2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
48 * used by extent splitting.
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
55 static __le32
ext4_extent_block_csum(struct inode
*inode
,
56 struct ext4_extent_header
*eh
)
58 struct ext4_inode_info
*ei
= EXT4_I(inode
);
59 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
62 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)eh
,
63 EXT4_EXTENT_TAIL_OFFSET(eh
));
64 return cpu_to_le32(csum
);
67 static int ext4_extent_block_csum_verify(struct inode
*inode
,
68 struct ext4_extent_header
*eh
)
70 struct ext4_extent_tail
*et
;
72 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
73 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
76 et
= find_ext4_extent_tail(eh
);
77 if (et
->et_checksum
!= ext4_extent_block_csum(inode
, eh
))
82 static void ext4_extent_block_csum_set(struct inode
*inode
,
83 struct ext4_extent_header
*eh
)
85 struct ext4_extent_tail
*et
;
87 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
88 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
91 et
= find_ext4_extent_tail(eh
);
92 et
->et_checksum
= ext4_extent_block_csum(inode
, eh
);
95 static int ext4_split_extent(handle_t
*handle
,
97 struct ext4_ext_path
*path
,
98 struct ext4_map_blocks
*map
,
102 static int ext4_split_extent_at(handle_t
*handle
,
104 struct ext4_ext_path
*path
,
109 static int ext4_ext_truncate_extend_restart(handle_t
*handle
,
115 if (!ext4_handle_valid(handle
))
117 if (handle
->h_buffer_credits
> needed
)
119 err
= ext4_journal_extend(handle
, needed
);
122 err
= ext4_truncate_restart_trans(handle
, inode
, needed
);
134 static int ext4_ext_get_access(handle_t
*handle
, struct inode
*inode
,
135 struct ext4_ext_path
*path
)
138 /* path points to block */
139 return ext4_journal_get_write_access(handle
, path
->p_bh
);
141 /* path points to leaf/index in inode body */
142 /* we use in-core data, no need to protect them */
152 #define ext4_ext_dirty(handle, inode, path) \
153 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
154 static int __ext4_ext_dirty(const char *where
, unsigned int line
,
155 handle_t
*handle
, struct inode
*inode
,
156 struct ext4_ext_path
*path
)
160 ext4_extent_block_csum_set(inode
, ext_block_hdr(path
->p_bh
));
161 /* path points to block */
162 err
= __ext4_handle_dirty_metadata(where
, line
, handle
,
165 /* path points to leaf/index in inode body */
166 err
= ext4_mark_inode_dirty(handle
, inode
);
171 static ext4_fsblk_t
ext4_ext_find_goal(struct inode
*inode
,
172 struct ext4_ext_path
*path
,
176 int depth
= path
->p_depth
;
177 struct ext4_extent
*ex
;
180 * Try to predict block placement assuming that we are
181 * filling in a file which will eventually be
182 * non-sparse --- i.e., in the case of libbfd writing
183 * an ELF object sections out-of-order but in a way
184 * the eventually results in a contiguous object or
185 * executable file, or some database extending a table
186 * space file. However, this is actually somewhat
187 * non-ideal if we are writing a sparse file such as
188 * qemu or KVM writing a raw image file that is going
189 * to stay fairly sparse, since it will end up
190 * fragmenting the file system's free space. Maybe we
191 * should have some hueristics or some way to allow
192 * userspace to pass a hint to file system,
193 * especially if the latter case turns out to be
196 ex
= path
[depth
].p_ext
;
198 ext4_fsblk_t ext_pblk
= ext4_ext_pblock(ex
);
199 ext4_lblk_t ext_block
= le32_to_cpu(ex
->ee_block
);
201 if (block
> ext_block
)
202 return ext_pblk
+ (block
- ext_block
);
204 return ext_pblk
- (ext_block
- block
);
207 /* it looks like index is empty;
208 * try to find starting block from index itself */
209 if (path
[depth
].p_bh
)
210 return path
[depth
].p_bh
->b_blocknr
;
213 /* OK. use inode's group */
214 return ext4_inode_to_goal_block(inode
);
218 * Allocation for a meta data block
221 ext4_ext_new_meta_block(handle_t
*handle
, struct inode
*inode
,
222 struct ext4_ext_path
*path
,
223 struct ext4_extent
*ex
, int *err
, unsigned int flags
)
225 ext4_fsblk_t goal
, newblock
;
227 goal
= ext4_ext_find_goal(inode
, path
, le32_to_cpu(ex
->ee_block
));
228 newblock
= ext4_new_meta_blocks(handle
, inode
, goal
, flags
,
233 static inline int ext4_ext_space_block(struct inode
*inode
, int check
)
237 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
238 / sizeof(struct ext4_extent
);
239 #ifdef AGGRESSIVE_TEST
240 if (!check
&& size
> 6)
246 static inline int ext4_ext_space_block_idx(struct inode
*inode
, int check
)
250 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
251 / sizeof(struct ext4_extent_idx
);
252 #ifdef AGGRESSIVE_TEST
253 if (!check
&& size
> 5)
259 static inline int ext4_ext_space_root(struct inode
*inode
, int check
)
263 size
= sizeof(EXT4_I(inode
)->i_data
);
264 size
-= sizeof(struct ext4_extent_header
);
265 size
/= sizeof(struct ext4_extent
);
266 #ifdef AGGRESSIVE_TEST
267 if (!check
&& size
> 3)
273 static inline int ext4_ext_space_root_idx(struct inode
*inode
, int check
)
277 size
= sizeof(EXT4_I(inode
)->i_data
);
278 size
-= sizeof(struct ext4_extent_header
);
279 size
/= sizeof(struct ext4_extent_idx
);
280 #ifdef AGGRESSIVE_TEST
281 if (!check
&& size
> 4)
288 * Calculate the number of metadata blocks needed
289 * to allocate @blocks
290 * Worse case is one block per extent
292 int ext4_ext_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
294 struct ext4_inode_info
*ei
= EXT4_I(inode
);
297 idxs
= ((inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
298 / sizeof(struct ext4_extent_idx
));
301 * If the new delayed allocation block is contiguous with the
302 * previous da block, it can share index blocks with the
303 * previous block, so we only need to allocate a new index
304 * block every idxs leaf blocks. At ldxs**2 blocks, we need
305 * an additional index block, and at ldxs**3 blocks, yet
306 * another index blocks.
308 if (ei
->i_da_metadata_calc_len
&&
309 ei
->i_da_metadata_calc_last_lblock
+1 == lblock
) {
312 if ((ei
->i_da_metadata_calc_len
% idxs
) == 0)
314 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
)) == 0)
316 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
*idxs
)) == 0) {
318 ei
->i_da_metadata_calc_len
= 0;
320 ei
->i_da_metadata_calc_len
++;
321 ei
->i_da_metadata_calc_last_lblock
++;
326 * In the worst case we need a new set of index blocks at
327 * every level of the inode's extent tree.
329 ei
->i_da_metadata_calc_len
= 1;
330 ei
->i_da_metadata_calc_last_lblock
= lblock
;
331 return ext_depth(inode
) + 1;
335 ext4_ext_max_entries(struct inode
*inode
, int depth
)
339 if (depth
== ext_depth(inode
)) {
341 max
= ext4_ext_space_root(inode
, 1);
343 max
= ext4_ext_space_root_idx(inode
, 1);
346 max
= ext4_ext_space_block(inode
, 1);
348 max
= ext4_ext_space_block_idx(inode
, 1);
354 static int ext4_valid_extent(struct inode
*inode
, struct ext4_extent
*ext
)
356 ext4_fsblk_t block
= ext4_ext_pblock(ext
);
357 int len
= ext4_ext_get_actual_len(ext
);
361 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, len
);
364 static int ext4_valid_extent_idx(struct inode
*inode
,
365 struct ext4_extent_idx
*ext_idx
)
367 ext4_fsblk_t block
= ext4_idx_pblock(ext_idx
);
369 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, 1);
372 static int ext4_valid_extent_entries(struct inode
*inode
,
373 struct ext4_extent_header
*eh
,
376 unsigned short entries
;
377 if (eh
->eh_entries
== 0)
380 entries
= le16_to_cpu(eh
->eh_entries
);
384 struct ext4_extent
*ext
= EXT_FIRST_EXTENT(eh
);
386 if (!ext4_valid_extent(inode
, ext
))
392 struct ext4_extent_idx
*ext_idx
= EXT_FIRST_INDEX(eh
);
394 if (!ext4_valid_extent_idx(inode
, ext_idx
))
403 static int __ext4_ext_check(const char *function
, unsigned int line
,
404 struct inode
*inode
, struct ext4_extent_header
*eh
,
407 const char *error_msg
;
410 if (unlikely(eh
->eh_magic
!= EXT4_EXT_MAGIC
)) {
411 error_msg
= "invalid magic";
414 if (unlikely(le16_to_cpu(eh
->eh_depth
) != depth
)) {
415 error_msg
= "unexpected eh_depth";
418 if (unlikely(eh
->eh_max
== 0)) {
419 error_msg
= "invalid eh_max";
422 max
= ext4_ext_max_entries(inode
, depth
);
423 if (unlikely(le16_to_cpu(eh
->eh_max
) > max
)) {
424 error_msg
= "too large eh_max";
427 if (unlikely(le16_to_cpu(eh
->eh_entries
) > le16_to_cpu(eh
->eh_max
))) {
428 error_msg
= "invalid eh_entries";
431 if (!ext4_valid_extent_entries(inode
, eh
, depth
)) {
432 error_msg
= "invalid extent entries";
435 /* Verify checksum on non-root extent tree nodes */
436 if (ext_depth(inode
) != depth
&&
437 !ext4_extent_block_csum_verify(inode
, eh
)) {
438 error_msg
= "extent tree corrupted";
444 ext4_error_inode(inode
, function
, line
, 0,
445 "bad header/extent: %s - magic %x, "
446 "entries %u, max %u(%u), depth %u(%u)",
447 error_msg
, le16_to_cpu(eh
->eh_magic
),
448 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
),
449 max
, le16_to_cpu(eh
->eh_depth
), depth
);
454 #define ext4_ext_check(inode, eh, depth) \
455 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
457 int ext4_ext_check_inode(struct inode
*inode
)
459 return ext4_ext_check(inode
, ext_inode_hdr(inode
), ext_depth(inode
));
462 static int __ext4_ext_check_block(const char *function
, unsigned int line
,
464 struct ext4_extent_header
*eh
,
466 struct buffer_head
*bh
)
470 if (buffer_verified(bh
))
472 ret
= ext4_ext_check(inode
, eh
, depth
);
475 set_buffer_verified(bh
);
479 #define ext4_ext_check_block(inode, eh, depth, bh) \
480 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
483 static void ext4_ext_show_path(struct inode
*inode
, struct ext4_ext_path
*path
)
485 int k
, l
= path
->p_depth
;
488 for (k
= 0; k
<= l
; k
++, path
++) {
490 ext_debug(" %d->%llu", le32_to_cpu(path
->p_idx
->ei_block
),
491 ext4_idx_pblock(path
->p_idx
));
492 } else if (path
->p_ext
) {
493 ext_debug(" %d:[%d]%d:%llu ",
494 le32_to_cpu(path
->p_ext
->ee_block
),
495 ext4_ext_is_uninitialized(path
->p_ext
),
496 ext4_ext_get_actual_len(path
->p_ext
),
497 ext4_ext_pblock(path
->p_ext
));
504 static void ext4_ext_show_leaf(struct inode
*inode
, struct ext4_ext_path
*path
)
506 int depth
= ext_depth(inode
);
507 struct ext4_extent_header
*eh
;
508 struct ext4_extent
*ex
;
514 eh
= path
[depth
].p_hdr
;
515 ex
= EXT_FIRST_EXTENT(eh
);
517 ext_debug("Displaying leaf extents for inode %lu\n", inode
->i_ino
);
519 for (i
= 0; i
< le16_to_cpu(eh
->eh_entries
); i
++, ex
++) {
520 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex
->ee_block
),
521 ext4_ext_is_uninitialized(ex
),
522 ext4_ext_get_actual_len(ex
), ext4_ext_pblock(ex
));
527 static void ext4_ext_show_move(struct inode
*inode
, struct ext4_ext_path
*path
,
528 ext4_fsblk_t newblock
, int level
)
530 int depth
= ext_depth(inode
);
531 struct ext4_extent
*ex
;
533 if (depth
!= level
) {
534 struct ext4_extent_idx
*idx
;
535 idx
= path
[level
].p_idx
;
536 while (idx
<= EXT_MAX_INDEX(path
[level
].p_hdr
)) {
537 ext_debug("%d: move %d:%llu in new index %llu\n", level
,
538 le32_to_cpu(idx
->ei_block
),
539 ext4_idx_pblock(idx
),
547 ex
= path
[depth
].p_ext
;
548 while (ex
<= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
549 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
550 le32_to_cpu(ex
->ee_block
),
552 ext4_ext_is_uninitialized(ex
),
553 ext4_ext_get_actual_len(ex
),
560 #define ext4_ext_show_path(inode, path)
561 #define ext4_ext_show_leaf(inode, path)
562 #define ext4_ext_show_move(inode, path, newblock, level)
565 void ext4_ext_drop_refs(struct ext4_ext_path
*path
)
567 int depth
= path
->p_depth
;
570 for (i
= 0; i
<= depth
; i
++, path
++)
578 * ext4_ext_binsearch_idx:
579 * binary search for the closest index of the given block
580 * the header must be checked before calling this
583 ext4_ext_binsearch_idx(struct inode
*inode
,
584 struct ext4_ext_path
*path
, ext4_lblk_t block
)
586 struct ext4_extent_header
*eh
= path
->p_hdr
;
587 struct ext4_extent_idx
*r
, *l
, *m
;
590 ext_debug("binsearch for %u(idx): ", block
);
592 l
= EXT_FIRST_INDEX(eh
) + 1;
593 r
= EXT_LAST_INDEX(eh
);
596 if (block
< le32_to_cpu(m
->ei_block
))
600 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ei_block
),
601 m
, le32_to_cpu(m
->ei_block
),
602 r
, le32_to_cpu(r
->ei_block
));
606 ext_debug(" -> %u->%lld ", le32_to_cpu(path
->p_idx
->ei_block
),
607 ext4_idx_pblock(path
->p_idx
));
609 #ifdef CHECK_BINSEARCH
611 struct ext4_extent_idx
*chix
, *ix
;
614 chix
= ix
= EXT_FIRST_INDEX(eh
);
615 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ix
++) {
617 le32_to_cpu(ix
->ei_block
) <= le32_to_cpu(ix
[-1].ei_block
)) {
618 printk(KERN_DEBUG
"k=%d, ix=0x%p, "
620 ix
, EXT_FIRST_INDEX(eh
));
621 printk(KERN_DEBUG
"%u <= %u\n",
622 le32_to_cpu(ix
->ei_block
),
623 le32_to_cpu(ix
[-1].ei_block
));
625 BUG_ON(k
&& le32_to_cpu(ix
->ei_block
)
626 <= le32_to_cpu(ix
[-1].ei_block
));
627 if (block
< le32_to_cpu(ix
->ei_block
))
631 BUG_ON(chix
!= path
->p_idx
);
638 * ext4_ext_binsearch:
639 * binary search for closest extent of the given block
640 * the header must be checked before calling this
643 ext4_ext_binsearch(struct inode
*inode
,
644 struct ext4_ext_path
*path
, ext4_lblk_t block
)
646 struct ext4_extent_header
*eh
= path
->p_hdr
;
647 struct ext4_extent
*r
, *l
, *m
;
649 if (eh
->eh_entries
== 0) {
651 * this leaf is empty:
652 * we get such a leaf in split/add case
657 ext_debug("binsearch for %u: ", block
);
659 l
= EXT_FIRST_EXTENT(eh
) + 1;
660 r
= EXT_LAST_EXTENT(eh
);
664 if (block
< le32_to_cpu(m
->ee_block
))
668 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ee_block
),
669 m
, le32_to_cpu(m
->ee_block
),
670 r
, le32_to_cpu(r
->ee_block
));
674 ext_debug(" -> %d:%llu:[%d]%d ",
675 le32_to_cpu(path
->p_ext
->ee_block
),
676 ext4_ext_pblock(path
->p_ext
),
677 ext4_ext_is_uninitialized(path
->p_ext
),
678 ext4_ext_get_actual_len(path
->p_ext
));
680 #ifdef CHECK_BINSEARCH
682 struct ext4_extent
*chex
, *ex
;
685 chex
= ex
= EXT_FIRST_EXTENT(eh
);
686 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ex
++) {
687 BUG_ON(k
&& le32_to_cpu(ex
->ee_block
)
688 <= le32_to_cpu(ex
[-1].ee_block
));
689 if (block
< le32_to_cpu(ex
->ee_block
))
693 BUG_ON(chex
!= path
->p_ext
);
699 int ext4_ext_tree_init(handle_t
*handle
, struct inode
*inode
)
701 struct ext4_extent_header
*eh
;
703 eh
= ext_inode_hdr(inode
);
706 eh
->eh_magic
= EXT4_EXT_MAGIC
;
707 eh
->eh_max
= cpu_to_le16(ext4_ext_space_root(inode
, 0));
708 ext4_mark_inode_dirty(handle
, inode
);
709 ext4_ext_invalidate_cache(inode
);
713 struct ext4_ext_path
*
714 ext4_ext_find_extent(struct inode
*inode
, ext4_lblk_t block
,
715 struct ext4_ext_path
*path
)
717 struct ext4_extent_header
*eh
;
718 struct buffer_head
*bh
;
719 short int depth
, i
, ppos
= 0, alloc
= 0;
721 eh
= ext_inode_hdr(inode
);
722 depth
= ext_depth(inode
);
724 /* account possible depth increase */
726 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 2),
729 return ERR_PTR(-ENOMEM
);
736 /* walk through the tree */
738 ext_debug("depth %d: num %d, max %d\n",
739 ppos
, le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
741 ext4_ext_binsearch_idx(inode
, path
+ ppos
, block
);
742 path
[ppos
].p_block
= ext4_idx_pblock(path
[ppos
].p_idx
);
743 path
[ppos
].p_depth
= i
;
744 path
[ppos
].p_ext
= NULL
;
746 bh
= sb_getblk(inode
->i_sb
, path
[ppos
].p_block
);
749 if (!bh_uptodate_or_lock(bh
)) {
750 trace_ext4_ext_load_extent(inode
, block
,
752 if (bh_submit_read(bh
) < 0) {
757 eh
= ext_block_hdr(bh
);
759 if (unlikely(ppos
> depth
)) {
761 EXT4_ERROR_INODE(inode
,
762 "ppos %d > depth %d", ppos
, depth
);
765 path
[ppos
].p_bh
= bh
;
766 path
[ppos
].p_hdr
= eh
;
769 if (ext4_ext_check_block(inode
, eh
, i
, bh
))
773 path
[ppos
].p_depth
= i
;
774 path
[ppos
].p_ext
= NULL
;
775 path
[ppos
].p_idx
= NULL
;
778 ext4_ext_binsearch(inode
, path
+ ppos
, block
);
779 /* if not an empty leaf */
780 if (path
[ppos
].p_ext
)
781 path
[ppos
].p_block
= ext4_ext_pblock(path
[ppos
].p_ext
);
783 ext4_ext_show_path(inode
, path
);
788 ext4_ext_drop_refs(path
);
791 return ERR_PTR(-EIO
);
795 * ext4_ext_insert_index:
796 * insert new index [@logical;@ptr] into the block at @curp;
797 * check where to insert: before @curp or after @curp
799 static int ext4_ext_insert_index(handle_t
*handle
, struct inode
*inode
,
800 struct ext4_ext_path
*curp
,
801 int logical
, ext4_fsblk_t ptr
)
803 struct ext4_extent_idx
*ix
;
806 err
= ext4_ext_get_access(handle
, inode
, curp
);
810 if (unlikely(logical
== le32_to_cpu(curp
->p_idx
->ei_block
))) {
811 EXT4_ERROR_INODE(inode
,
812 "logical %d == ei_block %d!",
813 logical
, le32_to_cpu(curp
->p_idx
->ei_block
));
817 if (unlikely(le16_to_cpu(curp
->p_hdr
->eh_entries
)
818 >= le16_to_cpu(curp
->p_hdr
->eh_max
))) {
819 EXT4_ERROR_INODE(inode
,
820 "eh_entries %d >= eh_max %d!",
821 le16_to_cpu(curp
->p_hdr
->eh_entries
),
822 le16_to_cpu(curp
->p_hdr
->eh_max
));
826 if (logical
> le32_to_cpu(curp
->p_idx
->ei_block
)) {
828 ext_debug("insert new index %d after: %llu\n", logical
, ptr
);
829 ix
= curp
->p_idx
+ 1;
832 ext_debug("insert new index %d before: %llu\n", logical
, ptr
);
836 len
= EXT_LAST_INDEX(curp
->p_hdr
) - ix
+ 1;
839 ext_debug("insert new index %d: "
840 "move %d indices from 0x%p to 0x%p\n",
841 logical
, len
, ix
, ix
+ 1);
842 memmove(ix
+ 1, ix
, len
* sizeof(struct ext4_extent_idx
));
845 if (unlikely(ix
> EXT_MAX_INDEX(curp
->p_hdr
))) {
846 EXT4_ERROR_INODE(inode
, "ix > EXT_MAX_INDEX!");
850 ix
->ei_block
= cpu_to_le32(logical
);
851 ext4_idx_store_pblock(ix
, ptr
);
852 le16_add_cpu(&curp
->p_hdr
->eh_entries
, 1);
854 if (unlikely(ix
> EXT_LAST_INDEX(curp
->p_hdr
))) {
855 EXT4_ERROR_INODE(inode
, "ix > EXT_LAST_INDEX!");
859 err
= ext4_ext_dirty(handle
, inode
, curp
);
860 ext4_std_error(inode
->i_sb
, err
);
867 * inserts new subtree into the path, using free index entry
869 * - allocates all needed blocks (new leaf and all intermediate index blocks)
870 * - makes decision where to split
871 * - moves remaining extents and index entries (right to the split point)
872 * into the newly allocated blocks
873 * - initializes subtree
875 static int ext4_ext_split(handle_t
*handle
, struct inode
*inode
,
877 struct ext4_ext_path
*path
,
878 struct ext4_extent
*newext
, int at
)
880 struct buffer_head
*bh
= NULL
;
881 int depth
= ext_depth(inode
);
882 struct ext4_extent_header
*neh
;
883 struct ext4_extent_idx
*fidx
;
885 ext4_fsblk_t newblock
, oldblock
;
887 ext4_fsblk_t
*ablocks
= NULL
; /* array of allocated blocks */
890 /* make decision: where to split? */
891 /* FIXME: now decision is simplest: at current extent */
893 /* if current leaf will be split, then we should use
894 * border from split point */
895 if (unlikely(path
[depth
].p_ext
> EXT_MAX_EXTENT(path
[depth
].p_hdr
))) {
896 EXT4_ERROR_INODE(inode
, "p_ext > EXT_MAX_EXTENT!");
899 if (path
[depth
].p_ext
!= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
900 border
= path
[depth
].p_ext
[1].ee_block
;
901 ext_debug("leaf will be split."
902 " next leaf starts at %d\n",
903 le32_to_cpu(border
));
905 border
= newext
->ee_block
;
906 ext_debug("leaf will be added."
907 " next leaf starts at %d\n",
908 le32_to_cpu(border
));
912 * If error occurs, then we break processing
913 * and mark filesystem read-only. index won't
914 * be inserted and tree will be in consistent
915 * state. Next mount will repair buffers too.
919 * Get array to track all allocated blocks.
920 * We need this to handle errors and free blocks
923 ablocks
= kzalloc(sizeof(ext4_fsblk_t
) * depth
, GFP_NOFS
);
927 /* allocate all needed blocks */
928 ext_debug("allocate %d blocks for indexes/leaf\n", depth
- at
);
929 for (a
= 0; a
< depth
- at
; a
++) {
930 newblock
= ext4_ext_new_meta_block(handle
, inode
, path
,
931 newext
, &err
, flags
);
934 ablocks
[a
] = newblock
;
937 /* initialize new leaf */
938 newblock
= ablocks
[--a
];
939 if (unlikely(newblock
== 0)) {
940 EXT4_ERROR_INODE(inode
, "newblock == 0!");
944 bh
= sb_getblk(inode
->i_sb
, newblock
);
951 err
= ext4_journal_get_create_access(handle
, bh
);
955 neh
= ext_block_hdr(bh
);
957 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
958 neh
->eh_magic
= EXT4_EXT_MAGIC
;
961 /* move remainder of path[depth] to the new leaf */
962 if (unlikely(path
[depth
].p_hdr
->eh_entries
!=
963 path
[depth
].p_hdr
->eh_max
)) {
964 EXT4_ERROR_INODE(inode
, "eh_entries %d != eh_max %d!",
965 path
[depth
].p_hdr
->eh_entries
,
966 path
[depth
].p_hdr
->eh_max
);
970 /* start copy from next extent */
971 m
= EXT_MAX_EXTENT(path
[depth
].p_hdr
) - path
[depth
].p_ext
++;
972 ext4_ext_show_move(inode
, path
, newblock
, depth
);
974 struct ext4_extent
*ex
;
975 ex
= EXT_FIRST_EXTENT(neh
);
976 memmove(ex
, path
[depth
].p_ext
, sizeof(struct ext4_extent
) * m
);
977 le16_add_cpu(&neh
->eh_entries
, m
);
980 ext4_extent_block_csum_set(inode
, neh
);
981 set_buffer_uptodate(bh
);
984 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
990 /* correct old leaf */
992 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
995 le16_add_cpu(&path
[depth
].p_hdr
->eh_entries
, -m
);
996 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1002 /* create intermediate indexes */
1004 if (unlikely(k
< 0)) {
1005 EXT4_ERROR_INODE(inode
, "k %d < 0!", k
);
1010 ext_debug("create %d intermediate indices\n", k
);
1011 /* insert new index into current index block */
1012 /* current depth stored in i var */
1015 oldblock
= newblock
;
1016 newblock
= ablocks
[--a
];
1017 bh
= sb_getblk(inode
->i_sb
, newblock
);
1024 err
= ext4_journal_get_create_access(handle
, bh
);
1028 neh
= ext_block_hdr(bh
);
1029 neh
->eh_entries
= cpu_to_le16(1);
1030 neh
->eh_magic
= EXT4_EXT_MAGIC
;
1031 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
1032 neh
->eh_depth
= cpu_to_le16(depth
- i
);
1033 fidx
= EXT_FIRST_INDEX(neh
);
1034 fidx
->ei_block
= border
;
1035 ext4_idx_store_pblock(fidx
, oldblock
);
1037 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1038 i
, newblock
, le32_to_cpu(border
), oldblock
);
1040 /* move remainder of path[i] to the new index block */
1041 if (unlikely(EXT_MAX_INDEX(path
[i
].p_hdr
) !=
1042 EXT_LAST_INDEX(path
[i
].p_hdr
))) {
1043 EXT4_ERROR_INODE(inode
,
1044 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1045 le32_to_cpu(path
[i
].p_ext
->ee_block
));
1049 /* start copy indexes */
1050 m
= EXT_MAX_INDEX(path
[i
].p_hdr
) - path
[i
].p_idx
++;
1051 ext_debug("cur 0x%p, last 0x%p\n", path
[i
].p_idx
,
1052 EXT_MAX_INDEX(path
[i
].p_hdr
));
1053 ext4_ext_show_move(inode
, path
, newblock
, i
);
1055 memmove(++fidx
, path
[i
].p_idx
,
1056 sizeof(struct ext4_extent_idx
) * m
);
1057 le16_add_cpu(&neh
->eh_entries
, m
);
1059 ext4_extent_block_csum_set(inode
, neh
);
1060 set_buffer_uptodate(bh
);
1063 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1069 /* correct old index */
1071 err
= ext4_ext_get_access(handle
, inode
, path
+ i
);
1074 le16_add_cpu(&path
[i
].p_hdr
->eh_entries
, -m
);
1075 err
= ext4_ext_dirty(handle
, inode
, path
+ i
);
1083 /* insert new index */
1084 err
= ext4_ext_insert_index(handle
, inode
, path
+ at
,
1085 le32_to_cpu(border
), newblock
);
1089 if (buffer_locked(bh
))
1095 /* free all allocated blocks in error case */
1096 for (i
= 0; i
< depth
; i
++) {
1099 ext4_free_blocks(handle
, inode
, NULL
, ablocks
[i
], 1,
1100 EXT4_FREE_BLOCKS_METADATA
);
1109 * ext4_ext_grow_indepth:
1110 * implements tree growing procedure:
1111 * - allocates new block
1112 * - moves top-level data (index block or leaf) into the new block
1113 * - initializes new top-level, creating index that points to the
1114 * just created block
1116 static int ext4_ext_grow_indepth(handle_t
*handle
, struct inode
*inode
,
1118 struct ext4_extent
*newext
)
1120 struct ext4_extent_header
*neh
;
1121 struct buffer_head
*bh
;
1122 ext4_fsblk_t newblock
;
1125 newblock
= ext4_ext_new_meta_block(handle
, inode
, NULL
,
1126 newext
, &err
, flags
);
1130 bh
= sb_getblk(inode
->i_sb
, newblock
);
1133 ext4_std_error(inode
->i_sb
, err
);
1138 err
= ext4_journal_get_create_access(handle
, bh
);
1144 /* move top-level index/leaf into new block */
1145 memmove(bh
->b_data
, EXT4_I(inode
)->i_data
,
1146 sizeof(EXT4_I(inode
)->i_data
));
1148 /* set size of new block */
1149 neh
= ext_block_hdr(bh
);
1150 /* old root could have indexes or leaves
1151 * so calculate e_max right way */
1152 if (ext_depth(inode
))
1153 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
1155 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
1156 neh
->eh_magic
= EXT4_EXT_MAGIC
;
1157 ext4_extent_block_csum_set(inode
, neh
);
1158 set_buffer_uptodate(bh
);
1161 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1165 /* Update top-level index: num,max,pointer */
1166 neh
= ext_inode_hdr(inode
);
1167 neh
->eh_entries
= cpu_to_le16(1);
1168 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh
), newblock
);
1169 if (neh
->eh_depth
== 0) {
1170 /* Root extent block becomes index block */
1171 neh
->eh_max
= cpu_to_le16(ext4_ext_space_root_idx(inode
, 0));
1172 EXT_FIRST_INDEX(neh
)->ei_block
=
1173 EXT_FIRST_EXTENT(neh
)->ee_block
;
1175 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1176 le16_to_cpu(neh
->eh_entries
), le16_to_cpu(neh
->eh_max
),
1177 le32_to_cpu(EXT_FIRST_INDEX(neh
)->ei_block
),
1178 ext4_idx_pblock(EXT_FIRST_INDEX(neh
)));
1180 neh
->eh_depth
= cpu_to_le16(le16_to_cpu(neh
->eh_depth
) + 1);
1181 ext4_mark_inode_dirty(handle
, inode
);
1189 * ext4_ext_create_new_leaf:
1190 * finds empty index and adds new leaf.
1191 * if no free index is found, then it requests in-depth growing.
1193 static int ext4_ext_create_new_leaf(handle_t
*handle
, struct inode
*inode
,
1195 struct ext4_ext_path
*path
,
1196 struct ext4_extent
*newext
)
1198 struct ext4_ext_path
*curp
;
1199 int depth
, i
, err
= 0;
1202 i
= depth
= ext_depth(inode
);
1204 /* walk up to the tree and look for free index entry */
1205 curp
= path
+ depth
;
1206 while (i
> 0 && !EXT_HAS_FREE_INDEX(curp
)) {
1211 /* we use already allocated block for index block,
1212 * so subsequent data blocks should be contiguous */
1213 if (EXT_HAS_FREE_INDEX(curp
)) {
1214 /* if we found index with free entry, then use that
1215 * entry: create all needed subtree and add new leaf */
1216 err
= ext4_ext_split(handle
, inode
, flags
, path
, newext
, i
);
1221 ext4_ext_drop_refs(path
);
1222 path
= ext4_ext_find_extent(inode
,
1223 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1226 err
= PTR_ERR(path
);
1228 /* tree is full, time to grow in depth */
1229 err
= ext4_ext_grow_indepth(handle
, inode
, flags
, newext
);
1234 ext4_ext_drop_refs(path
);
1235 path
= ext4_ext_find_extent(inode
,
1236 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1239 err
= PTR_ERR(path
);
1244 * only first (depth 0 -> 1) produces free space;
1245 * in all other cases we have to split the grown tree
1247 depth
= ext_depth(inode
);
1248 if (path
[depth
].p_hdr
->eh_entries
== path
[depth
].p_hdr
->eh_max
) {
1249 /* now we need to split */
1259 * search the closest allocated block to the left for *logical
1260 * and returns it at @logical + it's physical address at @phys
1261 * if *logical is the smallest allocated block, the function
1262 * returns 0 at @phys
1263 * return value contains 0 (success) or error code
1265 static int ext4_ext_search_left(struct inode
*inode
,
1266 struct ext4_ext_path
*path
,
1267 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1269 struct ext4_extent_idx
*ix
;
1270 struct ext4_extent
*ex
;
1273 if (unlikely(path
== NULL
)) {
1274 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1277 depth
= path
->p_depth
;
1280 if (depth
== 0 && path
->p_ext
== NULL
)
1283 /* usually extent in the path covers blocks smaller
1284 * then *logical, but it can be that extent is the
1285 * first one in the file */
1287 ex
= path
[depth
].p_ext
;
1288 ee_len
= ext4_ext_get_actual_len(ex
);
1289 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1290 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1291 EXT4_ERROR_INODE(inode
,
1292 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1293 *logical
, le32_to_cpu(ex
->ee_block
));
1296 while (--depth
>= 0) {
1297 ix
= path
[depth
].p_idx
;
1298 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1299 EXT4_ERROR_INODE(inode
,
1300 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1301 ix
!= NULL
? le32_to_cpu(ix
->ei_block
) : 0,
1302 EXT_FIRST_INDEX(path
[depth
].p_hdr
) != NULL
?
1303 le32_to_cpu(EXT_FIRST_INDEX(path
[depth
].p_hdr
)->ei_block
) : 0,
1311 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1312 EXT4_ERROR_INODE(inode
,
1313 "logical %d < ee_block %d + ee_len %d!",
1314 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1318 *logical
= le32_to_cpu(ex
->ee_block
) + ee_len
- 1;
1319 *phys
= ext4_ext_pblock(ex
) + ee_len
- 1;
1324 * search the closest allocated block to the right for *logical
1325 * and returns it at @logical + it's physical address at @phys
1326 * if *logical is the largest allocated block, the function
1327 * returns 0 at @phys
1328 * return value contains 0 (success) or error code
1330 static int ext4_ext_search_right(struct inode
*inode
,
1331 struct ext4_ext_path
*path
,
1332 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
,
1333 struct ext4_extent
**ret_ex
)
1335 struct buffer_head
*bh
= NULL
;
1336 struct ext4_extent_header
*eh
;
1337 struct ext4_extent_idx
*ix
;
1338 struct ext4_extent
*ex
;
1340 int depth
; /* Note, NOT eh_depth; depth from top of tree */
1343 if (unlikely(path
== NULL
)) {
1344 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1347 depth
= path
->p_depth
;
1350 if (depth
== 0 && path
->p_ext
== NULL
)
1353 /* usually extent in the path covers blocks smaller
1354 * then *logical, but it can be that extent is the
1355 * first one in the file */
1357 ex
= path
[depth
].p_ext
;
1358 ee_len
= ext4_ext_get_actual_len(ex
);
1359 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1360 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1361 EXT4_ERROR_INODE(inode
,
1362 "first_extent(path[%d].p_hdr) != ex",
1366 while (--depth
>= 0) {
1367 ix
= path
[depth
].p_idx
;
1368 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1369 EXT4_ERROR_INODE(inode
,
1370 "ix != EXT_FIRST_INDEX *logical %d!",
1378 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1379 EXT4_ERROR_INODE(inode
,
1380 "logical %d < ee_block %d + ee_len %d!",
1381 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1385 if (ex
!= EXT_LAST_EXTENT(path
[depth
].p_hdr
)) {
1386 /* next allocated block in this leaf */
1391 /* go up and search for index to the right */
1392 while (--depth
>= 0) {
1393 ix
= path
[depth
].p_idx
;
1394 if (ix
!= EXT_LAST_INDEX(path
[depth
].p_hdr
))
1398 /* we've gone up to the root and found no index to the right */
1402 /* we've found index to the right, let's
1403 * follow it and find the closest allocated
1404 * block to the right */
1406 block
= ext4_idx_pblock(ix
);
1407 while (++depth
< path
->p_depth
) {
1408 bh
= sb_bread(inode
->i_sb
, block
);
1411 eh
= ext_block_hdr(bh
);
1412 /* subtract from p_depth to get proper eh_depth */
1413 if (ext4_ext_check_block(inode
, eh
,
1414 path
->p_depth
- depth
, bh
)) {
1418 ix
= EXT_FIRST_INDEX(eh
);
1419 block
= ext4_idx_pblock(ix
);
1423 bh
= sb_bread(inode
->i_sb
, block
);
1426 eh
= ext_block_hdr(bh
);
1427 if (ext4_ext_check_block(inode
, eh
, path
->p_depth
- depth
, bh
)) {
1431 ex
= EXT_FIRST_EXTENT(eh
);
1433 *logical
= le32_to_cpu(ex
->ee_block
);
1434 *phys
= ext4_ext_pblock(ex
);
1442 * ext4_ext_next_allocated_block:
1443 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1444 * NOTE: it considers block number from index entry as
1445 * allocated block. Thus, index entries have to be consistent
1449 ext4_ext_next_allocated_block(struct ext4_ext_path
*path
)
1453 BUG_ON(path
== NULL
);
1454 depth
= path
->p_depth
;
1456 if (depth
== 0 && path
->p_ext
== NULL
)
1457 return EXT_MAX_BLOCKS
;
1459 while (depth
>= 0) {
1460 if (depth
== path
->p_depth
) {
1462 if (path
[depth
].p_ext
&&
1463 path
[depth
].p_ext
!=
1464 EXT_LAST_EXTENT(path
[depth
].p_hdr
))
1465 return le32_to_cpu(path
[depth
].p_ext
[1].ee_block
);
1468 if (path
[depth
].p_idx
!=
1469 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1470 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1475 return EXT_MAX_BLOCKS
;
1479 * ext4_ext_next_leaf_block:
1480 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1482 static ext4_lblk_t
ext4_ext_next_leaf_block(struct ext4_ext_path
*path
)
1486 BUG_ON(path
== NULL
);
1487 depth
= path
->p_depth
;
1489 /* zero-tree has no leaf blocks at all */
1491 return EXT_MAX_BLOCKS
;
1493 /* go to index block */
1496 while (depth
>= 0) {
1497 if (path
[depth
].p_idx
!=
1498 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1499 return (ext4_lblk_t
)
1500 le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1504 return EXT_MAX_BLOCKS
;
1508 * ext4_ext_correct_indexes:
1509 * if leaf gets modified and modified extent is first in the leaf,
1510 * then we have to correct all indexes above.
1511 * TODO: do we need to correct tree in all cases?
1513 static int ext4_ext_correct_indexes(handle_t
*handle
, struct inode
*inode
,
1514 struct ext4_ext_path
*path
)
1516 struct ext4_extent_header
*eh
;
1517 int depth
= ext_depth(inode
);
1518 struct ext4_extent
*ex
;
1522 eh
= path
[depth
].p_hdr
;
1523 ex
= path
[depth
].p_ext
;
1525 if (unlikely(ex
== NULL
|| eh
== NULL
)) {
1526 EXT4_ERROR_INODE(inode
,
1527 "ex %p == NULL or eh %p == NULL", ex
, eh
);
1532 /* there is no tree at all */
1536 if (ex
!= EXT_FIRST_EXTENT(eh
)) {
1537 /* we correct tree if first leaf got modified only */
1542 * TODO: we need correction if border is smaller than current one
1545 border
= path
[depth
].p_ext
->ee_block
;
1546 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1549 path
[k
].p_idx
->ei_block
= border
;
1550 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1555 /* change all left-side indexes */
1556 if (path
[k
+1].p_idx
!= EXT_FIRST_INDEX(path
[k
+1].p_hdr
))
1558 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1561 path
[k
].p_idx
->ei_block
= border
;
1562 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1571 ext4_can_extents_be_merged(struct inode
*inode
, struct ext4_extent
*ex1
,
1572 struct ext4_extent
*ex2
)
1574 unsigned short ext1_ee_len
, ext2_ee_len
, max_len
;
1577 * Make sure that either both extents are uninitialized, or
1580 if (ext4_ext_is_uninitialized(ex1
) ^ ext4_ext_is_uninitialized(ex2
))
1583 if (ext4_ext_is_uninitialized(ex1
))
1584 max_len
= EXT_UNINIT_MAX_LEN
;
1586 max_len
= EXT_INIT_MAX_LEN
;
1588 ext1_ee_len
= ext4_ext_get_actual_len(ex1
);
1589 ext2_ee_len
= ext4_ext_get_actual_len(ex2
);
1591 if (le32_to_cpu(ex1
->ee_block
) + ext1_ee_len
!=
1592 le32_to_cpu(ex2
->ee_block
))
1596 * To allow future support for preallocated extents to be added
1597 * as an RO_COMPAT feature, refuse to merge to extents if
1598 * this can result in the top bit of ee_len being set.
1600 if (ext1_ee_len
+ ext2_ee_len
> max_len
)
1602 #ifdef AGGRESSIVE_TEST
1603 if (ext1_ee_len
>= 4)
1607 if (ext4_ext_pblock(ex1
) + ext1_ee_len
== ext4_ext_pblock(ex2
))
1613 * This function tries to merge the "ex" extent to the next extent in the tree.
1614 * It always tries to merge towards right. If you want to merge towards
1615 * left, pass "ex - 1" as argument instead of "ex".
1616 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1617 * 1 if they got merged.
1619 static int ext4_ext_try_to_merge_right(struct inode
*inode
,
1620 struct ext4_ext_path
*path
,
1621 struct ext4_extent
*ex
)
1623 struct ext4_extent_header
*eh
;
1624 unsigned int depth
, len
;
1626 int uninitialized
= 0;
1628 depth
= ext_depth(inode
);
1629 BUG_ON(path
[depth
].p_hdr
== NULL
);
1630 eh
= path
[depth
].p_hdr
;
1632 while (ex
< EXT_LAST_EXTENT(eh
)) {
1633 if (!ext4_can_extents_be_merged(inode
, ex
, ex
+ 1))
1635 /* merge with next extent! */
1636 if (ext4_ext_is_uninitialized(ex
))
1638 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1639 + ext4_ext_get_actual_len(ex
+ 1));
1641 ext4_ext_mark_uninitialized(ex
);
1643 if (ex
+ 1 < EXT_LAST_EXTENT(eh
)) {
1644 len
= (EXT_LAST_EXTENT(eh
) - ex
- 1)
1645 * sizeof(struct ext4_extent
);
1646 memmove(ex
+ 1, ex
+ 2, len
);
1648 le16_add_cpu(&eh
->eh_entries
, -1);
1650 WARN_ON(eh
->eh_entries
== 0);
1651 if (!eh
->eh_entries
)
1652 EXT4_ERROR_INODE(inode
, "eh->eh_entries = 0!");
1659 * This function tries to merge the @ex extent to neighbours in the tree.
1660 * return 1 if merge left else 0.
1662 static int ext4_ext_try_to_merge(struct inode
*inode
,
1663 struct ext4_ext_path
*path
,
1664 struct ext4_extent
*ex
) {
1665 struct ext4_extent_header
*eh
;
1670 depth
= ext_depth(inode
);
1671 BUG_ON(path
[depth
].p_hdr
== NULL
);
1672 eh
= path
[depth
].p_hdr
;
1674 if (ex
> EXT_FIRST_EXTENT(eh
))
1675 merge_done
= ext4_ext_try_to_merge_right(inode
, path
, ex
- 1);
1678 ret
= ext4_ext_try_to_merge_right(inode
, path
, ex
);
1684 * check if a portion of the "newext" extent overlaps with an
1687 * If there is an overlap discovered, it updates the length of the newext
1688 * such that there will be no overlap, and then returns 1.
1689 * If there is no overlap found, it returns 0.
1691 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info
*sbi
,
1692 struct inode
*inode
,
1693 struct ext4_extent
*newext
,
1694 struct ext4_ext_path
*path
)
1697 unsigned int depth
, len1
;
1698 unsigned int ret
= 0;
1700 b1
= le32_to_cpu(newext
->ee_block
);
1701 len1
= ext4_ext_get_actual_len(newext
);
1702 depth
= ext_depth(inode
);
1703 if (!path
[depth
].p_ext
)
1705 b2
= le32_to_cpu(path
[depth
].p_ext
->ee_block
);
1706 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1709 * get the next allocated block if the extent in the path
1710 * is before the requested block(s)
1713 b2
= ext4_ext_next_allocated_block(path
);
1714 if (b2
== EXT_MAX_BLOCKS
)
1716 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1719 /* check for wrap through zero on extent logical start block*/
1720 if (b1
+ len1
< b1
) {
1721 len1
= EXT_MAX_BLOCKS
- b1
;
1722 newext
->ee_len
= cpu_to_le16(len1
);
1726 /* check for overlap */
1727 if (b1
+ len1
> b2
) {
1728 newext
->ee_len
= cpu_to_le16(b2
- b1
);
1736 * ext4_ext_insert_extent:
1737 * tries to merge requsted extent into the existing extent or
1738 * inserts requested extent as new one into the tree,
1739 * creating new leaf in the no-space case.
1741 int ext4_ext_insert_extent(handle_t
*handle
, struct inode
*inode
,
1742 struct ext4_ext_path
*path
,
1743 struct ext4_extent
*newext
, int flag
)
1745 struct ext4_extent_header
*eh
;
1746 struct ext4_extent
*ex
, *fex
;
1747 struct ext4_extent
*nearex
; /* nearest extent */
1748 struct ext4_ext_path
*npath
= NULL
;
1749 int depth
, len
, err
;
1751 unsigned uninitialized
= 0;
1754 if (unlikely(ext4_ext_get_actual_len(newext
) == 0)) {
1755 EXT4_ERROR_INODE(inode
, "ext4_ext_get_actual_len(newext) == 0");
1758 depth
= ext_depth(inode
);
1759 ex
= path
[depth
].p_ext
;
1760 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1761 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1765 /* try to insert block into found extent and return */
1766 if (ex
&& !(flag
& EXT4_GET_BLOCKS_PRE_IO
)
1767 && ext4_can_extents_be_merged(inode
, ex
, newext
)) {
1768 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1769 ext4_ext_is_uninitialized(newext
),
1770 ext4_ext_get_actual_len(newext
),
1771 le32_to_cpu(ex
->ee_block
),
1772 ext4_ext_is_uninitialized(ex
),
1773 ext4_ext_get_actual_len(ex
),
1774 ext4_ext_pblock(ex
));
1775 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1780 * ext4_can_extents_be_merged should have checked that either
1781 * both extents are uninitialized, or both aren't. Thus we
1782 * need to check only one of them here.
1784 if (ext4_ext_is_uninitialized(ex
))
1786 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1787 + ext4_ext_get_actual_len(newext
));
1789 ext4_ext_mark_uninitialized(ex
);
1790 eh
= path
[depth
].p_hdr
;
1795 depth
= ext_depth(inode
);
1796 eh
= path
[depth
].p_hdr
;
1797 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
))
1800 /* probably next leaf has space for us? */
1801 fex
= EXT_LAST_EXTENT(eh
);
1802 next
= EXT_MAX_BLOCKS
;
1803 if (le32_to_cpu(newext
->ee_block
) > le32_to_cpu(fex
->ee_block
))
1804 next
= ext4_ext_next_leaf_block(path
);
1805 if (next
!= EXT_MAX_BLOCKS
) {
1806 ext_debug("next leaf block - %u\n", next
);
1807 BUG_ON(npath
!= NULL
);
1808 npath
= ext4_ext_find_extent(inode
, next
, NULL
);
1810 return PTR_ERR(npath
);
1811 BUG_ON(npath
->p_depth
!= path
->p_depth
);
1812 eh
= npath
[depth
].p_hdr
;
1813 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
)) {
1814 ext_debug("next leaf isn't full(%d)\n",
1815 le16_to_cpu(eh
->eh_entries
));
1819 ext_debug("next leaf has no free space(%d,%d)\n",
1820 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
1824 * There is no free space in the found leaf.
1825 * We're gonna add a new leaf in the tree.
1827 if (flag
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
)
1828 flags
= EXT4_MB_USE_ROOT_BLOCKS
;
1829 err
= ext4_ext_create_new_leaf(handle
, inode
, flags
, path
, newext
);
1832 depth
= ext_depth(inode
);
1833 eh
= path
[depth
].p_hdr
;
1836 nearex
= path
[depth
].p_ext
;
1838 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1843 /* there is no extent in this leaf, create first one */
1844 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1845 le32_to_cpu(newext
->ee_block
),
1846 ext4_ext_pblock(newext
),
1847 ext4_ext_is_uninitialized(newext
),
1848 ext4_ext_get_actual_len(newext
));
1849 nearex
= EXT_FIRST_EXTENT(eh
);
1851 if (le32_to_cpu(newext
->ee_block
)
1852 > le32_to_cpu(nearex
->ee_block
)) {
1854 ext_debug("insert %u:%llu:[%d]%d before: "
1856 le32_to_cpu(newext
->ee_block
),
1857 ext4_ext_pblock(newext
),
1858 ext4_ext_is_uninitialized(newext
),
1859 ext4_ext_get_actual_len(newext
),
1864 BUG_ON(newext
->ee_block
== nearex
->ee_block
);
1865 ext_debug("insert %u:%llu:[%d]%d after: "
1867 le32_to_cpu(newext
->ee_block
),
1868 ext4_ext_pblock(newext
),
1869 ext4_ext_is_uninitialized(newext
),
1870 ext4_ext_get_actual_len(newext
),
1873 len
= EXT_LAST_EXTENT(eh
) - nearex
+ 1;
1875 ext_debug("insert %u:%llu:[%d]%d: "
1876 "move %d extents from 0x%p to 0x%p\n",
1877 le32_to_cpu(newext
->ee_block
),
1878 ext4_ext_pblock(newext
),
1879 ext4_ext_is_uninitialized(newext
),
1880 ext4_ext_get_actual_len(newext
),
1881 len
, nearex
, nearex
+ 1);
1882 memmove(nearex
+ 1, nearex
,
1883 len
* sizeof(struct ext4_extent
));
1887 le16_add_cpu(&eh
->eh_entries
, 1);
1888 path
[depth
].p_ext
= nearex
;
1889 nearex
->ee_block
= newext
->ee_block
;
1890 ext4_ext_store_pblock(nearex
, ext4_ext_pblock(newext
));
1891 nearex
->ee_len
= newext
->ee_len
;
1894 /* try to merge extents */
1895 if (!(flag
& EXT4_GET_BLOCKS_PRE_IO
))
1896 ext4_ext_try_to_merge(inode
, path
, nearex
);
1899 /* time to correct all indexes above */
1900 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1904 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1908 ext4_ext_drop_refs(npath
);
1911 ext4_ext_invalidate_cache(inode
);
1915 static int ext4_ext_walk_space(struct inode
*inode
, ext4_lblk_t block
,
1916 ext4_lblk_t num
, ext_prepare_callback func
,
1919 struct ext4_ext_path
*path
= NULL
;
1920 struct ext4_ext_cache cbex
;
1921 struct ext4_extent
*ex
;
1922 ext4_lblk_t next
, start
= 0, end
= 0;
1923 ext4_lblk_t last
= block
+ num
;
1924 int depth
, exists
, err
= 0;
1926 BUG_ON(func
== NULL
);
1927 BUG_ON(inode
== NULL
);
1929 while (block
< last
&& block
!= EXT_MAX_BLOCKS
) {
1931 /* find extent for this block */
1932 down_read(&EXT4_I(inode
)->i_data_sem
);
1933 path
= ext4_ext_find_extent(inode
, block
, path
);
1934 up_read(&EXT4_I(inode
)->i_data_sem
);
1936 err
= PTR_ERR(path
);
1941 depth
= ext_depth(inode
);
1942 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1943 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1947 ex
= path
[depth
].p_ext
;
1948 next
= ext4_ext_next_allocated_block(path
);
1952 /* there is no extent yet, so try to allocate
1953 * all requested space */
1956 } else if (le32_to_cpu(ex
->ee_block
) > block
) {
1957 /* need to allocate space before found extent */
1959 end
= le32_to_cpu(ex
->ee_block
);
1960 if (block
+ num
< end
)
1962 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1963 + ext4_ext_get_actual_len(ex
)) {
1964 /* need to allocate space after found extent */
1969 } else if (block
>= le32_to_cpu(ex
->ee_block
)) {
1971 * some part of requested space is covered
1975 end
= le32_to_cpu(ex
->ee_block
)
1976 + ext4_ext_get_actual_len(ex
);
1977 if (block
+ num
< end
)
1983 BUG_ON(end
<= start
);
1986 cbex
.ec_block
= start
;
1987 cbex
.ec_len
= end
- start
;
1990 cbex
.ec_block
= le32_to_cpu(ex
->ee_block
);
1991 cbex
.ec_len
= ext4_ext_get_actual_len(ex
);
1992 cbex
.ec_start
= ext4_ext_pblock(ex
);
1995 if (unlikely(cbex
.ec_len
== 0)) {
1996 EXT4_ERROR_INODE(inode
, "cbex.ec_len == 0");
2000 err
= func(inode
, next
, &cbex
, ex
, cbdata
);
2001 ext4_ext_drop_refs(path
);
2006 if (err
== EXT_REPEAT
)
2008 else if (err
== EXT_BREAK
) {
2013 if (ext_depth(inode
) != depth
) {
2014 /* depth was changed. we have to realloc path */
2019 block
= cbex
.ec_block
+ cbex
.ec_len
;
2023 ext4_ext_drop_refs(path
);
2031 ext4_ext_put_in_cache(struct inode
*inode
, ext4_lblk_t block
,
2032 __u32 len
, ext4_fsblk_t start
)
2034 struct ext4_ext_cache
*cex
;
2036 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
2037 trace_ext4_ext_put_in_cache(inode
, block
, len
, start
);
2038 cex
= &EXT4_I(inode
)->i_cached_extent
;
2039 cex
->ec_block
= block
;
2041 cex
->ec_start
= start
;
2042 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
2046 * ext4_ext_put_gap_in_cache:
2047 * calculate boundaries of the gap that the requested block fits into
2048 * and cache this gap
2051 ext4_ext_put_gap_in_cache(struct inode
*inode
, struct ext4_ext_path
*path
,
2054 int depth
= ext_depth(inode
);
2057 struct ext4_extent
*ex
;
2059 ex
= path
[depth
].p_ext
;
2061 /* there is no extent yet, so gap is [0;-] */
2063 len
= EXT_MAX_BLOCKS
;
2064 ext_debug("cache gap(whole file):");
2065 } else if (block
< le32_to_cpu(ex
->ee_block
)) {
2067 len
= le32_to_cpu(ex
->ee_block
) - block
;
2068 ext_debug("cache gap(before): %u [%u:%u]",
2070 le32_to_cpu(ex
->ee_block
),
2071 ext4_ext_get_actual_len(ex
));
2072 } else if (block
>= le32_to_cpu(ex
->ee_block
)
2073 + ext4_ext_get_actual_len(ex
)) {
2075 lblock
= le32_to_cpu(ex
->ee_block
)
2076 + ext4_ext_get_actual_len(ex
);
2078 next
= ext4_ext_next_allocated_block(path
);
2079 ext_debug("cache gap(after): [%u:%u] %u",
2080 le32_to_cpu(ex
->ee_block
),
2081 ext4_ext_get_actual_len(ex
),
2083 BUG_ON(next
== lblock
);
2084 len
= next
- lblock
;
2090 ext_debug(" -> %u:%lu\n", lblock
, len
);
2091 ext4_ext_put_in_cache(inode
, lblock
, len
, 0);
2095 * ext4_ext_check_cache()
2096 * Checks to see if the given block is in the cache.
2097 * If it is, the cached extent is stored in the given
2098 * cache extent pointer. If the cached extent is a hole,
2099 * this routine should be used instead of
2100 * ext4_ext_in_cache if the calling function needs to
2101 * know the size of the hole.
2103 * @inode: The files inode
2104 * @block: The block to look for in the cache
2105 * @ex: Pointer where the cached extent will be stored
2106 * if it contains block
2108 * Return 0 if cache is invalid; 1 if the cache is valid
2110 static int ext4_ext_check_cache(struct inode
*inode
, ext4_lblk_t block
,
2111 struct ext4_ext_cache
*ex
){
2112 struct ext4_ext_cache
*cex
;
2113 struct ext4_sb_info
*sbi
;
2117 * We borrow i_block_reservation_lock to protect i_cached_extent
2119 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
2120 cex
= &EXT4_I(inode
)->i_cached_extent
;
2121 sbi
= EXT4_SB(inode
->i_sb
);
2123 /* has cache valid data? */
2124 if (cex
->ec_len
== 0)
2127 if (in_range(block
, cex
->ec_block
, cex
->ec_len
)) {
2128 memcpy(ex
, cex
, sizeof(struct ext4_ext_cache
));
2129 ext_debug("%u cached by %u:%u:%llu\n",
2131 cex
->ec_block
, cex
->ec_len
, cex
->ec_start
);
2135 trace_ext4_ext_in_cache(inode
, block
, ret
);
2136 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
2141 * ext4_ext_in_cache()
2142 * Checks to see if the given block is in the cache.
2143 * If it is, the cached extent is stored in the given
2146 * @inode: The files inode
2147 * @block: The block to look for in the cache
2148 * @ex: Pointer where the cached extent will be stored
2149 * if it contains block
2151 * Return 0 if cache is invalid; 1 if the cache is valid
2154 ext4_ext_in_cache(struct inode
*inode
, ext4_lblk_t block
,
2155 struct ext4_extent
*ex
)
2157 struct ext4_ext_cache cex
;
2160 if (ext4_ext_check_cache(inode
, block
, &cex
)) {
2161 ex
->ee_block
= cpu_to_le32(cex
.ec_block
);
2162 ext4_ext_store_pblock(ex
, cex
.ec_start
);
2163 ex
->ee_len
= cpu_to_le16(cex
.ec_len
);
2173 * removes index from the index block.
2175 static int ext4_ext_rm_idx(handle_t
*handle
, struct inode
*inode
,
2176 struct ext4_ext_path
*path
)
2181 /* free index block */
2183 leaf
= ext4_idx_pblock(path
->p_idx
);
2184 if (unlikely(path
->p_hdr
->eh_entries
== 0)) {
2185 EXT4_ERROR_INODE(inode
, "path->p_hdr->eh_entries == 0");
2188 err
= ext4_ext_get_access(handle
, inode
, path
);
2192 if (path
->p_idx
!= EXT_LAST_INDEX(path
->p_hdr
)) {
2193 int len
= EXT_LAST_INDEX(path
->p_hdr
) - path
->p_idx
;
2194 len
*= sizeof(struct ext4_extent_idx
);
2195 memmove(path
->p_idx
, path
->p_idx
+ 1, len
);
2198 le16_add_cpu(&path
->p_hdr
->eh_entries
, -1);
2199 err
= ext4_ext_dirty(handle
, inode
, path
);
2202 ext_debug("index is empty, remove it, free block %llu\n", leaf
);
2203 trace_ext4_ext_rm_idx(inode
, leaf
);
2205 ext4_free_blocks(handle
, inode
, NULL
, leaf
, 1,
2206 EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
);
2211 * ext4_ext_calc_credits_for_single_extent:
2212 * This routine returns max. credits that needed to insert an extent
2213 * to the extent tree.
2214 * When pass the actual path, the caller should calculate credits
2217 int ext4_ext_calc_credits_for_single_extent(struct inode
*inode
, int nrblocks
,
2218 struct ext4_ext_path
*path
)
2221 int depth
= ext_depth(inode
);
2224 /* probably there is space in leaf? */
2225 if (le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)
2226 < le16_to_cpu(path
[depth
].p_hdr
->eh_max
)) {
2229 * There are some space in the leaf tree, no
2230 * need to account for leaf block credit
2232 * bitmaps and block group descriptor blocks
2233 * and other metadata blocks still need to be
2236 /* 1 bitmap, 1 block group descriptor */
2237 ret
= 2 + EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
2242 return ext4_chunk_trans_blocks(inode
, nrblocks
);
2246 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2248 * if nrblocks are fit in a single extent (chunk flag is 1), then
2249 * in the worse case, each tree level index/leaf need to be changed
2250 * if the tree split due to insert a new extent, then the old tree
2251 * index/leaf need to be updated too
2253 * If the nrblocks are discontiguous, they could cause
2254 * the whole tree split more than once, but this is really rare.
2256 int ext4_ext_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
2259 int depth
= ext_depth(inode
);
2269 static int ext4_remove_blocks(handle_t
*handle
, struct inode
*inode
,
2270 struct ext4_extent
*ex
,
2271 ext4_fsblk_t
*partial_cluster
,
2272 ext4_lblk_t from
, ext4_lblk_t to
)
2274 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2275 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
2277 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2279 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2280 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2282 * For bigalloc file systems, we never free a partial cluster
2283 * at the beginning of the extent. Instead, we make a note
2284 * that we tried freeing the cluster, and check to see if we
2285 * need to free it on a subsequent call to ext4_remove_blocks,
2286 * or at the end of the ext4_truncate() operation.
2288 flags
|= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
;
2290 trace_ext4_remove_blocks(inode
, ex
, from
, to
, *partial_cluster
);
2292 * If we have a partial cluster, and it's different from the
2293 * cluster of the last block, we need to explicitly free the
2294 * partial cluster here.
2296 pblk
= ext4_ext_pblock(ex
) + ee_len
- 1;
2297 if (*partial_cluster
&& (EXT4_B2C(sbi
, pblk
) != *partial_cluster
)) {
2298 ext4_free_blocks(handle
, inode
, NULL
,
2299 EXT4_C2B(sbi
, *partial_cluster
),
2300 sbi
->s_cluster_ratio
, flags
);
2301 *partial_cluster
= 0;
2304 #ifdef EXTENTS_STATS
2306 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2307 spin_lock(&sbi
->s_ext_stats_lock
);
2308 sbi
->s_ext_blocks
+= ee_len
;
2309 sbi
->s_ext_extents
++;
2310 if (ee_len
< sbi
->s_ext_min
)
2311 sbi
->s_ext_min
= ee_len
;
2312 if (ee_len
> sbi
->s_ext_max
)
2313 sbi
->s_ext_max
= ee_len
;
2314 if (ext_depth(inode
) > sbi
->s_depth_max
)
2315 sbi
->s_depth_max
= ext_depth(inode
);
2316 spin_unlock(&sbi
->s_ext_stats_lock
);
2319 if (from
>= le32_to_cpu(ex
->ee_block
)
2320 && to
== le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2324 num
= le32_to_cpu(ex
->ee_block
) + ee_len
- from
;
2325 pblk
= ext4_ext_pblock(ex
) + ee_len
- num
;
2326 ext_debug("free last %u blocks starting %llu\n", num
, pblk
);
2327 ext4_free_blocks(handle
, inode
, NULL
, pblk
, num
, flags
);
2329 * If the block range to be freed didn't start at the
2330 * beginning of a cluster, and we removed the entire
2331 * extent, save the partial cluster here, since we
2332 * might need to delete if we determine that the
2333 * truncate operation has removed all of the blocks in
2336 if (pblk
& (sbi
->s_cluster_ratio
- 1) &&
2338 *partial_cluster
= EXT4_B2C(sbi
, pblk
);
2340 *partial_cluster
= 0;
2341 } else if (from
== le32_to_cpu(ex
->ee_block
)
2342 && to
<= le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2348 start
= ext4_ext_pblock(ex
);
2350 ext_debug("free first %u blocks starting %llu\n", num
, start
);
2351 ext4_free_blocks(handle
, inode
, NULL
, start
, num
, flags
);
2354 printk(KERN_INFO
"strange request: removal(2) "
2355 "%u-%u from %u:%u\n",
2356 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
2363 * ext4_ext_rm_leaf() Removes the extents associated with the
2364 * blocks appearing between "start" and "end", and splits the extents
2365 * if "start" and "end" appear in the same extent
2367 * @handle: The journal handle
2368 * @inode: The files inode
2369 * @path: The path to the leaf
2370 * @start: The first block to remove
2371 * @end: The last block to remove
2374 ext4_ext_rm_leaf(handle_t
*handle
, struct inode
*inode
,
2375 struct ext4_ext_path
*path
, ext4_fsblk_t
*partial_cluster
,
2376 ext4_lblk_t start
, ext4_lblk_t end
)
2378 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2379 int err
= 0, correct_index
= 0;
2380 int depth
= ext_depth(inode
), credits
;
2381 struct ext4_extent_header
*eh
;
2384 ext4_lblk_t ex_ee_block
;
2385 unsigned short ex_ee_len
;
2386 unsigned uninitialized
= 0;
2387 struct ext4_extent
*ex
;
2389 /* the header must be checked already in ext4_ext_remove_space() */
2390 ext_debug("truncate since %u in leaf to %u\n", start
, end
);
2391 if (!path
[depth
].p_hdr
)
2392 path
[depth
].p_hdr
= ext_block_hdr(path
[depth
].p_bh
);
2393 eh
= path
[depth
].p_hdr
;
2394 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
2395 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
2398 /* find where to start removing */
2399 ex
= EXT_LAST_EXTENT(eh
);
2401 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2402 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2404 trace_ext4_ext_rm_leaf(inode
, start
, ex
, *partial_cluster
);
2406 while (ex
>= EXT_FIRST_EXTENT(eh
) &&
2407 ex_ee_block
+ ex_ee_len
> start
) {
2409 if (ext4_ext_is_uninitialized(ex
))
2414 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block
,
2415 uninitialized
, ex_ee_len
);
2416 path
[depth
].p_ext
= ex
;
2418 a
= ex_ee_block
> start
? ex_ee_block
: start
;
2419 b
= ex_ee_block
+ex_ee_len
- 1 < end
?
2420 ex_ee_block
+ex_ee_len
- 1 : end
;
2422 ext_debug(" border %u:%u\n", a
, b
);
2424 /* If this extent is beyond the end of the hole, skip it */
2425 if (end
< ex_ee_block
) {
2427 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2428 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2430 } else if (b
!= ex_ee_block
+ ex_ee_len
- 1) {
2431 EXT4_ERROR_INODE(inode
,
2432 "can not handle truncate %u:%u "
2434 start
, end
, ex_ee_block
,
2435 ex_ee_block
+ ex_ee_len
- 1);
2438 } else if (a
!= ex_ee_block
) {
2439 /* remove tail of the extent */
2440 num
= a
- ex_ee_block
;
2442 /* remove whole extent: excellent! */
2446 * 3 for leaf, sb, and inode plus 2 (bmap and group
2447 * descriptor) for each block group; assume two block
2448 * groups plus ex_ee_len/blocks_per_block_group for
2451 credits
= 7 + 2*(ex_ee_len
/EXT4_BLOCKS_PER_GROUP(inode
->i_sb
));
2452 if (ex
== EXT_FIRST_EXTENT(eh
)) {
2454 credits
+= (ext_depth(inode
)) + 1;
2456 credits
+= EXT4_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
2458 err
= ext4_ext_truncate_extend_restart(handle
, inode
, credits
);
2462 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2466 err
= ext4_remove_blocks(handle
, inode
, ex
, partial_cluster
,
2472 /* this extent is removed; mark slot entirely unused */
2473 ext4_ext_store_pblock(ex
, 0);
2475 ex
->ee_len
= cpu_to_le16(num
);
2477 * Do not mark uninitialized if all the blocks in the
2478 * extent have been removed.
2480 if (uninitialized
&& num
)
2481 ext4_ext_mark_uninitialized(ex
);
2483 * If the extent was completely released,
2484 * we need to remove it from the leaf
2487 if (end
!= EXT_MAX_BLOCKS
- 1) {
2489 * For hole punching, we need to scoot all the
2490 * extents up when an extent is removed so that
2491 * we dont have blank extents in the middle
2493 memmove(ex
, ex
+1, (EXT_LAST_EXTENT(eh
) - ex
) *
2494 sizeof(struct ext4_extent
));
2496 /* Now get rid of the one at the end */
2497 memset(EXT_LAST_EXTENT(eh
), 0,
2498 sizeof(struct ext4_extent
));
2500 le16_add_cpu(&eh
->eh_entries
, -1);
2502 *partial_cluster
= 0;
2504 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2508 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block
, num
,
2509 ext4_ext_pblock(ex
));
2511 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2512 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2515 if (correct_index
&& eh
->eh_entries
)
2516 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2519 * If there is still a entry in the leaf node, check to see if
2520 * it references the partial cluster. This is the only place
2521 * where it could; if it doesn't, we can free the cluster.
2523 if (*partial_cluster
&& ex
>= EXT_FIRST_EXTENT(eh
) &&
2524 (EXT4_B2C(sbi
, ext4_ext_pblock(ex
) + ex_ee_len
- 1) !=
2525 *partial_cluster
)) {
2526 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2528 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2529 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2531 ext4_free_blocks(handle
, inode
, NULL
,
2532 EXT4_C2B(sbi
, *partial_cluster
),
2533 sbi
->s_cluster_ratio
, flags
);
2534 *partial_cluster
= 0;
2537 /* if this leaf is free, then we should
2538 * remove it from index block above */
2539 if (err
== 0 && eh
->eh_entries
== 0 && path
[depth
].p_bh
!= NULL
)
2540 err
= ext4_ext_rm_idx(handle
, inode
, path
+ depth
);
2547 * ext4_ext_more_to_rm:
2548 * returns 1 if current index has to be freed (even partial)
2551 ext4_ext_more_to_rm(struct ext4_ext_path
*path
)
2553 BUG_ON(path
->p_idx
== NULL
);
2555 if (path
->p_idx
< EXT_FIRST_INDEX(path
->p_hdr
))
2559 * if truncate on deeper level happened, it wasn't partial,
2560 * so we have to consider current index for truncation
2562 if (le16_to_cpu(path
->p_hdr
->eh_entries
) == path
->p_block
)
2567 static int ext4_ext_remove_space(struct inode
*inode
, ext4_lblk_t start
,
2570 struct super_block
*sb
= inode
->i_sb
;
2571 int depth
= ext_depth(inode
);
2572 struct ext4_ext_path
*path
= NULL
;
2573 ext4_fsblk_t partial_cluster
= 0;
2577 ext_debug("truncate since %u to %u\n", start
, end
);
2579 /* probably first extent we're gonna free will be last in block */
2580 handle
= ext4_journal_start(inode
, depth
+ 1);
2582 return PTR_ERR(handle
);
2585 ext4_ext_invalidate_cache(inode
);
2587 trace_ext4_ext_remove_space(inode
, start
, depth
);
2590 * Check if we are removing extents inside the extent tree. If that
2591 * is the case, we are going to punch a hole inside the extent tree
2592 * so we have to check whether we need to split the extent covering
2593 * the last block to remove so we can easily remove the part of it
2594 * in ext4_ext_rm_leaf().
2596 if (end
< EXT_MAX_BLOCKS
- 1) {
2597 struct ext4_extent
*ex
;
2598 ext4_lblk_t ee_block
;
2600 /* find extent for this block */
2601 path
= ext4_ext_find_extent(inode
, end
, NULL
);
2603 ext4_journal_stop(handle
);
2604 return PTR_ERR(path
);
2606 depth
= ext_depth(inode
);
2607 ex
= path
[depth
].p_ext
;
2609 ext4_ext_drop_refs(path
);
2615 ee_block
= le32_to_cpu(ex
->ee_block
);
2618 * See if the last block is inside the extent, if so split
2619 * the extent at 'end' block so we can easily remove the
2620 * tail of the first part of the split extent in
2621 * ext4_ext_rm_leaf().
2623 if (end
>= ee_block
&&
2624 end
< ee_block
+ ext4_ext_get_actual_len(ex
) - 1) {
2627 if (ext4_ext_is_uninitialized(ex
))
2628 split_flag
= EXT4_EXT_MARK_UNINIT1
|
2629 EXT4_EXT_MARK_UNINIT2
;
2632 * Split the extent in two so that 'end' is the last
2633 * block in the first new extent
2635 err
= ext4_split_extent_at(handle
, inode
, path
,
2636 end
+ 1, split_flag
,
2637 EXT4_GET_BLOCKS_PRE_IO
|
2638 EXT4_GET_BLOCKS_PUNCH_OUT_EXT
);
2647 * We start scanning from right side, freeing all the blocks
2648 * after i_size and walking into the tree depth-wise.
2650 depth
= ext_depth(inode
);
2655 le16_to_cpu(path
[k
].p_hdr
->eh_entries
)+1;
2657 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 1),
2660 ext4_journal_stop(handle
);
2663 path
[0].p_depth
= depth
;
2664 path
[0].p_hdr
= ext_inode_hdr(inode
);
2667 if (ext4_ext_check(inode
, path
[0].p_hdr
, depth
)) {
2674 while (i
>= 0 && err
== 0) {
2676 /* this is leaf block */
2677 err
= ext4_ext_rm_leaf(handle
, inode
, path
,
2678 &partial_cluster
, start
,
2680 /* root level has p_bh == NULL, brelse() eats this */
2681 brelse(path
[i
].p_bh
);
2682 path
[i
].p_bh
= NULL
;
2687 /* this is index block */
2688 if (!path
[i
].p_hdr
) {
2689 ext_debug("initialize header\n");
2690 path
[i
].p_hdr
= ext_block_hdr(path
[i
].p_bh
);
2693 if (!path
[i
].p_idx
) {
2694 /* this level hasn't been touched yet */
2695 path
[i
].p_idx
= EXT_LAST_INDEX(path
[i
].p_hdr
);
2696 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
)+1;
2697 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2699 le16_to_cpu(path
[i
].p_hdr
->eh_entries
));
2701 /* we were already here, see at next index */
2705 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2706 i
, EXT_FIRST_INDEX(path
[i
].p_hdr
),
2708 if (ext4_ext_more_to_rm(path
+ i
)) {
2709 struct buffer_head
*bh
;
2710 /* go to the next level */
2711 ext_debug("move to level %d (block %llu)\n",
2712 i
+ 1, ext4_idx_pblock(path
[i
].p_idx
));
2713 memset(path
+ i
+ 1, 0, sizeof(*path
));
2714 bh
= sb_bread(sb
, ext4_idx_pblock(path
[i
].p_idx
));
2716 /* should we reset i_size? */
2720 if (WARN_ON(i
+ 1 > depth
)) {
2724 if (ext4_ext_check_block(inode
, ext_block_hdr(bh
),
2725 depth
- i
- 1, bh
)) {
2729 path
[i
+ 1].p_bh
= bh
;
2731 /* save actual number of indexes since this
2732 * number is changed at the next iteration */
2733 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
);
2736 /* we finished processing this index, go up */
2737 if (path
[i
].p_hdr
->eh_entries
== 0 && i
> 0) {
2738 /* index is empty, remove it;
2739 * handle must be already prepared by the
2740 * truncatei_leaf() */
2741 err
= ext4_ext_rm_idx(handle
, inode
, path
+ i
);
2743 /* root level has p_bh == NULL, brelse() eats this */
2744 brelse(path
[i
].p_bh
);
2745 path
[i
].p_bh
= NULL
;
2747 ext_debug("return to level %d\n", i
);
2751 trace_ext4_ext_remove_space_done(inode
, start
, depth
, partial_cluster
,
2752 path
->p_hdr
->eh_entries
);
2754 /* If we still have something in the partial cluster and we have removed
2755 * even the first extent, then we should free the blocks in the partial
2756 * cluster as well. */
2757 if (partial_cluster
&& path
->p_hdr
->eh_entries
== 0) {
2758 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2760 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2761 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2763 ext4_free_blocks(handle
, inode
, NULL
,
2764 EXT4_C2B(EXT4_SB(sb
), partial_cluster
),
2765 EXT4_SB(sb
)->s_cluster_ratio
, flags
);
2766 partial_cluster
= 0;
2769 /* TODO: flexible tree reduction should be here */
2770 if (path
->p_hdr
->eh_entries
== 0) {
2772 * truncate to zero freed all the tree,
2773 * so we need to correct eh_depth
2775 err
= ext4_ext_get_access(handle
, inode
, path
);
2777 ext_inode_hdr(inode
)->eh_depth
= 0;
2778 ext_inode_hdr(inode
)->eh_max
=
2779 cpu_to_le16(ext4_ext_space_root(inode
, 0));
2780 err
= ext4_ext_dirty(handle
, inode
, path
);
2784 ext4_ext_drop_refs(path
);
2786 if (err
== -EAGAIN
) {
2790 ext4_journal_stop(handle
);
2796 * called at mount time
2798 void ext4_ext_init(struct super_block
*sb
)
2801 * possible initialization would be here
2804 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
)) {
2805 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2806 printk(KERN_INFO
"EXT4-fs: file extents enabled"
2807 #ifdef AGGRESSIVE_TEST
2808 ", aggressive tests"
2810 #ifdef CHECK_BINSEARCH
2813 #ifdef EXTENTS_STATS
2818 #ifdef EXTENTS_STATS
2819 spin_lock_init(&EXT4_SB(sb
)->s_ext_stats_lock
);
2820 EXT4_SB(sb
)->s_ext_min
= 1 << 30;
2821 EXT4_SB(sb
)->s_ext_max
= 0;
2827 * called at umount time
2829 void ext4_ext_release(struct super_block
*sb
)
2831 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
))
2834 #ifdef EXTENTS_STATS
2835 if (EXT4_SB(sb
)->s_ext_blocks
&& EXT4_SB(sb
)->s_ext_extents
) {
2836 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2837 printk(KERN_ERR
"EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2838 sbi
->s_ext_blocks
, sbi
->s_ext_extents
,
2839 sbi
->s_ext_blocks
/ sbi
->s_ext_extents
);
2840 printk(KERN_ERR
"EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2841 sbi
->s_ext_min
, sbi
->s_ext_max
, sbi
->s_depth_max
);
2846 /* FIXME!! we need to try to merge to left or right after zero-out */
2847 static int ext4_ext_zeroout(struct inode
*inode
, struct ext4_extent
*ex
)
2849 ext4_fsblk_t ee_pblock
;
2850 unsigned int ee_len
;
2853 ee_len
= ext4_ext_get_actual_len(ex
);
2854 ee_pblock
= ext4_ext_pblock(ex
);
2856 ret
= sb_issue_zeroout(inode
->i_sb
, ee_pblock
, ee_len
, GFP_NOFS
);
2864 * ext4_split_extent_at() splits an extent at given block.
2866 * @handle: the journal handle
2867 * @inode: the file inode
2868 * @path: the path to the extent
2869 * @split: the logical block where the extent is splitted.
2870 * @split_flags: indicates if the extent could be zeroout if split fails, and
2871 * the states(init or uninit) of new extents.
2872 * @flags: flags used to insert new extent to extent tree.
2875 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2876 * of which are deterimined by split_flag.
2878 * There are two cases:
2879 * a> the extent are splitted into two extent.
2880 * b> split is not needed, and just mark the extent.
2882 * return 0 on success.
2884 static int ext4_split_extent_at(handle_t
*handle
,
2885 struct inode
*inode
,
2886 struct ext4_ext_path
*path
,
2891 ext4_fsblk_t newblock
;
2892 ext4_lblk_t ee_block
;
2893 struct ext4_extent
*ex
, newex
, orig_ex
;
2894 struct ext4_extent
*ex2
= NULL
;
2895 unsigned int ee_len
, depth
;
2898 ext_debug("ext4_split_extents_at: inode %lu, logical"
2899 "block %llu\n", inode
->i_ino
, (unsigned long long)split
);
2901 ext4_ext_show_leaf(inode
, path
);
2903 depth
= ext_depth(inode
);
2904 ex
= path
[depth
].p_ext
;
2905 ee_block
= le32_to_cpu(ex
->ee_block
);
2906 ee_len
= ext4_ext_get_actual_len(ex
);
2907 newblock
= split
- ee_block
+ ext4_ext_pblock(ex
);
2909 BUG_ON(split
< ee_block
|| split
>= (ee_block
+ ee_len
));
2911 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2915 if (split
== ee_block
) {
2917 * case b: block @split is the block that the extent begins with
2918 * then we just change the state of the extent, and splitting
2921 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2922 ext4_ext_mark_uninitialized(ex
);
2924 ext4_ext_mark_initialized(ex
);
2926 if (!(flags
& EXT4_GET_BLOCKS_PRE_IO
))
2927 ext4_ext_try_to_merge(inode
, path
, ex
);
2929 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2934 memcpy(&orig_ex
, ex
, sizeof(orig_ex
));
2935 ex
->ee_len
= cpu_to_le16(split
- ee_block
);
2936 if (split_flag
& EXT4_EXT_MARK_UNINIT1
)
2937 ext4_ext_mark_uninitialized(ex
);
2940 * path may lead to new leaf, not to original leaf any more
2941 * after ext4_ext_insert_extent() returns,
2943 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2945 goto fix_extent_len
;
2948 ex2
->ee_block
= cpu_to_le32(split
);
2949 ex2
->ee_len
= cpu_to_le16(ee_len
- (split
- ee_block
));
2950 ext4_ext_store_pblock(ex2
, newblock
);
2951 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2952 ext4_ext_mark_uninitialized(ex2
);
2954 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
, flags
);
2955 if (err
== -ENOSPC
&& (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
2956 err
= ext4_ext_zeroout(inode
, &orig_ex
);
2958 goto fix_extent_len
;
2959 /* update the extent length and mark as initialized */
2960 ex
->ee_len
= cpu_to_le16(ee_len
);
2961 ext4_ext_try_to_merge(inode
, path
, ex
);
2962 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2965 goto fix_extent_len
;
2968 ext4_ext_show_leaf(inode
, path
);
2972 ex
->ee_len
= orig_ex
.ee_len
;
2973 ext4_ext_dirty(handle
, inode
, path
+ depth
);
2978 * ext4_split_extents() splits an extent and mark extent which is covered
2979 * by @map as split_flags indicates
2981 * It may result in splitting the extent into multiple extents (upto three)
2982 * There are three possibilities:
2983 * a> There is no split required
2984 * b> Splits in two extents: Split is happening at either end of the extent
2985 * c> Splits in three extents: Somone is splitting in middle of the extent
2988 static int ext4_split_extent(handle_t
*handle
,
2989 struct inode
*inode
,
2990 struct ext4_ext_path
*path
,
2991 struct ext4_map_blocks
*map
,
2995 ext4_lblk_t ee_block
;
2996 struct ext4_extent
*ex
;
2997 unsigned int ee_len
, depth
;
3000 int split_flag1
, flags1
;
3002 depth
= ext_depth(inode
);
3003 ex
= path
[depth
].p_ext
;
3004 ee_block
= le32_to_cpu(ex
->ee_block
);
3005 ee_len
= ext4_ext_get_actual_len(ex
);
3006 uninitialized
= ext4_ext_is_uninitialized(ex
);
3008 if (map
->m_lblk
+ map
->m_len
< ee_block
+ ee_len
) {
3009 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
3010 EXT4_EXT_MAY_ZEROOUT
: 0;
3011 flags1
= flags
| EXT4_GET_BLOCKS_PRE_IO
;
3013 split_flag1
|= EXT4_EXT_MARK_UNINIT1
|
3014 EXT4_EXT_MARK_UNINIT2
;
3015 err
= ext4_split_extent_at(handle
, inode
, path
,
3016 map
->m_lblk
+ map
->m_len
, split_flag1
, flags1
);
3021 ext4_ext_drop_refs(path
);
3022 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, path
);
3024 return PTR_ERR(path
);
3026 if (map
->m_lblk
>= ee_block
) {
3027 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
3028 EXT4_EXT_MAY_ZEROOUT
: 0;
3030 split_flag1
|= EXT4_EXT_MARK_UNINIT1
;
3031 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
3032 split_flag1
|= EXT4_EXT_MARK_UNINIT2
;
3033 err
= ext4_split_extent_at(handle
, inode
, path
,
3034 map
->m_lblk
, split_flag1
, flags
);
3039 ext4_ext_show_leaf(inode
, path
);
3041 return err
? err
: map
->m_len
;
3044 #define EXT4_EXT_ZERO_LEN 7
3046 * This function is called by ext4_ext_map_blocks() if someone tries to write
3047 * to an uninitialized extent. It may result in splitting the uninitialized
3048 * extent into multiple extents (up to three - one initialized and two
3050 * There are three possibilities:
3051 * a> There is no split required: Entire extent should be initialized
3052 * b> Splits in two extents: Write is happening at either end of the extent
3053 * c> Splits in three extents: Somone is writing in middle of the extent
3056 * - The extent pointed to by 'path' is uninitialized.
3057 * - The extent pointed to by 'path' contains a superset
3058 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3060 * Post-conditions on success:
3061 * - the returned value is the number of blocks beyond map->l_lblk
3062 * that are allocated and initialized.
3063 * It is guaranteed to be >= map->m_len.
3065 static int ext4_ext_convert_to_initialized(handle_t
*handle
,
3066 struct inode
*inode
,
3067 struct ext4_map_blocks
*map
,
3068 struct ext4_ext_path
*path
)
3070 struct ext4_extent_header
*eh
;
3071 struct ext4_map_blocks split_map
;
3072 struct ext4_extent zero_ex
;
3073 struct ext4_extent
*ex
;
3074 ext4_lblk_t ee_block
, eof_block
;
3075 unsigned int ee_len
, depth
;
3080 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3081 "block %llu, max_blocks %u\n", inode
->i_ino
,
3082 (unsigned long long)map
->m_lblk
, map
->m_len
);
3084 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
3085 inode
->i_sb
->s_blocksize_bits
;
3086 if (eof_block
< map
->m_lblk
+ map
->m_len
)
3087 eof_block
= map
->m_lblk
+ map
->m_len
;
3089 depth
= ext_depth(inode
);
3090 eh
= path
[depth
].p_hdr
;
3091 ex
= path
[depth
].p_ext
;
3092 ee_block
= le32_to_cpu(ex
->ee_block
);
3093 ee_len
= ext4_ext_get_actual_len(ex
);
3094 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3096 trace_ext4_ext_convert_to_initialized_enter(inode
, map
, ex
);
3098 /* Pre-conditions */
3099 BUG_ON(!ext4_ext_is_uninitialized(ex
));
3100 BUG_ON(!in_range(map
->m_lblk
, ee_block
, ee_len
));
3103 * Attempt to transfer newly initialized blocks from the currently
3104 * uninitialized extent to its left neighbor. This is much cheaper
3105 * than an insertion followed by a merge as those involve costly
3106 * memmove() calls. This is the common case in steady state for
3107 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3110 * Limitations of the current logic:
3111 * - L1: we only deal with writes at the start of the extent.
3112 * The approach could be extended to writes at the end
3113 * of the extent but this scenario was deemed less common.
3114 * - L2: we do not deal with writes covering the whole extent.
3115 * This would require removing the extent if the transfer
3117 * - L3: we only attempt to merge with an extent stored in the
3118 * same extent tree node.
3120 if ((map
->m_lblk
== ee_block
) && /*L1*/
3121 (map
->m_len
< ee_len
) && /*L2*/
3122 (ex
> EXT_FIRST_EXTENT(eh
))) { /*L3*/
3123 struct ext4_extent
*prev_ex
;
3124 ext4_lblk_t prev_lblk
;
3125 ext4_fsblk_t prev_pblk
, ee_pblk
;
3126 unsigned int prev_len
, write_len
;
3129 prev_lblk
= le32_to_cpu(prev_ex
->ee_block
);
3130 prev_len
= ext4_ext_get_actual_len(prev_ex
);
3131 prev_pblk
= ext4_ext_pblock(prev_ex
);
3132 ee_pblk
= ext4_ext_pblock(ex
);
3133 write_len
= map
->m_len
;
3136 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3137 * upon those conditions:
3138 * - C1: prev_ex is initialized,
3139 * - C2: prev_ex is logically abutting ex,
3140 * - C3: prev_ex is physically abutting ex,
3141 * - C4: prev_ex can receive the additional blocks without
3142 * overflowing the (initialized) length limit.
3144 if ((!ext4_ext_is_uninitialized(prev_ex
)) && /*C1*/
3145 ((prev_lblk
+ prev_len
) == ee_block
) && /*C2*/
3146 ((prev_pblk
+ prev_len
) == ee_pblk
) && /*C3*/
3147 (prev_len
< (EXT_INIT_MAX_LEN
- write_len
))) { /*C4*/
3148 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3152 trace_ext4_ext_convert_to_initialized_fastpath(inode
,
3155 /* Shift the start of ex by 'write_len' blocks */
3156 ex
->ee_block
= cpu_to_le32(ee_block
+ write_len
);
3157 ext4_ext_store_pblock(ex
, ee_pblk
+ write_len
);
3158 ex
->ee_len
= cpu_to_le16(ee_len
- write_len
);
3159 ext4_ext_mark_uninitialized(ex
); /* Restore the flag */
3161 /* Extend prev_ex by 'write_len' blocks */
3162 prev_ex
->ee_len
= cpu_to_le16(prev_len
+ write_len
);
3164 /* Mark the block containing both extents as dirty */
3165 ext4_ext_dirty(handle
, inode
, path
+ depth
);
3167 /* Update path to point to the right extent */
3168 path
[depth
].p_ext
= prev_ex
;
3170 /* Result: number of initialized blocks past m_lblk */
3171 allocated
= write_len
;
3176 WARN_ON(map
->m_lblk
< ee_block
);
3178 * It is safe to convert extent to initialized via explicit
3179 * zeroout only if extent is fully insde i_size or new_size.
3181 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3183 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3184 if (ee_len
<= 2*EXT4_EXT_ZERO_LEN
&&
3185 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3186 err
= ext4_ext_zeroout(inode
, ex
);
3190 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3193 ext4_ext_mark_initialized(ex
);
3194 ext4_ext_try_to_merge(inode
, path
, ex
);
3195 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
3201 * 1. split the extent into three extents.
3202 * 2. split the extent into two extents, zeroout the first half.
3203 * 3. split the extent into two extents, zeroout the second half.
3204 * 4. split the extent into two extents with out zeroout.
3206 split_map
.m_lblk
= map
->m_lblk
;
3207 split_map
.m_len
= map
->m_len
;
3209 if (allocated
> map
->m_len
) {
3210 if (allocated
<= EXT4_EXT_ZERO_LEN
&&
3211 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3214 cpu_to_le32(map
->m_lblk
);
3215 zero_ex
.ee_len
= cpu_to_le16(allocated
);
3216 ext4_ext_store_pblock(&zero_ex
,
3217 ext4_ext_pblock(ex
) + map
->m_lblk
- ee_block
);
3218 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3221 split_map
.m_lblk
= map
->m_lblk
;
3222 split_map
.m_len
= allocated
;
3223 } else if ((map
->m_lblk
- ee_block
+ map
->m_len
<
3224 EXT4_EXT_ZERO_LEN
) &&
3225 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3227 if (map
->m_lblk
!= ee_block
) {
3228 zero_ex
.ee_block
= ex
->ee_block
;
3229 zero_ex
.ee_len
= cpu_to_le16(map
->m_lblk
-
3231 ext4_ext_store_pblock(&zero_ex
,
3232 ext4_ext_pblock(ex
));
3233 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3238 split_map
.m_lblk
= ee_block
;
3239 split_map
.m_len
= map
->m_lblk
- ee_block
+ map
->m_len
;
3240 allocated
= map
->m_len
;
3244 allocated
= ext4_split_extent(handle
, inode
, path
,
3245 &split_map
, split_flag
, 0);
3250 return err
? err
: allocated
;
3254 * This function is called by ext4_ext_map_blocks() from
3255 * ext4_get_blocks_dio_write() when DIO to write
3256 * to an uninitialized extent.
3258 * Writing to an uninitialized extent may result in splitting the uninitialized
3259 * extent into multiple /initialized uninitialized extents (up to three)
3260 * There are three possibilities:
3261 * a> There is no split required: Entire extent should be uninitialized
3262 * b> Splits in two extents: Write is happening at either end of the extent
3263 * c> Splits in three extents: Somone is writing in middle of the extent
3265 * One of more index blocks maybe needed if the extent tree grow after
3266 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3267 * complete, we need to split the uninitialized extent before DIO submit
3268 * the IO. The uninitialized extent called at this time will be split
3269 * into three uninitialized extent(at most). After IO complete, the part
3270 * being filled will be convert to initialized by the end_io callback function
3271 * via ext4_convert_unwritten_extents().
3273 * Returns the size of uninitialized extent to be written on success.
3275 static int ext4_split_unwritten_extents(handle_t
*handle
,
3276 struct inode
*inode
,
3277 struct ext4_map_blocks
*map
,
3278 struct ext4_ext_path
*path
,
3281 ext4_lblk_t eof_block
;
3282 ext4_lblk_t ee_block
;
3283 struct ext4_extent
*ex
;
3284 unsigned int ee_len
;
3285 int split_flag
= 0, depth
;
3287 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3288 "block %llu, max_blocks %u\n", inode
->i_ino
,
3289 (unsigned long long)map
->m_lblk
, map
->m_len
);
3291 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
3292 inode
->i_sb
->s_blocksize_bits
;
3293 if (eof_block
< map
->m_lblk
+ map
->m_len
)
3294 eof_block
= map
->m_lblk
+ map
->m_len
;
3296 * It is safe to convert extent to initialized via explicit
3297 * zeroout only if extent is fully insde i_size or new_size.
3299 depth
= ext_depth(inode
);
3300 ex
= path
[depth
].p_ext
;
3301 ee_block
= le32_to_cpu(ex
->ee_block
);
3302 ee_len
= ext4_ext_get_actual_len(ex
);
3304 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3305 split_flag
|= EXT4_EXT_MARK_UNINIT2
;
3307 flags
|= EXT4_GET_BLOCKS_PRE_IO
;
3308 return ext4_split_extent(handle
, inode
, path
, map
, split_flag
, flags
);
3311 static int ext4_convert_unwritten_extents_endio(handle_t
*handle
,
3312 struct inode
*inode
,
3313 struct ext4_ext_path
*path
)
3315 struct ext4_extent
*ex
;
3319 depth
= ext_depth(inode
);
3320 ex
= path
[depth
].p_ext
;
3322 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3323 "block %llu, max_blocks %u\n", inode
->i_ino
,
3324 (unsigned long long)le32_to_cpu(ex
->ee_block
),
3325 ext4_ext_get_actual_len(ex
));
3327 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3330 /* first mark the extent as initialized */
3331 ext4_ext_mark_initialized(ex
);
3333 /* note: ext4_ext_correct_indexes() isn't needed here because
3334 * borders are not changed
3336 ext4_ext_try_to_merge(inode
, path
, ex
);
3338 /* Mark modified extent as dirty */
3339 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
3341 ext4_ext_show_leaf(inode
, path
);
3345 static void unmap_underlying_metadata_blocks(struct block_device
*bdev
,
3346 sector_t block
, int count
)
3349 for (i
= 0; i
< count
; i
++)
3350 unmap_underlying_metadata(bdev
, block
+ i
);
3354 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3356 static int check_eofblocks_fl(handle_t
*handle
, struct inode
*inode
,
3358 struct ext4_ext_path
*path
,
3362 struct ext4_extent_header
*eh
;
3363 struct ext4_extent
*last_ex
;
3365 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
3368 depth
= ext_depth(inode
);
3369 eh
= path
[depth
].p_hdr
;
3372 * We're going to remove EOFBLOCKS_FL entirely in future so we
3373 * do not care for this case anymore. Simply remove the flag
3374 * if there are no extents.
3376 if (unlikely(!eh
->eh_entries
))
3378 last_ex
= EXT_LAST_EXTENT(eh
);
3380 * We should clear the EOFBLOCKS_FL flag if we are writing the
3381 * last block in the last extent in the file. We test this by
3382 * first checking to see if the caller to
3383 * ext4_ext_get_blocks() was interested in the last block (or
3384 * a block beyond the last block) in the current extent. If
3385 * this turns out to be false, we can bail out from this
3386 * function immediately.
3388 if (lblk
+ len
< le32_to_cpu(last_ex
->ee_block
) +
3389 ext4_ext_get_actual_len(last_ex
))
3392 * If the caller does appear to be planning to write at or
3393 * beyond the end of the current extent, we then test to see
3394 * if the current extent is the last extent in the file, by
3395 * checking to make sure it was reached via the rightmost node
3396 * at each level of the tree.
3398 for (i
= depth
-1; i
>= 0; i
--)
3399 if (path
[i
].p_idx
!= EXT_LAST_INDEX(path
[i
].p_hdr
))
3402 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3403 return ext4_mark_inode_dirty(handle
, inode
);
3407 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3409 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3410 * whether there are any buffers marked for delayed allocation. It returns '1'
3411 * on the first delalloc'ed buffer head found. If no buffer head in the given
3412 * range is marked for delalloc, it returns 0.
3413 * lblk_start should always be <= lblk_end.
3414 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3415 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3416 * block sooner). This is useful when blocks are truncated sequentially from
3417 * lblk_start towards lblk_end.
3419 static int ext4_find_delalloc_range(struct inode
*inode
,
3420 ext4_lblk_t lblk_start
,
3421 ext4_lblk_t lblk_end
,
3422 int search_hint_reverse
)
3424 struct address_space
*mapping
= inode
->i_mapping
;
3425 struct buffer_head
*head
, *bh
= NULL
;
3427 ext4_lblk_t i
, pg_lblk
;
3430 if (!test_opt(inode
->i_sb
, DELALLOC
))
3433 /* reverse search wont work if fs block size is less than page size */
3434 if (inode
->i_blkbits
< PAGE_CACHE_SHIFT
)
3435 search_hint_reverse
= 0;
3437 if (search_hint_reverse
)
3442 index
= i
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3444 while ((i
>= lblk_start
) && (i
<= lblk_end
)) {
3445 page
= find_get_page(mapping
, index
);
3449 if (!page_has_buffers(page
))
3452 head
= page_buffers(page
);
3457 pg_lblk
= index
<< (PAGE_CACHE_SHIFT
-
3460 if (unlikely(pg_lblk
< lblk_start
)) {
3462 * This is possible when fs block size is less
3463 * than page size and our cluster starts/ends in
3464 * middle of the page. So we need to skip the
3465 * initial few blocks till we reach the 'lblk'
3471 /* Check if the buffer is delayed allocated and that it
3472 * is not yet mapped. (when da-buffers are mapped during
3473 * their writeout, their da_mapped bit is set.)
3475 if (buffer_delay(bh
) && !buffer_da_mapped(bh
)) {
3476 page_cache_release(page
);
3477 trace_ext4_find_delalloc_range(inode
,
3478 lblk_start
, lblk_end
,
3479 search_hint_reverse
,
3483 if (search_hint_reverse
)
3487 } while ((i
>= lblk_start
) && (i
<= lblk_end
) &&
3488 ((bh
= bh
->b_this_page
) != head
));
3491 page_cache_release(page
);
3493 * Move to next page. 'i' will be the first lblk in the next
3496 if (search_hint_reverse
)
3500 i
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3503 trace_ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3504 search_hint_reverse
, 0, 0);
3508 int ext4_find_delalloc_cluster(struct inode
*inode
, ext4_lblk_t lblk
,
3509 int search_hint_reverse
)
3511 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3512 ext4_lblk_t lblk_start
, lblk_end
;
3513 lblk_start
= lblk
& (~(sbi
->s_cluster_ratio
- 1));
3514 lblk_end
= lblk_start
+ sbi
->s_cluster_ratio
- 1;
3516 return ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3517 search_hint_reverse
);
3521 * Determines how many complete clusters (out of those specified by the 'map')
3522 * are under delalloc and were reserved quota for.
3523 * This function is called when we are writing out the blocks that were
3524 * originally written with their allocation delayed, but then the space was
3525 * allocated using fallocate() before the delayed allocation could be resolved.
3526 * The cases to look for are:
3527 * ('=' indicated delayed allocated blocks
3528 * '-' indicates non-delayed allocated blocks)
3529 * (a) partial clusters towards beginning and/or end outside of allocated range
3530 * are not delalloc'ed.
3532 * |----c---=|====c====|====c====|===-c----|
3533 * |++++++ allocated ++++++|
3534 * ==> 4 complete clusters in above example
3536 * (b) partial cluster (outside of allocated range) towards either end is
3537 * marked for delayed allocation. In this case, we will exclude that
3540 * |----====c========|========c========|
3541 * |++++++ allocated ++++++|
3542 * ==> 1 complete clusters in above example
3545 * |================c================|
3546 * |++++++ allocated ++++++|
3547 * ==> 0 complete clusters in above example
3549 * The ext4_da_update_reserve_space will be called only if we
3550 * determine here that there were some "entire" clusters that span
3551 * this 'allocated' range.
3552 * In the non-bigalloc case, this function will just end up returning num_blks
3553 * without ever calling ext4_find_delalloc_range.
3556 get_reserved_cluster_alloc(struct inode
*inode
, ext4_lblk_t lblk_start
,
3557 unsigned int num_blks
)
3559 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3560 ext4_lblk_t alloc_cluster_start
, alloc_cluster_end
;
3561 ext4_lblk_t lblk_from
, lblk_to
, c_offset
;
3562 unsigned int allocated_clusters
= 0;
3564 alloc_cluster_start
= EXT4_B2C(sbi
, lblk_start
);
3565 alloc_cluster_end
= EXT4_B2C(sbi
, lblk_start
+ num_blks
- 1);
3567 /* max possible clusters for this allocation */
3568 allocated_clusters
= alloc_cluster_end
- alloc_cluster_start
+ 1;
3570 trace_ext4_get_reserved_cluster_alloc(inode
, lblk_start
, num_blks
);
3572 /* Check towards left side */
3573 c_offset
= lblk_start
& (sbi
->s_cluster_ratio
- 1);
3575 lblk_from
= lblk_start
& (~(sbi
->s_cluster_ratio
- 1));
3576 lblk_to
= lblk_from
+ c_offset
- 1;
3578 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3579 allocated_clusters
--;
3582 /* Now check towards right. */
3583 c_offset
= (lblk_start
+ num_blks
) & (sbi
->s_cluster_ratio
- 1);
3584 if (allocated_clusters
&& c_offset
) {
3585 lblk_from
= lblk_start
+ num_blks
;
3586 lblk_to
= lblk_from
+ (sbi
->s_cluster_ratio
- c_offset
) - 1;
3588 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3589 allocated_clusters
--;
3592 return allocated_clusters
;
3596 ext4_ext_handle_uninitialized_extents(handle_t
*handle
, struct inode
*inode
,
3597 struct ext4_map_blocks
*map
,
3598 struct ext4_ext_path
*path
, int flags
,
3599 unsigned int allocated
, ext4_fsblk_t newblock
)
3603 ext4_io_end_t
*io
= EXT4_I(inode
)->cur_aio_dio
;
3605 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3606 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3607 inode
->i_ino
, (unsigned long long)map
->m_lblk
, map
->m_len
,
3609 ext4_ext_show_leaf(inode
, path
);
3611 trace_ext4_ext_handle_uninitialized_extents(inode
, map
, allocated
,
3614 /* get_block() before submit the IO, split the extent */
3615 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
3616 ret
= ext4_split_unwritten_extents(handle
, inode
, map
,
3619 * Flag the inode(non aio case) or end_io struct (aio case)
3620 * that this IO needs to conversion to written when IO is
3624 ext4_set_io_unwritten_flag(inode
, io
);
3626 ext4_set_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3627 if (ext4_should_dioread_nolock(inode
))
3628 map
->m_flags
|= EXT4_MAP_UNINIT
;
3631 /* IO end_io complete, convert the filled extent to written */
3632 if ((flags
& EXT4_GET_BLOCKS_CONVERT
)) {
3633 ret
= ext4_convert_unwritten_extents_endio(handle
, inode
,
3636 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3637 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
3643 /* buffered IO case */
3645 * repeat fallocate creation request
3646 * we already have an unwritten extent
3648 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
)
3651 /* buffered READ or buffered write_begin() lookup */
3652 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3654 * We have blocks reserved already. We
3655 * return allocated blocks so that delalloc
3656 * won't do block reservation for us. But
3657 * the buffer head will be unmapped so that
3658 * a read from the block returns 0s.
3660 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
3664 /* buffered write, writepage time, convert*/
3665 ret
= ext4_ext_convert_to_initialized(handle
, inode
, map
, path
);
3667 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3674 map
->m_flags
|= EXT4_MAP_NEW
;
3676 * if we allocated more blocks than requested
3677 * we need to make sure we unmap the extra block
3678 * allocated. The actual needed block will get
3679 * unmapped later when we find the buffer_head marked
3682 if (allocated
> map
->m_len
) {
3683 unmap_underlying_metadata_blocks(inode
->i_sb
->s_bdev
,
3684 newblock
+ map
->m_len
,
3685 allocated
- map
->m_len
);
3686 allocated
= map
->m_len
;
3690 * If we have done fallocate with the offset that is already
3691 * delayed allocated, we would have block reservation
3692 * and quota reservation done in the delayed write path.
3693 * But fallocate would have already updated quota and block
3694 * count for this offset. So cancel these reservation
3696 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
3697 unsigned int reserved_clusters
;
3698 reserved_clusters
= get_reserved_cluster_alloc(inode
,
3699 map
->m_lblk
, map
->m_len
);
3700 if (reserved_clusters
)
3701 ext4_da_update_reserve_space(inode
,
3707 map
->m_flags
|= EXT4_MAP_MAPPED
;
3708 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0) {
3709 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
, path
,
3715 if (allocated
> map
->m_len
)
3716 allocated
= map
->m_len
;
3717 ext4_ext_show_leaf(inode
, path
);
3718 map
->m_pblk
= newblock
;
3719 map
->m_len
= allocated
;
3722 ext4_ext_drop_refs(path
);
3725 return err
? err
: allocated
;
3729 * get_implied_cluster_alloc - check to see if the requested
3730 * allocation (in the map structure) overlaps with a cluster already
3731 * allocated in an extent.
3732 * @sb The filesystem superblock structure
3733 * @map The requested lblk->pblk mapping
3734 * @ex The extent structure which might contain an implied
3735 * cluster allocation
3737 * This function is called by ext4_ext_map_blocks() after we failed to
3738 * find blocks that were already in the inode's extent tree. Hence,
3739 * we know that the beginning of the requested region cannot overlap
3740 * the extent from the inode's extent tree. There are three cases we
3741 * want to catch. The first is this case:
3743 * |--- cluster # N--|
3744 * |--- extent ---| |---- requested region ---|
3747 * The second case that we need to test for is this one:
3749 * |--------- cluster # N ----------------|
3750 * |--- requested region --| |------- extent ----|
3751 * |=======================|
3753 * The third case is when the requested region lies between two extents
3754 * within the same cluster:
3755 * |------------- cluster # N-------------|
3756 * |----- ex -----| |---- ex_right ----|
3757 * |------ requested region ------|
3758 * |================|
3760 * In each of the above cases, we need to set the map->m_pblk and
3761 * map->m_len so it corresponds to the return the extent labelled as
3762 * "|====|" from cluster #N, since it is already in use for data in
3763 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3764 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3765 * as a new "allocated" block region. Otherwise, we will return 0 and
3766 * ext4_ext_map_blocks() will then allocate one or more new clusters
3767 * by calling ext4_mb_new_blocks().
3769 static int get_implied_cluster_alloc(struct super_block
*sb
,
3770 struct ext4_map_blocks
*map
,
3771 struct ext4_extent
*ex
,
3772 struct ext4_ext_path
*path
)
3774 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3775 ext4_lblk_t c_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3776 ext4_lblk_t ex_cluster_start
, ex_cluster_end
;
3777 ext4_lblk_t rr_cluster_start
;
3778 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3779 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3780 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
3782 /* The extent passed in that we are trying to match */
3783 ex_cluster_start
= EXT4_B2C(sbi
, ee_block
);
3784 ex_cluster_end
= EXT4_B2C(sbi
, ee_block
+ ee_len
- 1);
3786 /* The requested region passed into ext4_map_blocks() */
3787 rr_cluster_start
= EXT4_B2C(sbi
, map
->m_lblk
);
3789 if ((rr_cluster_start
== ex_cluster_end
) ||
3790 (rr_cluster_start
== ex_cluster_start
)) {
3791 if (rr_cluster_start
== ex_cluster_end
)
3792 ee_start
+= ee_len
- 1;
3793 map
->m_pblk
= (ee_start
& ~(sbi
->s_cluster_ratio
- 1)) +
3795 map
->m_len
= min(map
->m_len
,
3796 (unsigned) sbi
->s_cluster_ratio
- c_offset
);
3798 * Check for and handle this case:
3800 * |--------- cluster # N-------------|
3801 * |------- extent ----|
3802 * |--- requested region ---|
3806 if (map
->m_lblk
< ee_block
)
3807 map
->m_len
= min(map
->m_len
, ee_block
- map
->m_lblk
);
3810 * Check for the case where there is already another allocated
3811 * block to the right of 'ex' but before the end of the cluster.
3813 * |------------- cluster # N-------------|
3814 * |----- ex -----| |---- ex_right ----|
3815 * |------ requested region ------|
3816 * |================|
3818 if (map
->m_lblk
> ee_block
) {
3819 ext4_lblk_t next
= ext4_ext_next_allocated_block(path
);
3820 map
->m_len
= min(map
->m_len
, next
- map
->m_lblk
);
3823 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 1);
3827 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 0);
3833 * Block allocation/map/preallocation routine for extents based files
3836 * Need to be called with
3837 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3838 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3840 * return > 0, number of of blocks already mapped/allocated
3841 * if create == 0 and these are pre-allocated blocks
3842 * buffer head is unmapped
3843 * otherwise blocks are mapped
3845 * return = 0, if plain look up failed (blocks have not been allocated)
3846 * buffer head is unmapped
3848 * return < 0, error case.
3850 int ext4_ext_map_blocks(handle_t
*handle
, struct inode
*inode
,
3851 struct ext4_map_blocks
*map
, int flags
)
3853 struct ext4_ext_path
*path
= NULL
;
3854 struct ext4_extent newex
, *ex
, *ex2
;
3855 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3856 ext4_fsblk_t newblock
= 0;
3857 int free_on_err
= 0, err
= 0, depth
, ret
;
3858 unsigned int allocated
= 0, offset
= 0;
3859 unsigned int allocated_clusters
= 0;
3860 struct ext4_allocation_request ar
;
3861 ext4_io_end_t
*io
= EXT4_I(inode
)->cur_aio_dio
;
3862 ext4_lblk_t cluster_offset
;
3864 ext_debug("blocks %u/%u requested for inode %lu\n",
3865 map
->m_lblk
, map
->m_len
, inode
->i_ino
);
3866 trace_ext4_ext_map_blocks_enter(inode
, map
->m_lblk
, map
->m_len
, flags
);
3868 /* check in cache */
3869 if (ext4_ext_in_cache(inode
, map
->m_lblk
, &newex
)) {
3870 if (!newex
.ee_start_lo
&& !newex
.ee_start_hi
) {
3871 if ((sbi
->s_cluster_ratio
> 1) &&
3872 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3873 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3875 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3877 * block isn't allocated yet and
3878 * user doesn't want to allocate it
3882 /* we should allocate requested block */
3884 /* block is already allocated */
3885 if (sbi
->s_cluster_ratio
> 1)
3886 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3887 newblock
= map
->m_lblk
3888 - le32_to_cpu(newex
.ee_block
)
3889 + ext4_ext_pblock(&newex
);
3890 /* number of remaining blocks in the extent */
3891 allocated
= ext4_ext_get_actual_len(&newex
) -
3892 (map
->m_lblk
- le32_to_cpu(newex
.ee_block
));
3897 /* find extent for this block */
3898 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, NULL
);
3900 err
= PTR_ERR(path
);
3905 depth
= ext_depth(inode
);
3908 * consistent leaf must not be empty;
3909 * this situation is possible, though, _during_ tree modification;
3910 * this is why assert can't be put in ext4_ext_find_extent()
3912 if (unlikely(path
[depth
].p_ext
== NULL
&& depth
!= 0)) {
3913 EXT4_ERROR_INODE(inode
, "bad extent address "
3914 "lblock: %lu, depth: %d pblock %lld",
3915 (unsigned long) map
->m_lblk
, depth
,
3916 path
[depth
].p_block
);
3921 ex
= path
[depth
].p_ext
;
3923 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3924 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3925 unsigned short ee_len
;
3928 * Uninitialized extents are treated as holes, except that
3929 * we split out initialized portions during a write.
3931 ee_len
= ext4_ext_get_actual_len(ex
);
3933 trace_ext4_ext_show_extent(inode
, ee_block
, ee_start
, ee_len
);
3935 /* if found extent covers block, simply return it */
3936 if (in_range(map
->m_lblk
, ee_block
, ee_len
)) {
3937 newblock
= map
->m_lblk
- ee_block
+ ee_start
;
3938 /* number of remaining blocks in the extent */
3939 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3940 ext_debug("%u fit into %u:%d -> %llu\n", map
->m_lblk
,
3941 ee_block
, ee_len
, newblock
);
3944 * Do not put uninitialized extent
3947 if (!ext4_ext_is_uninitialized(ex
)) {
3948 ext4_ext_put_in_cache(inode
, ee_block
,
3952 ret
= ext4_ext_handle_uninitialized_extents(
3953 handle
, inode
, map
, path
, flags
,
3954 allocated
, newblock
);
3959 if ((sbi
->s_cluster_ratio
> 1) &&
3960 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3961 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3964 * requested block isn't allocated yet;
3965 * we couldn't try to create block if create flag is zero
3967 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3969 * put just found gap into cache to speed up
3970 * subsequent requests
3972 ext4_ext_put_gap_in_cache(inode
, path
, map
->m_lblk
);
3977 * Okay, we need to do block allocation.
3979 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
3980 newex
.ee_block
= cpu_to_le32(map
->m_lblk
);
3981 cluster_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3984 * If we are doing bigalloc, check to see if the extent returned
3985 * by ext4_ext_find_extent() implies a cluster we can use.
3987 if (cluster_offset
&& ex
&&
3988 get_implied_cluster_alloc(inode
->i_sb
, map
, ex
, path
)) {
3989 ar
.len
= allocated
= map
->m_len
;
3990 newblock
= map
->m_pblk
;
3991 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3992 goto got_allocated_blocks
;
3995 /* find neighbour allocated blocks */
3996 ar
.lleft
= map
->m_lblk
;
3997 err
= ext4_ext_search_left(inode
, path
, &ar
.lleft
, &ar
.pleft
);
4000 ar
.lright
= map
->m_lblk
;
4002 err
= ext4_ext_search_right(inode
, path
, &ar
.lright
, &ar
.pright
, &ex2
);
4006 /* Check if the extent after searching to the right implies a
4007 * cluster we can use. */
4008 if ((sbi
->s_cluster_ratio
> 1) && ex2
&&
4009 get_implied_cluster_alloc(inode
->i_sb
, map
, ex2
, path
)) {
4010 ar
.len
= allocated
= map
->m_len
;
4011 newblock
= map
->m_pblk
;
4012 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
4013 goto got_allocated_blocks
;
4017 * See if request is beyond maximum number of blocks we can have in
4018 * a single extent. For an initialized extent this limit is
4019 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4020 * EXT_UNINIT_MAX_LEN.
4022 if (map
->m_len
> EXT_INIT_MAX_LEN
&&
4023 !(flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
4024 map
->m_len
= EXT_INIT_MAX_LEN
;
4025 else if (map
->m_len
> EXT_UNINIT_MAX_LEN
&&
4026 (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
4027 map
->m_len
= EXT_UNINIT_MAX_LEN
;
4029 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4030 newex
.ee_len
= cpu_to_le16(map
->m_len
);
4031 err
= ext4_ext_check_overlap(sbi
, inode
, &newex
, path
);
4033 allocated
= ext4_ext_get_actual_len(&newex
);
4035 allocated
= map
->m_len
;
4037 /* allocate new block */
4039 ar
.goal
= ext4_ext_find_goal(inode
, path
, map
->m_lblk
);
4040 ar
.logical
= map
->m_lblk
;
4042 * We calculate the offset from the beginning of the cluster
4043 * for the logical block number, since when we allocate a
4044 * physical cluster, the physical block should start at the
4045 * same offset from the beginning of the cluster. This is
4046 * needed so that future calls to get_implied_cluster_alloc()
4049 offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
- 1);
4050 ar
.len
= EXT4_NUM_B2C(sbi
, offset
+allocated
);
4052 ar
.logical
-= offset
;
4053 if (S_ISREG(inode
->i_mode
))
4054 ar
.flags
= EXT4_MB_HINT_DATA
;
4056 /* disable in-core preallocation for non-regular files */
4058 if (flags
& EXT4_GET_BLOCKS_NO_NORMALIZE
)
4059 ar
.flags
|= EXT4_MB_HINT_NOPREALLOC
;
4060 newblock
= ext4_mb_new_blocks(handle
, &ar
, &err
);
4063 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4064 ar
.goal
, newblock
, allocated
);
4066 allocated_clusters
= ar
.len
;
4067 ar
.len
= EXT4_C2B(sbi
, ar
.len
) - offset
;
4068 if (ar
.len
> allocated
)
4071 got_allocated_blocks
:
4072 /* try to insert new extent into found leaf and return */
4073 ext4_ext_store_pblock(&newex
, newblock
+ offset
);
4074 newex
.ee_len
= cpu_to_le16(ar
.len
);
4075 /* Mark uninitialized */
4076 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
){
4077 ext4_ext_mark_uninitialized(&newex
);
4079 * io_end structure was created for every IO write to an
4080 * uninitialized extent. To avoid unnecessary conversion,
4081 * here we flag the IO that really needs the conversion.
4082 * For non asycn direct IO case, flag the inode state
4083 * that we need to perform conversion when IO is done.
4085 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
4087 ext4_set_io_unwritten_flag(inode
, io
);
4089 ext4_set_inode_state(inode
,
4090 EXT4_STATE_DIO_UNWRITTEN
);
4092 if (ext4_should_dioread_nolock(inode
))
4093 map
->m_flags
|= EXT4_MAP_UNINIT
;
4097 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0)
4098 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
4101 err
= ext4_ext_insert_extent(handle
, inode
, path
,
4103 if (err
&& free_on_err
) {
4104 int fb_flags
= flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
?
4105 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
: 0;
4106 /* free data blocks we just allocated */
4107 /* not a good idea to call discard here directly,
4108 * but otherwise we'd need to call it every free() */
4109 ext4_discard_preallocations(inode
);
4110 ext4_free_blocks(handle
, inode
, NULL
, ext4_ext_pblock(&newex
),
4111 ext4_ext_get_actual_len(&newex
), fb_flags
);
4115 /* previous routine could use block we allocated */
4116 newblock
= ext4_ext_pblock(&newex
);
4117 allocated
= ext4_ext_get_actual_len(&newex
);
4118 if (allocated
> map
->m_len
)
4119 allocated
= map
->m_len
;
4120 map
->m_flags
|= EXT4_MAP_NEW
;
4123 * Update reserved blocks/metadata blocks after successful
4124 * block allocation which had been deferred till now.
4126 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
4127 unsigned int reserved_clusters
;
4129 * Check how many clusters we had reserved this allocated range
4131 reserved_clusters
= get_reserved_cluster_alloc(inode
,
4132 map
->m_lblk
, allocated
);
4133 if (map
->m_flags
& EXT4_MAP_FROM_CLUSTER
) {
4134 if (reserved_clusters
) {
4136 * We have clusters reserved for this range.
4137 * But since we are not doing actual allocation
4138 * and are simply using blocks from previously
4139 * allocated cluster, we should release the
4140 * reservation and not claim quota.
4142 ext4_da_update_reserve_space(inode
,
4143 reserved_clusters
, 0);
4146 BUG_ON(allocated_clusters
< reserved_clusters
);
4147 /* We will claim quota for all newly allocated blocks.*/
4148 ext4_da_update_reserve_space(inode
, allocated_clusters
,
4150 if (reserved_clusters
< allocated_clusters
) {
4151 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4152 int reservation
= allocated_clusters
-
4155 * It seems we claimed few clusters outside of
4156 * the range of this allocation. We should give
4157 * it back to the reservation pool. This can
4158 * happen in the following case:
4160 * * Suppose s_cluster_ratio is 4 (i.e., each
4161 * cluster has 4 blocks. Thus, the clusters
4162 * are [0-3],[4-7],[8-11]...
4163 * * First comes delayed allocation write for
4164 * logical blocks 10 & 11. Since there were no
4165 * previous delayed allocated blocks in the
4166 * range [8-11], we would reserve 1 cluster
4168 * * Next comes write for logical blocks 3 to 8.
4169 * In this case, we will reserve 2 clusters
4170 * (for [0-3] and [4-7]; and not for [8-11] as
4171 * that range has a delayed allocated blocks.
4172 * Thus total reserved clusters now becomes 3.
4173 * * Now, during the delayed allocation writeout
4174 * time, we will first write blocks [3-8] and
4175 * allocate 3 clusters for writing these
4176 * blocks. Also, we would claim all these
4177 * three clusters above.
4178 * * Now when we come here to writeout the
4179 * blocks [10-11], we would expect to claim
4180 * the reservation of 1 cluster we had made
4181 * (and we would claim it since there are no
4182 * more delayed allocated blocks in the range
4183 * [8-11]. But our reserved cluster count had
4184 * already gone to 0.
4186 * Thus, at the step 4 above when we determine
4187 * that there are still some unwritten delayed
4188 * allocated blocks outside of our current
4189 * block range, we should increment the
4190 * reserved clusters count so that when the
4191 * remaining blocks finally gets written, we
4194 dquot_reserve_block(inode
,
4195 EXT4_C2B(sbi
, reservation
));
4196 spin_lock(&ei
->i_block_reservation_lock
);
4197 ei
->i_reserved_data_blocks
+= reservation
;
4198 spin_unlock(&ei
->i_block_reservation_lock
);
4204 * Cache the extent and update transaction to commit on fdatasync only
4205 * when it is _not_ an uninitialized extent.
4207 if ((flags
& EXT4_GET_BLOCKS_UNINIT_EXT
) == 0) {
4208 ext4_ext_put_in_cache(inode
, map
->m_lblk
, allocated
, newblock
);
4209 ext4_update_inode_fsync_trans(handle
, inode
, 1);
4211 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4213 if (allocated
> map
->m_len
)
4214 allocated
= map
->m_len
;
4215 ext4_ext_show_leaf(inode
, path
);
4216 map
->m_flags
|= EXT4_MAP_MAPPED
;
4217 map
->m_pblk
= newblock
;
4218 map
->m_len
= allocated
;
4221 ext4_ext_drop_refs(path
);
4225 trace_ext4_ext_map_blocks_exit(inode
, map
->m_lblk
,
4226 newblock
, map
->m_len
, err
? err
: allocated
);
4228 return err
? err
: allocated
;
4231 void ext4_ext_truncate(struct inode
*inode
)
4233 struct address_space
*mapping
= inode
->i_mapping
;
4234 struct super_block
*sb
= inode
->i_sb
;
4235 ext4_lblk_t last_block
;
4241 * finish any pending end_io work so we won't run the risk of
4242 * converting any truncated blocks to initialized later
4244 ext4_flush_completed_IO(inode
);
4247 * probably first extent we're gonna free will be last in block
4249 err
= ext4_writepage_trans_blocks(inode
);
4250 handle
= ext4_journal_start(inode
, err
);
4254 if (inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4255 page_len
= PAGE_CACHE_SIZE
-
4256 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4258 err
= ext4_discard_partial_page_buffers(handle
,
4259 mapping
, inode
->i_size
, page_len
, 0);
4265 if (ext4_orphan_add(handle
, inode
))
4268 down_write(&EXT4_I(inode
)->i_data_sem
);
4269 ext4_ext_invalidate_cache(inode
);
4271 ext4_discard_preallocations(inode
);
4274 * TODO: optimization is possible here.
4275 * Probably we need not scan at all,
4276 * because page truncation is enough.
4279 /* we have to know where to truncate from in crash case */
4280 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
4281 ext4_mark_inode_dirty(handle
, inode
);
4283 last_block
= (inode
->i_size
+ sb
->s_blocksize
- 1)
4284 >> EXT4_BLOCK_SIZE_BITS(sb
);
4285 err
= ext4_ext_remove_space(inode
, last_block
, EXT_MAX_BLOCKS
- 1);
4287 /* In a multi-transaction truncate, we only make the final
4288 * transaction synchronous.
4291 ext4_handle_sync(handle
);
4293 up_write(&EXT4_I(inode
)->i_data_sem
);
4297 * If this was a simple ftruncate() and the file will remain alive,
4298 * then we need to clear up the orphan record which we created above.
4299 * However, if this was a real unlink then we were called by
4300 * ext4_delete_inode(), and we allow that function to clean up the
4301 * orphan info for us.
4304 ext4_orphan_del(handle
, inode
);
4306 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4307 ext4_mark_inode_dirty(handle
, inode
);
4308 ext4_journal_stop(handle
);
4311 static void ext4_falloc_update_inode(struct inode
*inode
,
4312 int mode
, loff_t new_size
, int update_ctime
)
4314 struct timespec now
;
4317 now
= current_fs_time(inode
->i_sb
);
4318 if (!timespec_equal(&inode
->i_ctime
, &now
))
4319 inode
->i_ctime
= now
;
4322 * Update only when preallocation was requested beyond
4325 if (!(mode
& FALLOC_FL_KEEP_SIZE
)) {
4326 if (new_size
> i_size_read(inode
))
4327 i_size_write(inode
, new_size
);
4328 if (new_size
> EXT4_I(inode
)->i_disksize
)
4329 ext4_update_i_disksize(inode
, new_size
);
4332 * Mark that we allocate beyond EOF so the subsequent truncate
4333 * can proceed even if the new size is the same as i_size.
4335 if (new_size
> i_size_read(inode
))
4336 ext4_set_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4342 * preallocate space for a file. This implements ext4's fallocate file
4343 * operation, which gets called from sys_fallocate system call.
4344 * For block-mapped files, posix_fallocate should fall back to the method
4345 * of writing zeroes to the required new blocks (the same behavior which is
4346 * expected for file systems which do not support fallocate() system call).
4348 long ext4_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
4350 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4353 unsigned int max_blocks
;
4358 struct ext4_map_blocks map
;
4359 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4362 * currently supporting (pre)allocate mode for extent-based
4365 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4368 /* Return error if mode is not supported */
4369 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
4372 if (mode
& FALLOC_FL_PUNCH_HOLE
)
4373 return ext4_punch_hole(file
, offset
, len
);
4375 trace_ext4_fallocate_enter(inode
, offset
, len
, mode
);
4376 map
.m_lblk
= offset
>> blkbits
;
4378 * We can't just convert len to max_blocks because
4379 * If blocksize = 4096 offset = 3072 and len = 2048
4381 max_blocks
= (EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
)
4384 * credits to insert 1 extent into extent tree
4386 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4387 mutex_lock(&inode
->i_mutex
);
4388 ret
= inode_newsize_ok(inode
, (len
+ offset
));
4390 mutex_unlock(&inode
->i_mutex
);
4391 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
, ret
);
4394 flags
= EXT4_GET_BLOCKS_CREATE_UNINIT_EXT
;
4395 if (mode
& FALLOC_FL_KEEP_SIZE
)
4396 flags
|= EXT4_GET_BLOCKS_KEEP_SIZE
;
4398 * Don't normalize the request if it can fit in one extent so
4399 * that it doesn't get unnecessarily split into multiple
4402 if (len
<= EXT_UNINIT_MAX_LEN
<< blkbits
)
4403 flags
|= EXT4_GET_BLOCKS_NO_NORMALIZE
;
4405 while (ret
>= 0 && ret
< max_blocks
) {
4406 map
.m_lblk
= map
.m_lblk
+ ret
;
4407 map
.m_len
= max_blocks
= max_blocks
- ret
;
4408 handle
= ext4_journal_start(inode
, credits
);
4409 if (IS_ERR(handle
)) {
4410 ret
= PTR_ERR(handle
);
4413 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
4417 printk(KERN_ERR
"%s: ext4_ext_map_blocks "
4418 "returned error inode#%lu, block=%u, "
4419 "max_blocks=%u", __func__
,
4420 inode
->i_ino
, map
.m_lblk
, max_blocks
);
4422 ext4_mark_inode_dirty(handle
, inode
);
4423 ret2
= ext4_journal_stop(handle
);
4426 if ((map
.m_lblk
+ ret
) >= (EXT4_BLOCK_ALIGN(offset
+ len
,
4427 blkbits
) >> blkbits
))
4428 new_size
= offset
+ len
;
4430 new_size
= ((loff_t
) map
.m_lblk
+ ret
) << blkbits
;
4432 ext4_falloc_update_inode(inode
, mode
, new_size
,
4433 (map
.m_flags
& EXT4_MAP_NEW
));
4434 ext4_mark_inode_dirty(handle
, inode
);
4435 if ((file
->f_flags
& O_SYNC
) && ret
>= max_blocks
)
4436 ext4_handle_sync(handle
);
4437 ret2
= ext4_journal_stop(handle
);
4441 if (ret
== -ENOSPC
&&
4442 ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
4446 mutex_unlock(&inode
->i_mutex
);
4447 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
,
4448 ret
> 0 ? ret2
: ret
);
4449 return ret
> 0 ? ret2
: ret
;
4453 * This function convert a range of blocks to written extents
4454 * The caller of this function will pass the start offset and the size.
4455 * all unwritten extents within this range will be converted to
4458 * This function is called from the direct IO end io call back
4459 * function, to convert the fallocated extents after IO is completed.
4460 * Returns 0 on success.
4462 int ext4_convert_unwritten_extents(struct inode
*inode
, loff_t offset
,
4466 unsigned int max_blocks
;
4469 struct ext4_map_blocks map
;
4470 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4472 map
.m_lblk
= offset
>> blkbits
;
4474 * We can't just convert len to max_blocks because
4475 * If blocksize = 4096 offset = 3072 and len = 2048
4477 max_blocks
= ((EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
) -
4480 * credits to insert 1 extent into extent tree
4482 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4483 while (ret
>= 0 && ret
< max_blocks
) {
4485 map
.m_len
= (max_blocks
-= ret
);
4486 handle
= ext4_journal_start(inode
, credits
);
4487 if (IS_ERR(handle
)) {
4488 ret
= PTR_ERR(handle
);
4491 ret
= ext4_map_blocks(handle
, inode
, &map
,
4492 EXT4_GET_BLOCKS_IO_CONVERT_EXT
);
4495 ext4_msg(inode
->i_sb
, KERN_ERR
,
4496 "%s:%d: inode #%lu: block %u: len %u: "
4497 "ext4_ext_map_blocks returned %d",
4498 __func__
, __LINE__
, inode
->i_ino
, map
.m_lblk
,
4501 ext4_mark_inode_dirty(handle
, inode
);
4502 ret2
= ext4_journal_stop(handle
);
4503 if (ret
<= 0 || ret2
)
4506 return ret
> 0 ? ret2
: ret
;
4510 * Callback function called for each extent to gather FIEMAP information.
4512 static int ext4_ext_fiemap_cb(struct inode
*inode
, ext4_lblk_t next
,
4513 struct ext4_ext_cache
*newex
, struct ext4_extent
*ex
,
4521 struct fiemap_extent_info
*fieinfo
= data
;
4522 unsigned char blksize_bits
;
4524 blksize_bits
= inode
->i_sb
->s_blocksize_bits
;
4525 logical
= (__u64
)newex
->ec_block
<< blksize_bits
;
4527 if (newex
->ec_start
== 0) {
4529 * No extent in extent-tree contains block @newex->ec_start,
4530 * then the block may stay in 1)a hole or 2)delayed-extent.
4532 * Holes or delayed-extents are processed as follows.
4533 * 1. lookup dirty pages with specified range in pagecache.
4534 * If no page is got, then there is no delayed-extent and
4535 * return with EXT_CONTINUE.
4536 * 2. find the 1st mapped buffer,
4537 * 3. check if the mapped buffer is both in the request range
4538 * and a delayed buffer. If not, there is no delayed-extent,
4540 * 4. a delayed-extent is found, the extent will be collected.
4542 ext4_lblk_t end
= 0;
4543 pgoff_t last_offset
;
4546 pgoff_t start_index
= 0;
4547 struct page
**pages
= NULL
;
4548 struct buffer_head
*bh
= NULL
;
4549 struct buffer_head
*head
= NULL
;
4550 unsigned int nr_pages
= PAGE_SIZE
/ sizeof(struct page
*);
4552 pages
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4556 offset
= logical
>> PAGE_SHIFT
;
4558 last_offset
= offset
;
4560 ret
= find_get_pages_tag(inode
->i_mapping
, &offset
,
4561 PAGECACHE_TAG_DIRTY
, nr_pages
, pages
);
4563 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4564 /* First time, try to find a mapped buffer. */
4567 for (index
= 0; index
< ret
; index
++)
4568 page_cache_release(pages
[index
]);
4571 return EXT_CONTINUE
;
4576 /* Try to find the 1st mapped buffer. */
4577 end
= ((__u64
)pages
[index
]->index
<< PAGE_SHIFT
) >>
4579 if (!page_has_buffers(pages
[index
]))
4581 head
= page_buffers(pages
[index
]);
4588 if (end
>= newex
->ec_block
+
4590 /* The buffer is out of
4591 * the request range.
4595 if (buffer_mapped(bh
) &&
4596 end
>= newex
->ec_block
) {
4597 start_index
= index
- 1;
4598 /* get the 1st mapped buffer. */
4599 goto found_mapped_buffer
;
4602 bh
= bh
->b_this_page
;
4604 } while (bh
!= head
);
4606 /* No mapped buffer in the range found in this page,
4607 * We need to look up next page.
4610 /* There is no page left, but we need to limit
4613 newex
->ec_len
= end
- newex
->ec_block
;
4618 /*Find contiguous delayed buffers. */
4619 if (ret
> 0 && pages
[0]->index
== last_offset
)
4620 head
= page_buffers(pages
[0]);
4626 found_mapped_buffer
:
4627 if (bh
!= NULL
&& buffer_delay(bh
)) {
4628 /* 1st or contiguous delayed buffer found. */
4629 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4631 * 1st delayed buffer found, record
4632 * the start of extent.
4634 flags
|= FIEMAP_EXTENT_DELALLOC
;
4635 newex
->ec_block
= end
;
4636 logical
= (__u64
)end
<< blksize_bits
;
4638 /* Find contiguous delayed buffers. */
4640 if (!buffer_delay(bh
))
4641 goto found_delayed_extent
;
4642 bh
= bh
->b_this_page
;
4644 } while (bh
!= head
);
4646 for (; index
< ret
; index
++) {
4647 if (!page_has_buffers(pages
[index
])) {
4651 head
= page_buffers(pages
[index
]);
4657 if (pages
[index
]->index
!=
4658 pages
[start_index
]->index
+ index
4660 /* Blocks are not contiguous. */
4666 if (!buffer_delay(bh
))
4667 /* Delayed-extent ends. */
4668 goto found_delayed_extent
;
4669 bh
= bh
->b_this_page
;
4671 } while (bh
!= head
);
4673 } else if (!(flags
& FIEMAP_EXTENT_DELALLOC
))
4677 found_delayed_extent
:
4678 newex
->ec_len
= min(end
- newex
->ec_block
,
4679 (ext4_lblk_t
)EXT_INIT_MAX_LEN
);
4680 if (ret
== nr_pages
&& bh
!= NULL
&&
4681 newex
->ec_len
< EXT_INIT_MAX_LEN
&&
4683 /* Have not collected an extent and continue. */
4684 for (index
= 0; index
< ret
; index
++)
4685 page_cache_release(pages
[index
]);
4689 for (index
= 0; index
< ret
; index
++)
4690 page_cache_release(pages
[index
]);
4694 physical
= (__u64
)newex
->ec_start
<< blksize_bits
;
4695 length
= (__u64
)newex
->ec_len
<< blksize_bits
;
4697 if (ex
&& ext4_ext_is_uninitialized(ex
))
4698 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4700 if (next
== EXT_MAX_BLOCKS
)
4701 flags
|= FIEMAP_EXTENT_LAST
;
4703 ret
= fiemap_fill_next_extent(fieinfo
, logical
, physical
,
4709 return EXT_CONTINUE
;
4711 /* fiemap flags we can handle specified here */
4712 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4714 static int ext4_xattr_fiemap(struct inode
*inode
,
4715 struct fiemap_extent_info
*fieinfo
)
4719 __u32 flags
= FIEMAP_EXTENT_LAST
;
4720 int blockbits
= inode
->i_sb
->s_blocksize_bits
;
4724 if (ext4_test_inode_state(inode
, EXT4_STATE_XATTR
)) {
4725 struct ext4_iloc iloc
;
4726 int offset
; /* offset of xattr in inode */
4728 error
= ext4_get_inode_loc(inode
, &iloc
);
4731 physical
= iloc
.bh
->b_blocknr
<< blockbits
;
4732 offset
= EXT4_GOOD_OLD_INODE_SIZE
+
4733 EXT4_I(inode
)->i_extra_isize
;
4735 length
= EXT4_SB(inode
->i_sb
)->s_inode_size
- offset
;
4736 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
4738 } else { /* external block */
4739 physical
= EXT4_I(inode
)->i_file_acl
<< blockbits
;
4740 length
= inode
->i_sb
->s_blocksize
;
4744 error
= fiemap_fill_next_extent(fieinfo
, 0, physical
,
4746 return (error
< 0 ? error
: 0);
4750 * ext4_ext_punch_hole
4752 * Punches a hole of "length" bytes in a file starting
4755 * @inode: The inode of the file to punch a hole in
4756 * @offset: The starting byte offset of the hole
4757 * @length: The length of the hole
4759 * Returns the number of blocks removed or negative on err
4761 int ext4_ext_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
4763 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4764 struct super_block
*sb
= inode
->i_sb
;
4765 ext4_lblk_t first_block
, stop_block
;
4766 struct address_space
*mapping
= inode
->i_mapping
;
4768 loff_t first_page
, last_page
, page_len
;
4769 loff_t first_page_offset
, last_page_offset
;
4770 int credits
, err
= 0;
4772 /* No need to punch hole beyond i_size */
4773 if (offset
>= inode
->i_size
)
4777 * If the hole extends beyond i_size, set the hole
4778 * to end after the page that contains i_size
4780 if (offset
+ length
> inode
->i_size
) {
4781 length
= inode
->i_size
+
4782 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
4786 first_page
= (offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
4787 last_page
= (offset
+ length
) >> PAGE_CACHE_SHIFT
;
4789 first_page_offset
= first_page
<< PAGE_CACHE_SHIFT
;
4790 last_page_offset
= last_page
<< PAGE_CACHE_SHIFT
;
4793 * Write out all dirty pages to avoid race conditions
4794 * Then release them.
4796 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
4797 err
= filemap_write_and_wait_range(mapping
,
4798 offset
, offset
+ length
- 1);
4804 /* Now release the pages */
4805 if (last_page_offset
> first_page_offset
) {
4806 truncate_pagecache_range(inode
, first_page_offset
,
4807 last_page_offset
- 1);
4810 /* finish any pending end_io work */
4811 ext4_flush_completed_IO(inode
);
4813 credits
= ext4_writepage_trans_blocks(inode
);
4814 handle
= ext4_journal_start(inode
, credits
);
4816 return PTR_ERR(handle
);
4818 err
= ext4_orphan_add(handle
, inode
);
4823 * Now we need to zero out the non-page-aligned data in the
4824 * pages at the start and tail of the hole, and unmap the buffer
4825 * heads for the block aligned regions of the page that were
4826 * completely zeroed.
4828 if (first_page
> last_page
) {
4830 * If the file space being truncated is contained within a page
4831 * just zero out and unmap the middle of that page
4833 err
= ext4_discard_partial_page_buffers(handle
,
4834 mapping
, offset
, length
, 0);
4840 * zero out and unmap the partial page that contains
4841 * the start of the hole
4843 page_len
= first_page_offset
- offset
;
4845 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4846 offset
, page_len
, 0);
4852 * zero out and unmap the partial page that contains
4853 * the end of the hole
4855 page_len
= offset
+ length
- last_page_offset
;
4857 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4858 last_page_offset
, page_len
, 0);
4865 * If i_size is contained in the last page, we need to
4866 * unmap and zero the partial page after i_size
4868 if (inode
->i_size
>> PAGE_CACHE_SHIFT
== last_page
&&
4869 inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4871 page_len
= PAGE_CACHE_SIZE
-
4872 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4875 err
= ext4_discard_partial_page_buffers(handle
,
4876 mapping
, inode
->i_size
, page_len
, 0);
4883 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
4884 EXT4_BLOCK_SIZE_BITS(sb
);
4885 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
4887 /* If there are no blocks to remove, return now */
4888 if (first_block
>= stop_block
)
4891 down_write(&EXT4_I(inode
)->i_data_sem
);
4892 ext4_ext_invalidate_cache(inode
);
4893 ext4_discard_preallocations(inode
);
4895 err
= ext4_ext_remove_space(inode
, first_block
, stop_block
- 1);
4897 ext4_ext_invalidate_cache(inode
);
4898 ext4_discard_preallocations(inode
);
4901 ext4_handle_sync(handle
);
4903 up_write(&EXT4_I(inode
)->i_data_sem
);
4906 ext4_orphan_del(handle
, inode
);
4907 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4908 ext4_mark_inode_dirty(handle
, inode
);
4909 ext4_journal_stop(handle
);
4912 int ext4_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4913 __u64 start
, __u64 len
)
4915 ext4_lblk_t start_blk
;
4918 /* fallback to generic here if not in extents fmt */
4919 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4920 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
4923 if (fiemap_check_flags(fieinfo
, EXT4_FIEMAP_FLAGS
))
4926 if (fieinfo
->fi_flags
& FIEMAP_FLAG_XATTR
) {
4927 error
= ext4_xattr_fiemap(inode
, fieinfo
);
4929 ext4_lblk_t len_blks
;
4932 start_blk
= start
>> inode
->i_sb
->s_blocksize_bits
;
4933 last_blk
= (start
+ len
- 1) >> inode
->i_sb
->s_blocksize_bits
;
4934 if (last_blk
>= EXT_MAX_BLOCKS
)
4935 last_blk
= EXT_MAX_BLOCKS
-1;
4936 len_blks
= ((ext4_lblk_t
) last_blk
) - start_blk
+ 1;
4939 * Walk the extent tree gathering extent information.
4940 * ext4_ext_fiemap_cb will push extents back to user.
4942 error
= ext4_ext_walk_space(inode
, start_blk
, len_blks
,
4943 ext4_ext_fiemap_cb
, fieinfo
);