2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
50 * used by extent splitting.
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
60 static __le32
ext4_extent_block_csum(struct inode
*inode
,
61 struct ext4_extent_header
*eh
)
63 struct ext4_inode_info
*ei
= EXT4_I(inode
);
64 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
67 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)eh
,
68 EXT4_EXTENT_TAIL_OFFSET(eh
));
69 return cpu_to_le32(csum
);
72 static int ext4_extent_block_csum_verify(struct inode
*inode
,
73 struct ext4_extent_header
*eh
)
75 struct ext4_extent_tail
*et
;
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
81 et
= find_ext4_extent_tail(eh
);
82 if (et
->et_checksum
!= ext4_extent_block_csum(inode
, eh
))
87 static void ext4_extent_block_csum_set(struct inode
*inode
,
88 struct ext4_extent_header
*eh
)
90 struct ext4_extent_tail
*et
;
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
96 et
= find_ext4_extent_tail(eh
);
97 et
->et_checksum
= ext4_extent_block_csum(inode
, eh
);
100 static int ext4_split_extent(handle_t
*handle
,
102 struct ext4_ext_path
*path
,
103 struct ext4_map_blocks
*map
,
107 static int ext4_split_extent_at(handle_t
*handle
,
109 struct ext4_ext_path
*path
,
114 static int ext4_find_delayed_extent(struct inode
*inode
,
115 struct extent_status
*newes
);
117 static int ext4_ext_truncate_extend_restart(handle_t
*handle
,
123 if (!ext4_handle_valid(handle
))
125 if (handle
->h_buffer_credits
> needed
)
127 err
= ext4_journal_extend(handle
, needed
);
130 err
= ext4_truncate_restart_trans(handle
, inode
, needed
);
142 static int ext4_ext_get_access(handle_t
*handle
, struct inode
*inode
,
143 struct ext4_ext_path
*path
)
146 /* path points to block */
147 return ext4_journal_get_write_access(handle
, path
->p_bh
);
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
160 #define ext4_ext_dirty(handle, inode, path) \
161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where
, unsigned int line
,
163 handle_t
*handle
, struct inode
*inode
,
164 struct ext4_ext_path
*path
)
168 ext4_extent_block_csum_set(inode
, ext_block_hdr(path
->p_bh
));
169 /* path points to block */
170 err
= __ext4_handle_dirty_metadata(where
, line
, handle
,
173 /* path points to leaf/index in inode body */
174 err
= ext4_mark_inode_dirty(handle
, inode
);
179 static ext4_fsblk_t
ext4_ext_find_goal(struct inode
*inode
,
180 struct ext4_ext_path
*path
,
184 int depth
= path
->p_depth
;
185 struct ext4_extent
*ex
;
188 * Try to predict block placement assuming that we are
189 * filling in a file which will eventually be
190 * non-sparse --- i.e., in the case of libbfd writing
191 * an ELF object sections out-of-order but in a way
192 * the eventually results in a contiguous object or
193 * executable file, or some database extending a table
194 * space file. However, this is actually somewhat
195 * non-ideal if we are writing a sparse file such as
196 * qemu or KVM writing a raw image file that is going
197 * to stay fairly sparse, since it will end up
198 * fragmenting the file system's free space. Maybe we
199 * should have some hueristics or some way to allow
200 * userspace to pass a hint to file system,
201 * especially if the latter case turns out to be
204 ex
= path
[depth
].p_ext
;
206 ext4_fsblk_t ext_pblk
= ext4_ext_pblock(ex
);
207 ext4_lblk_t ext_block
= le32_to_cpu(ex
->ee_block
);
209 if (block
> ext_block
)
210 return ext_pblk
+ (block
- ext_block
);
212 return ext_pblk
- (ext_block
- block
);
215 /* it looks like index is empty;
216 * try to find starting block from index itself */
217 if (path
[depth
].p_bh
)
218 return path
[depth
].p_bh
->b_blocknr
;
221 /* OK. use inode's group */
222 return ext4_inode_to_goal_block(inode
);
226 * Allocation for a meta data block
229 ext4_ext_new_meta_block(handle_t
*handle
, struct inode
*inode
,
230 struct ext4_ext_path
*path
,
231 struct ext4_extent
*ex
, int *err
, unsigned int flags
)
233 ext4_fsblk_t goal
, newblock
;
235 goal
= ext4_ext_find_goal(inode
, path
, le32_to_cpu(ex
->ee_block
));
236 newblock
= ext4_new_meta_blocks(handle
, inode
, goal
, flags
,
241 static inline int ext4_ext_space_block(struct inode
*inode
, int check
)
245 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
246 / sizeof(struct ext4_extent
);
247 #ifdef AGGRESSIVE_TEST
248 if (!check
&& size
> 6)
254 static inline int ext4_ext_space_block_idx(struct inode
*inode
, int check
)
258 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
259 / sizeof(struct ext4_extent_idx
);
260 #ifdef AGGRESSIVE_TEST
261 if (!check
&& size
> 5)
267 static inline int ext4_ext_space_root(struct inode
*inode
, int check
)
271 size
= sizeof(EXT4_I(inode
)->i_data
);
272 size
-= sizeof(struct ext4_extent_header
);
273 size
/= sizeof(struct ext4_extent
);
274 #ifdef AGGRESSIVE_TEST
275 if (!check
&& size
> 3)
281 static inline int ext4_ext_space_root_idx(struct inode
*inode
, int check
)
285 size
= sizeof(EXT4_I(inode
)->i_data
);
286 size
-= sizeof(struct ext4_extent_header
);
287 size
/= sizeof(struct ext4_extent_idx
);
288 #ifdef AGGRESSIVE_TEST
289 if (!check
&& size
> 4)
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
300 int ext4_ext_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
302 struct ext4_inode_info
*ei
= EXT4_I(inode
);
305 idxs
= ((inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
306 / sizeof(struct ext4_extent_idx
));
309 * If the new delayed allocation block is contiguous with the
310 * previous da block, it can share index blocks with the
311 * previous block, so we only need to allocate a new index
312 * block every idxs leaf blocks. At ldxs**2 blocks, we need
313 * an additional index block, and at ldxs**3 blocks, yet
314 * another index blocks.
316 if (ei
->i_da_metadata_calc_len
&&
317 ei
->i_da_metadata_calc_last_lblock
+1 == lblock
) {
320 if ((ei
->i_da_metadata_calc_len
% idxs
) == 0)
322 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
)) == 0)
324 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
*idxs
)) == 0) {
326 ei
->i_da_metadata_calc_len
= 0;
328 ei
->i_da_metadata_calc_len
++;
329 ei
->i_da_metadata_calc_last_lblock
++;
334 * In the worst case we need a new set of index blocks at
335 * every level of the inode's extent tree.
337 ei
->i_da_metadata_calc_len
= 1;
338 ei
->i_da_metadata_calc_last_lblock
= lblock
;
339 return ext_depth(inode
) + 1;
343 ext4_ext_max_entries(struct inode
*inode
, int depth
)
347 if (depth
== ext_depth(inode
)) {
349 max
= ext4_ext_space_root(inode
, 1);
351 max
= ext4_ext_space_root_idx(inode
, 1);
354 max
= ext4_ext_space_block(inode
, 1);
356 max
= ext4_ext_space_block_idx(inode
, 1);
362 static int ext4_valid_extent(struct inode
*inode
, struct ext4_extent
*ext
)
364 ext4_fsblk_t block
= ext4_ext_pblock(ext
);
365 int len
= ext4_ext_get_actual_len(ext
);
369 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, len
);
372 static int ext4_valid_extent_idx(struct inode
*inode
,
373 struct ext4_extent_idx
*ext_idx
)
375 ext4_fsblk_t block
= ext4_idx_pblock(ext_idx
);
377 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, 1);
380 static int ext4_valid_extent_entries(struct inode
*inode
,
381 struct ext4_extent_header
*eh
,
384 unsigned short entries
;
385 if (eh
->eh_entries
== 0)
388 entries
= le16_to_cpu(eh
->eh_entries
);
392 struct ext4_extent
*ext
= EXT_FIRST_EXTENT(eh
);
394 if (!ext4_valid_extent(inode
, ext
))
400 struct ext4_extent_idx
*ext_idx
= EXT_FIRST_INDEX(eh
);
402 if (!ext4_valid_extent_idx(inode
, ext_idx
))
411 static int __ext4_ext_check(const char *function
, unsigned int line
,
412 struct inode
*inode
, struct ext4_extent_header
*eh
,
415 const char *error_msg
;
418 if (unlikely(eh
->eh_magic
!= EXT4_EXT_MAGIC
)) {
419 error_msg
= "invalid magic";
422 if (unlikely(le16_to_cpu(eh
->eh_depth
) != depth
)) {
423 error_msg
= "unexpected eh_depth";
426 if (unlikely(eh
->eh_max
== 0)) {
427 error_msg
= "invalid eh_max";
430 max
= ext4_ext_max_entries(inode
, depth
);
431 if (unlikely(le16_to_cpu(eh
->eh_max
) > max
)) {
432 error_msg
= "too large eh_max";
435 if (unlikely(le16_to_cpu(eh
->eh_entries
) > le16_to_cpu(eh
->eh_max
))) {
436 error_msg
= "invalid eh_entries";
439 if (!ext4_valid_extent_entries(inode
, eh
, depth
)) {
440 error_msg
= "invalid extent entries";
443 /* Verify checksum on non-root extent tree nodes */
444 if (ext_depth(inode
) != depth
&&
445 !ext4_extent_block_csum_verify(inode
, eh
)) {
446 error_msg
= "extent tree corrupted";
452 ext4_error_inode(inode
, function
, line
, 0,
453 "bad header/extent: %s - magic %x, "
454 "entries %u, max %u(%u), depth %u(%u)",
455 error_msg
, le16_to_cpu(eh
->eh_magic
),
456 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
),
457 max
, le16_to_cpu(eh
->eh_depth
), depth
);
462 #define ext4_ext_check(inode, eh, depth) \
463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
465 int ext4_ext_check_inode(struct inode
*inode
)
467 return ext4_ext_check(inode
, ext_inode_hdr(inode
), ext_depth(inode
));
470 static int __ext4_ext_check_block(const char *function
, unsigned int line
,
472 struct ext4_extent_header
*eh
,
474 struct buffer_head
*bh
)
478 if (buffer_verified(bh
))
480 ret
= ext4_ext_check(inode
, eh
, depth
);
483 set_buffer_verified(bh
);
487 #define ext4_ext_check_block(inode, eh, depth, bh) \
488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
491 static void ext4_ext_show_path(struct inode
*inode
, struct ext4_ext_path
*path
)
493 int k
, l
= path
->p_depth
;
496 for (k
= 0; k
<= l
; k
++, path
++) {
498 ext_debug(" %d->%llu", le32_to_cpu(path
->p_idx
->ei_block
),
499 ext4_idx_pblock(path
->p_idx
));
500 } else if (path
->p_ext
) {
501 ext_debug(" %d:[%d]%d:%llu ",
502 le32_to_cpu(path
->p_ext
->ee_block
),
503 ext4_ext_is_uninitialized(path
->p_ext
),
504 ext4_ext_get_actual_len(path
->p_ext
),
505 ext4_ext_pblock(path
->p_ext
));
512 static void ext4_ext_show_leaf(struct inode
*inode
, struct ext4_ext_path
*path
)
514 int depth
= ext_depth(inode
);
515 struct ext4_extent_header
*eh
;
516 struct ext4_extent
*ex
;
522 eh
= path
[depth
].p_hdr
;
523 ex
= EXT_FIRST_EXTENT(eh
);
525 ext_debug("Displaying leaf extents for inode %lu\n", inode
->i_ino
);
527 for (i
= 0; i
< le16_to_cpu(eh
->eh_entries
); i
++, ex
++) {
528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex
->ee_block
),
529 ext4_ext_is_uninitialized(ex
),
530 ext4_ext_get_actual_len(ex
), ext4_ext_pblock(ex
));
535 static void ext4_ext_show_move(struct inode
*inode
, struct ext4_ext_path
*path
,
536 ext4_fsblk_t newblock
, int level
)
538 int depth
= ext_depth(inode
);
539 struct ext4_extent
*ex
;
541 if (depth
!= level
) {
542 struct ext4_extent_idx
*idx
;
543 idx
= path
[level
].p_idx
;
544 while (idx
<= EXT_MAX_INDEX(path
[level
].p_hdr
)) {
545 ext_debug("%d: move %d:%llu in new index %llu\n", level
,
546 le32_to_cpu(idx
->ei_block
),
547 ext4_idx_pblock(idx
),
555 ex
= path
[depth
].p_ext
;
556 while (ex
<= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 le32_to_cpu(ex
->ee_block
),
560 ext4_ext_is_uninitialized(ex
),
561 ext4_ext_get_actual_len(ex
),
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
573 void ext4_ext_drop_refs(struct ext4_ext_path
*path
)
575 int depth
= path
->p_depth
;
578 for (i
= 0; i
<= depth
; i
++, path
++)
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
591 ext4_ext_binsearch_idx(struct inode
*inode
,
592 struct ext4_ext_path
*path
, ext4_lblk_t block
)
594 struct ext4_extent_header
*eh
= path
->p_hdr
;
595 struct ext4_extent_idx
*r
, *l
, *m
;
598 ext_debug("binsearch for %u(idx): ", block
);
600 l
= EXT_FIRST_INDEX(eh
) + 1;
601 r
= EXT_LAST_INDEX(eh
);
604 if (block
< le32_to_cpu(m
->ei_block
))
608 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ei_block
),
609 m
, le32_to_cpu(m
->ei_block
),
610 r
, le32_to_cpu(r
->ei_block
));
614 ext_debug(" -> %u->%lld ", le32_to_cpu(path
->p_idx
->ei_block
),
615 ext4_idx_pblock(path
->p_idx
));
617 #ifdef CHECK_BINSEARCH
619 struct ext4_extent_idx
*chix
, *ix
;
622 chix
= ix
= EXT_FIRST_INDEX(eh
);
623 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ix
++) {
625 le32_to_cpu(ix
->ei_block
) <= le32_to_cpu(ix
[-1].ei_block
)) {
626 printk(KERN_DEBUG
"k=%d, ix=0x%p, "
628 ix
, EXT_FIRST_INDEX(eh
));
629 printk(KERN_DEBUG
"%u <= %u\n",
630 le32_to_cpu(ix
->ei_block
),
631 le32_to_cpu(ix
[-1].ei_block
));
633 BUG_ON(k
&& le32_to_cpu(ix
->ei_block
)
634 <= le32_to_cpu(ix
[-1].ei_block
));
635 if (block
< le32_to_cpu(ix
->ei_block
))
639 BUG_ON(chix
!= path
->p_idx
);
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
651 ext4_ext_binsearch(struct inode
*inode
,
652 struct ext4_ext_path
*path
, ext4_lblk_t block
)
654 struct ext4_extent_header
*eh
= path
->p_hdr
;
655 struct ext4_extent
*r
, *l
, *m
;
657 if (eh
->eh_entries
== 0) {
659 * this leaf is empty:
660 * we get such a leaf in split/add case
665 ext_debug("binsearch for %u: ", block
);
667 l
= EXT_FIRST_EXTENT(eh
) + 1;
668 r
= EXT_LAST_EXTENT(eh
);
672 if (block
< le32_to_cpu(m
->ee_block
))
676 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ee_block
),
677 m
, le32_to_cpu(m
->ee_block
),
678 r
, le32_to_cpu(r
->ee_block
));
682 ext_debug(" -> %d:%llu:[%d]%d ",
683 le32_to_cpu(path
->p_ext
->ee_block
),
684 ext4_ext_pblock(path
->p_ext
),
685 ext4_ext_is_uninitialized(path
->p_ext
),
686 ext4_ext_get_actual_len(path
->p_ext
));
688 #ifdef CHECK_BINSEARCH
690 struct ext4_extent
*chex
, *ex
;
693 chex
= ex
= EXT_FIRST_EXTENT(eh
);
694 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ex
++) {
695 BUG_ON(k
&& le32_to_cpu(ex
->ee_block
)
696 <= le32_to_cpu(ex
[-1].ee_block
));
697 if (block
< le32_to_cpu(ex
->ee_block
))
701 BUG_ON(chex
!= path
->p_ext
);
707 int ext4_ext_tree_init(handle_t
*handle
, struct inode
*inode
)
709 struct ext4_extent_header
*eh
;
711 eh
= ext_inode_hdr(inode
);
714 eh
->eh_magic
= EXT4_EXT_MAGIC
;
715 eh
->eh_max
= cpu_to_le16(ext4_ext_space_root(inode
, 0));
716 ext4_mark_inode_dirty(handle
, inode
);
720 struct ext4_ext_path
*
721 ext4_ext_find_extent(struct inode
*inode
, ext4_lblk_t block
,
722 struct ext4_ext_path
*path
)
724 struct ext4_extent_header
*eh
;
725 struct buffer_head
*bh
;
726 short int depth
, i
, ppos
= 0, alloc
= 0;
729 eh
= ext_inode_hdr(inode
);
730 depth
= ext_depth(inode
);
732 /* account possible depth increase */
734 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 2),
737 return ERR_PTR(-ENOMEM
);
744 /* walk through the tree */
746 ext_debug("depth %d: num %d, max %d\n",
747 ppos
, le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
749 ext4_ext_binsearch_idx(inode
, path
+ ppos
, block
);
750 path
[ppos
].p_block
= ext4_idx_pblock(path
[ppos
].p_idx
);
751 path
[ppos
].p_depth
= i
;
752 path
[ppos
].p_ext
= NULL
;
754 bh
= sb_getblk(inode
->i_sb
, path
[ppos
].p_block
);
759 if (!bh_uptodate_or_lock(bh
)) {
760 trace_ext4_ext_load_extent(inode
, block
,
762 ret
= bh_submit_read(bh
);
768 eh
= ext_block_hdr(bh
);
770 if (unlikely(ppos
> depth
)) {
772 EXT4_ERROR_INODE(inode
,
773 "ppos %d > depth %d", ppos
, depth
);
777 path
[ppos
].p_bh
= bh
;
778 path
[ppos
].p_hdr
= eh
;
781 ret
= ext4_ext_check_block(inode
, eh
, i
, bh
);
786 path
[ppos
].p_depth
= i
;
787 path
[ppos
].p_ext
= NULL
;
788 path
[ppos
].p_idx
= NULL
;
791 ext4_ext_binsearch(inode
, path
+ ppos
, block
);
792 /* if not an empty leaf */
793 if (path
[ppos
].p_ext
)
794 path
[ppos
].p_block
= ext4_ext_pblock(path
[ppos
].p_ext
);
796 ext4_ext_show_path(inode
, path
);
801 ext4_ext_drop_refs(path
);
808 * ext4_ext_insert_index:
809 * insert new index [@logical;@ptr] into the block at @curp;
810 * check where to insert: before @curp or after @curp
812 static int ext4_ext_insert_index(handle_t
*handle
, struct inode
*inode
,
813 struct ext4_ext_path
*curp
,
814 int logical
, ext4_fsblk_t ptr
)
816 struct ext4_extent_idx
*ix
;
819 err
= ext4_ext_get_access(handle
, inode
, curp
);
823 if (unlikely(logical
== le32_to_cpu(curp
->p_idx
->ei_block
))) {
824 EXT4_ERROR_INODE(inode
,
825 "logical %d == ei_block %d!",
826 logical
, le32_to_cpu(curp
->p_idx
->ei_block
));
830 if (unlikely(le16_to_cpu(curp
->p_hdr
->eh_entries
)
831 >= le16_to_cpu(curp
->p_hdr
->eh_max
))) {
832 EXT4_ERROR_INODE(inode
,
833 "eh_entries %d >= eh_max %d!",
834 le16_to_cpu(curp
->p_hdr
->eh_entries
),
835 le16_to_cpu(curp
->p_hdr
->eh_max
));
839 if (logical
> le32_to_cpu(curp
->p_idx
->ei_block
)) {
841 ext_debug("insert new index %d after: %llu\n", logical
, ptr
);
842 ix
= curp
->p_idx
+ 1;
845 ext_debug("insert new index %d before: %llu\n", logical
, ptr
);
849 len
= EXT_LAST_INDEX(curp
->p_hdr
) - ix
+ 1;
852 ext_debug("insert new index %d: "
853 "move %d indices from 0x%p to 0x%p\n",
854 logical
, len
, ix
, ix
+ 1);
855 memmove(ix
+ 1, ix
, len
* sizeof(struct ext4_extent_idx
));
858 if (unlikely(ix
> EXT_MAX_INDEX(curp
->p_hdr
))) {
859 EXT4_ERROR_INODE(inode
, "ix > EXT_MAX_INDEX!");
863 ix
->ei_block
= cpu_to_le32(logical
);
864 ext4_idx_store_pblock(ix
, ptr
);
865 le16_add_cpu(&curp
->p_hdr
->eh_entries
, 1);
867 if (unlikely(ix
> EXT_LAST_INDEX(curp
->p_hdr
))) {
868 EXT4_ERROR_INODE(inode
, "ix > EXT_LAST_INDEX!");
872 err
= ext4_ext_dirty(handle
, inode
, curp
);
873 ext4_std_error(inode
->i_sb
, err
);
880 * inserts new subtree into the path, using free index entry
882 * - allocates all needed blocks (new leaf and all intermediate index blocks)
883 * - makes decision where to split
884 * - moves remaining extents and index entries (right to the split point)
885 * into the newly allocated blocks
886 * - initializes subtree
888 static int ext4_ext_split(handle_t
*handle
, struct inode
*inode
,
890 struct ext4_ext_path
*path
,
891 struct ext4_extent
*newext
, int at
)
893 struct buffer_head
*bh
= NULL
;
894 int depth
= ext_depth(inode
);
895 struct ext4_extent_header
*neh
;
896 struct ext4_extent_idx
*fidx
;
898 ext4_fsblk_t newblock
, oldblock
;
900 ext4_fsblk_t
*ablocks
= NULL
; /* array of allocated blocks */
903 /* make decision: where to split? */
904 /* FIXME: now decision is simplest: at current extent */
906 /* if current leaf will be split, then we should use
907 * border from split point */
908 if (unlikely(path
[depth
].p_ext
> EXT_MAX_EXTENT(path
[depth
].p_hdr
))) {
909 EXT4_ERROR_INODE(inode
, "p_ext > EXT_MAX_EXTENT!");
912 if (path
[depth
].p_ext
!= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
913 border
= path
[depth
].p_ext
[1].ee_block
;
914 ext_debug("leaf will be split."
915 " next leaf starts at %d\n",
916 le32_to_cpu(border
));
918 border
= newext
->ee_block
;
919 ext_debug("leaf will be added."
920 " next leaf starts at %d\n",
921 le32_to_cpu(border
));
925 * If error occurs, then we break processing
926 * and mark filesystem read-only. index won't
927 * be inserted and tree will be in consistent
928 * state. Next mount will repair buffers too.
932 * Get array to track all allocated blocks.
933 * We need this to handle errors and free blocks
936 ablocks
= kzalloc(sizeof(ext4_fsblk_t
) * depth
, GFP_NOFS
);
940 /* allocate all needed blocks */
941 ext_debug("allocate %d blocks for indexes/leaf\n", depth
- at
);
942 for (a
= 0; a
< depth
- at
; a
++) {
943 newblock
= ext4_ext_new_meta_block(handle
, inode
, path
,
944 newext
, &err
, flags
);
947 ablocks
[a
] = newblock
;
950 /* initialize new leaf */
951 newblock
= ablocks
[--a
];
952 if (unlikely(newblock
== 0)) {
953 EXT4_ERROR_INODE(inode
, "newblock == 0!");
957 bh
= sb_getblk(inode
->i_sb
, newblock
);
964 err
= ext4_journal_get_create_access(handle
, bh
);
968 neh
= ext_block_hdr(bh
);
970 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
971 neh
->eh_magic
= EXT4_EXT_MAGIC
;
974 /* move remainder of path[depth] to the new leaf */
975 if (unlikely(path
[depth
].p_hdr
->eh_entries
!=
976 path
[depth
].p_hdr
->eh_max
)) {
977 EXT4_ERROR_INODE(inode
, "eh_entries %d != eh_max %d!",
978 path
[depth
].p_hdr
->eh_entries
,
979 path
[depth
].p_hdr
->eh_max
);
983 /* start copy from next extent */
984 m
= EXT_MAX_EXTENT(path
[depth
].p_hdr
) - path
[depth
].p_ext
++;
985 ext4_ext_show_move(inode
, path
, newblock
, depth
);
987 struct ext4_extent
*ex
;
988 ex
= EXT_FIRST_EXTENT(neh
);
989 memmove(ex
, path
[depth
].p_ext
, sizeof(struct ext4_extent
) * m
);
990 le16_add_cpu(&neh
->eh_entries
, m
);
993 ext4_extent_block_csum_set(inode
, neh
);
994 set_buffer_uptodate(bh
);
997 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1003 /* correct old leaf */
1005 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1008 le16_add_cpu(&path
[depth
].p_hdr
->eh_entries
, -m
);
1009 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1015 /* create intermediate indexes */
1017 if (unlikely(k
< 0)) {
1018 EXT4_ERROR_INODE(inode
, "k %d < 0!", k
);
1023 ext_debug("create %d intermediate indices\n", k
);
1024 /* insert new index into current index block */
1025 /* current depth stored in i var */
1028 oldblock
= newblock
;
1029 newblock
= ablocks
[--a
];
1030 bh
= sb_getblk(inode
->i_sb
, newblock
);
1031 if (unlikely(!bh
)) {
1037 err
= ext4_journal_get_create_access(handle
, bh
);
1041 neh
= ext_block_hdr(bh
);
1042 neh
->eh_entries
= cpu_to_le16(1);
1043 neh
->eh_magic
= EXT4_EXT_MAGIC
;
1044 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
1045 neh
->eh_depth
= cpu_to_le16(depth
- i
);
1046 fidx
= EXT_FIRST_INDEX(neh
);
1047 fidx
->ei_block
= border
;
1048 ext4_idx_store_pblock(fidx
, oldblock
);
1050 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1051 i
, newblock
, le32_to_cpu(border
), oldblock
);
1053 /* move remainder of path[i] to the new index block */
1054 if (unlikely(EXT_MAX_INDEX(path
[i
].p_hdr
) !=
1055 EXT_LAST_INDEX(path
[i
].p_hdr
))) {
1056 EXT4_ERROR_INODE(inode
,
1057 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1058 le32_to_cpu(path
[i
].p_ext
->ee_block
));
1062 /* start copy indexes */
1063 m
= EXT_MAX_INDEX(path
[i
].p_hdr
) - path
[i
].p_idx
++;
1064 ext_debug("cur 0x%p, last 0x%p\n", path
[i
].p_idx
,
1065 EXT_MAX_INDEX(path
[i
].p_hdr
));
1066 ext4_ext_show_move(inode
, path
, newblock
, i
);
1068 memmove(++fidx
, path
[i
].p_idx
,
1069 sizeof(struct ext4_extent_idx
) * m
);
1070 le16_add_cpu(&neh
->eh_entries
, m
);
1072 ext4_extent_block_csum_set(inode
, neh
);
1073 set_buffer_uptodate(bh
);
1076 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1082 /* correct old index */
1084 err
= ext4_ext_get_access(handle
, inode
, path
+ i
);
1087 le16_add_cpu(&path
[i
].p_hdr
->eh_entries
, -m
);
1088 err
= ext4_ext_dirty(handle
, inode
, path
+ i
);
1096 /* insert new index */
1097 err
= ext4_ext_insert_index(handle
, inode
, path
+ at
,
1098 le32_to_cpu(border
), newblock
);
1102 if (buffer_locked(bh
))
1108 /* free all allocated blocks in error case */
1109 for (i
= 0; i
< depth
; i
++) {
1112 ext4_free_blocks(handle
, inode
, NULL
, ablocks
[i
], 1,
1113 EXT4_FREE_BLOCKS_METADATA
);
1122 * ext4_ext_grow_indepth:
1123 * implements tree growing procedure:
1124 * - allocates new block
1125 * - moves top-level data (index block or leaf) into the new block
1126 * - initializes new top-level, creating index that points to the
1127 * just created block
1129 static int ext4_ext_grow_indepth(handle_t
*handle
, struct inode
*inode
,
1131 struct ext4_extent
*newext
)
1133 struct ext4_extent_header
*neh
;
1134 struct buffer_head
*bh
;
1135 ext4_fsblk_t newblock
;
1138 newblock
= ext4_ext_new_meta_block(handle
, inode
, NULL
,
1139 newext
, &err
, flags
);
1143 bh
= sb_getblk(inode
->i_sb
, newblock
);
1148 err
= ext4_journal_get_create_access(handle
, bh
);
1154 /* move top-level index/leaf into new block */
1155 memmove(bh
->b_data
, EXT4_I(inode
)->i_data
,
1156 sizeof(EXT4_I(inode
)->i_data
));
1158 /* set size of new block */
1159 neh
= ext_block_hdr(bh
);
1160 /* old root could have indexes or leaves
1161 * so calculate e_max right way */
1162 if (ext_depth(inode
))
1163 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
1165 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
1166 neh
->eh_magic
= EXT4_EXT_MAGIC
;
1167 ext4_extent_block_csum_set(inode
, neh
);
1168 set_buffer_uptodate(bh
);
1171 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1175 /* Update top-level index: num,max,pointer */
1176 neh
= ext_inode_hdr(inode
);
1177 neh
->eh_entries
= cpu_to_le16(1);
1178 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh
), newblock
);
1179 if (neh
->eh_depth
== 0) {
1180 /* Root extent block becomes index block */
1181 neh
->eh_max
= cpu_to_le16(ext4_ext_space_root_idx(inode
, 0));
1182 EXT_FIRST_INDEX(neh
)->ei_block
=
1183 EXT_FIRST_EXTENT(neh
)->ee_block
;
1185 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1186 le16_to_cpu(neh
->eh_entries
), le16_to_cpu(neh
->eh_max
),
1187 le32_to_cpu(EXT_FIRST_INDEX(neh
)->ei_block
),
1188 ext4_idx_pblock(EXT_FIRST_INDEX(neh
)));
1190 le16_add_cpu(&neh
->eh_depth
, 1);
1191 ext4_mark_inode_dirty(handle
, inode
);
1199 * ext4_ext_create_new_leaf:
1200 * finds empty index and adds new leaf.
1201 * if no free index is found, then it requests in-depth growing.
1203 static int ext4_ext_create_new_leaf(handle_t
*handle
, struct inode
*inode
,
1205 struct ext4_ext_path
*path
,
1206 struct ext4_extent
*newext
)
1208 struct ext4_ext_path
*curp
;
1209 int depth
, i
, err
= 0;
1212 i
= depth
= ext_depth(inode
);
1214 /* walk up to the tree and look for free index entry */
1215 curp
= path
+ depth
;
1216 while (i
> 0 && !EXT_HAS_FREE_INDEX(curp
)) {
1221 /* we use already allocated block for index block,
1222 * so subsequent data blocks should be contiguous */
1223 if (EXT_HAS_FREE_INDEX(curp
)) {
1224 /* if we found index with free entry, then use that
1225 * entry: create all needed subtree and add new leaf */
1226 err
= ext4_ext_split(handle
, inode
, flags
, path
, newext
, i
);
1231 ext4_ext_drop_refs(path
);
1232 path
= ext4_ext_find_extent(inode
,
1233 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1236 err
= PTR_ERR(path
);
1238 /* tree is full, time to grow in depth */
1239 err
= ext4_ext_grow_indepth(handle
, inode
, flags
, newext
);
1244 ext4_ext_drop_refs(path
);
1245 path
= ext4_ext_find_extent(inode
,
1246 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1249 err
= PTR_ERR(path
);
1254 * only first (depth 0 -> 1) produces free space;
1255 * in all other cases we have to split the grown tree
1257 depth
= ext_depth(inode
);
1258 if (path
[depth
].p_hdr
->eh_entries
== path
[depth
].p_hdr
->eh_max
) {
1259 /* now we need to split */
1269 * search the closest allocated block to the left for *logical
1270 * and returns it at @logical + it's physical address at @phys
1271 * if *logical is the smallest allocated block, the function
1272 * returns 0 at @phys
1273 * return value contains 0 (success) or error code
1275 static int ext4_ext_search_left(struct inode
*inode
,
1276 struct ext4_ext_path
*path
,
1277 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1279 struct ext4_extent_idx
*ix
;
1280 struct ext4_extent
*ex
;
1283 if (unlikely(path
== NULL
)) {
1284 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1287 depth
= path
->p_depth
;
1290 if (depth
== 0 && path
->p_ext
== NULL
)
1293 /* usually extent in the path covers blocks smaller
1294 * then *logical, but it can be that extent is the
1295 * first one in the file */
1297 ex
= path
[depth
].p_ext
;
1298 ee_len
= ext4_ext_get_actual_len(ex
);
1299 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1300 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1301 EXT4_ERROR_INODE(inode
,
1302 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1303 *logical
, le32_to_cpu(ex
->ee_block
));
1306 while (--depth
>= 0) {
1307 ix
= path
[depth
].p_idx
;
1308 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1309 EXT4_ERROR_INODE(inode
,
1310 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1311 ix
!= NULL
? le32_to_cpu(ix
->ei_block
) : 0,
1312 EXT_FIRST_INDEX(path
[depth
].p_hdr
) != NULL
?
1313 le32_to_cpu(EXT_FIRST_INDEX(path
[depth
].p_hdr
)->ei_block
) : 0,
1321 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1322 EXT4_ERROR_INODE(inode
,
1323 "logical %d < ee_block %d + ee_len %d!",
1324 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1328 *logical
= le32_to_cpu(ex
->ee_block
) + ee_len
- 1;
1329 *phys
= ext4_ext_pblock(ex
) + ee_len
- 1;
1334 * search the closest allocated block to the right for *logical
1335 * and returns it at @logical + it's physical address at @phys
1336 * if *logical is the largest allocated block, the function
1337 * returns 0 at @phys
1338 * return value contains 0 (success) or error code
1340 static int ext4_ext_search_right(struct inode
*inode
,
1341 struct ext4_ext_path
*path
,
1342 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
,
1343 struct ext4_extent
**ret_ex
)
1345 struct buffer_head
*bh
= NULL
;
1346 struct ext4_extent_header
*eh
;
1347 struct ext4_extent_idx
*ix
;
1348 struct ext4_extent
*ex
;
1350 int depth
; /* Note, NOT eh_depth; depth from top of tree */
1353 if (unlikely(path
== NULL
)) {
1354 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1357 depth
= path
->p_depth
;
1360 if (depth
== 0 && path
->p_ext
== NULL
)
1363 /* usually extent in the path covers blocks smaller
1364 * then *logical, but it can be that extent is the
1365 * first one in the file */
1367 ex
= path
[depth
].p_ext
;
1368 ee_len
= ext4_ext_get_actual_len(ex
);
1369 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1370 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1371 EXT4_ERROR_INODE(inode
,
1372 "first_extent(path[%d].p_hdr) != ex",
1376 while (--depth
>= 0) {
1377 ix
= path
[depth
].p_idx
;
1378 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1379 EXT4_ERROR_INODE(inode
,
1380 "ix != EXT_FIRST_INDEX *logical %d!",
1388 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1389 EXT4_ERROR_INODE(inode
,
1390 "logical %d < ee_block %d + ee_len %d!",
1391 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1395 if (ex
!= EXT_LAST_EXTENT(path
[depth
].p_hdr
)) {
1396 /* next allocated block in this leaf */
1401 /* go up and search for index to the right */
1402 while (--depth
>= 0) {
1403 ix
= path
[depth
].p_idx
;
1404 if (ix
!= EXT_LAST_INDEX(path
[depth
].p_hdr
))
1408 /* we've gone up to the root and found no index to the right */
1412 /* we've found index to the right, let's
1413 * follow it and find the closest allocated
1414 * block to the right */
1416 block
= ext4_idx_pblock(ix
);
1417 while (++depth
< path
->p_depth
) {
1418 bh
= sb_bread(inode
->i_sb
, block
);
1421 eh
= ext_block_hdr(bh
);
1422 /* subtract from p_depth to get proper eh_depth */
1423 if (ext4_ext_check_block(inode
, eh
,
1424 path
->p_depth
- depth
, bh
)) {
1428 ix
= EXT_FIRST_INDEX(eh
);
1429 block
= ext4_idx_pblock(ix
);
1433 bh
= sb_bread(inode
->i_sb
, block
);
1436 eh
= ext_block_hdr(bh
);
1437 if (ext4_ext_check_block(inode
, eh
, path
->p_depth
- depth
, bh
)) {
1441 ex
= EXT_FIRST_EXTENT(eh
);
1443 *logical
= le32_to_cpu(ex
->ee_block
);
1444 *phys
= ext4_ext_pblock(ex
);
1452 * ext4_ext_next_allocated_block:
1453 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1454 * NOTE: it considers block number from index entry as
1455 * allocated block. Thus, index entries have to be consistent
1459 ext4_ext_next_allocated_block(struct ext4_ext_path
*path
)
1463 BUG_ON(path
== NULL
);
1464 depth
= path
->p_depth
;
1466 if (depth
== 0 && path
->p_ext
== NULL
)
1467 return EXT_MAX_BLOCKS
;
1469 while (depth
>= 0) {
1470 if (depth
== path
->p_depth
) {
1472 if (path
[depth
].p_ext
&&
1473 path
[depth
].p_ext
!=
1474 EXT_LAST_EXTENT(path
[depth
].p_hdr
))
1475 return le32_to_cpu(path
[depth
].p_ext
[1].ee_block
);
1478 if (path
[depth
].p_idx
!=
1479 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1480 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1485 return EXT_MAX_BLOCKS
;
1489 * ext4_ext_next_leaf_block:
1490 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1492 static ext4_lblk_t
ext4_ext_next_leaf_block(struct ext4_ext_path
*path
)
1496 BUG_ON(path
== NULL
);
1497 depth
= path
->p_depth
;
1499 /* zero-tree has no leaf blocks at all */
1501 return EXT_MAX_BLOCKS
;
1503 /* go to index block */
1506 while (depth
>= 0) {
1507 if (path
[depth
].p_idx
!=
1508 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1509 return (ext4_lblk_t
)
1510 le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1514 return EXT_MAX_BLOCKS
;
1518 * ext4_ext_correct_indexes:
1519 * if leaf gets modified and modified extent is first in the leaf,
1520 * then we have to correct all indexes above.
1521 * TODO: do we need to correct tree in all cases?
1523 static int ext4_ext_correct_indexes(handle_t
*handle
, struct inode
*inode
,
1524 struct ext4_ext_path
*path
)
1526 struct ext4_extent_header
*eh
;
1527 int depth
= ext_depth(inode
);
1528 struct ext4_extent
*ex
;
1532 eh
= path
[depth
].p_hdr
;
1533 ex
= path
[depth
].p_ext
;
1535 if (unlikely(ex
== NULL
|| eh
== NULL
)) {
1536 EXT4_ERROR_INODE(inode
,
1537 "ex %p == NULL or eh %p == NULL", ex
, eh
);
1542 /* there is no tree at all */
1546 if (ex
!= EXT_FIRST_EXTENT(eh
)) {
1547 /* we correct tree if first leaf got modified only */
1552 * TODO: we need correction if border is smaller than current one
1555 border
= path
[depth
].p_ext
->ee_block
;
1556 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1559 path
[k
].p_idx
->ei_block
= border
;
1560 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1565 /* change all left-side indexes */
1566 if (path
[k
+1].p_idx
!= EXT_FIRST_INDEX(path
[k
+1].p_hdr
))
1568 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1571 path
[k
].p_idx
->ei_block
= border
;
1572 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1581 ext4_can_extents_be_merged(struct inode
*inode
, struct ext4_extent
*ex1
,
1582 struct ext4_extent
*ex2
)
1584 unsigned short ext1_ee_len
, ext2_ee_len
, max_len
;
1587 * Make sure that both extents are initialized. We don't merge
1588 * uninitialized extents so that we can be sure that end_io code has
1589 * the extent that was written properly split out and conversion to
1590 * initialized is trivial.
1592 if (ext4_ext_is_uninitialized(ex1
) || ext4_ext_is_uninitialized(ex2
))
1595 if (ext4_ext_is_uninitialized(ex1
))
1596 max_len
= EXT_UNINIT_MAX_LEN
;
1598 max_len
= EXT_INIT_MAX_LEN
;
1600 ext1_ee_len
= ext4_ext_get_actual_len(ex1
);
1601 ext2_ee_len
= ext4_ext_get_actual_len(ex2
);
1603 if (le32_to_cpu(ex1
->ee_block
) + ext1_ee_len
!=
1604 le32_to_cpu(ex2
->ee_block
))
1608 * To allow future support for preallocated extents to be added
1609 * as an RO_COMPAT feature, refuse to merge to extents if
1610 * this can result in the top bit of ee_len being set.
1612 if (ext1_ee_len
+ ext2_ee_len
> max_len
)
1614 #ifdef AGGRESSIVE_TEST
1615 if (ext1_ee_len
>= 4)
1619 if (ext4_ext_pblock(ex1
) + ext1_ee_len
== ext4_ext_pblock(ex2
))
1625 * This function tries to merge the "ex" extent to the next extent in the tree.
1626 * It always tries to merge towards right. If you want to merge towards
1627 * left, pass "ex - 1" as argument instead of "ex".
1628 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1629 * 1 if they got merged.
1631 static int ext4_ext_try_to_merge_right(struct inode
*inode
,
1632 struct ext4_ext_path
*path
,
1633 struct ext4_extent
*ex
)
1635 struct ext4_extent_header
*eh
;
1636 unsigned int depth
, len
;
1638 int uninitialized
= 0;
1640 depth
= ext_depth(inode
);
1641 BUG_ON(path
[depth
].p_hdr
== NULL
);
1642 eh
= path
[depth
].p_hdr
;
1644 while (ex
< EXT_LAST_EXTENT(eh
)) {
1645 if (!ext4_can_extents_be_merged(inode
, ex
, ex
+ 1))
1647 /* merge with next extent! */
1648 if (ext4_ext_is_uninitialized(ex
))
1650 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1651 + ext4_ext_get_actual_len(ex
+ 1));
1653 ext4_ext_mark_uninitialized(ex
);
1655 if (ex
+ 1 < EXT_LAST_EXTENT(eh
)) {
1656 len
= (EXT_LAST_EXTENT(eh
) - ex
- 1)
1657 * sizeof(struct ext4_extent
);
1658 memmove(ex
+ 1, ex
+ 2, len
);
1660 le16_add_cpu(&eh
->eh_entries
, -1);
1662 WARN_ON(eh
->eh_entries
== 0);
1663 if (!eh
->eh_entries
)
1664 EXT4_ERROR_INODE(inode
, "eh->eh_entries = 0!");
1671 * This function does a very simple check to see if we can collapse
1672 * an extent tree with a single extent tree leaf block into the inode.
1674 static void ext4_ext_try_to_merge_up(handle_t
*handle
,
1675 struct inode
*inode
,
1676 struct ext4_ext_path
*path
)
1679 unsigned max_root
= ext4_ext_space_root(inode
, 0);
1682 if ((path
[0].p_depth
!= 1) ||
1683 (le16_to_cpu(path
[0].p_hdr
->eh_entries
) != 1) ||
1684 (le16_to_cpu(path
[1].p_hdr
->eh_entries
) > max_root
))
1688 * We need to modify the block allocation bitmap and the block
1689 * group descriptor to release the extent tree block. If we
1690 * can't get the journal credits, give up.
1692 if (ext4_journal_extend(handle
, 2))
1696 * Copy the extent data up to the inode
1698 blk
= ext4_idx_pblock(path
[0].p_idx
);
1699 s
= le16_to_cpu(path
[1].p_hdr
->eh_entries
) *
1700 sizeof(struct ext4_extent_idx
);
1701 s
+= sizeof(struct ext4_extent_header
);
1703 memcpy(path
[0].p_hdr
, path
[1].p_hdr
, s
);
1704 path
[0].p_depth
= 0;
1705 path
[0].p_ext
= EXT_FIRST_EXTENT(path
[0].p_hdr
) +
1706 (path
[1].p_ext
- EXT_FIRST_EXTENT(path
[1].p_hdr
));
1707 path
[0].p_hdr
->eh_max
= cpu_to_le16(max_root
);
1709 brelse(path
[1].p_bh
);
1710 ext4_free_blocks(handle
, inode
, NULL
, blk
, 1,
1711 EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
);
1715 * This function tries to merge the @ex extent to neighbours in the tree.
1716 * return 1 if merge left else 0.
1718 static void ext4_ext_try_to_merge(handle_t
*handle
,
1719 struct inode
*inode
,
1720 struct ext4_ext_path
*path
,
1721 struct ext4_extent
*ex
) {
1722 struct ext4_extent_header
*eh
;
1726 depth
= ext_depth(inode
);
1727 BUG_ON(path
[depth
].p_hdr
== NULL
);
1728 eh
= path
[depth
].p_hdr
;
1730 if (ex
> EXT_FIRST_EXTENT(eh
))
1731 merge_done
= ext4_ext_try_to_merge_right(inode
, path
, ex
- 1);
1734 (void) ext4_ext_try_to_merge_right(inode
, path
, ex
);
1736 ext4_ext_try_to_merge_up(handle
, inode
, path
);
1740 * check if a portion of the "newext" extent overlaps with an
1743 * If there is an overlap discovered, it updates the length of the newext
1744 * such that there will be no overlap, and then returns 1.
1745 * If there is no overlap found, it returns 0.
1747 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info
*sbi
,
1748 struct inode
*inode
,
1749 struct ext4_extent
*newext
,
1750 struct ext4_ext_path
*path
)
1753 unsigned int depth
, len1
;
1754 unsigned int ret
= 0;
1756 b1
= le32_to_cpu(newext
->ee_block
);
1757 len1
= ext4_ext_get_actual_len(newext
);
1758 depth
= ext_depth(inode
);
1759 if (!path
[depth
].p_ext
)
1761 b2
= le32_to_cpu(path
[depth
].p_ext
->ee_block
);
1762 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1765 * get the next allocated block if the extent in the path
1766 * is before the requested block(s)
1769 b2
= ext4_ext_next_allocated_block(path
);
1770 if (b2
== EXT_MAX_BLOCKS
)
1772 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1775 /* check for wrap through zero on extent logical start block*/
1776 if (b1
+ len1
< b1
) {
1777 len1
= EXT_MAX_BLOCKS
- b1
;
1778 newext
->ee_len
= cpu_to_le16(len1
);
1782 /* check for overlap */
1783 if (b1
+ len1
> b2
) {
1784 newext
->ee_len
= cpu_to_le16(b2
- b1
);
1792 * ext4_ext_insert_extent:
1793 * tries to merge requsted extent into the existing extent or
1794 * inserts requested extent as new one into the tree,
1795 * creating new leaf in the no-space case.
1797 int ext4_ext_insert_extent(handle_t
*handle
, struct inode
*inode
,
1798 struct ext4_ext_path
*path
,
1799 struct ext4_extent
*newext
, int flag
)
1801 struct ext4_extent_header
*eh
;
1802 struct ext4_extent
*ex
, *fex
;
1803 struct ext4_extent
*nearex
; /* nearest extent */
1804 struct ext4_ext_path
*npath
= NULL
;
1805 int depth
, len
, err
;
1807 unsigned uninitialized
= 0;
1810 if (unlikely(ext4_ext_get_actual_len(newext
) == 0)) {
1811 EXT4_ERROR_INODE(inode
, "ext4_ext_get_actual_len(newext) == 0");
1814 depth
= ext_depth(inode
);
1815 ex
= path
[depth
].p_ext
;
1816 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1817 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1821 /* try to insert block into found extent and return */
1822 if (ex
&& !(flag
& EXT4_GET_BLOCKS_PRE_IO
)
1823 && ext4_can_extents_be_merged(inode
, ex
, newext
)) {
1824 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1825 ext4_ext_is_uninitialized(newext
),
1826 ext4_ext_get_actual_len(newext
),
1827 le32_to_cpu(ex
->ee_block
),
1828 ext4_ext_is_uninitialized(ex
),
1829 ext4_ext_get_actual_len(ex
),
1830 ext4_ext_pblock(ex
));
1831 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1836 * ext4_can_extents_be_merged should have checked that either
1837 * both extents are uninitialized, or both aren't. Thus we
1838 * need to check only one of them here.
1840 if (ext4_ext_is_uninitialized(ex
))
1842 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1843 + ext4_ext_get_actual_len(newext
));
1845 ext4_ext_mark_uninitialized(ex
);
1846 eh
= path
[depth
].p_hdr
;
1851 depth
= ext_depth(inode
);
1852 eh
= path
[depth
].p_hdr
;
1853 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
))
1856 /* probably next leaf has space for us? */
1857 fex
= EXT_LAST_EXTENT(eh
);
1858 next
= EXT_MAX_BLOCKS
;
1859 if (le32_to_cpu(newext
->ee_block
) > le32_to_cpu(fex
->ee_block
))
1860 next
= ext4_ext_next_leaf_block(path
);
1861 if (next
!= EXT_MAX_BLOCKS
) {
1862 ext_debug("next leaf block - %u\n", next
);
1863 BUG_ON(npath
!= NULL
);
1864 npath
= ext4_ext_find_extent(inode
, next
, NULL
);
1866 return PTR_ERR(npath
);
1867 BUG_ON(npath
->p_depth
!= path
->p_depth
);
1868 eh
= npath
[depth
].p_hdr
;
1869 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
)) {
1870 ext_debug("next leaf isn't full(%d)\n",
1871 le16_to_cpu(eh
->eh_entries
));
1875 ext_debug("next leaf has no free space(%d,%d)\n",
1876 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
1880 * There is no free space in the found leaf.
1881 * We're gonna add a new leaf in the tree.
1883 if (flag
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
)
1884 flags
= EXT4_MB_USE_ROOT_BLOCKS
;
1885 err
= ext4_ext_create_new_leaf(handle
, inode
, flags
, path
, newext
);
1888 depth
= ext_depth(inode
);
1889 eh
= path
[depth
].p_hdr
;
1892 nearex
= path
[depth
].p_ext
;
1894 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1899 /* there is no extent in this leaf, create first one */
1900 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1901 le32_to_cpu(newext
->ee_block
),
1902 ext4_ext_pblock(newext
),
1903 ext4_ext_is_uninitialized(newext
),
1904 ext4_ext_get_actual_len(newext
));
1905 nearex
= EXT_FIRST_EXTENT(eh
);
1907 if (le32_to_cpu(newext
->ee_block
)
1908 > le32_to_cpu(nearex
->ee_block
)) {
1910 ext_debug("insert %u:%llu:[%d]%d before: "
1912 le32_to_cpu(newext
->ee_block
),
1913 ext4_ext_pblock(newext
),
1914 ext4_ext_is_uninitialized(newext
),
1915 ext4_ext_get_actual_len(newext
),
1920 BUG_ON(newext
->ee_block
== nearex
->ee_block
);
1921 ext_debug("insert %u:%llu:[%d]%d after: "
1923 le32_to_cpu(newext
->ee_block
),
1924 ext4_ext_pblock(newext
),
1925 ext4_ext_is_uninitialized(newext
),
1926 ext4_ext_get_actual_len(newext
),
1929 len
= EXT_LAST_EXTENT(eh
) - nearex
+ 1;
1931 ext_debug("insert %u:%llu:[%d]%d: "
1932 "move %d extents from 0x%p to 0x%p\n",
1933 le32_to_cpu(newext
->ee_block
),
1934 ext4_ext_pblock(newext
),
1935 ext4_ext_is_uninitialized(newext
),
1936 ext4_ext_get_actual_len(newext
),
1937 len
, nearex
, nearex
+ 1);
1938 memmove(nearex
+ 1, nearex
,
1939 len
* sizeof(struct ext4_extent
));
1943 le16_add_cpu(&eh
->eh_entries
, 1);
1944 path
[depth
].p_ext
= nearex
;
1945 nearex
->ee_block
= newext
->ee_block
;
1946 ext4_ext_store_pblock(nearex
, ext4_ext_pblock(newext
));
1947 nearex
->ee_len
= newext
->ee_len
;
1950 /* try to merge extents */
1951 if (!(flag
& EXT4_GET_BLOCKS_PRE_IO
))
1952 ext4_ext_try_to_merge(handle
, inode
, path
, nearex
);
1955 /* time to correct all indexes above */
1956 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1960 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
1964 ext4_ext_drop_refs(npath
);
1970 static int ext4_fill_fiemap_extents(struct inode
*inode
,
1971 ext4_lblk_t block
, ext4_lblk_t num
,
1972 struct fiemap_extent_info
*fieinfo
)
1974 struct ext4_ext_path
*path
= NULL
;
1975 struct ext4_extent
*ex
;
1976 struct extent_status es
;
1977 ext4_lblk_t next
, next_del
, start
= 0, end
= 0;
1978 ext4_lblk_t last
= block
+ num
;
1979 int exists
, depth
= 0, err
= 0;
1980 unsigned int flags
= 0;
1981 unsigned char blksize_bits
= inode
->i_sb
->s_blocksize_bits
;
1983 while (block
< last
&& block
!= EXT_MAX_BLOCKS
) {
1985 /* find extent for this block */
1986 down_read(&EXT4_I(inode
)->i_data_sem
);
1988 if (path
&& ext_depth(inode
) != depth
) {
1989 /* depth was changed. we have to realloc path */
1994 path
= ext4_ext_find_extent(inode
, block
, path
);
1996 up_read(&EXT4_I(inode
)->i_data_sem
);
1997 err
= PTR_ERR(path
);
2002 depth
= ext_depth(inode
);
2003 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
2004 up_read(&EXT4_I(inode
)->i_data_sem
);
2005 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
2009 ex
= path
[depth
].p_ext
;
2010 next
= ext4_ext_next_allocated_block(path
);
2011 ext4_ext_drop_refs(path
);
2016 /* there is no extent yet, so try to allocate
2017 * all requested space */
2020 } else if (le32_to_cpu(ex
->ee_block
) > block
) {
2021 /* need to allocate space before found extent */
2023 end
= le32_to_cpu(ex
->ee_block
);
2024 if (block
+ num
< end
)
2026 } else if (block
>= le32_to_cpu(ex
->ee_block
)
2027 + ext4_ext_get_actual_len(ex
)) {
2028 /* need to allocate space after found extent */
2033 } else if (block
>= le32_to_cpu(ex
->ee_block
)) {
2035 * some part of requested space is covered
2039 end
= le32_to_cpu(ex
->ee_block
)
2040 + ext4_ext_get_actual_len(ex
);
2041 if (block
+ num
< end
)
2047 BUG_ON(end
<= start
);
2051 es
.es_len
= end
- start
;
2054 es
.es_lblk
= le32_to_cpu(ex
->ee_block
);
2055 es
.es_len
= ext4_ext_get_actual_len(ex
);
2056 es
.es_pblk
= ext4_ext_pblock(ex
);
2057 if (ext4_ext_is_uninitialized(ex
))
2058 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
2062 * Find delayed extent and update es accordingly. We call
2063 * it even in !exists case to find out whether es is the
2064 * last existing extent or not.
2066 next_del
= ext4_find_delayed_extent(inode
, &es
);
2067 if (!exists
&& next_del
) {
2069 flags
|= FIEMAP_EXTENT_DELALLOC
;
2071 up_read(&EXT4_I(inode
)->i_data_sem
);
2073 if (unlikely(es
.es_len
== 0)) {
2074 EXT4_ERROR_INODE(inode
, "es.es_len == 0");
2080 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2081 * we need to check next == EXT_MAX_BLOCKS because it is
2082 * possible that an extent is with unwritten and delayed
2083 * status due to when an extent is delayed allocated and
2084 * is allocated by fallocate status tree will track both of
2087 * So we could return a unwritten and delayed extent, and
2088 * its block is equal to 'next'.
2090 if (next
== next_del
&& next
== EXT_MAX_BLOCKS
) {
2091 flags
|= FIEMAP_EXTENT_LAST
;
2092 if (unlikely(next_del
!= EXT_MAX_BLOCKS
||
2093 next
!= EXT_MAX_BLOCKS
)) {
2094 EXT4_ERROR_INODE(inode
,
2095 "next extent == %u, next "
2096 "delalloc extent = %u",
2104 err
= fiemap_fill_next_extent(fieinfo
,
2105 (__u64
)es
.es_lblk
<< blksize_bits
,
2106 (__u64
)es
.es_pblk
<< blksize_bits
,
2107 (__u64
)es
.es_len
<< blksize_bits
,
2117 block
= es
.es_lblk
+ es
.es_len
;
2121 ext4_ext_drop_refs(path
);
2129 * ext4_ext_put_gap_in_cache:
2130 * calculate boundaries of the gap that the requested block fits into
2131 * and cache this gap
2134 ext4_ext_put_gap_in_cache(struct inode
*inode
, struct ext4_ext_path
*path
,
2137 int depth
= ext_depth(inode
);
2140 struct ext4_extent
*ex
;
2142 ex
= path
[depth
].p_ext
;
2145 * there is no extent yet, so gap is [0;-] and we
2148 ext_debug("cache gap(whole file):");
2149 } else if (block
< le32_to_cpu(ex
->ee_block
)) {
2151 len
= le32_to_cpu(ex
->ee_block
) - block
;
2152 ext_debug("cache gap(before): %u [%u:%u]",
2154 le32_to_cpu(ex
->ee_block
),
2155 ext4_ext_get_actual_len(ex
));
2156 if (!ext4_find_delalloc_range(inode
, lblock
, lblock
+ len
- 1))
2157 ext4_es_insert_extent(inode
, lblock
, len
, ~0,
2158 EXTENT_STATUS_HOLE
);
2159 } else if (block
>= le32_to_cpu(ex
->ee_block
)
2160 + ext4_ext_get_actual_len(ex
)) {
2162 lblock
= le32_to_cpu(ex
->ee_block
)
2163 + ext4_ext_get_actual_len(ex
);
2165 next
= ext4_ext_next_allocated_block(path
);
2166 ext_debug("cache gap(after): [%u:%u] %u",
2167 le32_to_cpu(ex
->ee_block
),
2168 ext4_ext_get_actual_len(ex
),
2170 BUG_ON(next
== lblock
);
2171 len
= next
- lblock
;
2172 if (!ext4_find_delalloc_range(inode
, lblock
, lblock
+ len
- 1))
2173 ext4_es_insert_extent(inode
, lblock
, len
, ~0,
2174 EXTENT_STATUS_HOLE
);
2180 ext_debug(" -> %u:%lu\n", lblock
, len
);
2185 * removes index from the index block.
2187 static int ext4_ext_rm_idx(handle_t
*handle
, struct inode
*inode
,
2188 struct ext4_ext_path
*path
, int depth
)
2193 /* free index block */
2195 path
= path
+ depth
;
2196 leaf
= ext4_idx_pblock(path
->p_idx
);
2197 if (unlikely(path
->p_hdr
->eh_entries
== 0)) {
2198 EXT4_ERROR_INODE(inode
, "path->p_hdr->eh_entries == 0");
2201 err
= ext4_ext_get_access(handle
, inode
, path
);
2205 if (path
->p_idx
!= EXT_LAST_INDEX(path
->p_hdr
)) {
2206 int len
= EXT_LAST_INDEX(path
->p_hdr
) - path
->p_idx
;
2207 len
*= sizeof(struct ext4_extent_idx
);
2208 memmove(path
->p_idx
, path
->p_idx
+ 1, len
);
2211 le16_add_cpu(&path
->p_hdr
->eh_entries
, -1);
2212 err
= ext4_ext_dirty(handle
, inode
, path
);
2215 ext_debug("index is empty, remove it, free block %llu\n", leaf
);
2216 trace_ext4_ext_rm_idx(inode
, leaf
);
2218 ext4_free_blocks(handle
, inode
, NULL
, leaf
, 1,
2219 EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
);
2221 while (--depth
>= 0) {
2222 if (path
->p_idx
!= EXT_FIRST_INDEX(path
->p_hdr
))
2225 err
= ext4_ext_get_access(handle
, inode
, path
);
2228 path
->p_idx
->ei_block
= (path
+1)->p_idx
->ei_block
;
2229 err
= ext4_ext_dirty(handle
, inode
, path
);
2237 * ext4_ext_calc_credits_for_single_extent:
2238 * This routine returns max. credits that needed to insert an extent
2239 * to the extent tree.
2240 * When pass the actual path, the caller should calculate credits
2243 int ext4_ext_calc_credits_for_single_extent(struct inode
*inode
, int nrblocks
,
2244 struct ext4_ext_path
*path
)
2247 int depth
= ext_depth(inode
);
2250 /* probably there is space in leaf? */
2251 if (le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)
2252 < le16_to_cpu(path
[depth
].p_hdr
->eh_max
)) {
2255 * There are some space in the leaf tree, no
2256 * need to account for leaf block credit
2258 * bitmaps and block group descriptor blocks
2259 * and other metadata blocks still need to be
2262 /* 1 bitmap, 1 block group descriptor */
2263 ret
= 2 + EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
2268 return ext4_chunk_trans_blocks(inode
, nrblocks
);
2272 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2274 * if nrblocks are fit in a single extent (chunk flag is 1), then
2275 * in the worse case, each tree level index/leaf need to be changed
2276 * if the tree split due to insert a new extent, then the old tree
2277 * index/leaf need to be updated too
2279 * If the nrblocks are discontiguous, they could cause
2280 * the whole tree split more than once, but this is really rare.
2282 int ext4_ext_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
2287 /* If we are converting the inline data, only one is needed here. */
2288 if (ext4_has_inline_data(inode
))
2291 depth
= ext_depth(inode
);
2301 static int ext4_remove_blocks(handle_t
*handle
, struct inode
*inode
,
2302 struct ext4_extent
*ex
,
2303 ext4_fsblk_t
*partial_cluster
,
2304 ext4_lblk_t from
, ext4_lblk_t to
)
2306 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2307 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
2311 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2312 flags
|= EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
;
2313 else if (ext4_should_journal_data(inode
))
2314 flags
|= EXT4_FREE_BLOCKS_FORGET
;
2317 * For bigalloc file systems, we never free a partial cluster
2318 * at the beginning of the extent. Instead, we make a note
2319 * that we tried freeing the cluster, and check to see if we
2320 * need to free it on a subsequent call to ext4_remove_blocks,
2321 * or at the end of the ext4_truncate() operation.
2323 flags
|= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
;
2325 trace_ext4_remove_blocks(inode
, ex
, from
, to
, *partial_cluster
);
2327 * If we have a partial cluster, and it's different from the
2328 * cluster of the last block, we need to explicitly free the
2329 * partial cluster here.
2331 pblk
= ext4_ext_pblock(ex
) + ee_len
- 1;
2332 if (*partial_cluster
&& (EXT4_B2C(sbi
, pblk
) != *partial_cluster
)) {
2333 ext4_free_blocks(handle
, inode
, NULL
,
2334 EXT4_C2B(sbi
, *partial_cluster
),
2335 sbi
->s_cluster_ratio
, flags
);
2336 *partial_cluster
= 0;
2339 #ifdef EXTENTS_STATS
2341 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2342 spin_lock(&sbi
->s_ext_stats_lock
);
2343 sbi
->s_ext_blocks
+= ee_len
;
2344 sbi
->s_ext_extents
++;
2345 if (ee_len
< sbi
->s_ext_min
)
2346 sbi
->s_ext_min
= ee_len
;
2347 if (ee_len
> sbi
->s_ext_max
)
2348 sbi
->s_ext_max
= ee_len
;
2349 if (ext_depth(inode
) > sbi
->s_depth_max
)
2350 sbi
->s_depth_max
= ext_depth(inode
);
2351 spin_unlock(&sbi
->s_ext_stats_lock
);
2354 if (from
>= le32_to_cpu(ex
->ee_block
)
2355 && to
== le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2359 num
= le32_to_cpu(ex
->ee_block
) + ee_len
- from
;
2360 pblk
= ext4_ext_pblock(ex
) + ee_len
- num
;
2361 ext_debug("free last %u blocks starting %llu\n", num
, pblk
);
2362 ext4_free_blocks(handle
, inode
, NULL
, pblk
, num
, flags
);
2364 * If the block range to be freed didn't start at the
2365 * beginning of a cluster, and we removed the entire
2366 * extent, save the partial cluster here, since we
2367 * might need to delete if we determine that the
2368 * truncate operation has removed all of the blocks in
2371 if (pblk
& (sbi
->s_cluster_ratio
- 1) &&
2373 *partial_cluster
= EXT4_B2C(sbi
, pblk
);
2375 *partial_cluster
= 0;
2376 } else if (from
== le32_to_cpu(ex
->ee_block
)
2377 && to
<= le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2383 start
= ext4_ext_pblock(ex
);
2385 ext_debug("free first %u blocks starting %llu\n", num
, start
);
2386 ext4_free_blocks(handle
, inode
, NULL
, start
, num
, flags
);
2389 printk(KERN_INFO
"strange request: removal(2) "
2390 "%u-%u from %u:%u\n",
2391 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
2398 * ext4_ext_rm_leaf() Removes the extents associated with the
2399 * blocks appearing between "start" and "end", and splits the extents
2400 * if "start" and "end" appear in the same extent
2402 * @handle: The journal handle
2403 * @inode: The files inode
2404 * @path: The path to the leaf
2405 * @start: The first block to remove
2406 * @end: The last block to remove
2409 ext4_ext_rm_leaf(handle_t
*handle
, struct inode
*inode
,
2410 struct ext4_ext_path
*path
, ext4_fsblk_t
*partial_cluster
,
2411 ext4_lblk_t start
, ext4_lblk_t end
)
2413 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2414 int err
= 0, correct_index
= 0;
2415 int depth
= ext_depth(inode
), credits
;
2416 struct ext4_extent_header
*eh
;
2419 ext4_lblk_t ex_ee_block
;
2420 unsigned short ex_ee_len
;
2421 unsigned uninitialized
= 0;
2422 struct ext4_extent
*ex
;
2424 /* the header must be checked already in ext4_ext_remove_space() */
2425 ext_debug("truncate since %u in leaf to %u\n", start
, end
);
2426 if (!path
[depth
].p_hdr
)
2427 path
[depth
].p_hdr
= ext_block_hdr(path
[depth
].p_bh
);
2428 eh
= path
[depth
].p_hdr
;
2429 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
2430 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
2433 /* find where to start removing */
2434 ex
= EXT_LAST_EXTENT(eh
);
2436 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2437 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2439 trace_ext4_ext_rm_leaf(inode
, start
, ex
, *partial_cluster
);
2441 while (ex
>= EXT_FIRST_EXTENT(eh
) &&
2442 ex_ee_block
+ ex_ee_len
> start
) {
2444 if (ext4_ext_is_uninitialized(ex
))
2449 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block
,
2450 uninitialized
, ex_ee_len
);
2451 path
[depth
].p_ext
= ex
;
2453 a
= ex_ee_block
> start
? ex_ee_block
: start
;
2454 b
= ex_ee_block
+ex_ee_len
- 1 < end
?
2455 ex_ee_block
+ex_ee_len
- 1 : end
;
2457 ext_debug(" border %u:%u\n", a
, b
);
2459 /* If this extent is beyond the end of the hole, skip it */
2460 if (end
< ex_ee_block
) {
2462 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2463 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2465 } else if (b
!= ex_ee_block
+ ex_ee_len
- 1) {
2466 EXT4_ERROR_INODE(inode
,
2467 "can not handle truncate %u:%u "
2469 start
, end
, ex_ee_block
,
2470 ex_ee_block
+ ex_ee_len
- 1);
2473 } else if (a
!= ex_ee_block
) {
2474 /* remove tail of the extent */
2475 num
= a
- ex_ee_block
;
2477 /* remove whole extent: excellent! */
2481 * 3 for leaf, sb, and inode plus 2 (bmap and group
2482 * descriptor) for each block group; assume two block
2483 * groups plus ex_ee_len/blocks_per_block_group for
2486 credits
= 7 + 2*(ex_ee_len
/EXT4_BLOCKS_PER_GROUP(inode
->i_sb
));
2487 if (ex
== EXT_FIRST_EXTENT(eh
)) {
2489 credits
+= (ext_depth(inode
)) + 1;
2491 credits
+= EXT4_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
2493 err
= ext4_ext_truncate_extend_restart(handle
, inode
, credits
);
2497 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2501 err
= ext4_remove_blocks(handle
, inode
, ex
, partial_cluster
,
2507 /* this extent is removed; mark slot entirely unused */
2508 ext4_ext_store_pblock(ex
, 0);
2510 ex
->ee_len
= cpu_to_le16(num
);
2512 * Do not mark uninitialized if all the blocks in the
2513 * extent have been removed.
2515 if (uninitialized
&& num
)
2516 ext4_ext_mark_uninitialized(ex
);
2518 * If the extent was completely released,
2519 * we need to remove it from the leaf
2522 if (end
!= EXT_MAX_BLOCKS
- 1) {
2524 * For hole punching, we need to scoot all the
2525 * extents up when an extent is removed so that
2526 * we dont have blank extents in the middle
2528 memmove(ex
, ex
+1, (EXT_LAST_EXTENT(eh
) - ex
) *
2529 sizeof(struct ext4_extent
));
2531 /* Now get rid of the one at the end */
2532 memset(EXT_LAST_EXTENT(eh
), 0,
2533 sizeof(struct ext4_extent
));
2535 le16_add_cpu(&eh
->eh_entries
, -1);
2537 *partial_cluster
= 0;
2539 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2543 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block
, num
,
2544 ext4_ext_pblock(ex
));
2546 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2547 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2550 if (correct_index
&& eh
->eh_entries
)
2551 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2554 * If there is still a entry in the leaf node, check to see if
2555 * it references the partial cluster. This is the only place
2556 * where it could; if it doesn't, we can free the cluster.
2558 if (*partial_cluster
&& ex
>= EXT_FIRST_EXTENT(eh
) &&
2559 (EXT4_B2C(sbi
, ext4_ext_pblock(ex
) + ex_ee_len
- 1) !=
2560 *partial_cluster
)) {
2561 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2563 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2564 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2566 ext4_free_blocks(handle
, inode
, NULL
,
2567 EXT4_C2B(sbi
, *partial_cluster
),
2568 sbi
->s_cluster_ratio
, flags
);
2569 *partial_cluster
= 0;
2572 /* if this leaf is free, then we should
2573 * remove it from index block above */
2574 if (err
== 0 && eh
->eh_entries
== 0 && path
[depth
].p_bh
!= NULL
)
2575 err
= ext4_ext_rm_idx(handle
, inode
, path
, depth
);
2582 * ext4_ext_more_to_rm:
2583 * returns 1 if current index has to be freed (even partial)
2586 ext4_ext_more_to_rm(struct ext4_ext_path
*path
)
2588 BUG_ON(path
->p_idx
== NULL
);
2590 if (path
->p_idx
< EXT_FIRST_INDEX(path
->p_hdr
))
2594 * if truncate on deeper level happened, it wasn't partial,
2595 * so we have to consider current index for truncation
2597 if (le16_to_cpu(path
->p_hdr
->eh_entries
) == path
->p_block
)
2602 static int ext4_ext_remove_space(struct inode
*inode
, ext4_lblk_t start
,
2605 struct super_block
*sb
= inode
->i_sb
;
2606 int depth
= ext_depth(inode
);
2607 struct ext4_ext_path
*path
= NULL
;
2608 ext4_fsblk_t partial_cluster
= 0;
2612 ext_debug("truncate since %u to %u\n", start
, end
);
2614 /* probably first extent we're gonna free will be last in block */
2615 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, depth
+ 1);
2617 return PTR_ERR(handle
);
2620 trace_ext4_ext_remove_space(inode
, start
, depth
);
2623 * Check if we are removing extents inside the extent tree. If that
2624 * is the case, we are going to punch a hole inside the extent tree
2625 * so we have to check whether we need to split the extent covering
2626 * the last block to remove so we can easily remove the part of it
2627 * in ext4_ext_rm_leaf().
2629 if (end
< EXT_MAX_BLOCKS
- 1) {
2630 struct ext4_extent
*ex
;
2631 ext4_lblk_t ee_block
;
2633 /* find extent for this block */
2634 path
= ext4_ext_find_extent(inode
, end
, NULL
);
2636 ext4_journal_stop(handle
);
2637 return PTR_ERR(path
);
2639 depth
= ext_depth(inode
);
2640 /* Leaf not may not exist only if inode has no blocks at all */
2641 ex
= path
[depth
].p_ext
;
2644 EXT4_ERROR_INODE(inode
,
2645 "path[%d].p_hdr == NULL",
2652 ee_block
= le32_to_cpu(ex
->ee_block
);
2655 * See if the last block is inside the extent, if so split
2656 * the extent at 'end' block so we can easily remove the
2657 * tail of the first part of the split extent in
2658 * ext4_ext_rm_leaf().
2660 if (end
>= ee_block
&&
2661 end
< ee_block
+ ext4_ext_get_actual_len(ex
) - 1) {
2664 if (ext4_ext_is_uninitialized(ex
))
2665 split_flag
= EXT4_EXT_MARK_UNINIT1
|
2666 EXT4_EXT_MARK_UNINIT2
;
2669 * Split the extent in two so that 'end' is the last
2670 * block in the first new extent
2672 err
= ext4_split_extent_at(handle
, inode
, path
,
2673 end
+ 1, split_flag
,
2674 EXT4_GET_BLOCKS_PRE_IO
|
2675 EXT4_GET_BLOCKS_PUNCH_OUT_EXT
);
2682 * We start scanning from right side, freeing all the blocks
2683 * after i_size and walking into the tree depth-wise.
2685 depth
= ext_depth(inode
);
2690 le16_to_cpu(path
[k
].p_hdr
->eh_entries
)+1;
2692 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 1),
2695 ext4_journal_stop(handle
);
2698 path
[0].p_depth
= depth
;
2699 path
[0].p_hdr
= ext_inode_hdr(inode
);
2702 if (ext4_ext_check(inode
, path
[0].p_hdr
, depth
)) {
2709 while (i
>= 0 && err
== 0) {
2711 /* this is leaf block */
2712 err
= ext4_ext_rm_leaf(handle
, inode
, path
,
2713 &partial_cluster
, start
,
2715 /* root level has p_bh == NULL, brelse() eats this */
2716 brelse(path
[i
].p_bh
);
2717 path
[i
].p_bh
= NULL
;
2722 /* this is index block */
2723 if (!path
[i
].p_hdr
) {
2724 ext_debug("initialize header\n");
2725 path
[i
].p_hdr
= ext_block_hdr(path
[i
].p_bh
);
2728 if (!path
[i
].p_idx
) {
2729 /* this level hasn't been touched yet */
2730 path
[i
].p_idx
= EXT_LAST_INDEX(path
[i
].p_hdr
);
2731 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
)+1;
2732 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2734 le16_to_cpu(path
[i
].p_hdr
->eh_entries
));
2736 /* we were already here, see at next index */
2740 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2741 i
, EXT_FIRST_INDEX(path
[i
].p_hdr
),
2743 if (ext4_ext_more_to_rm(path
+ i
)) {
2744 struct buffer_head
*bh
;
2745 /* go to the next level */
2746 ext_debug("move to level %d (block %llu)\n",
2747 i
+ 1, ext4_idx_pblock(path
[i
].p_idx
));
2748 memset(path
+ i
+ 1, 0, sizeof(*path
));
2749 bh
= sb_bread(sb
, ext4_idx_pblock(path
[i
].p_idx
));
2751 /* should we reset i_size? */
2755 if (WARN_ON(i
+ 1 > depth
)) {
2759 if (ext4_ext_check_block(inode
, ext_block_hdr(bh
),
2760 depth
- i
- 1, bh
)) {
2764 path
[i
+ 1].p_bh
= bh
;
2766 /* save actual number of indexes since this
2767 * number is changed at the next iteration */
2768 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
);
2771 /* we finished processing this index, go up */
2772 if (path
[i
].p_hdr
->eh_entries
== 0 && i
> 0) {
2773 /* index is empty, remove it;
2774 * handle must be already prepared by the
2775 * truncatei_leaf() */
2776 err
= ext4_ext_rm_idx(handle
, inode
, path
, i
);
2778 /* root level has p_bh == NULL, brelse() eats this */
2779 brelse(path
[i
].p_bh
);
2780 path
[i
].p_bh
= NULL
;
2782 ext_debug("return to level %d\n", i
);
2786 trace_ext4_ext_remove_space_done(inode
, start
, depth
, partial_cluster
,
2787 path
->p_hdr
->eh_entries
);
2789 /* If we still have something in the partial cluster and we have removed
2790 * even the first extent, then we should free the blocks in the partial
2791 * cluster as well. */
2792 if (partial_cluster
&& path
->p_hdr
->eh_entries
== 0) {
2793 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2795 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2796 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2798 ext4_free_blocks(handle
, inode
, NULL
,
2799 EXT4_C2B(EXT4_SB(sb
), partial_cluster
),
2800 EXT4_SB(sb
)->s_cluster_ratio
, flags
);
2801 partial_cluster
= 0;
2804 /* TODO: flexible tree reduction should be here */
2805 if (path
->p_hdr
->eh_entries
== 0) {
2807 * truncate to zero freed all the tree,
2808 * so we need to correct eh_depth
2810 err
= ext4_ext_get_access(handle
, inode
, path
);
2812 ext_inode_hdr(inode
)->eh_depth
= 0;
2813 ext_inode_hdr(inode
)->eh_max
=
2814 cpu_to_le16(ext4_ext_space_root(inode
, 0));
2815 err
= ext4_ext_dirty(handle
, inode
, path
);
2819 ext4_ext_drop_refs(path
);
2821 if (err
== -EAGAIN
) {
2825 ext4_journal_stop(handle
);
2831 * called at mount time
2833 void ext4_ext_init(struct super_block
*sb
)
2836 * possible initialization would be here
2839 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
)) {
2840 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2841 printk(KERN_INFO
"EXT4-fs: file extents enabled"
2842 #ifdef AGGRESSIVE_TEST
2843 ", aggressive tests"
2845 #ifdef CHECK_BINSEARCH
2848 #ifdef EXTENTS_STATS
2853 #ifdef EXTENTS_STATS
2854 spin_lock_init(&EXT4_SB(sb
)->s_ext_stats_lock
);
2855 EXT4_SB(sb
)->s_ext_min
= 1 << 30;
2856 EXT4_SB(sb
)->s_ext_max
= 0;
2862 * called at umount time
2864 void ext4_ext_release(struct super_block
*sb
)
2866 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
))
2869 #ifdef EXTENTS_STATS
2870 if (EXT4_SB(sb
)->s_ext_blocks
&& EXT4_SB(sb
)->s_ext_extents
) {
2871 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2872 printk(KERN_ERR
"EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2873 sbi
->s_ext_blocks
, sbi
->s_ext_extents
,
2874 sbi
->s_ext_blocks
/ sbi
->s_ext_extents
);
2875 printk(KERN_ERR
"EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2876 sbi
->s_ext_min
, sbi
->s_ext_max
, sbi
->s_depth_max
);
2881 /* FIXME!! we need to try to merge to left or right after zero-out */
2882 static int ext4_ext_zeroout(struct inode
*inode
, struct ext4_extent
*ex
)
2884 ext4_fsblk_t ee_pblock
;
2885 unsigned int ee_len
;
2888 ee_len
= ext4_ext_get_actual_len(ex
);
2889 ee_pblock
= ext4_ext_pblock(ex
);
2891 ret
= sb_issue_zeroout(inode
->i_sb
, ee_pblock
, ee_len
, GFP_NOFS
);
2899 * ext4_split_extent_at() splits an extent at given block.
2901 * @handle: the journal handle
2902 * @inode: the file inode
2903 * @path: the path to the extent
2904 * @split: the logical block where the extent is splitted.
2905 * @split_flags: indicates if the extent could be zeroout if split fails, and
2906 * the states(init or uninit) of new extents.
2907 * @flags: flags used to insert new extent to extent tree.
2910 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2911 * of which are deterimined by split_flag.
2913 * There are two cases:
2914 * a> the extent are splitted into two extent.
2915 * b> split is not needed, and just mark the extent.
2917 * return 0 on success.
2919 static int ext4_split_extent_at(handle_t
*handle
,
2920 struct inode
*inode
,
2921 struct ext4_ext_path
*path
,
2926 ext4_fsblk_t newblock
;
2927 ext4_lblk_t ee_block
;
2928 struct ext4_extent
*ex
, newex
, orig_ex
, zero_ex
;
2929 struct ext4_extent
*ex2
= NULL
;
2930 unsigned int ee_len
, depth
;
2933 BUG_ON((split_flag
& (EXT4_EXT_DATA_VALID1
| EXT4_EXT_DATA_VALID2
)) ==
2934 (EXT4_EXT_DATA_VALID1
| EXT4_EXT_DATA_VALID2
));
2936 ext_debug("ext4_split_extents_at: inode %lu, logical"
2937 "block %llu\n", inode
->i_ino
, (unsigned long long)split
);
2939 ext4_ext_show_leaf(inode
, path
);
2941 depth
= ext_depth(inode
);
2942 ex
= path
[depth
].p_ext
;
2943 ee_block
= le32_to_cpu(ex
->ee_block
);
2944 ee_len
= ext4_ext_get_actual_len(ex
);
2945 newblock
= split
- ee_block
+ ext4_ext_pblock(ex
);
2947 BUG_ON(split
< ee_block
|| split
>= (ee_block
+ ee_len
));
2948 BUG_ON(!ext4_ext_is_uninitialized(ex
) &&
2949 split_flag
& (EXT4_EXT_MAY_ZEROOUT
|
2950 EXT4_EXT_MARK_UNINIT1
|
2951 EXT4_EXT_MARK_UNINIT2
));
2953 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2957 if (split
== ee_block
) {
2959 * case b: block @split is the block that the extent begins with
2960 * then we just change the state of the extent, and splitting
2963 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2964 ext4_ext_mark_uninitialized(ex
);
2966 ext4_ext_mark_initialized(ex
);
2968 if (!(flags
& EXT4_GET_BLOCKS_PRE_IO
))
2969 ext4_ext_try_to_merge(handle
, inode
, path
, ex
);
2971 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
2976 memcpy(&orig_ex
, ex
, sizeof(orig_ex
));
2977 ex
->ee_len
= cpu_to_le16(split
- ee_block
);
2978 if (split_flag
& EXT4_EXT_MARK_UNINIT1
)
2979 ext4_ext_mark_uninitialized(ex
);
2982 * path may lead to new leaf, not to original leaf any more
2983 * after ext4_ext_insert_extent() returns,
2985 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2987 goto fix_extent_len
;
2990 ex2
->ee_block
= cpu_to_le32(split
);
2991 ex2
->ee_len
= cpu_to_le16(ee_len
- (split
- ee_block
));
2992 ext4_ext_store_pblock(ex2
, newblock
);
2993 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2994 ext4_ext_mark_uninitialized(ex2
);
2996 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
, flags
);
2997 if (err
== -ENOSPC
&& (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
2998 if (split_flag
& (EXT4_EXT_DATA_VALID1
|EXT4_EXT_DATA_VALID2
)) {
2999 if (split_flag
& EXT4_EXT_DATA_VALID1
) {
3000 err
= ext4_ext_zeroout(inode
, ex2
);
3001 zero_ex
.ee_block
= ex2
->ee_block
;
3002 zero_ex
.ee_len
= ext4_ext_get_actual_len(ex2
);
3003 ext4_ext_store_pblock(&zero_ex
,
3004 ext4_ext_pblock(ex2
));
3006 err
= ext4_ext_zeroout(inode
, ex
);
3007 zero_ex
.ee_block
= ex
->ee_block
;
3008 zero_ex
.ee_len
= ext4_ext_get_actual_len(ex
);
3009 ext4_ext_store_pblock(&zero_ex
,
3010 ext4_ext_pblock(ex
));
3013 err
= ext4_ext_zeroout(inode
, &orig_ex
);
3014 zero_ex
.ee_block
= orig_ex
.ee_block
;
3015 zero_ex
.ee_len
= ext4_ext_get_actual_len(&orig_ex
);
3016 ext4_ext_store_pblock(&zero_ex
,
3017 ext4_ext_pblock(&orig_ex
));
3021 goto fix_extent_len
;
3022 /* update the extent length and mark as initialized */
3023 ex
->ee_len
= cpu_to_le16(ee_len
);
3024 ext4_ext_try_to_merge(handle
, inode
, path
, ex
);
3025 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
3027 goto fix_extent_len
;
3029 /* update extent status tree */
3030 err
= ext4_es_zeroout(inode
, &zero_ex
);
3034 goto fix_extent_len
;
3037 ext4_ext_show_leaf(inode
, path
);
3041 ex
->ee_len
= orig_ex
.ee_len
;
3042 ext4_ext_dirty(handle
, inode
, path
+ depth
);
3047 * ext4_split_extents() splits an extent and mark extent which is covered
3048 * by @map as split_flags indicates
3050 * It may result in splitting the extent into multiple extents (upto three)
3051 * There are three possibilities:
3052 * a> There is no split required
3053 * b> Splits in two extents: Split is happening at either end of the extent
3054 * c> Splits in three extents: Somone is splitting in middle of the extent
3057 static int ext4_split_extent(handle_t
*handle
,
3058 struct inode
*inode
,
3059 struct ext4_ext_path
*path
,
3060 struct ext4_map_blocks
*map
,
3064 ext4_lblk_t ee_block
;
3065 struct ext4_extent
*ex
;
3066 unsigned int ee_len
, depth
;
3069 int split_flag1
, flags1
;
3070 int allocated
= map
->m_len
;
3072 depth
= ext_depth(inode
);
3073 ex
= path
[depth
].p_ext
;
3074 ee_block
= le32_to_cpu(ex
->ee_block
);
3075 ee_len
= ext4_ext_get_actual_len(ex
);
3076 uninitialized
= ext4_ext_is_uninitialized(ex
);
3078 if (map
->m_lblk
+ map
->m_len
< ee_block
+ ee_len
) {
3079 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
;
3080 flags1
= flags
| EXT4_GET_BLOCKS_PRE_IO
;
3082 split_flag1
|= EXT4_EXT_MARK_UNINIT1
|
3083 EXT4_EXT_MARK_UNINIT2
;
3084 if (split_flag
& EXT4_EXT_DATA_VALID2
)
3085 split_flag1
|= EXT4_EXT_DATA_VALID1
;
3086 err
= ext4_split_extent_at(handle
, inode
, path
,
3087 map
->m_lblk
+ map
->m_len
, split_flag1
, flags1
);
3091 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3094 * Update path is required because previous ext4_split_extent_at() may
3095 * result in split of original leaf or extent zeroout.
3097 ext4_ext_drop_refs(path
);
3098 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, path
);
3100 return PTR_ERR(path
);
3101 depth
= ext_depth(inode
);
3102 ex
= path
[depth
].p_ext
;
3103 uninitialized
= ext4_ext_is_uninitialized(ex
);
3106 if (map
->m_lblk
>= ee_block
) {
3107 split_flag1
= split_flag
& EXT4_EXT_DATA_VALID2
;
3108 if (uninitialized
) {
3109 split_flag1
|= EXT4_EXT_MARK_UNINIT1
;
3110 split_flag1
|= split_flag
& (EXT4_EXT_MAY_ZEROOUT
|
3111 EXT4_EXT_MARK_UNINIT2
);
3113 err
= ext4_split_extent_at(handle
, inode
, path
,
3114 map
->m_lblk
, split_flag1
, flags
);
3119 ext4_ext_show_leaf(inode
, path
);
3121 return err
? err
: allocated
;
3125 * This function is called by ext4_ext_map_blocks() if someone tries to write
3126 * to an uninitialized extent. It may result in splitting the uninitialized
3127 * extent into multiple extents (up to three - one initialized and two
3129 * There are three possibilities:
3130 * a> There is no split required: Entire extent should be initialized
3131 * b> Splits in two extents: Write is happening at either end of the extent
3132 * c> Splits in three extents: Somone is writing in middle of the extent
3135 * - The extent pointed to by 'path' is uninitialized.
3136 * - The extent pointed to by 'path' contains a superset
3137 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3139 * Post-conditions on success:
3140 * - the returned value is the number of blocks beyond map->l_lblk
3141 * that are allocated and initialized.
3142 * It is guaranteed to be >= map->m_len.
3144 static int ext4_ext_convert_to_initialized(handle_t
*handle
,
3145 struct inode
*inode
,
3146 struct ext4_map_blocks
*map
,
3147 struct ext4_ext_path
*path
)
3149 struct ext4_sb_info
*sbi
;
3150 struct ext4_extent_header
*eh
;
3151 struct ext4_map_blocks split_map
;
3152 struct ext4_extent zero_ex
;
3153 struct ext4_extent
*ex
;
3154 ext4_lblk_t ee_block
, eof_block
;
3155 unsigned int ee_len
, depth
;
3156 int allocated
, max_zeroout
= 0;
3160 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3161 "block %llu, max_blocks %u\n", inode
->i_ino
,
3162 (unsigned long long)map
->m_lblk
, map
->m_len
);
3164 sbi
= EXT4_SB(inode
->i_sb
);
3165 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
3166 inode
->i_sb
->s_blocksize_bits
;
3167 if (eof_block
< map
->m_lblk
+ map
->m_len
)
3168 eof_block
= map
->m_lblk
+ map
->m_len
;
3170 depth
= ext_depth(inode
);
3171 eh
= path
[depth
].p_hdr
;
3172 ex
= path
[depth
].p_ext
;
3173 ee_block
= le32_to_cpu(ex
->ee_block
);
3174 ee_len
= ext4_ext_get_actual_len(ex
);
3175 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3178 trace_ext4_ext_convert_to_initialized_enter(inode
, map
, ex
);
3180 /* Pre-conditions */
3181 BUG_ON(!ext4_ext_is_uninitialized(ex
));
3182 BUG_ON(!in_range(map
->m_lblk
, ee_block
, ee_len
));
3185 * Attempt to transfer newly initialized blocks from the currently
3186 * uninitialized extent to its left neighbor. This is much cheaper
3187 * than an insertion followed by a merge as those involve costly
3188 * memmove() calls. This is the common case in steady state for
3189 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3192 * Limitations of the current logic:
3193 * - L1: we only deal with writes at the start of the extent.
3194 * The approach could be extended to writes at the end
3195 * of the extent but this scenario was deemed less common.
3196 * - L2: we do not deal with writes covering the whole extent.
3197 * This would require removing the extent if the transfer
3199 * - L3: we only attempt to merge with an extent stored in the
3200 * same extent tree node.
3202 if ((map
->m_lblk
== ee_block
) && /*L1*/
3203 (map
->m_len
< ee_len
) && /*L2*/
3204 (ex
> EXT_FIRST_EXTENT(eh
))) { /*L3*/
3205 struct ext4_extent
*prev_ex
;
3206 ext4_lblk_t prev_lblk
;
3207 ext4_fsblk_t prev_pblk
, ee_pblk
;
3208 unsigned int prev_len
, write_len
;
3211 prev_lblk
= le32_to_cpu(prev_ex
->ee_block
);
3212 prev_len
= ext4_ext_get_actual_len(prev_ex
);
3213 prev_pblk
= ext4_ext_pblock(prev_ex
);
3214 ee_pblk
= ext4_ext_pblock(ex
);
3215 write_len
= map
->m_len
;
3218 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3219 * upon those conditions:
3220 * - C1: prev_ex is initialized,
3221 * - C2: prev_ex is logically abutting ex,
3222 * - C3: prev_ex is physically abutting ex,
3223 * - C4: prev_ex can receive the additional blocks without
3224 * overflowing the (initialized) length limit.
3226 if ((!ext4_ext_is_uninitialized(prev_ex
)) && /*C1*/
3227 ((prev_lblk
+ prev_len
) == ee_block
) && /*C2*/
3228 ((prev_pblk
+ prev_len
) == ee_pblk
) && /*C3*/
3229 (prev_len
< (EXT_INIT_MAX_LEN
- write_len
))) { /*C4*/
3230 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3234 trace_ext4_ext_convert_to_initialized_fastpath(inode
,
3237 /* Shift the start of ex by 'write_len' blocks */
3238 ex
->ee_block
= cpu_to_le32(ee_block
+ write_len
);
3239 ext4_ext_store_pblock(ex
, ee_pblk
+ write_len
);
3240 ex
->ee_len
= cpu_to_le16(ee_len
- write_len
);
3241 ext4_ext_mark_uninitialized(ex
); /* Restore the flag */
3243 /* Extend prev_ex by 'write_len' blocks */
3244 prev_ex
->ee_len
= cpu_to_le16(prev_len
+ write_len
);
3246 /* Mark the block containing both extents as dirty */
3247 ext4_ext_dirty(handle
, inode
, path
+ depth
);
3249 /* Update path to point to the right extent */
3250 path
[depth
].p_ext
= prev_ex
;
3252 /* Result: number of initialized blocks past m_lblk */
3253 allocated
= write_len
;
3258 WARN_ON(map
->m_lblk
< ee_block
);
3260 * It is safe to convert extent to initialized via explicit
3261 * zeroout only if extent is fully insde i_size or new_size.
3263 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3265 if (EXT4_EXT_MAY_ZEROOUT
& split_flag
)
3266 max_zeroout
= sbi
->s_extent_max_zeroout_kb
>>
3267 (inode
->i_sb
->s_blocksize_bits
- 10);
3269 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3270 if (max_zeroout
&& (ee_len
<= max_zeroout
)) {
3271 err
= ext4_ext_zeroout(inode
, ex
);
3274 zero_ex
.ee_block
= ex
->ee_block
;
3275 zero_ex
.ee_len
= ext4_ext_get_actual_len(ex
);
3276 ext4_ext_store_pblock(&zero_ex
, ext4_ext_pblock(ex
));
3278 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3281 ext4_ext_mark_initialized(ex
);
3282 ext4_ext_try_to_merge(handle
, inode
, path
, ex
);
3283 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
3289 * 1. split the extent into three extents.
3290 * 2. split the extent into two extents, zeroout the first half.
3291 * 3. split the extent into two extents, zeroout the second half.
3292 * 4. split the extent into two extents with out zeroout.
3294 split_map
.m_lblk
= map
->m_lblk
;
3295 split_map
.m_len
= map
->m_len
;
3297 if (max_zeroout
&& (allocated
> map
->m_len
)) {
3298 if (allocated
<= max_zeroout
) {
3301 cpu_to_le32(map
->m_lblk
);
3302 zero_ex
.ee_len
= cpu_to_le16(allocated
);
3303 ext4_ext_store_pblock(&zero_ex
,
3304 ext4_ext_pblock(ex
) + map
->m_lblk
- ee_block
);
3305 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3308 split_map
.m_lblk
= map
->m_lblk
;
3309 split_map
.m_len
= allocated
;
3310 } else if (map
->m_lblk
- ee_block
+ map
->m_len
< max_zeroout
) {
3312 if (map
->m_lblk
!= ee_block
) {
3313 zero_ex
.ee_block
= ex
->ee_block
;
3314 zero_ex
.ee_len
= cpu_to_le16(map
->m_lblk
-
3316 ext4_ext_store_pblock(&zero_ex
,
3317 ext4_ext_pblock(ex
));
3318 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3323 split_map
.m_lblk
= ee_block
;
3324 split_map
.m_len
= map
->m_lblk
- ee_block
+ map
->m_len
;
3325 allocated
= map
->m_len
;
3329 allocated
= ext4_split_extent(handle
, inode
, path
,
3330 &split_map
, split_flag
, 0);
3335 /* If we have gotten a failure, don't zero out status tree */
3337 err
= ext4_es_zeroout(inode
, &zero_ex
);
3338 return err
? err
: allocated
;
3342 * This function is called by ext4_ext_map_blocks() from
3343 * ext4_get_blocks_dio_write() when DIO to write
3344 * to an uninitialized extent.
3346 * Writing to an uninitialized extent may result in splitting the uninitialized
3347 * extent into multiple initialized/uninitialized extents (up to three)
3348 * There are three possibilities:
3349 * a> There is no split required: Entire extent should be uninitialized
3350 * b> Splits in two extents: Write is happening at either end of the extent
3351 * c> Splits in three extents: Somone is writing in middle of the extent
3353 * One of more index blocks maybe needed if the extent tree grow after
3354 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3355 * complete, we need to split the uninitialized extent before DIO submit
3356 * the IO. The uninitialized extent called at this time will be split
3357 * into three uninitialized extent(at most). After IO complete, the part
3358 * being filled will be convert to initialized by the end_io callback function
3359 * via ext4_convert_unwritten_extents().
3361 * Returns the size of uninitialized extent to be written on success.
3363 static int ext4_split_unwritten_extents(handle_t
*handle
,
3364 struct inode
*inode
,
3365 struct ext4_map_blocks
*map
,
3366 struct ext4_ext_path
*path
,
3369 ext4_lblk_t eof_block
;
3370 ext4_lblk_t ee_block
;
3371 struct ext4_extent
*ex
;
3372 unsigned int ee_len
;
3373 int split_flag
= 0, depth
;
3375 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3376 "block %llu, max_blocks %u\n", inode
->i_ino
,
3377 (unsigned long long)map
->m_lblk
, map
->m_len
);
3379 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
3380 inode
->i_sb
->s_blocksize_bits
;
3381 if (eof_block
< map
->m_lblk
+ map
->m_len
)
3382 eof_block
= map
->m_lblk
+ map
->m_len
;
3384 * It is safe to convert extent to initialized via explicit
3385 * zeroout only if extent is fully insde i_size or new_size.
3387 depth
= ext_depth(inode
);
3388 ex
= path
[depth
].p_ext
;
3389 ee_block
= le32_to_cpu(ex
->ee_block
);
3390 ee_len
= ext4_ext_get_actual_len(ex
);
3392 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3393 split_flag
|= EXT4_EXT_MARK_UNINIT2
;
3394 if (flags
& EXT4_GET_BLOCKS_CONVERT
)
3395 split_flag
|= EXT4_EXT_DATA_VALID2
;
3396 flags
|= EXT4_GET_BLOCKS_PRE_IO
;
3397 return ext4_split_extent(handle
, inode
, path
, map
, split_flag
, flags
);
3400 static int ext4_convert_unwritten_extents_endio(handle_t
*handle
,
3401 struct inode
*inode
,
3402 struct ext4_map_blocks
*map
,
3403 struct ext4_ext_path
*path
)
3405 struct ext4_extent
*ex
;
3406 ext4_lblk_t ee_block
;
3407 unsigned int ee_len
;
3411 depth
= ext_depth(inode
);
3412 ex
= path
[depth
].p_ext
;
3413 ee_block
= le32_to_cpu(ex
->ee_block
);
3414 ee_len
= ext4_ext_get_actual_len(ex
);
3416 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3417 "block %llu, max_blocks %u\n", inode
->i_ino
,
3418 (unsigned long long)ee_block
, ee_len
);
3420 /* If extent is larger than requested it is a clear sign that we still
3421 * have some extent state machine issues left. So extent_split is still
3423 * TODO: Once all related issues will be fixed this situation should be
3426 if (ee_block
!= map
->m_lblk
|| ee_len
> map
->m_len
) {
3428 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3429 " len %u; IO logical block %llu, len %u\n",
3430 inode
->i_ino
, (unsigned long long)ee_block
, ee_len
,
3431 (unsigned long long)map
->m_lblk
, map
->m_len
);
3433 err
= ext4_split_unwritten_extents(handle
, inode
, map
, path
,
3434 EXT4_GET_BLOCKS_CONVERT
);
3437 ext4_ext_drop_refs(path
);
3438 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, path
);
3440 err
= PTR_ERR(path
);
3443 depth
= ext_depth(inode
);
3444 ex
= path
[depth
].p_ext
;
3447 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3450 /* first mark the extent as initialized */
3451 ext4_ext_mark_initialized(ex
);
3453 /* note: ext4_ext_correct_indexes() isn't needed here because
3454 * borders are not changed
3456 ext4_ext_try_to_merge(handle
, inode
, path
, ex
);
3458 /* Mark modified extent as dirty */
3459 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
3461 ext4_ext_show_leaf(inode
, path
);
3465 static void unmap_underlying_metadata_blocks(struct block_device
*bdev
,
3466 sector_t block
, int count
)
3469 for (i
= 0; i
< count
; i
++)
3470 unmap_underlying_metadata(bdev
, block
+ i
);
3474 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3476 static int check_eofblocks_fl(handle_t
*handle
, struct inode
*inode
,
3478 struct ext4_ext_path
*path
,
3482 struct ext4_extent_header
*eh
;
3483 struct ext4_extent
*last_ex
;
3485 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
3488 depth
= ext_depth(inode
);
3489 eh
= path
[depth
].p_hdr
;
3492 * We're going to remove EOFBLOCKS_FL entirely in future so we
3493 * do not care for this case anymore. Simply remove the flag
3494 * if there are no extents.
3496 if (unlikely(!eh
->eh_entries
))
3498 last_ex
= EXT_LAST_EXTENT(eh
);
3500 * We should clear the EOFBLOCKS_FL flag if we are writing the
3501 * last block in the last extent in the file. We test this by
3502 * first checking to see if the caller to
3503 * ext4_ext_get_blocks() was interested in the last block (or
3504 * a block beyond the last block) in the current extent. If
3505 * this turns out to be false, we can bail out from this
3506 * function immediately.
3508 if (lblk
+ len
< le32_to_cpu(last_ex
->ee_block
) +
3509 ext4_ext_get_actual_len(last_ex
))
3512 * If the caller does appear to be planning to write at or
3513 * beyond the end of the current extent, we then test to see
3514 * if the current extent is the last extent in the file, by
3515 * checking to make sure it was reached via the rightmost node
3516 * at each level of the tree.
3518 for (i
= depth
-1; i
>= 0; i
--)
3519 if (path
[i
].p_idx
!= EXT_LAST_INDEX(path
[i
].p_hdr
))
3522 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3523 return ext4_mark_inode_dirty(handle
, inode
);
3527 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3529 * Return 1 if there is a delalloc block in the range, otherwise 0.
3531 int ext4_find_delalloc_range(struct inode
*inode
,
3532 ext4_lblk_t lblk_start
,
3533 ext4_lblk_t lblk_end
)
3535 struct extent_status es
;
3537 ext4_es_find_delayed_extent(inode
, lblk_start
, &es
);
3539 return 0; /* there is no delay extent in this tree */
3540 else if (es
.es_lblk
<= lblk_start
&&
3541 lblk_start
< es
.es_lblk
+ es
.es_len
)
3543 else if (lblk_start
<= es
.es_lblk
&& es
.es_lblk
<= lblk_end
)
3549 int ext4_find_delalloc_cluster(struct inode
*inode
, ext4_lblk_t lblk
)
3551 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3552 ext4_lblk_t lblk_start
, lblk_end
;
3553 lblk_start
= lblk
& (~(sbi
->s_cluster_ratio
- 1));
3554 lblk_end
= lblk_start
+ sbi
->s_cluster_ratio
- 1;
3556 return ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
);
3560 * Determines how many complete clusters (out of those specified by the 'map')
3561 * are under delalloc and were reserved quota for.
3562 * This function is called when we are writing out the blocks that were
3563 * originally written with their allocation delayed, but then the space was
3564 * allocated using fallocate() before the delayed allocation could be resolved.
3565 * The cases to look for are:
3566 * ('=' indicated delayed allocated blocks
3567 * '-' indicates non-delayed allocated blocks)
3568 * (a) partial clusters towards beginning and/or end outside of allocated range
3569 * are not delalloc'ed.
3571 * |----c---=|====c====|====c====|===-c----|
3572 * |++++++ allocated ++++++|
3573 * ==> 4 complete clusters in above example
3575 * (b) partial cluster (outside of allocated range) towards either end is
3576 * marked for delayed allocation. In this case, we will exclude that
3579 * |----====c========|========c========|
3580 * |++++++ allocated ++++++|
3581 * ==> 1 complete clusters in above example
3584 * |================c================|
3585 * |++++++ allocated ++++++|
3586 * ==> 0 complete clusters in above example
3588 * The ext4_da_update_reserve_space will be called only if we
3589 * determine here that there were some "entire" clusters that span
3590 * this 'allocated' range.
3591 * In the non-bigalloc case, this function will just end up returning num_blks
3592 * without ever calling ext4_find_delalloc_range.
3595 get_reserved_cluster_alloc(struct inode
*inode
, ext4_lblk_t lblk_start
,
3596 unsigned int num_blks
)
3598 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3599 ext4_lblk_t alloc_cluster_start
, alloc_cluster_end
;
3600 ext4_lblk_t lblk_from
, lblk_to
, c_offset
;
3601 unsigned int allocated_clusters
= 0;
3603 alloc_cluster_start
= EXT4_B2C(sbi
, lblk_start
);
3604 alloc_cluster_end
= EXT4_B2C(sbi
, lblk_start
+ num_blks
- 1);
3606 /* max possible clusters for this allocation */
3607 allocated_clusters
= alloc_cluster_end
- alloc_cluster_start
+ 1;
3609 trace_ext4_get_reserved_cluster_alloc(inode
, lblk_start
, num_blks
);
3611 /* Check towards left side */
3612 c_offset
= lblk_start
& (sbi
->s_cluster_ratio
- 1);
3614 lblk_from
= lblk_start
& (~(sbi
->s_cluster_ratio
- 1));
3615 lblk_to
= lblk_from
+ c_offset
- 1;
3617 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
))
3618 allocated_clusters
--;
3621 /* Now check towards right. */
3622 c_offset
= (lblk_start
+ num_blks
) & (sbi
->s_cluster_ratio
- 1);
3623 if (allocated_clusters
&& c_offset
) {
3624 lblk_from
= lblk_start
+ num_blks
;
3625 lblk_to
= lblk_from
+ (sbi
->s_cluster_ratio
- c_offset
) - 1;
3627 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
))
3628 allocated_clusters
--;
3631 return allocated_clusters
;
3635 ext4_ext_handle_uninitialized_extents(handle_t
*handle
, struct inode
*inode
,
3636 struct ext4_map_blocks
*map
,
3637 struct ext4_ext_path
*path
, int flags
,
3638 unsigned int allocated
, ext4_fsblk_t newblock
)
3642 ext4_io_end_t
*io
= ext4_inode_aio(inode
);
3644 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3645 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3646 inode
->i_ino
, (unsigned long long)map
->m_lblk
, map
->m_len
,
3648 ext4_ext_show_leaf(inode
, path
);
3650 trace_ext4_ext_handle_uninitialized_extents(inode
, map
, flags
,
3651 allocated
, newblock
);
3653 /* get_block() before submit the IO, split the extent */
3654 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
3655 ret
= ext4_split_unwritten_extents(handle
, inode
, map
,
3660 * Flag the inode(non aio case) or end_io struct (aio case)
3661 * that this IO needs to conversion to written when IO is
3665 ext4_set_io_unwritten_flag(inode
, io
);
3667 ext4_set_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3668 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
3669 if (ext4_should_dioread_nolock(inode
))
3670 map
->m_flags
|= EXT4_MAP_UNINIT
;
3673 /* IO end_io complete, convert the filled extent to written */
3674 if ((flags
& EXT4_GET_BLOCKS_CONVERT
)) {
3675 ret
= ext4_convert_unwritten_extents_endio(handle
, inode
, map
,
3678 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3679 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
3683 map
->m_flags
|= EXT4_MAP_MAPPED
;
3684 if (allocated
> map
->m_len
)
3685 allocated
= map
->m_len
;
3686 map
->m_len
= allocated
;
3689 /* buffered IO case */
3691 * repeat fallocate creation request
3692 * we already have an unwritten extent
3694 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
) {
3695 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
3699 /* buffered READ or buffered write_begin() lookup */
3700 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3702 * We have blocks reserved already. We
3703 * return allocated blocks so that delalloc
3704 * won't do block reservation for us. But
3705 * the buffer head will be unmapped so that
3706 * a read from the block returns 0s.
3708 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
3712 /* buffered write, writepage time, convert*/
3713 ret
= ext4_ext_convert_to_initialized(handle
, inode
, map
, path
);
3715 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3722 map
->m_flags
|= EXT4_MAP_NEW
;
3724 * if we allocated more blocks than requested
3725 * we need to make sure we unmap the extra block
3726 * allocated. The actual needed block will get
3727 * unmapped later when we find the buffer_head marked
3730 if (allocated
> map
->m_len
) {
3731 unmap_underlying_metadata_blocks(inode
->i_sb
->s_bdev
,
3732 newblock
+ map
->m_len
,
3733 allocated
- map
->m_len
);
3734 allocated
= map
->m_len
;
3736 map
->m_len
= allocated
;
3739 * If we have done fallocate with the offset that is already
3740 * delayed allocated, we would have block reservation
3741 * and quota reservation done in the delayed write path.
3742 * But fallocate would have already updated quota and block
3743 * count for this offset. So cancel these reservation
3745 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
3746 unsigned int reserved_clusters
;
3747 reserved_clusters
= get_reserved_cluster_alloc(inode
,
3748 map
->m_lblk
, map
->m_len
);
3749 if (reserved_clusters
)
3750 ext4_da_update_reserve_space(inode
,
3756 map
->m_flags
|= EXT4_MAP_MAPPED
;
3757 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0) {
3758 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
, path
,
3764 if (allocated
> map
->m_len
)
3765 allocated
= map
->m_len
;
3766 ext4_ext_show_leaf(inode
, path
);
3767 map
->m_pblk
= newblock
;
3768 map
->m_len
= allocated
;
3771 ext4_ext_drop_refs(path
);
3774 return err
? err
: allocated
;
3778 * get_implied_cluster_alloc - check to see if the requested
3779 * allocation (in the map structure) overlaps with a cluster already
3780 * allocated in an extent.
3781 * @sb The filesystem superblock structure
3782 * @map The requested lblk->pblk mapping
3783 * @ex The extent structure which might contain an implied
3784 * cluster allocation
3786 * This function is called by ext4_ext_map_blocks() after we failed to
3787 * find blocks that were already in the inode's extent tree. Hence,
3788 * we know that the beginning of the requested region cannot overlap
3789 * the extent from the inode's extent tree. There are three cases we
3790 * want to catch. The first is this case:
3792 * |--- cluster # N--|
3793 * |--- extent ---| |---- requested region ---|
3796 * The second case that we need to test for is this one:
3798 * |--------- cluster # N ----------------|
3799 * |--- requested region --| |------- extent ----|
3800 * |=======================|
3802 * The third case is when the requested region lies between two extents
3803 * within the same cluster:
3804 * |------------- cluster # N-------------|
3805 * |----- ex -----| |---- ex_right ----|
3806 * |------ requested region ------|
3807 * |================|
3809 * In each of the above cases, we need to set the map->m_pblk and
3810 * map->m_len so it corresponds to the return the extent labelled as
3811 * "|====|" from cluster #N, since it is already in use for data in
3812 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3813 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3814 * as a new "allocated" block region. Otherwise, we will return 0 and
3815 * ext4_ext_map_blocks() will then allocate one or more new clusters
3816 * by calling ext4_mb_new_blocks().
3818 static int get_implied_cluster_alloc(struct super_block
*sb
,
3819 struct ext4_map_blocks
*map
,
3820 struct ext4_extent
*ex
,
3821 struct ext4_ext_path
*path
)
3823 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3824 ext4_lblk_t c_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3825 ext4_lblk_t ex_cluster_start
, ex_cluster_end
;
3826 ext4_lblk_t rr_cluster_start
;
3827 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3828 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3829 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
3831 /* The extent passed in that we are trying to match */
3832 ex_cluster_start
= EXT4_B2C(sbi
, ee_block
);
3833 ex_cluster_end
= EXT4_B2C(sbi
, ee_block
+ ee_len
- 1);
3835 /* The requested region passed into ext4_map_blocks() */
3836 rr_cluster_start
= EXT4_B2C(sbi
, map
->m_lblk
);
3838 if ((rr_cluster_start
== ex_cluster_end
) ||
3839 (rr_cluster_start
== ex_cluster_start
)) {
3840 if (rr_cluster_start
== ex_cluster_end
)
3841 ee_start
+= ee_len
- 1;
3842 map
->m_pblk
= (ee_start
& ~(sbi
->s_cluster_ratio
- 1)) +
3844 map
->m_len
= min(map
->m_len
,
3845 (unsigned) sbi
->s_cluster_ratio
- c_offset
);
3847 * Check for and handle this case:
3849 * |--------- cluster # N-------------|
3850 * |------- extent ----|
3851 * |--- requested region ---|
3855 if (map
->m_lblk
< ee_block
)
3856 map
->m_len
= min(map
->m_len
, ee_block
- map
->m_lblk
);
3859 * Check for the case where there is already another allocated
3860 * block to the right of 'ex' but before the end of the cluster.
3862 * |------------- cluster # N-------------|
3863 * |----- ex -----| |---- ex_right ----|
3864 * |------ requested region ------|
3865 * |================|
3867 if (map
->m_lblk
> ee_block
) {
3868 ext4_lblk_t next
= ext4_ext_next_allocated_block(path
);
3869 map
->m_len
= min(map
->m_len
, next
- map
->m_lblk
);
3872 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 1);
3876 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 0);
3882 * Block allocation/map/preallocation routine for extents based files
3885 * Need to be called with
3886 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3887 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3889 * return > 0, number of of blocks already mapped/allocated
3890 * if create == 0 and these are pre-allocated blocks
3891 * buffer head is unmapped
3892 * otherwise blocks are mapped
3894 * return = 0, if plain look up failed (blocks have not been allocated)
3895 * buffer head is unmapped
3897 * return < 0, error case.
3899 int ext4_ext_map_blocks(handle_t
*handle
, struct inode
*inode
,
3900 struct ext4_map_blocks
*map
, int flags
)
3902 struct ext4_ext_path
*path
= NULL
;
3903 struct ext4_extent newex
, *ex
, *ex2
;
3904 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3905 ext4_fsblk_t newblock
= 0;
3906 int free_on_err
= 0, err
= 0, depth
;
3907 unsigned int allocated
= 0, offset
= 0;
3908 unsigned int allocated_clusters
= 0;
3909 struct ext4_allocation_request ar
;
3910 ext4_io_end_t
*io
= ext4_inode_aio(inode
);
3911 ext4_lblk_t cluster_offset
;
3912 int set_unwritten
= 0;
3914 ext_debug("blocks %u/%u requested for inode %lu\n",
3915 map
->m_lblk
, map
->m_len
, inode
->i_ino
);
3916 trace_ext4_ext_map_blocks_enter(inode
, map
->m_lblk
, map
->m_len
, flags
);
3918 /* find extent for this block */
3919 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, NULL
);
3921 err
= PTR_ERR(path
);
3926 depth
= ext_depth(inode
);
3929 * consistent leaf must not be empty;
3930 * this situation is possible, though, _during_ tree modification;
3931 * this is why assert can't be put in ext4_ext_find_extent()
3933 if (unlikely(path
[depth
].p_ext
== NULL
&& depth
!= 0)) {
3934 EXT4_ERROR_INODE(inode
, "bad extent address "
3935 "lblock: %lu, depth: %d pblock %lld",
3936 (unsigned long) map
->m_lblk
, depth
,
3937 path
[depth
].p_block
);
3942 ex
= path
[depth
].p_ext
;
3944 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3945 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3946 unsigned short ee_len
;
3949 * Uninitialized extents are treated as holes, except that
3950 * we split out initialized portions during a write.
3952 ee_len
= ext4_ext_get_actual_len(ex
);
3954 trace_ext4_ext_show_extent(inode
, ee_block
, ee_start
, ee_len
);
3956 /* if found extent covers block, simply return it */
3957 if (in_range(map
->m_lblk
, ee_block
, ee_len
)) {
3958 newblock
= map
->m_lblk
- ee_block
+ ee_start
;
3959 /* number of remaining blocks in the extent */
3960 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3961 ext_debug("%u fit into %u:%d -> %llu\n", map
->m_lblk
,
3962 ee_block
, ee_len
, newblock
);
3964 if (!ext4_ext_is_uninitialized(ex
))
3967 allocated
= ext4_ext_handle_uninitialized_extents(
3968 handle
, inode
, map
, path
, flags
,
3969 allocated
, newblock
);
3974 if ((sbi
->s_cluster_ratio
> 1) &&
3975 ext4_find_delalloc_cluster(inode
, map
->m_lblk
))
3976 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3979 * requested block isn't allocated yet;
3980 * we couldn't try to create block if create flag is zero
3982 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3984 * put just found gap into cache to speed up
3985 * subsequent requests
3987 if ((flags
& EXT4_GET_BLOCKS_NO_PUT_HOLE
) == 0)
3988 ext4_ext_put_gap_in_cache(inode
, path
, map
->m_lblk
);
3993 * Okay, we need to do block allocation.
3995 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
3996 newex
.ee_block
= cpu_to_le32(map
->m_lblk
);
3997 cluster_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
4000 * If we are doing bigalloc, check to see if the extent returned
4001 * by ext4_ext_find_extent() implies a cluster we can use.
4003 if (cluster_offset
&& ex
&&
4004 get_implied_cluster_alloc(inode
->i_sb
, map
, ex
, path
)) {
4005 ar
.len
= allocated
= map
->m_len
;
4006 newblock
= map
->m_pblk
;
4007 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
4008 goto got_allocated_blocks
;
4011 /* find neighbour allocated blocks */
4012 ar
.lleft
= map
->m_lblk
;
4013 err
= ext4_ext_search_left(inode
, path
, &ar
.lleft
, &ar
.pleft
);
4016 ar
.lright
= map
->m_lblk
;
4018 err
= ext4_ext_search_right(inode
, path
, &ar
.lright
, &ar
.pright
, &ex2
);
4022 /* Check if the extent after searching to the right implies a
4023 * cluster we can use. */
4024 if ((sbi
->s_cluster_ratio
> 1) && ex2
&&
4025 get_implied_cluster_alloc(inode
->i_sb
, map
, ex2
, path
)) {
4026 ar
.len
= allocated
= map
->m_len
;
4027 newblock
= map
->m_pblk
;
4028 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
4029 goto got_allocated_blocks
;
4033 * See if request is beyond maximum number of blocks we can have in
4034 * a single extent. For an initialized extent this limit is
4035 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4036 * EXT_UNINIT_MAX_LEN.
4038 if (map
->m_len
> EXT_INIT_MAX_LEN
&&
4039 !(flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
4040 map
->m_len
= EXT_INIT_MAX_LEN
;
4041 else if (map
->m_len
> EXT_UNINIT_MAX_LEN
&&
4042 (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
4043 map
->m_len
= EXT_UNINIT_MAX_LEN
;
4045 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4046 newex
.ee_len
= cpu_to_le16(map
->m_len
);
4047 err
= ext4_ext_check_overlap(sbi
, inode
, &newex
, path
);
4049 allocated
= ext4_ext_get_actual_len(&newex
);
4051 allocated
= map
->m_len
;
4053 /* allocate new block */
4055 ar
.goal
= ext4_ext_find_goal(inode
, path
, map
->m_lblk
);
4056 ar
.logical
= map
->m_lblk
;
4058 * We calculate the offset from the beginning of the cluster
4059 * for the logical block number, since when we allocate a
4060 * physical cluster, the physical block should start at the
4061 * same offset from the beginning of the cluster. This is
4062 * needed so that future calls to get_implied_cluster_alloc()
4065 offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
- 1);
4066 ar
.len
= EXT4_NUM_B2C(sbi
, offset
+allocated
);
4068 ar
.logical
-= offset
;
4069 if (S_ISREG(inode
->i_mode
))
4070 ar
.flags
= EXT4_MB_HINT_DATA
;
4072 /* disable in-core preallocation for non-regular files */
4074 if (flags
& EXT4_GET_BLOCKS_NO_NORMALIZE
)
4075 ar
.flags
|= EXT4_MB_HINT_NOPREALLOC
;
4076 newblock
= ext4_mb_new_blocks(handle
, &ar
, &err
);
4079 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4080 ar
.goal
, newblock
, allocated
);
4082 allocated_clusters
= ar
.len
;
4083 ar
.len
= EXT4_C2B(sbi
, ar
.len
) - offset
;
4084 if (ar
.len
> allocated
)
4087 got_allocated_blocks
:
4088 /* try to insert new extent into found leaf and return */
4089 ext4_ext_store_pblock(&newex
, newblock
+ offset
);
4090 newex
.ee_len
= cpu_to_le16(ar
.len
);
4091 /* Mark uninitialized */
4092 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
){
4093 ext4_ext_mark_uninitialized(&newex
);
4094 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
4096 * io_end structure was created for every IO write to an
4097 * uninitialized extent. To avoid unnecessary conversion,
4098 * here we flag the IO that really needs the conversion.
4099 * For non asycn direct IO case, flag the inode state
4100 * that we need to perform conversion when IO is done.
4102 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
))
4104 if (ext4_should_dioread_nolock(inode
))
4105 map
->m_flags
|= EXT4_MAP_UNINIT
;
4109 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0)
4110 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
4113 err
= ext4_ext_insert_extent(handle
, inode
, path
,
4116 if (!err
&& set_unwritten
) {
4118 ext4_set_io_unwritten_flag(inode
, io
);
4120 ext4_set_inode_state(inode
,
4121 EXT4_STATE_DIO_UNWRITTEN
);
4124 if (err
&& free_on_err
) {
4125 int fb_flags
= flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
?
4126 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
: 0;
4127 /* free data blocks we just allocated */
4128 /* not a good idea to call discard here directly,
4129 * but otherwise we'd need to call it every free() */
4130 ext4_discard_preallocations(inode
);
4131 ext4_free_blocks(handle
, inode
, NULL
, ext4_ext_pblock(&newex
),
4132 ext4_ext_get_actual_len(&newex
), fb_flags
);
4136 /* previous routine could use block we allocated */
4137 newblock
= ext4_ext_pblock(&newex
);
4138 allocated
= ext4_ext_get_actual_len(&newex
);
4139 if (allocated
> map
->m_len
)
4140 allocated
= map
->m_len
;
4141 map
->m_flags
|= EXT4_MAP_NEW
;
4144 * Update reserved blocks/metadata blocks after successful
4145 * block allocation which had been deferred till now.
4147 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
4148 unsigned int reserved_clusters
;
4150 * Check how many clusters we had reserved this allocated range
4152 reserved_clusters
= get_reserved_cluster_alloc(inode
,
4153 map
->m_lblk
, allocated
);
4154 if (map
->m_flags
& EXT4_MAP_FROM_CLUSTER
) {
4155 if (reserved_clusters
) {
4157 * We have clusters reserved for this range.
4158 * But since we are not doing actual allocation
4159 * and are simply using blocks from previously
4160 * allocated cluster, we should release the
4161 * reservation and not claim quota.
4163 ext4_da_update_reserve_space(inode
,
4164 reserved_clusters
, 0);
4167 BUG_ON(allocated_clusters
< reserved_clusters
);
4168 if (reserved_clusters
< allocated_clusters
) {
4169 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4170 int reservation
= allocated_clusters
-
4173 * It seems we claimed few clusters outside of
4174 * the range of this allocation. We should give
4175 * it back to the reservation pool. This can
4176 * happen in the following case:
4178 * * Suppose s_cluster_ratio is 4 (i.e., each
4179 * cluster has 4 blocks. Thus, the clusters
4180 * are [0-3],[4-7],[8-11]...
4181 * * First comes delayed allocation write for
4182 * logical blocks 10 & 11. Since there were no
4183 * previous delayed allocated blocks in the
4184 * range [8-11], we would reserve 1 cluster
4186 * * Next comes write for logical blocks 3 to 8.
4187 * In this case, we will reserve 2 clusters
4188 * (for [0-3] and [4-7]; and not for [8-11] as
4189 * that range has a delayed allocated blocks.
4190 * Thus total reserved clusters now becomes 3.
4191 * * Now, during the delayed allocation writeout
4192 * time, we will first write blocks [3-8] and
4193 * allocate 3 clusters for writing these
4194 * blocks. Also, we would claim all these
4195 * three clusters above.
4196 * * Now when we come here to writeout the
4197 * blocks [10-11], we would expect to claim
4198 * the reservation of 1 cluster we had made
4199 * (and we would claim it since there are no
4200 * more delayed allocated blocks in the range
4201 * [8-11]. But our reserved cluster count had
4202 * already gone to 0.
4204 * Thus, at the step 4 above when we determine
4205 * that there are still some unwritten delayed
4206 * allocated blocks outside of our current
4207 * block range, we should increment the
4208 * reserved clusters count so that when the
4209 * remaining blocks finally gets written, we
4212 dquot_reserve_block(inode
,
4213 EXT4_C2B(sbi
, reservation
));
4214 spin_lock(&ei
->i_block_reservation_lock
);
4215 ei
->i_reserved_data_blocks
+= reservation
;
4216 spin_unlock(&ei
->i_block_reservation_lock
);
4219 * We will claim quota for all newly allocated blocks.
4220 * We're updating the reserved space *after* the
4221 * correction above so we do not accidentally free
4222 * all the metadata reservation because we might
4223 * actually need it later on.
4225 ext4_da_update_reserve_space(inode
, allocated_clusters
,
4231 * Cache the extent and update transaction to commit on fdatasync only
4232 * when it is _not_ an uninitialized extent.
4234 if ((flags
& EXT4_GET_BLOCKS_UNINIT_EXT
) == 0)
4235 ext4_update_inode_fsync_trans(handle
, inode
, 1);
4237 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4239 if (allocated
> map
->m_len
)
4240 allocated
= map
->m_len
;
4241 ext4_ext_show_leaf(inode
, path
);
4242 map
->m_flags
|= EXT4_MAP_MAPPED
;
4243 map
->m_pblk
= newblock
;
4244 map
->m_len
= allocated
;
4247 ext4_ext_drop_refs(path
);
4252 trace_ext4_ext_map_blocks_exit(inode
, map
, err
? err
: allocated
);
4254 return err
? err
: allocated
;
4257 void ext4_ext_truncate(struct inode
*inode
)
4259 struct address_space
*mapping
= inode
->i_mapping
;
4260 struct super_block
*sb
= inode
->i_sb
;
4261 ext4_lblk_t last_block
;
4267 * finish any pending end_io work so we won't run the risk of
4268 * converting any truncated blocks to initialized later
4270 ext4_flush_unwritten_io(inode
);
4273 * probably first extent we're gonna free will be last in block
4275 err
= ext4_writepage_trans_blocks(inode
);
4276 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, err
);
4280 if (inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4281 page_len
= PAGE_CACHE_SIZE
-
4282 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4284 err
= ext4_discard_partial_page_buffers(handle
,
4285 mapping
, inode
->i_size
, page_len
, 0);
4291 if (ext4_orphan_add(handle
, inode
))
4294 down_write(&EXT4_I(inode
)->i_data_sem
);
4296 ext4_discard_preallocations(inode
);
4299 * TODO: optimization is possible here.
4300 * Probably we need not scan at all,
4301 * because page truncation is enough.
4304 /* we have to know where to truncate from in crash case */
4305 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
4306 ext4_mark_inode_dirty(handle
, inode
);
4308 last_block
= (inode
->i_size
+ sb
->s_blocksize
- 1)
4309 >> EXT4_BLOCK_SIZE_BITS(sb
);
4310 err
= ext4_es_remove_extent(inode
, last_block
,
4311 EXT_MAX_BLOCKS
- last_block
);
4312 err
= ext4_ext_remove_space(inode
, last_block
, EXT_MAX_BLOCKS
- 1);
4314 /* In a multi-transaction truncate, we only make the final
4315 * transaction synchronous.
4318 ext4_handle_sync(handle
);
4320 up_write(&EXT4_I(inode
)->i_data_sem
);
4324 * If this was a simple ftruncate() and the file will remain alive,
4325 * then we need to clear up the orphan record which we created above.
4326 * However, if this was a real unlink then we were called by
4327 * ext4_delete_inode(), and we allow that function to clean up the
4328 * orphan info for us.
4331 ext4_orphan_del(handle
, inode
);
4333 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4334 ext4_mark_inode_dirty(handle
, inode
);
4335 ext4_journal_stop(handle
);
4338 static void ext4_falloc_update_inode(struct inode
*inode
,
4339 int mode
, loff_t new_size
, int update_ctime
)
4341 struct timespec now
;
4344 now
= current_fs_time(inode
->i_sb
);
4345 if (!timespec_equal(&inode
->i_ctime
, &now
))
4346 inode
->i_ctime
= now
;
4349 * Update only when preallocation was requested beyond
4352 if (!(mode
& FALLOC_FL_KEEP_SIZE
)) {
4353 if (new_size
> i_size_read(inode
))
4354 i_size_write(inode
, new_size
);
4355 if (new_size
> EXT4_I(inode
)->i_disksize
)
4356 ext4_update_i_disksize(inode
, new_size
);
4359 * Mark that we allocate beyond EOF so the subsequent truncate
4360 * can proceed even if the new size is the same as i_size.
4362 if (new_size
> i_size_read(inode
))
4363 ext4_set_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4369 * preallocate space for a file. This implements ext4's fallocate file
4370 * operation, which gets called from sys_fallocate system call.
4371 * For block-mapped files, posix_fallocate should fall back to the method
4372 * of writing zeroes to the required new blocks (the same behavior which is
4373 * expected for file systems which do not support fallocate() system call).
4375 long ext4_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
4377 struct inode
*inode
= file_inode(file
);
4380 unsigned int max_blocks
;
4385 struct ext4_map_blocks map
;
4386 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4388 /* Return error if mode is not supported */
4389 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
4392 if (mode
& FALLOC_FL_PUNCH_HOLE
)
4393 return ext4_punch_hole(file
, offset
, len
);
4395 ret
= ext4_convert_inline_data(inode
);
4400 * currently supporting (pre)allocate mode for extent-based
4403 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4406 trace_ext4_fallocate_enter(inode
, offset
, len
, mode
);
4407 map
.m_lblk
= offset
>> blkbits
;
4409 * We can't just convert len to max_blocks because
4410 * If blocksize = 4096 offset = 3072 and len = 2048
4412 max_blocks
= (EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
)
4415 * credits to insert 1 extent into extent tree
4417 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4418 mutex_lock(&inode
->i_mutex
);
4419 ret
= inode_newsize_ok(inode
, (len
+ offset
));
4421 mutex_unlock(&inode
->i_mutex
);
4422 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
, ret
);
4425 flags
= EXT4_GET_BLOCKS_CREATE_UNINIT_EXT
;
4426 if (mode
& FALLOC_FL_KEEP_SIZE
)
4427 flags
|= EXT4_GET_BLOCKS_KEEP_SIZE
;
4429 * Don't normalize the request if it can fit in one extent so
4430 * that it doesn't get unnecessarily split into multiple
4433 if (len
<= EXT_UNINIT_MAX_LEN
<< blkbits
)
4434 flags
|= EXT4_GET_BLOCKS_NO_NORMALIZE
;
4437 while (ret
>= 0 && ret
< max_blocks
) {
4438 map
.m_lblk
= map
.m_lblk
+ ret
;
4439 map
.m_len
= max_blocks
= max_blocks
- ret
;
4440 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
4442 if (IS_ERR(handle
)) {
4443 ret
= PTR_ERR(handle
);
4446 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
4449 ext4_warning(inode
->i_sb
,
4450 "inode #%lu: block %u: len %u: "
4451 "ext4_ext_map_blocks returned %d",
4452 inode
->i_ino
, map
.m_lblk
,
4455 ext4_mark_inode_dirty(handle
, inode
);
4456 ret2
= ext4_journal_stop(handle
);
4459 if ((map
.m_lblk
+ ret
) >= (EXT4_BLOCK_ALIGN(offset
+ len
,
4460 blkbits
) >> blkbits
))
4461 new_size
= offset
+ len
;
4463 new_size
= ((loff_t
) map
.m_lblk
+ ret
) << blkbits
;
4465 ext4_falloc_update_inode(inode
, mode
, new_size
,
4466 (map
.m_flags
& EXT4_MAP_NEW
));
4467 ext4_mark_inode_dirty(handle
, inode
);
4468 if ((file
->f_flags
& O_SYNC
) && ret
>= max_blocks
)
4469 ext4_handle_sync(handle
);
4470 ret2
= ext4_journal_stop(handle
);
4474 if (ret
== -ENOSPC
&&
4475 ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
4479 mutex_unlock(&inode
->i_mutex
);
4480 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
,
4481 ret
> 0 ? ret2
: ret
);
4482 return ret
> 0 ? ret2
: ret
;
4486 * This function convert a range of blocks to written extents
4487 * The caller of this function will pass the start offset and the size.
4488 * all unwritten extents within this range will be converted to
4491 * This function is called from the direct IO end io call back
4492 * function, to convert the fallocated extents after IO is completed.
4493 * Returns 0 on success.
4495 int ext4_convert_unwritten_extents(struct inode
*inode
, loff_t offset
,
4499 unsigned int max_blocks
;
4502 struct ext4_map_blocks map
;
4503 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4505 map
.m_lblk
= offset
>> blkbits
;
4507 * We can't just convert len to max_blocks because
4508 * If blocksize = 4096 offset = 3072 and len = 2048
4510 max_blocks
= ((EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
) -
4513 * credits to insert 1 extent into extent tree
4515 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4516 while (ret
>= 0 && ret
< max_blocks
) {
4518 map
.m_len
= (max_blocks
-= ret
);
4519 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
, credits
);
4520 if (IS_ERR(handle
)) {
4521 ret
= PTR_ERR(handle
);
4524 ret
= ext4_map_blocks(handle
, inode
, &map
,
4525 EXT4_GET_BLOCKS_IO_CONVERT_EXT
);
4527 ext4_warning(inode
->i_sb
,
4528 "inode #%lu: block %u: len %u: "
4529 "ext4_ext_map_blocks returned %d",
4530 inode
->i_ino
, map
.m_lblk
,
4532 ext4_mark_inode_dirty(handle
, inode
);
4533 ret2
= ext4_journal_stop(handle
);
4534 if (ret
<= 0 || ret2
)
4537 return ret
> 0 ? ret2
: ret
;
4541 * If newes is not existing extent (newes->ec_pblk equals zero) find
4542 * delayed extent at start of newes and update newes accordingly and
4543 * return start of the next delayed extent.
4545 * If newes is existing extent (newes->ec_pblk is not equal zero)
4546 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4547 * extent found. Leave newes unmodified.
4549 static int ext4_find_delayed_extent(struct inode
*inode
,
4550 struct extent_status
*newes
)
4552 struct extent_status es
;
4553 ext4_lblk_t block
, next_del
;
4555 ext4_es_find_delayed_extent(inode
, newes
->es_lblk
, &es
);
4557 if (newes
->es_pblk
== 0) {
4559 * No extent in extent-tree contains block @newes->es_pblk,
4560 * then the block may stay in 1)a hole or 2)delayed-extent.
4566 if (es
.es_lblk
> newes
->es_lblk
) {
4568 newes
->es_len
= min(es
.es_lblk
- newes
->es_lblk
,
4573 newes
->es_len
= es
.es_lblk
+ es
.es_len
- newes
->es_lblk
;
4576 block
= newes
->es_lblk
+ newes
->es_len
;
4577 ext4_es_find_delayed_extent(inode
, block
, &es
);
4579 next_del
= EXT_MAX_BLOCKS
;
4581 next_del
= es
.es_lblk
;
4585 /* fiemap flags we can handle specified here */
4586 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4588 static int ext4_xattr_fiemap(struct inode
*inode
,
4589 struct fiemap_extent_info
*fieinfo
)
4593 __u32 flags
= FIEMAP_EXTENT_LAST
;
4594 int blockbits
= inode
->i_sb
->s_blocksize_bits
;
4598 if (ext4_test_inode_state(inode
, EXT4_STATE_XATTR
)) {
4599 struct ext4_iloc iloc
;
4600 int offset
; /* offset of xattr in inode */
4602 error
= ext4_get_inode_loc(inode
, &iloc
);
4605 physical
= iloc
.bh
->b_blocknr
<< blockbits
;
4606 offset
= EXT4_GOOD_OLD_INODE_SIZE
+
4607 EXT4_I(inode
)->i_extra_isize
;
4609 length
= EXT4_SB(inode
->i_sb
)->s_inode_size
- offset
;
4610 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
4612 } else { /* external block */
4613 physical
= EXT4_I(inode
)->i_file_acl
<< blockbits
;
4614 length
= inode
->i_sb
->s_blocksize
;
4618 error
= fiemap_fill_next_extent(fieinfo
, 0, physical
,
4620 return (error
< 0 ? error
: 0);
4624 * ext4_ext_punch_hole
4626 * Punches a hole of "length" bytes in a file starting
4629 * @inode: The inode of the file to punch a hole in
4630 * @offset: The starting byte offset of the hole
4631 * @length: The length of the hole
4633 * Returns the number of blocks removed or negative on err
4635 int ext4_ext_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
4637 struct inode
*inode
= file_inode(file
);
4638 struct super_block
*sb
= inode
->i_sb
;
4639 ext4_lblk_t first_block
, stop_block
;
4640 struct address_space
*mapping
= inode
->i_mapping
;
4642 loff_t first_page
, last_page
, page_len
;
4643 loff_t first_page_offset
, last_page_offset
;
4644 int credits
, err
= 0;
4647 * Write out all dirty pages to avoid race conditions
4648 * Then release them.
4650 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
4651 err
= filemap_write_and_wait_range(mapping
,
4652 offset
, offset
+ length
- 1);
4658 mutex_lock(&inode
->i_mutex
);
4659 /* It's not possible punch hole on append only file */
4660 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
)) {
4664 if (IS_SWAPFILE(inode
)) {
4669 /* No need to punch hole beyond i_size */
4670 if (offset
>= inode
->i_size
)
4674 * If the hole extends beyond i_size, set the hole
4675 * to end after the page that contains i_size
4677 if (offset
+ length
> inode
->i_size
) {
4678 length
= inode
->i_size
+
4679 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
4683 first_page
= (offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
4684 last_page
= (offset
+ length
) >> PAGE_CACHE_SHIFT
;
4686 first_page_offset
= first_page
<< PAGE_CACHE_SHIFT
;
4687 last_page_offset
= last_page
<< PAGE_CACHE_SHIFT
;
4689 /* Now release the pages */
4690 if (last_page_offset
> first_page_offset
) {
4691 truncate_pagecache_range(inode
, first_page_offset
,
4692 last_page_offset
- 1);
4695 /* Wait all existing dio workers, newcomers will block on i_mutex */
4696 ext4_inode_block_unlocked_dio(inode
);
4697 err
= ext4_flush_unwritten_io(inode
);
4700 inode_dio_wait(inode
);
4702 credits
= ext4_writepage_trans_blocks(inode
);
4703 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
4704 if (IS_ERR(handle
)) {
4705 err
= PTR_ERR(handle
);
4711 * Now we need to zero out the non-page-aligned data in the
4712 * pages at the start and tail of the hole, and unmap the buffer
4713 * heads for the block aligned regions of the page that were
4714 * completely zeroed.
4716 if (first_page
> last_page
) {
4718 * If the file space being truncated is contained within a page
4719 * just zero out and unmap the middle of that page
4721 err
= ext4_discard_partial_page_buffers(handle
,
4722 mapping
, offset
, length
, 0);
4728 * zero out and unmap the partial page that contains
4729 * the start of the hole
4731 page_len
= first_page_offset
- offset
;
4733 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4734 offset
, page_len
, 0);
4740 * zero out and unmap the partial page that contains
4741 * the end of the hole
4743 page_len
= offset
+ length
- last_page_offset
;
4745 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4746 last_page_offset
, page_len
, 0);
4753 * If i_size is contained in the last page, we need to
4754 * unmap and zero the partial page after i_size
4756 if (inode
->i_size
>> PAGE_CACHE_SHIFT
== last_page
&&
4757 inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4759 page_len
= PAGE_CACHE_SIZE
-
4760 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4763 err
= ext4_discard_partial_page_buffers(handle
,
4764 mapping
, inode
->i_size
, page_len
, 0);
4771 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
4772 EXT4_BLOCK_SIZE_BITS(sb
);
4773 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
4775 /* If there are no blocks to remove, return now */
4776 if (first_block
>= stop_block
)
4779 down_write(&EXT4_I(inode
)->i_data_sem
);
4780 ext4_discard_preallocations(inode
);
4782 err
= ext4_es_remove_extent(inode
, first_block
,
4783 stop_block
- first_block
);
4784 err
= ext4_ext_remove_space(inode
, first_block
, stop_block
- 1);
4786 ext4_discard_preallocations(inode
);
4789 ext4_handle_sync(handle
);
4791 up_write(&EXT4_I(inode
)->i_data_sem
);
4794 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4795 ext4_mark_inode_dirty(handle
, inode
);
4796 ext4_journal_stop(handle
);
4798 ext4_inode_resume_unlocked_dio(inode
);
4800 mutex_unlock(&inode
->i_mutex
);
4804 int ext4_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4805 __u64 start
, __u64 len
)
4807 ext4_lblk_t start_blk
;
4810 if (ext4_has_inline_data(inode
)) {
4813 error
= ext4_inline_data_fiemap(inode
, fieinfo
, &has_inline
);
4819 /* fallback to generic here if not in extents fmt */
4820 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4821 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
4824 if (fiemap_check_flags(fieinfo
, EXT4_FIEMAP_FLAGS
))
4827 if (fieinfo
->fi_flags
& FIEMAP_FLAG_XATTR
) {
4828 error
= ext4_xattr_fiemap(inode
, fieinfo
);
4830 ext4_lblk_t len_blks
;
4833 start_blk
= start
>> inode
->i_sb
->s_blocksize_bits
;
4834 last_blk
= (start
+ len
- 1) >> inode
->i_sb
->s_blocksize_bits
;
4835 if (last_blk
>= EXT_MAX_BLOCKS
)
4836 last_blk
= EXT_MAX_BLOCKS
-1;
4837 len_blks
= ((ext4_lblk_t
) last_blk
) - start_blk
+ 1;
4840 * Walk the extent tree gathering extent information
4841 * and pushing extents back to the user.
4843 error
= ext4_fill_fiemap_extents(inode
, start_blk
,