1987 return ret;
1990 static int init_rmode_identity_map(struct kvm *kvm)
1992 int i, r, ret;
1993 pfn_t identity_map_pfn;
1994 u32 tmp;
1996 if (!vm_need_ept())
1997 return 1;
1998 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1999 printk(KERN_ERR "EPT: identity-mapping pagetable "
2000 "haven't been allocated!\n");
2001 return 0;
2003 if (likely(kvm->arch.ept_identity_pagetable_done))
2004 return 1;
2005 ret = 0;
2006 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2007 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2008 if (r < 0)
2009 goto out;
2010 /* Set up identity-mapping pagetable for EPT in real mode */
2011 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2012 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2013 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2014 r = kvm_write_guest_page(kvm, identity_map_pfn,
2015 &tmp, i * sizeof(tmp), sizeof(tmp));
2016 if (r < 0)
2017 goto out;
2019 kvm->arch.ept_identity_pagetable_done = true;
2020 ret = 1;
2021 out:
2022 return ret;
2025 static void seg_setup(int seg)
2027 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2029 vmcs_write16(sf->selector, 0);
2030 vmcs_writel(sf->base, 0);
2031 vmcs_write32(sf->limit, 0xffff);
2032 vmcs_write32(sf->ar_bytes, 0xf3);
2035 static int alloc_apic_access_page(struct kvm *kvm)
2037 struct kvm_userspace_memory_region kvm_userspace_mem;
2038 int r = 0;
2040 down_write(&kvm->slots_lock);
2041 if (kvm->arch.apic_access_page)
2042 goto out;
2043 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2044 kvm_userspace_mem.flags = 0;
2045 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2046 kvm_userspace_mem.memory_size = PAGE_SIZE;
2047 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2048 if (r)
2049 goto out;
2051 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2052 out:
2053 up_write(&kvm->slots_lock);
2054 return r;
2057 static int alloc_identity_pagetable(struct kvm *kvm)
2059 struct kvm_userspace_memory_region kvm_userspace_mem;
2060 int r = 0;
2062 down_write(&kvm->slots_lock);
2063 if (kvm->arch.ept_identity_pagetable)
2064 goto out;
2065 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2066 kvm_userspace_mem.flags = 0;
2067 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2068 kvm_userspace_mem.memory_size = PAGE_SIZE;
2069 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2070 if (r)
2071 goto out;
2073 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2074 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2075 out:
2076 up_write(&kvm->slots_lock);
2077 return r;
2080 static void allocate_vpid(struct vcpu_vmx *vmx)
2082 int vpid;
2084 vmx->vpid = 0;
2085 if (!enable_vpid || !cpu_has_vmx_vpid())
2086 return;
2087 spin_lock(&vmx_vpid_lock);
2088 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2089 if (vpid < VMX_NR_VPIDS) {
2090 vmx->vpid = vpid;
2091 __set_bit(vpid, vmx_vpid_bitmap);
2093 spin_unlock(&vmx_vpid_lock);
2096 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2098 int f = sizeof(unsigned long);
2100 if (!cpu_has_vmx_msr_bitmap())
2101 return;
2104 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2105 * have the write-low and read-high bitmap offsets the wrong way round.
2106 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2108 if (msr <= 0x1fff) {
2109 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2110 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2111 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2112 msr &= 0x1fff;
2113 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2114 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2118 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2120 if (!longmode_only)
2121 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2122 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2126 * Sets up the vmcs for emulated real mode.
2128 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2130 u32 host_sysenter_cs, msr_low, msr_high;
2131 u32 junk;
2132 u64 host_pat, tsc_this, tsc_base;
2133 unsigned long a;
2134 struct descriptor_table dt;
2135 int i;
2136 unsigned long kvm_vmx_return;
2137 u32 exec_control;
2139 /* I/O */
2140 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2141 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2143 if (cpu_has_vmx_msr_bitmap())
2144 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2146 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2148 /* Control */
2149 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2150 vmcs_config.pin_based_exec_ctrl);
2152 exec_control = vmcs_config.cpu_based_exec_ctrl;
2153 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2154 exec_control &= ~CPU_BASED_TPR_SHADOW;
2155 #ifdef CONFIG_X86_64
2156 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2157 CPU_BASED_CR8_LOAD_EXITING;
2158 #endif
2160 if (!vm_need_ept())
2161 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2162 CPU_BASED_CR3_LOAD_EXITING |
2163 CPU_BASED_INVLPG_EXITING;
2164 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2166 if (cpu_has_secondary_exec_ctrls()) {
2167 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2168 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2169 exec_control &=
2170 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2171 if (vmx->vpid == 0)
2172 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2173 if (!vm_need_ept())
2174 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2175 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2178 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2179 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2180 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2182 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2183 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2184 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2186 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2187 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2188 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2189 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2190 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2191 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2192 #ifdef CONFIG_X86_64
2193 rdmsrl(MSR_FS_BASE, a);
2194 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2195 rdmsrl(MSR_GS_BASE, a);
2196 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2197 #else
2198 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2199 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2200 #endif
2202 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2204 kvm_get_idt(&dt);
2205 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2207 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2208 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2209 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2210 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2211 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2213 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2214 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2215 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2216 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2217 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2218 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2220 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2221 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2222 host_pat = msr_low | ((u64) msr_high << 32);
2223 vmcs_write64(HOST_IA32_PAT, host_pat);
2225 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2226 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2227 host_pat = msr_low | ((u64) msr_high << 32);
2228 /* Write the default value follow host pat */
2229 vmcs_write64(GUEST_IA32_PAT, host_pat);
2230 /* Keep arch.pat sync with GUEST_IA32_PAT */
2231 vmx->vcpu.arch.pat = host_pat;
2234 for (i = 0; i < NR_VMX_MSR; ++i) {
2235 u32 index = vmx_msr_index[i];
2236 u32 data_low, data_high;
2237 u64 data;
2238 int j = vmx->nmsrs;
2240 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2241 continue;
2242 if (wrmsr_safe(index, data_low, data_high) < 0)
2243 continue;
2244 data = data_low | ((u64)data_high << 32);
2245 vmx->host_msrs[j].index = index;
2246 vmx->host_msrs[j].reserved = 0;
2247 vmx->host_msrs[j].data = data;
2248 vmx->guest_msrs[j] = vmx->host_msrs[j];
2249 ++vmx->nmsrs;
2252 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2254 /* 22.2.1, 20.8.1 */
2255 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2257 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2258 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2260 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2261 rdtscll(tsc_this);
2262 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2263 tsc_base = tsc_this;
2265 guest_write_tsc(0, tsc_base);
2267 return 0;
2270 static int init_rmode(struct kvm *kvm)
2272 if (!init_rmode_tss(kvm))
2273 return 0;
2274 if (!init_rmode_identity_map(kvm))
2275 return 0;
2276 return 1;
2279 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2281 struct vcpu_vmx *vmx = to_vmx(vcpu);
2282 u64 msr;
2283 int ret;
2285 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2286 down_read(&vcpu->kvm->slots_lock);
2287 if (!init_rmode(vmx->vcpu.kvm)) {
2288 ret = -ENOMEM;
2289 goto out;
2292 vmx->vcpu.arch.rmode.active = 0;
2294 vmx->soft_vnmi_blocked = 0;
2296 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2297 kvm_set_cr8(&vmx->vcpu, 0);
2298 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2299 if (vmx->vcpu.vcpu_id == 0)
2300 msr |= MSR_IA32_APICBASE_BSP;
2301 kvm_set_apic_base(&vmx->vcpu, msr);
2303 fx_init(&vmx->vcpu);
2305 seg_setup(VCPU_SREG_CS);
2307 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2308 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2310 if (vmx->vcpu.vcpu_id == 0) {
2311 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2312 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2313 } else {
2314 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2315 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2318 seg_setup(VCPU_SREG_DS);
2319 seg_setup(VCPU_SREG_ES);
2320 seg_setup(VCPU_SREG_FS);
2321 seg_setup(VCPU_SREG_GS);
2322 seg_setup(VCPU_SREG_SS);
2324 vmcs_write16(GUEST_TR_SELECTOR, 0);
2325 vmcs_writel(GUEST_TR_BASE, 0);
2326 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2327 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2329 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2330 vmcs_writel(GUEST_LDTR_BASE, 0);
2331 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2332 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2334 vmcs_write32(GUEST_SYSENTER_CS, 0);
2335 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2336 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2338 vmcs_writel(GUEST_RFLAGS, 0x02);
2339 if (vmx->vcpu.vcpu_id == 0)
2340 kvm_rip_write(vcpu, 0xfff0);
2341 else
2342 kvm_rip_write(vcpu, 0);
2343 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2345 vmcs_writel(GUEST_DR7, 0x400);
2347 vmcs_writel(GUEST_GDTR_BASE, 0);
2348 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2350 vmcs_writel(GUEST_IDTR_BASE, 0);
2351 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2353 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2354 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2355 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2357 /* Special registers */
2358 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2360 setup_msrs(vmx);
2362 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2364 if (cpu_has_vmx_tpr_shadow()) {
2365 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2366 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2367 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2368 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2369 vmcs_write32(TPR_THRESHOLD, 0);
2372 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2373 vmcs_write64(APIC_ACCESS_ADDR,
2374 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2376 if (vmx->vpid != 0)
2377 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2379 vmx->vcpu.arch.cr0 = 0x60000010;
2380 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2381 vmx_set_cr4(&vmx->vcpu, 0);
2382 vmx_set_efer(&vmx->vcpu, 0);
2383 vmx_fpu_activate(&vmx->vcpu);
2384 update_exception_bitmap(&vmx->vcpu);
2386 vpid_sync_vcpu_all(vmx);
2388 ret = 0;
2390 /* HACK: Don't enable emulation on guest boot/reset */
2391 vmx->emulation_required = 0;
2393 out:
2394 up_read(&vcpu->kvm->slots_lock);
2395 return ret;
2398 static void enable_irq_window(struct kvm_vcpu *vcpu)
2400 u32 cpu_based_vm_exec_control;
2402 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2403 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2404 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2407 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2409 u32 cpu_based_vm_exec_control;
2411 if (!cpu_has_virtual_nmis()) {
2412 enable_irq_window(vcpu);
2413 return;
2416 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2417 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2418 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2421 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2423 struct vcpu_vmx *vmx = to_vmx(vcpu);
2425 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2427 ++vcpu->stat.irq_injections;
2428 if (vcpu->arch.rmode.active) {
2429 vmx->rmode.irq.pending = true;
2430 vmx->rmode.irq.vector = irq;
2431 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2432 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2433 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2434 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2435 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2436 return;
2438 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2439 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2442 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2444 struct vcpu_vmx *vmx = to_vmx(vcpu);
2446 if (!cpu_has_virtual_nmis()) {
2448 * Tracking the NMI-blocked state in software is built upon
2449 * finding the next open IRQ window. This, in turn, depends on
2450 * well-behaving guests: They have to keep IRQs disabled at
2451 * least as long as the NMI handler runs. Otherwise we may
2452 * cause NMI nesting, maybe breaking the guest. But as this is
2453 * highly unlikely, we can live with the residual risk.
2455 vmx->soft_vnmi_blocked = 1;
2456 vmx->vnmi_blocked_time = 0;
2459 ++vcpu->stat.nmi_injections;
2460 if (vcpu->arch.rmode.active) {
2461 vmx->rmode.irq.pending = true;
2462 vmx->rmode.irq.vector = NMI_VECTOR;
2463 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2464 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2465 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2466 INTR_INFO_VALID_MASK);
2467 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2468 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2469 return;
2471 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2472 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2475 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2477 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2479 vcpu->arch.nmi_window_open =
2480 !(guest_intr & (GUEST_INTR_STATE_STI |
2481 GUEST_INTR_STATE_MOV_SS |
2482 GUEST_INTR_STATE_NMI));
2483 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2484 vcpu->arch.nmi_window_open = 0;
2486 vcpu->arch.interrupt_window_open =
2487 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2488 !(guest_intr & (GUEST_INTR_STATE_STI |
2489 GUEST_INTR_STATE_MOV_SS)));
2492 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2493 struct kvm_run *kvm_run)
2495 vmx_update_window_states(vcpu);
2497 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
2498 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2499 GUEST_INTR_STATE_STI |
2500 GUEST_INTR_STATE_MOV_SS);
2502 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2503 if (vcpu->arch.interrupt.pending) {
2504 enable_nmi_window(vcpu);
2505 } else if (vcpu->arch.nmi_window_open) {
2506 vcpu->arch.nmi_pending = false;
2507 vcpu->arch.nmi_injected = true;
2508 } else {
2509 enable_nmi_window(vcpu);
2510 return;
2513 if (vcpu->arch.nmi_injected) {
2514 vmx_inject_nmi(vcpu);
2515 if (vcpu->arch.nmi_pending)
2516 enable_nmi_window(vcpu);
2517 else if (vcpu->arch.irq_summary
2518 || kvm_run->request_interrupt_window)
2519 enable_irq_window(vcpu);
2520 return;
2523 if (vcpu->arch.interrupt_window_open) {
2524 if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
2525 kvm_queue_interrupt(vcpu, kvm_pop_irq(vcpu));
2527 if (vcpu->arch.interrupt.pending)
2528 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2530 if (!vcpu->arch.interrupt_window_open &&
2531 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2532 enable_irq_window(vcpu);
2535 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2537 int ret;
2538 struct kvm_userspace_memory_region tss_mem = {
2539 .slot = TSS_PRIVATE_MEMSLOT,
2540 .guest_phys_addr = addr,
2541 .memory_size = PAGE_SIZE * 3,
2542 .flags = 0,
2545 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2546 if (ret)
2547 return ret;
2548 kvm->arch.tss_addr = addr;
2549 return 0;
2552 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2553 int vec, u32 err_code)
2556 * Instruction with address size override prefix opcode 0x67
2557 * Cause the #SS fault with 0 error code in VM86 mode.
2559 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2560 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2561 return 1;
2563 * Forward all other exceptions that are valid in real mode.
2564 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2565 * the required debugging infrastructure rework.
2567 switch (vec) {
2568 case DB_VECTOR:
2569 if (vcpu->guest_debug &
2570 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2571 return 0;
2572 kvm_queue_exception(vcpu, vec);
2573 return 1;
2574 case BP_VECTOR:
2575 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2576 return 0;
2577 /* fall through */
2578 case DE_VECTOR:
2579 case OF_VECTOR:
2580 case BR_VECTOR:
2581 case UD_VECTOR:
2582 case DF_VECTOR:
2583 case SS_VECTOR:
2584 case GP_VECTOR:
2585 case MF_VECTOR:
2586 kvm_queue_exception(vcpu, vec);
2587 return 1;
2589 return 0;
2592 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2594 struct vcpu_vmx *vmx = to_vmx(vcpu);
2595 u32 intr_info, ex_no, error_code;
2596 unsigned long cr2, rip, dr6;
2597 u32 vect_info;
2598 enum emulation_result er;
2600 vect_info = vmx->idt_vectoring_info;
2601 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2603 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2604 !is_page_fault(intr_info))
2605 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2606 "intr info 0x%x\n", __func__, vect_info, intr_info);
2608 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2609 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2610 kvm_push_irq(vcpu, irq);
2613 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2614 return 1; /* already handled by vmx_vcpu_run() */
2616 if (is_no_device(intr_info)) {
2617 vmx_fpu_activate(vcpu);
2618 return 1;
2621 if (is_invalid_opcode(intr_info)) {
2622 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2623 if (er != EMULATE_DONE)
2624 kvm_queue_exception(vcpu, UD_VECTOR);
2625 return 1;
2628 error_code = 0;
2629 rip = kvm_rip_read(vcpu);
2630 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2631 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2632 if (is_page_fault(intr_info)) {
2633 /* EPT won't cause page fault directly */
2634 if (vm_need_ept())
2635 BUG();
2636 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2637 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2638 (u32)((u64)cr2 >> 32), handler);
2639 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2640 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2641 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2644 if (vcpu->arch.rmode.active &&
2645 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2646 error_code)) {
2647 if (vcpu->arch.halt_request) {
2648 vcpu->arch.halt_request = 0;
2649 return kvm_emulate_halt(vcpu);
2651 return 1;
2654 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2655 switch (ex_no) {
2656 case DB_VECTOR:
2657 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2658 if (!(vcpu->guest_debug &
2659 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2660 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2661 kvm_queue_exception(vcpu, DB_VECTOR);
2662 return 1;
2664 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2665 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2666 /* fall through */
2667 case BP_VECTOR:
2668 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2669 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2670 kvm_run->debug.arch.exception = ex_no;
2671 break;
2672 default:
2673 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2674 kvm_run->ex.exception = ex_no;
2675 kvm_run->ex.error_code = error_code;
2676 break;
2678 return 0;
2681 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2682 struct kvm_run *kvm_run)
2684 ++vcpu->stat.irq_exits;
2685 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2686 return 1;
2689 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2691 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2692 return 0;
2695 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2697 unsigned long exit_qualification;
2698 int size, in, string;
2699 unsigned port;
2701 ++vcpu->stat.io_exits;
2702 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2703 string = (exit_qualification & 16) != 0;
2705 if (string) {
2706 if (emulate_instruction(vcpu,
2707 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2708 return 0;
2709 return 1;
2712 size = (exit_qualification & 7) + 1;
2713 in = (exit_qualification & 8) != 0;
2714 port = exit_qualification >> 16;
2716 skip_emulated_instruction(vcpu);
2717 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2720 static void
2721 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2724 * Patch in the VMCALL instruction:
2726 hypercall[0] = 0x0f;
2727 hypercall[1] = 0x01;
2728 hypercall[2] = 0xc1;
2731 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2733 unsigned long exit_qualification;
2734 int cr;
2735 int reg;
2737 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2738 cr = exit_qualification & 15;
2739 reg = (exit_qualification >> 8) & 15;
2740 switch ((exit_qualification >> 4) & 3) {
2741 case 0: /* mov to cr */
2742 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2743 (u32)kvm_register_read(vcpu, reg),
2744 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2745 handler);
2746 switch (cr) {
2747 case 0:
2748 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2749 skip_emulated_instruction(vcpu);
2750 return 1;
2751 case 3:
2752 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2753 skip_emulated_instruction(vcpu);
2754 return 1;
2755 case 4:
2756 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2757 skip_emulated_instruction(vcpu);
2758 return 1;
2759 case 8:
2760 kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2761 skip_emulated_instruction(vcpu);
2762 if (irqchip_in_kernel(vcpu->kvm))
2763 return 1;
2764 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2765 return 0;
2767 break;
2768 case 2: /* clts */
2769 vmx_fpu_deactivate(vcpu);
2770 vcpu->arch.cr0 &= ~X86_CR0_TS;
2771 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2772 vmx_fpu_activate(vcpu);
2773 KVMTRACE_0D(CLTS, vcpu, handler);
2774 skip_emulated_instruction(vcpu);
2775 return 1;
2776 case 1: /*mov from cr*/
2777 switch (cr) {
2778 case 3:
2779 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2780 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2781 (u32)kvm_register_read(vcpu, reg),
2782 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2783 handler);
2784 skip_emulated_instruction(vcpu);
2785 return 1;
2786 case 8:
2787 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2788 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2789 (u32)kvm_register_read(vcpu, reg), handler);
2790 skip_emulated_instruction(vcpu);
2791 return 1;
2793 break;
2794 case 3: /* lmsw */
2795 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2797 skip_emulated_instruction(vcpu);
2798 return 1;
2799 default:
2800 break;
2802 kvm_run->exit_reason = 0;
2803 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2804 (int)(exit_qualification >> 4) & 3, cr);
2805 return 0;
2808 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2810 unsigned long exit_qualification;
2811 unsigned long val;
2812 int dr, reg;
2814 dr = vmcs_readl(GUEST_DR7);
2815 if (dr & DR7_GD) {
2817 * As the vm-exit takes precedence over the debug trap, we
2818 * need to emulate the latter, either for the host or the
2819 * guest debugging itself.
2821 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2822 kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2823 kvm_run->debug.arch.dr7 = dr;
2824 kvm_run->debug.arch.pc =
2825 vmcs_readl(GUEST_CS_BASE) +
2826 vmcs_readl(GUEST_RIP);
2827 kvm_run->debug.arch.exception = DB_VECTOR;
2828 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2829 return 0;
2830 } else {
2831 vcpu->arch.dr7 &= ~DR7_GD;
2832 vcpu->arch.dr6 |= DR6_BD;
2833 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2834 kvm_queue_exception(vcpu, DB_VECTOR);
2835 return 1;
2839 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2840 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2841 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2842 if (exit_qualification & TYPE_MOV_FROM_DR) {
2843 switch (dr) {
2844 case 0 ... 3:
2845 val = vcpu->arch.db[dr];
2846 break;
2847 case 6:
2848 val = vcpu->arch.dr6;
2849 break;
2850 case 7:
2851 val = vcpu->arch.dr7;
2852 break;
2853 default:
2854 val = 0;
2856 kvm_register_write(vcpu, reg, val);
2857 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2858 } else {
2859 val = vcpu->arch.regs[reg];
2860 switch (dr) {
2861 case 0 ... 3:
2862 vcpu->arch.db[dr] = val;
2863 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2864 vcpu->arch.eff_db[dr] = val;
2865 break;
2866 case 4 ... 5:
2867 if (vcpu->arch.cr4 & X86_CR4_DE)
2868 kvm_queue_exception(vcpu, UD_VECTOR);
2869 break;
2870 case 6:
2871 if (val & 0xffffffff00000000ULL) {
2872 kvm_queue_exception(vcpu, GP_VECTOR);
2873 break;
2875 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2876 break;
2877 case 7:
2878 if (val & 0xffffffff00000000ULL) {
2879 kvm_queue_exception(vcpu, GP_VECTOR);
2880 break;
2882 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2883 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2884 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2885 vcpu->arch.switch_db_regs =
2886 (val & DR7_BP_EN_MASK);
2888 break;
2890 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
2892 skip_emulated_instruction(vcpu);
2893 return 1;
2896 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2898 kvm_emulate_cpuid(vcpu);
2899 return 1;
2902 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2904 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2905 u64 data;
2907 if (vmx_get_msr(vcpu, ecx, &data)) {
2908 kvm_inject_gp(vcpu, 0);
2909 return 1;
2912 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2913 handler);
2915 /* FIXME: handling of bits 32:63 of rax, rdx */
2916 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2917 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2918 skip_emulated_instruction(vcpu);
2919 return 1;
2922 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2924 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2925 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2926 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2928 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2929 handler);
2931 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2932 kvm_inject_gp(vcpu, 0);
2933 return 1;
2936 skip_emulated_instruction(vcpu);
2937 return 1;
2940 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2941 struct kvm_run *kvm_run)
2943 return 1;
2946 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2947 struct kvm_run *kvm_run)
2949 u32 cpu_based_vm_exec_control;
2951 /* clear pending irq */
2952 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2953 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2954 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2956 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2957 ++vcpu->stat.irq_window_exits;
2960 * If the user space waits to inject interrupts, exit as soon as
2961 * possible
2963 if (kvm_run->request_interrupt_window &&
2964 !vcpu->arch.irq_summary) {
2965 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2966 return 0;
2968 return 1;
2971 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2973 skip_emulated_instruction(vcpu);
2974 return kvm_emulate_halt(vcpu);
2977 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2979 skip_emulated_instruction(vcpu);
2980 kvm_emulate_hypercall(vcpu);
2981 return 1;
2984 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2986 u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2988 kvm_mmu_invlpg(vcpu, exit_qualification);
2989 skip_emulated_instruction(vcpu);
2990 return 1;
2993 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2995 skip_emulated_instruction(vcpu);
2996 /* TODO: Add support for VT-d/pass-through device */
2997 return 1;
3000 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3002 u64 exit_qualification;
3003 enum emulation_result er;
3004 unsigned long offset;
3006 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
3007 offset = exit_qualification & 0xffful;
3009 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3011 if (er != EMULATE_DONE) {
3012 printk(KERN_ERR
3013 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3014 offset);
3015 return -ENOTSUPP;
3017 return 1;
3020 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3022 struct vcpu_vmx *vmx = to_vmx(vcpu);
3023 unsigned long exit_qualification;
3024 u16 tss_selector;
3025 int reason;
3027 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3029 reason = (u32)exit_qualification >> 30;
3030 if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
3031 (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
3032 (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
3033 == INTR_TYPE_NMI_INTR) {
3034 vcpu->arch.nmi_injected = false;
3035 if (cpu_has_virtual_nmis())
3036 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3037 GUEST_INTR_STATE_NMI);
3039 tss_selector = exit_qualification;
3041 if (!kvm_task_switch(vcpu, tss_selector, reason))
3042 return 0;
3044 /* clear all local breakpoint enable flags */
3045 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3048 * TODO: What about debug traps on tss switch?
3049 * Are we supposed to inject them and update dr6?
3052 return 1;
3055 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3057 u64 exit_qualification;
3058 gpa_t gpa;
3059 int gla_validity;
3061 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
3063 if (exit_qualification & (1 << 6)) {
3064 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3065 return -ENOTSUPP;
3068 gla_validity = (exit_qualification >> 7) & 0x3;
3069 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3070 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3071 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3072 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3073 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
3074 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3075 (long unsigned int)exit_qualification);
3076 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3077 kvm_run->hw.hardware_exit_reason = 0;
3078 return -ENOTSUPP;
3081 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3082 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3085 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3087 u32 cpu_based_vm_exec_control;
3089 /* clear pending NMI */
3090 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3091 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3092 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3093 ++vcpu->stat.nmi_window_exits;
3095 return 1;
3098 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3099 struct kvm_run *kvm_run)
3101 struct vcpu_vmx *vmx = to_vmx(vcpu);
3102 enum emulation_result err = EMULATE_DONE;
3104 preempt_enable();
3105 local_irq_enable();
3107 while (!guest_state_valid(vcpu)) {
3108 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3110 if (err == EMULATE_DO_MMIO)
3111 break;
3113 if (err != EMULATE_DONE) {
3114 kvm_report_emulation_failure(vcpu, "emulation failure");
3115 return;
3118 if (signal_pending(current))
3119 break;
3120 if (need_resched())
3121 schedule();
3124 local_irq_disable();
3125 preempt_disable();
3127 vmx->invalid_state_emulation_result = err;
3131 * The exit handlers return 1 if the exit was handled fully and guest execution
3132 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3133 * to be done to userspace and return 0.
3135 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3136 struct kvm_run *kvm_run) = {
3137 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3138 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3139 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3140 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3141 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3142 [EXIT_REASON_CR_ACCESS] = handle_cr,
3143 [EXIT_REASON_DR_ACCESS] = handle_dr,
3144 [EXIT_REASON_CPUID] = handle_cpuid,
3145 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3146 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3147 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3148 [EXIT_REASON_HLT] = handle_halt,
3149 [EXIT_REASON_INVLPG] = handle_invlpg,
3150 [EXIT_REASON_VMCALL] = handle_vmcall,
3151 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3152 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3153 [EXIT_REASON_WBINVD] = handle_wbinvd,
3154 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3155 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3158 static const int kvm_vmx_max_exit_handlers =
3159 ARRAY_SIZE(kvm_vmx_exit_handlers);
3162 * The guest has exited. See if we can fix it or if we need userspace
3163 * assistance.
3165 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3167 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3168 struct vcpu_vmx *vmx = to_vmx(vcpu);
3169 u32 vectoring_info = vmx->idt_vectoring_info;
3171 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3172 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3174 /* If we need to emulate an MMIO from handle_invalid_guest_state
3175 * we just return 0 */
3176 if (vmx->emulation_required && emulate_invalid_guest_state) {
3177 if (guest_state_valid(vcpu))
3178 vmx->emulation_required = 0;
3179 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3182 /* Access CR3 don't cause VMExit in paging mode, so we need
3183 * to sync with guest real CR3. */
3184 if (vm_need_ept() && is_paging(vcpu)) {
3185 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3186 ept_load_pdptrs(vcpu);
3189 if (unlikely(vmx->fail)) {
3190 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3191 kvm_run->fail_entry.hardware_entry_failure_reason
3192 = vmcs_read32(VM_INSTRUCTION_ERROR);
3193 return 0;
3196 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3197 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3198 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3199 exit_reason != EXIT_REASON_TASK_SWITCH))
3200 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3201 "(0x%x) and exit reason is 0x%x\n",
3202 __func__, vectoring_info, exit_reason);
3204 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3205 if (vcpu->arch.interrupt_window_open) {
3206 vmx->soft_vnmi_blocked = 0;
3207 vcpu->arch.nmi_window_open = 1;
3208 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3209 vcpu->arch.nmi_pending) {
3211 * This CPU don't support us in finding the end of an
3212 * NMI-blocked window if the guest runs with IRQs
3213 * disabled. So we pull the trigger after 1 s of
3214 * futile waiting, but inform the user about this.
3216 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3217 "state on VCPU %d after 1 s timeout\n",
3218 __func__, vcpu->vcpu_id);
3219 vmx->soft_vnmi_blocked = 0;
3220 vmx->vcpu.arch.nmi_window_open = 1;
3224 if (exit_reason < kvm_vmx_max_exit_handlers
3225 && kvm_vmx_exit_handlers[exit_reason])
3226 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3227 else {
3228 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3229 kvm_run->hw.hardware_exit_reason = exit_reason;
3231 return 0;
3234 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3236 int max_irr, tpr;
3238 if (!vm_need_tpr_shadow(vcpu->kvm))
3239 return;
3241 if (!kvm_lapic_enabled(vcpu) ||
3242 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3243 vmcs_write32(TPR_THRESHOLD, 0);
3244 return;
3247 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3248 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3251 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3253 u32 exit_intr_info;
3254 u32 idt_vectoring_info;
3255 bool unblock_nmi;
3256 u8 vector;
3257 int type;
3258 bool idtv_info_valid;
3259 u32 error;
3261 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3262 if (cpu_has_virtual_nmis()) {
3263 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3264 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3266 * SDM 3: 25.7.1.2
3267 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3268 * a guest IRET fault.
3270 if (unblock_nmi && vector != DF_VECTOR)
3271 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3272 GUEST_INTR_STATE_NMI);
3273 } else if (unlikely(vmx->soft_vnmi_blocked))
3274 vmx->vnmi_blocked_time +=
3275 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3277 idt_vectoring_info = vmx->idt_vectoring_info;
3278 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3279 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3280 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3281 if (vmx->vcpu.arch.nmi_injected) {
3283 * SDM 3: 25.7.1.2
3284 * Clear bit "block by NMI" before VM entry if a NMI delivery
3285 * faulted.
3287 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
3288 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3289 GUEST_INTR_STATE_NMI);
3290 else
3291 vmx->vcpu.arch.nmi_injected = false;
3293 kvm_clear_exception_queue(&vmx->vcpu);
3294 if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
3295 type == INTR_TYPE_SOFT_EXCEPTION)) {
3296 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3297 error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3298 kvm_queue_exception_e(&vmx->vcpu, vector, error);
3299 } else
3300 kvm_queue_exception(&vmx->vcpu, vector);
3301 vmx->idt_vectoring_info = 0;
3303 kvm_clear_interrupt_queue(&vmx->vcpu);
3304 if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
3305 kvm_queue_interrupt(&vmx->vcpu, vector);
3306 vmx->idt_vectoring_info = 0;
3310 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
3312 update_tpr_threshold(vcpu);
3314 vmx_update_window_states(vcpu);
3316 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3317 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3318 GUEST_INTR_STATE_STI |
3319 GUEST_INTR_STATE_MOV_SS);
3321 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
3322 if (vcpu->arch.interrupt.pending) {
3323 enable_nmi_window(vcpu);
3324 } else if (vcpu->arch.nmi_window_open) {
3325 vcpu->arch.nmi_pending = false;
3326 vcpu->arch.nmi_injected = true;
3327 } else {
3328 enable_nmi_window(vcpu);
3329 return;
3332 if (vcpu->arch.nmi_injected) {
3333 vmx_inject_nmi(vcpu);
3334 if (vcpu->arch.nmi_pending)
3335 enable_nmi_window(vcpu);
3336 else if (kvm_cpu_has_interrupt(vcpu))
3337 enable_irq_window(vcpu);
3338 return;
3340 if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
3341 if (vcpu->arch.interrupt_window_open)
3342 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3343 else
3344 enable_irq_window(vcpu);
3346 if (vcpu->arch.interrupt.pending) {
3347 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3348 if (kvm_cpu_has_interrupt(vcpu))
3349 enable_irq_window(vcpu);
3354 * Failure to inject an interrupt should give us the information
3355 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3356 * when fetching the interrupt redirection bitmap in the real-mode
3357 * tss, this doesn't happen. So we do it ourselves.
3359 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3361 vmx->rmode.irq.pending = 0;
3362 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3363 return;
3364 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3365 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3366 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3367 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3368 return;
3370 vmx->idt_vectoring_info =
3371 VECTORING_INFO_VALID_MASK
3372 | INTR_TYPE_EXT_INTR
3373 | vmx->rmode.irq.vector;
3376 #ifdef CONFIG_X86_64
3377 #define R "r"
3378 #define Q "q"
3379 #else
3380 #define R "e"
3381 #define Q "l"
3382 #endif
3384 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3386 struct vcpu_vmx *vmx = to_vmx(vcpu);
3387 u32 intr_info;
3389 /* Record the guest's net vcpu time for enforced NMI injections. */
3390 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3391 vmx->entry_time = ktime_get();
3393 /* Handle invalid guest state instead of entering VMX */
3394 if (vmx->emulation_required && emulate_invalid_guest_state) {
3395 handle_invalid_guest_state(vcpu, kvm_run);
3396 return;
3399 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3400 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3401 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3402 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3405 * Loading guest fpu may have cleared host cr0.ts
3407 vmcs_writel(HOST_CR0, read_cr0());
3409 set_debugreg(vcpu->arch.dr6, 6);
3411 asm(
3412 /* Store host registers */
3413 "push %%"R"dx; push %%"R"bp;"
3414 "push %%"R"cx \n\t"
3415 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3416 "je 1f \n\t"
3417 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3418 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3419 "1: \n\t"
3420 /* Check if vmlaunch of vmresume is needed */
3421 "cmpl $0, %c[launched](%0) \n\t"
3422 /* Load guest registers. Don't clobber flags. */
3423 "mov %c[cr2](%0), %%"R"ax \n\t"
3424 "mov %%"R"ax, %%cr2 \n\t"
3425 "mov %c[rax](%0), %%"R"ax \n\t"
3426 "mov %c[rbx](%0), %%"R"bx \n\t"
3427 "mov %c[rdx](%0), %%"R"dx \n\t"
3428 "mov %c[rsi](%0), %%"R"si \n\t"
3429 "mov %c[rdi](%0), %%"R"di \n\t"
3430 "mov %c[rbp](%0), %%"R"bp \n\t"
3431 #ifdef CONFIG_X86_64
3432 "mov %c[r8](%0), %%r8 \n\t"
3433 "mov %c[r9](%0), %%r9 \n\t"
3434 "mov %c[r10](%0), %%r10 \n\t"
3435 "mov %c[r11](%0), %%r11 \n\t"
3436 "mov %c[r12](%0), %%r12 \n\t"
3437 "mov %c[r13](%0), %%r13 \n\t"
3438 "mov %c[r14](%0), %%r14 \n\t"
3439 "mov %c[r15](%0), %%r15 \n\t"
3440 #endif
3441 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3443 /* Enter guest mode */
3444 "jne .Llaunched \n\t"
3445 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3446 "jmp .Lkvm_vmx_return \n\t"
3447 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3448 ".Lkvm_vmx_return: "
3449 /* Save guest registers, load host registers, keep flags */
3450 "xchg %0, (%%"R"sp) \n\t"
3451 "mov %%"R"ax, %c[rax](%0) \n\t"
3452 "mov %%"R"bx, %c[rbx](%0) \n\t"
3453 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3454 "mov %%"R"dx, %c[rdx](%0) \n\t"
3455 "mov %%"R"si, %c[rsi](%0) \n\t"
3456 "mov %%"R"di, %c[rdi](%0) \n\t"
3457 "mov %%"R"bp, %c[rbp](%0) \n\t"
3458 #ifdef CONFIG_X86_64
3459 "mov %%r8, %c[r8](%0) \n\t"
3460 "mov %%r9, %c[r9](%0) \n\t"
3461 "mov %%r10, %c[r10](%0) \n\t"
3462 "mov %%r11, %c[r11](%0) \n\t"
3463 "mov %%r12, %c[r12](%0) \n\t"
3464 "mov %%r13, %c[r13](%0) \n\t"
3465 "mov %%r14, %c[r14](%0) \n\t"
3466 "mov %%r15, %c[r15](%0) \n\t"
3467 #endif
3468 "mov %%cr2, %%"R"ax \n\t"
3469 "mov %%"R"ax, %c[cr2](%0) \n\t"
3471 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3472 "setbe %c[fail](%0) \n\t"
3473 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3474 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3475 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3476 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3477 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3478 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3479 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3480 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3481 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3482 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3483 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3484 #ifdef CONFIG_X86_64
3485 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3486 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3487 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3488 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3489 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3490 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3491 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3492 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3493 #endif
3494 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3495 : "cc", "memory"
3496 , R"bx", R"di", R"si"
3497 #ifdef CONFIG_X86_64
3498 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3499 #endif
3502 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3503 vcpu->arch.regs_dirty = 0;
3505 get_debugreg(vcpu->arch.dr6, 6);
3507 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3508 if (vmx->rmode.irq.pending)
3509 fixup_rmode_irq(vmx);
3511 vmx_update_window_states(vcpu);
3513 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3514 vmx->launched = 1;
3516 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3518 /* We need to handle NMIs before interrupts are enabled */
3519 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3520 (intr_info & INTR_INFO_VALID_MASK)) {
3521 KVMTRACE_0D(NMI, vcpu, handler);
3522 asm("int $2");
3525 vmx_complete_interrupts(vmx);
3528 #undef R
3529 #undef Q
3531 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3533 struct vcpu_vmx *vmx = to_vmx(vcpu);
3535 if (vmx->vmcs) {
3536 vcpu_clear(vmx);
3537 free_vmcs(vmx->vmcs);
3538 vmx->vmcs = NULL;
3542 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3544 struct vcpu_vmx *vmx = to_vmx(vcpu);
3546 spin_lock(&vmx_vpid_lock);
3547 if (vmx->vpid != 0)
3548 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3549 spin_unlock(&vmx_vpid_lock);
3550 vmx_free_vmcs(vcpu);
3551 kfree(vmx->host_msrs);
3552 kfree(vmx->guest_msrs);
3553 kvm_vcpu_uninit(vcpu);
3554 kmem_cache_free(kvm_vcpu_cache, vmx);
3557 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3559 int err;
3560 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3561 int cpu;
3563 if (!vmx)
3564 return ERR_PTR(-ENOMEM);
3566 allocate_vpid(vmx);
3568 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3569 if (err)
3570 goto free_vcpu;
3572 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3573 if (!vmx->guest_msrs) {
3574 err = -ENOMEM;
3575 goto uninit_vcpu;
3578 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3579 if (!vmx->host_msrs)
3580 goto free_guest_msrs;
3582 vmx->vmcs = alloc_vmcs();
3583 if (!vmx->vmcs)
3584 goto free_msrs;
3586 vmcs_clear(vmx->vmcs);
3588 cpu = get_cpu();
3589 vmx_vcpu_load(&vmx->vcpu, cpu);
3590 err = vmx_vcpu_setup(vmx);
3591 vmx_vcpu_put(&vmx->vcpu);
3592 put_cpu();
3593 if (err)
3594 goto free_vmcs;
3595 if (vm_need_virtualize_apic_accesses(kvm))
3596 if (alloc_apic_access_page(kvm) != 0)
3597 goto free_vmcs;
3599 if (vm_need_ept())
3600 if (alloc_identity_pagetable(kvm) != 0)
3601 goto free_vmcs;
3603 return &vmx->vcpu;
3605 free_vmcs:
3606 free_vmcs(vmx->vmcs);
3607 free_msrs:
3608 kfree(vmx->host_msrs);
3609 free_guest_msrs:
3610 kfree(vmx->guest_msrs);
3611 uninit_vcpu:
3612 kvm_vcpu_uninit(&vmx->vcpu);
3613 free_vcpu:
3614 kmem_cache_free(kvm_vcpu_cache, vmx);
3615 return ERR_PTR(err);
3618 static void __init vmx_check_processor_compat(void *rtn)
3620 struct vmcs_config vmcs_conf;
3622 *(int *)rtn = 0;
3623 if (setup_vmcs_config(&vmcs_conf) < 0)
3624 *(int *)rtn = -EIO;
3625 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3626 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3627 smp_processor_id());
3628 *(int *)rtn = -EIO;
3632 static int get_ept_level(void)
3634 return VMX_EPT_DEFAULT_GAW + 1;
3637 static int vmx_get_mt_mask_shift(void)
3639 return VMX_EPT_MT_EPTE_SHIFT;
3642 static struct kvm_x86_ops vmx_x86_ops = {
3643 .cpu_has_kvm_support = cpu_has_kvm_support,
3644 .disabled_by_bios = vmx_disabled_by_bios,
3645 .hardware_setup = hardware_setup,
3646 .hardware_unsetup = hardware_unsetup,
3647 .check_processor_compatibility = vmx_check_processor_compat,
3648 .hardware_enable = hardware_enable,
3649 .hardware_disable = hardware_disable,
3650 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3652 .vcpu_create = vmx_create_vcpu,
3653 .vcpu_free = vmx_free_vcpu,
3654 .vcpu_reset = vmx_vcpu_reset,
3656 .prepare_guest_switch = vmx_save_host_state,
3657 .vcpu_load = vmx_vcpu_load,
3658 .vcpu_put = vmx_vcpu_put,
3660 .set_guest_debug = set_guest_debug,
3661 .get_msr = vmx_get_msr,
3662 .set_msr = vmx_set_msr,
3663 .get_segment_base = vmx_get_segment_base,
3664 .get_segment = vmx_get_segment,
3665 .set_segment = vmx_set_segment,
3666 .get_cpl = vmx_get_cpl,
3667 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3668 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3669 .set_cr0 = vmx_set_cr0,
3670 .set_cr3 = vmx_set_cr3,
3671 .set_cr4 = vmx_set_cr4,
3672 .set_efer = vmx_set_efer,
3673 .get_idt = vmx_get_idt,
3674 .set_idt = vmx_set_idt,
3675 .get_gdt = vmx_get_gdt,
3676 .set_gdt = vmx_set_gdt,
3677 .cache_reg = vmx_cache_reg,
3678 .get_rflags = vmx_get_rflags,
3679 .set_rflags = vmx_set_rflags,
3681 .tlb_flush = vmx_flush_tlb,
3683 .run = vmx_vcpu_run,
3684 .handle_exit = vmx_handle_exit,
3685 .skip_emulated_instruction = skip_emulated_instruction,
3686 .patch_hypercall = vmx_patch_hypercall,
3687 .get_irq = vmx_get_irq,
3688 .set_irq = vmx_inject_irq,
3689 .queue_exception = vmx_queue_exception,
3690 .exception_injected = vmx_exception_injected,
3691 .inject_pending_irq = vmx_intr_assist,
3692 .inject_pending_vectors = do_interrupt_requests,
3694 .set_tss_addr = vmx_set_tss_addr,
3695 .get_tdp_level = get_ept_level,
3696 .get_mt_mask_shift = vmx_get_mt_mask_shift,
3699 static int __init vmx_init(void)
3701 int r;
3703 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3704 if (!vmx_io_bitmap_a)
3705 return -ENOMEM;
3707 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3708 if (!vmx_io_bitmap_b) {
3709 r = -ENOMEM;
3710 goto out;
3713 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3714 if (!vmx_msr_bitmap_legacy) {
3715 r = -ENOMEM;
3716 goto out1;
3719 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3720 if (!vmx_msr_bitmap_longmode) {
3721 r = -ENOMEM;
3722 goto out2;
3726 * Allow direct access to the PC debug port (it is often used for I/O
3727 * delays, but the vmexits simply slow things down).
3729 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3730 clear_bit(0x80, vmx_io_bitmap_a);
3732 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3734 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3735 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3737 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3739 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3740 if (r)
3741 goto out3;
3743 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3744 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3745 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3746 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3747 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3748 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3750 if (vm_need_ept()) {
3751 bypass_guest_pf = 0;
3752 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3753 VMX_EPT_WRITABLE_MASK);
3754 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3755 VMX_EPT_EXECUTABLE_MASK,
3756 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3757 kvm_enable_tdp();
3758 } else
3759 kvm_disable_tdp();
3761 if (bypass_guest_pf)
3762 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3764 ept_sync_global();
3766 return 0;
3768 out3:
3769 free_page((unsigned long)vmx_msr_bitmap_longmode);
3770 out2:
3771 free_page((unsigned long)vmx_msr_bitmap_legacy);
3772 out1:
3773 free_page((unsigned long)vmx_io_bitmap_b);
3774 out:
3775 free_page((unsigned long)vmx_io_bitmap_a);
3776 return r;
3779 static void __exit vmx_exit(void)
3781 free_page((unsigned long)vmx_msr_bitmap_legacy);
3782 free_page((unsigned long)vmx_msr_bitmap_longmode);
3783 free_page((unsigned long)vmx_io_bitmap_b);
3784 free_page((unsigned long)vmx_io_bitmap_a);
3786 kvm_exit();
3789 module_init(vmx_init)
3790 module_exit(vmx_exit)