KVM: VMX: Adjust rflags if in real mode emulation
[linux-2.6/linux-2.6-openrd.git] / arch / x86 / kvm / vmx.c
blob2b7e7bd190fd5a072ad9500c707726294d128a76
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "mmu.h"
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
38 #include "trace.h"
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59 enable_unrestricted_guest, bool, S_IRUGO);
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
64 struct vmcs {
65 u32 revision_id;
66 u32 abort;
67 char data[0];
70 struct vcpu_vmx {
71 struct kvm_vcpu vcpu;
72 struct list_head local_vcpus_link;
73 unsigned long host_rsp;
74 int launched;
75 u8 fail;
76 u32 idt_vectoring_info;
77 struct kvm_msr_entry *guest_msrs;
78 struct kvm_msr_entry *host_msrs;
79 int nmsrs;
80 int save_nmsrs;
81 int msr_offset_efer;
82 #ifdef CONFIG_X86_64
83 int msr_offset_kernel_gs_base;
84 #endif
85 struct vmcs *vmcs;
86 struct {
87 int loaded;
88 u16 fs_sel, gs_sel, ldt_sel;
89 int gs_ldt_reload_needed;
90 int fs_reload_needed;
91 int guest_efer_loaded;
92 } host_state;
93 struct {
94 int vm86_active;
95 u8 save_iopl;
96 struct kvm_save_segment {
97 u16 selector;
98 unsigned long base;
99 u32 limit;
100 u32 ar;
101 } tr, es, ds, fs, gs;
102 struct {
103 bool pending;
104 u8 vector;
105 unsigned rip;
106 } irq;
107 } rmode;
108 int vpid;
109 bool emulation_required;
110 enum emulation_result invalid_state_emulation_result;
112 /* Support for vnmi-less CPUs */
113 int soft_vnmi_blocked;
114 ktime_t entry_time;
115 s64 vnmi_blocked_time;
116 u32 exit_reason;
119 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
121 return container_of(vcpu, struct vcpu_vmx, vcpu);
124 static int init_rmode(struct kvm *kvm);
125 static u64 construct_eptp(unsigned long root_hpa);
127 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
128 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
129 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
131 static unsigned long *vmx_io_bitmap_a;
132 static unsigned long *vmx_io_bitmap_b;
133 static unsigned long *vmx_msr_bitmap_legacy;
134 static unsigned long *vmx_msr_bitmap_longmode;
136 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
137 static DEFINE_SPINLOCK(vmx_vpid_lock);
139 static struct vmcs_config {
140 int size;
141 int order;
142 u32 revision_id;
143 u32 pin_based_exec_ctrl;
144 u32 cpu_based_exec_ctrl;
145 u32 cpu_based_2nd_exec_ctrl;
146 u32 vmexit_ctrl;
147 u32 vmentry_ctrl;
148 } vmcs_config;
150 static struct vmx_capability {
151 u32 ept;
152 u32 vpid;
153 } vmx_capability;
155 #define VMX_SEGMENT_FIELD(seg) \
156 [VCPU_SREG_##seg] = { \
157 .selector = GUEST_##seg##_SELECTOR, \
158 .base = GUEST_##seg##_BASE, \
159 .limit = GUEST_##seg##_LIMIT, \
160 .ar_bytes = GUEST_##seg##_AR_BYTES, \
163 static struct kvm_vmx_segment_field {
164 unsigned selector;
165 unsigned base;
166 unsigned limit;
167 unsigned ar_bytes;
168 } kvm_vmx_segment_fields[] = {
169 VMX_SEGMENT_FIELD(CS),
170 VMX_SEGMENT_FIELD(DS),
171 VMX_SEGMENT_FIELD(ES),
172 VMX_SEGMENT_FIELD(FS),
173 VMX_SEGMENT_FIELD(GS),
174 VMX_SEGMENT_FIELD(SS),
175 VMX_SEGMENT_FIELD(TR),
176 VMX_SEGMENT_FIELD(LDTR),
179 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
182 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
183 * away by decrementing the array size.
185 static const u32 vmx_msr_index[] = {
186 #ifdef CONFIG_X86_64
187 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
188 #endif
189 MSR_EFER, MSR_K6_STAR,
191 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
193 static void load_msrs(struct kvm_msr_entry *e, int n)
195 int i;
197 for (i = 0; i < n; ++i)
198 wrmsrl(e[i].index, e[i].data);
201 static void save_msrs(struct kvm_msr_entry *e, int n)
203 int i;
205 for (i = 0; i < n; ++i)
206 rdmsrl(e[i].index, e[i].data);
209 static inline int is_page_fault(u32 intr_info)
211 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
212 INTR_INFO_VALID_MASK)) ==
213 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
216 static inline int is_no_device(u32 intr_info)
218 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
219 INTR_INFO_VALID_MASK)) ==
220 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
223 static inline int is_invalid_opcode(u32 intr_info)
225 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
226 INTR_INFO_VALID_MASK)) ==
227 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
230 static inline int is_external_interrupt(u32 intr_info)
232 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
233 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
236 static inline int is_machine_check(u32 intr_info)
238 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
239 INTR_INFO_VALID_MASK)) ==
240 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
243 static inline int cpu_has_vmx_msr_bitmap(void)
245 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
248 static inline int cpu_has_vmx_tpr_shadow(void)
250 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
253 static inline int vm_need_tpr_shadow(struct kvm *kvm)
255 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
258 static inline int cpu_has_secondary_exec_ctrls(void)
260 return vmcs_config.cpu_based_exec_ctrl &
261 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
264 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
266 return vmcs_config.cpu_based_2nd_exec_ctrl &
267 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
270 static inline bool cpu_has_vmx_flexpriority(void)
272 return cpu_has_vmx_tpr_shadow() &&
273 cpu_has_vmx_virtualize_apic_accesses();
276 static inline bool cpu_has_vmx_ept_execute_only(void)
278 return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
281 static inline bool cpu_has_vmx_eptp_uncacheable(void)
283 return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
286 static inline bool cpu_has_vmx_eptp_writeback(void)
288 return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
291 static inline bool cpu_has_vmx_ept_2m_page(void)
293 return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
296 static inline int cpu_has_vmx_invept_individual_addr(void)
298 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
301 static inline int cpu_has_vmx_invept_context(void)
303 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
306 static inline int cpu_has_vmx_invept_global(void)
308 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
311 static inline int cpu_has_vmx_ept(void)
313 return vmcs_config.cpu_based_2nd_exec_ctrl &
314 SECONDARY_EXEC_ENABLE_EPT;
317 static inline int cpu_has_vmx_unrestricted_guest(void)
319 return vmcs_config.cpu_based_2nd_exec_ctrl &
320 SECONDARY_EXEC_UNRESTRICTED_GUEST;
323 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
325 return flexpriority_enabled &&
326 (cpu_has_vmx_virtualize_apic_accesses()) &&
327 (irqchip_in_kernel(kvm));
330 static inline int cpu_has_vmx_vpid(void)
332 return vmcs_config.cpu_based_2nd_exec_ctrl &
333 SECONDARY_EXEC_ENABLE_VPID;
336 static inline int cpu_has_virtual_nmis(void)
338 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
341 static inline bool report_flexpriority(void)
343 return flexpriority_enabled;
346 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
348 int i;
350 for (i = 0; i < vmx->nmsrs; ++i)
351 if (vmx->guest_msrs[i].index == msr)
352 return i;
353 return -1;
356 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
358 struct {
359 u64 vpid : 16;
360 u64 rsvd : 48;
361 u64 gva;
362 } operand = { vpid, 0, gva };
364 asm volatile (__ex(ASM_VMX_INVVPID)
365 /* CF==1 or ZF==1 --> rc = -1 */
366 "; ja 1f ; ud2 ; 1:"
367 : : "a"(&operand), "c"(ext) : "cc", "memory");
370 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
372 struct {
373 u64 eptp, gpa;
374 } operand = {eptp, gpa};
376 asm volatile (__ex(ASM_VMX_INVEPT)
377 /* CF==1 or ZF==1 --> rc = -1 */
378 "; ja 1f ; ud2 ; 1:\n"
379 : : "a" (&operand), "c" (ext) : "cc", "memory");
382 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
384 int i;
386 i = __find_msr_index(vmx, msr);
387 if (i >= 0)
388 return &vmx->guest_msrs[i];
389 return NULL;
392 static void vmcs_clear(struct vmcs *vmcs)
394 u64 phys_addr = __pa(vmcs);
395 u8 error;
397 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
398 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
399 : "cc", "memory");
400 if (error)
401 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
402 vmcs, phys_addr);
405 static void __vcpu_clear(void *arg)
407 struct vcpu_vmx *vmx = arg;
408 int cpu = raw_smp_processor_id();
410 if (vmx->vcpu.cpu == cpu)
411 vmcs_clear(vmx->vmcs);
412 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
413 per_cpu(current_vmcs, cpu) = NULL;
414 rdtscll(vmx->vcpu.arch.host_tsc);
415 list_del(&vmx->local_vcpus_link);
416 vmx->vcpu.cpu = -1;
417 vmx->launched = 0;
420 static void vcpu_clear(struct vcpu_vmx *vmx)
422 if (vmx->vcpu.cpu == -1)
423 return;
424 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
427 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
429 if (vmx->vpid == 0)
430 return;
432 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
435 static inline void ept_sync_global(void)
437 if (cpu_has_vmx_invept_global())
438 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
441 static inline void ept_sync_context(u64 eptp)
443 if (enable_ept) {
444 if (cpu_has_vmx_invept_context())
445 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
446 else
447 ept_sync_global();
451 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
453 if (enable_ept) {
454 if (cpu_has_vmx_invept_individual_addr())
455 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
456 eptp, gpa);
457 else
458 ept_sync_context(eptp);
462 static unsigned long vmcs_readl(unsigned long field)
464 unsigned long value;
466 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
467 : "=a"(value) : "d"(field) : "cc");
468 return value;
471 static u16 vmcs_read16(unsigned long field)
473 return vmcs_readl(field);
476 static u32 vmcs_read32(unsigned long field)
478 return vmcs_readl(field);
481 static u64 vmcs_read64(unsigned long field)
483 #ifdef CONFIG_X86_64
484 return vmcs_readl(field);
485 #else
486 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
487 #endif
490 static noinline void vmwrite_error(unsigned long field, unsigned long value)
492 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
493 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
494 dump_stack();
497 static void vmcs_writel(unsigned long field, unsigned long value)
499 u8 error;
501 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
502 : "=q"(error) : "a"(value), "d"(field) : "cc");
503 if (unlikely(error))
504 vmwrite_error(field, value);
507 static void vmcs_write16(unsigned long field, u16 value)
509 vmcs_writel(field, value);
512 static void vmcs_write32(unsigned long field, u32 value)
514 vmcs_writel(field, value);
517 static void vmcs_write64(unsigned long field, u64 value)
519 vmcs_writel(field, value);
520 #ifndef CONFIG_X86_64
521 asm volatile ("");
522 vmcs_writel(field+1, value >> 32);
523 #endif
526 static void vmcs_clear_bits(unsigned long field, u32 mask)
528 vmcs_writel(field, vmcs_readl(field) & ~mask);
531 static void vmcs_set_bits(unsigned long field, u32 mask)
533 vmcs_writel(field, vmcs_readl(field) | mask);
536 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
538 u32 eb;
540 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
541 if (!vcpu->fpu_active)
542 eb |= 1u << NM_VECTOR;
543 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
544 if (vcpu->guest_debug &
545 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
546 eb |= 1u << DB_VECTOR;
547 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
548 eb |= 1u << BP_VECTOR;
550 if (to_vmx(vcpu)->rmode.vm86_active)
551 eb = ~0;
552 if (enable_ept)
553 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
554 vmcs_write32(EXCEPTION_BITMAP, eb);
557 static void reload_tss(void)
560 * VT restores TR but not its size. Useless.
562 struct descriptor_table gdt;
563 struct desc_struct *descs;
565 kvm_get_gdt(&gdt);
566 descs = (void *)gdt.base;
567 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
568 load_TR_desc();
571 static void load_transition_efer(struct vcpu_vmx *vmx)
573 int efer_offset = vmx->msr_offset_efer;
574 u64 host_efer;
575 u64 guest_efer;
576 u64 ignore_bits;
578 if (efer_offset < 0)
579 return;
580 host_efer = vmx->host_msrs[efer_offset].data;
581 guest_efer = vmx->guest_msrs[efer_offset].data;
584 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
585 * outside long mode
587 ignore_bits = EFER_NX | EFER_SCE;
588 #ifdef CONFIG_X86_64
589 ignore_bits |= EFER_LMA | EFER_LME;
590 /* SCE is meaningful only in long mode on Intel */
591 if (guest_efer & EFER_LMA)
592 ignore_bits &= ~(u64)EFER_SCE;
593 #endif
594 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
595 return;
597 vmx->host_state.guest_efer_loaded = 1;
598 guest_efer &= ~ignore_bits;
599 guest_efer |= host_efer & ignore_bits;
600 wrmsrl(MSR_EFER, guest_efer);
601 vmx->vcpu.stat.efer_reload++;
604 static void reload_host_efer(struct vcpu_vmx *vmx)
606 if (vmx->host_state.guest_efer_loaded) {
607 vmx->host_state.guest_efer_loaded = 0;
608 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
612 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
614 struct vcpu_vmx *vmx = to_vmx(vcpu);
616 if (vmx->host_state.loaded)
617 return;
619 vmx->host_state.loaded = 1;
621 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
622 * allow segment selectors with cpl > 0 or ti == 1.
624 vmx->host_state.ldt_sel = kvm_read_ldt();
625 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
626 vmx->host_state.fs_sel = kvm_read_fs();
627 if (!(vmx->host_state.fs_sel & 7)) {
628 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
629 vmx->host_state.fs_reload_needed = 0;
630 } else {
631 vmcs_write16(HOST_FS_SELECTOR, 0);
632 vmx->host_state.fs_reload_needed = 1;
634 vmx->host_state.gs_sel = kvm_read_gs();
635 if (!(vmx->host_state.gs_sel & 7))
636 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
637 else {
638 vmcs_write16(HOST_GS_SELECTOR, 0);
639 vmx->host_state.gs_ldt_reload_needed = 1;
642 #ifdef CONFIG_X86_64
643 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
644 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
645 #else
646 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
647 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
648 #endif
650 #ifdef CONFIG_X86_64
651 if (is_long_mode(&vmx->vcpu))
652 save_msrs(vmx->host_msrs +
653 vmx->msr_offset_kernel_gs_base, 1);
655 #endif
656 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
657 load_transition_efer(vmx);
660 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
662 unsigned long flags;
664 if (!vmx->host_state.loaded)
665 return;
667 ++vmx->vcpu.stat.host_state_reload;
668 vmx->host_state.loaded = 0;
669 if (vmx->host_state.fs_reload_needed)
670 kvm_load_fs(vmx->host_state.fs_sel);
671 if (vmx->host_state.gs_ldt_reload_needed) {
672 kvm_load_ldt(vmx->host_state.ldt_sel);
674 * If we have to reload gs, we must take care to
675 * preserve our gs base.
677 local_irq_save(flags);
678 kvm_load_gs(vmx->host_state.gs_sel);
679 #ifdef CONFIG_X86_64
680 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
681 #endif
682 local_irq_restore(flags);
684 reload_tss();
685 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
686 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
687 reload_host_efer(vmx);
690 static void vmx_load_host_state(struct vcpu_vmx *vmx)
692 preempt_disable();
693 __vmx_load_host_state(vmx);
694 preempt_enable();
698 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
699 * vcpu mutex is already taken.
701 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
703 struct vcpu_vmx *vmx = to_vmx(vcpu);
704 u64 phys_addr = __pa(vmx->vmcs);
705 u64 tsc_this, delta, new_offset;
707 if (vcpu->cpu != cpu) {
708 vcpu_clear(vmx);
709 kvm_migrate_timers(vcpu);
710 vpid_sync_vcpu_all(vmx);
711 local_irq_disable();
712 list_add(&vmx->local_vcpus_link,
713 &per_cpu(vcpus_on_cpu, cpu));
714 local_irq_enable();
717 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
718 u8 error;
720 per_cpu(current_vmcs, cpu) = vmx->vmcs;
721 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
722 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
723 : "cc");
724 if (error)
725 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
726 vmx->vmcs, phys_addr);
729 if (vcpu->cpu != cpu) {
730 struct descriptor_table dt;
731 unsigned long sysenter_esp;
733 vcpu->cpu = cpu;
735 * Linux uses per-cpu TSS and GDT, so set these when switching
736 * processors.
738 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
739 kvm_get_gdt(&dt);
740 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
742 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
743 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
746 * Make sure the time stamp counter is monotonous.
748 rdtscll(tsc_this);
749 if (tsc_this < vcpu->arch.host_tsc) {
750 delta = vcpu->arch.host_tsc - tsc_this;
751 new_offset = vmcs_read64(TSC_OFFSET) + delta;
752 vmcs_write64(TSC_OFFSET, new_offset);
757 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
759 __vmx_load_host_state(to_vmx(vcpu));
762 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
764 if (vcpu->fpu_active)
765 return;
766 vcpu->fpu_active = 1;
767 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
768 if (vcpu->arch.cr0 & X86_CR0_TS)
769 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
770 update_exception_bitmap(vcpu);
773 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
775 if (!vcpu->fpu_active)
776 return;
777 vcpu->fpu_active = 0;
778 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
779 update_exception_bitmap(vcpu);
782 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
784 unsigned long rflags;
786 rflags = vmcs_readl(GUEST_RFLAGS);
787 if (to_vmx(vcpu)->rmode.vm86_active)
788 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
789 return rflags;
792 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
794 if (to_vmx(vcpu)->rmode.vm86_active)
795 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
796 vmcs_writel(GUEST_RFLAGS, rflags);
799 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
801 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
802 int ret = 0;
804 if (interruptibility & GUEST_INTR_STATE_STI)
805 ret |= X86_SHADOW_INT_STI;
806 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
807 ret |= X86_SHADOW_INT_MOV_SS;
809 return ret & mask;
812 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
814 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
815 u32 interruptibility = interruptibility_old;
817 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
819 if (mask & X86_SHADOW_INT_MOV_SS)
820 interruptibility |= GUEST_INTR_STATE_MOV_SS;
821 if (mask & X86_SHADOW_INT_STI)
822 interruptibility |= GUEST_INTR_STATE_STI;
824 if ((interruptibility != interruptibility_old))
825 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
828 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
830 unsigned long rip;
832 rip = kvm_rip_read(vcpu);
833 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
834 kvm_rip_write(vcpu, rip);
836 /* skipping an emulated instruction also counts */
837 vmx_set_interrupt_shadow(vcpu, 0);
840 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
841 bool has_error_code, u32 error_code)
843 struct vcpu_vmx *vmx = to_vmx(vcpu);
844 u32 intr_info = nr | INTR_INFO_VALID_MASK;
846 if (has_error_code) {
847 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
848 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
851 if (vmx->rmode.vm86_active) {
852 vmx->rmode.irq.pending = true;
853 vmx->rmode.irq.vector = nr;
854 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
855 if (kvm_exception_is_soft(nr))
856 vmx->rmode.irq.rip +=
857 vmx->vcpu.arch.event_exit_inst_len;
858 intr_info |= INTR_TYPE_SOFT_INTR;
859 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
860 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
861 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
862 return;
865 if (kvm_exception_is_soft(nr)) {
866 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
867 vmx->vcpu.arch.event_exit_inst_len);
868 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
869 } else
870 intr_info |= INTR_TYPE_HARD_EXCEPTION;
872 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
876 * Swap MSR entry in host/guest MSR entry array.
878 #ifdef CONFIG_X86_64
879 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
881 struct kvm_msr_entry tmp;
883 tmp = vmx->guest_msrs[to];
884 vmx->guest_msrs[to] = vmx->guest_msrs[from];
885 vmx->guest_msrs[from] = tmp;
886 tmp = vmx->host_msrs[to];
887 vmx->host_msrs[to] = vmx->host_msrs[from];
888 vmx->host_msrs[from] = tmp;
890 #endif
893 * Set up the vmcs to automatically save and restore system
894 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
895 * mode, as fiddling with msrs is very expensive.
897 static void setup_msrs(struct vcpu_vmx *vmx)
899 int save_nmsrs;
900 unsigned long *msr_bitmap;
902 vmx_load_host_state(vmx);
903 save_nmsrs = 0;
904 #ifdef CONFIG_X86_64
905 if (is_long_mode(&vmx->vcpu)) {
906 int index;
908 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
909 if (index >= 0)
910 move_msr_up(vmx, index, save_nmsrs++);
911 index = __find_msr_index(vmx, MSR_LSTAR);
912 if (index >= 0)
913 move_msr_up(vmx, index, save_nmsrs++);
914 index = __find_msr_index(vmx, MSR_CSTAR);
915 if (index >= 0)
916 move_msr_up(vmx, index, save_nmsrs++);
917 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
918 if (index >= 0)
919 move_msr_up(vmx, index, save_nmsrs++);
921 * MSR_K6_STAR is only needed on long mode guests, and only
922 * if efer.sce is enabled.
924 index = __find_msr_index(vmx, MSR_K6_STAR);
925 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
926 move_msr_up(vmx, index, save_nmsrs++);
928 #endif
929 vmx->save_nmsrs = save_nmsrs;
931 #ifdef CONFIG_X86_64
932 vmx->msr_offset_kernel_gs_base =
933 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
934 #endif
935 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
937 if (cpu_has_vmx_msr_bitmap()) {
938 if (is_long_mode(&vmx->vcpu))
939 msr_bitmap = vmx_msr_bitmap_longmode;
940 else
941 msr_bitmap = vmx_msr_bitmap_legacy;
943 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
948 * reads and returns guest's timestamp counter "register"
949 * guest_tsc = host_tsc + tsc_offset -- 21.3
951 static u64 guest_read_tsc(void)
953 u64 host_tsc, tsc_offset;
955 rdtscll(host_tsc);
956 tsc_offset = vmcs_read64(TSC_OFFSET);
957 return host_tsc + tsc_offset;
961 * writes 'guest_tsc' into guest's timestamp counter "register"
962 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
964 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
966 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
970 * Reads an msr value (of 'msr_index') into 'pdata'.
971 * Returns 0 on success, non-0 otherwise.
972 * Assumes vcpu_load() was already called.
974 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
976 u64 data;
977 struct kvm_msr_entry *msr;
979 if (!pdata) {
980 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
981 return -EINVAL;
984 switch (msr_index) {
985 #ifdef CONFIG_X86_64
986 case MSR_FS_BASE:
987 data = vmcs_readl(GUEST_FS_BASE);
988 break;
989 case MSR_GS_BASE:
990 data = vmcs_readl(GUEST_GS_BASE);
991 break;
992 case MSR_EFER:
993 return kvm_get_msr_common(vcpu, msr_index, pdata);
994 #endif
995 case MSR_IA32_TSC:
996 data = guest_read_tsc();
997 break;
998 case MSR_IA32_SYSENTER_CS:
999 data = vmcs_read32(GUEST_SYSENTER_CS);
1000 break;
1001 case MSR_IA32_SYSENTER_EIP:
1002 data = vmcs_readl(GUEST_SYSENTER_EIP);
1003 break;
1004 case MSR_IA32_SYSENTER_ESP:
1005 data = vmcs_readl(GUEST_SYSENTER_ESP);
1006 break;
1007 default:
1008 vmx_load_host_state(to_vmx(vcpu));
1009 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1010 if (msr) {
1011 data = msr->data;
1012 break;
1014 return kvm_get_msr_common(vcpu, msr_index, pdata);
1017 *pdata = data;
1018 return 0;
1022 * Writes msr value into into the appropriate "register".
1023 * Returns 0 on success, non-0 otherwise.
1024 * Assumes vcpu_load() was already called.
1026 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1028 struct vcpu_vmx *vmx = to_vmx(vcpu);
1029 struct kvm_msr_entry *msr;
1030 u64 host_tsc;
1031 int ret = 0;
1033 switch (msr_index) {
1034 case MSR_EFER:
1035 vmx_load_host_state(vmx);
1036 ret = kvm_set_msr_common(vcpu, msr_index, data);
1037 break;
1038 #ifdef CONFIG_X86_64
1039 case MSR_FS_BASE:
1040 vmcs_writel(GUEST_FS_BASE, data);
1041 break;
1042 case MSR_GS_BASE:
1043 vmcs_writel(GUEST_GS_BASE, data);
1044 break;
1045 #endif
1046 case MSR_IA32_SYSENTER_CS:
1047 vmcs_write32(GUEST_SYSENTER_CS, data);
1048 break;
1049 case MSR_IA32_SYSENTER_EIP:
1050 vmcs_writel(GUEST_SYSENTER_EIP, data);
1051 break;
1052 case MSR_IA32_SYSENTER_ESP:
1053 vmcs_writel(GUEST_SYSENTER_ESP, data);
1054 break;
1055 case MSR_IA32_TSC:
1056 rdtscll(host_tsc);
1057 guest_write_tsc(data, host_tsc);
1058 break;
1059 case MSR_IA32_CR_PAT:
1060 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1061 vmcs_write64(GUEST_IA32_PAT, data);
1062 vcpu->arch.pat = data;
1063 break;
1065 /* Otherwise falls through to kvm_set_msr_common */
1066 default:
1067 vmx_load_host_state(vmx);
1068 msr = find_msr_entry(vmx, msr_index);
1069 if (msr) {
1070 msr->data = data;
1071 break;
1073 ret = kvm_set_msr_common(vcpu, msr_index, data);
1076 return ret;
1079 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1081 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1082 switch (reg) {
1083 case VCPU_REGS_RSP:
1084 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1085 break;
1086 case VCPU_REGS_RIP:
1087 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1088 break;
1089 case VCPU_EXREG_PDPTR:
1090 if (enable_ept)
1091 ept_save_pdptrs(vcpu);
1092 break;
1093 default:
1094 break;
1098 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1100 int old_debug = vcpu->guest_debug;
1101 unsigned long flags;
1103 vcpu->guest_debug = dbg->control;
1104 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1105 vcpu->guest_debug = 0;
1107 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1108 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1109 else
1110 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1112 flags = vmcs_readl(GUEST_RFLAGS);
1113 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1114 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1115 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1116 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1117 vmcs_writel(GUEST_RFLAGS, flags);
1119 update_exception_bitmap(vcpu);
1121 return 0;
1124 static __init int cpu_has_kvm_support(void)
1126 return cpu_has_vmx();
1129 static __init int vmx_disabled_by_bios(void)
1131 u64 msr;
1133 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1134 return (msr & (FEATURE_CONTROL_LOCKED |
1135 FEATURE_CONTROL_VMXON_ENABLED))
1136 == FEATURE_CONTROL_LOCKED;
1137 /* locked but not enabled */
1140 static void hardware_enable(void *garbage)
1142 int cpu = raw_smp_processor_id();
1143 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1144 u64 old;
1146 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1147 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1148 if ((old & (FEATURE_CONTROL_LOCKED |
1149 FEATURE_CONTROL_VMXON_ENABLED))
1150 != (FEATURE_CONTROL_LOCKED |
1151 FEATURE_CONTROL_VMXON_ENABLED))
1152 /* enable and lock */
1153 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1154 FEATURE_CONTROL_LOCKED |
1155 FEATURE_CONTROL_VMXON_ENABLED);
1156 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1157 asm volatile (ASM_VMX_VMXON_RAX
1158 : : "a"(&phys_addr), "m"(phys_addr)
1159 : "memory", "cc");
1162 static void vmclear_local_vcpus(void)
1164 int cpu = raw_smp_processor_id();
1165 struct vcpu_vmx *vmx, *n;
1167 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1168 local_vcpus_link)
1169 __vcpu_clear(vmx);
1173 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1174 * tricks.
1176 static void kvm_cpu_vmxoff(void)
1178 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1179 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1182 static void hardware_disable(void *garbage)
1184 vmclear_local_vcpus();
1185 kvm_cpu_vmxoff();
1188 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1189 u32 msr, u32 *result)
1191 u32 vmx_msr_low, vmx_msr_high;
1192 u32 ctl = ctl_min | ctl_opt;
1194 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1196 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1197 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1199 /* Ensure minimum (required) set of control bits are supported. */
1200 if (ctl_min & ~ctl)
1201 return -EIO;
1203 *result = ctl;
1204 return 0;
1207 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1209 u32 vmx_msr_low, vmx_msr_high;
1210 u32 min, opt, min2, opt2;
1211 u32 _pin_based_exec_control = 0;
1212 u32 _cpu_based_exec_control = 0;
1213 u32 _cpu_based_2nd_exec_control = 0;
1214 u32 _vmexit_control = 0;
1215 u32 _vmentry_control = 0;
1217 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1218 opt = PIN_BASED_VIRTUAL_NMIS;
1219 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1220 &_pin_based_exec_control) < 0)
1221 return -EIO;
1223 min = CPU_BASED_HLT_EXITING |
1224 #ifdef CONFIG_X86_64
1225 CPU_BASED_CR8_LOAD_EXITING |
1226 CPU_BASED_CR8_STORE_EXITING |
1227 #endif
1228 CPU_BASED_CR3_LOAD_EXITING |
1229 CPU_BASED_CR3_STORE_EXITING |
1230 CPU_BASED_USE_IO_BITMAPS |
1231 CPU_BASED_MOV_DR_EXITING |
1232 CPU_BASED_USE_TSC_OFFSETING |
1233 CPU_BASED_INVLPG_EXITING;
1234 opt = CPU_BASED_TPR_SHADOW |
1235 CPU_BASED_USE_MSR_BITMAPS |
1236 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1237 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1238 &_cpu_based_exec_control) < 0)
1239 return -EIO;
1240 #ifdef CONFIG_X86_64
1241 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1242 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1243 ~CPU_BASED_CR8_STORE_EXITING;
1244 #endif
1245 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1246 min2 = 0;
1247 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1248 SECONDARY_EXEC_WBINVD_EXITING |
1249 SECONDARY_EXEC_ENABLE_VPID |
1250 SECONDARY_EXEC_ENABLE_EPT |
1251 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1252 if (adjust_vmx_controls(min2, opt2,
1253 MSR_IA32_VMX_PROCBASED_CTLS2,
1254 &_cpu_based_2nd_exec_control) < 0)
1255 return -EIO;
1257 #ifndef CONFIG_X86_64
1258 if (!(_cpu_based_2nd_exec_control &
1259 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1260 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1261 #endif
1262 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1263 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1264 enabled */
1265 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1266 CPU_BASED_CR3_STORE_EXITING |
1267 CPU_BASED_INVLPG_EXITING);
1268 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1269 &_cpu_based_exec_control) < 0)
1270 return -EIO;
1271 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1272 vmx_capability.ept, vmx_capability.vpid);
1275 min = 0;
1276 #ifdef CONFIG_X86_64
1277 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1278 #endif
1279 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1280 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1281 &_vmexit_control) < 0)
1282 return -EIO;
1284 min = 0;
1285 opt = VM_ENTRY_LOAD_IA32_PAT;
1286 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1287 &_vmentry_control) < 0)
1288 return -EIO;
1290 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1292 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1293 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1294 return -EIO;
1296 #ifdef CONFIG_X86_64
1297 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1298 if (vmx_msr_high & (1u<<16))
1299 return -EIO;
1300 #endif
1302 /* Require Write-Back (WB) memory type for VMCS accesses. */
1303 if (((vmx_msr_high >> 18) & 15) != 6)
1304 return -EIO;
1306 vmcs_conf->size = vmx_msr_high & 0x1fff;
1307 vmcs_conf->order = get_order(vmcs_config.size);
1308 vmcs_conf->revision_id = vmx_msr_low;
1310 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1311 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1312 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1313 vmcs_conf->vmexit_ctrl = _vmexit_control;
1314 vmcs_conf->vmentry_ctrl = _vmentry_control;
1316 return 0;
1319 static struct vmcs *alloc_vmcs_cpu(int cpu)
1321 int node = cpu_to_node(cpu);
1322 struct page *pages;
1323 struct vmcs *vmcs;
1325 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1326 if (!pages)
1327 return NULL;
1328 vmcs = page_address(pages);
1329 memset(vmcs, 0, vmcs_config.size);
1330 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1331 return vmcs;
1334 static struct vmcs *alloc_vmcs(void)
1336 return alloc_vmcs_cpu(raw_smp_processor_id());
1339 static void free_vmcs(struct vmcs *vmcs)
1341 free_pages((unsigned long)vmcs, vmcs_config.order);
1344 static void free_kvm_area(void)
1346 int cpu;
1348 for_each_online_cpu(cpu)
1349 free_vmcs(per_cpu(vmxarea, cpu));
1352 static __init int alloc_kvm_area(void)
1354 int cpu;
1356 for_each_online_cpu(cpu) {
1357 struct vmcs *vmcs;
1359 vmcs = alloc_vmcs_cpu(cpu);
1360 if (!vmcs) {
1361 free_kvm_area();
1362 return -ENOMEM;
1365 per_cpu(vmxarea, cpu) = vmcs;
1367 return 0;
1370 static __init int hardware_setup(void)
1372 if (setup_vmcs_config(&vmcs_config) < 0)
1373 return -EIO;
1375 if (boot_cpu_has(X86_FEATURE_NX))
1376 kvm_enable_efer_bits(EFER_NX);
1378 if (!cpu_has_vmx_vpid())
1379 enable_vpid = 0;
1381 if (!cpu_has_vmx_ept()) {
1382 enable_ept = 0;
1383 enable_unrestricted_guest = 0;
1386 if (!cpu_has_vmx_unrestricted_guest())
1387 enable_unrestricted_guest = 0;
1389 if (!cpu_has_vmx_flexpriority())
1390 flexpriority_enabled = 0;
1392 if (!cpu_has_vmx_tpr_shadow())
1393 kvm_x86_ops->update_cr8_intercept = NULL;
1395 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1396 kvm_disable_largepages();
1398 return alloc_kvm_area();
1401 static __exit void hardware_unsetup(void)
1403 free_kvm_area();
1406 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1408 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1410 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1411 vmcs_write16(sf->selector, save->selector);
1412 vmcs_writel(sf->base, save->base);
1413 vmcs_write32(sf->limit, save->limit);
1414 vmcs_write32(sf->ar_bytes, save->ar);
1415 } else {
1416 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1417 << AR_DPL_SHIFT;
1418 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1422 static void enter_pmode(struct kvm_vcpu *vcpu)
1424 unsigned long flags;
1425 struct vcpu_vmx *vmx = to_vmx(vcpu);
1427 vmx->emulation_required = 1;
1428 vmx->rmode.vm86_active = 0;
1430 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1431 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1432 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1434 flags = vmcs_readl(GUEST_RFLAGS);
1435 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1436 flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1437 vmcs_writel(GUEST_RFLAGS, flags);
1439 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1440 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1442 update_exception_bitmap(vcpu);
1444 if (emulate_invalid_guest_state)
1445 return;
1447 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1448 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1449 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1450 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1452 vmcs_write16(GUEST_SS_SELECTOR, 0);
1453 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1455 vmcs_write16(GUEST_CS_SELECTOR,
1456 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1457 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1460 static gva_t rmode_tss_base(struct kvm *kvm)
1462 if (!kvm->arch.tss_addr) {
1463 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1464 kvm->memslots[0].npages - 3;
1465 return base_gfn << PAGE_SHIFT;
1467 return kvm->arch.tss_addr;
1470 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1472 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1474 save->selector = vmcs_read16(sf->selector);
1475 save->base = vmcs_readl(sf->base);
1476 save->limit = vmcs_read32(sf->limit);
1477 save->ar = vmcs_read32(sf->ar_bytes);
1478 vmcs_write16(sf->selector, save->base >> 4);
1479 vmcs_write32(sf->base, save->base & 0xfffff);
1480 vmcs_write32(sf->limit, 0xffff);
1481 vmcs_write32(sf->ar_bytes, 0xf3);
1484 static void enter_rmode(struct kvm_vcpu *vcpu)
1486 unsigned long flags;
1487 struct vcpu_vmx *vmx = to_vmx(vcpu);
1489 if (enable_unrestricted_guest)
1490 return;
1492 vmx->emulation_required = 1;
1493 vmx->rmode.vm86_active = 1;
1495 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1496 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1498 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1499 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1501 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1502 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1504 flags = vmcs_readl(GUEST_RFLAGS);
1505 vmx->rmode.save_iopl
1506 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1508 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1510 vmcs_writel(GUEST_RFLAGS, flags);
1511 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1512 update_exception_bitmap(vcpu);
1514 if (emulate_invalid_guest_state)
1515 goto continue_rmode;
1517 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1518 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1519 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1521 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1522 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1523 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1524 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1525 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1527 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1528 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1529 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1530 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1532 continue_rmode:
1533 kvm_mmu_reset_context(vcpu);
1534 init_rmode(vcpu->kvm);
1537 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1539 struct vcpu_vmx *vmx = to_vmx(vcpu);
1540 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1542 vcpu->arch.shadow_efer = efer;
1543 if (!msr)
1544 return;
1545 if (efer & EFER_LMA) {
1546 vmcs_write32(VM_ENTRY_CONTROLS,
1547 vmcs_read32(VM_ENTRY_CONTROLS) |
1548 VM_ENTRY_IA32E_MODE);
1549 msr->data = efer;
1550 } else {
1551 vmcs_write32(VM_ENTRY_CONTROLS,
1552 vmcs_read32(VM_ENTRY_CONTROLS) &
1553 ~VM_ENTRY_IA32E_MODE);
1555 msr->data = efer & ~EFER_LME;
1557 setup_msrs(vmx);
1560 #ifdef CONFIG_X86_64
1562 static void enter_lmode(struct kvm_vcpu *vcpu)
1564 u32 guest_tr_ar;
1566 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1567 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1568 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1569 __func__);
1570 vmcs_write32(GUEST_TR_AR_BYTES,
1571 (guest_tr_ar & ~AR_TYPE_MASK)
1572 | AR_TYPE_BUSY_64_TSS);
1574 vcpu->arch.shadow_efer |= EFER_LMA;
1575 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1578 static void exit_lmode(struct kvm_vcpu *vcpu)
1580 vcpu->arch.shadow_efer &= ~EFER_LMA;
1582 vmcs_write32(VM_ENTRY_CONTROLS,
1583 vmcs_read32(VM_ENTRY_CONTROLS)
1584 & ~VM_ENTRY_IA32E_MODE);
1587 #endif
1589 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1591 vpid_sync_vcpu_all(to_vmx(vcpu));
1592 if (enable_ept)
1593 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1596 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1598 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1599 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1602 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1604 if (!test_bit(VCPU_EXREG_PDPTR,
1605 (unsigned long *)&vcpu->arch.regs_dirty))
1606 return;
1608 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1609 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1610 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1611 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1612 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1616 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1618 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1619 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1620 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1621 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1622 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1625 __set_bit(VCPU_EXREG_PDPTR,
1626 (unsigned long *)&vcpu->arch.regs_avail);
1627 __set_bit(VCPU_EXREG_PDPTR,
1628 (unsigned long *)&vcpu->arch.regs_dirty);
1631 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1633 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1634 unsigned long cr0,
1635 struct kvm_vcpu *vcpu)
1637 if (!(cr0 & X86_CR0_PG)) {
1638 /* From paging/starting to nonpaging */
1639 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1640 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1641 (CPU_BASED_CR3_LOAD_EXITING |
1642 CPU_BASED_CR3_STORE_EXITING));
1643 vcpu->arch.cr0 = cr0;
1644 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1645 *hw_cr0 &= ~X86_CR0_WP;
1646 } else if (!is_paging(vcpu)) {
1647 /* From nonpaging to paging */
1648 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1649 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1650 ~(CPU_BASED_CR3_LOAD_EXITING |
1651 CPU_BASED_CR3_STORE_EXITING));
1652 vcpu->arch.cr0 = cr0;
1653 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1654 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1655 *hw_cr0 &= ~X86_CR0_WP;
1659 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1660 struct kvm_vcpu *vcpu)
1662 if (!is_paging(vcpu)) {
1663 *hw_cr4 &= ~X86_CR4_PAE;
1664 *hw_cr4 |= X86_CR4_PSE;
1665 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1666 *hw_cr4 &= ~X86_CR4_PAE;
1669 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1671 struct vcpu_vmx *vmx = to_vmx(vcpu);
1672 unsigned long hw_cr0;
1674 if (enable_unrestricted_guest)
1675 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1676 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1677 else
1678 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1680 vmx_fpu_deactivate(vcpu);
1682 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1683 enter_pmode(vcpu);
1685 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1686 enter_rmode(vcpu);
1688 #ifdef CONFIG_X86_64
1689 if (vcpu->arch.shadow_efer & EFER_LME) {
1690 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1691 enter_lmode(vcpu);
1692 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1693 exit_lmode(vcpu);
1695 #endif
1697 if (enable_ept)
1698 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1700 vmcs_writel(CR0_READ_SHADOW, cr0);
1701 vmcs_writel(GUEST_CR0, hw_cr0);
1702 vcpu->arch.cr0 = cr0;
1704 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1705 vmx_fpu_activate(vcpu);
1708 static u64 construct_eptp(unsigned long root_hpa)
1710 u64 eptp;
1712 /* TODO write the value reading from MSR */
1713 eptp = VMX_EPT_DEFAULT_MT |
1714 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1715 eptp |= (root_hpa & PAGE_MASK);
1717 return eptp;
1720 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1722 unsigned long guest_cr3;
1723 u64 eptp;
1725 guest_cr3 = cr3;
1726 if (enable_ept) {
1727 eptp = construct_eptp(cr3);
1728 vmcs_write64(EPT_POINTER, eptp);
1729 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1730 vcpu->kvm->arch.ept_identity_map_addr;
1733 vmx_flush_tlb(vcpu);
1734 vmcs_writel(GUEST_CR3, guest_cr3);
1735 if (vcpu->arch.cr0 & X86_CR0_PE)
1736 vmx_fpu_deactivate(vcpu);
1739 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1741 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1742 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1744 vcpu->arch.cr4 = cr4;
1745 if (enable_ept)
1746 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1748 vmcs_writel(CR4_READ_SHADOW, cr4);
1749 vmcs_writel(GUEST_CR4, hw_cr4);
1752 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1754 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1756 return vmcs_readl(sf->base);
1759 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1760 struct kvm_segment *var, int seg)
1762 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1763 u32 ar;
1765 var->base = vmcs_readl(sf->base);
1766 var->limit = vmcs_read32(sf->limit);
1767 var->selector = vmcs_read16(sf->selector);
1768 ar = vmcs_read32(sf->ar_bytes);
1769 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1770 ar = 0;
1771 var->type = ar & 15;
1772 var->s = (ar >> 4) & 1;
1773 var->dpl = (ar >> 5) & 3;
1774 var->present = (ar >> 7) & 1;
1775 var->avl = (ar >> 12) & 1;
1776 var->l = (ar >> 13) & 1;
1777 var->db = (ar >> 14) & 1;
1778 var->g = (ar >> 15) & 1;
1779 var->unusable = (ar >> 16) & 1;
1782 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1784 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1785 return 0;
1787 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1788 return 3;
1790 return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1793 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1795 u32 ar;
1797 if (var->unusable)
1798 ar = 1 << 16;
1799 else {
1800 ar = var->type & 15;
1801 ar |= (var->s & 1) << 4;
1802 ar |= (var->dpl & 3) << 5;
1803 ar |= (var->present & 1) << 7;
1804 ar |= (var->avl & 1) << 12;
1805 ar |= (var->l & 1) << 13;
1806 ar |= (var->db & 1) << 14;
1807 ar |= (var->g & 1) << 15;
1809 if (ar == 0) /* a 0 value means unusable */
1810 ar = AR_UNUSABLE_MASK;
1812 return ar;
1815 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1816 struct kvm_segment *var, int seg)
1818 struct vcpu_vmx *vmx = to_vmx(vcpu);
1819 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1820 u32 ar;
1822 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1823 vmx->rmode.tr.selector = var->selector;
1824 vmx->rmode.tr.base = var->base;
1825 vmx->rmode.tr.limit = var->limit;
1826 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1827 return;
1829 vmcs_writel(sf->base, var->base);
1830 vmcs_write32(sf->limit, var->limit);
1831 vmcs_write16(sf->selector, var->selector);
1832 if (vmx->rmode.vm86_active && var->s) {
1834 * Hack real-mode segments into vm86 compatibility.
1836 if (var->base == 0xffff0000 && var->selector == 0xf000)
1837 vmcs_writel(sf->base, 0xf0000);
1838 ar = 0xf3;
1839 } else
1840 ar = vmx_segment_access_rights(var);
1843 * Fix the "Accessed" bit in AR field of segment registers for older
1844 * qemu binaries.
1845 * IA32 arch specifies that at the time of processor reset the
1846 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1847 * is setting it to 0 in the usedland code. This causes invalid guest
1848 * state vmexit when "unrestricted guest" mode is turned on.
1849 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1850 * tree. Newer qemu binaries with that qemu fix would not need this
1851 * kvm hack.
1853 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1854 ar |= 0x1; /* Accessed */
1856 vmcs_write32(sf->ar_bytes, ar);
1859 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1861 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1863 *db = (ar >> 14) & 1;
1864 *l = (ar >> 13) & 1;
1867 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1869 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1870 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1873 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1875 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1876 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1879 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1881 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1882 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1885 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1887 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1888 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1891 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1893 struct kvm_segment var;
1894 u32 ar;
1896 vmx_get_segment(vcpu, &var, seg);
1897 ar = vmx_segment_access_rights(&var);
1899 if (var.base != (var.selector << 4))
1900 return false;
1901 if (var.limit != 0xffff)
1902 return false;
1903 if (ar != 0xf3)
1904 return false;
1906 return true;
1909 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1911 struct kvm_segment cs;
1912 unsigned int cs_rpl;
1914 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1915 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1917 if (cs.unusable)
1918 return false;
1919 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1920 return false;
1921 if (!cs.s)
1922 return false;
1923 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1924 if (cs.dpl > cs_rpl)
1925 return false;
1926 } else {
1927 if (cs.dpl != cs_rpl)
1928 return false;
1930 if (!cs.present)
1931 return false;
1933 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1934 return true;
1937 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1939 struct kvm_segment ss;
1940 unsigned int ss_rpl;
1942 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1943 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1945 if (ss.unusable)
1946 return true;
1947 if (ss.type != 3 && ss.type != 7)
1948 return false;
1949 if (!ss.s)
1950 return false;
1951 if (ss.dpl != ss_rpl) /* DPL != RPL */
1952 return false;
1953 if (!ss.present)
1954 return false;
1956 return true;
1959 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1961 struct kvm_segment var;
1962 unsigned int rpl;
1964 vmx_get_segment(vcpu, &var, seg);
1965 rpl = var.selector & SELECTOR_RPL_MASK;
1967 if (var.unusable)
1968 return true;
1969 if (!var.s)
1970 return false;
1971 if (!var.present)
1972 return false;
1973 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1974 if (var.dpl < rpl) /* DPL < RPL */
1975 return false;
1978 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1979 * rights flags
1981 return true;
1984 static bool tr_valid(struct kvm_vcpu *vcpu)
1986 struct kvm_segment tr;
1988 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1990 if (tr.unusable)
1991 return false;
1992 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1993 return false;
1994 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1995 return false;
1996 if (!tr.present)
1997 return false;
1999 return true;
2002 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2004 struct kvm_segment ldtr;
2006 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2008 if (ldtr.unusable)
2009 return true;
2010 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2011 return false;
2012 if (ldtr.type != 2)
2013 return false;
2014 if (!ldtr.present)
2015 return false;
2017 return true;
2020 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2022 struct kvm_segment cs, ss;
2024 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2025 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2027 return ((cs.selector & SELECTOR_RPL_MASK) ==
2028 (ss.selector & SELECTOR_RPL_MASK));
2032 * Check if guest state is valid. Returns true if valid, false if
2033 * not.
2034 * We assume that registers are always usable
2036 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2038 /* real mode guest state checks */
2039 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2040 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2041 return false;
2042 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2043 return false;
2044 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2045 return false;
2046 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2047 return false;
2048 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2049 return false;
2050 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2051 return false;
2052 } else {
2053 /* protected mode guest state checks */
2054 if (!cs_ss_rpl_check(vcpu))
2055 return false;
2056 if (!code_segment_valid(vcpu))
2057 return false;
2058 if (!stack_segment_valid(vcpu))
2059 return false;
2060 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2061 return false;
2062 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2063 return false;
2064 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2065 return false;
2066 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2067 return false;
2068 if (!tr_valid(vcpu))
2069 return false;
2070 if (!ldtr_valid(vcpu))
2071 return false;
2073 /* TODO:
2074 * - Add checks on RIP
2075 * - Add checks on RFLAGS
2078 return true;
2081 static int init_rmode_tss(struct kvm *kvm)
2083 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2084 u16 data = 0;
2085 int ret = 0;
2086 int r;
2088 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2089 if (r < 0)
2090 goto out;
2091 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2092 r = kvm_write_guest_page(kvm, fn++, &data,
2093 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2094 if (r < 0)
2095 goto out;
2096 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2097 if (r < 0)
2098 goto out;
2099 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2100 if (r < 0)
2101 goto out;
2102 data = ~0;
2103 r = kvm_write_guest_page(kvm, fn, &data,
2104 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2105 sizeof(u8));
2106 if (r < 0)
2107 goto out;
2109 ret = 1;
2110 out:
2111 return ret;
2114 static int init_rmode_identity_map(struct kvm *kvm)
2116 int i, r, ret;
2117 pfn_t identity_map_pfn;
2118 u32 tmp;
2120 if (!enable_ept)
2121 return 1;
2122 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2123 printk(KERN_ERR "EPT: identity-mapping pagetable "
2124 "haven't been allocated!\n");
2125 return 0;
2127 if (likely(kvm->arch.ept_identity_pagetable_done))
2128 return 1;
2129 ret = 0;
2130 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2131 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2132 if (r < 0)
2133 goto out;
2134 /* Set up identity-mapping pagetable for EPT in real mode */
2135 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2136 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2137 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2138 r = kvm_write_guest_page(kvm, identity_map_pfn,
2139 &tmp, i * sizeof(tmp), sizeof(tmp));
2140 if (r < 0)
2141 goto out;
2143 kvm->arch.ept_identity_pagetable_done = true;
2144 ret = 1;
2145 out:
2146 return ret;
2149 static void seg_setup(int seg)
2151 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2152 unsigned int ar;
2154 vmcs_write16(sf->selector, 0);
2155 vmcs_writel(sf->base, 0);
2156 vmcs_write32(sf->limit, 0xffff);
2157 if (enable_unrestricted_guest) {
2158 ar = 0x93;
2159 if (seg == VCPU_SREG_CS)
2160 ar |= 0x08; /* code segment */
2161 } else
2162 ar = 0xf3;
2164 vmcs_write32(sf->ar_bytes, ar);
2167 static int alloc_apic_access_page(struct kvm *kvm)
2169 struct kvm_userspace_memory_region kvm_userspace_mem;
2170 int r = 0;
2172 down_write(&kvm->slots_lock);
2173 if (kvm->arch.apic_access_page)
2174 goto out;
2175 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2176 kvm_userspace_mem.flags = 0;
2177 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2178 kvm_userspace_mem.memory_size = PAGE_SIZE;
2179 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2180 if (r)
2181 goto out;
2183 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2184 out:
2185 up_write(&kvm->slots_lock);
2186 return r;
2189 static int alloc_identity_pagetable(struct kvm *kvm)
2191 struct kvm_userspace_memory_region kvm_userspace_mem;
2192 int r = 0;
2194 down_write(&kvm->slots_lock);
2195 if (kvm->arch.ept_identity_pagetable)
2196 goto out;
2197 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2198 kvm_userspace_mem.flags = 0;
2199 kvm_userspace_mem.guest_phys_addr =
2200 kvm->arch.ept_identity_map_addr;
2201 kvm_userspace_mem.memory_size = PAGE_SIZE;
2202 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2203 if (r)
2204 goto out;
2206 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2207 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2208 out:
2209 up_write(&kvm->slots_lock);
2210 return r;
2213 static void allocate_vpid(struct vcpu_vmx *vmx)
2215 int vpid;
2217 vmx->vpid = 0;
2218 if (!enable_vpid)
2219 return;
2220 spin_lock(&vmx_vpid_lock);
2221 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2222 if (vpid < VMX_NR_VPIDS) {
2223 vmx->vpid = vpid;
2224 __set_bit(vpid, vmx_vpid_bitmap);
2226 spin_unlock(&vmx_vpid_lock);
2229 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2231 int f = sizeof(unsigned long);
2233 if (!cpu_has_vmx_msr_bitmap())
2234 return;
2237 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2238 * have the write-low and read-high bitmap offsets the wrong way round.
2239 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2241 if (msr <= 0x1fff) {
2242 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2243 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2244 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2245 msr &= 0x1fff;
2246 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2247 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2251 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2253 if (!longmode_only)
2254 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2255 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2259 * Sets up the vmcs for emulated real mode.
2261 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2263 u32 host_sysenter_cs, msr_low, msr_high;
2264 u32 junk;
2265 u64 host_pat, tsc_this, tsc_base;
2266 unsigned long a;
2267 struct descriptor_table dt;
2268 int i;
2269 unsigned long kvm_vmx_return;
2270 u32 exec_control;
2272 /* I/O */
2273 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2274 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2276 if (cpu_has_vmx_msr_bitmap())
2277 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2279 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2281 /* Control */
2282 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2283 vmcs_config.pin_based_exec_ctrl);
2285 exec_control = vmcs_config.cpu_based_exec_ctrl;
2286 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2287 exec_control &= ~CPU_BASED_TPR_SHADOW;
2288 #ifdef CONFIG_X86_64
2289 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2290 CPU_BASED_CR8_LOAD_EXITING;
2291 #endif
2293 if (!enable_ept)
2294 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2295 CPU_BASED_CR3_LOAD_EXITING |
2296 CPU_BASED_INVLPG_EXITING;
2297 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2299 if (cpu_has_secondary_exec_ctrls()) {
2300 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2301 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2302 exec_control &=
2303 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2304 if (vmx->vpid == 0)
2305 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2306 if (!enable_ept)
2307 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2308 if (!enable_unrestricted_guest)
2309 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2310 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2313 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2314 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2315 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2317 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2318 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2319 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2321 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2322 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2323 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2324 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2325 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2326 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2327 #ifdef CONFIG_X86_64
2328 rdmsrl(MSR_FS_BASE, a);
2329 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2330 rdmsrl(MSR_GS_BASE, a);
2331 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2332 #else
2333 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2334 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2335 #endif
2337 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2339 kvm_get_idt(&dt);
2340 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2342 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2343 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2344 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2345 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2346 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2348 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2349 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2350 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2351 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2352 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2353 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2355 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2356 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2357 host_pat = msr_low | ((u64) msr_high << 32);
2358 vmcs_write64(HOST_IA32_PAT, host_pat);
2360 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2361 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2362 host_pat = msr_low | ((u64) msr_high << 32);
2363 /* Write the default value follow host pat */
2364 vmcs_write64(GUEST_IA32_PAT, host_pat);
2365 /* Keep arch.pat sync with GUEST_IA32_PAT */
2366 vmx->vcpu.arch.pat = host_pat;
2369 for (i = 0; i < NR_VMX_MSR; ++i) {
2370 u32 index = vmx_msr_index[i];
2371 u32 data_low, data_high;
2372 u64 data;
2373 int j = vmx->nmsrs;
2375 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2376 continue;
2377 if (wrmsr_safe(index, data_low, data_high) < 0)
2378 continue;
2379 data = data_low | ((u64)data_high << 32);
2380 vmx->host_msrs[j].index = index;
2381 vmx->host_msrs[j].reserved = 0;
2382 vmx->host_msrs[j].data = data;
2383 vmx->guest_msrs[j] = vmx->host_msrs[j];
2384 ++vmx->nmsrs;
2387 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2389 /* 22.2.1, 20.8.1 */
2390 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2392 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2393 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2395 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2396 rdtscll(tsc_this);
2397 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2398 tsc_base = tsc_this;
2400 guest_write_tsc(0, tsc_base);
2402 return 0;
2405 static int init_rmode(struct kvm *kvm)
2407 if (!init_rmode_tss(kvm))
2408 return 0;
2409 if (!init_rmode_identity_map(kvm))
2410 return 0;
2411 return 1;
2414 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2416 struct vcpu_vmx *vmx = to_vmx(vcpu);
2417 u64 msr;
2418 int ret;
2420 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2421 down_read(&vcpu->kvm->slots_lock);
2422 if (!init_rmode(vmx->vcpu.kvm)) {
2423 ret = -ENOMEM;
2424 goto out;
2427 vmx->rmode.vm86_active = 0;
2429 vmx->soft_vnmi_blocked = 0;
2431 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2432 kvm_set_cr8(&vmx->vcpu, 0);
2433 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2434 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2435 msr |= MSR_IA32_APICBASE_BSP;
2436 kvm_set_apic_base(&vmx->vcpu, msr);
2438 fx_init(&vmx->vcpu);
2440 seg_setup(VCPU_SREG_CS);
2442 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2443 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2445 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2446 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2447 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2448 } else {
2449 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2450 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2453 seg_setup(VCPU_SREG_DS);
2454 seg_setup(VCPU_SREG_ES);
2455 seg_setup(VCPU_SREG_FS);
2456 seg_setup(VCPU_SREG_GS);
2457 seg_setup(VCPU_SREG_SS);
2459 vmcs_write16(GUEST_TR_SELECTOR, 0);
2460 vmcs_writel(GUEST_TR_BASE, 0);
2461 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2462 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2464 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2465 vmcs_writel(GUEST_LDTR_BASE, 0);
2466 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2467 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2469 vmcs_write32(GUEST_SYSENTER_CS, 0);
2470 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2471 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2473 vmcs_writel(GUEST_RFLAGS, 0x02);
2474 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2475 kvm_rip_write(vcpu, 0xfff0);
2476 else
2477 kvm_rip_write(vcpu, 0);
2478 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2480 vmcs_writel(GUEST_DR7, 0x400);
2482 vmcs_writel(GUEST_GDTR_BASE, 0);
2483 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2485 vmcs_writel(GUEST_IDTR_BASE, 0);
2486 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2488 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2489 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2490 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2492 /* Special registers */
2493 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2495 setup_msrs(vmx);
2497 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2499 if (cpu_has_vmx_tpr_shadow()) {
2500 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2501 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2502 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2503 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2504 vmcs_write32(TPR_THRESHOLD, 0);
2507 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2508 vmcs_write64(APIC_ACCESS_ADDR,
2509 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2511 if (vmx->vpid != 0)
2512 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2514 vmx->vcpu.arch.cr0 = 0x60000010;
2515 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2516 vmx_set_cr4(&vmx->vcpu, 0);
2517 vmx_set_efer(&vmx->vcpu, 0);
2518 vmx_fpu_activate(&vmx->vcpu);
2519 update_exception_bitmap(&vmx->vcpu);
2521 vpid_sync_vcpu_all(vmx);
2523 ret = 0;
2525 /* HACK: Don't enable emulation on guest boot/reset */
2526 vmx->emulation_required = 0;
2528 out:
2529 up_read(&vcpu->kvm->slots_lock);
2530 return ret;
2533 static void enable_irq_window(struct kvm_vcpu *vcpu)
2535 u32 cpu_based_vm_exec_control;
2537 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2538 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2539 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2542 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2544 u32 cpu_based_vm_exec_control;
2546 if (!cpu_has_virtual_nmis()) {
2547 enable_irq_window(vcpu);
2548 return;
2551 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2552 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2553 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2556 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2558 struct vcpu_vmx *vmx = to_vmx(vcpu);
2559 uint32_t intr;
2560 int irq = vcpu->arch.interrupt.nr;
2562 trace_kvm_inj_virq(irq);
2564 ++vcpu->stat.irq_injections;
2565 if (vmx->rmode.vm86_active) {
2566 vmx->rmode.irq.pending = true;
2567 vmx->rmode.irq.vector = irq;
2568 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2569 if (vcpu->arch.interrupt.soft)
2570 vmx->rmode.irq.rip +=
2571 vmx->vcpu.arch.event_exit_inst_len;
2572 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2573 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2574 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2575 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2576 return;
2578 intr = irq | INTR_INFO_VALID_MASK;
2579 if (vcpu->arch.interrupt.soft) {
2580 intr |= INTR_TYPE_SOFT_INTR;
2581 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2582 vmx->vcpu.arch.event_exit_inst_len);
2583 } else
2584 intr |= INTR_TYPE_EXT_INTR;
2585 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2588 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2590 struct vcpu_vmx *vmx = to_vmx(vcpu);
2592 if (!cpu_has_virtual_nmis()) {
2594 * Tracking the NMI-blocked state in software is built upon
2595 * finding the next open IRQ window. This, in turn, depends on
2596 * well-behaving guests: They have to keep IRQs disabled at
2597 * least as long as the NMI handler runs. Otherwise we may
2598 * cause NMI nesting, maybe breaking the guest. But as this is
2599 * highly unlikely, we can live with the residual risk.
2601 vmx->soft_vnmi_blocked = 1;
2602 vmx->vnmi_blocked_time = 0;
2605 ++vcpu->stat.nmi_injections;
2606 if (vmx->rmode.vm86_active) {
2607 vmx->rmode.irq.pending = true;
2608 vmx->rmode.irq.vector = NMI_VECTOR;
2609 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2610 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2611 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2612 INTR_INFO_VALID_MASK);
2613 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2614 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2615 return;
2617 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2618 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2621 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2623 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2624 return 0;
2626 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2627 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2628 GUEST_INTR_STATE_NMI));
2631 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2633 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2634 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2635 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2638 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2640 int ret;
2641 struct kvm_userspace_memory_region tss_mem = {
2642 .slot = TSS_PRIVATE_MEMSLOT,
2643 .guest_phys_addr = addr,
2644 .memory_size = PAGE_SIZE * 3,
2645 .flags = 0,
2648 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2649 if (ret)
2650 return ret;
2651 kvm->arch.tss_addr = addr;
2652 return 0;
2655 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2656 int vec, u32 err_code)
2659 * Instruction with address size override prefix opcode 0x67
2660 * Cause the #SS fault with 0 error code in VM86 mode.
2662 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2663 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2664 return 1;
2666 * Forward all other exceptions that are valid in real mode.
2667 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2668 * the required debugging infrastructure rework.
2670 switch (vec) {
2671 case DB_VECTOR:
2672 if (vcpu->guest_debug &
2673 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2674 return 0;
2675 kvm_queue_exception(vcpu, vec);
2676 return 1;
2677 case BP_VECTOR:
2678 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2679 return 0;
2680 /* fall through */
2681 case DE_VECTOR:
2682 case OF_VECTOR:
2683 case BR_VECTOR:
2684 case UD_VECTOR:
2685 case DF_VECTOR:
2686 case SS_VECTOR:
2687 case GP_VECTOR:
2688 case MF_VECTOR:
2689 kvm_queue_exception(vcpu, vec);
2690 return 1;
2692 return 0;
2696 * Trigger machine check on the host. We assume all the MSRs are already set up
2697 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2698 * We pass a fake environment to the machine check handler because we want
2699 * the guest to be always treated like user space, no matter what context
2700 * it used internally.
2702 static void kvm_machine_check(void)
2704 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2705 struct pt_regs regs = {
2706 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2707 .flags = X86_EFLAGS_IF,
2710 do_machine_check(&regs, 0);
2711 #endif
2714 static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2716 /* already handled by vcpu_run */
2717 return 1;
2720 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2722 struct vcpu_vmx *vmx = to_vmx(vcpu);
2723 u32 intr_info, ex_no, error_code;
2724 unsigned long cr2, rip, dr6;
2725 u32 vect_info;
2726 enum emulation_result er;
2728 vect_info = vmx->idt_vectoring_info;
2729 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2731 if (is_machine_check(intr_info))
2732 return handle_machine_check(vcpu, kvm_run);
2734 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2735 !is_page_fault(intr_info))
2736 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2737 "intr info 0x%x\n", __func__, vect_info, intr_info);
2739 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2740 return 1; /* already handled by vmx_vcpu_run() */
2742 if (is_no_device(intr_info)) {
2743 vmx_fpu_activate(vcpu);
2744 return 1;
2747 if (is_invalid_opcode(intr_info)) {
2748 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2749 if (er != EMULATE_DONE)
2750 kvm_queue_exception(vcpu, UD_VECTOR);
2751 return 1;
2754 error_code = 0;
2755 rip = kvm_rip_read(vcpu);
2756 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2757 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2758 if (is_page_fault(intr_info)) {
2759 /* EPT won't cause page fault directly */
2760 if (enable_ept)
2761 BUG();
2762 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2763 trace_kvm_page_fault(cr2, error_code);
2765 if (kvm_event_needs_reinjection(vcpu))
2766 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2767 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2770 if (vmx->rmode.vm86_active &&
2771 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2772 error_code)) {
2773 if (vcpu->arch.halt_request) {
2774 vcpu->arch.halt_request = 0;
2775 return kvm_emulate_halt(vcpu);
2777 return 1;
2780 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2781 switch (ex_no) {
2782 case DB_VECTOR:
2783 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2784 if (!(vcpu->guest_debug &
2785 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2786 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2787 kvm_queue_exception(vcpu, DB_VECTOR);
2788 return 1;
2790 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2791 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2792 /* fall through */
2793 case BP_VECTOR:
2794 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2795 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2796 kvm_run->debug.arch.exception = ex_no;
2797 break;
2798 default:
2799 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2800 kvm_run->ex.exception = ex_no;
2801 kvm_run->ex.error_code = error_code;
2802 break;
2804 return 0;
2807 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2808 struct kvm_run *kvm_run)
2810 ++vcpu->stat.irq_exits;
2811 return 1;
2814 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2816 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2817 return 0;
2820 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2822 unsigned long exit_qualification;
2823 int size, in, string;
2824 unsigned port;
2826 ++vcpu->stat.io_exits;
2827 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2828 string = (exit_qualification & 16) != 0;
2830 if (string) {
2831 if (emulate_instruction(vcpu,
2832 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2833 return 0;
2834 return 1;
2837 size = (exit_qualification & 7) + 1;
2838 in = (exit_qualification & 8) != 0;
2839 port = exit_qualification >> 16;
2841 skip_emulated_instruction(vcpu);
2842 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2845 static void
2846 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2849 * Patch in the VMCALL instruction:
2851 hypercall[0] = 0x0f;
2852 hypercall[1] = 0x01;
2853 hypercall[2] = 0xc1;
2856 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2858 unsigned long exit_qualification, val;
2859 int cr;
2860 int reg;
2862 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2863 cr = exit_qualification & 15;
2864 reg = (exit_qualification >> 8) & 15;
2865 switch ((exit_qualification >> 4) & 3) {
2866 case 0: /* mov to cr */
2867 val = kvm_register_read(vcpu, reg);
2868 trace_kvm_cr_write(cr, val);
2869 switch (cr) {
2870 case 0:
2871 kvm_set_cr0(vcpu, val);
2872 skip_emulated_instruction(vcpu);
2873 return 1;
2874 case 3:
2875 kvm_set_cr3(vcpu, val);
2876 skip_emulated_instruction(vcpu);
2877 return 1;
2878 case 4:
2879 kvm_set_cr4(vcpu, val);
2880 skip_emulated_instruction(vcpu);
2881 return 1;
2882 case 8: {
2883 u8 cr8_prev = kvm_get_cr8(vcpu);
2884 u8 cr8 = kvm_register_read(vcpu, reg);
2885 kvm_set_cr8(vcpu, cr8);
2886 skip_emulated_instruction(vcpu);
2887 if (irqchip_in_kernel(vcpu->kvm))
2888 return 1;
2889 if (cr8_prev <= cr8)
2890 return 1;
2891 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2892 return 0;
2895 break;
2896 case 2: /* clts */
2897 vmx_fpu_deactivate(vcpu);
2898 vcpu->arch.cr0 &= ~X86_CR0_TS;
2899 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2900 vmx_fpu_activate(vcpu);
2901 skip_emulated_instruction(vcpu);
2902 return 1;
2903 case 1: /*mov from cr*/
2904 switch (cr) {
2905 case 3:
2906 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2907 trace_kvm_cr_read(cr, vcpu->arch.cr3);
2908 skip_emulated_instruction(vcpu);
2909 return 1;
2910 case 8:
2911 val = kvm_get_cr8(vcpu);
2912 kvm_register_write(vcpu, reg, val);
2913 trace_kvm_cr_read(cr, val);
2914 skip_emulated_instruction(vcpu);
2915 return 1;
2917 break;
2918 case 3: /* lmsw */
2919 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2921 skip_emulated_instruction(vcpu);
2922 return 1;
2923 default:
2924 break;
2926 kvm_run->exit_reason = 0;
2927 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2928 (int)(exit_qualification >> 4) & 3, cr);
2929 return 0;
2932 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2934 unsigned long exit_qualification;
2935 unsigned long val;
2936 int dr, reg;
2938 dr = vmcs_readl(GUEST_DR7);
2939 if (dr & DR7_GD) {
2941 * As the vm-exit takes precedence over the debug trap, we
2942 * need to emulate the latter, either for the host or the
2943 * guest debugging itself.
2945 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2946 kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2947 kvm_run->debug.arch.dr7 = dr;
2948 kvm_run->debug.arch.pc =
2949 vmcs_readl(GUEST_CS_BASE) +
2950 vmcs_readl(GUEST_RIP);
2951 kvm_run->debug.arch.exception = DB_VECTOR;
2952 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2953 return 0;
2954 } else {
2955 vcpu->arch.dr7 &= ~DR7_GD;
2956 vcpu->arch.dr6 |= DR6_BD;
2957 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2958 kvm_queue_exception(vcpu, DB_VECTOR);
2959 return 1;
2963 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2964 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2965 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2966 if (exit_qualification & TYPE_MOV_FROM_DR) {
2967 switch (dr) {
2968 case 0 ... 3:
2969 val = vcpu->arch.db[dr];
2970 break;
2971 case 6:
2972 val = vcpu->arch.dr6;
2973 break;
2974 case 7:
2975 val = vcpu->arch.dr7;
2976 break;
2977 default:
2978 val = 0;
2980 kvm_register_write(vcpu, reg, val);
2981 } else {
2982 val = vcpu->arch.regs[reg];
2983 switch (dr) {
2984 case 0 ... 3:
2985 vcpu->arch.db[dr] = val;
2986 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2987 vcpu->arch.eff_db[dr] = val;
2988 break;
2989 case 4 ... 5:
2990 if (vcpu->arch.cr4 & X86_CR4_DE)
2991 kvm_queue_exception(vcpu, UD_VECTOR);
2992 break;
2993 case 6:
2994 if (val & 0xffffffff00000000ULL) {
2995 kvm_queue_exception(vcpu, GP_VECTOR);
2996 break;
2998 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2999 break;
3000 case 7:
3001 if (val & 0xffffffff00000000ULL) {
3002 kvm_queue_exception(vcpu, GP_VECTOR);
3003 break;
3005 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3006 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3007 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3008 vcpu->arch.switch_db_regs =
3009 (val & DR7_BP_EN_MASK);
3011 break;
3014 skip_emulated_instruction(vcpu);
3015 return 1;
3018 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3020 kvm_emulate_cpuid(vcpu);
3021 return 1;
3024 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3026 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3027 u64 data;
3029 if (vmx_get_msr(vcpu, ecx, &data)) {
3030 kvm_inject_gp(vcpu, 0);
3031 return 1;
3034 trace_kvm_msr_read(ecx, data);
3036 /* FIXME: handling of bits 32:63 of rax, rdx */
3037 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3038 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3039 skip_emulated_instruction(vcpu);
3040 return 1;
3043 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3045 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3046 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3047 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3049 trace_kvm_msr_write(ecx, data);
3051 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3052 kvm_inject_gp(vcpu, 0);
3053 return 1;
3056 skip_emulated_instruction(vcpu);
3057 return 1;
3060 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
3061 struct kvm_run *kvm_run)
3063 return 1;
3066 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
3067 struct kvm_run *kvm_run)
3069 u32 cpu_based_vm_exec_control;
3071 /* clear pending irq */
3072 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3073 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3074 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3076 ++vcpu->stat.irq_window_exits;
3079 * If the user space waits to inject interrupts, exit as soon as
3080 * possible
3082 if (!irqchip_in_kernel(vcpu->kvm) &&
3083 kvm_run->request_interrupt_window &&
3084 !kvm_cpu_has_interrupt(vcpu)) {
3085 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3086 return 0;
3088 return 1;
3091 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3093 skip_emulated_instruction(vcpu);
3094 return kvm_emulate_halt(vcpu);
3097 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3099 skip_emulated_instruction(vcpu);
3100 kvm_emulate_hypercall(vcpu);
3101 return 1;
3104 static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3106 kvm_queue_exception(vcpu, UD_VECTOR);
3107 return 1;
3110 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3112 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3114 kvm_mmu_invlpg(vcpu, exit_qualification);
3115 skip_emulated_instruction(vcpu);
3116 return 1;
3119 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3121 skip_emulated_instruction(vcpu);
3122 /* TODO: Add support for VT-d/pass-through device */
3123 return 1;
3126 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3128 unsigned long exit_qualification;
3129 enum emulation_result er;
3130 unsigned long offset;
3132 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3133 offset = exit_qualification & 0xffful;
3135 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3137 if (er != EMULATE_DONE) {
3138 printk(KERN_ERR
3139 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3140 offset);
3141 return -ENOEXEC;
3143 return 1;
3146 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3148 struct vcpu_vmx *vmx = to_vmx(vcpu);
3149 unsigned long exit_qualification;
3150 u16 tss_selector;
3151 int reason, type, idt_v;
3153 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3154 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3156 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3158 reason = (u32)exit_qualification >> 30;
3159 if (reason == TASK_SWITCH_GATE && idt_v) {
3160 switch (type) {
3161 case INTR_TYPE_NMI_INTR:
3162 vcpu->arch.nmi_injected = false;
3163 if (cpu_has_virtual_nmis())
3164 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3165 GUEST_INTR_STATE_NMI);
3166 break;
3167 case INTR_TYPE_EXT_INTR:
3168 case INTR_TYPE_SOFT_INTR:
3169 kvm_clear_interrupt_queue(vcpu);
3170 break;
3171 case INTR_TYPE_HARD_EXCEPTION:
3172 case INTR_TYPE_SOFT_EXCEPTION:
3173 kvm_clear_exception_queue(vcpu);
3174 break;
3175 default:
3176 break;
3179 tss_selector = exit_qualification;
3181 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3182 type != INTR_TYPE_EXT_INTR &&
3183 type != INTR_TYPE_NMI_INTR))
3184 skip_emulated_instruction(vcpu);
3186 if (!kvm_task_switch(vcpu, tss_selector, reason))
3187 return 0;
3189 /* clear all local breakpoint enable flags */
3190 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3193 * TODO: What about debug traps on tss switch?
3194 * Are we supposed to inject them and update dr6?
3197 return 1;
3200 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3202 unsigned long exit_qualification;
3203 gpa_t gpa;
3204 int gla_validity;
3206 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3208 if (exit_qualification & (1 << 6)) {
3209 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3210 return -EINVAL;
3213 gla_validity = (exit_qualification >> 7) & 0x3;
3214 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3215 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3216 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3217 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3218 vmcs_readl(GUEST_LINEAR_ADDRESS));
3219 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3220 (long unsigned int)exit_qualification);
3221 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3222 kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3223 return 0;
3226 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3227 trace_kvm_page_fault(gpa, exit_qualification);
3228 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3231 static u64 ept_rsvd_mask(u64 spte, int level)
3233 int i;
3234 u64 mask = 0;
3236 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3237 mask |= (1ULL << i);
3239 if (level > 2)
3240 /* bits 7:3 reserved */
3241 mask |= 0xf8;
3242 else if (level == 2) {
3243 if (spte & (1ULL << 7))
3244 /* 2MB ref, bits 20:12 reserved */
3245 mask |= 0x1ff000;
3246 else
3247 /* bits 6:3 reserved */
3248 mask |= 0x78;
3251 return mask;
3254 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3255 int level)
3257 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3259 /* 010b (write-only) */
3260 WARN_ON((spte & 0x7) == 0x2);
3262 /* 110b (write/execute) */
3263 WARN_ON((spte & 0x7) == 0x6);
3265 /* 100b (execute-only) and value not supported by logical processor */
3266 if (!cpu_has_vmx_ept_execute_only())
3267 WARN_ON((spte & 0x7) == 0x4);
3269 /* not 000b */
3270 if ((spte & 0x7)) {
3271 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3273 if (rsvd_bits != 0) {
3274 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3275 __func__, rsvd_bits);
3276 WARN_ON(1);
3279 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3280 u64 ept_mem_type = (spte & 0x38) >> 3;
3282 if (ept_mem_type == 2 || ept_mem_type == 3 ||
3283 ept_mem_type == 7) {
3284 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3285 __func__, ept_mem_type);
3286 WARN_ON(1);
3292 static int handle_ept_misconfig(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3294 u64 sptes[4];
3295 int nr_sptes, i;
3296 gpa_t gpa;
3298 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3300 printk(KERN_ERR "EPT: Misconfiguration.\n");
3301 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3303 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3305 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3306 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3308 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3309 kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3311 return 0;
3314 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3316 u32 cpu_based_vm_exec_control;
3318 /* clear pending NMI */
3319 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3320 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3321 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3322 ++vcpu->stat.nmi_window_exits;
3324 return 1;
3327 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3328 struct kvm_run *kvm_run)
3330 struct vcpu_vmx *vmx = to_vmx(vcpu);
3331 enum emulation_result err = EMULATE_DONE;
3333 local_irq_enable();
3334 preempt_enable();
3336 while (!guest_state_valid(vcpu)) {
3337 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3339 if (err == EMULATE_DO_MMIO)
3340 break;
3342 if (err != EMULATE_DONE) {
3343 kvm_report_emulation_failure(vcpu, "emulation failure");
3344 break;
3347 if (signal_pending(current))
3348 break;
3349 if (need_resched())
3350 schedule();
3353 preempt_disable();
3354 local_irq_disable();
3356 vmx->invalid_state_emulation_result = err;
3360 * The exit handlers return 1 if the exit was handled fully and guest execution
3361 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3362 * to be done to userspace and return 0.
3364 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3365 struct kvm_run *kvm_run) = {
3366 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3367 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3368 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3369 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3370 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3371 [EXIT_REASON_CR_ACCESS] = handle_cr,
3372 [EXIT_REASON_DR_ACCESS] = handle_dr,
3373 [EXIT_REASON_CPUID] = handle_cpuid,
3374 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3375 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3376 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3377 [EXIT_REASON_HLT] = handle_halt,
3378 [EXIT_REASON_INVLPG] = handle_invlpg,
3379 [EXIT_REASON_VMCALL] = handle_vmcall,
3380 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3381 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3382 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3383 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3384 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3385 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3386 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3387 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3388 [EXIT_REASON_VMON] = handle_vmx_insn,
3389 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3390 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3391 [EXIT_REASON_WBINVD] = handle_wbinvd,
3392 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3393 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3394 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3395 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
3398 static const int kvm_vmx_max_exit_handlers =
3399 ARRAY_SIZE(kvm_vmx_exit_handlers);
3402 * The guest has exited. See if we can fix it or if we need userspace
3403 * assistance.
3405 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3407 struct vcpu_vmx *vmx = to_vmx(vcpu);
3408 u32 exit_reason = vmx->exit_reason;
3409 u32 vectoring_info = vmx->idt_vectoring_info;
3411 trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3413 /* If we need to emulate an MMIO from handle_invalid_guest_state
3414 * we just return 0 */
3415 if (vmx->emulation_required && emulate_invalid_guest_state) {
3416 if (guest_state_valid(vcpu))
3417 vmx->emulation_required = 0;
3418 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3421 /* Access CR3 don't cause VMExit in paging mode, so we need
3422 * to sync with guest real CR3. */
3423 if (enable_ept && is_paging(vcpu))
3424 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3426 if (unlikely(vmx->fail)) {
3427 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3428 kvm_run->fail_entry.hardware_entry_failure_reason
3429 = vmcs_read32(VM_INSTRUCTION_ERROR);
3430 return 0;
3433 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3434 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3435 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3436 exit_reason != EXIT_REASON_TASK_SWITCH))
3437 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3438 "(0x%x) and exit reason is 0x%x\n",
3439 __func__, vectoring_info, exit_reason);
3441 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3442 if (vmx_interrupt_allowed(vcpu)) {
3443 vmx->soft_vnmi_blocked = 0;
3444 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3445 vcpu->arch.nmi_pending) {
3447 * This CPU don't support us in finding the end of an
3448 * NMI-blocked window if the guest runs with IRQs
3449 * disabled. So we pull the trigger after 1 s of
3450 * futile waiting, but inform the user about this.
3452 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3453 "state on VCPU %d after 1 s timeout\n",
3454 __func__, vcpu->vcpu_id);
3455 vmx->soft_vnmi_blocked = 0;
3459 if (exit_reason < kvm_vmx_max_exit_handlers
3460 && kvm_vmx_exit_handlers[exit_reason])
3461 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3462 else {
3463 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3464 kvm_run->hw.hardware_exit_reason = exit_reason;
3466 return 0;
3469 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3471 if (irr == -1 || tpr < irr) {
3472 vmcs_write32(TPR_THRESHOLD, 0);
3473 return;
3476 vmcs_write32(TPR_THRESHOLD, irr);
3479 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3481 u32 exit_intr_info;
3482 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3483 bool unblock_nmi;
3484 u8 vector;
3485 int type;
3486 bool idtv_info_valid;
3488 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3490 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3492 /* Handle machine checks before interrupts are enabled */
3493 if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3494 || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3495 && is_machine_check(exit_intr_info)))
3496 kvm_machine_check();
3498 /* We need to handle NMIs before interrupts are enabled */
3499 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3500 (exit_intr_info & INTR_INFO_VALID_MASK))
3501 asm("int $2");
3503 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3505 if (cpu_has_virtual_nmis()) {
3506 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3507 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3509 * SDM 3: 27.7.1.2 (September 2008)
3510 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3511 * a guest IRET fault.
3512 * SDM 3: 23.2.2 (September 2008)
3513 * Bit 12 is undefined in any of the following cases:
3514 * If the VM exit sets the valid bit in the IDT-vectoring
3515 * information field.
3516 * If the VM exit is due to a double fault.
3518 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3519 vector != DF_VECTOR && !idtv_info_valid)
3520 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3521 GUEST_INTR_STATE_NMI);
3522 } else if (unlikely(vmx->soft_vnmi_blocked))
3523 vmx->vnmi_blocked_time +=
3524 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3526 vmx->vcpu.arch.nmi_injected = false;
3527 kvm_clear_exception_queue(&vmx->vcpu);
3528 kvm_clear_interrupt_queue(&vmx->vcpu);
3530 if (!idtv_info_valid)
3531 return;
3533 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3534 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3536 switch (type) {
3537 case INTR_TYPE_NMI_INTR:
3538 vmx->vcpu.arch.nmi_injected = true;
3540 * SDM 3: 27.7.1.2 (September 2008)
3541 * Clear bit "block by NMI" before VM entry if a NMI
3542 * delivery faulted.
3544 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3545 GUEST_INTR_STATE_NMI);
3546 break;
3547 case INTR_TYPE_SOFT_EXCEPTION:
3548 vmx->vcpu.arch.event_exit_inst_len =
3549 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3550 /* fall through */
3551 case INTR_TYPE_HARD_EXCEPTION:
3552 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3553 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3554 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3555 } else
3556 kvm_queue_exception(&vmx->vcpu, vector);
3557 break;
3558 case INTR_TYPE_SOFT_INTR:
3559 vmx->vcpu.arch.event_exit_inst_len =
3560 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3561 /* fall through */
3562 case INTR_TYPE_EXT_INTR:
3563 kvm_queue_interrupt(&vmx->vcpu, vector,
3564 type == INTR_TYPE_SOFT_INTR);
3565 break;
3566 default:
3567 break;
3572 * Failure to inject an interrupt should give us the information
3573 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3574 * when fetching the interrupt redirection bitmap in the real-mode
3575 * tss, this doesn't happen. So we do it ourselves.
3577 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3579 vmx->rmode.irq.pending = 0;
3580 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3581 return;
3582 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3583 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3584 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3585 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3586 return;
3588 vmx->idt_vectoring_info =
3589 VECTORING_INFO_VALID_MASK
3590 | INTR_TYPE_EXT_INTR
3591 | vmx->rmode.irq.vector;
3594 #ifdef CONFIG_X86_64
3595 #define R "r"
3596 #define Q "q"
3597 #else
3598 #define R "e"
3599 #define Q "l"
3600 #endif
3602 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3604 struct vcpu_vmx *vmx = to_vmx(vcpu);
3606 if (enable_ept && is_paging(vcpu)) {
3607 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3608 ept_load_pdptrs(vcpu);
3610 /* Record the guest's net vcpu time for enforced NMI injections. */
3611 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3612 vmx->entry_time = ktime_get();
3614 /* Handle invalid guest state instead of entering VMX */
3615 if (vmx->emulation_required && emulate_invalid_guest_state) {
3616 handle_invalid_guest_state(vcpu, kvm_run);
3617 return;
3620 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3621 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3622 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3623 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3625 /* When single-stepping over STI and MOV SS, we must clear the
3626 * corresponding interruptibility bits in the guest state. Otherwise
3627 * vmentry fails as it then expects bit 14 (BS) in pending debug
3628 * exceptions being set, but that's not correct for the guest debugging
3629 * case. */
3630 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3631 vmx_set_interrupt_shadow(vcpu, 0);
3634 * Loading guest fpu may have cleared host cr0.ts
3636 vmcs_writel(HOST_CR0, read_cr0());
3638 set_debugreg(vcpu->arch.dr6, 6);
3640 asm(
3641 /* Store host registers */
3642 "push %%"R"dx; push %%"R"bp;"
3643 "push %%"R"cx \n\t"
3644 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3645 "je 1f \n\t"
3646 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3647 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3648 "1: \n\t"
3649 /* Reload cr2 if changed */
3650 "mov %c[cr2](%0), %%"R"ax \n\t"
3651 "mov %%cr2, %%"R"dx \n\t"
3652 "cmp %%"R"ax, %%"R"dx \n\t"
3653 "je 2f \n\t"
3654 "mov %%"R"ax, %%cr2 \n\t"
3655 "2: \n\t"
3656 /* Check if vmlaunch of vmresume is needed */
3657 "cmpl $0, %c[launched](%0) \n\t"
3658 /* Load guest registers. Don't clobber flags. */
3659 "mov %c[rax](%0), %%"R"ax \n\t"
3660 "mov %c[rbx](%0), %%"R"bx \n\t"
3661 "mov %c[rdx](%0), %%"R"dx \n\t"
3662 "mov %c[rsi](%0), %%"R"si \n\t"
3663 "mov %c[rdi](%0), %%"R"di \n\t"
3664 "mov %c[rbp](%0), %%"R"bp \n\t"
3665 #ifdef CONFIG_X86_64
3666 "mov %c[r8](%0), %%r8 \n\t"
3667 "mov %c[r9](%0), %%r9 \n\t"
3668 "mov %c[r10](%0), %%r10 \n\t"
3669 "mov %c[r11](%0), %%r11 \n\t"
3670 "mov %c[r12](%0), %%r12 \n\t"
3671 "mov %c[r13](%0), %%r13 \n\t"
3672 "mov %c[r14](%0), %%r14 \n\t"
3673 "mov %c[r15](%0), %%r15 \n\t"
3674 #endif
3675 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3677 /* Enter guest mode */
3678 "jne .Llaunched \n\t"
3679 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3680 "jmp .Lkvm_vmx_return \n\t"
3681 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3682 ".Lkvm_vmx_return: "
3683 /* Save guest registers, load host registers, keep flags */
3684 "xchg %0, (%%"R"sp) \n\t"
3685 "mov %%"R"ax, %c[rax](%0) \n\t"
3686 "mov %%"R"bx, %c[rbx](%0) \n\t"
3687 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3688 "mov %%"R"dx, %c[rdx](%0) \n\t"
3689 "mov %%"R"si, %c[rsi](%0) \n\t"
3690 "mov %%"R"di, %c[rdi](%0) \n\t"
3691 "mov %%"R"bp, %c[rbp](%0) \n\t"
3692 #ifdef CONFIG_X86_64
3693 "mov %%r8, %c[r8](%0) \n\t"
3694 "mov %%r9, %c[r9](%0) \n\t"
3695 "mov %%r10, %c[r10](%0) \n\t"
3696 "mov %%r11, %c[r11](%0) \n\t"
3697 "mov %%r12, %c[r12](%0) \n\t"
3698 "mov %%r13, %c[r13](%0) \n\t"
3699 "mov %%r14, %c[r14](%0) \n\t"
3700 "mov %%r15, %c[r15](%0) \n\t"
3701 #endif
3702 "mov %%cr2, %%"R"ax \n\t"
3703 "mov %%"R"ax, %c[cr2](%0) \n\t"
3705 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3706 "setbe %c[fail](%0) \n\t"
3707 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3708 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3709 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3710 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3711 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3712 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3713 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3714 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3715 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3716 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3717 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3718 #ifdef CONFIG_X86_64
3719 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3720 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3721 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3722 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3723 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3724 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3725 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3726 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3727 #endif
3728 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3729 : "cc", "memory"
3730 , R"bx", R"di", R"si"
3731 #ifdef CONFIG_X86_64
3732 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3733 #endif
3736 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3737 | (1 << VCPU_EXREG_PDPTR));
3738 vcpu->arch.regs_dirty = 0;
3740 get_debugreg(vcpu->arch.dr6, 6);
3742 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3743 if (vmx->rmode.irq.pending)
3744 fixup_rmode_irq(vmx);
3746 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3747 vmx->launched = 1;
3749 vmx_complete_interrupts(vmx);
3752 #undef R
3753 #undef Q
3755 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3757 struct vcpu_vmx *vmx = to_vmx(vcpu);
3759 if (vmx->vmcs) {
3760 vcpu_clear(vmx);
3761 free_vmcs(vmx->vmcs);
3762 vmx->vmcs = NULL;
3766 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3768 struct vcpu_vmx *vmx = to_vmx(vcpu);
3770 spin_lock(&vmx_vpid_lock);
3771 if (vmx->vpid != 0)
3772 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3773 spin_unlock(&vmx_vpid_lock);
3774 vmx_free_vmcs(vcpu);
3775 kfree(vmx->host_msrs);
3776 kfree(vmx->guest_msrs);
3777 kvm_vcpu_uninit(vcpu);
3778 kmem_cache_free(kvm_vcpu_cache, vmx);
3781 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3783 int err;
3784 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3785 int cpu;
3787 if (!vmx)
3788 return ERR_PTR(-ENOMEM);
3790 allocate_vpid(vmx);
3792 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3793 if (err)
3794 goto free_vcpu;
3796 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3797 if (!vmx->guest_msrs) {
3798 err = -ENOMEM;
3799 goto uninit_vcpu;
3802 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3803 if (!vmx->host_msrs)
3804 goto free_guest_msrs;
3806 vmx->vmcs = alloc_vmcs();
3807 if (!vmx->vmcs)
3808 goto free_msrs;
3810 vmcs_clear(vmx->vmcs);
3812 cpu = get_cpu();
3813 vmx_vcpu_load(&vmx->vcpu, cpu);
3814 err = vmx_vcpu_setup(vmx);
3815 vmx_vcpu_put(&vmx->vcpu);
3816 put_cpu();
3817 if (err)
3818 goto free_vmcs;
3819 if (vm_need_virtualize_apic_accesses(kvm))
3820 if (alloc_apic_access_page(kvm) != 0)
3821 goto free_vmcs;
3823 if (enable_ept) {
3824 if (!kvm->arch.ept_identity_map_addr)
3825 kvm->arch.ept_identity_map_addr =
3826 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3827 if (alloc_identity_pagetable(kvm) != 0)
3828 goto free_vmcs;
3831 return &vmx->vcpu;
3833 free_vmcs:
3834 free_vmcs(vmx->vmcs);
3835 free_msrs:
3836 kfree(vmx->host_msrs);
3837 free_guest_msrs:
3838 kfree(vmx->guest_msrs);
3839 uninit_vcpu:
3840 kvm_vcpu_uninit(&vmx->vcpu);
3841 free_vcpu:
3842 kmem_cache_free(kvm_vcpu_cache, vmx);
3843 return ERR_PTR(err);
3846 static void __init vmx_check_processor_compat(void *rtn)
3848 struct vmcs_config vmcs_conf;
3850 *(int *)rtn = 0;
3851 if (setup_vmcs_config(&vmcs_conf) < 0)
3852 *(int *)rtn = -EIO;
3853 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3854 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3855 smp_processor_id());
3856 *(int *)rtn = -EIO;
3860 static int get_ept_level(void)
3862 return VMX_EPT_DEFAULT_GAW + 1;
3865 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3867 u64 ret;
3869 /* For VT-d and EPT combination
3870 * 1. MMIO: always map as UC
3871 * 2. EPT with VT-d:
3872 * a. VT-d without snooping control feature: can't guarantee the
3873 * result, try to trust guest.
3874 * b. VT-d with snooping control feature: snooping control feature of
3875 * VT-d engine can guarantee the cache correctness. Just set it
3876 * to WB to keep consistent with host. So the same as item 3.
3877 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3878 * consistent with host MTRR
3880 if (is_mmio)
3881 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3882 else if (vcpu->kvm->arch.iommu_domain &&
3883 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3884 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3885 VMX_EPT_MT_EPTE_SHIFT;
3886 else
3887 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3888 | VMX_EPT_IGMT_BIT;
3890 return ret;
3893 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3894 { EXIT_REASON_EXCEPTION_NMI, "exception" },
3895 { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
3896 { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
3897 { EXIT_REASON_NMI_WINDOW, "nmi_window" },
3898 { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
3899 { EXIT_REASON_CR_ACCESS, "cr_access" },
3900 { EXIT_REASON_DR_ACCESS, "dr_access" },
3901 { EXIT_REASON_CPUID, "cpuid" },
3902 { EXIT_REASON_MSR_READ, "rdmsr" },
3903 { EXIT_REASON_MSR_WRITE, "wrmsr" },
3904 { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
3905 { EXIT_REASON_HLT, "halt" },
3906 { EXIT_REASON_INVLPG, "invlpg" },
3907 { EXIT_REASON_VMCALL, "hypercall" },
3908 { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
3909 { EXIT_REASON_APIC_ACCESS, "apic_access" },
3910 { EXIT_REASON_WBINVD, "wbinvd" },
3911 { EXIT_REASON_TASK_SWITCH, "task_switch" },
3912 { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
3913 { -1, NULL }
3916 static bool vmx_gb_page_enable(void)
3918 return false;
3921 static struct kvm_x86_ops vmx_x86_ops = {
3922 .cpu_has_kvm_support = cpu_has_kvm_support,
3923 .disabled_by_bios = vmx_disabled_by_bios,
3924 .hardware_setup = hardware_setup,
3925 .hardware_unsetup = hardware_unsetup,
3926 .check_processor_compatibility = vmx_check_processor_compat,
3927 .hardware_enable = hardware_enable,
3928 .hardware_disable = hardware_disable,
3929 .cpu_has_accelerated_tpr = report_flexpriority,
3931 .vcpu_create = vmx_create_vcpu,
3932 .vcpu_free = vmx_free_vcpu,
3933 .vcpu_reset = vmx_vcpu_reset,
3935 .prepare_guest_switch = vmx_save_host_state,
3936 .vcpu_load = vmx_vcpu_load,
3937 .vcpu_put = vmx_vcpu_put,
3939 .set_guest_debug = set_guest_debug,
3940 .get_msr = vmx_get_msr,
3941 .set_msr = vmx_set_msr,
3942 .get_segment_base = vmx_get_segment_base,
3943 .get_segment = vmx_get_segment,
3944 .set_segment = vmx_set_segment,
3945 .get_cpl = vmx_get_cpl,
3946 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3947 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3948 .set_cr0 = vmx_set_cr0,
3949 .set_cr3 = vmx_set_cr3,
3950 .set_cr4 = vmx_set_cr4,
3951 .set_efer = vmx_set_efer,
3952 .get_idt = vmx_get_idt,
3953 .set_idt = vmx_set_idt,
3954 .get_gdt = vmx_get_gdt,
3955 .set_gdt = vmx_set_gdt,
3956 .cache_reg = vmx_cache_reg,
3957 .get_rflags = vmx_get_rflags,
3958 .set_rflags = vmx_set_rflags,
3960 .tlb_flush = vmx_flush_tlb,
3962 .run = vmx_vcpu_run,
3963 .handle_exit = vmx_handle_exit,
3964 .skip_emulated_instruction = skip_emulated_instruction,
3965 .set_interrupt_shadow = vmx_set_interrupt_shadow,
3966 .get_interrupt_shadow = vmx_get_interrupt_shadow,
3967 .patch_hypercall = vmx_patch_hypercall,
3968 .set_irq = vmx_inject_irq,
3969 .set_nmi = vmx_inject_nmi,
3970 .queue_exception = vmx_queue_exception,
3971 .interrupt_allowed = vmx_interrupt_allowed,
3972 .nmi_allowed = vmx_nmi_allowed,
3973 .enable_nmi_window = enable_nmi_window,
3974 .enable_irq_window = enable_irq_window,
3975 .update_cr8_intercept = update_cr8_intercept,
3977 .set_tss_addr = vmx_set_tss_addr,
3978 .get_tdp_level = get_ept_level,
3979 .get_mt_mask = vmx_get_mt_mask,
3981 .exit_reasons_str = vmx_exit_reasons_str,
3982 .gb_page_enable = vmx_gb_page_enable,
3985 static int __init vmx_init(void)
3987 int r;
3989 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3990 if (!vmx_io_bitmap_a)
3991 return -ENOMEM;
3993 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3994 if (!vmx_io_bitmap_b) {
3995 r = -ENOMEM;
3996 goto out;
3999 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4000 if (!vmx_msr_bitmap_legacy) {
4001 r = -ENOMEM;
4002 goto out1;
4005 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4006 if (!vmx_msr_bitmap_longmode) {
4007 r = -ENOMEM;
4008 goto out2;
4012 * Allow direct access to the PC debug port (it is often used for I/O
4013 * delays, but the vmexits simply slow things down).
4015 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4016 clear_bit(0x80, vmx_io_bitmap_a);
4018 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4020 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4021 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4023 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4025 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4026 if (r)
4027 goto out3;
4029 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4030 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4031 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4032 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4033 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4034 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4036 if (enable_ept) {
4037 bypass_guest_pf = 0;
4038 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4039 VMX_EPT_WRITABLE_MASK);
4040 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4041 VMX_EPT_EXECUTABLE_MASK);
4042 kvm_enable_tdp();
4043 } else
4044 kvm_disable_tdp();
4046 if (bypass_guest_pf)
4047 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4049 ept_sync_global();
4051 return 0;
4053 out3:
4054 free_page((unsigned long)vmx_msr_bitmap_longmode);
4055 out2:
4056 free_page((unsigned long)vmx_msr_bitmap_legacy);
4057 out1:
4058 free_page((unsigned long)vmx_io_bitmap_b);
4059 out:
4060 free_page((unsigned long)vmx_io_bitmap_a);
4061 return r;
4064 static void __exit vmx_exit(void)
4066 free_page((unsigned long)vmx_msr_bitmap_legacy);
4067 free_page((unsigned long)vmx_msr_bitmap_longmode);
4068 free_page((unsigned long)vmx_io_bitmap_b);
4069 free_page((unsigned long)vmx_io_bitmap_a);
4071 kvm_exit();
4074 module_init(vmx_init)
4075 module_exit(vmx_exit)