Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[linux-2.6/libata-dev.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
blobf7ed122f40717ee4392041e09e1b2396e640370b
1 /* bnx2x_main.c: Broadcom Everest network driver.
3 * Copyright (c) 2007-2012 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION \
69 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
70 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
71 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
72 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT (5*HZ)
82 static char version[] __devinitdata =
83 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 "BCM57710/57711/57711E/"
89 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98 int num_queues;
99 module_param(num_queues, int, 0);
100 MODULE_PARM_DESC(num_queues,
101 " Set number of queues (default is as a number of CPUs)");
103 static int disable_tpa;
104 module_param(disable_tpa, int, 0);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107 #define INT_MODE_INTx 1
108 #define INT_MODE_MSI 2
109 int int_mode;
110 module_param(int_mode, int, 0);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112 "(1 INT#x; 2 MSI)");
114 static int dropless_fc;
115 module_param(dropless_fc, int, 0);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
118 static int mrrs = -1;
119 module_param(mrrs, int, 0);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
122 static int debug;
123 module_param(debug, int, 0);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
128 struct workqueue_struct *bnx2x_wq;
130 enum bnx2x_board_type {
131 BCM57710 = 0,
132 BCM57711,
133 BCM57711E,
134 BCM57712,
135 BCM57712_MF,
136 BCM57800,
137 BCM57800_MF,
138 BCM57810,
139 BCM57810_MF,
140 BCM57840_O,
141 BCM57840_4_10,
142 BCM57840_2_20,
143 BCM57840_MFO,
144 BCM57840_MF,
145 BCM57811,
146 BCM57811_MF
149 /* indexed by board_type, above */
150 static struct {
151 char *name;
152 } board_info[] __devinitdata = {
153 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
154 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
155 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
156 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
157 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
158 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
159 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
160 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
161 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
162 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
163 { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
164 { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
165 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
166 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
167 { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"},
168 { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"},
171 #ifndef PCI_DEVICE_ID_NX2_57710
172 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711
175 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57711E
178 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712
181 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57712_MF
184 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800
187 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57800_MF
190 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810
193 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57810_MF
196 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_O
199 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
202 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
205 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
208 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57840_MF
211 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57811
214 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57811_MF
217 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
218 #endif
219 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
220 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
221 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
222 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
223 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
224 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
225 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
226 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
227 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
228 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
229 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
230 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
231 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
232 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
233 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
234 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
235 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
236 { 0 }
239 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
241 /* Global resources for unloading a previously loaded device */
242 #define BNX2X_PREV_WAIT_NEEDED 1
243 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
244 static LIST_HEAD(bnx2x_prev_list);
245 /****************************************************************************
246 * General service functions
247 ****************************************************************************/
249 static void __storm_memset_dma_mapping(struct bnx2x *bp,
250 u32 addr, dma_addr_t mapping)
252 REG_WR(bp, addr, U64_LO(mapping));
253 REG_WR(bp, addr + 4, U64_HI(mapping));
256 static void storm_memset_spq_addr(struct bnx2x *bp,
257 dma_addr_t mapping, u16 abs_fid)
259 u32 addr = XSEM_REG_FAST_MEMORY +
260 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
262 __storm_memset_dma_mapping(bp, addr, mapping);
265 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
266 u16 pf_id)
268 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
269 pf_id);
270 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
271 pf_id);
272 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
273 pf_id);
274 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
275 pf_id);
278 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
279 u8 enable)
281 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
282 enable);
283 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
284 enable);
285 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
286 enable);
287 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
288 enable);
291 static void storm_memset_eq_data(struct bnx2x *bp,
292 struct event_ring_data *eq_data,
293 u16 pfid)
295 size_t size = sizeof(struct event_ring_data);
297 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
299 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
302 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
303 u16 pfid)
305 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
306 REG_WR16(bp, addr, eq_prod);
309 /* used only at init
310 * locking is done by mcp
312 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
314 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
315 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
316 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
317 PCICFG_VENDOR_ID_OFFSET);
320 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
322 u32 val;
324 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
325 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
326 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
327 PCICFG_VENDOR_ID_OFFSET);
329 return val;
332 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
333 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
334 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
335 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
336 #define DMAE_DP_DST_NONE "dst_addr [none]"
339 /* copy command into DMAE command memory and set DMAE command go */
340 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
342 u32 cmd_offset;
343 int i;
345 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
346 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
347 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
349 REG_WR(bp, dmae_reg_go_c[idx], 1);
352 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
354 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
355 DMAE_CMD_C_ENABLE);
358 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
360 return opcode & ~DMAE_CMD_SRC_RESET;
363 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
364 bool with_comp, u8 comp_type)
366 u32 opcode = 0;
368 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
369 (dst_type << DMAE_COMMAND_DST_SHIFT));
371 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
373 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
374 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
375 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
376 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
378 #ifdef __BIG_ENDIAN
379 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
380 #else
381 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
382 #endif
383 if (with_comp)
384 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
385 return opcode;
388 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
389 struct dmae_command *dmae,
390 u8 src_type, u8 dst_type)
392 memset(dmae, 0, sizeof(struct dmae_command));
394 /* set the opcode */
395 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
396 true, DMAE_COMP_PCI);
398 /* fill in the completion parameters */
399 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
400 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
401 dmae->comp_val = DMAE_COMP_VAL;
404 /* issue a dmae command over the init-channel and wailt for completion */
405 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
406 struct dmae_command *dmae)
408 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
409 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
410 int rc = 0;
413 * Lock the dmae channel. Disable BHs to prevent a dead-lock
414 * as long as this code is called both from syscall context and
415 * from ndo_set_rx_mode() flow that may be called from BH.
417 spin_lock_bh(&bp->dmae_lock);
419 /* reset completion */
420 *wb_comp = 0;
422 /* post the command on the channel used for initializations */
423 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
425 /* wait for completion */
426 udelay(5);
427 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
429 if (!cnt ||
430 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
431 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
432 BNX2X_ERR("DMAE timeout!\n");
433 rc = DMAE_TIMEOUT;
434 goto unlock;
436 cnt--;
437 udelay(50);
439 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
440 BNX2X_ERR("DMAE PCI error!\n");
441 rc = DMAE_PCI_ERROR;
444 unlock:
445 spin_unlock_bh(&bp->dmae_lock);
446 return rc;
449 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
450 u32 len32)
452 struct dmae_command dmae;
454 if (!bp->dmae_ready) {
455 u32 *data = bnx2x_sp(bp, wb_data[0]);
457 if (CHIP_IS_E1(bp))
458 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
459 else
460 bnx2x_init_str_wr(bp, dst_addr, data, len32);
461 return;
464 /* set opcode and fixed command fields */
465 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
467 /* fill in addresses and len */
468 dmae.src_addr_lo = U64_LO(dma_addr);
469 dmae.src_addr_hi = U64_HI(dma_addr);
470 dmae.dst_addr_lo = dst_addr >> 2;
471 dmae.dst_addr_hi = 0;
472 dmae.len = len32;
474 /* issue the command and wait for completion */
475 bnx2x_issue_dmae_with_comp(bp, &dmae);
478 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
480 struct dmae_command dmae;
482 if (!bp->dmae_ready) {
483 u32 *data = bnx2x_sp(bp, wb_data[0]);
484 int i;
486 if (CHIP_IS_E1(bp))
487 for (i = 0; i < len32; i++)
488 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
489 else
490 for (i = 0; i < len32; i++)
491 data[i] = REG_RD(bp, src_addr + i*4);
493 return;
496 /* set opcode and fixed command fields */
497 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
499 /* fill in addresses and len */
500 dmae.src_addr_lo = src_addr >> 2;
501 dmae.src_addr_hi = 0;
502 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
503 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
504 dmae.len = len32;
506 /* issue the command and wait for completion */
507 bnx2x_issue_dmae_with_comp(bp, &dmae);
510 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
511 u32 addr, u32 len)
513 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
514 int offset = 0;
516 while (len > dmae_wr_max) {
517 bnx2x_write_dmae(bp, phys_addr + offset,
518 addr + offset, dmae_wr_max);
519 offset += dmae_wr_max * 4;
520 len -= dmae_wr_max;
523 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
526 static int bnx2x_mc_assert(struct bnx2x *bp)
528 char last_idx;
529 int i, rc = 0;
530 u32 row0, row1, row2, row3;
532 /* XSTORM */
533 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
534 XSTORM_ASSERT_LIST_INDEX_OFFSET);
535 if (last_idx)
536 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
538 /* print the asserts */
539 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
541 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
542 XSTORM_ASSERT_LIST_OFFSET(i));
543 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
544 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
545 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
546 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
547 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
548 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
550 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
551 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
552 i, row3, row2, row1, row0);
553 rc++;
554 } else {
555 break;
559 /* TSTORM */
560 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
561 TSTORM_ASSERT_LIST_INDEX_OFFSET);
562 if (last_idx)
563 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
565 /* print the asserts */
566 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
568 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
569 TSTORM_ASSERT_LIST_OFFSET(i));
570 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
571 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
572 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
573 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
574 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
575 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
577 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
578 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
579 i, row3, row2, row1, row0);
580 rc++;
581 } else {
582 break;
586 /* CSTORM */
587 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
588 CSTORM_ASSERT_LIST_INDEX_OFFSET);
589 if (last_idx)
590 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
592 /* print the asserts */
593 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
595 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
596 CSTORM_ASSERT_LIST_OFFSET(i));
597 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
598 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
599 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
600 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
601 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
602 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
604 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
605 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
606 i, row3, row2, row1, row0);
607 rc++;
608 } else {
609 break;
613 /* USTORM */
614 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
615 USTORM_ASSERT_LIST_INDEX_OFFSET);
616 if (last_idx)
617 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
619 /* print the asserts */
620 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
622 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
623 USTORM_ASSERT_LIST_OFFSET(i));
624 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
625 USTORM_ASSERT_LIST_OFFSET(i) + 4);
626 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
627 USTORM_ASSERT_LIST_OFFSET(i) + 8);
628 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
629 USTORM_ASSERT_LIST_OFFSET(i) + 12);
631 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
632 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
633 i, row3, row2, row1, row0);
634 rc++;
635 } else {
636 break;
640 return rc;
643 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
645 u32 addr, val;
646 u32 mark, offset;
647 __be32 data[9];
648 int word;
649 u32 trace_shmem_base;
650 if (BP_NOMCP(bp)) {
651 BNX2X_ERR("NO MCP - can not dump\n");
652 return;
654 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
655 (bp->common.bc_ver & 0xff0000) >> 16,
656 (bp->common.bc_ver & 0xff00) >> 8,
657 (bp->common.bc_ver & 0xff));
659 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
660 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
661 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
663 if (BP_PATH(bp) == 0)
664 trace_shmem_base = bp->common.shmem_base;
665 else
666 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
667 addr = trace_shmem_base - 0x800;
669 /* validate TRCB signature */
670 mark = REG_RD(bp, addr);
671 if (mark != MFW_TRACE_SIGNATURE) {
672 BNX2X_ERR("Trace buffer signature is missing.");
673 return ;
676 /* read cyclic buffer pointer */
677 addr += 4;
678 mark = REG_RD(bp, addr);
679 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
680 + ((mark + 0x3) & ~0x3) - 0x08000000;
681 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
683 printk("%s", lvl);
684 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
685 for (word = 0; word < 8; word++)
686 data[word] = htonl(REG_RD(bp, offset + 4*word));
687 data[8] = 0x0;
688 pr_cont("%s", (char *)data);
690 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
691 for (word = 0; word < 8; word++)
692 data[word] = htonl(REG_RD(bp, offset + 4*word));
693 data[8] = 0x0;
694 pr_cont("%s", (char *)data);
696 printk("%s" "end of fw dump\n", lvl);
699 static void bnx2x_fw_dump(struct bnx2x *bp)
701 bnx2x_fw_dump_lvl(bp, KERN_ERR);
704 void bnx2x_panic_dump(struct bnx2x *bp)
706 int i;
707 u16 j;
708 struct hc_sp_status_block_data sp_sb_data;
709 int func = BP_FUNC(bp);
710 #ifdef BNX2X_STOP_ON_ERROR
711 u16 start = 0, end = 0;
712 u8 cos;
713 #endif
715 bp->stats_state = STATS_STATE_DISABLED;
716 bp->eth_stats.unrecoverable_error++;
717 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
719 BNX2X_ERR("begin crash dump -----------------\n");
721 /* Indices */
722 /* Common */
723 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
724 bp->def_idx, bp->def_att_idx, bp->attn_state,
725 bp->spq_prod_idx, bp->stats_counter);
726 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
727 bp->def_status_blk->atten_status_block.attn_bits,
728 bp->def_status_blk->atten_status_block.attn_bits_ack,
729 bp->def_status_blk->atten_status_block.status_block_id,
730 bp->def_status_blk->atten_status_block.attn_bits_index);
731 BNX2X_ERR(" def (");
732 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
733 pr_cont("0x%x%s",
734 bp->def_status_blk->sp_sb.index_values[i],
735 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
737 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
738 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
739 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
740 i*sizeof(u32));
742 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
743 sp_sb_data.igu_sb_id,
744 sp_sb_data.igu_seg_id,
745 sp_sb_data.p_func.pf_id,
746 sp_sb_data.p_func.vnic_id,
747 sp_sb_data.p_func.vf_id,
748 sp_sb_data.p_func.vf_valid,
749 sp_sb_data.state);
752 for_each_eth_queue(bp, i) {
753 struct bnx2x_fastpath *fp = &bp->fp[i];
754 int loop;
755 struct hc_status_block_data_e2 sb_data_e2;
756 struct hc_status_block_data_e1x sb_data_e1x;
757 struct hc_status_block_sm *hc_sm_p =
758 CHIP_IS_E1x(bp) ?
759 sb_data_e1x.common.state_machine :
760 sb_data_e2.common.state_machine;
761 struct hc_index_data *hc_index_p =
762 CHIP_IS_E1x(bp) ?
763 sb_data_e1x.index_data :
764 sb_data_e2.index_data;
765 u8 data_size, cos;
766 u32 *sb_data_p;
767 struct bnx2x_fp_txdata txdata;
769 /* Rx */
770 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
771 i, fp->rx_bd_prod, fp->rx_bd_cons,
772 fp->rx_comp_prod,
773 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
774 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
775 fp->rx_sge_prod, fp->last_max_sge,
776 le16_to_cpu(fp->fp_hc_idx));
778 /* Tx */
779 for_each_cos_in_tx_queue(fp, cos)
781 txdata = *fp->txdata_ptr[cos];
782 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
783 i, txdata.tx_pkt_prod,
784 txdata.tx_pkt_cons, txdata.tx_bd_prod,
785 txdata.tx_bd_cons,
786 le16_to_cpu(*txdata.tx_cons_sb));
789 loop = CHIP_IS_E1x(bp) ?
790 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
792 /* host sb data */
794 #ifdef BCM_CNIC
795 if (IS_FCOE_FP(fp))
796 continue;
797 #endif
798 BNX2X_ERR(" run indexes (");
799 for (j = 0; j < HC_SB_MAX_SM; j++)
800 pr_cont("0x%x%s",
801 fp->sb_running_index[j],
802 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
804 BNX2X_ERR(" indexes (");
805 for (j = 0; j < loop; j++)
806 pr_cont("0x%x%s",
807 fp->sb_index_values[j],
808 (j == loop - 1) ? ")" : " ");
809 /* fw sb data */
810 data_size = CHIP_IS_E1x(bp) ?
811 sizeof(struct hc_status_block_data_e1x) :
812 sizeof(struct hc_status_block_data_e2);
813 data_size /= sizeof(u32);
814 sb_data_p = CHIP_IS_E1x(bp) ?
815 (u32 *)&sb_data_e1x :
816 (u32 *)&sb_data_e2;
817 /* copy sb data in here */
818 for (j = 0; j < data_size; j++)
819 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
820 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
821 j * sizeof(u32));
823 if (!CHIP_IS_E1x(bp)) {
824 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
825 sb_data_e2.common.p_func.pf_id,
826 sb_data_e2.common.p_func.vf_id,
827 sb_data_e2.common.p_func.vf_valid,
828 sb_data_e2.common.p_func.vnic_id,
829 sb_data_e2.common.same_igu_sb_1b,
830 sb_data_e2.common.state);
831 } else {
832 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
833 sb_data_e1x.common.p_func.pf_id,
834 sb_data_e1x.common.p_func.vf_id,
835 sb_data_e1x.common.p_func.vf_valid,
836 sb_data_e1x.common.p_func.vnic_id,
837 sb_data_e1x.common.same_igu_sb_1b,
838 sb_data_e1x.common.state);
841 /* SB_SMs data */
842 for (j = 0; j < HC_SB_MAX_SM; j++) {
843 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
844 j, hc_sm_p[j].__flags,
845 hc_sm_p[j].igu_sb_id,
846 hc_sm_p[j].igu_seg_id,
847 hc_sm_p[j].time_to_expire,
848 hc_sm_p[j].timer_value);
851 /* Indecies data */
852 for (j = 0; j < loop; j++) {
853 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
854 hc_index_p[j].flags,
855 hc_index_p[j].timeout);
859 #ifdef BNX2X_STOP_ON_ERROR
860 /* Rings */
861 /* Rx */
862 for_each_rx_queue(bp, i) {
863 struct bnx2x_fastpath *fp = &bp->fp[i];
865 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
866 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
867 for (j = start; j != end; j = RX_BD(j + 1)) {
868 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
869 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
871 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
872 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
875 start = RX_SGE(fp->rx_sge_prod);
876 end = RX_SGE(fp->last_max_sge);
877 for (j = start; j != end; j = RX_SGE(j + 1)) {
878 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
879 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
881 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
882 i, j, rx_sge[1], rx_sge[0], sw_page->page);
885 start = RCQ_BD(fp->rx_comp_cons - 10);
886 end = RCQ_BD(fp->rx_comp_cons + 503);
887 for (j = start; j != end; j = RCQ_BD(j + 1)) {
888 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
890 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
891 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
895 /* Tx */
896 for_each_tx_queue(bp, i) {
897 struct bnx2x_fastpath *fp = &bp->fp[i];
898 for_each_cos_in_tx_queue(fp, cos) {
899 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
901 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
902 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
903 for (j = start; j != end; j = TX_BD(j + 1)) {
904 struct sw_tx_bd *sw_bd =
905 &txdata->tx_buf_ring[j];
907 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
908 i, cos, j, sw_bd->skb,
909 sw_bd->first_bd);
912 start = TX_BD(txdata->tx_bd_cons - 10);
913 end = TX_BD(txdata->tx_bd_cons + 254);
914 for (j = start; j != end; j = TX_BD(j + 1)) {
915 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
917 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
918 i, cos, j, tx_bd[0], tx_bd[1],
919 tx_bd[2], tx_bd[3]);
923 #endif
924 bnx2x_fw_dump(bp);
925 bnx2x_mc_assert(bp);
926 BNX2X_ERR("end crash dump -----------------\n");
930 * FLR Support for E2
932 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
933 * initialization.
935 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
936 #define FLR_WAIT_INTERVAL 50 /* usec */
937 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
939 struct pbf_pN_buf_regs {
940 int pN;
941 u32 init_crd;
942 u32 crd;
943 u32 crd_freed;
946 struct pbf_pN_cmd_regs {
947 int pN;
948 u32 lines_occup;
949 u32 lines_freed;
952 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
953 struct pbf_pN_buf_regs *regs,
954 u32 poll_count)
956 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
957 u32 cur_cnt = poll_count;
959 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
960 crd = crd_start = REG_RD(bp, regs->crd);
961 init_crd = REG_RD(bp, regs->init_crd);
963 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
964 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
965 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
967 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
968 (init_crd - crd_start))) {
969 if (cur_cnt--) {
970 udelay(FLR_WAIT_INTERVAL);
971 crd = REG_RD(bp, regs->crd);
972 crd_freed = REG_RD(bp, regs->crd_freed);
973 } else {
974 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
975 regs->pN);
976 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
977 regs->pN, crd);
978 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
979 regs->pN, crd_freed);
980 break;
983 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
984 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
987 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
988 struct pbf_pN_cmd_regs *regs,
989 u32 poll_count)
991 u32 occup, to_free, freed, freed_start;
992 u32 cur_cnt = poll_count;
994 occup = to_free = REG_RD(bp, regs->lines_occup);
995 freed = freed_start = REG_RD(bp, regs->lines_freed);
997 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
998 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1000 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1001 if (cur_cnt--) {
1002 udelay(FLR_WAIT_INTERVAL);
1003 occup = REG_RD(bp, regs->lines_occup);
1004 freed = REG_RD(bp, regs->lines_freed);
1005 } else {
1006 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1007 regs->pN);
1008 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1009 regs->pN, occup);
1010 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1011 regs->pN, freed);
1012 break;
1015 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1016 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1019 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1020 u32 expected, u32 poll_count)
1022 u32 cur_cnt = poll_count;
1023 u32 val;
1025 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1026 udelay(FLR_WAIT_INTERVAL);
1028 return val;
1031 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1032 char *msg, u32 poll_cnt)
1034 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1035 if (val != 0) {
1036 BNX2X_ERR("%s usage count=%d\n", msg, val);
1037 return 1;
1039 return 0;
1042 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1044 /* adjust polling timeout */
1045 if (CHIP_REV_IS_EMUL(bp))
1046 return FLR_POLL_CNT * 2000;
1048 if (CHIP_REV_IS_FPGA(bp))
1049 return FLR_POLL_CNT * 120;
1051 return FLR_POLL_CNT;
1054 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1056 struct pbf_pN_cmd_regs cmd_regs[] = {
1057 {0, (CHIP_IS_E3B0(bp)) ?
1058 PBF_REG_TQ_OCCUPANCY_Q0 :
1059 PBF_REG_P0_TQ_OCCUPANCY,
1060 (CHIP_IS_E3B0(bp)) ?
1061 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1062 PBF_REG_P0_TQ_LINES_FREED_CNT},
1063 {1, (CHIP_IS_E3B0(bp)) ?
1064 PBF_REG_TQ_OCCUPANCY_Q1 :
1065 PBF_REG_P1_TQ_OCCUPANCY,
1066 (CHIP_IS_E3B0(bp)) ?
1067 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1068 PBF_REG_P1_TQ_LINES_FREED_CNT},
1069 {4, (CHIP_IS_E3B0(bp)) ?
1070 PBF_REG_TQ_OCCUPANCY_LB_Q :
1071 PBF_REG_P4_TQ_OCCUPANCY,
1072 (CHIP_IS_E3B0(bp)) ?
1073 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1074 PBF_REG_P4_TQ_LINES_FREED_CNT}
1077 struct pbf_pN_buf_regs buf_regs[] = {
1078 {0, (CHIP_IS_E3B0(bp)) ?
1079 PBF_REG_INIT_CRD_Q0 :
1080 PBF_REG_P0_INIT_CRD ,
1081 (CHIP_IS_E3B0(bp)) ?
1082 PBF_REG_CREDIT_Q0 :
1083 PBF_REG_P0_CREDIT,
1084 (CHIP_IS_E3B0(bp)) ?
1085 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1086 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1087 {1, (CHIP_IS_E3B0(bp)) ?
1088 PBF_REG_INIT_CRD_Q1 :
1089 PBF_REG_P1_INIT_CRD,
1090 (CHIP_IS_E3B0(bp)) ?
1091 PBF_REG_CREDIT_Q1 :
1092 PBF_REG_P1_CREDIT,
1093 (CHIP_IS_E3B0(bp)) ?
1094 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1095 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1096 {4, (CHIP_IS_E3B0(bp)) ?
1097 PBF_REG_INIT_CRD_LB_Q :
1098 PBF_REG_P4_INIT_CRD,
1099 (CHIP_IS_E3B0(bp)) ?
1100 PBF_REG_CREDIT_LB_Q :
1101 PBF_REG_P4_CREDIT,
1102 (CHIP_IS_E3B0(bp)) ?
1103 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1104 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1107 int i;
1109 /* Verify the command queues are flushed P0, P1, P4 */
1110 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1111 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1114 /* Verify the transmission buffers are flushed P0, P1, P4 */
1115 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1116 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1119 #define OP_GEN_PARAM(param) \
1120 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1122 #define OP_GEN_TYPE(type) \
1123 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1125 #define OP_GEN_AGG_VECT(index) \
1126 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1129 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1130 u32 poll_cnt)
1132 struct sdm_op_gen op_gen = {0};
1134 u32 comp_addr = BAR_CSTRORM_INTMEM +
1135 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1136 int ret = 0;
1138 if (REG_RD(bp, comp_addr)) {
1139 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1140 return 1;
1143 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1144 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1145 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1146 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1148 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1149 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1151 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1152 BNX2X_ERR("FW final cleanup did not succeed\n");
1153 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1154 (REG_RD(bp, comp_addr)));
1155 ret = 1;
1157 /* Zero completion for nxt FLR */
1158 REG_WR(bp, comp_addr, 0);
1160 return ret;
1163 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1165 u16 status;
1167 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1168 return status & PCI_EXP_DEVSTA_TRPND;
1171 /* PF FLR specific routines
1173 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1176 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1177 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1178 CFC_REG_NUM_LCIDS_INSIDE_PF,
1179 "CFC PF usage counter timed out",
1180 poll_cnt))
1181 return 1;
1184 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1185 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1186 DORQ_REG_PF_USAGE_CNT,
1187 "DQ PF usage counter timed out",
1188 poll_cnt))
1189 return 1;
1191 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1192 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1193 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1194 "QM PF usage counter timed out",
1195 poll_cnt))
1196 return 1;
1198 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1199 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1200 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1201 "Timers VNIC usage counter timed out",
1202 poll_cnt))
1203 return 1;
1204 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1205 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1206 "Timers NUM_SCANS usage counter timed out",
1207 poll_cnt))
1208 return 1;
1210 /* Wait DMAE PF usage counter to zero */
1211 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1212 dmae_reg_go_c[INIT_DMAE_C(bp)],
1213 "DMAE dommand register timed out",
1214 poll_cnt))
1215 return 1;
1217 return 0;
1220 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1222 u32 val;
1224 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1225 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1227 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1228 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1230 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1231 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1233 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1234 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1236 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1237 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1239 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1240 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1242 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1243 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1245 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1246 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1247 val);
1250 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1252 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1254 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1256 /* Re-enable PF target read access */
1257 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1259 /* Poll HW usage counters */
1260 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1261 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1262 return -EBUSY;
1264 /* Zero the igu 'trailing edge' and 'leading edge' */
1266 /* Send the FW cleanup command */
1267 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1268 return -EBUSY;
1270 /* ATC cleanup */
1272 /* Verify TX hw is flushed */
1273 bnx2x_tx_hw_flushed(bp, poll_cnt);
1275 /* Wait 100ms (not adjusted according to platform) */
1276 msleep(100);
1278 /* Verify no pending pci transactions */
1279 if (bnx2x_is_pcie_pending(bp->pdev))
1280 BNX2X_ERR("PCIE Transactions still pending\n");
1282 /* Debug */
1283 bnx2x_hw_enable_status(bp);
1286 * Master enable - Due to WB DMAE writes performed before this
1287 * register is re-initialized as part of the regular function init
1289 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1291 return 0;
1294 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1296 int port = BP_PORT(bp);
1297 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1298 u32 val = REG_RD(bp, addr);
1299 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1300 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1301 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1303 if (msix) {
1304 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1305 HC_CONFIG_0_REG_INT_LINE_EN_0);
1306 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1307 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1308 if (single_msix)
1309 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1310 } else if (msi) {
1311 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1312 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1313 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1314 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1315 } else {
1316 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1317 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1318 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1319 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1321 if (!CHIP_IS_E1(bp)) {
1322 DP(NETIF_MSG_IFUP,
1323 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1325 REG_WR(bp, addr, val);
1327 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1331 if (CHIP_IS_E1(bp))
1332 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1334 DP(NETIF_MSG_IFUP,
1335 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1336 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1338 REG_WR(bp, addr, val);
1340 * Ensure that HC_CONFIG is written before leading/trailing edge config
1342 mmiowb();
1343 barrier();
1345 if (!CHIP_IS_E1(bp)) {
1346 /* init leading/trailing edge */
1347 if (IS_MF(bp)) {
1348 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1349 if (bp->port.pmf)
1350 /* enable nig and gpio3 attention */
1351 val |= 0x1100;
1352 } else
1353 val = 0xffff;
1355 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1356 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1359 /* Make sure that interrupts are indeed enabled from here on */
1360 mmiowb();
1363 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1365 u32 val;
1366 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1367 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1368 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1370 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1372 if (msix) {
1373 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1374 IGU_PF_CONF_SINGLE_ISR_EN);
1375 val |= (IGU_PF_CONF_FUNC_EN |
1376 IGU_PF_CONF_MSI_MSIX_EN |
1377 IGU_PF_CONF_ATTN_BIT_EN);
1379 if (single_msix)
1380 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1381 } else if (msi) {
1382 val &= ~IGU_PF_CONF_INT_LINE_EN;
1383 val |= (IGU_PF_CONF_FUNC_EN |
1384 IGU_PF_CONF_MSI_MSIX_EN |
1385 IGU_PF_CONF_ATTN_BIT_EN |
1386 IGU_PF_CONF_SINGLE_ISR_EN);
1387 } else {
1388 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1389 val |= (IGU_PF_CONF_FUNC_EN |
1390 IGU_PF_CONF_INT_LINE_EN |
1391 IGU_PF_CONF_ATTN_BIT_EN |
1392 IGU_PF_CONF_SINGLE_ISR_EN);
1395 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1396 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1398 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1400 if (val & IGU_PF_CONF_INT_LINE_EN)
1401 pci_intx(bp->pdev, true);
1403 barrier();
1405 /* init leading/trailing edge */
1406 if (IS_MF(bp)) {
1407 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1408 if (bp->port.pmf)
1409 /* enable nig and gpio3 attention */
1410 val |= 0x1100;
1411 } else
1412 val = 0xffff;
1414 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1415 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1417 /* Make sure that interrupts are indeed enabled from here on */
1418 mmiowb();
1421 void bnx2x_int_enable(struct bnx2x *bp)
1423 if (bp->common.int_block == INT_BLOCK_HC)
1424 bnx2x_hc_int_enable(bp);
1425 else
1426 bnx2x_igu_int_enable(bp);
1429 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1431 int port = BP_PORT(bp);
1432 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1433 u32 val = REG_RD(bp, addr);
1436 * in E1 we must use only PCI configuration space to disable
1437 * MSI/MSIX capablility
1438 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1440 if (CHIP_IS_E1(bp)) {
1441 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1442 * Use mask register to prevent from HC sending interrupts
1443 * after we exit the function
1445 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1447 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1448 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1449 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1450 } else
1451 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1452 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1453 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1454 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1456 DP(NETIF_MSG_IFDOWN,
1457 "write %x to HC %d (addr 0x%x)\n",
1458 val, port, addr);
1460 /* flush all outstanding writes */
1461 mmiowb();
1463 REG_WR(bp, addr, val);
1464 if (REG_RD(bp, addr) != val)
1465 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1468 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1470 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1472 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1473 IGU_PF_CONF_INT_LINE_EN |
1474 IGU_PF_CONF_ATTN_BIT_EN);
1476 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1478 /* flush all outstanding writes */
1479 mmiowb();
1481 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1482 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1483 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1486 void bnx2x_int_disable(struct bnx2x *bp)
1488 if (bp->common.int_block == INT_BLOCK_HC)
1489 bnx2x_hc_int_disable(bp);
1490 else
1491 bnx2x_igu_int_disable(bp);
1494 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1496 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1497 int i, offset;
1499 if (disable_hw)
1500 /* prevent the HW from sending interrupts */
1501 bnx2x_int_disable(bp);
1503 /* make sure all ISRs are done */
1504 if (msix) {
1505 synchronize_irq(bp->msix_table[0].vector);
1506 offset = 1;
1507 #ifdef BCM_CNIC
1508 offset++;
1509 #endif
1510 for_each_eth_queue(bp, i)
1511 synchronize_irq(bp->msix_table[offset++].vector);
1512 } else
1513 synchronize_irq(bp->pdev->irq);
1515 /* make sure sp_task is not running */
1516 cancel_delayed_work(&bp->sp_task);
1517 cancel_delayed_work(&bp->period_task);
1518 flush_workqueue(bnx2x_wq);
1521 /* fast path */
1524 * General service functions
1527 /* Return true if succeeded to acquire the lock */
1528 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1530 u32 lock_status;
1531 u32 resource_bit = (1 << resource);
1532 int func = BP_FUNC(bp);
1533 u32 hw_lock_control_reg;
1535 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1536 "Trying to take a lock on resource %d\n", resource);
1538 /* Validating that the resource is within range */
1539 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1540 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1541 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1542 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1543 return false;
1546 if (func <= 5)
1547 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1548 else
1549 hw_lock_control_reg =
1550 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1552 /* Try to acquire the lock */
1553 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1554 lock_status = REG_RD(bp, hw_lock_control_reg);
1555 if (lock_status & resource_bit)
1556 return true;
1558 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1559 "Failed to get a lock on resource %d\n", resource);
1560 return false;
1564 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1566 * @bp: driver handle
1568 * Returns the recovery leader resource id according to the engine this function
1569 * belongs to. Currently only only 2 engines is supported.
1571 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1573 if (BP_PATH(bp))
1574 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1575 else
1576 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1580 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1582 * @bp: driver handle
1584 * Tries to aquire a leader lock for current engine.
1586 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1588 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1591 #ifdef BCM_CNIC
1592 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1593 #endif
1595 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1597 struct bnx2x *bp = fp->bp;
1598 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1599 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1600 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1601 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1603 DP(BNX2X_MSG_SP,
1604 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1605 fp->index, cid, command, bp->state,
1606 rr_cqe->ramrod_cqe.ramrod_type);
1608 switch (command) {
1609 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1610 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1611 drv_cmd = BNX2X_Q_CMD_UPDATE;
1612 break;
1614 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1615 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1616 drv_cmd = BNX2X_Q_CMD_SETUP;
1617 break;
1619 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1620 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1621 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1622 break;
1624 case (RAMROD_CMD_ID_ETH_HALT):
1625 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1626 drv_cmd = BNX2X_Q_CMD_HALT;
1627 break;
1629 case (RAMROD_CMD_ID_ETH_TERMINATE):
1630 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1631 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1632 break;
1634 case (RAMROD_CMD_ID_ETH_EMPTY):
1635 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1636 drv_cmd = BNX2X_Q_CMD_EMPTY;
1637 break;
1639 default:
1640 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1641 command, fp->index);
1642 return;
1645 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1646 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1647 /* q_obj->complete_cmd() failure means that this was
1648 * an unexpected completion.
1650 * In this case we don't want to increase the bp->spq_left
1651 * because apparently we haven't sent this command the first
1652 * place.
1654 #ifdef BNX2X_STOP_ON_ERROR
1655 bnx2x_panic();
1656 #else
1657 return;
1658 #endif
1660 smp_mb__before_atomic_inc();
1661 atomic_inc(&bp->cq_spq_left);
1662 /* push the change in bp->spq_left and towards the memory */
1663 smp_mb__after_atomic_inc();
1665 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1667 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1668 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1669 /* if Q update ramrod is completed for last Q in AFEX vif set
1670 * flow, then ACK MCP at the end
1672 * mark pending ACK to MCP bit.
1673 * prevent case that both bits are cleared.
1674 * At the end of load/unload driver checks that
1675 * sp_state is cleaerd, and this order prevents
1676 * races
1678 smp_mb__before_clear_bit();
1679 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1680 wmb();
1681 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1682 smp_mb__after_clear_bit();
1684 /* schedule workqueue to send ack to MCP */
1685 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1688 return;
1691 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1692 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1694 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1696 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1697 start);
1700 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1702 struct bnx2x *bp = netdev_priv(dev_instance);
1703 u16 status = bnx2x_ack_int(bp);
1704 u16 mask;
1705 int i;
1706 u8 cos;
1708 /* Return here if interrupt is shared and it's not for us */
1709 if (unlikely(status == 0)) {
1710 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1711 return IRQ_NONE;
1713 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1715 #ifdef BNX2X_STOP_ON_ERROR
1716 if (unlikely(bp->panic))
1717 return IRQ_HANDLED;
1718 #endif
1720 for_each_eth_queue(bp, i) {
1721 struct bnx2x_fastpath *fp = &bp->fp[i];
1723 mask = 0x2 << (fp->index + CNIC_PRESENT);
1724 if (status & mask) {
1725 /* Handle Rx or Tx according to SB id */
1726 prefetch(fp->rx_cons_sb);
1727 for_each_cos_in_tx_queue(fp, cos)
1728 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1729 prefetch(&fp->sb_running_index[SM_RX_ID]);
1730 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1731 status &= ~mask;
1735 #ifdef BCM_CNIC
1736 mask = 0x2;
1737 if (status & (mask | 0x1)) {
1738 struct cnic_ops *c_ops = NULL;
1740 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1741 rcu_read_lock();
1742 c_ops = rcu_dereference(bp->cnic_ops);
1743 if (c_ops)
1744 c_ops->cnic_handler(bp->cnic_data, NULL);
1745 rcu_read_unlock();
1748 status &= ~mask;
1750 #endif
1752 if (unlikely(status & 0x1)) {
1753 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1755 status &= ~0x1;
1756 if (!status)
1757 return IRQ_HANDLED;
1760 if (unlikely(status))
1761 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1762 status);
1764 return IRQ_HANDLED;
1767 /* Link */
1770 * General service functions
1773 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1775 u32 lock_status;
1776 u32 resource_bit = (1 << resource);
1777 int func = BP_FUNC(bp);
1778 u32 hw_lock_control_reg;
1779 int cnt;
1781 /* Validating that the resource is within range */
1782 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1783 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1784 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1785 return -EINVAL;
1788 if (func <= 5) {
1789 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1790 } else {
1791 hw_lock_control_reg =
1792 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1795 /* Validating that the resource is not already taken */
1796 lock_status = REG_RD(bp, hw_lock_control_reg);
1797 if (lock_status & resource_bit) {
1798 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
1799 lock_status, resource_bit);
1800 return -EEXIST;
1803 /* Try for 5 second every 5ms */
1804 for (cnt = 0; cnt < 1000; cnt++) {
1805 /* Try to acquire the lock */
1806 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1807 lock_status = REG_RD(bp, hw_lock_control_reg);
1808 if (lock_status & resource_bit)
1809 return 0;
1811 msleep(5);
1813 BNX2X_ERR("Timeout\n");
1814 return -EAGAIN;
1817 int bnx2x_release_leader_lock(struct bnx2x *bp)
1819 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1822 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1824 u32 lock_status;
1825 u32 resource_bit = (1 << resource);
1826 int func = BP_FUNC(bp);
1827 u32 hw_lock_control_reg;
1829 /* Validating that the resource is within range */
1830 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1831 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1832 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1833 return -EINVAL;
1836 if (func <= 5) {
1837 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1838 } else {
1839 hw_lock_control_reg =
1840 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1843 /* Validating that the resource is currently taken */
1844 lock_status = REG_RD(bp, hw_lock_control_reg);
1845 if (!(lock_status & resource_bit)) {
1846 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1847 lock_status, resource_bit);
1848 return -EFAULT;
1851 REG_WR(bp, hw_lock_control_reg, resource_bit);
1852 return 0;
1856 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1858 /* The GPIO should be swapped if swap register is set and active */
1859 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1860 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1861 int gpio_shift = gpio_num +
1862 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1863 u32 gpio_mask = (1 << gpio_shift);
1864 u32 gpio_reg;
1865 int value;
1867 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1868 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1869 return -EINVAL;
1872 /* read GPIO value */
1873 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1875 /* get the requested pin value */
1876 if ((gpio_reg & gpio_mask) == gpio_mask)
1877 value = 1;
1878 else
1879 value = 0;
1881 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1883 return value;
1886 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1888 /* The GPIO should be swapped if swap register is set and active */
1889 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1890 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1891 int gpio_shift = gpio_num +
1892 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1893 u32 gpio_mask = (1 << gpio_shift);
1894 u32 gpio_reg;
1896 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1897 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1898 return -EINVAL;
1901 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1902 /* read GPIO and mask except the float bits */
1903 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1905 switch (mode) {
1906 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1907 DP(NETIF_MSG_LINK,
1908 "Set GPIO %d (shift %d) -> output low\n",
1909 gpio_num, gpio_shift);
1910 /* clear FLOAT and set CLR */
1911 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1912 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1913 break;
1915 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1916 DP(NETIF_MSG_LINK,
1917 "Set GPIO %d (shift %d) -> output high\n",
1918 gpio_num, gpio_shift);
1919 /* clear FLOAT and set SET */
1920 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1921 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1922 break;
1924 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1925 DP(NETIF_MSG_LINK,
1926 "Set GPIO %d (shift %d) -> input\n",
1927 gpio_num, gpio_shift);
1928 /* set FLOAT */
1929 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1930 break;
1932 default:
1933 break;
1936 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1937 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1939 return 0;
1942 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1944 u32 gpio_reg = 0;
1945 int rc = 0;
1947 /* Any port swapping should be handled by caller. */
1949 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1950 /* read GPIO and mask except the float bits */
1951 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1952 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1953 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1954 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1956 switch (mode) {
1957 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1958 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1959 /* set CLR */
1960 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1961 break;
1963 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1964 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1965 /* set SET */
1966 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1967 break;
1969 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1970 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1971 /* set FLOAT */
1972 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1973 break;
1975 default:
1976 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1977 rc = -EINVAL;
1978 break;
1981 if (rc == 0)
1982 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1984 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1986 return rc;
1989 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1991 /* The GPIO should be swapped if swap register is set and active */
1992 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1993 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1994 int gpio_shift = gpio_num +
1995 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1996 u32 gpio_mask = (1 << gpio_shift);
1997 u32 gpio_reg;
1999 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2000 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2001 return -EINVAL;
2004 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2005 /* read GPIO int */
2006 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2008 switch (mode) {
2009 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2010 DP(NETIF_MSG_LINK,
2011 "Clear GPIO INT %d (shift %d) -> output low\n",
2012 gpio_num, gpio_shift);
2013 /* clear SET and set CLR */
2014 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2015 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2016 break;
2018 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2019 DP(NETIF_MSG_LINK,
2020 "Set GPIO INT %d (shift %d) -> output high\n",
2021 gpio_num, gpio_shift);
2022 /* clear CLR and set SET */
2023 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2024 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2025 break;
2027 default:
2028 break;
2031 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2032 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2034 return 0;
2037 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2039 u32 spio_mask = (1 << spio_num);
2040 u32 spio_reg;
2042 if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2043 (spio_num > MISC_REGISTERS_SPIO_7)) {
2044 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2045 return -EINVAL;
2048 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2049 /* read SPIO and mask except the float bits */
2050 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2052 switch (mode) {
2053 case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2054 DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num);
2055 /* clear FLOAT and set CLR */
2056 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2057 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2058 break;
2060 case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2061 DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num);
2062 /* clear FLOAT and set SET */
2063 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2064 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2065 break;
2067 case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2068 DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num);
2069 /* set FLOAT */
2070 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2071 break;
2073 default:
2074 break;
2077 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2078 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2080 return 0;
2083 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2085 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2086 switch (bp->link_vars.ieee_fc &
2087 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2088 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2089 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2090 ADVERTISED_Pause);
2091 break;
2093 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2094 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2095 ADVERTISED_Pause);
2096 break;
2098 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2099 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2100 break;
2102 default:
2103 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2104 ADVERTISED_Pause);
2105 break;
2109 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2111 if (!BP_NOMCP(bp)) {
2112 u8 rc;
2113 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2114 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2116 * Initialize link parameters structure variables
2117 * It is recommended to turn off RX FC for jumbo frames
2118 * for better performance
2120 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2121 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2122 else
2123 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2125 bnx2x_acquire_phy_lock(bp);
2127 if (load_mode == LOAD_DIAG) {
2128 struct link_params *lp = &bp->link_params;
2129 lp->loopback_mode = LOOPBACK_XGXS;
2130 /* do PHY loopback at 10G speed, if possible */
2131 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2132 if (lp->speed_cap_mask[cfx_idx] &
2133 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2134 lp->req_line_speed[cfx_idx] =
2135 SPEED_10000;
2136 else
2137 lp->req_line_speed[cfx_idx] =
2138 SPEED_1000;
2142 if (load_mode == LOAD_LOOPBACK_EXT) {
2143 struct link_params *lp = &bp->link_params;
2144 lp->loopback_mode = LOOPBACK_EXT;
2147 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2149 bnx2x_release_phy_lock(bp);
2151 bnx2x_calc_fc_adv(bp);
2153 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2154 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2155 bnx2x_link_report(bp);
2156 } else
2157 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2158 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2159 return rc;
2161 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2162 return -EINVAL;
2165 void bnx2x_link_set(struct bnx2x *bp)
2167 if (!BP_NOMCP(bp)) {
2168 bnx2x_acquire_phy_lock(bp);
2169 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2170 bnx2x_release_phy_lock(bp);
2172 bnx2x_calc_fc_adv(bp);
2173 } else
2174 BNX2X_ERR("Bootcode is missing - can not set link\n");
2177 static void bnx2x__link_reset(struct bnx2x *bp)
2179 if (!BP_NOMCP(bp)) {
2180 bnx2x_acquire_phy_lock(bp);
2181 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2182 bnx2x_release_phy_lock(bp);
2183 } else
2184 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2187 void bnx2x_force_link_reset(struct bnx2x *bp)
2189 bnx2x_acquire_phy_lock(bp);
2190 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2191 bnx2x_release_phy_lock(bp);
2194 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2196 u8 rc = 0;
2198 if (!BP_NOMCP(bp)) {
2199 bnx2x_acquire_phy_lock(bp);
2200 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2201 is_serdes);
2202 bnx2x_release_phy_lock(bp);
2203 } else
2204 BNX2X_ERR("Bootcode is missing - can not test link\n");
2206 return rc;
2210 /* Calculates the sum of vn_min_rates.
2211 It's needed for further normalizing of the min_rates.
2212 Returns:
2213 sum of vn_min_rates.
2215 0 - if all the min_rates are 0.
2216 In the later case fainess algorithm should be deactivated.
2217 If not all min_rates are zero then those that are zeroes will be set to 1.
2219 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2220 struct cmng_init_input *input)
2222 int all_zero = 1;
2223 int vn;
2225 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2226 u32 vn_cfg = bp->mf_config[vn];
2227 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2228 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2230 /* Skip hidden vns */
2231 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2232 vn_min_rate = 0;
2233 /* If min rate is zero - set it to 1 */
2234 else if (!vn_min_rate)
2235 vn_min_rate = DEF_MIN_RATE;
2236 else
2237 all_zero = 0;
2239 input->vnic_min_rate[vn] = vn_min_rate;
2242 /* if ETS or all min rates are zeros - disable fairness */
2243 if (BNX2X_IS_ETS_ENABLED(bp)) {
2244 input->flags.cmng_enables &=
2245 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2246 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2247 } else if (all_zero) {
2248 input->flags.cmng_enables &=
2249 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2250 DP(NETIF_MSG_IFUP,
2251 "All MIN values are zeroes fairness will be disabled\n");
2252 } else
2253 input->flags.cmng_enables |=
2254 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2257 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2258 struct cmng_init_input *input)
2260 u16 vn_max_rate;
2261 u32 vn_cfg = bp->mf_config[vn];
2263 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2264 vn_max_rate = 0;
2265 else {
2266 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2268 if (IS_MF_SI(bp)) {
2269 /* maxCfg in percents of linkspeed */
2270 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2271 } else /* SD modes */
2272 /* maxCfg is absolute in 100Mb units */
2273 vn_max_rate = maxCfg * 100;
2276 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2278 input->vnic_max_rate[vn] = vn_max_rate;
2282 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2284 if (CHIP_REV_IS_SLOW(bp))
2285 return CMNG_FNS_NONE;
2286 if (IS_MF(bp))
2287 return CMNG_FNS_MINMAX;
2289 return CMNG_FNS_NONE;
2292 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2294 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2296 if (BP_NOMCP(bp))
2297 return; /* what should be the default bvalue in this case */
2299 /* For 2 port configuration the absolute function number formula
2300 * is:
2301 * abs_func = 2 * vn + BP_PORT + BP_PATH
2303 * and there are 4 functions per port
2305 * For 4 port configuration it is
2306 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2308 * and there are 2 functions per port
2310 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2311 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2313 if (func >= E1H_FUNC_MAX)
2314 break;
2316 bp->mf_config[vn] =
2317 MF_CFG_RD(bp, func_mf_config[func].config);
2319 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2320 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2321 bp->flags |= MF_FUNC_DIS;
2322 } else {
2323 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2324 bp->flags &= ~MF_FUNC_DIS;
2328 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2330 struct cmng_init_input input;
2331 memset(&input, 0, sizeof(struct cmng_init_input));
2333 input.port_rate = bp->link_vars.line_speed;
2335 if (cmng_type == CMNG_FNS_MINMAX) {
2336 int vn;
2338 /* read mf conf from shmem */
2339 if (read_cfg)
2340 bnx2x_read_mf_cfg(bp);
2342 /* vn_weight_sum and enable fairness if not 0 */
2343 bnx2x_calc_vn_min(bp, &input);
2345 /* calculate and set min-max rate for each vn */
2346 if (bp->port.pmf)
2347 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2348 bnx2x_calc_vn_max(bp, vn, &input);
2350 /* always enable rate shaping and fairness */
2351 input.flags.cmng_enables |=
2352 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2354 bnx2x_init_cmng(&input, &bp->cmng);
2355 return;
2358 /* rate shaping and fairness are disabled */
2359 DP(NETIF_MSG_IFUP,
2360 "rate shaping and fairness are disabled\n");
2363 static void storm_memset_cmng(struct bnx2x *bp,
2364 struct cmng_init *cmng,
2365 u8 port)
2367 int vn;
2368 size_t size = sizeof(struct cmng_struct_per_port);
2370 u32 addr = BAR_XSTRORM_INTMEM +
2371 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2373 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2375 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2376 int func = func_by_vn(bp, vn);
2378 addr = BAR_XSTRORM_INTMEM +
2379 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2380 size = sizeof(struct rate_shaping_vars_per_vn);
2381 __storm_memset_struct(bp, addr, size,
2382 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2384 addr = BAR_XSTRORM_INTMEM +
2385 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2386 size = sizeof(struct fairness_vars_per_vn);
2387 __storm_memset_struct(bp, addr, size,
2388 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2392 /* This function is called upon link interrupt */
2393 static void bnx2x_link_attn(struct bnx2x *bp)
2395 /* Make sure that we are synced with the current statistics */
2396 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2398 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2400 if (bp->link_vars.link_up) {
2402 /* dropless flow control */
2403 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2404 int port = BP_PORT(bp);
2405 u32 pause_enabled = 0;
2407 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2408 pause_enabled = 1;
2410 REG_WR(bp, BAR_USTRORM_INTMEM +
2411 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2412 pause_enabled);
2415 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2416 struct host_port_stats *pstats;
2418 pstats = bnx2x_sp(bp, port_stats);
2419 /* reset old mac stats */
2420 memset(&(pstats->mac_stx[0]), 0,
2421 sizeof(struct mac_stx));
2423 if (bp->state == BNX2X_STATE_OPEN)
2424 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2427 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2428 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2430 if (cmng_fns != CMNG_FNS_NONE) {
2431 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2432 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2433 } else
2434 /* rate shaping and fairness are disabled */
2435 DP(NETIF_MSG_IFUP,
2436 "single function mode without fairness\n");
2439 __bnx2x_link_report(bp);
2441 if (IS_MF(bp))
2442 bnx2x_link_sync_notify(bp);
2445 void bnx2x__link_status_update(struct bnx2x *bp)
2447 if (bp->state != BNX2X_STATE_OPEN)
2448 return;
2450 /* read updated dcb configuration */
2451 bnx2x_dcbx_pmf_update(bp);
2453 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2455 if (bp->link_vars.link_up)
2456 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2457 else
2458 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2460 /* indicate link status */
2461 bnx2x_link_report(bp);
2464 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2465 u16 vlan_val, u8 allowed_prio)
2467 struct bnx2x_func_state_params func_params = {0};
2468 struct bnx2x_func_afex_update_params *f_update_params =
2469 &func_params.params.afex_update;
2471 func_params.f_obj = &bp->func_obj;
2472 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2474 /* no need to wait for RAMROD completion, so don't
2475 * set RAMROD_COMP_WAIT flag
2478 f_update_params->vif_id = vifid;
2479 f_update_params->afex_default_vlan = vlan_val;
2480 f_update_params->allowed_priorities = allowed_prio;
2482 /* if ramrod can not be sent, response to MCP immediately */
2483 if (bnx2x_func_state_change(bp, &func_params) < 0)
2484 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2486 return 0;
2489 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2490 u16 vif_index, u8 func_bit_map)
2492 struct bnx2x_func_state_params func_params = {0};
2493 struct bnx2x_func_afex_viflists_params *update_params =
2494 &func_params.params.afex_viflists;
2495 int rc;
2496 u32 drv_msg_code;
2498 /* validate only LIST_SET and LIST_GET are received from switch */
2499 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2500 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2501 cmd_type);
2503 func_params.f_obj = &bp->func_obj;
2504 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2506 /* set parameters according to cmd_type */
2507 update_params->afex_vif_list_command = cmd_type;
2508 update_params->vif_list_index = cpu_to_le16(vif_index);
2509 update_params->func_bit_map =
2510 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2511 update_params->func_to_clear = 0;
2512 drv_msg_code =
2513 (cmd_type == VIF_LIST_RULE_GET) ?
2514 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2515 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2517 /* if ramrod can not be sent, respond to MCP immediately for
2518 * SET and GET requests (other are not triggered from MCP)
2520 rc = bnx2x_func_state_change(bp, &func_params);
2521 if (rc < 0)
2522 bnx2x_fw_command(bp, drv_msg_code, 0);
2524 return 0;
2527 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2529 struct afex_stats afex_stats;
2530 u32 func = BP_ABS_FUNC(bp);
2531 u32 mf_config;
2532 u16 vlan_val;
2533 u32 vlan_prio;
2534 u16 vif_id;
2535 u8 allowed_prio;
2536 u8 vlan_mode;
2537 u32 addr_to_write, vifid, addrs, stats_type, i;
2539 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2540 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2541 DP(BNX2X_MSG_MCP,
2542 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2543 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2546 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2547 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2548 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2549 DP(BNX2X_MSG_MCP,
2550 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2551 vifid, addrs);
2552 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2553 addrs);
2556 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2557 addr_to_write = SHMEM2_RD(bp,
2558 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2559 stats_type = SHMEM2_RD(bp,
2560 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2562 DP(BNX2X_MSG_MCP,
2563 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2564 addr_to_write);
2566 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2568 /* write response to scratchpad, for MCP */
2569 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2570 REG_WR(bp, addr_to_write + i*sizeof(u32),
2571 *(((u32 *)(&afex_stats))+i));
2573 /* send ack message to MCP */
2574 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2577 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2578 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2579 bp->mf_config[BP_VN(bp)] = mf_config;
2580 DP(BNX2X_MSG_MCP,
2581 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2582 mf_config);
2584 /* if VIF_SET is "enabled" */
2585 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2586 /* set rate limit directly to internal RAM */
2587 struct cmng_init_input cmng_input;
2588 struct rate_shaping_vars_per_vn m_rs_vn;
2589 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2590 u32 addr = BAR_XSTRORM_INTMEM +
2591 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2593 bp->mf_config[BP_VN(bp)] = mf_config;
2595 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2596 m_rs_vn.vn_counter.rate =
2597 cmng_input.vnic_max_rate[BP_VN(bp)];
2598 m_rs_vn.vn_counter.quota =
2599 (m_rs_vn.vn_counter.rate *
2600 RS_PERIODIC_TIMEOUT_USEC) / 8;
2602 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2604 /* read relevant values from mf_cfg struct in shmem */
2605 vif_id =
2606 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2607 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2608 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2609 vlan_val =
2610 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2611 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2612 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2613 vlan_prio = (mf_config &
2614 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2615 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2616 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2617 vlan_mode =
2618 (MF_CFG_RD(bp,
2619 func_mf_config[func].afex_config) &
2620 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2621 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2622 allowed_prio =
2623 (MF_CFG_RD(bp,
2624 func_mf_config[func].afex_config) &
2625 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2626 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2628 /* send ramrod to FW, return in case of failure */
2629 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2630 allowed_prio))
2631 return;
2633 bp->afex_def_vlan_tag = vlan_val;
2634 bp->afex_vlan_mode = vlan_mode;
2635 } else {
2636 /* notify link down because BP->flags is disabled */
2637 bnx2x_link_report(bp);
2639 /* send INVALID VIF ramrod to FW */
2640 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2642 /* Reset the default afex VLAN */
2643 bp->afex_def_vlan_tag = -1;
2648 static void bnx2x_pmf_update(struct bnx2x *bp)
2650 int port = BP_PORT(bp);
2651 u32 val;
2653 bp->port.pmf = 1;
2654 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2657 * We need the mb() to ensure the ordering between the writing to
2658 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2660 smp_mb();
2662 /* queue a periodic task */
2663 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2665 bnx2x_dcbx_pmf_update(bp);
2667 /* enable nig attention */
2668 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2669 if (bp->common.int_block == INT_BLOCK_HC) {
2670 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2671 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2672 } else if (!CHIP_IS_E1x(bp)) {
2673 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2674 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2677 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2680 /* end of Link */
2682 /* slow path */
2685 * General service functions
2688 /* send the MCP a request, block until there is a reply */
2689 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2691 int mb_idx = BP_FW_MB_IDX(bp);
2692 u32 seq;
2693 u32 rc = 0;
2694 u32 cnt = 1;
2695 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2697 mutex_lock(&bp->fw_mb_mutex);
2698 seq = ++bp->fw_seq;
2699 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2700 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2702 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2703 (command | seq), param);
2705 do {
2706 /* let the FW do it's magic ... */
2707 msleep(delay);
2709 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2711 /* Give the FW up to 5 second (500*10ms) */
2712 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2714 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2715 cnt*delay, rc, seq);
2717 /* is this a reply to our command? */
2718 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2719 rc &= FW_MSG_CODE_MASK;
2720 else {
2721 /* FW BUG! */
2722 BNX2X_ERR("FW failed to respond!\n");
2723 bnx2x_fw_dump(bp);
2724 rc = 0;
2726 mutex_unlock(&bp->fw_mb_mutex);
2728 return rc;
2732 static void storm_memset_func_cfg(struct bnx2x *bp,
2733 struct tstorm_eth_function_common_config *tcfg,
2734 u16 abs_fid)
2736 size_t size = sizeof(struct tstorm_eth_function_common_config);
2738 u32 addr = BAR_TSTRORM_INTMEM +
2739 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2741 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2744 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2746 if (CHIP_IS_E1x(bp)) {
2747 struct tstorm_eth_function_common_config tcfg = {0};
2749 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2752 /* Enable the function in the FW */
2753 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2754 storm_memset_func_en(bp, p->func_id, 1);
2756 /* spq */
2757 if (p->func_flgs & FUNC_FLG_SPQ) {
2758 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2759 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2760 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2765 * bnx2x_get_tx_only_flags - Return common flags
2767 * @bp device handle
2768 * @fp queue handle
2769 * @zero_stats TRUE if statistics zeroing is needed
2771 * Return the flags that are common for the Tx-only and not normal connections.
2773 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2774 struct bnx2x_fastpath *fp,
2775 bool zero_stats)
2777 unsigned long flags = 0;
2779 /* PF driver will always initialize the Queue to an ACTIVE state */
2780 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2782 /* tx only connections collect statistics (on the same index as the
2783 * parent connection). The statistics are zeroed when the parent
2784 * connection is initialized.
2787 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2788 if (zero_stats)
2789 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2792 return flags;
2795 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2796 struct bnx2x_fastpath *fp,
2797 bool leading)
2799 unsigned long flags = 0;
2801 /* calculate other queue flags */
2802 if (IS_MF_SD(bp))
2803 __set_bit(BNX2X_Q_FLG_OV, &flags);
2805 if (IS_FCOE_FP(fp)) {
2806 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2807 /* For FCoE - force usage of default priority (for afex) */
2808 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2811 if (!fp->disable_tpa) {
2812 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2813 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2814 if (fp->mode == TPA_MODE_GRO)
2815 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2818 if (leading) {
2819 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2820 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2823 /* Always set HW VLAN stripping */
2824 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2826 /* configure silent vlan removal */
2827 if (IS_MF_AFEX(bp))
2828 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2831 return flags | bnx2x_get_common_flags(bp, fp, true);
2834 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2835 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2836 u8 cos)
2838 gen_init->stat_id = bnx2x_stats_id(fp);
2839 gen_init->spcl_id = fp->cl_id;
2841 /* Always use mini-jumbo MTU for FCoE L2 ring */
2842 if (IS_FCOE_FP(fp))
2843 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2844 else
2845 gen_init->mtu = bp->dev->mtu;
2847 gen_init->cos = cos;
2850 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2851 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2852 struct bnx2x_rxq_setup_params *rxq_init)
2854 u8 max_sge = 0;
2855 u16 sge_sz = 0;
2856 u16 tpa_agg_size = 0;
2858 if (!fp->disable_tpa) {
2859 pause->sge_th_lo = SGE_TH_LO(bp);
2860 pause->sge_th_hi = SGE_TH_HI(bp);
2862 /* validate SGE ring has enough to cross high threshold */
2863 WARN_ON(bp->dropless_fc &&
2864 pause->sge_th_hi + FW_PREFETCH_CNT >
2865 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2867 tpa_agg_size = min_t(u32,
2868 (min_t(u32, 8, MAX_SKB_FRAGS) *
2869 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2870 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2871 SGE_PAGE_SHIFT;
2872 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2873 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2874 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2875 0xffff);
2878 /* pause - not for e1 */
2879 if (!CHIP_IS_E1(bp)) {
2880 pause->bd_th_lo = BD_TH_LO(bp);
2881 pause->bd_th_hi = BD_TH_HI(bp);
2883 pause->rcq_th_lo = RCQ_TH_LO(bp);
2884 pause->rcq_th_hi = RCQ_TH_HI(bp);
2886 * validate that rings have enough entries to cross
2887 * high thresholds
2889 WARN_ON(bp->dropless_fc &&
2890 pause->bd_th_hi + FW_PREFETCH_CNT >
2891 bp->rx_ring_size);
2892 WARN_ON(bp->dropless_fc &&
2893 pause->rcq_th_hi + FW_PREFETCH_CNT >
2894 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2896 pause->pri_map = 1;
2899 /* rxq setup */
2900 rxq_init->dscr_map = fp->rx_desc_mapping;
2901 rxq_init->sge_map = fp->rx_sge_mapping;
2902 rxq_init->rcq_map = fp->rx_comp_mapping;
2903 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2905 /* This should be a maximum number of data bytes that may be
2906 * placed on the BD (not including paddings).
2908 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2909 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2911 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2912 rxq_init->tpa_agg_sz = tpa_agg_size;
2913 rxq_init->sge_buf_sz = sge_sz;
2914 rxq_init->max_sges_pkt = max_sge;
2915 rxq_init->rss_engine_id = BP_FUNC(bp);
2916 rxq_init->mcast_engine_id = BP_FUNC(bp);
2918 /* Maximum number or simultaneous TPA aggregation for this Queue.
2920 * For PF Clients it should be the maximum avaliable number.
2921 * VF driver(s) may want to define it to a smaller value.
2923 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2925 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2926 rxq_init->fw_sb_id = fp->fw_sb_id;
2928 if (IS_FCOE_FP(fp))
2929 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2930 else
2931 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2932 /* configure silent vlan removal
2933 * if multi function mode is afex, then mask default vlan
2935 if (IS_MF_AFEX(bp)) {
2936 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2937 rxq_init->silent_removal_mask = VLAN_VID_MASK;
2941 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2942 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2943 u8 cos)
2945 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
2946 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2947 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2948 txq_init->fw_sb_id = fp->fw_sb_id;
2951 * set the tss leading client id for TX classfication ==
2952 * leading RSS client id
2954 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2956 if (IS_FCOE_FP(fp)) {
2957 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2958 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2962 static void bnx2x_pf_init(struct bnx2x *bp)
2964 struct bnx2x_func_init_params func_init = {0};
2965 struct event_ring_data eq_data = { {0} };
2966 u16 flags;
2968 if (!CHIP_IS_E1x(bp)) {
2969 /* reset IGU PF statistics: MSIX + ATTN */
2970 /* PF */
2971 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2972 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2973 (CHIP_MODE_IS_4_PORT(bp) ?
2974 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2975 /* ATTN */
2976 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2977 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2978 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2979 (CHIP_MODE_IS_4_PORT(bp) ?
2980 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2983 /* function setup flags */
2984 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2986 /* This flag is relevant for E1x only.
2987 * E2 doesn't have a TPA configuration in a function level.
2989 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2991 func_init.func_flgs = flags;
2992 func_init.pf_id = BP_FUNC(bp);
2993 func_init.func_id = BP_FUNC(bp);
2994 func_init.spq_map = bp->spq_mapping;
2995 func_init.spq_prod = bp->spq_prod_idx;
2997 bnx2x_func_init(bp, &func_init);
2999 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3002 * Congestion management values depend on the link rate
3003 * There is no active link so initial link rate is set to 10 Gbps.
3004 * When the link comes up The congestion management values are
3005 * re-calculated according to the actual link rate.
3007 bp->link_vars.line_speed = SPEED_10000;
3008 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3010 /* Only the PMF sets the HW */
3011 if (bp->port.pmf)
3012 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3014 /* init Event Queue */
3015 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3016 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3017 eq_data.producer = bp->eq_prod;
3018 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3019 eq_data.sb_id = DEF_SB_ID;
3020 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3024 static void bnx2x_e1h_disable(struct bnx2x *bp)
3026 int port = BP_PORT(bp);
3028 bnx2x_tx_disable(bp);
3030 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3033 static void bnx2x_e1h_enable(struct bnx2x *bp)
3035 int port = BP_PORT(bp);
3037 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3039 /* Tx queue should be only reenabled */
3040 netif_tx_wake_all_queues(bp->dev);
3043 * Should not call netif_carrier_on since it will be called if the link
3044 * is up when checking for link state
3048 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3050 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3052 struct eth_stats_info *ether_stat =
3053 &bp->slowpath->drv_info_to_mcp.ether_stat;
3055 /* leave last char as NULL */
3056 memcpy(ether_stat->version, DRV_MODULE_VERSION,
3057 ETH_STAT_INFO_VERSION_LEN - 1);
3059 bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3060 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3061 ether_stat->mac_local);
3063 ether_stat->mtu_size = bp->dev->mtu;
3065 if (bp->dev->features & NETIF_F_RXCSUM)
3066 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3067 if (bp->dev->features & NETIF_F_TSO)
3068 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3069 ether_stat->feature_flags |= bp->common.boot_mode;
3071 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3073 ether_stat->txq_size = bp->tx_ring_size;
3074 ether_stat->rxq_size = bp->rx_ring_size;
3077 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3079 #ifdef BCM_CNIC
3080 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3081 struct fcoe_stats_info *fcoe_stat =
3082 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3084 memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
3085 bp->fip_mac, ETH_ALEN);
3087 fcoe_stat->qos_priority =
3088 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3090 /* insert FCoE stats from ramrod response */
3091 if (!NO_FCOE(bp)) {
3092 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3093 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3094 tstorm_queue_statistics;
3096 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3097 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3098 xstorm_queue_statistics;
3100 struct fcoe_statistics_params *fw_fcoe_stat =
3101 &bp->fw_stats_data->fcoe;
3103 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3104 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3106 ADD_64(fcoe_stat->rx_bytes_hi,
3107 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3108 fcoe_stat->rx_bytes_lo,
3109 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3111 ADD_64(fcoe_stat->rx_bytes_hi,
3112 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3113 fcoe_stat->rx_bytes_lo,
3114 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3116 ADD_64(fcoe_stat->rx_bytes_hi,
3117 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3118 fcoe_stat->rx_bytes_lo,
3119 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3121 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3122 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3124 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3125 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3127 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3128 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3130 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3131 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3133 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3134 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3136 ADD_64(fcoe_stat->tx_bytes_hi,
3137 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3138 fcoe_stat->tx_bytes_lo,
3139 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3141 ADD_64(fcoe_stat->tx_bytes_hi,
3142 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3143 fcoe_stat->tx_bytes_lo,
3144 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3146 ADD_64(fcoe_stat->tx_bytes_hi,
3147 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3148 fcoe_stat->tx_bytes_lo,
3149 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3151 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3152 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3154 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3155 fcoe_q_xstorm_stats->ucast_pkts_sent);
3157 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3158 fcoe_q_xstorm_stats->bcast_pkts_sent);
3160 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3161 fcoe_q_xstorm_stats->mcast_pkts_sent);
3164 /* ask L5 driver to add data to the struct */
3165 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3166 #endif
3169 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3171 #ifdef BCM_CNIC
3172 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3173 struct iscsi_stats_info *iscsi_stat =
3174 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3176 memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
3177 bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3179 iscsi_stat->qos_priority =
3180 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3182 /* ask L5 driver to add data to the struct */
3183 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3184 #endif
3187 /* called due to MCP event (on pmf):
3188 * reread new bandwidth configuration
3189 * configure FW
3190 * notify others function about the change
3192 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3194 if (bp->link_vars.link_up) {
3195 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3196 bnx2x_link_sync_notify(bp);
3198 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3201 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3203 bnx2x_config_mf_bw(bp);
3204 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3207 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3209 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3210 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3213 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3215 enum drv_info_opcode op_code;
3216 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3218 /* if drv_info version supported by MFW doesn't match - send NACK */
3219 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3220 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3221 return;
3224 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3225 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3227 memset(&bp->slowpath->drv_info_to_mcp, 0,
3228 sizeof(union drv_info_to_mcp));
3230 switch (op_code) {
3231 case ETH_STATS_OPCODE:
3232 bnx2x_drv_info_ether_stat(bp);
3233 break;
3234 case FCOE_STATS_OPCODE:
3235 bnx2x_drv_info_fcoe_stat(bp);
3236 break;
3237 case ISCSI_STATS_OPCODE:
3238 bnx2x_drv_info_iscsi_stat(bp);
3239 break;
3240 default:
3241 /* if op code isn't supported - send NACK */
3242 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3243 return;
3246 /* if we got drv_info attn from MFW then these fields are defined in
3247 * shmem2 for sure
3249 SHMEM2_WR(bp, drv_info_host_addr_lo,
3250 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3251 SHMEM2_WR(bp, drv_info_host_addr_hi,
3252 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3254 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3257 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3259 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3261 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3264 * This is the only place besides the function initialization
3265 * where the bp->flags can change so it is done without any
3266 * locks
3268 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3269 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3270 bp->flags |= MF_FUNC_DIS;
3272 bnx2x_e1h_disable(bp);
3273 } else {
3274 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3275 bp->flags &= ~MF_FUNC_DIS;
3277 bnx2x_e1h_enable(bp);
3279 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3281 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3282 bnx2x_config_mf_bw(bp);
3283 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3286 /* Report results to MCP */
3287 if (dcc_event)
3288 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3289 else
3290 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3293 /* must be called under the spq lock */
3294 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3296 struct eth_spe *next_spe = bp->spq_prod_bd;
3298 if (bp->spq_prod_bd == bp->spq_last_bd) {
3299 bp->spq_prod_bd = bp->spq;
3300 bp->spq_prod_idx = 0;
3301 DP(BNX2X_MSG_SP, "end of spq\n");
3302 } else {
3303 bp->spq_prod_bd++;
3304 bp->spq_prod_idx++;
3306 return next_spe;
3309 /* must be called under the spq lock */
3310 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3312 int func = BP_FUNC(bp);
3315 * Make sure that BD data is updated before writing the producer:
3316 * BD data is written to the memory, the producer is read from the
3317 * memory, thus we need a full memory barrier to ensure the ordering.
3319 mb();
3321 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3322 bp->spq_prod_idx);
3323 mmiowb();
3327 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3329 * @cmd: command to check
3330 * @cmd_type: command type
3332 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3334 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3335 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3336 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3337 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3338 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3339 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3340 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3341 return true;
3342 else
3343 return false;
3349 * bnx2x_sp_post - place a single command on an SP ring
3351 * @bp: driver handle
3352 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3353 * @cid: SW CID the command is related to
3354 * @data_hi: command private data address (high 32 bits)
3355 * @data_lo: command private data address (low 32 bits)
3356 * @cmd_type: command type (e.g. NONE, ETH)
3358 * SP data is handled as if it's always an address pair, thus data fields are
3359 * not swapped to little endian in upper functions. Instead this function swaps
3360 * data as if it's two u32 fields.
3362 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3363 u32 data_hi, u32 data_lo, int cmd_type)
3365 struct eth_spe *spe;
3366 u16 type;
3367 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3369 #ifdef BNX2X_STOP_ON_ERROR
3370 if (unlikely(bp->panic)) {
3371 BNX2X_ERR("Can't post SP when there is panic\n");
3372 return -EIO;
3374 #endif
3376 spin_lock_bh(&bp->spq_lock);
3378 if (common) {
3379 if (!atomic_read(&bp->eq_spq_left)) {
3380 BNX2X_ERR("BUG! EQ ring full!\n");
3381 spin_unlock_bh(&bp->spq_lock);
3382 bnx2x_panic();
3383 return -EBUSY;
3385 } else if (!atomic_read(&bp->cq_spq_left)) {
3386 BNX2X_ERR("BUG! SPQ ring full!\n");
3387 spin_unlock_bh(&bp->spq_lock);
3388 bnx2x_panic();
3389 return -EBUSY;
3392 spe = bnx2x_sp_get_next(bp);
3394 /* CID needs port number to be encoded int it */
3395 spe->hdr.conn_and_cmd_data =
3396 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3397 HW_CID(bp, cid));
3399 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3401 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3402 SPE_HDR_FUNCTION_ID);
3404 spe->hdr.type = cpu_to_le16(type);
3406 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3407 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3410 * It's ok if the actual decrement is issued towards the memory
3411 * somewhere between the spin_lock and spin_unlock. Thus no
3412 * more explict memory barrier is needed.
3414 if (common)
3415 atomic_dec(&bp->eq_spq_left);
3416 else
3417 atomic_dec(&bp->cq_spq_left);
3420 DP(BNX2X_MSG_SP,
3421 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3422 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3423 (u32)(U64_LO(bp->spq_mapping) +
3424 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3425 HW_CID(bp, cid), data_hi, data_lo, type,
3426 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3428 bnx2x_sp_prod_update(bp);
3429 spin_unlock_bh(&bp->spq_lock);
3430 return 0;
3433 /* acquire split MCP access lock register */
3434 static int bnx2x_acquire_alr(struct bnx2x *bp)
3436 u32 j, val;
3437 int rc = 0;
3439 might_sleep();
3440 for (j = 0; j < 1000; j++) {
3441 val = (1UL << 31);
3442 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3443 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3444 if (val & (1L << 31))
3445 break;
3447 msleep(5);
3449 if (!(val & (1L << 31))) {
3450 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3451 rc = -EBUSY;
3454 return rc;
3457 /* release split MCP access lock register */
3458 static void bnx2x_release_alr(struct bnx2x *bp)
3460 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3463 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3464 #define BNX2X_DEF_SB_IDX 0x0002
3466 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3468 struct host_sp_status_block *def_sb = bp->def_status_blk;
3469 u16 rc = 0;
3471 barrier(); /* status block is written to by the chip */
3472 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3473 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3474 rc |= BNX2X_DEF_SB_ATT_IDX;
3477 if (bp->def_idx != def_sb->sp_sb.running_index) {
3478 bp->def_idx = def_sb->sp_sb.running_index;
3479 rc |= BNX2X_DEF_SB_IDX;
3482 /* Do not reorder: indecies reading should complete before handling */
3483 barrier();
3484 return rc;
3488 * slow path service functions
3491 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3493 int port = BP_PORT(bp);
3494 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3495 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3496 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3497 NIG_REG_MASK_INTERRUPT_PORT0;
3498 u32 aeu_mask;
3499 u32 nig_mask = 0;
3500 u32 reg_addr;
3502 if (bp->attn_state & asserted)
3503 BNX2X_ERR("IGU ERROR\n");
3505 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3506 aeu_mask = REG_RD(bp, aeu_addr);
3508 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3509 aeu_mask, asserted);
3510 aeu_mask &= ~(asserted & 0x3ff);
3511 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3513 REG_WR(bp, aeu_addr, aeu_mask);
3514 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3516 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3517 bp->attn_state |= asserted;
3518 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3520 if (asserted & ATTN_HARD_WIRED_MASK) {
3521 if (asserted & ATTN_NIG_FOR_FUNC) {
3523 bnx2x_acquire_phy_lock(bp);
3525 /* save nig interrupt mask */
3526 nig_mask = REG_RD(bp, nig_int_mask_addr);
3528 /* If nig_mask is not set, no need to call the update
3529 * function.
3531 if (nig_mask) {
3532 REG_WR(bp, nig_int_mask_addr, 0);
3534 bnx2x_link_attn(bp);
3537 /* handle unicore attn? */
3539 if (asserted & ATTN_SW_TIMER_4_FUNC)
3540 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3542 if (asserted & GPIO_2_FUNC)
3543 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3545 if (asserted & GPIO_3_FUNC)
3546 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3548 if (asserted & GPIO_4_FUNC)
3549 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3551 if (port == 0) {
3552 if (asserted & ATTN_GENERAL_ATTN_1) {
3553 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3554 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3556 if (asserted & ATTN_GENERAL_ATTN_2) {
3557 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3558 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3560 if (asserted & ATTN_GENERAL_ATTN_3) {
3561 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3562 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3564 } else {
3565 if (asserted & ATTN_GENERAL_ATTN_4) {
3566 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3567 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3569 if (asserted & ATTN_GENERAL_ATTN_5) {
3570 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3571 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3573 if (asserted & ATTN_GENERAL_ATTN_6) {
3574 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3575 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3579 } /* if hardwired */
3581 if (bp->common.int_block == INT_BLOCK_HC)
3582 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3583 COMMAND_REG_ATTN_BITS_SET);
3584 else
3585 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3587 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3588 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3589 REG_WR(bp, reg_addr, asserted);
3591 /* now set back the mask */
3592 if (asserted & ATTN_NIG_FOR_FUNC) {
3593 REG_WR(bp, nig_int_mask_addr, nig_mask);
3594 bnx2x_release_phy_lock(bp);
3598 static void bnx2x_fan_failure(struct bnx2x *bp)
3600 int port = BP_PORT(bp);
3601 u32 ext_phy_config;
3602 /* mark the failure */
3603 ext_phy_config =
3604 SHMEM_RD(bp,
3605 dev_info.port_hw_config[port].external_phy_config);
3607 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3608 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3609 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3610 ext_phy_config);
3612 /* log the failure */
3613 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3614 "Please contact OEM Support for assistance\n");
3617 * Scheudle device reset (unload)
3618 * This is due to some boards consuming sufficient power when driver is
3619 * up to overheat if fan fails.
3621 smp_mb__before_clear_bit();
3622 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3623 smp_mb__after_clear_bit();
3624 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3628 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3630 int port = BP_PORT(bp);
3631 int reg_offset;
3632 u32 val;
3634 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3635 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3637 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3639 val = REG_RD(bp, reg_offset);
3640 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3641 REG_WR(bp, reg_offset, val);
3643 BNX2X_ERR("SPIO5 hw attention\n");
3645 /* Fan failure attention */
3646 bnx2x_hw_reset_phy(&bp->link_params);
3647 bnx2x_fan_failure(bp);
3650 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3651 bnx2x_acquire_phy_lock(bp);
3652 bnx2x_handle_module_detect_int(&bp->link_params);
3653 bnx2x_release_phy_lock(bp);
3656 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3658 val = REG_RD(bp, reg_offset);
3659 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3660 REG_WR(bp, reg_offset, val);
3662 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3663 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3664 bnx2x_panic();
3668 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3670 u32 val;
3672 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3674 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3675 BNX2X_ERR("DB hw attention 0x%x\n", val);
3676 /* DORQ discard attention */
3677 if (val & 0x2)
3678 BNX2X_ERR("FATAL error from DORQ\n");
3681 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3683 int port = BP_PORT(bp);
3684 int reg_offset;
3686 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3687 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3689 val = REG_RD(bp, reg_offset);
3690 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3691 REG_WR(bp, reg_offset, val);
3693 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3694 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3695 bnx2x_panic();
3699 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3701 u32 val;
3703 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3705 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3706 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3707 /* CFC error attention */
3708 if (val & 0x2)
3709 BNX2X_ERR("FATAL error from CFC\n");
3712 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3713 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3714 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3715 /* RQ_USDMDP_FIFO_OVERFLOW */
3716 if (val & 0x18000)
3717 BNX2X_ERR("FATAL error from PXP\n");
3719 if (!CHIP_IS_E1x(bp)) {
3720 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3721 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3725 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3727 int port = BP_PORT(bp);
3728 int reg_offset;
3730 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3731 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3733 val = REG_RD(bp, reg_offset);
3734 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3735 REG_WR(bp, reg_offset, val);
3737 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3738 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3739 bnx2x_panic();
3743 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3745 u32 val;
3747 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3749 if (attn & BNX2X_PMF_LINK_ASSERT) {
3750 int func = BP_FUNC(bp);
3752 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3753 bnx2x_read_mf_cfg(bp);
3754 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3755 func_mf_config[BP_ABS_FUNC(bp)].config);
3756 val = SHMEM_RD(bp,
3757 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3758 if (val & DRV_STATUS_DCC_EVENT_MASK)
3759 bnx2x_dcc_event(bp,
3760 (val & DRV_STATUS_DCC_EVENT_MASK));
3762 if (val & DRV_STATUS_SET_MF_BW)
3763 bnx2x_set_mf_bw(bp);
3765 if (val & DRV_STATUS_DRV_INFO_REQ)
3766 bnx2x_handle_drv_info_req(bp);
3767 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3768 bnx2x_pmf_update(bp);
3770 if (bp->port.pmf &&
3771 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3772 bp->dcbx_enabled > 0)
3773 /* start dcbx state machine */
3774 bnx2x_dcbx_set_params(bp,
3775 BNX2X_DCBX_STATE_NEG_RECEIVED);
3776 if (val & DRV_STATUS_AFEX_EVENT_MASK)
3777 bnx2x_handle_afex_cmd(bp,
3778 val & DRV_STATUS_AFEX_EVENT_MASK);
3779 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3780 bnx2x_handle_eee_event(bp);
3781 if (bp->link_vars.periodic_flags &
3782 PERIODIC_FLAGS_LINK_EVENT) {
3783 /* sync with link */
3784 bnx2x_acquire_phy_lock(bp);
3785 bp->link_vars.periodic_flags &=
3786 ~PERIODIC_FLAGS_LINK_EVENT;
3787 bnx2x_release_phy_lock(bp);
3788 if (IS_MF(bp))
3789 bnx2x_link_sync_notify(bp);
3790 bnx2x_link_report(bp);
3792 /* Always call it here: bnx2x_link_report() will
3793 * prevent the link indication duplication.
3795 bnx2x__link_status_update(bp);
3796 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3798 BNX2X_ERR("MC assert!\n");
3799 bnx2x_mc_assert(bp);
3800 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3801 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3802 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3803 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3804 bnx2x_panic();
3806 } else if (attn & BNX2X_MCP_ASSERT) {
3808 BNX2X_ERR("MCP assert!\n");
3809 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3810 bnx2x_fw_dump(bp);
3812 } else
3813 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3816 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3817 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3818 if (attn & BNX2X_GRC_TIMEOUT) {
3819 val = CHIP_IS_E1(bp) ? 0 :
3820 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3821 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3823 if (attn & BNX2X_GRC_RSV) {
3824 val = CHIP_IS_E1(bp) ? 0 :
3825 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3826 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3828 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3833 * Bits map:
3834 * 0-7 - Engine0 load counter.
3835 * 8-15 - Engine1 load counter.
3836 * 16 - Engine0 RESET_IN_PROGRESS bit.
3837 * 17 - Engine1 RESET_IN_PROGRESS bit.
3838 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3839 * on the engine
3840 * 19 - Engine1 ONE_IS_LOADED.
3841 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3842 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3843 * just the one belonging to its engine).
3846 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3848 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3849 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3850 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3851 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3852 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3853 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3854 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3857 * Set the GLOBAL_RESET bit.
3859 * Should be run under rtnl lock
3861 void bnx2x_set_reset_global(struct bnx2x *bp)
3863 u32 val;
3864 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3865 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3866 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3867 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3871 * Clear the GLOBAL_RESET bit.
3873 * Should be run under rtnl lock
3875 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3877 u32 val;
3878 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3879 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3880 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3881 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3885 * Checks the GLOBAL_RESET bit.
3887 * should be run under rtnl lock
3889 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3891 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3893 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3894 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3898 * Clear RESET_IN_PROGRESS bit for the current engine.
3900 * Should be run under rtnl lock
3902 static void bnx2x_set_reset_done(struct bnx2x *bp)
3904 u32 val;
3905 u32 bit = BP_PATH(bp) ?
3906 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3907 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3908 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3910 /* Clear the bit */
3911 val &= ~bit;
3912 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3914 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3918 * Set RESET_IN_PROGRESS for the current engine.
3920 * should be run under rtnl lock
3922 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3924 u32 val;
3925 u32 bit = BP_PATH(bp) ?
3926 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3927 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3928 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3930 /* Set the bit */
3931 val |= bit;
3932 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3933 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3937 * Checks the RESET_IN_PROGRESS bit for the given engine.
3938 * should be run under rtnl lock
3940 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3942 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3943 u32 bit = engine ?
3944 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3946 /* return false if bit is set */
3947 return (val & bit) ? false : true;
3951 * set pf load for the current pf.
3953 * should be run under rtnl lock
3955 void bnx2x_set_pf_load(struct bnx2x *bp)
3957 u32 val1, val;
3958 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3959 BNX2X_PATH0_LOAD_CNT_MASK;
3960 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3961 BNX2X_PATH0_LOAD_CNT_SHIFT;
3963 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3964 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3966 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3968 /* get the current counter value */
3969 val1 = (val & mask) >> shift;
3971 /* set bit of that PF */
3972 val1 |= (1 << bp->pf_num);
3974 /* clear the old value */
3975 val &= ~mask;
3977 /* set the new one */
3978 val |= ((val1 << shift) & mask);
3980 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3981 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3985 * bnx2x_clear_pf_load - clear pf load mark
3987 * @bp: driver handle
3989 * Should be run under rtnl lock.
3990 * Decrements the load counter for the current engine. Returns
3991 * whether other functions are still loaded
3993 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3995 u32 val1, val;
3996 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3997 BNX2X_PATH0_LOAD_CNT_MASK;
3998 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3999 BNX2X_PATH0_LOAD_CNT_SHIFT;
4001 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4002 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4003 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4005 /* get the current counter value */
4006 val1 = (val & mask) >> shift;
4008 /* clear bit of that PF */
4009 val1 &= ~(1 << bp->pf_num);
4011 /* clear the old value */
4012 val &= ~mask;
4014 /* set the new one */
4015 val |= ((val1 << shift) & mask);
4017 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4018 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4019 return val1 != 0;
4023 * Read the load status for the current engine.
4025 * should be run under rtnl lock
4027 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4029 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4030 BNX2X_PATH0_LOAD_CNT_MASK);
4031 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4032 BNX2X_PATH0_LOAD_CNT_SHIFT);
4033 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4035 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4037 val = (val & mask) >> shift;
4039 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4040 engine, val);
4042 return val != 0;
4045 static void _print_next_block(int idx, const char *blk)
4047 pr_cont("%s%s", idx ? ", " : "", blk);
4050 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4051 bool print)
4053 int i = 0;
4054 u32 cur_bit = 0;
4055 for (i = 0; sig; i++) {
4056 cur_bit = ((u32)0x1 << i);
4057 if (sig & cur_bit) {
4058 switch (cur_bit) {
4059 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4060 if (print)
4061 _print_next_block(par_num++, "BRB");
4062 break;
4063 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4064 if (print)
4065 _print_next_block(par_num++, "PARSER");
4066 break;
4067 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4068 if (print)
4069 _print_next_block(par_num++, "TSDM");
4070 break;
4071 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4072 if (print)
4073 _print_next_block(par_num++,
4074 "SEARCHER");
4075 break;
4076 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4077 if (print)
4078 _print_next_block(par_num++, "TCM");
4079 break;
4080 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4081 if (print)
4082 _print_next_block(par_num++, "TSEMI");
4083 break;
4084 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4085 if (print)
4086 _print_next_block(par_num++, "XPB");
4087 break;
4090 /* Clear the bit */
4091 sig &= ~cur_bit;
4095 return par_num;
4098 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4099 bool *global, bool print)
4101 int i = 0;
4102 u32 cur_bit = 0;
4103 for (i = 0; sig; i++) {
4104 cur_bit = ((u32)0x1 << i);
4105 if (sig & cur_bit) {
4106 switch (cur_bit) {
4107 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4108 if (print)
4109 _print_next_block(par_num++, "PBF");
4110 break;
4111 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4112 if (print)
4113 _print_next_block(par_num++, "QM");
4114 break;
4115 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4116 if (print)
4117 _print_next_block(par_num++, "TM");
4118 break;
4119 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4120 if (print)
4121 _print_next_block(par_num++, "XSDM");
4122 break;
4123 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4124 if (print)
4125 _print_next_block(par_num++, "XCM");
4126 break;
4127 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4128 if (print)
4129 _print_next_block(par_num++, "XSEMI");
4130 break;
4131 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4132 if (print)
4133 _print_next_block(par_num++,
4134 "DOORBELLQ");
4135 break;
4136 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4137 if (print)
4138 _print_next_block(par_num++, "NIG");
4139 break;
4140 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4141 if (print)
4142 _print_next_block(par_num++,
4143 "VAUX PCI CORE");
4144 *global = true;
4145 break;
4146 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4147 if (print)
4148 _print_next_block(par_num++, "DEBUG");
4149 break;
4150 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4151 if (print)
4152 _print_next_block(par_num++, "USDM");
4153 break;
4154 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4155 if (print)
4156 _print_next_block(par_num++, "UCM");
4157 break;
4158 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4159 if (print)
4160 _print_next_block(par_num++, "USEMI");
4161 break;
4162 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4163 if (print)
4164 _print_next_block(par_num++, "UPB");
4165 break;
4166 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4167 if (print)
4168 _print_next_block(par_num++, "CSDM");
4169 break;
4170 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4171 if (print)
4172 _print_next_block(par_num++, "CCM");
4173 break;
4176 /* Clear the bit */
4177 sig &= ~cur_bit;
4181 return par_num;
4184 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4185 bool print)
4187 int i = 0;
4188 u32 cur_bit = 0;
4189 for (i = 0; sig; i++) {
4190 cur_bit = ((u32)0x1 << i);
4191 if (sig & cur_bit) {
4192 switch (cur_bit) {
4193 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4194 if (print)
4195 _print_next_block(par_num++, "CSEMI");
4196 break;
4197 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4198 if (print)
4199 _print_next_block(par_num++, "PXP");
4200 break;
4201 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4202 if (print)
4203 _print_next_block(par_num++,
4204 "PXPPCICLOCKCLIENT");
4205 break;
4206 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4207 if (print)
4208 _print_next_block(par_num++, "CFC");
4209 break;
4210 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4211 if (print)
4212 _print_next_block(par_num++, "CDU");
4213 break;
4214 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4215 if (print)
4216 _print_next_block(par_num++, "DMAE");
4217 break;
4218 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4219 if (print)
4220 _print_next_block(par_num++, "IGU");
4221 break;
4222 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4223 if (print)
4224 _print_next_block(par_num++, "MISC");
4225 break;
4228 /* Clear the bit */
4229 sig &= ~cur_bit;
4233 return par_num;
4236 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4237 bool *global, bool print)
4239 int i = 0;
4240 u32 cur_bit = 0;
4241 for (i = 0; sig; i++) {
4242 cur_bit = ((u32)0x1 << i);
4243 if (sig & cur_bit) {
4244 switch (cur_bit) {
4245 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4246 if (print)
4247 _print_next_block(par_num++, "MCP ROM");
4248 *global = true;
4249 break;
4250 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4251 if (print)
4252 _print_next_block(par_num++,
4253 "MCP UMP RX");
4254 *global = true;
4255 break;
4256 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4257 if (print)
4258 _print_next_block(par_num++,
4259 "MCP UMP TX");
4260 *global = true;
4261 break;
4262 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4263 if (print)
4264 _print_next_block(par_num++,
4265 "MCP SCPAD");
4266 *global = true;
4267 break;
4270 /* Clear the bit */
4271 sig &= ~cur_bit;
4275 return par_num;
4278 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4279 bool print)
4281 int i = 0;
4282 u32 cur_bit = 0;
4283 for (i = 0; sig; i++) {
4284 cur_bit = ((u32)0x1 << i);
4285 if (sig & cur_bit) {
4286 switch (cur_bit) {
4287 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4288 if (print)
4289 _print_next_block(par_num++, "PGLUE_B");
4290 break;
4291 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4292 if (print)
4293 _print_next_block(par_num++, "ATC");
4294 break;
4297 /* Clear the bit */
4298 sig &= ~cur_bit;
4302 return par_num;
4305 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4306 u32 *sig)
4308 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4309 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4310 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4311 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4312 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4313 int par_num = 0;
4314 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4315 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4316 sig[0] & HW_PRTY_ASSERT_SET_0,
4317 sig[1] & HW_PRTY_ASSERT_SET_1,
4318 sig[2] & HW_PRTY_ASSERT_SET_2,
4319 sig[3] & HW_PRTY_ASSERT_SET_3,
4320 sig[4] & HW_PRTY_ASSERT_SET_4);
4321 if (print)
4322 netdev_err(bp->dev,
4323 "Parity errors detected in blocks: ");
4324 par_num = bnx2x_check_blocks_with_parity0(
4325 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4326 par_num = bnx2x_check_blocks_with_parity1(
4327 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4328 par_num = bnx2x_check_blocks_with_parity2(
4329 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4330 par_num = bnx2x_check_blocks_with_parity3(
4331 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4332 par_num = bnx2x_check_blocks_with_parity4(
4333 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4335 if (print)
4336 pr_cont("\n");
4338 return true;
4339 } else
4340 return false;
4344 * bnx2x_chk_parity_attn - checks for parity attentions.
4346 * @bp: driver handle
4347 * @global: true if there was a global attention
4348 * @print: show parity attention in syslog
4350 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4352 struct attn_route attn = { {0} };
4353 int port = BP_PORT(bp);
4355 attn.sig[0] = REG_RD(bp,
4356 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4357 port*4);
4358 attn.sig[1] = REG_RD(bp,
4359 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4360 port*4);
4361 attn.sig[2] = REG_RD(bp,
4362 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4363 port*4);
4364 attn.sig[3] = REG_RD(bp,
4365 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4366 port*4);
4368 if (!CHIP_IS_E1x(bp))
4369 attn.sig[4] = REG_RD(bp,
4370 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4371 port*4);
4373 return bnx2x_parity_attn(bp, global, print, attn.sig);
4377 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4379 u32 val;
4380 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4382 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4383 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4384 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4385 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4386 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4387 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4388 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4389 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4390 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4391 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4392 if (val &
4393 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4394 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4395 if (val &
4396 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4397 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4398 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4399 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4400 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4401 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4402 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4403 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4405 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4406 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4407 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4408 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4409 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4410 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4411 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4412 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4413 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4414 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4415 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4416 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4417 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4418 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4419 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4422 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4423 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4424 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4425 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4426 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4431 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4433 struct attn_route attn, *group_mask;
4434 int port = BP_PORT(bp);
4435 int index;
4436 u32 reg_addr;
4437 u32 val;
4438 u32 aeu_mask;
4439 bool global = false;
4441 /* need to take HW lock because MCP or other port might also
4442 try to handle this event */
4443 bnx2x_acquire_alr(bp);
4445 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4446 #ifndef BNX2X_STOP_ON_ERROR
4447 bp->recovery_state = BNX2X_RECOVERY_INIT;
4448 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4449 /* Disable HW interrupts */
4450 bnx2x_int_disable(bp);
4451 /* In case of parity errors don't handle attentions so that
4452 * other function would "see" parity errors.
4454 #else
4455 bnx2x_panic();
4456 #endif
4457 bnx2x_release_alr(bp);
4458 return;
4461 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4462 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4463 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4464 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4465 if (!CHIP_IS_E1x(bp))
4466 attn.sig[4] =
4467 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4468 else
4469 attn.sig[4] = 0;
4471 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4472 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4474 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4475 if (deasserted & (1 << index)) {
4476 group_mask = &bp->attn_group[index];
4478 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4479 index,
4480 group_mask->sig[0], group_mask->sig[1],
4481 group_mask->sig[2], group_mask->sig[3],
4482 group_mask->sig[4]);
4484 bnx2x_attn_int_deasserted4(bp,
4485 attn.sig[4] & group_mask->sig[4]);
4486 bnx2x_attn_int_deasserted3(bp,
4487 attn.sig[3] & group_mask->sig[3]);
4488 bnx2x_attn_int_deasserted1(bp,
4489 attn.sig[1] & group_mask->sig[1]);
4490 bnx2x_attn_int_deasserted2(bp,
4491 attn.sig[2] & group_mask->sig[2]);
4492 bnx2x_attn_int_deasserted0(bp,
4493 attn.sig[0] & group_mask->sig[0]);
4497 bnx2x_release_alr(bp);
4499 if (bp->common.int_block == INT_BLOCK_HC)
4500 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4501 COMMAND_REG_ATTN_BITS_CLR);
4502 else
4503 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4505 val = ~deasserted;
4506 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4507 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4508 REG_WR(bp, reg_addr, val);
4510 if (~bp->attn_state & deasserted)
4511 BNX2X_ERR("IGU ERROR\n");
4513 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4514 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4516 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4517 aeu_mask = REG_RD(bp, reg_addr);
4519 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4520 aeu_mask, deasserted);
4521 aeu_mask |= (deasserted & 0x3ff);
4522 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4524 REG_WR(bp, reg_addr, aeu_mask);
4525 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4527 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4528 bp->attn_state &= ~deasserted;
4529 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4532 static void bnx2x_attn_int(struct bnx2x *bp)
4534 /* read local copy of bits */
4535 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4536 attn_bits);
4537 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4538 attn_bits_ack);
4539 u32 attn_state = bp->attn_state;
4541 /* look for changed bits */
4542 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4543 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4545 DP(NETIF_MSG_HW,
4546 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4547 attn_bits, attn_ack, asserted, deasserted);
4549 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4550 BNX2X_ERR("BAD attention state\n");
4552 /* handle bits that were raised */
4553 if (asserted)
4554 bnx2x_attn_int_asserted(bp, asserted);
4556 if (deasserted)
4557 bnx2x_attn_int_deasserted(bp, deasserted);
4560 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4561 u16 index, u8 op, u8 update)
4563 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4565 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4566 igu_addr);
4569 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4571 /* No memory barriers */
4572 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4573 mmiowb(); /* keep prod updates ordered */
4576 #ifdef BCM_CNIC
4577 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4578 union event_ring_elem *elem)
4580 u8 err = elem->message.error;
4582 if (!bp->cnic_eth_dev.starting_cid ||
4583 (cid < bp->cnic_eth_dev.starting_cid &&
4584 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4585 return 1;
4587 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4589 if (unlikely(err)) {
4591 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4592 cid);
4593 bnx2x_panic_dump(bp);
4595 bnx2x_cnic_cfc_comp(bp, cid, err);
4596 return 0;
4598 #endif
4600 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4602 struct bnx2x_mcast_ramrod_params rparam;
4603 int rc;
4605 memset(&rparam, 0, sizeof(rparam));
4607 rparam.mcast_obj = &bp->mcast_obj;
4609 netif_addr_lock_bh(bp->dev);
4611 /* Clear pending state for the last command */
4612 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4614 /* If there are pending mcast commands - send them */
4615 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4616 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4617 if (rc < 0)
4618 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4619 rc);
4622 netif_addr_unlock_bh(bp->dev);
4625 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4626 union event_ring_elem *elem)
4628 unsigned long ramrod_flags = 0;
4629 int rc = 0;
4630 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4631 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4633 /* Always push next commands out, don't wait here */
4634 __set_bit(RAMROD_CONT, &ramrod_flags);
4636 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4637 case BNX2X_FILTER_MAC_PENDING:
4638 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4639 #ifdef BCM_CNIC
4640 if (cid == BNX2X_ISCSI_ETH_CID(bp))
4641 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4642 else
4643 #endif
4644 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4646 break;
4647 case BNX2X_FILTER_MCAST_PENDING:
4648 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4649 /* This is only relevant for 57710 where multicast MACs are
4650 * configured as unicast MACs using the same ramrod.
4652 bnx2x_handle_mcast_eqe(bp);
4653 return;
4654 default:
4655 BNX2X_ERR("Unsupported classification command: %d\n",
4656 elem->message.data.eth_event.echo);
4657 return;
4660 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4662 if (rc < 0)
4663 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4664 else if (rc > 0)
4665 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4669 #ifdef BCM_CNIC
4670 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4671 #endif
4673 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4675 netif_addr_lock_bh(bp->dev);
4677 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4679 /* Send rx_mode command again if was requested */
4680 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4681 bnx2x_set_storm_rx_mode(bp);
4682 #ifdef BCM_CNIC
4683 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4684 &bp->sp_state))
4685 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4686 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4687 &bp->sp_state))
4688 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4689 #endif
4691 netif_addr_unlock_bh(bp->dev);
4694 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4695 union event_ring_elem *elem)
4697 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4698 DP(BNX2X_MSG_SP,
4699 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4700 elem->message.data.vif_list_event.func_bit_map);
4701 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4702 elem->message.data.vif_list_event.func_bit_map);
4703 } else if (elem->message.data.vif_list_event.echo ==
4704 VIF_LIST_RULE_SET) {
4705 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4706 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4710 /* called with rtnl_lock */
4711 static void bnx2x_after_function_update(struct bnx2x *bp)
4713 int q, rc;
4714 struct bnx2x_fastpath *fp;
4715 struct bnx2x_queue_state_params queue_params = {NULL};
4716 struct bnx2x_queue_update_params *q_update_params =
4717 &queue_params.params.update;
4719 /* Send Q update command with afex vlan removal values for all Qs */
4720 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4722 /* set silent vlan removal values according to vlan mode */
4723 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4724 &q_update_params->update_flags);
4725 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4726 &q_update_params->update_flags);
4727 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4729 /* in access mode mark mask and value are 0 to strip all vlans */
4730 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4731 q_update_params->silent_removal_value = 0;
4732 q_update_params->silent_removal_mask = 0;
4733 } else {
4734 q_update_params->silent_removal_value =
4735 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
4736 q_update_params->silent_removal_mask = VLAN_VID_MASK;
4739 for_each_eth_queue(bp, q) {
4740 /* Set the appropriate Queue object */
4741 fp = &bp->fp[q];
4742 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4744 /* send the ramrod */
4745 rc = bnx2x_queue_state_change(bp, &queue_params);
4746 if (rc < 0)
4747 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4751 #ifdef BCM_CNIC
4752 if (!NO_FCOE(bp)) {
4753 fp = &bp->fp[FCOE_IDX(bp)];
4754 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4756 /* clear pending completion bit */
4757 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4759 /* mark latest Q bit */
4760 smp_mb__before_clear_bit();
4761 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4762 smp_mb__after_clear_bit();
4764 /* send Q update ramrod for FCoE Q */
4765 rc = bnx2x_queue_state_change(bp, &queue_params);
4766 if (rc < 0)
4767 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4769 } else {
4770 /* If no FCoE ring - ACK MCP now */
4771 bnx2x_link_report(bp);
4772 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4774 #else
4775 /* If no FCoE ring - ACK MCP now */
4776 bnx2x_link_report(bp);
4777 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4778 #endif /* BCM_CNIC */
4781 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4782 struct bnx2x *bp, u32 cid)
4784 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4785 #ifdef BCM_CNIC
4786 if (cid == BNX2X_FCOE_ETH_CID(bp))
4787 return &bnx2x_fcoe_sp_obj(bp, q_obj);
4788 else
4789 #endif
4790 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4793 static void bnx2x_eq_int(struct bnx2x *bp)
4795 u16 hw_cons, sw_cons, sw_prod;
4796 union event_ring_elem *elem;
4797 u32 cid;
4798 u8 opcode;
4799 int spqe_cnt = 0;
4800 struct bnx2x_queue_sp_obj *q_obj;
4801 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4802 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4804 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4806 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4807 * when we get the the next-page we nned to adjust so the loop
4808 * condition below will be met. The next element is the size of a
4809 * regular element and hence incrementing by 1
4811 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4812 hw_cons++;
4814 /* This function may never run in parallel with itself for a
4815 * specific bp, thus there is no need in "paired" read memory
4816 * barrier here.
4818 sw_cons = bp->eq_cons;
4819 sw_prod = bp->eq_prod;
4821 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4822 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4824 for (; sw_cons != hw_cons;
4825 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4828 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4830 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4831 opcode = elem->message.opcode;
4834 /* handle eq element */
4835 switch (opcode) {
4836 case EVENT_RING_OPCODE_STAT_QUERY:
4837 DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4838 "got statistics comp event %d\n",
4839 bp->stats_comp++);
4840 /* nothing to do with stats comp */
4841 goto next_spqe;
4843 case EVENT_RING_OPCODE_CFC_DEL:
4844 /* handle according to cid range */
4846 * we may want to verify here that the bp state is
4847 * HALTING
4849 DP(BNX2X_MSG_SP,
4850 "got delete ramrod for MULTI[%d]\n", cid);
4851 #ifdef BCM_CNIC
4852 if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4853 goto next_spqe;
4854 #endif
4855 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4857 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4858 break;
4862 goto next_spqe;
4864 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4865 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4866 if (f_obj->complete_cmd(bp, f_obj,
4867 BNX2X_F_CMD_TX_STOP))
4868 break;
4869 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4870 goto next_spqe;
4872 case EVENT_RING_OPCODE_START_TRAFFIC:
4873 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4874 if (f_obj->complete_cmd(bp, f_obj,
4875 BNX2X_F_CMD_TX_START))
4876 break;
4877 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4878 goto next_spqe;
4879 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4880 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4881 "AFEX: ramrod completed FUNCTION_UPDATE\n");
4882 f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_AFEX_UPDATE);
4884 /* We will perform the Queues update from sp_rtnl task
4885 * as all Queue SP operations should run under
4886 * rtnl_lock.
4888 smp_mb__before_clear_bit();
4889 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4890 &bp->sp_rtnl_state);
4891 smp_mb__after_clear_bit();
4893 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4894 goto next_spqe;
4896 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4897 f_obj->complete_cmd(bp, f_obj,
4898 BNX2X_F_CMD_AFEX_VIFLISTS);
4899 bnx2x_after_afex_vif_lists(bp, elem);
4900 goto next_spqe;
4901 case EVENT_RING_OPCODE_FUNCTION_START:
4902 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4903 "got FUNC_START ramrod\n");
4904 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4905 break;
4907 goto next_spqe;
4909 case EVENT_RING_OPCODE_FUNCTION_STOP:
4910 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4911 "got FUNC_STOP ramrod\n");
4912 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4913 break;
4915 goto next_spqe;
4918 switch (opcode | bp->state) {
4919 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4920 BNX2X_STATE_OPEN):
4921 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4922 BNX2X_STATE_OPENING_WAIT4_PORT):
4923 cid = elem->message.data.eth_event.echo &
4924 BNX2X_SWCID_MASK;
4925 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4926 cid);
4927 rss_raw->clear_pending(rss_raw);
4928 break;
4930 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4931 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4932 case (EVENT_RING_OPCODE_SET_MAC |
4933 BNX2X_STATE_CLOSING_WAIT4_HALT):
4934 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4935 BNX2X_STATE_OPEN):
4936 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4937 BNX2X_STATE_DIAG):
4938 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4939 BNX2X_STATE_CLOSING_WAIT4_HALT):
4940 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4941 bnx2x_handle_classification_eqe(bp, elem);
4942 break;
4944 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4945 BNX2X_STATE_OPEN):
4946 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4947 BNX2X_STATE_DIAG):
4948 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4949 BNX2X_STATE_CLOSING_WAIT4_HALT):
4950 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4951 bnx2x_handle_mcast_eqe(bp);
4952 break;
4954 case (EVENT_RING_OPCODE_FILTERS_RULES |
4955 BNX2X_STATE_OPEN):
4956 case (EVENT_RING_OPCODE_FILTERS_RULES |
4957 BNX2X_STATE_DIAG):
4958 case (EVENT_RING_OPCODE_FILTERS_RULES |
4959 BNX2X_STATE_CLOSING_WAIT4_HALT):
4960 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4961 bnx2x_handle_rx_mode_eqe(bp);
4962 break;
4963 default:
4964 /* unknown event log error and continue */
4965 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4966 elem->message.opcode, bp->state);
4968 next_spqe:
4969 spqe_cnt++;
4970 } /* for */
4972 smp_mb__before_atomic_inc();
4973 atomic_add(spqe_cnt, &bp->eq_spq_left);
4975 bp->eq_cons = sw_cons;
4976 bp->eq_prod = sw_prod;
4977 /* Make sure that above mem writes were issued towards the memory */
4978 smp_wmb();
4980 /* update producer */
4981 bnx2x_update_eq_prod(bp, bp->eq_prod);
4984 static void bnx2x_sp_task(struct work_struct *work)
4986 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4987 u16 status;
4989 status = bnx2x_update_dsb_idx(bp);
4990 /* if (status == 0) */
4991 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4993 DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4995 /* HW attentions */
4996 if (status & BNX2X_DEF_SB_ATT_IDX) {
4997 bnx2x_attn_int(bp);
4998 status &= ~BNX2X_DEF_SB_ATT_IDX;
5001 /* SP events: STAT_QUERY and others */
5002 if (status & BNX2X_DEF_SB_IDX) {
5003 #ifdef BCM_CNIC
5004 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5006 if ((!NO_FCOE(bp)) &&
5007 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5009 * Prevent local bottom-halves from running as
5010 * we are going to change the local NAPI list.
5012 local_bh_disable();
5013 napi_schedule(&bnx2x_fcoe(bp, napi));
5014 local_bh_enable();
5016 #endif
5017 /* Handle EQ completions */
5018 bnx2x_eq_int(bp);
5020 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5021 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5023 status &= ~BNX2X_DEF_SB_IDX;
5026 if (unlikely(status))
5027 DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5028 status);
5030 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5031 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5033 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5034 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5035 &bp->sp_state)) {
5036 bnx2x_link_report(bp);
5037 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5041 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5043 struct net_device *dev = dev_instance;
5044 struct bnx2x *bp = netdev_priv(dev);
5046 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5047 IGU_INT_DISABLE, 0);
5049 #ifdef BNX2X_STOP_ON_ERROR
5050 if (unlikely(bp->panic))
5051 return IRQ_HANDLED;
5052 #endif
5054 #ifdef BCM_CNIC
5056 struct cnic_ops *c_ops;
5058 rcu_read_lock();
5059 c_ops = rcu_dereference(bp->cnic_ops);
5060 if (c_ops)
5061 c_ops->cnic_handler(bp->cnic_data, NULL);
5062 rcu_read_unlock();
5064 #endif
5065 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5067 return IRQ_HANDLED;
5070 /* end of slow path */
5073 void bnx2x_drv_pulse(struct bnx2x *bp)
5075 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5076 bp->fw_drv_pulse_wr_seq);
5080 static void bnx2x_timer(unsigned long data)
5082 struct bnx2x *bp = (struct bnx2x *) data;
5084 if (!netif_running(bp->dev))
5085 return;
5087 if (!BP_NOMCP(bp)) {
5088 int mb_idx = BP_FW_MB_IDX(bp);
5089 u32 drv_pulse;
5090 u32 mcp_pulse;
5092 ++bp->fw_drv_pulse_wr_seq;
5093 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5094 /* TBD - add SYSTEM_TIME */
5095 drv_pulse = bp->fw_drv_pulse_wr_seq;
5096 bnx2x_drv_pulse(bp);
5098 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5099 MCP_PULSE_SEQ_MASK);
5100 /* The delta between driver pulse and mcp response
5101 * should be 1 (before mcp response) or 0 (after mcp response)
5103 if ((drv_pulse != mcp_pulse) &&
5104 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5105 /* someone lost a heartbeat... */
5106 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5107 drv_pulse, mcp_pulse);
5111 if (bp->state == BNX2X_STATE_OPEN)
5112 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5114 mod_timer(&bp->timer, jiffies + bp->current_interval);
5117 /* end of Statistics */
5119 /* nic init */
5122 * nic init service functions
5125 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5127 u32 i;
5128 if (!(len%4) && !(addr%4))
5129 for (i = 0; i < len; i += 4)
5130 REG_WR(bp, addr + i, fill);
5131 else
5132 for (i = 0; i < len; i++)
5133 REG_WR8(bp, addr + i, fill);
5137 /* helper: writes FP SP data to FW - data_size in dwords */
5138 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5139 int fw_sb_id,
5140 u32 *sb_data_p,
5141 u32 data_size)
5143 int index;
5144 for (index = 0; index < data_size; index++)
5145 REG_WR(bp, BAR_CSTRORM_INTMEM +
5146 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5147 sizeof(u32)*index,
5148 *(sb_data_p + index));
5151 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5153 u32 *sb_data_p;
5154 u32 data_size = 0;
5155 struct hc_status_block_data_e2 sb_data_e2;
5156 struct hc_status_block_data_e1x sb_data_e1x;
5158 /* disable the function first */
5159 if (!CHIP_IS_E1x(bp)) {
5160 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5161 sb_data_e2.common.state = SB_DISABLED;
5162 sb_data_e2.common.p_func.vf_valid = false;
5163 sb_data_p = (u32 *)&sb_data_e2;
5164 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5165 } else {
5166 memset(&sb_data_e1x, 0,
5167 sizeof(struct hc_status_block_data_e1x));
5168 sb_data_e1x.common.state = SB_DISABLED;
5169 sb_data_e1x.common.p_func.vf_valid = false;
5170 sb_data_p = (u32 *)&sb_data_e1x;
5171 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5173 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5175 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5176 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5177 CSTORM_STATUS_BLOCK_SIZE);
5178 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5179 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5180 CSTORM_SYNC_BLOCK_SIZE);
5183 /* helper: writes SP SB data to FW */
5184 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5185 struct hc_sp_status_block_data *sp_sb_data)
5187 int func = BP_FUNC(bp);
5188 int i;
5189 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5190 REG_WR(bp, BAR_CSTRORM_INTMEM +
5191 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5192 i*sizeof(u32),
5193 *((u32 *)sp_sb_data + i));
5196 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5198 int func = BP_FUNC(bp);
5199 struct hc_sp_status_block_data sp_sb_data;
5200 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5202 sp_sb_data.state = SB_DISABLED;
5203 sp_sb_data.p_func.vf_valid = false;
5205 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5207 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5208 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5209 CSTORM_SP_STATUS_BLOCK_SIZE);
5210 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5211 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5212 CSTORM_SP_SYNC_BLOCK_SIZE);
5217 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5218 int igu_sb_id, int igu_seg_id)
5220 hc_sm->igu_sb_id = igu_sb_id;
5221 hc_sm->igu_seg_id = igu_seg_id;
5222 hc_sm->timer_value = 0xFF;
5223 hc_sm->time_to_expire = 0xFFFFFFFF;
5227 /* allocates state machine ids. */
5228 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5230 /* zero out state machine indices */
5231 /* rx indices */
5232 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5234 /* tx indices */
5235 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5236 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5237 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5238 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5240 /* map indices */
5241 /* rx indices */
5242 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5243 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5245 /* tx indices */
5246 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5247 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5248 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5249 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5250 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5251 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5252 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5253 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5256 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5257 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5259 int igu_seg_id;
5261 struct hc_status_block_data_e2 sb_data_e2;
5262 struct hc_status_block_data_e1x sb_data_e1x;
5263 struct hc_status_block_sm *hc_sm_p;
5264 int data_size;
5265 u32 *sb_data_p;
5267 if (CHIP_INT_MODE_IS_BC(bp))
5268 igu_seg_id = HC_SEG_ACCESS_NORM;
5269 else
5270 igu_seg_id = IGU_SEG_ACCESS_NORM;
5272 bnx2x_zero_fp_sb(bp, fw_sb_id);
5274 if (!CHIP_IS_E1x(bp)) {
5275 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5276 sb_data_e2.common.state = SB_ENABLED;
5277 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5278 sb_data_e2.common.p_func.vf_id = vfid;
5279 sb_data_e2.common.p_func.vf_valid = vf_valid;
5280 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5281 sb_data_e2.common.same_igu_sb_1b = true;
5282 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5283 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5284 hc_sm_p = sb_data_e2.common.state_machine;
5285 sb_data_p = (u32 *)&sb_data_e2;
5286 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5287 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5288 } else {
5289 memset(&sb_data_e1x, 0,
5290 sizeof(struct hc_status_block_data_e1x));
5291 sb_data_e1x.common.state = SB_ENABLED;
5292 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5293 sb_data_e1x.common.p_func.vf_id = 0xff;
5294 sb_data_e1x.common.p_func.vf_valid = false;
5295 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5296 sb_data_e1x.common.same_igu_sb_1b = true;
5297 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5298 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5299 hc_sm_p = sb_data_e1x.common.state_machine;
5300 sb_data_p = (u32 *)&sb_data_e1x;
5301 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5302 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5305 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5306 igu_sb_id, igu_seg_id);
5307 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5308 igu_sb_id, igu_seg_id);
5310 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5312 /* write indecies to HW */
5313 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5316 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5317 u16 tx_usec, u16 rx_usec)
5319 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5320 false, rx_usec);
5321 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5322 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5323 tx_usec);
5324 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5325 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5326 tx_usec);
5327 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5328 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5329 tx_usec);
5332 static void bnx2x_init_def_sb(struct bnx2x *bp)
5334 struct host_sp_status_block *def_sb = bp->def_status_blk;
5335 dma_addr_t mapping = bp->def_status_blk_mapping;
5336 int igu_sp_sb_index;
5337 int igu_seg_id;
5338 int port = BP_PORT(bp);
5339 int func = BP_FUNC(bp);
5340 int reg_offset, reg_offset_en5;
5341 u64 section;
5342 int index;
5343 struct hc_sp_status_block_data sp_sb_data;
5344 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5346 if (CHIP_INT_MODE_IS_BC(bp)) {
5347 igu_sp_sb_index = DEF_SB_IGU_ID;
5348 igu_seg_id = HC_SEG_ACCESS_DEF;
5349 } else {
5350 igu_sp_sb_index = bp->igu_dsb_id;
5351 igu_seg_id = IGU_SEG_ACCESS_DEF;
5354 /* ATTN */
5355 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5356 atten_status_block);
5357 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5359 bp->attn_state = 0;
5361 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5362 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5363 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5364 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5365 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5366 int sindex;
5367 /* take care of sig[0]..sig[4] */
5368 for (sindex = 0; sindex < 4; sindex++)
5369 bp->attn_group[index].sig[sindex] =
5370 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5372 if (!CHIP_IS_E1x(bp))
5374 * enable5 is separate from the rest of the registers,
5375 * and therefore the address skip is 4
5376 * and not 16 between the different groups
5378 bp->attn_group[index].sig[4] = REG_RD(bp,
5379 reg_offset_en5 + 0x4*index);
5380 else
5381 bp->attn_group[index].sig[4] = 0;
5384 if (bp->common.int_block == INT_BLOCK_HC) {
5385 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5386 HC_REG_ATTN_MSG0_ADDR_L);
5388 REG_WR(bp, reg_offset, U64_LO(section));
5389 REG_WR(bp, reg_offset + 4, U64_HI(section));
5390 } else if (!CHIP_IS_E1x(bp)) {
5391 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5392 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5395 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5396 sp_sb);
5398 bnx2x_zero_sp_sb(bp);
5400 sp_sb_data.state = SB_ENABLED;
5401 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5402 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5403 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5404 sp_sb_data.igu_seg_id = igu_seg_id;
5405 sp_sb_data.p_func.pf_id = func;
5406 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5407 sp_sb_data.p_func.vf_id = 0xff;
5409 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5411 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5414 void bnx2x_update_coalesce(struct bnx2x *bp)
5416 int i;
5418 for_each_eth_queue(bp, i)
5419 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5420 bp->tx_ticks, bp->rx_ticks);
5423 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5425 spin_lock_init(&bp->spq_lock);
5426 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5428 bp->spq_prod_idx = 0;
5429 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5430 bp->spq_prod_bd = bp->spq;
5431 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5434 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5436 int i;
5437 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5438 union event_ring_elem *elem =
5439 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5441 elem->next_page.addr.hi =
5442 cpu_to_le32(U64_HI(bp->eq_mapping +
5443 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5444 elem->next_page.addr.lo =
5445 cpu_to_le32(U64_LO(bp->eq_mapping +
5446 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5448 bp->eq_cons = 0;
5449 bp->eq_prod = NUM_EQ_DESC;
5450 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5451 /* we want a warning message before it gets rought... */
5452 atomic_set(&bp->eq_spq_left,
5453 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5457 /* called with netif_addr_lock_bh() */
5458 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5459 unsigned long rx_mode_flags,
5460 unsigned long rx_accept_flags,
5461 unsigned long tx_accept_flags,
5462 unsigned long ramrod_flags)
5464 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5465 int rc;
5467 memset(&ramrod_param, 0, sizeof(ramrod_param));
5469 /* Prepare ramrod parameters */
5470 ramrod_param.cid = 0;
5471 ramrod_param.cl_id = cl_id;
5472 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5473 ramrod_param.func_id = BP_FUNC(bp);
5475 ramrod_param.pstate = &bp->sp_state;
5476 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5478 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5479 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5481 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5483 ramrod_param.ramrod_flags = ramrod_flags;
5484 ramrod_param.rx_mode_flags = rx_mode_flags;
5486 ramrod_param.rx_accept_flags = rx_accept_flags;
5487 ramrod_param.tx_accept_flags = tx_accept_flags;
5489 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5490 if (rc < 0) {
5491 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5492 return;
5496 /* called with netif_addr_lock_bh() */
5497 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5499 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5500 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5502 #ifdef BCM_CNIC
5503 if (!NO_FCOE(bp))
5505 /* Configure rx_mode of FCoE Queue */
5506 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5507 #endif
5509 switch (bp->rx_mode) {
5510 case BNX2X_RX_MODE_NONE:
5512 * 'drop all' supersedes any accept flags that may have been
5513 * passed to the function.
5515 break;
5516 case BNX2X_RX_MODE_NORMAL:
5517 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5518 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5519 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5521 /* internal switching mode */
5522 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5523 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5524 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5526 break;
5527 case BNX2X_RX_MODE_ALLMULTI:
5528 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5529 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5530 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5532 /* internal switching mode */
5533 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5534 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5535 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5537 break;
5538 case BNX2X_RX_MODE_PROMISC:
5539 /* According to deffinition of SI mode, iface in promisc mode
5540 * should receive matched and unmatched (in resolution of port)
5541 * unicast packets.
5543 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5544 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5545 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5546 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5548 /* internal switching mode */
5549 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5550 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5552 if (IS_MF_SI(bp))
5553 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5554 else
5555 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5557 break;
5558 default:
5559 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5560 return;
5563 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5564 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5565 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5568 __set_bit(RAMROD_RX, &ramrod_flags);
5569 __set_bit(RAMROD_TX, &ramrod_flags);
5571 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5572 tx_accept_flags, ramrod_flags);
5575 static void bnx2x_init_internal_common(struct bnx2x *bp)
5577 int i;
5579 if (IS_MF_SI(bp))
5581 * In switch independent mode, the TSTORM needs to accept
5582 * packets that failed classification, since approximate match
5583 * mac addresses aren't written to NIG LLH
5585 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5586 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5587 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5588 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5589 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5591 /* Zero this manually as its initialization is
5592 currently missing in the initTool */
5593 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5594 REG_WR(bp, BAR_USTRORM_INTMEM +
5595 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5596 if (!CHIP_IS_E1x(bp)) {
5597 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5598 CHIP_INT_MODE_IS_BC(bp) ?
5599 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5603 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5605 switch (load_code) {
5606 case FW_MSG_CODE_DRV_LOAD_COMMON:
5607 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5608 bnx2x_init_internal_common(bp);
5609 /* no break */
5611 case FW_MSG_CODE_DRV_LOAD_PORT:
5612 /* nothing to do */
5613 /* no break */
5615 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5616 /* internal memory per function is
5617 initialized inside bnx2x_pf_init */
5618 break;
5620 default:
5621 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5622 break;
5626 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5628 return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5631 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5633 return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5636 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5638 if (CHIP_IS_E1x(fp->bp))
5639 return BP_L_ID(fp->bp) + fp->index;
5640 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5641 return bnx2x_fp_igu_sb_id(fp);
5644 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5646 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5647 u8 cos;
5648 unsigned long q_type = 0;
5649 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5650 fp->rx_queue = fp_idx;
5651 fp->cid = fp_idx;
5652 fp->cl_id = bnx2x_fp_cl_id(fp);
5653 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5654 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5655 /* qZone id equals to FW (per path) client id */
5656 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5658 /* init shortcut */
5659 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5661 /* Setup SB indicies */
5662 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5664 /* Configure Queue State object */
5665 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5666 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5668 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5670 /* init tx data */
5671 for_each_cos_in_tx_queue(fp, cos) {
5672 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5673 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5674 FP_COS_TO_TXQ(fp, cos, bp),
5675 BNX2X_TX_SB_INDEX_BASE + cos, fp);
5676 cids[cos] = fp->txdata_ptr[cos]->cid;
5679 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5680 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5681 bnx2x_sp_mapping(bp, q_rdata), q_type);
5684 * Configure classification DBs: Always enable Tx switching
5686 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5688 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
5689 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5690 fp->igu_sb_id);
5691 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5692 fp->fw_sb_id, fp->igu_sb_id);
5694 bnx2x_update_fpsb_idx(fp);
5697 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5699 int i;
5701 for (i = 1; i <= NUM_TX_RINGS; i++) {
5702 struct eth_tx_next_bd *tx_next_bd =
5703 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5705 tx_next_bd->addr_hi =
5706 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5707 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5708 tx_next_bd->addr_lo =
5709 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5710 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5713 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5714 txdata->tx_db.data.zero_fill1 = 0;
5715 txdata->tx_db.data.prod = 0;
5717 txdata->tx_pkt_prod = 0;
5718 txdata->tx_pkt_cons = 0;
5719 txdata->tx_bd_prod = 0;
5720 txdata->tx_bd_cons = 0;
5721 txdata->tx_pkt = 0;
5724 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5726 int i;
5727 u8 cos;
5729 for_each_tx_queue(bp, i)
5730 for_each_cos_in_tx_queue(&bp->fp[i], cos)
5731 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
5734 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5736 int i;
5738 for_each_eth_queue(bp, i)
5739 bnx2x_init_eth_fp(bp, i);
5740 #ifdef BCM_CNIC
5741 if (!NO_FCOE(bp))
5742 bnx2x_init_fcoe_fp(bp);
5744 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5745 BNX2X_VF_ID_INVALID, false,
5746 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5748 #endif
5750 /* Initialize MOD_ABS interrupts */
5751 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5752 bp->common.shmem_base, bp->common.shmem2_base,
5753 BP_PORT(bp));
5754 /* ensure status block indices were read */
5755 rmb();
5757 bnx2x_init_def_sb(bp);
5758 bnx2x_update_dsb_idx(bp);
5759 bnx2x_init_rx_rings(bp);
5760 bnx2x_init_tx_rings(bp);
5761 bnx2x_init_sp_ring(bp);
5762 bnx2x_init_eq_ring(bp);
5763 bnx2x_init_internal(bp, load_code);
5764 bnx2x_pf_init(bp);
5765 bnx2x_stats_init(bp);
5767 /* flush all before enabling interrupts */
5768 mb();
5769 mmiowb();
5771 bnx2x_int_enable(bp);
5773 /* Check for SPIO5 */
5774 bnx2x_attn_int_deasserted0(bp,
5775 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5776 AEU_INPUTS_ATTN_BITS_SPIO5);
5779 /* end of nic init */
5782 * gzip service functions
5785 static int bnx2x_gunzip_init(struct bnx2x *bp)
5787 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5788 &bp->gunzip_mapping, GFP_KERNEL);
5789 if (bp->gunzip_buf == NULL)
5790 goto gunzip_nomem1;
5792 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5793 if (bp->strm == NULL)
5794 goto gunzip_nomem2;
5796 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5797 if (bp->strm->workspace == NULL)
5798 goto gunzip_nomem3;
5800 return 0;
5802 gunzip_nomem3:
5803 kfree(bp->strm);
5804 bp->strm = NULL;
5806 gunzip_nomem2:
5807 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5808 bp->gunzip_mapping);
5809 bp->gunzip_buf = NULL;
5811 gunzip_nomem1:
5812 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5813 return -ENOMEM;
5816 static void bnx2x_gunzip_end(struct bnx2x *bp)
5818 if (bp->strm) {
5819 vfree(bp->strm->workspace);
5820 kfree(bp->strm);
5821 bp->strm = NULL;
5824 if (bp->gunzip_buf) {
5825 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5826 bp->gunzip_mapping);
5827 bp->gunzip_buf = NULL;
5831 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5833 int n, rc;
5835 /* check gzip header */
5836 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5837 BNX2X_ERR("Bad gzip header\n");
5838 return -EINVAL;
5841 n = 10;
5843 #define FNAME 0x8
5845 if (zbuf[3] & FNAME)
5846 while ((zbuf[n++] != 0) && (n < len));
5848 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5849 bp->strm->avail_in = len - n;
5850 bp->strm->next_out = bp->gunzip_buf;
5851 bp->strm->avail_out = FW_BUF_SIZE;
5853 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5854 if (rc != Z_OK)
5855 return rc;
5857 rc = zlib_inflate(bp->strm, Z_FINISH);
5858 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5859 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5860 bp->strm->msg);
5862 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5863 if (bp->gunzip_outlen & 0x3)
5864 netdev_err(bp->dev,
5865 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5866 bp->gunzip_outlen);
5867 bp->gunzip_outlen >>= 2;
5869 zlib_inflateEnd(bp->strm);
5871 if (rc == Z_STREAM_END)
5872 return 0;
5874 return rc;
5877 /* nic load/unload */
5880 * General service functions
5883 /* send a NIG loopback debug packet */
5884 static void bnx2x_lb_pckt(struct bnx2x *bp)
5886 u32 wb_write[3];
5888 /* Ethernet source and destination addresses */
5889 wb_write[0] = 0x55555555;
5890 wb_write[1] = 0x55555555;
5891 wb_write[2] = 0x20; /* SOP */
5892 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5894 /* NON-IP protocol */
5895 wb_write[0] = 0x09000000;
5896 wb_write[1] = 0x55555555;
5897 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5898 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5901 /* some of the internal memories
5902 * are not directly readable from the driver
5903 * to test them we send debug packets
5905 static int bnx2x_int_mem_test(struct bnx2x *bp)
5907 int factor;
5908 int count, i;
5909 u32 val = 0;
5911 if (CHIP_REV_IS_FPGA(bp))
5912 factor = 120;
5913 else if (CHIP_REV_IS_EMUL(bp))
5914 factor = 200;
5915 else
5916 factor = 1;
5918 /* Disable inputs of parser neighbor blocks */
5919 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5920 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5921 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5922 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5924 /* Write 0 to parser credits for CFC search request */
5925 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5927 /* send Ethernet packet */
5928 bnx2x_lb_pckt(bp);
5930 /* TODO do i reset NIG statistic? */
5931 /* Wait until NIG register shows 1 packet of size 0x10 */
5932 count = 1000 * factor;
5933 while (count) {
5935 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5936 val = *bnx2x_sp(bp, wb_data[0]);
5937 if (val == 0x10)
5938 break;
5940 msleep(10);
5941 count--;
5943 if (val != 0x10) {
5944 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5945 return -1;
5948 /* Wait until PRS register shows 1 packet */
5949 count = 1000 * factor;
5950 while (count) {
5951 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5952 if (val == 1)
5953 break;
5955 msleep(10);
5956 count--;
5958 if (val != 0x1) {
5959 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5960 return -2;
5963 /* Reset and init BRB, PRS */
5964 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5965 msleep(50);
5966 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5967 msleep(50);
5968 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5969 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5971 DP(NETIF_MSG_HW, "part2\n");
5973 /* Disable inputs of parser neighbor blocks */
5974 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5975 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5976 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5977 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5979 /* Write 0 to parser credits for CFC search request */
5980 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5982 /* send 10 Ethernet packets */
5983 for (i = 0; i < 10; i++)
5984 bnx2x_lb_pckt(bp);
5986 /* Wait until NIG register shows 10 + 1
5987 packets of size 11*0x10 = 0xb0 */
5988 count = 1000 * factor;
5989 while (count) {
5991 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5992 val = *bnx2x_sp(bp, wb_data[0]);
5993 if (val == 0xb0)
5994 break;
5996 msleep(10);
5997 count--;
5999 if (val != 0xb0) {
6000 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6001 return -3;
6004 /* Wait until PRS register shows 2 packets */
6005 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6006 if (val != 2)
6007 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6009 /* Write 1 to parser credits for CFC search request */
6010 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6012 /* Wait until PRS register shows 3 packets */
6013 msleep(10 * factor);
6014 /* Wait until NIG register shows 1 packet of size 0x10 */
6015 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6016 if (val != 3)
6017 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6019 /* clear NIG EOP FIFO */
6020 for (i = 0; i < 11; i++)
6021 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6022 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6023 if (val != 1) {
6024 BNX2X_ERR("clear of NIG failed\n");
6025 return -4;
6028 /* Reset and init BRB, PRS, NIG */
6029 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6030 msleep(50);
6031 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6032 msleep(50);
6033 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6034 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6035 #ifndef BCM_CNIC
6036 /* set NIC mode */
6037 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6038 #endif
6040 /* Enable inputs of parser neighbor blocks */
6041 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6042 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6043 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6044 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6046 DP(NETIF_MSG_HW, "done\n");
6048 return 0; /* OK */
6051 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6053 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6054 if (!CHIP_IS_E1x(bp))
6055 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6056 else
6057 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6058 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6059 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6061 * mask read length error interrupts in brb for parser
6062 * (parsing unit and 'checksum and crc' unit)
6063 * these errors are legal (PU reads fixed length and CAC can cause
6064 * read length error on truncated packets)
6066 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6067 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6068 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6069 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6070 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6071 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6072 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6073 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6074 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6075 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6076 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6077 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6078 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6079 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6080 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6081 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6082 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6083 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6084 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6086 if (CHIP_REV_IS_FPGA(bp))
6087 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
6088 else if (!CHIP_IS_E1x(bp))
6089 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
6090 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
6091 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
6092 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
6093 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
6094 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
6095 else
6096 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
6097 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6098 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6099 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6100 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6102 if (!CHIP_IS_E1x(bp))
6103 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6104 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6106 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6107 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6108 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6109 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6112 static void bnx2x_reset_common(struct bnx2x *bp)
6114 u32 val = 0x1400;
6116 /* reset_common */
6117 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6118 0xd3ffff7f);
6120 if (CHIP_IS_E3(bp)) {
6121 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6122 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6125 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6128 static void bnx2x_setup_dmae(struct bnx2x *bp)
6130 bp->dmae_ready = 0;
6131 spin_lock_init(&bp->dmae_lock);
6134 static void bnx2x_init_pxp(struct bnx2x *bp)
6136 u16 devctl;
6137 int r_order, w_order;
6139 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6140 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6141 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6142 if (bp->mrrs == -1)
6143 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6144 else {
6145 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6146 r_order = bp->mrrs;
6149 bnx2x_init_pxp_arb(bp, r_order, w_order);
6152 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6154 int is_required;
6155 u32 val;
6156 int port;
6158 if (BP_NOMCP(bp))
6159 return;
6161 is_required = 0;
6162 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6163 SHARED_HW_CFG_FAN_FAILURE_MASK;
6165 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6166 is_required = 1;
6169 * The fan failure mechanism is usually related to the PHY type since
6170 * the power consumption of the board is affected by the PHY. Currently,
6171 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6173 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6174 for (port = PORT_0; port < PORT_MAX; port++) {
6175 is_required |=
6176 bnx2x_fan_failure_det_req(
6178 bp->common.shmem_base,
6179 bp->common.shmem2_base,
6180 port);
6183 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6185 if (is_required == 0)
6186 return;
6188 /* Fan failure is indicated by SPIO 5 */
6189 bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
6190 MISC_REGISTERS_SPIO_INPUT_HI_Z);
6192 /* set to active low mode */
6193 val = REG_RD(bp, MISC_REG_SPIO_INT);
6194 val |= ((1 << MISC_REGISTERS_SPIO_5) <<
6195 MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
6196 REG_WR(bp, MISC_REG_SPIO_INT, val);
6198 /* enable interrupt to signal the IGU */
6199 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6200 val |= (1 << MISC_REGISTERS_SPIO_5);
6201 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6204 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6206 u32 offset = 0;
6208 if (CHIP_IS_E1(bp))
6209 return;
6210 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6211 return;
6213 switch (BP_ABS_FUNC(bp)) {
6214 case 0:
6215 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6216 break;
6217 case 1:
6218 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6219 break;
6220 case 2:
6221 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6222 break;
6223 case 3:
6224 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6225 break;
6226 case 4:
6227 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6228 break;
6229 case 5:
6230 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6231 break;
6232 case 6:
6233 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6234 break;
6235 case 7:
6236 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6237 break;
6238 default:
6239 return;
6242 REG_WR(bp, offset, pretend_func_num);
6243 REG_RD(bp, offset);
6244 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6247 void bnx2x_pf_disable(struct bnx2x *bp)
6249 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6250 val &= ~IGU_PF_CONF_FUNC_EN;
6252 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6253 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6254 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6257 static void bnx2x__common_init_phy(struct bnx2x *bp)
6259 u32 shmem_base[2], shmem2_base[2];
6260 shmem_base[0] = bp->common.shmem_base;
6261 shmem2_base[0] = bp->common.shmem2_base;
6262 if (!CHIP_IS_E1x(bp)) {
6263 shmem_base[1] =
6264 SHMEM2_RD(bp, other_shmem_base_addr);
6265 shmem2_base[1] =
6266 SHMEM2_RD(bp, other_shmem2_base_addr);
6268 bnx2x_acquire_phy_lock(bp);
6269 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6270 bp->common.chip_id);
6271 bnx2x_release_phy_lock(bp);
6275 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6277 * @bp: driver handle
6279 static int bnx2x_init_hw_common(struct bnx2x *bp)
6281 u32 val;
6283 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
6286 * take the UNDI lock to protect undi_unload flow from accessing
6287 * registers while we're resetting the chip
6289 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6291 bnx2x_reset_common(bp);
6292 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6294 val = 0xfffc;
6295 if (CHIP_IS_E3(bp)) {
6296 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6297 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6299 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6301 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6303 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6305 if (!CHIP_IS_E1x(bp)) {
6306 u8 abs_func_id;
6309 * 4-port mode or 2-port mode we need to turn of master-enable
6310 * for everyone, after that, turn it back on for self.
6311 * so, we disregard multi-function or not, and always disable
6312 * for all functions on the given path, this means 0,2,4,6 for
6313 * path 0 and 1,3,5,7 for path 1
6315 for (abs_func_id = BP_PATH(bp);
6316 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6317 if (abs_func_id == BP_ABS_FUNC(bp)) {
6318 REG_WR(bp,
6319 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6321 continue;
6324 bnx2x_pretend_func(bp, abs_func_id);
6325 /* clear pf enable */
6326 bnx2x_pf_disable(bp);
6327 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6331 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6332 if (CHIP_IS_E1(bp)) {
6333 /* enable HW interrupt from PXP on USDM overflow
6334 bit 16 on INT_MASK_0 */
6335 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6338 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6339 bnx2x_init_pxp(bp);
6341 #ifdef __BIG_ENDIAN
6342 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6343 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6344 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6345 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6346 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6347 /* make sure this value is 0 */
6348 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6350 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6351 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6352 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6353 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6354 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6355 #endif
6357 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6359 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6360 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6362 /* let the HW do it's magic ... */
6363 msleep(100);
6364 /* finish PXP init */
6365 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6366 if (val != 1) {
6367 BNX2X_ERR("PXP2 CFG failed\n");
6368 return -EBUSY;
6370 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6371 if (val != 1) {
6372 BNX2X_ERR("PXP2 RD_INIT failed\n");
6373 return -EBUSY;
6376 /* Timers bug workaround E2 only. We need to set the entire ILT to
6377 * have entries with value "0" and valid bit on.
6378 * This needs to be done by the first PF that is loaded in a path
6379 * (i.e. common phase)
6381 if (!CHIP_IS_E1x(bp)) {
6382 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6383 * (i.e. vnic3) to start even if it is marked as "scan-off".
6384 * This occurs when a different function (func2,3) is being marked
6385 * as "scan-off". Real-life scenario for example: if a driver is being
6386 * load-unloaded while func6,7 are down. This will cause the timer to access
6387 * the ilt, translate to a logical address and send a request to read/write.
6388 * Since the ilt for the function that is down is not valid, this will cause
6389 * a translation error which is unrecoverable.
6390 * The Workaround is intended to make sure that when this happens nothing fatal
6391 * will occur. The workaround:
6392 * 1. First PF driver which loads on a path will:
6393 * a. After taking the chip out of reset, by using pretend,
6394 * it will write "0" to the following registers of
6395 * the other vnics.
6396 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6397 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6398 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6399 * And for itself it will write '1' to
6400 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6401 * dmae-operations (writing to pram for example.)
6402 * note: can be done for only function 6,7 but cleaner this
6403 * way.
6404 * b. Write zero+valid to the entire ILT.
6405 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6406 * VNIC3 (of that port). The range allocated will be the
6407 * entire ILT. This is needed to prevent ILT range error.
6408 * 2. Any PF driver load flow:
6409 * a. ILT update with the physical addresses of the allocated
6410 * logical pages.
6411 * b. Wait 20msec. - note that this timeout is needed to make
6412 * sure there are no requests in one of the PXP internal
6413 * queues with "old" ILT addresses.
6414 * c. PF enable in the PGLC.
6415 * d. Clear the was_error of the PF in the PGLC. (could have
6416 * occured while driver was down)
6417 * e. PF enable in the CFC (WEAK + STRONG)
6418 * f. Timers scan enable
6419 * 3. PF driver unload flow:
6420 * a. Clear the Timers scan_en.
6421 * b. Polling for scan_on=0 for that PF.
6422 * c. Clear the PF enable bit in the PXP.
6423 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6424 * e. Write zero+valid to all ILT entries (The valid bit must
6425 * stay set)
6426 * f. If this is VNIC 3 of a port then also init
6427 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6428 * to the last enrty in the ILT.
6430 * Notes:
6431 * Currently the PF error in the PGLC is non recoverable.
6432 * In the future the there will be a recovery routine for this error.
6433 * Currently attention is masked.
6434 * Having an MCP lock on the load/unload process does not guarantee that
6435 * there is no Timer disable during Func6/7 enable. This is because the
6436 * Timers scan is currently being cleared by the MCP on FLR.
6437 * Step 2.d can be done only for PF6/7 and the driver can also check if
6438 * there is error before clearing it. But the flow above is simpler and
6439 * more general.
6440 * All ILT entries are written by zero+valid and not just PF6/7
6441 * ILT entries since in the future the ILT entries allocation for
6442 * PF-s might be dynamic.
6444 struct ilt_client_info ilt_cli;
6445 struct bnx2x_ilt ilt;
6446 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6447 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6449 /* initialize dummy TM client */
6450 ilt_cli.start = 0;
6451 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6452 ilt_cli.client_num = ILT_CLIENT_TM;
6454 /* Step 1: set zeroes to all ilt page entries with valid bit on
6455 * Step 2: set the timers first/last ilt entry to point
6456 * to the entire range to prevent ILT range error for 3rd/4th
6457 * vnic (this code assumes existance of the vnic)
6459 * both steps performed by call to bnx2x_ilt_client_init_op()
6460 * with dummy TM client
6462 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6463 * and his brother are split registers
6465 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6466 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6467 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6469 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6470 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6471 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6475 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6476 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6478 if (!CHIP_IS_E1x(bp)) {
6479 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6480 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6481 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6483 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6485 /* let the HW do it's magic ... */
6486 do {
6487 msleep(200);
6488 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6489 } while (factor-- && (val != 1));
6491 if (val != 1) {
6492 BNX2X_ERR("ATC_INIT failed\n");
6493 return -EBUSY;
6497 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6499 /* clean the DMAE memory */
6500 bp->dmae_ready = 1;
6501 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6503 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6505 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6507 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6509 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6511 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6512 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6513 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6514 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6516 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6519 /* QM queues pointers table */
6520 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6522 /* soft reset pulse */
6523 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6524 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6526 #ifdef BCM_CNIC
6527 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6528 #endif
6530 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6531 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6532 if (!CHIP_REV_IS_SLOW(bp))
6533 /* enable hw interrupt from doorbell Q */
6534 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6536 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6538 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6539 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6541 if (!CHIP_IS_E1(bp))
6542 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6544 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6545 if (IS_MF_AFEX(bp)) {
6546 /* configure that VNTag and VLAN headers must be
6547 * received in afex mode
6549 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6550 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6551 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6552 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6553 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6554 } else {
6555 /* Bit-map indicating which L2 hdrs may appear
6556 * after the basic Ethernet header
6558 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6559 bp->path_has_ovlan ? 7 : 6);
6563 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6564 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6565 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6566 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6568 if (!CHIP_IS_E1x(bp)) {
6569 /* reset VFC memories */
6570 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6571 VFC_MEMORIES_RST_REG_CAM_RST |
6572 VFC_MEMORIES_RST_REG_RAM_RST);
6573 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6574 VFC_MEMORIES_RST_REG_CAM_RST |
6575 VFC_MEMORIES_RST_REG_RAM_RST);
6577 msleep(20);
6580 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6581 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6582 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6583 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6585 /* sync semi rtc */
6586 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6587 0x80000000);
6588 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6589 0x80000000);
6591 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6592 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6593 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6595 if (!CHIP_IS_E1x(bp)) {
6596 if (IS_MF_AFEX(bp)) {
6597 /* configure that VNTag and VLAN headers must be
6598 * sent in afex mode
6600 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6601 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6602 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6603 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6604 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6605 } else {
6606 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6607 bp->path_has_ovlan ? 7 : 6);
6611 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6613 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6615 #ifdef BCM_CNIC
6616 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6617 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6618 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6619 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6620 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6621 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6622 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6623 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6624 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6625 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6626 #endif
6627 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6629 if (sizeof(union cdu_context) != 1024)
6630 /* we currently assume that a context is 1024 bytes */
6631 dev_alert(&bp->pdev->dev,
6632 "please adjust the size of cdu_context(%ld)\n",
6633 (long)sizeof(union cdu_context));
6635 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6636 val = (4 << 24) + (0 << 12) + 1024;
6637 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6639 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6640 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6641 /* enable context validation interrupt from CFC */
6642 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6644 /* set the thresholds to prevent CFC/CDU race */
6645 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6647 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6649 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6650 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6652 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6653 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6655 /* Reset PCIE errors for debug */
6656 REG_WR(bp, 0x2814, 0xffffffff);
6657 REG_WR(bp, 0x3820, 0xffffffff);
6659 if (!CHIP_IS_E1x(bp)) {
6660 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6661 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6662 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6663 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6664 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6665 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6666 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6667 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6668 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6669 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6670 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6673 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6674 if (!CHIP_IS_E1(bp)) {
6675 /* in E3 this done in per-port section */
6676 if (!CHIP_IS_E3(bp))
6677 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6679 if (CHIP_IS_E1H(bp))
6680 /* not applicable for E2 (and above ...) */
6681 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6683 if (CHIP_REV_IS_SLOW(bp))
6684 msleep(200);
6686 /* finish CFC init */
6687 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6688 if (val != 1) {
6689 BNX2X_ERR("CFC LL_INIT failed\n");
6690 return -EBUSY;
6692 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6693 if (val != 1) {
6694 BNX2X_ERR("CFC AC_INIT failed\n");
6695 return -EBUSY;
6697 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6698 if (val != 1) {
6699 BNX2X_ERR("CFC CAM_INIT failed\n");
6700 return -EBUSY;
6702 REG_WR(bp, CFC_REG_DEBUG0, 0);
6704 if (CHIP_IS_E1(bp)) {
6705 /* read NIG statistic
6706 to see if this is our first up since powerup */
6707 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6708 val = *bnx2x_sp(bp, wb_data[0]);
6710 /* do internal memory self test */
6711 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6712 BNX2X_ERR("internal mem self test failed\n");
6713 return -EBUSY;
6717 bnx2x_setup_fan_failure_detection(bp);
6719 /* clear PXP2 attentions */
6720 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6722 bnx2x_enable_blocks_attention(bp);
6723 bnx2x_enable_blocks_parity(bp);
6725 if (!BP_NOMCP(bp)) {
6726 if (CHIP_IS_E1x(bp))
6727 bnx2x__common_init_phy(bp);
6728 } else
6729 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6731 return 0;
6735 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6737 * @bp: driver handle
6739 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6741 int rc = bnx2x_init_hw_common(bp);
6743 if (rc)
6744 return rc;
6746 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6747 if (!BP_NOMCP(bp))
6748 bnx2x__common_init_phy(bp);
6750 return 0;
6753 static int bnx2x_init_hw_port(struct bnx2x *bp)
6755 int port = BP_PORT(bp);
6756 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6757 u32 low, high;
6758 u32 val;
6761 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
6763 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6765 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6766 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6767 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6769 /* Timers bug workaround: disables the pf_master bit in pglue at
6770 * common phase, we need to enable it here before any dmae access are
6771 * attempted. Therefore we manually added the enable-master to the
6772 * port phase (it also happens in the function phase)
6774 if (!CHIP_IS_E1x(bp))
6775 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6777 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6778 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6779 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6780 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6782 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6783 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6784 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6785 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6787 /* QM cid (connection) count */
6788 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6790 #ifdef BCM_CNIC
6791 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6792 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6793 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6794 #endif
6796 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6798 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6799 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6801 if (IS_MF(bp))
6802 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6803 else if (bp->dev->mtu > 4096) {
6804 if (bp->flags & ONE_PORT_FLAG)
6805 low = 160;
6806 else {
6807 val = bp->dev->mtu;
6808 /* (24*1024 + val*4)/256 */
6809 low = 96 + (val/64) +
6810 ((val % 64) ? 1 : 0);
6812 } else
6813 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6814 high = low + 56; /* 14*1024/256 */
6815 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6816 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6819 if (CHIP_MODE_IS_4_PORT(bp))
6820 REG_WR(bp, (BP_PORT(bp) ?
6821 BRB1_REG_MAC_GUARANTIED_1 :
6822 BRB1_REG_MAC_GUARANTIED_0), 40);
6825 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6826 if (CHIP_IS_E3B0(bp)) {
6827 if (IS_MF_AFEX(bp)) {
6828 /* configure headers for AFEX mode */
6829 REG_WR(bp, BP_PORT(bp) ?
6830 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6831 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6832 REG_WR(bp, BP_PORT(bp) ?
6833 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6834 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6835 REG_WR(bp, BP_PORT(bp) ?
6836 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6837 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6838 } else {
6839 /* Ovlan exists only if we are in multi-function +
6840 * switch-dependent mode, in switch-independent there
6841 * is no ovlan headers
6843 REG_WR(bp, BP_PORT(bp) ?
6844 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6845 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6846 (bp->path_has_ovlan ? 7 : 6));
6850 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6851 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6852 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6853 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6855 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6856 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6857 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6858 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6860 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6861 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6863 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6865 if (CHIP_IS_E1x(bp)) {
6866 /* configure PBF to work without PAUSE mtu 9000 */
6867 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6869 /* update threshold */
6870 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6871 /* update init credit */
6872 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6874 /* probe changes */
6875 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6876 udelay(50);
6877 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6880 #ifdef BCM_CNIC
6881 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6882 #endif
6883 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6884 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6886 if (CHIP_IS_E1(bp)) {
6887 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6888 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6890 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6892 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6894 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6895 /* init aeu_mask_attn_func_0/1:
6896 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6897 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6898 * bits 4-7 are used for "per vn group attention" */
6899 val = IS_MF(bp) ? 0xF7 : 0x7;
6900 /* Enable DCBX attention for all but E1 */
6901 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6902 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6904 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6906 if (!CHIP_IS_E1x(bp)) {
6907 /* Bit-map indicating which L2 hdrs may appear after the
6908 * basic Ethernet header
6910 if (IS_MF_AFEX(bp))
6911 REG_WR(bp, BP_PORT(bp) ?
6912 NIG_REG_P1_HDRS_AFTER_BASIC :
6913 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6914 else
6915 REG_WR(bp, BP_PORT(bp) ?
6916 NIG_REG_P1_HDRS_AFTER_BASIC :
6917 NIG_REG_P0_HDRS_AFTER_BASIC,
6918 IS_MF_SD(bp) ? 7 : 6);
6920 if (CHIP_IS_E3(bp))
6921 REG_WR(bp, BP_PORT(bp) ?
6922 NIG_REG_LLH1_MF_MODE :
6923 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6925 if (!CHIP_IS_E3(bp))
6926 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6928 if (!CHIP_IS_E1(bp)) {
6929 /* 0x2 disable mf_ov, 0x1 enable */
6930 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6931 (IS_MF_SD(bp) ? 0x1 : 0x2));
6933 if (!CHIP_IS_E1x(bp)) {
6934 val = 0;
6935 switch (bp->mf_mode) {
6936 case MULTI_FUNCTION_SD:
6937 val = 1;
6938 break;
6939 case MULTI_FUNCTION_SI:
6940 case MULTI_FUNCTION_AFEX:
6941 val = 2;
6942 break;
6945 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6946 NIG_REG_LLH0_CLS_TYPE), val);
6949 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6950 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6951 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6956 /* If SPIO5 is set to generate interrupts, enable it for this port */
6957 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6958 if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6959 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6960 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6961 val = REG_RD(bp, reg_addr);
6962 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6963 REG_WR(bp, reg_addr, val);
6966 return 0;
6969 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6971 int reg;
6972 u32 wb_write[2];
6974 if (CHIP_IS_E1(bp))
6975 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6976 else
6977 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6979 wb_write[0] = ONCHIP_ADDR1(addr);
6980 wb_write[1] = ONCHIP_ADDR2(addr);
6981 REG_WR_DMAE(bp, reg, wb_write, 2);
6984 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
6985 u8 idu_sb_id, bool is_Pf)
6987 u32 data, ctl, cnt = 100;
6988 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
6989 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
6990 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
6991 u32 sb_bit = 1 << (idu_sb_id%32);
6992 u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
6993 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
6995 /* Not supported in BC mode */
6996 if (CHIP_INT_MODE_IS_BC(bp))
6997 return;
6999 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7000 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7001 IGU_REGULAR_CLEANUP_SET |
7002 IGU_REGULAR_BCLEANUP;
7004 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7005 func_encode << IGU_CTRL_REG_FID_SHIFT |
7006 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7008 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7009 data, igu_addr_data);
7010 REG_WR(bp, igu_addr_data, data);
7011 mmiowb();
7012 barrier();
7013 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7014 ctl, igu_addr_ctl);
7015 REG_WR(bp, igu_addr_ctl, ctl);
7016 mmiowb();
7017 barrier();
7019 /* wait for clean up to finish */
7020 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7021 msleep(20);
7024 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7025 DP(NETIF_MSG_HW,
7026 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7027 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7031 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7033 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7036 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7038 u32 i, base = FUNC_ILT_BASE(func);
7039 for (i = base; i < base + ILT_PER_FUNC; i++)
7040 bnx2x_ilt_wr(bp, i, 0);
7043 static int bnx2x_init_hw_func(struct bnx2x *bp)
7045 int port = BP_PORT(bp);
7046 int func = BP_FUNC(bp);
7047 int init_phase = PHASE_PF0 + func;
7048 struct bnx2x_ilt *ilt = BP_ILT(bp);
7049 u16 cdu_ilt_start;
7050 u32 addr, val;
7051 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7052 int i, main_mem_width, rc;
7054 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7056 /* FLR cleanup - hmmm */
7057 if (!CHIP_IS_E1x(bp)) {
7058 rc = bnx2x_pf_flr_clnup(bp);
7059 if (rc)
7060 return rc;
7063 /* set MSI reconfigure capability */
7064 if (bp->common.int_block == INT_BLOCK_HC) {
7065 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7066 val = REG_RD(bp, addr);
7067 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7068 REG_WR(bp, addr, val);
7071 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7072 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7074 ilt = BP_ILT(bp);
7075 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7077 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7078 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7079 ilt->lines[cdu_ilt_start + i].page_mapping =
7080 bp->context[i].cxt_mapping;
7081 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7083 bnx2x_ilt_init_op(bp, INITOP_SET);
7085 #ifdef BCM_CNIC
7086 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7088 /* T1 hash bits value determines the T1 number of entries */
7089 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7090 #endif
7092 #ifndef BCM_CNIC
7093 /* set NIC mode */
7094 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7095 #endif /* BCM_CNIC */
7097 if (!CHIP_IS_E1x(bp)) {
7098 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7100 /* Turn on a single ISR mode in IGU if driver is going to use
7101 * INT#x or MSI
7103 if (!(bp->flags & USING_MSIX_FLAG))
7104 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7106 * Timers workaround bug: function init part.
7107 * Need to wait 20msec after initializing ILT,
7108 * needed to make sure there are no requests in
7109 * one of the PXP internal queues with "old" ILT addresses
7111 msleep(20);
7113 * Master enable - Due to WB DMAE writes performed before this
7114 * register is re-initialized as part of the regular function
7115 * init
7117 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7118 /* Enable the function in IGU */
7119 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7122 bp->dmae_ready = 1;
7124 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7126 if (!CHIP_IS_E1x(bp))
7127 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7129 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7130 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7131 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7132 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7133 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7134 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7135 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7136 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7137 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7138 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7139 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7140 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7141 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7143 if (!CHIP_IS_E1x(bp))
7144 REG_WR(bp, QM_REG_PF_EN, 1);
7146 if (!CHIP_IS_E1x(bp)) {
7147 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7148 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7149 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7150 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7152 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7154 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7155 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7156 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7157 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7158 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7159 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7160 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7161 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7162 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7163 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7164 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7165 if (!CHIP_IS_E1x(bp))
7166 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7168 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7170 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7172 if (!CHIP_IS_E1x(bp))
7173 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7175 if (IS_MF(bp)) {
7176 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7177 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7180 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7182 /* HC init per function */
7183 if (bp->common.int_block == INT_BLOCK_HC) {
7184 if (CHIP_IS_E1H(bp)) {
7185 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7187 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7188 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7190 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7192 } else {
7193 int num_segs, sb_idx, prod_offset;
7195 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7197 if (!CHIP_IS_E1x(bp)) {
7198 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7199 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7202 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7204 if (!CHIP_IS_E1x(bp)) {
7205 int dsb_idx = 0;
7207 * Producer memory:
7208 * E2 mode: address 0-135 match to the mapping memory;
7209 * 136 - PF0 default prod; 137 - PF1 default prod;
7210 * 138 - PF2 default prod; 139 - PF3 default prod;
7211 * 140 - PF0 attn prod; 141 - PF1 attn prod;
7212 * 142 - PF2 attn prod; 143 - PF3 attn prod;
7213 * 144-147 reserved.
7215 * E1.5 mode - In backward compatible mode;
7216 * for non default SB; each even line in the memory
7217 * holds the U producer and each odd line hold
7218 * the C producer. The first 128 producers are for
7219 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7220 * producers are for the DSB for each PF.
7221 * Each PF has five segments: (the order inside each
7222 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7223 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7224 * 144-147 attn prods;
7226 /* non-default-status-blocks */
7227 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7228 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7229 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7230 prod_offset = (bp->igu_base_sb + sb_idx) *
7231 num_segs;
7233 for (i = 0; i < num_segs; i++) {
7234 addr = IGU_REG_PROD_CONS_MEMORY +
7235 (prod_offset + i) * 4;
7236 REG_WR(bp, addr, 0);
7238 /* send consumer update with value 0 */
7239 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7240 USTORM_ID, 0, IGU_INT_NOP, 1);
7241 bnx2x_igu_clear_sb(bp,
7242 bp->igu_base_sb + sb_idx);
7245 /* default-status-blocks */
7246 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7247 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7249 if (CHIP_MODE_IS_4_PORT(bp))
7250 dsb_idx = BP_FUNC(bp);
7251 else
7252 dsb_idx = BP_VN(bp);
7254 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7255 IGU_BC_BASE_DSB_PROD + dsb_idx :
7256 IGU_NORM_BASE_DSB_PROD + dsb_idx);
7259 * igu prods come in chunks of E1HVN_MAX (4) -
7260 * does not matters what is the current chip mode
7262 for (i = 0; i < (num_segs * E1HVN_MAX);
7263 i += E1HVN_MAX) {
7264 addr = IGU_REG_PROD_CONS_MEMORY +
7265 (prod_offset + i)*4;
7266 REG_WR(bp, addr, 0);
7268 /* send consumer update with 0 */
7269 if (CHIP_INT_MODE_IS_BC(bp)) {
7270 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7271 USTORM_ID, 0, IGU_INT_NOP, 1);
7272 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7273 CSTORM_ID, 0, IGU_INT_NOP, 1);
7274 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7275 XSTORM_ID, 0, IGU_INT_NOP, 1);
7276 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7277 TSTORM_ID, 0, IGU_INT_NOP, 1);
7278 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7279 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7280 } else {
7281 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7282 USTORM_ID, 0, IGU_INT_NOP, 1);
7283 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7284 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7286 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7288 /* !!! these should become driver const once
7289 rf-tool supports split-68 const */
7290 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7291 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7292 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7293 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7294 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7295 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7299 /* Reset PCIE errors for debug */
7300 REG_WR(bp, 0x2114, 0xffffffff);
7301 REG_WR(bp, 0x2120, 0xffffffff);
7303 if (CHIP_IS_E1x(bp)) {
7304 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7305 main_mem_base = HC_REG_MAIN_MEMORY +
7306 BP_PORT(bp) * (main_mem_size * 4);
7307 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7308 main_mem_width = 8;
7310 val = REG_RD(bp, main_mem_prty_clr);
7311 if (val)
7312 DP(NETIF_MSG_HW,
7313 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7314 val);
7316 /* Clear "false" parity errors in MSI-X table */
7317 for (i = main_mem_base;
7318 i < main_mem_base + main_mem_size * 4;
7319 i += main_mem_width) {
7320 bnx2x_read_dmae(bp, i, main_mem_width / 4);
7321 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7322 i, main_mem_width / 4);
7324 /* Clear HC parity attention */
7325 REG_RD(bp, main_mem_prty_clr);
7328 #ifdef BNX2X_STOP_ON_ERROR
7329 /* Enable STORMs SP logging */
7330 REG_WR8(bp, BAR_USTRORM_INTMEM +
7331 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7332 REG_WR8(bp, BAR_TSTRORM_INTMEM +
7333 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7334 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7335 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7336 REG_WR8(bp, BAR_XSTRORM_INTMEM +
7337 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7338 #endif
7340 bnx2x_phy_probe(&bp->link_params);
7342 return 0;
7346 void bnx2x_free_mem(struct bnx2x *bp)
7348 int i;
7350 /* fastpath */
7351 bnx2x_free_fp_mem(bp);
7352 /* end of fastpath */
7354 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7355 sizeof(struct host_sp_status_block));
7357 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7358 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7360 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7361 sizeof(struct bnx2x_slowpath));
7363 for (i = 0; i < L2_ILT_LINES(bp); i++)
7364 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7365 bp->context[i].size);
7366 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7368 BNX2X_FREE(bp->ilt->lines);
7370 #ifdef BCM_CNIC
7371 if (!CHIP_IS_E1x(bp))
7372 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7373 sizeof(struct host_hc_status_block_e2));
7374 else
7375 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7376 sizeof(struct host_hc_status_block_e1x));
7378 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7379 #endif
7381 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7383 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7384 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7387 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7389 int num_groups;
7390 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7392 /* number of queues for statistics is number of eth queues + FCoE */
7393 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7395 /* Total number of FW statistics requests =
7396 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7397 * num of queues
7399 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7402 /* Request is built from stats_query_header and an array of
7403 * stats_query_cmd_group each of which contains
7404 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7405 * configured in the stats_query_header.
7407 num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7408 (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7410 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7411 num_groups * sizeof(struct stats_query_cmd_group);
7413 /* Data for statistics requests + stats_conter
7415 * stats_counter holds per-STORM counters that are incremented
7416 * when STORM has finished with the current request.
7418 * memory for FCoE offloaded statistics are counted anyway,
7419 * even if they will not be sent.
7421 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7422 sizeof(struct per_pf_stats) +
7423 sizeof(struct fcoe_statistics_params) +
7424 sizeof(struct per_queue_stats) * num_queue_stats +
7425 sizeof(struct stats_counter);
7427 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7428 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7430 /* Set shortcuts */
7431 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7432 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7434 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7435 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7437 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7438 bp->fw_stats_req_sz;
7439 return 0;
7441 alloc_mem_err:
7442 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7443 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7444 BNX2X_ERR("Can't allocate memory\n");
7445 return -ENOMEM;
7449 int bnx2x_alloc_mem(struct bnx2x *bp)
7451 int i, allocated, context_size;
7453 #ifdef BCM_CNIC
7454 if (!CHIP_IS_E1x(bp))
7455 /* size = the status block + ramrod buffers */
7456 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7457 sizeof(struct host_hc_status_block_e2));
7458 else
7459 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7460 sizeof(struct host_hc_status_block_e1x));
7462 /* allocate searcher T2 table */
7463 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7464 #endif
7467 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7468 sizeof(struct host_sp_status_block));
7470 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7471 sizeof(struct bnx2x_slowpath));
7473 #ifdef BCM_CNIC
7474 /* write address to which L5 should insert its values */
7475 bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7476 #endif
7478 /* Allocated memory for FW statistics */
7479 if (bnx2x_alloc_fw_stats_mem(bp))
7480 goto alloc_mem_err;
7482 /* Allocate memory for CDU context:
7483 * This memory is allocated separately and not in the generic ILT
7484 * functions because CDU differs in few aspects:
7485 * 1. There are multiple entities allocating memory for context -
7486 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7487 * its own ILT lines.
7488 * 2. Since CDU page-size is not a single 4KB page (which is the case
7489 * for the other ILT clients), to be efficient we want to support
7490 * allocation of sub-page-size in the last entry.
7491 * 3. Context pointers are used by the driver to pass to FW / update
7492 * the context (for the other ILT clients the pointers are used just to
7493 * free the memory during unload).
7495 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7497 for (i = 0, allocated = 0; allocated < context_size; i++) {
7498 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7499 (context_size - allocated));
7500 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7501 &bp->context[i].cxt_mapping,
7502 bp->context[i].size);
7503 allocated += bp->context[i].size;
7505 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7507 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7508 goto alloc_mem_err;
7510 /* Slow path ring */
7511 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7513 /* EQ */
7514 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7515 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7518 /* fastpath */
7519 /* need to be done at the end, since it's self adjusting to amount
7520 * of memory available for RSS queues
7522 if (bnx2x_alloc_fp_mem(bp))
7523 goto alloc_mem_err;
7524 return 0;
7526 alloc_mem_err:
7527 bnx2x_free_mem(bp);
7528 BNX2X_ERR("Can't allocate memory\n");
7529 return -ENOMEM;
7533 * Init service functions
7536 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7537 struct bnx2x_vlan_mac_obj *obj, bool set,
7538 int mac_type, unsigned long *ramrod_flags)
7540 int rc;
7541 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7543 memset(&ramrod_param, 0, sizeof(ramrod_param));
7545 /* Fill general parameters */
7546 ramrod_param.vlan_mac_obj = obj;
7547 ramrod_param.ramrod_flags = *ramrod_flags;
7549 /* Fill a user request section if needed */
7550 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7551 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7553 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7555 /* Set the command: ADD or DEL */
7556 if (set)
7557 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7558 else
7559 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7562 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7564 if (rc == -EEXIST) {
7565 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7566 /* do not treat adding same MAC as error */
7567 rc = 0;
7568 } else if (rc < 0)
7569 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7571 return rc;
7574 int bnx2x_del_all_macs(struct bnx2x *bp,
7575 struct bnx2x_vlan_mac_obj *mac_obj,
7576 int mac_type, bool wait_for_comp)
7578 int rc;
7579 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7581 /* Wait for completion of requested */
7582 if (wait_for_comp)
7583 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7585 /* Set the mac type of addresses we want to clear */
7586 __set_bit(mac_type, &vlan_mac_flags);
7588 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7589 if (rc < 0)
7590 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7592 return rc;
7595 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7597 unsigned long ramrod_flags = 0;
7599 #ifdef BCM_CNIC
7600 if (is_zero_ether_addr(bp->dev->dev_addr) &&
7601 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7602 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7603 "Ignoring Zero MAC for STORAGE SD mode\n");
7604 return 0;
7606 #endif
7608 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7610 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7611 /* Eth MAC is set on RSS leading client (fp[0]) */
7612 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
7613 set, BNX2X_ETH_MAC, &ramrod_flags);
7616 int bnx2x_setup_leading(struct bnx2x *bp)
7618 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7622 * bnx2x_set_int_mode - configure interrupt mode
7624 * @bp: driver handle
7626 * In case of MSI-X it will also try to enable MSI-X.
7628 void bnx2x_set_int_mode(struct bnx2x *bp)
7630 switch (int_mode) {
7631 case INT_MODE_MSI:
7632 bnx2x_enable_msi(bp);
7633 /* falling through... */
7634 case INT_MODE_INTx:
7635 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7636 BNX2X_DEV_INFO("set number of queues to 1\n");
7637 break;
7638 default:
7639 /* if we can't use MSI-X we only need one fp,
7640 * so try to enable MSI-X with the requested number of fp's
7641 * and fallback to MSI or legacy INTx with one fp
7643 if (bnx2x_enable_msix(bp) ||
7644 bp->flags & USING_SINGLE_MSIX_FLAG) {
7645 /* failed to enable multiple MSI-X */
7646 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7647 bp->num_queues, 1 + NON_ETH_CONTEXT_USE);
7649 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7651 /* Try to enable MSI */
7652 if (!(bp->flags & USING_SINGLE_MSIX_FLAG) &&
7653 !(bp->flags & DISABLE_MSI_FLAG))
7654 bnx2x_enable_msi(bp);
7656 break;
7660 /* must be called prioir to any HW initializations */
7661 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7663 return L2_ILT_LINES(bp);
7666 void bnx2x_ilt_set_info(struct bnx2x *bp)
7668 struct ilt_client_info *ilt_client;
7669 struct bnx2x_ilt *ilt = BP_ILT(bp);
7670 u16 line = 0;
7672 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7673 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7675 /* CDU */
7676 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7677 ilt_client->client_num = ILT_CLIENT_CDU;
7678 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7679 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7680 ilt_client->start = line;
7681 line += bnx2x_cid_ilt_lines(bp);
7682 #ifdef BCM_CNIC
7683 line += CNIC_ILT_LINES;
7684 #endif
7685 ilt_client->end = line - 1;
7687 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7688 ilt_client->start,
7689 ilt_client->end,
7690 ilt_client->page_size,
7691 ilt_client->flags,
7692 ilog2(ilt_client->page_size >> 12));
7694 /* QM */
7695 if (QM_INIT(bp->qm_cid_count)) {
7696 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7697 ilt_client->client_num = ILT_CLIENT_QM;
7698 ilt_client->page_size = QM_ILT_PAGE_SZ;
7699 ilt_client->flags = 0;
7700 ilt_client->start = line;
7702 /* 4 bytes for each cid */
7703 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7704 QM_ILT_PAGE_SZ);
7706 ilt_client->end = line - 1;
7708 DP(NETIF_MSG_IFUP,
7709 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7710 ilt_client->start,
7711 ilt_client->end,
7712 ilt_client->page_size,
7713 ilt_client->flags,
7714 ilog2(ilt_client->page_size >> 12));
7717 /* SRC */
7718 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7719 #ifdef BCM_CNIC
7720 ilt_client->client_num = ILT_CLIENT_SRC;
7721 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7722 ilt_client->flags = 0;
7723 ilt_client->start = line;
7724 line += SRC_ILT_LINES;
7725 ilt_client->end = line - 1;
7727 DP(NETIF_MSG_IFUP,
7728 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7729 ilt_client->start,
7730 ilt_client->end,
7731 ilt_client->page_size,
7732 ilt_client->flags,
7733 ilog2(ilt_client->page_size >> 12));
7735 #else
7736 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7737 #endif
7739 /* TM */
7740 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7741 #ifdef BCM_CNIC
7742 ilt_client->client_num = ILT_CLIENT_TM;
7743 ilt_client->page_size = TM_ILT_PAGE_SZ;
7744 ilt_client->flags = 0;
7745 ilt_client->start = line;
7746 line += TM_ILT_LINES;
7747 ilt_client->end = line - 1;
7749 DP(NETIF_MSG_IFUP,
7750 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7751 ilt_client->start,
7752 ilt_client->end,
7753 ilt_client->page_size,
7754 ilt_client->flags,
7755 ilog2(ilt_client->page_size >> 12));
7757 #else
7758 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7759 #endif
7760 BUG_ON(line > ILT_MAX_LINES);
7764 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7766 * @bp: driver handle
7767 * @fp: pointer to fastpath
7768 * @init_params: pointer to parameters structure
7770 * parameters configured:
7771 * - HC configuration
7772 * - Queue's CDU context
7774 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7775 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7778 u8 cos;
7779 int cxt_index, cxt_offset;
7781 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7782 if (!IS_FCOE_FP(fp)) {
7783 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7784 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7786 /* If HC is supporterd, enable host coalescing in the transition
7787 * to INIT state.
7789 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7790 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7792 /* HC rate */
7793 init_params->rx.hc_rate = bp->rx_ticks ?
7794 (1000000 / bp->rx_ticks) : 0;
7795 init_params->tx.hc_rate = bp->tx_ticks ?
7796 (1000000 / bp->tx_ticks) : 0;
7798 /* FW SB ID */
7799 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7800 fp->fw_sb_id;
7803 * CQ index among the SB indices: FCoE clients uses the default
7804 * SB, therefore it's different.
7806 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7807 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7810 /* set maximum number of COSs supported by this queue */
7811 init_params->max_cos = fp->max_cos;
7813 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7814 fp->index, init_params->max_cos);
7816 /* set the context pointers queue object */
7817 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
7818 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
7819 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
7820 ILT_PAGE_CIDS);
7821 init_params->cxts[cos] =
7822 &bp->context[cxt_index].vcxt[cxt_offset].eth;
7826 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7827 struct bnx2x_queue_state_params *q_params,
7828 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7829 int tx_index, bool leading)
7831 memset(tx_only_params, 0, sizeof(*tx_only_params));
7833 /* Set the command */
7834 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7836 /* Set tx-only QUEUE flags: don't zero statistics */
7837 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7839 /* choose the index of the cid to send the slow path on */
7840 tx_only_params->cid_index = tx_index;
7842 /* Set general TX_ONLY_SETUP parameters */
7843 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7845 /* Set Tx TX_ONLY_SETUP parameters */
7846 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7848 DP(NETIF_MSG_IFUP,
7849 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7850 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7851 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7852 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7854 /* send the ramrod */
7855 return bnx2x_queue_state_change(bp, q_params);
7860 * bnx2x_setup_queue - setup queue
7862 * @bp: driver handle
7863 * @fp: pointer to fastpath
7864 * @leading: is leading
7866 * This function performs 2 steps in a Queue state machine
7867 * actually: 1) RESET->INIT 2) INIT->SETUP
7870 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7871 bool leading)
7873 struct bnx2x_queue_state_params q_params = {NULL};
7874 struct bnx2x_queue_setup_params *setup_params =
7875 &q_params.params.setup;
7876 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7877 &q_params.params.tx_only;
7878 int rc;
7879 u8 tx_index;
7881 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
7883 /* reset IGU state skip FCoE L2 queue */
7884 if (!IS_FCOE_FP(fp))
7885 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7886 IGU_INT_ENABLE, 0);
7888 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
7889 /* We want to wait for completion in this context */
7890 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7892 /* Prepare the INIT parameters */
7893 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7895 /* Set the command */
7896 q_params.cmd = BNX2X_Q_CMD_INIT;
7898 /* Change the state to INIT */
7899 rc = bnx2x_queue_state_change(bp, &q_params);
7900 if (rc) {
7901 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7902 return rc;
7905 DP(NETIF_MSG_IFUP, "init complete\n");
7908 /* Now move the Queue to the SETUP state... */
7909 memset(setup_params, 0, sizeof(*setup_params));
7911 /* Set QUEUE flags */
7912 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7914 /* Set general SETUP parameters */
7915 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7916 FIRST_TX_COS_INDEX);
7918 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7919 &setup_params->rxq_params);
7921 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7922 FIRST_TX_COS_INDEX);
7924 /* Set the command */
7925 q_params.cmd = BNX2X_Q_CMD_SETUP;
7927 /* Change the state to SETUP */
7928 rc = bnx2x_queue_state_change(bp, &q_params);
7929 if (rc) {
7930 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7931 return rc;
7934 /* loop through the relevant tx-only indices */
7935 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7936 tx_index < fp->max_cos;
7937 tx_index++) {
7939 /* prepare and send tx-only ramrod*/
7940 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7941 tx_only_params, tx_index, leading);
7942 if (rc) {
7943 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7944 fp->index, tx_index);
7945 return rc;
7949 return rc;
7952 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7954 struct bnx2x_fastpath *fp = &bp->fp[index];
7955 struct bnx2x_fp_txdata *txdata;
7956 struct bnx2x_queue_state_params q_params = {NULL};
7957 int rc, tx_index;
7959 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
7961 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
7962 /* We want to wait for completion in this context */
7963 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7966 /* close tx-only connections */
7967 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7968 tx_index < fp->max_cos;
7969 tx_index++){
7971 /* ascertain this is a normal queue*/
7972 txdata = fp->txdata_ptr[tx_index];
7974 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
7975 txdata->txq_index);
7977 /* send halt terminate on tx-only connection */
7978 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7979 memset(&q_params.params.terminate, 0,
7980 sizeof(q_params.params.terminate));
7981 q_params.params.terminate.cid_index = tx_index;
7983 rc = bnx2x_queue_state_change(bp, &q_params);
7984 if (rc)
7985 return rc;
7987 /* send halt terminate on tx-only connection */
7988 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7989 memset(&q_params.params.cfc_del, 0,
7990 sizeof(q_params.params.cfc_del));
7991 q_params.params.cfc_del.cid_index = tx_index;
7992 rc = bnx2x_queue_state_change(bp, &q_params);
7993 if (rc)
7994 return rc;
7996 /* Stop the primary connection: */
7997 /* ...halt the connection */
7998 q_params.cmd = BNX2X_Q_CMD_HALT;
7999 rc = bnx2x_queue_state_change(bp, &q_params);
8000 if (rc)
8001 return rc;
8003 /* ...terminate the connection */
8004 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8005 memset(&q_params.params.terminate, 0,
8006 sizeof(q_params.params.terminate));
8007 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8008 rc = bnx2x_queue_state_change(bp, &q_params);
8009 if (rc)
8010 return rc;
8011 /* ...delete cfc entry */
8012 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8013 memset(&q_params.params.cfc_del, 0,
8014 sizeof(q_params.params.cfc_del));
8015 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8016 return bnx2x_queue_state_change(bp, &q_params);
8020 static void bnx2x_reset_func(struct bnx2x *bp)
8022 int port = BP_PORT(bp);
8023 int func = BP_FUNC(bp);
8024 int i;
8026 /* Disable the function in the FW */
8027 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8028 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8029 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8030 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8032 /* FP SBs */
8033 for_each_eth_queue(bp, i) {
8034 struct bnx2x_fastpath *fp = &bp->fp[i];
8035 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8036 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8037 SB_DISABLED);
8040 #ifdef BCM_CNIC
8041 /* CNIC SB */
8042 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8043 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
8044 SB_DISABLED);
8045 #endif
8046 /* SP SB */
8047 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8048 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8049 SB_DISABLED);
8051 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8052 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8055 /* Configure IGU */
8056 if (bp->common.int_block == INT_BLOCK_HC) {
8057 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8058 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8059 } else {
8060 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8061 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8064 #ifdef BCM_CNIC
8065 /* Disable Timer scan */
8066 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8068 * Wait for at least 10ms and up to 2 second for the timers scan to
8069 * complete
8071 for (i = 0; i < 200; i++) {
8072 msleep(10);
8073 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8074 break;
8076 #endif
8077 /* Clear ILT */
8078 bnx2x_clear_func_ilt(bp, func);
8080 /* Timers workaround bug for E2: if this is vnic-3,
8081 * we need to set the entire ilt range for this timers.
8083 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8084 struct ilt_client_info ilt_cli;
8085 /* use dummy TM client */
8086 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8087 ilt_cli.start = 0;
8088 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8089 ilt_cli.client_num = ILT_CLIENT_TM;
8091 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8094 /* this assumes that reset_port() called before reset_func()*/
8095 if (!CHIP_IS_E1x(bp))
8096 bnx2x_pf_disable(bp);
8098 bp->dmae_ready = 0;
8101 static void bnx2x_reset_port(struct bnx2x *bp)
8103 int port = BP_PORT(bp);
8104 u32 val;
8106 /* Reset physical Link */
8107 bnx2x__link_reset(bp);
8109 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8111 /* Do not rcv packets to BRB */
8112 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8113 /* Do not direct rcv packets that are not for MCP to the BRB */
8114 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8115 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8117 /* Configure AEU */
8118 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8120 msleep(100);
8121 /* Check for BRB port occupancy */
8122 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8123 if (val)
8124 DP(NETIF_MSG_IFDOWN,
8125 "BRB1 is not empty %d blocks are occupied\n", val);
8127 /* TODO: Close Doorbell port? */
8130 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8132 struct bnx2x_func_state_params func_params = {NULL};
8134 /* Prepare parameters for function state transitions */
8135 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8137 func_params.f_obj = &bp->func_obj;
8138 func_params.cmd = BNX2X_F_CMD_HW_RESET;
8140 func_params.params.hw_init.load_phase = load_code;
8142 return bnx2x_func_state_change(bp, &func_params);
8145 static int bnx2x_func_stop(struct bnx2x *bp)
8147 struct bnx2x_func_state_params func_params = {NULL};
8148 int rc;
8150 /* Prepare parameters for function state transitions */
8151 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8152 func_params.f_obj = &bp->func_obj;
8153 func_params.cmd = BNX2X_F_CMD_STOP;
8156 * Try to stop the function the 'good way'. If fails (in case
8157 * of a parity error during bnx2x_chip_cleanup()) and we are
8158 * not in a debug mode, perform a state transaction in order to
8159 * enable further HW_RESET transaction.
8161 rc = bnx2x_func_state_change(bp, &func_params);
8162 if (rc) {
8163 #ifdef BNX2X_STOP_ON_ERROR
8164 return rc;
8165 #else
8166 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8167 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8168 return bnx2x_func_state_change(bp, &func_params);
8169 #endif
8172 return 0;
8176 * bnx2x_send_unload_req - request unload mode from the MCP.
8178 * @bp: driver handle
8179 * @unload_mode: requested function's unload mode
8181 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8183 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8185 u32 reset_code = 0;
8186 int port = BP_PORT(bp);
8188 /* Select the UNLOAD request mode */
8189 if (unload_mode == UNLOAD_NORMAL)
8190 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8192 else if (bp->flags & NO_WOL_FLAG)
8193 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8195 else if (bp->wol) {
8196 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8197 u8 *mac_addr = bp->dev->dev_addr;
8198 u32 val;
8199 u16 pmc;
8201 /* The mac address is written to entries 1-4 to
8202 * preserve entry 0 which is used by the PMF
8204 u8 entry = (BP_VN(bp) + 1)*8;
8206 val = (mac_addr[0] << 8) | mac_addr[1];
8207 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8209 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8210 (mac_addr[4] << 8) | mac_addr[5];
8211 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8213 /* Enable the PME and clear the status */
8214 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8215 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8216 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8218 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8220 } else
8221 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8223 /* Send the request to the MCP */
8224 if (!BP_NOMCP(bp))
8225 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8226 else {
8227 int path = BP_PATH(bp);
8229 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
8230 path, load_count[path][0], load_count[path][1],
8231 load_count[path][2]);
8232 load_count[path][0]--;
8233 load_count[path][1 + port]--;
8234 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
8235 path, load_count[path][0], load_count[path][1],
8236 load_count[path][2]);
8237 if (load_count[path][0] == 0)
8238 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8239 else if (load_count[path][1 + port] == 0)
8240 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8241 else
8242 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8245 return reset_code;
8249 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8251 * @bp: driver handle
8252 * @keep_link: true iff link should be kept up
8254 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8256 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8258 /* Report UNLOAD_DONE to MCP */
8259 if (!BP_NOMCP(bp))
8260 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8263 static int bnx2x_func_wait_started(struct bnx2x *bp)
8265 int tout = 50;
8266 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8268 if (!bp->port.pmf)
8269 return 0;
8272 * (assumption: No Attention from MCP at this stage)
8273 * PMF probably in the middle of TXdisable/enable transaction
8274 * 1. Sync IRS for default SB
8275 * 2. Sync SP queue - this guarantes us that attention handling started
8276 * 3. Wait, that TXdisable/enable transaction completes
8278 * 1+2 guranty that if DCBx attention was scheduled it already changed
8279 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8280 * received complettion for the transaction the state is TX_STOPPED.
8281 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8282 * transaction.
8285 /* make sure default SB ISR is done */
8286 if (msix)
8287 synchronize_irq(bp->msix_table[0].vector);
8288 else
8289 synchronize_irq(bp->pdev->irq);
8291 flush_workqueue(bnx2x_wq);
8293 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8294 BNX2X_F_STATE_STARTED && tout--)
8295 msleep(20);
8297 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8298 BNX2X_F_STATE_STARTED) {
8299 #ifdef BNX2X_STOP_ON_ERROR
8300 BNX2X_ERR("Wrong function state\n");
8301 return -EBUSY;
8302 #else
8304 * Failed to complete the transaction in a "good way"
8305 * Force both transactions with CLR bit
8307 struct bnx2x_func_state_params func_params = {NULL};
8309 DP(NETIF_MSG_IFDOWN,
8310 "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8312 func_params.f_obj = &bp->func_obj;
8313 __set_bit(RAMROD_DRV_CLR_ONLY,
8314 &func_params.ramrod_flags);
8316 /* STARTED-->TX_ST0PPED */
8317 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8318 bnx2x_func_state_change(bp, &func_params);
8320 /* TX_ST0PPED-->STARTED */
8321 func_params.cmd = BNX2X_F_CMD_TX_START;
8322 return bnx2x_func_state_change(bp, &func_params);
8323 #endif
8326 return 0;
8329 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8331 int port = BP_PORT(bp);
8332 int i, rc = 0;
8333 u8 cos;
8334 struct bnx2x_mcast_ramrod_params rparam = {NULL};
8335 u32 reset_code;
8337 /* Wait until tx fastpath tasks complete */
8338 for_each_tx_queue(bp, i) {
8339 struct bnx2x_fastpath *fp = &bp->fp[i];
8341 for_each_cos_in_tx_queue(fp, cos)
8342 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8343 #ifdef BNX2X_STOP_ON_ERROR
8344 if (rc)
8345 return;
8346 #endif
8349 /* Give HW time to discard old tx messages */
8350 usleep_range(1000, 1000);
8352 /* Clean all ETH MACs */
8353 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8354 false);
8355 if (rc < 0)
8356 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8358 /* Clean up UC list */
8359 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8360 true);
8361 if (rc < 0)
8362 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8363 rc);
8365 /* Disable LLH */
8366 if (!CHIP_IS_E1(bp))
8367 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8369 /* Set "drop all" (stop Rx).
8370 * We need to take a netif_addr_lock() here in order to prevent
8371 * a race between the completion code and this code.
8373 netif_addr_lock_bh(bp->dev);
8374 /* Schedule the rx_mode command */
8375 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8376 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8377 else
8378 bnx2x_set_storm_rx_mode(bp);
8380 /* Cleanup multicast configuration */
8381 rparam.mcast_obj = &bp->mcast_obj;
8382 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8383 if (rc < 0)
8384 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8386 netif_addr_unlock_bh(bp->dev);
8391 * Send the UNLOAD_REQUEST to the MCP. This will return if
8392 * this function should perform FUNC, PORT or COMMON HW
8393 * reset.
8395 reset_code = bnx2x_send_unload_req(bp, unload_mode);
8398 * (assumption: No Attention from MCP at this stage)
8399 * PMF probably in the middle of TXdisable/enable transaction
8401 rc = bnx2x_func_wait_started(bp);
8402 if (rc) {
8403 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8404 #ifdef BNX2X_STOP_ON_ERROR
8405 return;
8406 #endif
8409 /* Close multi and leading connections
8410 * Completions for ramrods are collected in a synchronous way
8412 for_each_queue(bp, i)
8413 if (bnx2x_stop_queue(bp, i))
8414 #ifdef BNX2X_STOP_ON_ERROR
8415 return;
8416 #else
8417 goto unload_error;
8418 #endif
8419 /* If SP settings didn't get completed so far - something
8420 * very wrong has happen.
8422 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8423 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8425 #ifndef BNX2X_STOP_ON_ERROR
8426 unload_error:
8427 #endif
8428 rc = bnx2x_func_stop(bp);
8429 if (rc) {
8430 BNX2X_ERR("Function stop failed!\n");
8431 #ifdef BNX2X_STOP_ON_ERROR
8432 return;
8433 #endif
8436 /* Disable HW interrupts, NAPI */
8437 bnx2x_netif_stop(bp, 1);
8438 /* Delete all NAPI objects */
8439 bnx2x_del_all_napi(bp);
8441 /* Release IRQs */
8442 bnx2x_free_irq(bp);
8444 /* Reset the chip */
8445 rc = bnx2x_reset_hw(bp, reset_code);
8446 if (rc)
8447 BNX2X_ERR("HW_RESET failed\n");
8450 /* Report UNLOAD_DONE to MCP */
8451 bnx2x_send_unload_done(bp, keep_link);
8454 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8456 u32 val;
8458 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8460 if (CHIP_IS_E1(bp)) {
8461 int port = BP_PORT(bp);
8462 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8463 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8465 val = REG_RD(bp, addr);
8466 val &= ~(0x300);
8467 REG_WR(bp, addr, val);
8468 } else {
8469 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8470 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8471 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8472 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8476 /* Close gates #2, #3 and #4: */
8477 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8479 u32 val;
8481 /* Gates #2 and #4a are closed/opened for "not E1" only */
8482 if (!CHIP_IS_E1(bp)) {
8483 /* #4 */
8484 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8485 /* #2 */
8486 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8489 /* #3 */
8490 if (CHIP_IS_E1x(bp)) {
8491 /* Prevent interrupts from HC on both ports */
8492 val = REG_RD(bp, HC_REG_CONFIG_1);
8493 REG_WR(bp, HC_REG_CONFIG_1,
8494 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8495 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8497 val = REG_RD(bp, HC_REG_CONFIG_0);
8498 REG_WR(bp, HC_REG_CONFIG_0,
8499 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8500 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8501 } else {
8502 /* Prevent incomming interrupts in IGU */
8503 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8505 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8506 (!close) ?
8507 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8508 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8511 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8512 close ? "closing" : "opening");
8513 mmiowb();
8516 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8518 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8520 /* Do some magic... */
8521 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8522 *magic_val = val & SHARED_MF_CLP_MAGIC;
8523 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8527 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8529 * @bp: driver handle
8530 * @magic_val: old value of the `magic' bit.
8532 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8534 /* Restore the `magic' bit value... */
8535 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8536 MF_CFG_WR(bp, shared_mf_config.clp_mb,
8537 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8541 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8543 * @bp: driver handle
8544 * @magic_val: old value of 'magic' bit.
8546 * Takes care of CLP configurations.
8548 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8550 u32 shmem;
8551 u32 validity_offset;
8553 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8555 /* Set `magic' bit in order to save MF config */
8556 if (!CHIP_IS_E1(bp))
8557 bnx2x_clp_reset_prep(bp, magic_val);
8559 /* Get shmem offset */
8560 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8561 validity_offset = offsetof(struct shmem_region, validity_map[0]);
8563 /* Clear validity map flags */
8564 if (shmem > 0)
8565 REG_WR(bp, shmem + validity_offset, 0);
8568 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
8569 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
8572 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8574 * @bp: driver handle
8576 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8578 /* special handling for emulation and FPGA,
8579 wait 10 times longer */
8580 if (CHIP_REV_IS_SLOW(bp))
8581 msleep(MCP_ONE_TIMEOUT*10);
8582 else
8583 msleep(MCP_ONE_TIMEOUT);
8587 * initializes bp->common.shmem_base and waits for validity signature to appear
8589 static int bnx2x_init_shmem(struct bnx2x *bp)
8591 int cnt = 0;
8592 u32 val = 0;
8594 do {
8595 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8596 if (bp->common.shmem_base) {
8597 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8598 if (val & SHR_MEM_VALIDITY_MB)
8599 return 0;
8602 bnx2x_mcp_wait_one(bp);
8604 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8606 BNX2X_ERR("BAD MCP validity signature\n");
8608 return -ENODEV;
8611 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8613 int rc = bnx2x_init_shmem(bp);
8615 /* Restore the `magic' bit value */
8616 if (!CHIP_IS_E1(bp))
8617 bnx2x_clp_reset_done(bp, magic_val);
8619 return rc;
8622 static void bnx2x_pxp_prep(struct bnx2x *bp)
8624 if (!CHIP_IS_E1(bp)) {
8625 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8626 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8627 mmiowb();
8632 * Reset the whole chip except for:
8633 * - PCIE core
8634 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8635 * one reset bit)
8636 * - IGU
8637 * - MISC (including AEU)
8638 * - GRC
8639 * - RBCN, RBCP
8641 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8643 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8644 u32 global_bits2, stay_reset2;
8647 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8648 * (per chip) blocks.
8650 global_bits2 =
8651 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8652 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8654 /* Don't reset the following blocks */
8655 not_reset_mask1 =
8656 MISC_REGISTERS_RESET_REG_1_RST_HC |
8657 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8658 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8660 not_reset_mask2 =
8661 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8662 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8663 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8664 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8665 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8666 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8667 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8668 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8669 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8670 MISC_REGISTERS_RESET_REG_2_PGLC;
8673 * Keep the following blocks in reset:
8674 * - all xxMACs are handled by the bnx2x_link code.
8676 stay_reset2 =
8677 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8678 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8679 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8680 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8681 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8682 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8683 MISC_REGISTERS_RESET_REG_2_XMAC |
8684 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8686 /* Full reset masks according to the chip */
8687 reset_mask1 = 0xffffffff;
8689 if (CHIP_IS_E1(bp))
8690 reset_mask2 = 0xffff;
8691 else if (CHIP_IS_E1H(bp))
8692 reset_mask2 = 0x1ffff;
8693 else if (CHIP_IS_E2(bp))
8694 reset_mask2 = 0xfffff;
8695 else /* CHIP_IS_E3 */
8696 reset_mask2 = 0x3ffffff;
8698 /* Don't reset global blocks unless we need to */
8699 if (!global)
8700 reset_mask2 &= ~global_bits2;
8703 * In case of attention in the QM, we need to reset PXP
8704 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8705 * because otherwise QM reset would release 'close the gates' shortly
8706 * before resetting the PXP, then the PSWRQ would send a write
8707 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8708 * read the payload data from PSWWR, but PSWWR would not
8709 * respond. The write queue in PGLUE would stuck, dmae commands
8710 * would not return. Therefore it's important to reset the second
8711 * reset register (containing the
8712 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8713 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8714 * bit).
8716 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8717 reset_mask2 & (~not_reset_mask2));
8719 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8720 reset_mask1 & (~not_reset_mask1));
8722 barrier();
8723 mmiowb();
8725 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8726 reset_mask2 & (~stay_reset2));
8728 barrier();
8729 mmiowb();
8731 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8732 mmiowb();
8736 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8737 * It should get cleared in no more than 1s.
8739 * @bp: driver handle
8741 * It should get cleared in no more than 1s. Returns 0 if
8742 * pending writes bit gets cleared.
8744 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8746 u32 cnt = 1000;
8747 u32 pend_bits = 0;
8749 do {
8750 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8752 if (pend_bits == 0)
8753 break;
8755 usleep_range(1000, 1000);
8756 } while (cnt-- > 0);
8758 if (cnt <= 0) {
8759 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8760 pend_bits);
8761 return -EBUSY;
8764 return 0;
8767 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8769 int cnt = 1000;
8770 u32 val = 0;
8771 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8774 /* Empty the Tetris buffer, wait for 1s */
8775 do {
8776 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8777 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8778 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8779 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8780 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8781 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8782 ((port_is_idle_0 & 0x1) == 0x1) &&
8783 ((port_is_idle_1 & 0x1) == 0x1) &&
8784 (pgl_exp_rom2 == 0xffffffff))
8785 break;
8786 usleep_range(1000, 1000);
8787 } while (cnt-- > 0);
8789 if (cnt <= 0) {
8790 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8791 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8792 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8793 pgl_exp_rom2);
8794 return -EAGAIN;
8797 barrier();
8799 /* Close gates #2, #3 and #4 */
8800 bnx2x_set_234_gates(bp, true);
8802 /* Poll for IGU VQs for 57712 and newer chips */
8803 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8804 return -EAGAIN;
8807 /* TBD: Indicate that "process kill" is in progress to MCP */
8809 /* Clear "unprepared" bit */
8810 REG_WR(bp, MISC_REG_UNPREPARED, 0);
8811 barrier();
8813 /* Make sure all is written to the chip before the reset */
8814 mmiowb();
8816 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8817 * PSWHST, GRC and PSWRD Tetris buffer.
8819 usleep_range(1000, 1000);
8821 /* Prepare to chip reset: */
8822 /* MCP */
8823 if (global)
8824 bnx2x_reset_mcp_prep(bp, &val);
8826 /* PXP */
8827 bnx2x_pxp_prep(bp);
8828 barrier();
8830 /* reset the chip */
8831 bnx2x_process_kill_chip_reset(bp, global);
8832 barrier();
8834 /* Recover after reset: */
8835 /* MCP */
8836 if (global && bnx2x_reset_mcp_comp(bp, val))
8837 return -EAGAIN;
8839 /* TBD: Add resetting the NO_MCP mode DB here */
8841 /* PXP */
8842 bnx2x_pxp_prep(bp);
8844 /* Open the gates #2, #3 and #4 */
8845 bnx2x_set_234_gates(bp, false);
8847 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8848 * reset state, re-enable attentions. */
8850 return 0;
8853 int bnx2x_leader_reset(struct bnx2x *bp)
8855 int rc = 0;
8856 bool global = bnx2x_reset_is_global(bp);
8857 u32 load_code;
8859 /* if not going to reset MCP - load "fake" driver to reset HW while
8860 * driver is owner of the HW
8862 if (!global && !BP_NOMCP(bp)) {
8863 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
8864 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
8865 if (!load_code) {
8866 BNX2X_ERR("MCP response failure, aborting\n");
8867 rc = -EAGAIN;
8868 goto exit_leader_reset;
8870 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8871 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8872 BNX2X_ERR("MCP unexpected resp, aborting\n");
8873 rc = -EAGAIN;
8874 goto exit_leader_reset2;
8876 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8877 if (!load_code) {
8878 BNX2X_ERR("MCP response failure, aborting\n");
8879 rc = -EAGAIN;
8880 goto exit_leader_reset2;
8884 /* Try to recover after the failure */
8885 if (bnx2x_process_kill(bp, global)) {
8886 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
8887 BP_PATH(bp));
8888 rc = -EAGAIN;
8889 goto exit_leader_reset2;
8893 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8894 * state.
8896 bnx2x_set_reset_done(bp);
8897 if (global)
8898 bnx2x_clear_reset_global(bp);
8900 exit_leader_reset2:
8901 /* unload "fake driver" if it was loaded */
8902 if (!global && !BP_NOMCP(bp)) {
8903 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8904 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8906 exit_leader_reset:
8907 bp->is_leader = 0;
8908 bnx2x_release_leader_lock(bp);
8909 smp_mb();
8910 return rc;
8913 static void bnx2x_recovery_failed(struct bnx2x *bp)
8915 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8917 /* Disconnect this device */
8918 netif_device_detach(bp->dev);
8921 * Block ifup for all function on this engine until "process kill"
8922 * or power cycle.
8924 bnx2x_set_reset_in_progress(bp);
8926 /* Shut down the power */
8927 bnx2x_set_power_state(bp, PCI_D3hot);
8929 bp->recovery_state = BNX2X_RECOVERY_FAILED;
8931 smp_mb();
8935 * Assumption: runs under rtnl lock. This together with the fact
8936 * that it's called only from bnx2x_sp_rtnl() ensure that it
8937 * will never be called when netif_running(bp->dev) is false.
8939 static void bnx2x_parity_recover(struct bnx2x *bp)
8941 bool global = false;
8942 u32 error_recovered, error_unrecovered;
8943 bool is_parity;
8945 DP(NETIF_MSG_HW, "Handling parity\n");
8946 while (1) {
8947 switch (bp->recovery_state) {
8948 case BNX2X_RECOVERY_INIT:
8949 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8950 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8951 WARN_ON(!is_parity);
8953 /* Try to get a LEADER_LOCK HW lock */
8954 if (bnx2x_trylock_leader_lock(bp)) {
8955 bnx2x_set_reset_in_progress(bp);
8957 * Check if there is a global attention and if
8958 * there was a global attention, set the global
8959 * reset bit.
8962 if (global)
8963 bnx2x_set_reset_global(bp);
8965 bp->is_leader = 1;
8968 /* Stop the driver */
8969 /* If interface has been removed - break */
8970 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
8971 return;
8973 bp->recovery_state = BNX2X_RECOVERY_WAIT;
8975 /* Ensure "is_leader", MCP command sequence and
8976 * "recovery_state" update values are seen on other
8977 * CPUs.
8979 smp_mb();
8980 break;
8982 case BNX2X_RECOVERY_WAIT:
8983 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8984 if (bp->is_leader) {
8985 int other_engine = BP_PATH(bp) ? 0 : 1;
8986 bool other_load_status =
8987 bnx2x_get_load_status(bp, other_engine);
8988 bool load_status =
8989 bnx2x_get_load_status(bp, BP_PATH(bp));
8990 global = bnx2x_reset_is_global(bp);
8993 * In case of a parity in a global block, let
8994 * the first leader that performs a
8995 * leader_reset() reset the global blocks in
8996 * order to clear global attentions. Otherwise
8997 * the the gates will remain closed for that
8998 * engine.
9000 if (load_status ||
9001 (global && other_load_status)) {
9002 /* Wait until all other functions get
9003 * down.
9005 schedule_delayed_work(&bp->sp_rtnl_task,
9006 HZ/10);
9007 return;
9008 } else {
9009 /* If all other functions got down -
9010 * try to bring the chip back to
9011 * normal. In any case it's an exit
9012 * point for a leader.
9014 if (bnx2x_leader_reset(bp)) {
9015 bnx2x_recovery_failed(bp);
9016 return;
9019 /* If we are here, means that the
9020 * leader has succeeded and doesn't
9021 * want to be a leader any more. Try
9022 * to continue as a none-leader.
9024 break;
9026 } else { /* non-leader */
9027 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9028 /* Try to get a LEADER_LOCK HW lock as
9029 * long as a former leader may have
9030 * been unloaded by the user or
9031 * released a leadership by another
9032 * reason.
9034 if (bnx2x_trylock_leader_lock(bp)) {
9035 /* I'm a leader now! Restart a
9036 * switch case.
9038 bp->is_leader = 1;
9039 break;
9042 schedule_delayed_work(&bp->sp_rtnl_task,
9043 HZ/10);
9044 return;
9046 } else {
9048 * If there was a global attention, wait
9049 * for it to be cleared.
9051 if (bnx2x_reset_is_global(bp)) {
9052 schedule_delayed_work(
9053 &bp->sp_rtnl_task,
9054 HZ/10);
9055 return;
9058 error_recovered =
9059 bp->eth_stats.recoverable_error;
9060 error_unrecovered =
9061 bp->eth_stats.unrecoverable_error;
9062 bp->recovery_state =
9063 BNX2X_RECOVERY_NIC_LOADING;
9064 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9065 error_unrecovered++;
9066 netdev_err(bp->dev,
9067 "Recovery failed. Power cycle needed\n");
9068 /* Disconnect this device */
9069 netif_device_detach(bp->dev);
9070 /* Shut down the power */
9071 bnx2x_set_power_state(
9072 bp, PCI_D3hot);
9073 smp_mb();
9074 } else {
9075 bp->recovery_state =
9076 BNX2X_RECOVERY_DONE;
9077 error_recovered++;
9078 smp_mb();
9080 bp->eth_stats.recoverable_error =
9081 error_recovered;
9082 bp->eth_stats.unrecoverable_error =
9083 error_unrecovered;
9085 return;
9088 default:
9089 return;
9094 static int bnx2x_close(struct net_device *dev);
9096 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9097 * scheduled on a general queue in order to prevent a dead lock.
9099 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9101 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9103 rtnl_lock();
9105 if (!netif_running(bp->dev))
9106 goto sp_rtnl_exit;
9108 /* if stop on error is defined no recovery flows should be executed */
9109 #ifdef BNX2X_STOP_ON_ERROR
9110 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9111 "you will need to reboot when done\n");
9112 goto sp_rtnl_not_reset;
9113 #endif
9115 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9117 * Clear all pending SP commands as we are going to reset the
9118 * function anyway.
9120 bp->sp_rtnl_state = 0;
9121 smp_mb();
9123 bnx2x_parity_recover(bp);
9125 goto sp_rtnl_exit;
9128 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9130 * Clear all pending SP commands as we are going to reset the
9131 * function anyway.
9133 bp->sp_rtnl_state = 0;
9134 smp_mb();
9136 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9137 bnx2x_nic_load(bp, LOAD_NORMAL);
9139 goto sp_rtnl_exit;
9141 #ifdef BNX2X_STOP_ON_ERROR
9142 sp_rtnl_not_reset:
9143 #endif
9144 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9145 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9146 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9147 bnx2x_after_function_update(bp);
9149 * in case of fan failure we need to reset id if the "stop on error"
9150 * debug flag is set, since we trying to prevent permanent overheating
9151 * damage
9153 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9154 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9155 netif_device_detach(bp->dev);
9156 bnx2x_close(bp->dev);
9159 sp_rtnl_exit:
9160 rtnl_unlock();
9163 /* end of nic load/unload */
9165 static void bnx2x_period_task(struct work_struct *work)
9167 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9169 if (!netif_running(bp->dev))
9170 goto period_task_exit;
9172 if (CHIP_REV_IS_SLOW(bp)) {
9173 BNX2X_ERR("period task called on emulation, ignoring\n");
9174 goto period_task_exit;
9177 bnx2x_acquire_phy_lock(bp);
9179 * The barrier is needed to ensure the ordering between the writing to
9180 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9181 * the reading here.
9183 smp_mb();
9184 if (bp->port.pmf) {
9185 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9187 /* Re-queue task in 1 sec */
9188 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9191 bnx2x_release_phy_lock(bp);
9192 period_task_exit:
9193 return;
9197 * Init service functions
9200 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9202 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9203 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9204 return base + (BP_ABS_FUNC(bp)) * stride;
9207 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9209 u32 reg = bnx2x_get_pretend_reg(bp);
9211 /* Flush all outstanding writes */
9212 mmiowb();
9214 /* Pretend to be function 0 */
9215 REG_WR(bp, reg, 0);
9216 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
9218 /* From now we are in the "like-E1" mode */
9219 bnx2x_int_disable(bp);
9221 /* Flush all outstanding writes */
9222 mmiowb();
9224 /* Restore the original function */
9225 REG_WR(bp, reg, BP_ABS_FUNC(bp));
9226 REG_RD(bp, reg);
9229 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9231 if (CHIP_IS_E1(bp))
9232 bnx2x_int_disable(bp);
9233 else
9234 bnx2x_undi_int_disable_e1h(bp);
9237 static void __devinit bnx2x_prev_unload_close_mac(struct bnx2x *bp)
9239 u32 val, base_addr, offset, mask, reset_reg;
9240 bool mac_stopped = false;
9241 u8 port = BP_PORT(bp);
9243 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9245 if (!CHIP_IS_E3(bp)) {
9246 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9247 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9248 if ((mask & reset_reg) && val) {
9249 u32 wb_data[2];
9250 BNX2X_DEV_INFO("Disable bmac Rx\n");
9251 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9252 : NIG_REG_INGRESS_BMAC0_MEM;
9253 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9254 : BIGMAC_REGISTER_BMAC_CONTROL;
9257 * use rd/wr since we cannot use dmae. This is safe
9258 * since MCP won't access the bus due to the request
9259 * to unload, and no function on the path can be
9260 * loaded at this time.
9262 wb_data[0] = REG_RD(bp, base_addr + offset);
9263 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9264 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9265 REG_WR(bp, base_addr + offset, wb_data[0]);
9266 REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
9269 BNX2X_DEV_INFO("Disable emac Rx\n");
9270 REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
9272 mac_stopped = true;
9273 } else {
9274 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9275 BNX2X_DEV_INFO("Disable xmac Rx\n");
9276 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9277 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9278 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9279 val & ~(1 << 1));
9280 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9281 val | (1 << 1));
9282 REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
9283 mac_stopped = true;
9285 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9286 if (mask & reset_reg) {
9287 BNX2X_DEV_INFO("Disable umac Rx\n");
9288 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9289 REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
9290 mac_stopped = true;
9294 if (mac_stopped)
9295 msleep(20);
9299 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9300 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
9301 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
9302 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9304 static void __devinit bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port,
9305 u8 inc)
9307 u16 rcq, bd;
9308 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9310 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9311 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9313 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9314 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9316 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9317 port, bd, rcq);
9320 static int __devinit bnx2x_prev_mcp_done(struct bnx2x *bp)
9322 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9323 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9324 if (!rc) {
9325 BNX2X_ERR("MCP response failure, aborting\n");
9326 return -EBUSY;
9329 return 0;
9332 static bool __devinit bnx2x_prev_is_path_marked(struct bnx2x *bp)
9334 struct bnx2x_prev_path_list *tmp_list;
9335 int rc = false;
9337 if (down_trylock(&bnx2x_prev_sem))
9338 return false;
9340 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9341 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9342 bp->pdev->bus->number == tmp_list->bus &&
9343 BP_PATH(bp) == tmp_list->path) {
9344 rc = true;
9345 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9346 BP_PATH(bp));
9347 break;
9351 up(&bnx2x_prev_sem);
9353 return rc;
9356 static int __devinit bnx2x_prev_mark_path(struct bnx2x *bp)
9358 struct bnx2x_prev_path_list *tmp_list;
9359 int rc;
9361 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9362 if (!tmp_list) {
9363 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9364 return -ENOMEM;
9367 tmp_list->bus = bp->pdev->bus->number;
9368 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9369 tmp_list->path = BP_PATH(bp);
9371 rc = down_interruptible(&bnx2x_prev_sem);
9372 if (rc) {
9373 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9374 kfree(tmp_list);
9375 } else {
9376 BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9377 BP_PATH(bp));
9378 list_add(&tmp_list->list, &bnx2x_prev_list);
9379 up(&bnx2x_prev_sem);
9382 return rc;
9385 static int __devinit bnx2x_do_flr(struct bnx2x *bp)
9387 int i;
9388 u16 status;
9389 struct pci_dev *dev = bp->pdev;
9392 if (CHIP_IS_E1x(bp)) {
9393 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9394 return -EINVAL;
9397 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9398 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9399 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9400 bp->common.bc_ver);
9401 return -EINVAL;
9404 /* Wait for Transaction Pending bit clean */
9405 for (i = 0; i < 4; i++) {
9406 if (i)
9407 msleep((1 << (i - 1)) * 100);
9409 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9410 if (!(status & PCI_EXP_DEVSTA_TRPND))
9411 goto clear;
9414 dev_err(&dev->dev,
9415 "transaction is not cleared; proceeding with reset anyway\n");
9417 clear:
9419 BNX2X_DEV_INFO("Initiating FLR\n");
9420 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9422 return 0;
9425 static int __devinit bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9427 int rc;
9429 BNX2X_DEV_INFO("Uncommon unload Flow\n");
9431 /* Test if previous unload process was already finished for this path */
9432 if (bnx2x_prev_is_path_marked(bp))
9433 return bnx2x_prev_mcp_done(bp);
9435 /* If function has FLR capabilities, and existing FW version matches
9436 * the one required, then FLR will be sufficient to clean any residue
9437 * left by previous driver
9439 rc = bnx2x_test_firmware_version(bp, false);
9441 if (!rc) {
9442 /* fw version is good */
9443 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9444 rc = bnx2x_do_flr(bp);
9447 if (!rc) {
9448 /* FLR was performed */
9449 BNX2X_DEV_INFO("FLR successful\n");
9450 return 0;
9453 BNX2X_DEV_INFO("Could not FLR\n");
9455 /* Close the MCP request, return failure*/
9456 rc = bnx2x_prev_mcp_done(bp);
9457 if (!rc)
9458 rc = BNX2X_PREV_WAIT_NEEDED;
9460 return rc;
9463 static int __devinit bnx2x_prev_unload_common(struct bnx2x *bp)
9465 u32 reset_reg, tmp_reg = 0, rc;
9466 /* It is possible a previous function received 'common' answer,
9467 * but hasn't loaded yet, therefore creating a scenario of
9468 * multiple functions receiving 'common' on the same path.
9470 BNX2X_DEV_INFO("Common unload Flow\n");
9472 if (bnx2x_prev_is_path_marked(bp))
9473 return bnx2x_prev_mcp_done(bp);
9475 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9477 /* Reset should be performed after BRB is emptied */
9478 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9479 u32 timer_count = 1000;
9480 bool prev_undi = false;
9482 /* Close the MAC Rx to prevent BRB from filling up */
9483 bnx2x_prev_unload_close_mac(bp);
9485 /* Check if the UNDI driver was previously loaded
9486 * UNDI driver initializes CID offset for normal bell to 0x7
9488 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9489 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9490 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9491 if (tmp_reg == 0x7) {
9492 BNX2X_DEV_INFO("UNDI previously loaded\n");
9493 prev_undi = true;
9494 /* clear the UNDI indication */
9495 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9498 /* wait until BRB is empty */
9499 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9500 while (timer_count) {
9501 u32 prev_brb = tmp_reg;
9503 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9504 if (!tmp_reg)
9505 break;
9507 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9509 /* reset timer as long as BRB actually gets emptied */
9510 if (prev_brb > tmp_reg)
9511 timer_count = 1000;
9512 else
9513 timer_count--;
9515 /* If UNDI resides in memory, manually increment it */
9516 if (prev_undi)
9517 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9519 udelay(10);
9522 if (!timer_count)
9523 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9527 /* No packets are in the pipeline, path is ready for reset */
9528 bnx2x_reset_common(bp);
9530 rc = bnx2x_prev_mark_path(bp);
9531 if (rc) {
9532 bnx2x_prev_mcp_done(bp);
9533 return rc;
9536 return bnx2x_prev_mcp_done(bp);
9539 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9540 * and boot began, or when kdump kernel was loaded. Either case would invalidate
9541 * the addresses of the transaction, resulting in was-error bit set in the pci
9542 * causing all hw-to-host pcie transactions to timeout. If this happened we want
9543 * to clear the interrupt which detected this from the pglueb and the was done
9544 * bit
9546 static void __devinit bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9548 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9549 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9550 BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9551 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << BP_FUNC(bp));
9555 static int __devinit bnx2x_prev_unload(struct bnx2x *bp)
9557 int time_counter = 10;
9558 u32 rc, fw, hw_lock_reg, hw_lock_val;
9559 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9561 /* clear hw from errors which may have resulted from an interrupted
9562 * dmae transaction.
9564 bnx2x_prev_interrupted_dmae(bp);
9566 /* Release previously held locks */
9567 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9568 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9569 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9571 hw_lock_val = (REG_RD(bp, hw_lock_reg));
9572 if (hw_lock_val) {
9573 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9574 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9575 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9576 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9579 BNX2X_DEV_INFO("Release Previously held hw lock\n");
9580 REG_WR(bp, hw_lock_reg, 0xffffffff);
9581 } else
9582 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9584 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9585 BNX2X_DEV_INFO("Release previously held alr\n");
9586 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9590 do {
9591 /* Lock MCP using an unload request */
9592 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9593 if (!fw) {
9594 BNX2X_ERR("MCP response failure, aborting\n");
9595 rc = -EBUSY;
9596 break;
9599 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9600 rc = bnx2x_prev_unload_common(bp);
9601 break;
9604 /* non-common reply from MCP night require looping */
9605 rc = bnx2x_prev_unload_uncommon(bp);
9606 if (rc != BNX2X_PREV_WAIT_NEEDED)
9607 break;
9609 msleep(20);
9610 } while (--time_counter);
9612 if (!time_counter || rc) {
9613 BNX2X_ERR("Failed unloading previous driver, aborting\n");
9614 rc = -EBUSY;
9617 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9619 return rc;
9622 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
9624 u32 val, val2, val3, val4, id, boot_mode;
9625 u16 pmc;
9627 /* Get the chip revision id and number. */
9628 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9629 val = REG_RD(bp, MISC_REG_CHIP_NUM);
9630 id = ((val & 0xffff) << 16);
9631 val = REG_RD(bp, MISC_REG_CHIP_REV);
9632 id |= ((val & 0xf) << 12);
9633 val = REG_RD(bp, MISC_REG_CHIP_METAL);
9634 id |= ((val & 0xff) << 4);
9635 val = REG_RD(bp, MISC_REG_BOND_ID);
9636 id |= (val & 0xf);
9637 bp->common.chip_id = id;
9639 /* force 57811 according to MISC register */
9640 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9641 if (CHIP_IS_57810(bp))
9642 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9643 (bp->common.chip_id & 0x0000FFFF);
9644 else if (CHIP_IS_57810_MF(bp))
9645 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9646 (bp->common.chip_id & 0x0000FFFF);
9647 bp->common.chip_id |= 0x1;
9650 /* Set doorbell size */
9651 bp->db_size = (1 << BNX2X_DB_SHIFT);
9653 if (!CHIP_IS_E1x(bp)) {
9654 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9655 if ((val & 1) == 0)
9656 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9657 else
9658 val = (val >> 1) & 1;
9659 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9660 "2_PORT_MODE");
9661 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9662 CHIP_2_PORT_MODE;
9664 if (CHIP_MODE_IS_4_PORT(bp))
9665 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
9666 else
9667 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
9668 } else {
9669 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9670 bp->pfid = bp->pf_num; /* 0..7 */
9673 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9675 bp->link_params.chip_id = bp->common.chip_id;
9676 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9678 val = (REG_RD(bp, 0x2874) & 0x55);
9679 if ((bp->common.chip_id & 0x1) ||
9680 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9681 bp->flags |= ONE_PORT_FLAG;
9682 BNX2X_DEV_INFO("single port device\n");
9685 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9686 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9687 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9688 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9689 bp->common.flash_size, bp->common.flash_size);
9691 bnx2x_init_shmem(bp);
9695 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9696 MISC_REG_GENERIC_CR_1 :
9697 MISC_REG_GENERIC_CR_0));
9699 bp->link_params.shmem_base = bp->common.shmem_base;
9700 bp->link_params.shmem2_base = bp->common.shmem2_base;
9701 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
9702 bp->common.shmem_base, bp->common.shmem2_base);
9704 if (!bp->common.shmem_base) {
9705 BNX2X_DEV_INFO("MCP not active\n");
9706 bp->flags |= NO_MCP_FLAG;
9707 return;
9710 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9711 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9713 bp->link_params.hw_led_mode = ((bp->common.hw_config &
9714 SHARED_HW_CFG_LED_MODE_MASK) >>
9715 SHARED_HW_CFG_LED_MODE_SHIFT);
9717 bp->link_params.feature_config_flags = 0;
9718 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9719 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9720 bp->link_params.feature_config_flags |=
9721 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9722 else
9723 bp->link_params.feature_config_flags &=
9724 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9726 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9727 bp->common.bc_ver = val;
9728 BNX2X_DEV_INFO("bc_ver %X\n", val);
9729 if (val < BNX2X_BC_VER) {
9730 /* for now only warn
9731 * later we might need to enforce this */
9732 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9733 BNX2X_BC_VER, val);
9735 bp->link_params.feature_config_flags |=
9736 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9737 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9739 bp->link_params.feature_config_flags |=
9740 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9741 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9742 bp->link_params.feature_config_flags |=
9743 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
9744 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
9745 bp->link_params.feature_config_flags |=
9746 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9747 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9748 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9749 BC_SUPPORTS_PFC_STATS : 0;
9751 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
9752 BC_SUPPORTS_FCOE_FEATURES : 0;
9754 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
9755 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
9756 boot_mode = SHMEM_RD(bp,
9757 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9758 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9759 switch (boot_mode) {
9760 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9761 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9762 break;
9763 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9764 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9765 break;
9766 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9767 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9768 break;
9769 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9770 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9771 break;
9774 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9775 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9777 BNX2X_DEV_INFO("%sWoL capable\n",
9778 (bp->flags & NO_WOL_FLAG) ? "not " : "");
9780 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9781 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9782 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9783 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9785 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9786 val, val2, val3, val4);
9789 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9790 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9792 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9794 int pfid = BP_FUNC(bp);
9795 int igu_sb_id;
9796 u32 val;
9797 u8 fid, igu_sb_cnt = 0;
9799 bp->igu_base_sb = 0xff;
9800 if (CHIP_INT_MODE_IS_BC(bp)) {
9801 int vn = BP_VN(bp);
9802 igu_sb_cnt = bp->igu_sb_cnt;
9803 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9804 FP_SB_MAX_E1x;
9806 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
9807 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9809 return;
9812 /* IGU in normal mode - read CAM */
9813 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9814 igu_sb_id++) {
9815 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9816 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9817 continue;
9818 fid = IGU_FID(val);
9819 if ((fid & IGU_FID_ENCODE_IS_PF)) {
9820 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9821 continue;
9822 if (IGU_VEC(val) == 0)
9823 /* default status block */
9824 bp->igu_dsb_id = igu_sb_id;
9825 else {
9826 if (bp->igu_base_sb == 0xff)
9827 bp->igu_base_sb = igu_sb_id;
9828 igu_sb_cnt++;
9833 #ifdef CONFIG_PCI_MSI
9834 /* Due to new PF resource allocation by MFW T7.4 and above, it's
9835 * optional that number of CAM entries will not be equal to the value
9836 * advertised in PCI.
9837 * Driver should use the minimal value of both as the actual status
9838 * block count
9840 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
9841 #endif
9843 if (igu_sb_cnt == 0)
9844 BNX2X_ERR("CAM configuration error\n");
9847 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9848 u32 switch_cfg)
9850 int cfg_size = 0, idx, port = BP_PORT(bp);
9852 /* Aggregation of supported attributes of all external phys */
9853 bp->port.supported[0] = 0;
9854 bp->port.supported[1] = 0;
9855 switch (bp->link_params.num_phys) {
9856 case 1:
9857 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9858 cfg_size = 1;
9859 break;
9860 case 2:
9861 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9862 cfg_size = 1;
9863 break;
9864 case 3:
9865 if (bp->link_params.multi_phy_config &
9866 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9867 bp->port.supported[1] =
9868 bp->link_params.phy[EXT_PHY1].supported;
9869 bp->port.supported[0] =
9870 bp->link_params.phy[EXT_PHY2].supported;
9871 } else {
9872 bp->port.supported[0] =
9873 bp->link_params.phy[EXT_PHY1].supported;
9874 bp->port.supported[1] =
9875 bp->link_params.phy[EXT_PHY2].supported;
9877 cfg_size = 2;
9878 break;
9881 if (!(bp->port.supported[0] || bp->port.supported[1])) {
9882 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
9883 SHMEM_RD(bp,
9884 dev_info.port_hw_config[port].external_phy_config),
9885 SHMEM_RD(bp,
9886 dev_info.port_hw_config[port].external_phy_config2));
9887 return;
9890 if (CHIP_IS_E3(bp))
9891 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9892 else {
9893 switch (switch_cfg) {
9894 case SWITCH_CFG_1G:
9895 bp->port.phy_addr = REG_RD(
9896 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9897 break;
9898 case SWITCH_CFG_10G:
9899 bp->port.phy_addr = REG_RD(
9900 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9901 break;
9902 default:
9903 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9904 bp->port.link_config[0]);
9905 return;
9908 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9909 /* mask what we support according to speed_cap_mask per configuration */
9910 for (idx = 0; idx < cfg_size; idx++) {
9911 if (!(bp->link_params.speed_cap_mask[idx] &
9912 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9913 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9915 if (!(bp->link_params.speed_cap_mask[idx] &
9916 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9917 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9919 if (!(bp->link_params.speed_cap_mask[idx] &
9920 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9921 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9923 if (!(bp->link_params.speed_cap_mask[idx] &
9924 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9925 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9927 if (!(bp->link_params.speed_cap_mask[idx] &
9928 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9929 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9930 SUPPORTED_1000baseT_Full);
9932 if (!(bp->link_params.speed_cap_mask[idx] &
9933 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9934 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9936 if (!(bp->link_params.speed_cap_mask[idx] &
9937 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9938 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9942 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9943 bp->port.supported[1]);
9946 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9948 u32 link_config, idx, cfg_size = 0;
9949 bp->port.advertising[0] = 0;
9950 bp->port.advertising[1] = 0;
9951 switch (bp->link_params.num_phys) {
9952 case 1:
9953 case 2:
9954 cfg_size = 1;
9955 break;
9956 case 3:
9957 cfg_size = 2;
9958 break;
9960 for (idx = 0; idx < cfg_size; idx++) {
9961 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9962 link_config = bp->port.link_config[idx];
9963 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9964 case PORT_FEATURE_LINK_SPEED_AUTO:
9965 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9966 bp->link_params.req_line_speed[idx] =
9967 SPEED_AUTO_NEG;
9968 bp->port.advertising[idx] |=
9969 bp->port.supported[idx];
9970 if (bp->link_params.phy[EXT_PHY1].type ==
9971 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9972 bp->port.advertising[idx] |=
9973 (SUPPORTED_100baseT_Half |
9974 SUPPORTED_100baseT_Full);
9975 } else {
9976 /* force 10G, no AN */
9977 bp->link_params.req_line_speed[idx] =
9978 SPEED_10000;
9979 bp->port.advertising[idx] |=
9980 (ADVERTISED_10000baseT_Full |
9981 ADVERTISED_FIBRE);
9982 continue;
9984 break;
9986 case PORT_FEATURE_LINK_SPEED_10M_FULL:
9987 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9988 bp->link_params.req_line_speed[idx] =
9989 SPEED_10;
9990 bp->port.advertising[idx] |=
9991 (ADVERTISED_10baseT_Full |
9992 ADVERTISED_TP);
9993 } else {
9994 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
9995 link_config,
9996 bp->link_params.speed_cap_mask[idx]);
9997 return;
9999 break;
10001 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10002 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10003 bp->link_params.req_line_speed[idx] =
10004 SPEED_10;
10005 bp->link_params.req_duplex[idx] =
10006 DUPLEX_HALF;
10007 bp->port.advertising[idx] |=
10008 (ADVERTISED_10baseT_Half |
10009 ADVERTISED_TP);
10010 } else {
10011 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10012 link_config,
10013 bp->link_params.speed_cap_mask[idx]);
10014 return;
10016 break;
10018 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10019 if (bp->port.supported[idx] &
10020 SUPPORTED_100baseT_Full) {
10021 bp->link_params.req_line_speed[idx] =
10022 SPEED_100;
10023 bp->port.advertising[idx] |=
10024 (ADVERTISED_100baseT_Full |
10025 ADVERTISED_TP);
10026 } else {
10027 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10028 link_config,
10029 bp->link_params.speed_cap_mask[idx]);
10030 return;
10032 break;
10034 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10035 if (bp->port.supported[idx] &
10036 SUPPORTED_100baseT_Half) {
10037 bp->link_params.req_line_speed[idx] =
10038 SPEED_100;
10039 bp->link_params.req_duplex[idx] =
10040 DUPLEX_HALF;
10041 bp->port.advertising[idx] |=
10042 (ADVERTISED_100baseT_Half |
10043 ADVERTISED_TP);
10044 } else {
10045 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10046 link_config,
10047 bp->link_params.speed_cap_mask[idx]);
10048 return;
10050 break;
10052 case PORT_FEATURE_LINK_SPEED_1G:
10053 if (bp->port.supported[idx] &
10054 SUPPORTED_1000baseT_Full) {
10055 bp->link_params.req_line_speed[idx] =
10056 SPEED_1000;
10057 bp->port.advertising[idx] |=
10058 (ADVERTISED_1000baseT_Full |
10059 ADVERTISED_TP);
10060 } else {
10061 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10062 link_config,
10063 bp->link_params.speed_cap_mask[idx]);
10064 return;
10066 break;
10068 case PORT_FEATURE_LINK_SPEED_2_5G:
10069 if (bp->port.supported[idx] &
10070 SUPPORTED_2500baseX_Full) {
10071 bp->link_params.req_line_speed[idx] =
10072 SPEED_2500;
10073 bp->port.advertising[idx] |=
10074 (ADVERTISED_2500baseX_Full |
10075 ADVERTISED_TP);
10076 } else {
10077 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10078 link_config,
10079 bp->link_params.speed_cap_mask[idx]);
10080 return;
10082 break;
10084 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10085 if (bp->port.supported[idx] &
10086 SUPPORTED_10000baseT_Full) {
10087 bp->link_params.req_line_speed[idx] =
10088 SPEED_10000;
10089 bp->port.advertising[idx] |=
10090 (ADVERTISED_10000baseT_Full |
10091 ADVERTISED_FIBRE);
10092 } else {
10093 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10094 link_config,
10095 bp->link_params.speed_cap_mask[idx]);
10096 return;
10098 break;
10099 case PORT_FEATURE_LINK_SPEED_20G:
10100 bp->link_params.req_line_speed[idx] = SPEED_20000;
10102 break;
10103 default:
10104 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10105 link_config);
10106 bp->link_params.req_line_speed[idx] =
10107 SPEED_AUTO_NEG;
10108 bp->port.advertising[idx] =
10109 bp->port.supported[idx];
10110 break;
10113 bp->link_params.req_flow_ctrl[idx] = (link_config &
10114 PORT_FEATURE_FLOW_CONTROL_MASK);
10115 if ((bp->link_params.req_flow_ctrl[idx] ==
10116 BNX2X_FLOW_CTRL_AUTO) &&
10117 !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
10118 bp->link_params.req_flow_ctrl[idx] =
10119 BNX2X_FLOW_CTRL_NONE;
10122 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10123 bp->link_params.req_line_speed[idx],
10124 bp->link_params.req_duplex[idx],
10125 bp->link_params.req_flow_ctrl[idx],
10126 bp->port.advertising[idx]);
10130 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10132 mac_hi = cpu_to_be16(mac_hi);
10133 mac_lo = cpu_to_be32(mac_lo);
10134 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10135 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10138 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
10140 int port = BP_PORT(bp);
10141 u32 config;
10142 u32 ext_phy_type, ext_phy_config, eee_mode;
10144 bp->link_params.bp = bp;
10145 bp->link_params.port = port;
10147 bp->link_params.lane_config =
10148 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10150 bp->link_params.speed_cap_mask[0] =
10151 SHMEM_RD(bp,
10152 dev_info.port_hw_config[port].speed_capability_mask);
10153 bp->link_params.speed_cap_mask[1] =
10154 SHMEM_RD(bp,
10155 dev_info.port_hw_config[port].speed_capability_mask2);
10156 bp->port.link_config[0] =
10157 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10159 bp->port.link_config[1] =
10160 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10162 bp->link_params.multi_phy_config =
10163 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10164 /* If the device is capable of WoL, set the default state according
10165 * to the HW
10167 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10168 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10169 (config & PORT_FEATURE_WOL_ENABLED));
10171 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
10172 bp->link_params.lane_config,
10173 bp->link_params.speed_cap_mask[0],
10174 bp->port.link_config[0]);
10176 bp->link_params.switch_cfg = (bp->port.link_config[0] &
10177 PORT_FEATURE_CONNECTED_SWITCH_MASK);
10178 bnx2x_phy_probe(&bp->link_params);
10179 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10181 bnx2x_link_settings_requested(bp);
10184 * If connected directly, work with the internal PHY, otherwise, work
10185 * with the external PHY
10187 ext_phy_config =
10188 SHMEM_RD(bp,
10189 dev_info.port_hw_config[port].external_phy_config);
10190 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10191 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10192 bp->mdio.prtad = bp->port.phy_addr;
10194 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10195 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10196 bp->mdio.prtad =
10197 XGXS_EXT_PHY_ADDR(ext_phy_config);
10200 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
10201 * In MF mode, it is set to cover self test cases
10203 if (IS_MF(bp))
10204 bp->port.need_hw_lock = 1;
10205 else
10206 bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
10207 bp->common.shmem_base,
10208 bp->common.shmem2_base);
10210 /* Configure link feature according to nvram value */
10211 eee_mode = (((SHMEM_RD(bp, dev_info.
10212 port_feature_config[port].eee_power_mode)) &
10213 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10214 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10215 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10216 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10217 EEE_MODE_ENABLE_LPI |
10218 EEE_MODE_OUTPUT_TIME;
10219 } else {
10220 bp->link_params.eee_mode = 0;
10224 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10226 u32 no_flags = NO_ISCSI_FLAG;
10227 #ifdef BCM_CNIC
10228 int port = BP_PORT(bp);
10230 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10231 drv_lic_key[port].max_iscsi_conn);
10233 /* Get the number of maximum allowed iSCSI connections */
10234 bp->cnic_eth_dev.max_iscsi_conn =
10235 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10236 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10238 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10239 bp->cnic_eth_dev.max_iscsi_conn);
10242 * If maximum allowed number of connections is zero -
10243 * disable the feature.
10245 if (!bp->cnic_eth_dev.max_iscsi_conn)
10246 bp->flags |= no_flags;
10247 #else
10248 bp->flags |= no_flags;
10249 #endif
10252 #ifdef BCM_CNIC
10253 static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10255 /* Port info */
10256 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10257 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10258 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10259 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10261 /* Node info */
10262 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10263 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10264 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10265 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10267 #endif
10268 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
10270 #ifdef BCM_CNIC
10271 int port = BP_PORT(bp);
10272 int func = BP_ABS_FUNC(bp);
10274 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10275 drv_lic_key[port].max_fcoe_conn);
10277 /* Get the number of maximum allowed FCoE connections */
10278 bp->cnic_eth_dev.max_fcoe_conn =
10279 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10280 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10282 /* Read the WWN: */
10283 if (!IS_MF(bp)) {
10284 /* Port info */
10285 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10286 SHMEM_RD(bp,
10287 dev_info.port_hw_config[port].
10288 fcoe_wwn_port_name_upper);
10289 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10290 SHMEM_RD(bp,
10291 dev_info.port_hw_config[port].
10292 fcoe_wwn_port_name_lower);
10294 /* Node info */
10295 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10296 SHMEM_RD(bp,
10297 dev_info.port_hw_config[port].
10298 fcoe_wwn_node_name_upper);
10299 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10300 SHMEM_RD(bp,
10301 dev_info.port_hw_config[port].
10302 fcoe_wwn_node_name_lower);
10303 } else if (!IS_MF_SD(bp)) {
10305 * Read the WWN info only if the FCoE feature is enabled for
10306 * this function.
10308 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10309 bnx2x_get_ext_wwn_info(bp, func);
10311 } else if (IS_MF_FCOE_SD(bp))
10312 bnx2x_get_ext_wwn_info(bp, func);
10314 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10317 * If maximum allowed number of connections is zero -
10318 * disable the feature.
10320 if (!bp->cnic_eth_dev.max_fcoe_conn)
10321 bp->flags |= NO_FCOE_FLAG;
10322 #else
10323 bp->flags |= NO_FCOE_FLAG;
10324 #endif
10327 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
10330 * iSCSI may be dynamically disabled but reading
10331 * info here we will decrease memory usage by driver
10332 * if the feature is disabled for good
10334 bnx2x_get_iscsi_info(bp);
10335 bnx2x_get_fcoe_info(bp);
10338 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10340 u32 val, val2;
10341 int func = BP_ABS_FUNC(bp);
10342 int port = BP_PORT(bp);
10343 #ifdef BCM_CNIC
10344 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10345 u8 *fip_mac = bp->fip_mac;
10346 #endif
10348 /* Zero primary MAC configuration */
10349 memset(bp->dev->dev_addr, 0, ETH_ALEN);
10351 if (BP_NOMCP(bp)) {
10352 BNX2X_ERROR("warning: random MAC workaround active\n");
10353 eth_hw_addr_random(bp->dev);
10354 } else if (IS_MF(bp)) {
10355 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10356 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10357 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10358 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10359 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10361 #ifdef BCM_CNIC
10363 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10364 * FCoE MAC then the appropriate feature should be disabled.
10366 * In non SD mode features configuration comes from
10367 * struct func_ext_config.
10369 if (!IS_MF_SD(bp)) {
10370 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10371 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10372 val2 = MF_CFG_RD(bp, func_ext_config[func].
10373 iscsi_mac_addr_upper);
10374 val = MF_CFG_RD(bp, func_ext_config[func].
10375 iscsi_mac_addr_lower);
10376 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10377 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
10378 iscsi_mac);
10379 } else
10380 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10382 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10383 val2 = MF_CFG_RD(bp, func_ext_config[func].
10384 fcoe_mac_addr_upper);
10385 val = MF_CFG_RD(bp, func_ext_config[func].
10386 fcoe_mac_addr_lower);
10387 bnx2x_set_mac_buf(fip_mac, val, val2);
10388 BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
10389 fip_mac);
10391 } else
10392 bp->flags |= NO_FCOE_FLAG;
10394 bp->mf_ext_config = cfg;
10396 } else { /* SD MODE */
10397 if (IS_MF_STORAGE_SD(bp)) {
10398 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10399 /* use primary mac as iscsi mac */
10400 memcpy(iscsi_mac, bp->dev->dev_addr,
10401 ETH_ALEN);
10403 BNX2X_DEV_INFO("SD ISCSI MODE\n");
10404 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
10405 iscsi_mac);
10406 } else { /* FCoE */
10407 memcpy(fip_mac, bp->dev->dev_addr,
10408 ETH_ALEN);
10409 BNX2X_DEV_INFO("SD FCoE MODE\n");
10410 BNX2X_DEV_INFO("Read FIP MAC: %pM\n",
10411 fip_mac);
10413 /* Zero primary MAC configuration */
10414 memset(bp->dev->dev_addr, 0, ETH_ALEN);
10418 if (IS_MF_FCOE_AFEX(bp))
10419 /* use FIP MAC as primary MAC */
10420 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10422 #endif
10423 } else {
10424 /* in SF read MACs from port configuration */
10425 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10426 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10427 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10429 #ifdef BCM_CNIC
10430 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10431 iscsi_mac_upper);
10432 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10433 iscsi_mac_lower);
10434 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10436 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10437 fcoe_fip_mac_upper);
10438 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10439 fcoe_fip_mac_lower);
10440 bnx2x_set_mac_buf(fip_mac, val, val2);
10441 #endif
10444 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10445 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10447 #ifdef BCM_CNIC
10448 /* Disable iSCSI if MAC configuration is
10449 * invalid.
10451 if (!is_valid_ether_addr(iscsi_mac)) {
10452 bp->flags |= NO_ISCSI_FLAG;
10453 memset(iscsi_mac, 0, ETH_ALEN);
10456 /* Disable FCoE if MAC configuration is
10457 * invalid.
10459 if (!is_valid_ether_addr(fip_mac)) {
10460 bp->flags |= NO_FCOE_FLAG;
10461 memset(bp->fip_mac, 0, ETH_ALEN);
10463 #endif
10465 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10466 dev_err(&bp->pdev->dev,
10467 "bad Ethernet MAC address configuration: %pM\n"
10468 "change it manually before bringing up the appropriate network interface\n",
10469 bp->dev->dev_addr);
10474 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
10476 int /*abs*/func = BP_ABS_FUNC(bp);
10477 int vn;
10478 u32 val = 0;
10479 int rc = 0;
10481 bnx2x_get_common_hwinfo(bp);
10484 * initialize IGU parameters
10486 if (CHIP_IS_E1x(bp)) {
10487 bp->common.int_block = INT_BLOCK_HC;
10489 bp->igu_dsb_id = DEF_SB_IGU_ID;
10490 bp->igu_base_sb = 0;
10491 } else {
10492 bp->common.int_block = INT_BLOCK_IGU;
10494 /* do not allow device reset during IGU info preocessing */
10495 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10497 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10499 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10500 int tout = 5000;
10502 BNX2X_DEV_INFO("FORCING Normal Mode\n");
10504 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10505 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10506 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10508 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10509 tout--;
10510 usleep_range(1000, 1000);
10513 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10514 dev_err(&bp->pdev->dev,
10515 "FORCING Normal Mode failed!!!\n");
10516 return -EPERM;
10520 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10521 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10522 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10523 } else
10524 BNX2X_DEV_INFO("IGU Normal Mode\n");
10526 bnx2x_get_igu_cam_info(bp);
10528 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10532 * set base FW non-default (fast path) status block id, this value is
10533 * used to initialize the fw_sb_id saved on the fp/queue structure to
10534 * determine the id used by the FW.
10536 if (CHIP_IS_E1x(bp))
10537 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10538 else /*
10539 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10540 * the same queue are indicated on the same IGU SB). So we prefer
10541 * FW and IGU SBs to be the same value.
10543 bp->base_fw_ndsb = bp->igu_base_sb;
10545 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
10546 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10547 bp->igu_sb_cnt, bp->base_fw_ndsb);
10550 * Initialize MF configuration
10553 bp->mf_ov = 0;
10554 bp->mf_mode = 0;
10555 vn = BP_VN(bp);
10557 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10558 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10559 bp->common.shmem2_base, SHMEM2_RD(bp, size),
10560 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10562 if (SHMEM2_HAS(bp, mf_cfg_addr))
10563 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10564 else
10565 bp->common.mf_cfg_base = bp->common.shmem_base +
10566 offsetof(struct shmem_region, func_mb) +
10567 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10569 * get mf configuration:
10570 * 1. existence of MF configuration
10571 * 2. MAC address must be legal (check only upper bytes)
10572 * for Switch-Independent mode;
10573 * OVLAN must be legal for Switch-Dependent mode
10574 * 3. SF_MODE configures specific MF mode
10576 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10577 /* get mf configuration */
10578 val = SHMEM_RD(bp,
10579 dev_info.shared_feature_config.config);
10580 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10582 switch (val) {
10583 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10584 val = MF_CFG_RD(bp, func_mf_config[func].
10585 mac_upper);
10586 /* check for legal mac (upper bytes)*/
10587 if (val != 0xffff) {
10588 bp->mf_mode = MULTI_FUNCTION_SI;
10589 bp->mf_config[vn] = MF_CFG_RD(bp,
10590 func_mf_config[func].config);
10591 } else
10592 BNX2X_DEV_INFO("illegal MAC address for SI\n");
10593 break;
10594 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10595 if ((!CHIP_IS_E1x(bp)) &&
10596 (MF_CFG_RD(bp, func_mf_config[func].
10597 mac_upper) != 0xffff) &&
10598 (SHMEM2_HAS(bp,
10599 afex_driver_support))) {
10600 bp->mf_mode = MULTI_FUNCTION_AFEX;
10601 bp->mf_config[vn] = MF_CFG_RD(bp,
10602 func_mf_config[func].config);
10603 } else {
10604 BNX2X_DEV_INFO("can not configure afex mode\n");
10606 break;
10607 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10608 /* get OV configuration */
10609 val = MF_CFG_RD(bp,
10610 func_mf_config[FUNC_0].e1hov_tag);
10611 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10613 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10614 bp->mf_mode = MULTI_FUNCTION_SD;
10615 bp->mf_config[vn] = MF_CFG_RD(bp,
10616 func_mf_config[func].config);
10617 } else
10618 BNX2X_DEV_INFO("illegal OV for SD\n");
10619 break;
10620 default:
10621 /* Unknown configuration: reset mf_config */
10622 bp->mf_config[vn] = 0;
10623 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10627 BNX2X_DEV_INFO("%s function mode\n",
10628 IS_MF(bp) ? "multi" : "single");
10630 switch (bp->mf_mode) {
10631 case MULTI_FUNCTION_SD:
10632 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10633 FUNC_MF_CFG_E1HOV_TAG_MASK;
10634 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10635 bp->mf_ov = val;
10636 bp->path_has_ovlan = true;
10638 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10639 func, bp->mf_ov, bp->mf_ov);
10640 } else {
10641 dev_err(&bp->pdev->dev,
10642 "No valid MF OV for func %d, aborting\n",
10643 func);
10644 return -EPERM;
10646 break;
10647 case MULTI_FUNCTION_AFEX:
10648 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10649 break;
10650 case MULTI_FUNCTION_SI:
10651 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10652 func);
10653 break;
10654 default:
10655 if (vn) {
10656 dev_err(&bp->pdev->dev,
10657 "VN %d is in a single function mode, aborting\n",
10658 vn);
10659 return -EPERM;
10661 break;
10664 /* check if other port on the path needs ovlan:
10665 * Since MF configuration is shared between ports
10666 * Possible mixed modes are only
10667 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10669 if (CHIP_MODE_IS_4_PORT(bp) &&
10670 !bp->path_has_ovlan &&
10671 !IS_MF(bp) &&
10672 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10673 u8 other_port = !BP_PORT(bp);
10674 u8 other_func = BP_PATH(bp) + 2*other_port;
10675 val = MF_CFG_RD(bp,
10676 func_mf_config[other_func].e1hov_tag);
10677 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10678 bp->path_has_ovlan = true;
10682 /* adjust igu_sb_cnt to MF for E1x */
10683 if (CHIP_IS_E1x(bp) && IS_MF(bp))
10684 bp->igu_sb_cnt /= E1HVN_MAX;
10686 /* port info */
10687 bnx2x_get_port_hwinfo(bp);
10689 /* Get MAC addresses */
10690 bnx2x_get_mac_hwinfo(bp);
10692 bnx2x_get_cnic_info(bp);
10694 return rc;
10697 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
10699 int cnt, i, block_end, rodi;
10700 char vpd_start[BNX2X_VPD_LEN+1];
10701 char str_id_reg[VENDOR_ID_LEN+1];
10702 char str_id_cap[VENDOR_ID_LEN+1];
10703 char *vpd_data;
10704 char *vpd_extended_data = NULL;
10705 u8 len;
10707 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10708 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10710 if (cnt < BNX2X_VPD_LEN)
10711 goto out_not_found;
10713 /* VPD RO tag should be first tag after identifier string, hence
10714 * we should be able to find it in first BNX2X_VPD_LEN chars
10716 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10717 PCI_VPD_LRDT_RO_DATA);
10718 if (i < 0)
10719 goto out_not_found;
10721 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10722 pci_vpd_lrdt_size(&vpd_start[i]);
10724 i += PCI_VPD_LRDT_TAG_SIZE;
10726 if (block_end > BNX2X_VPD_LEN) {
10727 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10728 if (vpd_extended_data == NULL)
10729 goto out_not_found;
10731 /* read rest of vpd image into vpd_extended_data */
10732 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10733 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10734 block_end - BNX2X_VPD_LEN,
10735 vpd_extended_data + BNX2X_VPD_LEN);
10736 if (cnt < (block_end - BNX2X_VPD_LEN))
10737 goto out_not_found;
10738 vpd_data = vpd_extended_data;
10739 } else
10740 vpd_data = vpd_start;
10742 /* now vpd_data holds full vpd content in both cases */
10744 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10745 PCI_VPD_RO_KEYWORD_MFR_ID);
10746 if (rodi < 0)
10747 goto out_not_found;
10749 len = pci_vpd_info_field_size(&vpd_data[rodi]);
10751 if (len != VENDOR_ID_LEN)
10752 goto out_not_found;
10754 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10756 /* vendor specific info */
10757 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10758 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10759 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10760 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10762 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10763 PCI_VPD_RO_KEYWORD_VENDOR0);
10764 if (rodi >= 0) {
10765 len = pci_vpd_info_field_size(&vpd_data[rodi]);
10767 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10769 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10770 memcpy(bp->fw_ver, &vpd_data[rodi], len);
10771 bp->fw_ver[len] = ' ';
10774 kfree(vpd_extended_data);
10775 return;
10777 out_not_found:
10778 kfree(vpd_extended_data);
10779 return;
10782 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10784 u32 flags = 0;
10786 if (CHIP_REV_IS_FPGA(bp))
10787 SET_FLAGS(flags, MODE_FPGA);
10788 else if (CHIP_REV_IS_EMUL(bp))
10789 SET_FLAGS(flags, MODE_EMUL);
10790 else
10791 SET_FLAGS(flags, MODE_ASIC);
10793 if (CHIP_MODE_IS_4_PORT(bp))
10794 SET_FLAGS(flags, MODE_PORT4);
10795 else
10796 SET_FLAGS(flags, MODE_PORT2);
10798 if (CHIP_IS_E2(bp))
10799 SET_FLAGS(flags, MODE_E2);
10800 else if (CHIP_IS_E3(bp)) {
10801 SET_FLAGS(flags, MODE_E3);
10802 if (CHIP_REV(bp) == CHIP_REV_Ax)
10803 SET_FLAGS(flags, MODE_E3_A0);
10804 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10805 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10808 if (IS_MF(bp)) {
10809 SET_FLAGS(flags, MODE_MF);
10810 switch (bp->mf_mode) {
10811 case MULTI_FUNCTION_SD:
10812 SET_FLAGS(flags, MODE_MF_SD);
10813 break;
10814 case MULTI_FUNCTION_SI:
10815 SET_FLAGS(flags, MODE_MF_SI);
10816 break;
10817 case MULTI_FUNCTION_AFEX:
10818 SET_FLAGS(flags, MODE_MF_AFEX);
10819 break;
10821 } else
10822 SET_FLAGS(flags, MODE_SF);
10824 #if defined(__LITTLE_ENDIAN)
10825 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10826 #else /*(__BIG_ENDIAN)*/
10827 SET_FLAGS(flags, MODE_BIG_ENDIAN);
10828 #endif
10829 INIT_MODE_FLAGS(bp) = flags;
10832 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10834 int func;
10835 int rc;
10837 mutex_init(&bp->port.phy_mutex);
10838 mutex_init(&bp->fw_mb_mutex);
10839 spin_lock_init(&bp->stats_lock);
10840 #ifdef BCM_CNIC
10841 mutex_init(&bp->cnic_mutex);
10842 #endif
10844 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10845 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10846 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10847 rc = bnx2x_get_hwinfo(bp);
10848 if (rc)
10849 return rc;
10851 bnx2x_set_modes_bitmap(bp);
10853 rc = bnx2x_alloc_mem_bp(bp);
10854 if (rc)
10855 return rc;
10857 bnx2x_read_fwinfo(bp);
10859 func = BP_FUNC(bp);
10861 /* need to reset chip if undi was active */
10862 if (!BP_NOMCP(bp)) {
10863 /* init fw_seq */
10864 bp->fw_seq =
10865 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10866 DRV_MSG_SEQ_NUMBER_MASK;
10867 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10869 bnx2x_prev_unload(bp);
10873 if (CHIP_REV_IS_FPGA(bp))
10874 dev_err(&bp->pdev->dev, "FPGA detected\n");
10876 if (BP_NOMCP(bp) && (func == 0))
10877 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
10879 bp->disable_tpa = disable_tpa;
10881 #ifdef BCM_CNIC
10882 bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
10883 #endif
10885 /* Set TPA flags */
10886 if (bp->disable_tpa) {
10887 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10888 bp->dev->features &= ~NETIF_F_LRO;
10889 } else {
10890 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10891 bp->dev->features |= NETIF_F_LRO;
10894 if (CHIP_IS_E1(bp))
10895 bp->dropless_fc = 0;
10896 else
10897 bp->dropless_fc = dropless_fc;
10899 bp->mrrs = mrrs;
10901 bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
10903 /* make sure that the numbers are in the right granularity */
10904 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10905 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10907 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10909 init_timer(&bp->timer);
10910 bp->timer.expires = jiffies + bp->current_interval;
10911 bp->timer.data = (unsigned long) bp;
10912 bp->timer.function = bnx2x_timer;
10914 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10915 bnx2x_dcbx_init_params(bp);
10917 #ifdef BCM_CNIC
10918 if (CHIP_IS_E1x(bp))
10919 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10920 else
10921 bp->cnic_base_cl_id = FP_SB_MAX_E2;
10922 #endif
10924 /* multiple tx priority */
10925 if (CHIP_IS_E1x(bp))
10926 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10927 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10928 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10929 if (CHIP_IS_E3B0(bp))
10930 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10932 return rc;
10936 /****************************************************************************
10937 * General service functions
10938 ****************************************************************************/
10941 * net_device service functions
10944 /* called with rtnl_lock */
10945 static int bnx2x_open(struct net_device *dev)
10947 struct bnx2x *bp = netdev_priv(dev);
10948 bool global = false;
10949 int other_engine = BP_PATH(bp) ? 0 : 1;
10950 bool other_load_status, load_status;
10952 bp->stats_init = true;
10954 netif_carrier_off(dev);
10956 bnx2x_set_power_state(bp, PCI_D0);
10958 other_load_status = bnx2x_get_load_status(bp, other_engine);
10959 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10962 * If parity had happen during the unload, then attentions
10963 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10964 * want the first function loaded on the current engine to
10965 * complete the recovery.
10967 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10968 bnx2x_chk_parity_attn(bp, &global, true))
10969 do {
10971 * If there are attentions and they are in a global
10972 * blocks, set the GLOBAL_RESET bit regardless whether
10973 * it will be this function that will complete the
10974 * recovery or not.
10976 if (global)
10977 bnx2x_set_reset_global(bp);
10980 * Only the first function on the current engine should
10981 * try to recover in open. In case of attentions in
10982 * global blocks only the first in the chip should try
10983 * to recover.
10985 if ((!load_status &&
10986 (!global || !other_load_status)) &&
10987 bnx2x_trylock_leader_lock(bp) &&
10988 !bnx2x_leader_reset(bp)) {
10989 netdev_info(bp->dev, "Recovered in open\n");
10990 break;
10993 /* recovery has failed... */
10994 bnx2x_set_power_state(bp, PCI_D3hot);
10995 bp->recovery_state = BNX2X_RECOVERY_FAILED;
10997 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
10998 "If you still see this message after a few retries then power cycle is required.\n");
11000 return -EAGAIN;
11001 } while (0);
11003 bp->recovery_state = BNX2X_RECOVERY_DONE;
11004 return bnx2x_nic_load(bp, LOAD_OPEN);
11007 /* called with rtnl_lock */
11008 static int bnx2x_close(struct net_device *dev)
11010 struct bnx2x *bp = netdev_priv(dev);
11012 /* Unload the driver, release IRQs */
11013 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11015 /* Power off */
11016 bnx2x_set_power_state(bp, PCI_D3hot);
11018 return 0;
11021 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11022 struct bnx2x_mcast_ramrod_params *p)
11024 int mc_count = netdev_mc_count(bp->dev);
11025 struct bnx2x_mcast_list_elem *mc_mac =
11026 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11027 struct netdev_hw_addr *ha;
11029 if (!mc_mac)
11030 return -ENOMEM;
11032 INIT_LIST_HEAD(&p->mcast_list);
11034 netdev_for_each_mc_addr(ha, bp->dev) {
11035 mc_mac->mac = bnx2x_mc_addr(ha);
11036 list_add_tail(&mc_mac->link, &p->mcast_list);
11037 mc_mac++;
11040 p->mcast_list_len = mc_count;
11042 return 0;
11045 static void bnx2x_free_mcast_macs_list(
11046 struct bnx2x_mcast_ramrod_params *p)
11048 struct bnx2x_mcast_list_elem *mc_mac =
11049 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11050 link);
11052 WARN_ON(!mc_mac);
11053 kfree(mc_mac);
11057 * bnx2x_set_uc_list - configure a new unicast MACs list.
11059 * @bp: driver handle
11061 * We will use zero (0) as a MAC type for these MACs.
11063 static int bnx2x_set_uc_list(struct bnx2x *bp)
11065 int rc;
11066 struct net_device *dev = bp->dev;
11067 struct netdev_hw_addr *ha;
11068 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11069 unsigned long ramrod_flags = 0;
11071 /* First schedule a cleanup up of old configuration */
11072 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11073 if (rc < 0) {
11074 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11075 return rc;
11078 netdev_for_each_uc_addr(ha, dev) {
11079 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11080 BNX2X_UC_LIST_MAC, &ramrod_flags);
11081 if (rc == -EEXIST) {
11082 DP(BNX2X_MSG_SP,
11083 "Failed to schedule ADD operations: %d\n", rc);
11084 /* do not treat adding same MAC as error */
11085 rc = 0;
11087 } else if (rc < 0) {
11089 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11090 rc);
11091 return rc;
11095 /* Execute the pending commands */
11096 __set_bit(RAMROD_CONT, &ramrod_flags);
11097 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11098 BNX2X_UC_LIST_MAC, &ramrod_flags);
11101 static int bnx2x_set_mc_list(struct bnx2x *bp)
11103 struct net_device *dev = bp->dev;
11104 struct bnx2x_mcast_ramrod_params rparam = {NULL};
11105 int rc = 0;
11107 rparam.mcast_obj = &bp->mcast_obj;
11109 /* first, clear all configured multicast MACs */
11110 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11111 if (rc < 0) {
11112 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11113 return rc;
11116 /* then, configure a new MACs list */
11117 if (netdev_mc_count(dev)) {
11118 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11119 if (rc) {
11120 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11121 rc);
11122 return rc;
11125 /* Now add the new MACs */
11126 rc = bnx2x_config_mcast(bp, &rparam,
11127 BNX2X_MCAST_CMD_ADD);
11128 if (rc < 0)
11129 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11130 rc);
11132 bnx2x_free_mcast_macs_list(&rparam);
11135 return rc;
11139 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11140 void bnx2x_set_rx_mode(struct net_device *dev)
11142 struct bnx2x *bp = netdev_priv(dev);
11143 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11145 if (bp->state != BNX2X_STATE_OPEN) {
11146 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11147 return;
11150 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11152 if (dev->flags & IFF_PROMISC)
11153 rx_mode = BNX2X_RX_MODE_PROMISC;
11154 else if ((dev->flags & IFF_ALLMULTI) ||
11155 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11156 CHIP_IS_E1(bp)))
11157 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11158 else {
11159 /* some multicasts */
11160 if (bnx2x_set_mc_list(bp) < 0)
11161 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11163 if (bnx2x_set_uc_list(bp) < 0)
11164 rx_mode = BNX2X_RX_MODE_PROMISC;
11167 bp->rx_mode = rx_mode;
11168 #ifdef BCM_CNIC
11169 /* handle ISCSI SD mode */
11170 if (IS_MF_ISCSI_SD(bp))
11171 bp->rx_mode = BNX2X_RX_MODE_NONE;
11172 #endif
11174 /* Schedule the rx_mode command */
11175 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11176 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11177 return;
11180 bnx2x_set_storm_rx_mode(bp);
11183 /* called with rtnl_lock */
11184 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11185 int devad, u16 addr)
11187 struct bnx2x *bp = netdev_priv(netdev);
11188 u16 value;
11189 int rc;
11191 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11192 prtad, devad, addr);
11194 /* The HW expects different devad if CL22 is used */
11195 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11197 bnx2x_acquire_phy_lock(bp);
11198 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11199 bnx2x_release_phy_lock(bp);
11200 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11202 if (!rc)
11203 rc = value;
11204 return rc;
11207 /* called with rtnl_lock */
11208 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11209 u16 addr, u16 value)
11211 struct bnx2x *bp = netdev_priv(netdev);
11212 int rc;
11214 DP(NETIF_MSG_LINK,
11215 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11216 prtad, devad, addr, value);
11218 /* The HW expects different devad if CL22 is used */
11219 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11221 bnx2x_acquire_phy_lock(bp);
11222 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11223 bnx2x_release_phy_lock(bp);
11224 return rc;
11227 /* called with rtnl_lock */
11228 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11230 struct bnx2x *bp = netdev_priv(dev);
11231 struct mii_ioctl_data *mdio = if_mii(ifr);
11233 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11234 mdio->phy_id, mdio->reg_num, mdio->val_in);
11236 if (!netif_running(dev))
11237 return -EAGAIN;
11239 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11242 #ifdef CONFIG_NET_POLL_CONTROLLER
11243 static void poll_bnx2x(struct net_device *dev)
11245 struct bnx2x *bp = netdev_priv(dev);
11246 int i;
11248 for_each_eth_queue(bp, i) {
11249 struct bnx2x_fastpath *fp = &bp->fp[i];
11250 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11253 #endif
11255 static int bnx2x_validate_addr(struct net_device *dev)
11257 struct bnx2x *bp = netdev_priv(dev);
11259 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11260 BNX2X_ERR("Non-valid Ethernet address\n");
11261 return -EADDRNOTAVAIL;
11263 return 0;
11266 static const struct net_device_ops bnx2x_netdev_ops = {
11267 .ndo_open = bnx2x_open,
11268 .ndo_stop = bnx2x_close,
11269 .ndo_start_xmit = bnx2x_start_xmit,
11270 .ndo_select_queue = bnx2x_select_queue,
11271 .ndo_set_rx_mode = bnx2x_set_rx_mode,
11272 .ndo_set_mac_address = bnx2x_change_mac_addr,
11273 .ndo_validate_addr = bnx2x_validate_addr,
11274 .ndo_do_ioctl = bnx2x_ioctl,
11275 .ndo_change_mtu = bnx2x_change_mtu,
11276 .ndo_fix_features = bnx2x_fix_features,
11277 .ndo_set_features = bnx2x_set_features,
11278 .ndo_tx_timeout = bnx2x_tx_timeout,
11279 #ifdef CONFIG_NET_POLL_CONTROLLER
11280 .ndo_poll_controller = poll_bnx2x,
11281 #endif
11282 .ndo_setup_tc = bnx2x_setup_tc,
11284 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
11285 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
11286 #endif
11289 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11291 struct device *dev = &bp->pdev->dev;
11293 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11294 bp->flags |= USING_DAC_FLAG;
11295 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11296 dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11297 return -EIO;
11299 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11300 dev_err(dev, "System does not support DMA, aborting\n");
11301 return -EIO;
11304 return 0;
11307 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
11308 struct net_device *dev,
11309 unsigned long board_type)
11311 struct bnx2x *bp;
11312 int rc;
11313 u32 pci_cfg_dword;
11314 bool chip_is_e1x = (board_type == BCM57710 ||
11315 board_type == BCM57711 ||
11316 board_type == BCM57711E);
11318 SET_NETDEV_DEV(dev, &pdev->dev);
11319 bp = netdev_priv(dev);
11321 bp->dev = dev;
11322 bp->pdev = pdev;
11323 bp->flags = 0;
11325 rc = pci_enable_device(pdev);
11326 if (rc) {
11327 dev_err(&bp->pdev->dev,
11328 "Cannot enable PCI device, aborting\n");
11329 goto err_out;
11332 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11333 dev_err(&bp->pdev->dev,
11334 "Cannot find PCI device base address, aborting\n");
11335 rc = -ENODEV;
11336 goto err_out_disable;
11339 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11340 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
11341 " base address, aborting\n");
11342 rc = -ENODEV;
11343 goto err_out_disable;
11346 if (atomic_read(&pdev->enable_cnt) == 1) {
11347 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11348 if (rc) {
11349 dev_err(&bp->pdev->dev,
11350 "Cannot obtain PCI resources, aborting\n");
11351 goto err_out_disable;
11354 pci_set_master(pdev);
11355 pci_save_state(pdev);
11358 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11359 if (bp->pm_cap == 0) {
11360 dev_err(&bp->pdev->dev,
11361 "Cannot find power management capability, aborting\n");
11362 rc = -EIO;
11363 goto err_out_release;
11366 if (!pci_is_pcie(pdev)) {
11367 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11368 rc = -EIO;
11369 goto err_out_release;
11372 rc = bnx2x_set_coherency_mask(bp);
11373 if (rc)
11374 goto err_out_release;
11376 dev->mem_start = pci_resource_start(pdev, 0);
11377 dev->base_addr = dev->mem_start;
11378 dev->mem_end = pci_resource_end(pdev, 0);
11380 dev->irq = pdev->irq;
11382 bp->regview = pci_ioremap_bar(pdev, 0);
11383 if (!bp->regview) {
11384 dev_err(&bp->pdev->dev,
11385 "Cannot map register space, aborting\n");
11386 rc = -ENOMEM;
11387 goto err_out_release;
11390 /* In E1/E1H use pci device function given by kernel.
11391 * In E2/E3 read physical function from ME register since these chips
11392 * support Physical Device Assignment where kernel BDF maybe arbitrary
11393 * (depending on hypervisor).
11395 if (chip_is_e1x)
11396 bp->pf_num = PCI_FUNC(pdev->devfn);
11397 else {/* chip is E2/3*/
11398 pci_read_config_dword(bp->pdev,
11399 PCICFG_ME_REGISTER, &pci_cfg_dword);
11400 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11401 ME_REG_ABS_PF_NUM_SHIFT);
11403 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11405 bnx2x_set_power_state(bp, PCI_D0);
11407 /* clean indirect addresses */
11408 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11409 PCICFG_VENDOR_ID_OFFSET);
11411 * Clean the following indirect addresses for all functions since it
11412 * is not used by the driver.
11414 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11415 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11416 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11417 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11419 if (chip_is_e1x) {
11420 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11421 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11422 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11423 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11427 * Enable internal target-read (in case we are probed after PF FLR).
11428 * Must be done prior to any BAR read access. Only for 57712 and up
11430 if (!chip_is_e1x)
11431 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11433 dev->watchdog_timeo = TX_TIMEOUT;
11435 dev->netdev_ops = &bnx2x_netdev_ops;
11436 bnx2x_set_ethtool_ops(dev);
11438 dev->priv_flags |= IFF_UNICAST_FLT;
11440 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11441 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11442 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11443 NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11445 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11446 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11448 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11449 if (bp->flags & USING_DAC_FLAG)
11450 dev->features |= NETIF_F_HIGHDMA;
11452 /* Add Loopback capability to the device */
11453 dev->hw_features |= NETIF_F_LOOPBACK;
11455 #ifdef BCM_DCBNL
11456 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11457 #endif
11459 /* get_port_hwinfo() will set prtad and mmds properly */
11460 bp->mdio.prtad = MDIO_PRTAD_NONE;
11461 bp->mdio.mmds = 0;
11462 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11463 bp->mdio.dev = dev;
11464 bp->mdio.mdio_read = bnx2x_mdio_read;
11465 bp->mdio.mdio_write = bnx2x_mdio_write;
11467 return 0;
11469 err_out_release:
11470 if (atomic_read(&pdev->enable_cnt) == 1)
11471 pci_release_regions(pdev);
11473 err_out_disable:
11474 pci_disable_device(pdev);
11475 pci_set_drvdata(pdev, NULL);
11477 err_out:
11478 return rc;
11481 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
11482 int *width, int *speed)
11484 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11486 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11488 /* return value of 1=2.5GHz 2=5GHz */
11489 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11492 static int bnx2x_check_firmware(struct bnx2x *bp)
11494 const struct firmware *firmware = bp->firmware;
11495 struct bnx2x_fw_file_hdr *fw_hdr;
11496 struct bnx2x_fw_file_section *sections;
11497 u32 offset, len, num_ops;
11498 u16 *ops_offsets;
11499 int i;
11500 const u8 *fw_ver;
11502 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11503 BNX2X_ERR("Wrong FW size\n");
11504 return -EINVAL;
11507 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11508 sections = (struct bnx2x_fw_file_section *)fw_hdr;
11510 /* Make sure none of the offsets and sizes make us read beyond
11511 * the end of the firmware data */
11512 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11513 offset = be32_to_cpu(sections[i].offset);
11514 len = be32_to_cpu(sections[i].len);
11515 if (offset + len > firmware->size) {
11516 BNX2X_ERR("Section %d length is out of bounds\n", i);
11517 return -EINVAL;
11521 /* Likewise for the init_ops offsets */
11522 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11523 ops_offsets = (u16 *)(firmware->data + offset);
11524 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11526 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11527 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11528 BNX2X_ERR("Section offset %d is out of bounds\n", i);
11529 return -EINVAL;
11533 /* Check FW version */
11534 offset = be32_to_cpu(fw_hdr->fw_version.offset);
11535 fw_ver = firmware->data + offset;
11536 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11537 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11538 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11539 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11540 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11541 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11542 BCM_5710_FW_MAJOR_VERSION,
11543 BCM_5710_FW_MINOR_VERSION,
11544 BCM_5710_FW_REVISION_VERSION,
11545 BCM_5710_FW_ENGINEERING_VERSION);
11546 return -EINVAL;
11549 return 0;
11552 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11554 const __be32 *source = (const __be32 *)_source;
11555 u32 *target = (u32 *)_target;
11556 u32 i;
11558 for (i = 0; i < n/4; i++)
11559 target[i] = be32_to_cpu(source[i]);
11563 Ops array is stored in the following format:
11564 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11566 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11568 const __be32 *source = (const __be32 *)_source;
11569 struct raw_op *target = (struct raw_op *)_target;
11570 u32 i, j, tmp;
11572 for (i = 0, j = 0; i < n/8; i++, j += 2) {
11573 tmp = be32_to_cpu(source[j]);
11574 target[i].op = (tmp >> 24) & 0xff;
11575 target[i].offset = tmp & 0xffffff;
11576 target[i].raw_data = be32_to_cpu(source[j + 1]);
11580 /* IRO array is stored in the following format:
11581 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11583 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11585 const __be32 *source = (const __be32 *)_source;
11586 struct iro *target = (struct iro *)_target;
11587 u32 i, j, tmp;
11589 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11590 target[i].base = be32_to_cpu(source[j]);
11591 j++;
11592 tmp = be32_to_cpu(source[j]);
11593 target[i].m1 = (tmp >> 16) & 0xffff;
11594 target[i].m2 = tmp & 0xffff;
11595 j++;
11596 tmp = be32_to_cpu(source[j]);
11597 target[i].m3 = (tmp >> 16) & 0xffff;
11598 target[i].size = tmp & 0xffff;
11599 j++;
11603 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11605 const __be16 *source = (const __be16 *)_source;
11606 u16 *target = (u16 *)_target;
11607 u32 i;
11609 for (i = 0; i < n/2; i++)
11610 target[i] = be16_to_cpu(source[i]);
11613 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
11614 do { \
11615 u32 len = be32_to_cpu(fw_hdr->arr.len); \
11616 bp->arr = kmalloc(len, GFP_KERNEL); \
11617 if (!bp->arr) \
11618 goto lbl; \
11619 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
11620 (u8 *)bp->arr, len); \
11621 } while (0)
11623 static int bnx2x_init_firmware(struct bnx2x *bp)
11625 const char *fw_file_name;
11626 struct bnx2x_fw_file_hdr *fw_hdr;
11627 int rc;
11629 if (bp->firmware)
11630 return 0;
11632 if (CHIP_IS_E1(bp))
11633 fw_file_name = FW_FILE_NAME_E1;
11634 else if (CHIP_IS_E1H(bp))
11635 fw_file_name = FW_FILE_NAME_E1H;
11636 else if (!CHIP_IS_E1x(bp))
11637 fw_file_name = FW_FILE_NAME_E2;
11638 else {
11639 BNX2X_ERR("Unsupported chip revision\n");
11640 return -EINVAL;
11642 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11644 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11645 if (rc) {
11646 BNX2X_ERR("Can't load firmware file %s\n",
11647 fw_file_name);
11648 goto request_firmware_exit;
11651 rc = bnx2x_check_firmware(bp);
11652 if (rc) {
11653 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11654 goto request_firmware_exit;
11657 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11659 /* Initialize the pointers to the init arrays */
11660 /* Blob */
11661 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11663 /* Opcodes */
11664 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11666 /* Offsets */
11667 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11668 be16_to_cpu_n);
11670 /* STORMs firmware */
11671 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11672 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11673 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
11674 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11675 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11676 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11677 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
11678 be32_to_cpu(fw_hdr->usem_pram_data.offset);
11679 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11680 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11681 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
11682 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11683 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11684 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11685 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
11686 be32_to_cpu(fw_hdr->csem_pram_data.offset);
11687 /* IRO */
11688 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11690 return 0;
11692 iro_alloc_err:
11693 kfree(bp->init_ops_offsets);
11694 init_offsets_alloc_err:
11695 kfree(bp->init_ops);
11696 init_ops_alloc_err:
11697 kfree(bp->init_data);
11698 request_firmware_exit:
11699 release_firmware(bp->firmware);
11700 bp->firmware = NULL;
11702 return rc;
11705 static void bnx2x_release_firmware(struct bnx2x *bp)
11707 kfree(bp->init_ops_offsets);
11708 kfree(bp->init_ops);
11709 kfree(bp->init_data);
11710 release_firmware(bp->firmware);
11711 bp->firmware = NULL;
11715 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11716 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11717 .init_hw_cmn = bnx2x_init_hw_common,
11718 .init_hw_port = bnx2x_init_hw_port,
11719 .init_hw_func = bnx2x_init_hw_func,
11721 .reset_hw_cmn = bnx2x_reset_common,
11722 .reset_hw_port = bnx2x_reset_port,
11723 .reset_hw_func = bnx2x_reset_func,
11725 .gunzip_init = bnx2x_gunzip_init,
11726 .gunzip_end = bnx2x_gunzip_end,
11728 .init_fw = bnx2x_init_firmware,
11729 .release_fw = bnx2x_release_firmware,
11732 void bnx2x__init_func_obj(struct bnx2x *bp)
11734 /* Prepare DMAE related driver resources */
11735 bnx2x_setup_dmae(bp);
11737 bnx2x_init_func_obj(bp, &bp->func_obj,
11738 bnx2x_sp(bp, func_rdata),
11739 bnx2x_sp_mapping(bp, func_rdata),
11740 bnx2x_sp(bp, func_afex_rdata),
11741 bnx2x_sp_mapping(bp, func_afex_rdata),
11742 &bnx2x_func_sp_drv);
11745 /* must be called after sriov-enable */
11746 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11748 int cid_count = BNX2X_L2_MAX_CID(bp);
11750 #ifdef BCM_CNIC
11751 cid_count += CNIC_CID_MAX;
11752 #endif
11753 return roundup(cid_count, QM_CID_ROUND);
11757 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11759 * @dev: pci device
11762 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11764 int pos;
11765 u16 control;
11767 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11770 * If MSI-X is not supported - return number of SBs needed to support
11771 * one fast path queue: one FP queue + SB for CNIC
11773 if (!pos)
11774 return 1 + CNIC_PRESENT;
11777 * The value in the PCI configuration space is the index of the last
11778 * entry, namely one less than the actual size of the table, which is
11779 * exactly what we want to return from this function: number of all SBs
11780 * without the default SB.
11782 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
11783 return control & PCI_MSIX_FLAGS_QSIZE;
11786 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11787 const struct pci_device_id *ent)
11789 struct net_device *dev = NULL;
11790 struct bnx2x *bp;
11791 int pcie_width, pcie_speed;
11792 int rc, max_non_def_sbs;
11793 int rx_count, tx_count, rss_count, doorbell_size;
11795 * An estimated maximum supported CoS number according to the chip
11796 * version.
11797 * We will try to roughly estimate the maximum number of CoSes this chip
11798 * may support in order to minimize the memory allocated for Tx
11799 * netdev_queue's. This number will be accurately calculated during the
11800 * initialization of bp->max_cos based on the chip versions AND chip
11801 * revision in the bnx2x_init_bp().
11803 u8 max_cos_est = 0;
11805 switch (ent->driver_data) {
11806 case BCM57710:
11807 case BCM57711:
11808 case BCM57711E:
11809 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11810 break;
11812 case BCM57712:
11813 case BCM57712_MF:
11814 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11815 break;
11817 case BCM57800:
11818 case BCM57800_MF:
11819 case BCM57810:
11820 case BCM57810_MF:
11821 case BCM57840_O:
11822 case BCM57840_4_10:
11823 case BCM57840_2_20:
11824 case BCM57840_MFO:
11825 case BCM57840_MF:
11826 case BCM57811:
11827 case BCM57811_MF:
11828 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11829 break;
11831 default:
11832 pr_err("Unknown board_type (%ld), aborting\n",
11833 ent->driver_data);
11834 return -ENODEV;
11837 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11839 WARN_ON(!max_non_def_sbs);
11841 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
11842 rss_count = max_non_def_sbs - CNIC_PRESENT;
11844 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11845 rx_count = rss_count + FCOE_PRESENT;
11848 * Maximum number of netdev Tx queues:
11849 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
11851 tx_count = rss_count * max_cos_est + FCOE_PRESENT;
11853 /* dev zeroed in init_etherdev */
11854 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11855 if (!dev)
11856 return -ENOMEM;
11858 bp = netdev_priv(dev);
11860 bp->igu_sb_cnt = max_non_def_sbs;
11861 bp->msg_enable = debug;
11862 pci_set_drvdata(pdev, dev);
11864 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11865 if (rc < 0) {
11866 free_netdev(dev);
11867 return rc;
11870 BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
11872 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
11873 tx_count, rx_count);
11875 rc = bnx2x_init_bp(bp);
11876 if (rc)
11877 goto init_one_exit;
11880 * Map doorbels here as we need the real value of bp->max_cos which
11881 * is initialized in bnx2x_init_bp().
11883 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
11884 if (doorbell_size > pci_resource_len(pdev, 2)) {
11885 dev_err(&bp->pdev->dev,
11886 "Cannot map doorbells, bar size too small, aborting\n");
11887 rc = -ENOMEM;
11888 goto init_one_exit;
11890 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11891 doorbell_size);
11892 if (!bp->doorbells) {
11893 dev_err(&bp->pdev->dev,
11894 "Cannot map doorbell space, aborting\n");
11895 rc = -ENOMEM;
11896 goto init_one_exit;
11899 /* calc qm_cid_count */
11900 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11902 #ifdef BCM_CNIC
11903 /* disable FCOE L2 queue for E1x */
11904 if (CHIP_IS_E1x(bp))
11905 bp->flags |= NO_FCOE_FLAG;
11907 #endif
11910 /* Set bp->num_queues for MSI-X mode*/
11911 bnx2x_set_num_queues(bp);
11913 /* Configure interrupt mode: try to enable MSI-X/MSI if
11914 * needed.
11916 bnx2x_set_int_mode(bp);
11918 rc = register_netdev(dev);
11919 if (rc) {
11920 dev_err(&pdev->dev, "Cannot register net device\n");
11921 goto init_one_exit;
11924 #ifdef BCM_CNIC
11925 if (!NO_FCOE(bp)) {
11926 /* Add storage MAC address */
11927 rtnl_lock();
11928 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11929 rtnl_unlock();
11931 #endif
11933 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11935 BNX2X_DEV_INFO(
11936 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11937 board_info[ent->driver_data].name,
11938 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11939 pcie_width,
11940 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11941 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11942 "5GHz (Gen2)" : "2.5GHz",
11943 dev->base_addr, bp->pdev->irq, dev->dev_addr);
11945 return 0;
11947 init_one_exit:
11948 if (bp->regview)
11949 iounmap(bp->regview);
11951 if (bp->doorbells)
11952 iounmap(bp->doorbells);
11954 free_netdev(dev);
11956 if (atomic_read(&pdev->enable_cnt) == 1)
11957 pci_release_regions(pdev);
11959 pci_disable_device(pdev);
11960 pci_set_drvdata(pdev, NULL);
11962 return rc;
11965 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11967 struct net_device *dev = pci_get_drvdata(pdev);
11968 struct bnx2x *bp;
11970 if (!dev) {
11971 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11972 return;
11974 bp = netdev_priv(dev);
11976 #ifdef BCM_CNIC
11977 /* Delete storage MAC address */
11978 if (!NO_FCOE(bp)) {
11979 rtnl_lock();
11980 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11981 rtnl_unlock();
11983 #endif
11985 #ifdef BCM_DCBNL
11986 /* Delete app tlvs from dcbnl */
11987 bnx2x_dcbnl_update_applist(bp, true);
11988 #endif
11990 unregister_netdev(dev);
11992 /* Power on: we can't let PCI layer write to us while we are in D3 */
11993 bnx2x_set_power_state(bp, PCI_D0);
11995 /* Disable MSI/MSI-X */
11996 bnx2x_disable_msi(bp);
11998 /* Power off */
11999 bnx2x_set_power_state(bp, PCI_D3hot);
12001 /* Make sure RESET task is not scheduled before continuing */
12002 cancel_delayed_work_sync(&bp->sp_rtnl_task);
12004 if (bp->regview)
12005 iounmap(bp->regview);
12007 if (bp->doorbells)
12008 iounmap(bp->doorbells);
12010 bnx2x_release_firmware(bp);
12012 bnx2x_free_mem_bp(bp);
12014 free_netdev(dev);
12016 if (atomic_read(&pdev->enable_cnt) == 1)
12017 pci_release_regions(pdev);
12019 pci_disable_device(pdev);
12020 pci_set_drvdata(pdev, NULL);
12023 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12025 int i;
12027 bp->state = BNX2X_STATE_ERROR;
12029 bp->rx_mode = BNX2X_RX_MODE_NONE;
12031 #ifdef BCM_CNIC
12032 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12033 #endif
12034 /* Stop Tx */
12035 bnx2x_tx_disable(bp);
12037 bnx2x_netif_stop(bp, 0);
12038 /* Delete all NAPI objects */
12039 bnx2x_del_all_napi(bp);
12041 del_timer_sync(&bp->timer);
12043 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12045 /* Release IRQs */
12046 bnx2x_free_irq(bp);
12048 /* Free SKBs, SGEs, TPA pool and driver internals */
12049 bnx2x_free_skbs(bp);
12051 for_each_rx_queue(bp, i)
12052 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12054 bnx2x_free_mem(bp);
12056 bp->state = BNX2X_STATE_CLOSED;
12058 netif_carrier_off(bp->dev);
12060 return 0;
12063 static void bnx2x_eeh_recover(struct bnx2x *bp)
12065 u32 val;
12067 mutex_init(&bp->port.phy_mutex);
12070 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12071 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12072 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12073 BNX2X_ERR("BAD MCP validity signature\n");
12077 * bnx2x_io_error_detected - called when PCI error is detected
12078 * @pdev: Pointer to PCI device
12079 * @state: The current pci connection state
12081 * This function is called after a PCI bus error affecting
12082 * this device has been detected.
12084 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12085 pci_channel_state_t state)
12087 struct net_device *dev = pci_get_drvdata(pdev);
12088 struct bnx2x *bp = netdev_priv(dev);
12090 rtnl_lock();
12092 netif_device_detach(dev);
12094 if (state == pci_channel_io_perm_failure) {
12095 rtnl_unlock();
12096 return PCI_ERS_RESULT_DISCONNECT;
12099 if (netif_running(dev))
12100 bnx2x_eeh_nic_unload(bp);
12102 pci_disable_device(pdev);
12104 rtnl_unlock();
12106 /* Request a slot reset */
12107 return PCI_ERS_RESULT_NEED_RESET;
12111 * bnx2x_io_slot_reset - called after the PCI bus has been reset
12112 * @pdev: Pointer to PCI device
12114 * Restart the card from scratch, as if from a cold-boot.
12116 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12118 struct net_device *dev = pci_get_drvdata(pdev);
12119 struct bnx2x *bp = netdev_priv(dev);
12121 rtnl_lock();
12123 if (pci_enable_device(pdev)) {
12124 dev_err(&pdev->dev,
12125 "Cannot re-enable PCI device after reset\n");
12126 rtnl_unlock();
12127 return PCI_ERS_RESULT_DISCONNECT;
12130 pci_set_master(pdev);
12131 pci_restore_state(pdev);
12133 if (netif_running(dev))
12134 bnx2x_set_power_state(bp, PCI_D0);
12136 rtnl_unlock();
12138 return PCI_ERS_RESULT_RECOVERED;
12142 * bnx2x_io_resume - called when traffic can start flowing again
12143 * @pdev: Pointer to PCI device
12145 * This callback is called when the error recovery driver tells us that
12146 * its OK to resume normal operation.
12148 static void bnx2x_io_resume(struct pci_dev *pdev)
12150 struct net_device *dev = pci_get_drvdata(pdev);
12151 struct bnx2x *bp = netdev_priv(dev);
12153 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12154 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12155 return;
12158 rtnl_lock();
12160 bnx2x_eeh_recover(bp);
12162 if (netif_running(dev))
12163 bnx2x_nic_load(bp, LOAD_NORMAL);
12165 netif_device_attach(dev);
12167 rtnl_unlock();
12170 static const struct pci_error_handlers bnx2x_err_handler = {
12171 .error_detected = bnx2x_io_error_detected,
12172 .slot_reset = bnx2x_io_slot_reset,
12173 .resume = bnx2x_io_resume,
12176 static struct pci_driver bnx2x_pci_driver = {
12177 .name = DRV_MODULE_NAME,
12178 .id_table = bnx2x_pci_tbl,
12179 .probe = bnx2x_init_one,
12180 .remove = __devexit_p(bnx2x_remove_one),
12181 .suspend = bnx2x_suspend,
12182 .resume = bnx2x_resume,
12183 .err_handler = &bnx2x_err_handler,
12186 static int __init bnx2x_init(void)
12188 int ret;
12190 pr_info("%s", version);
12192 bnx2x_wq = create_singlethread_workqueue("bnx2x");
12193 if (bnx2x_wq == NULL) {
12194 pr_err("Cannot create workqueue\n");
12195 return -ENOMEM;
12198 ret = pci_register_driver(&bnx2x_pci_driver);
12199 if (ret) {
12200 pr_err("Cannot register driver\n");
12201 destroy_workqueue(bnx2x_wq);
12203 return ret;
12206 static void __exit bnx2x_cleanup(void)
12208 struct list_head *pos, *q;
12209 pci_unregister_driver(&bnx2x_pci_driver);
12211 destroy_workqueue(bnx2x_wq);
12213 /* Free globablly allocated resources */
12214 list_for_each_safe(pos, q, &bnx2x_prev_list) {
12215 struct bnx2x_prev_path_list *tmp =
12216 list_entry(pos, struct bnx2x_prev_path_list, list);
12217 list_del(pos);
12218 kfree(tmp);
12222 void bnx2x_notify_link_changed(struct bnx2x *bp)
12224 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12227 module_init(bnx2x_init);
12228 module_exit(bnx2x_cleanup);
12230 #ifdef BCM_CNIC
12232 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12234 * @bp: driver handle
12235 * @set: set or clear the CAM entry
12237 * This function will wait until the ramdord completion returns.
12238 * Return 0 if success, -ENODEV if ramrod doesn't return.
12240 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12242 unsigned long ramrod_flags = 0;
12244 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12245 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12246 &bp->iscsi_l2_mac_obj, true,
12247 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12250 /* count denotes the number of new completions we have seen */
12251 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12253 struct eth_spe *spe;
12254 int cxt_index, cxt_offset;
12256 #ifdef BNX2X_STOP_ON_ERROR
12257 if (unlikely(bp->panic))
12258 return;
12259 #endif
12261 spin_lock_bh(&bp->spq_lock);
12262 BUG_ON(bp->cnic_spq_pending < count);
12263 bp->cnic_spq_pending -= count;
12266 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12267 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12268 & SPE_HDR_CONN_TYPE) >>
12269 SPE_HDR_CONN_TYPE_SHIFT;
12270 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12271 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12273 /* Set validation for iSCSI L2 client before sending SETUP
12274 * ramrod
12276 if (type == ETH_CONNECTION_TYPE) {
12277 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12278 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12279 ILT_PAGE_CIDS;
12280 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12281 (cxt_index * ILT_PAGE_CIDS);
12282 bnx2x_set_ctx_validation(bp,
12283 &bp->context[cxt_index].
12284 vcxt[cxt_offset].eth,
12285 BNX2X_ISCSI_ETH_CID(bp));
12290 * There may be not more than 8 L2, not more than 8 L5 SPEs
12291 * and in the air. We also check that number of outstanding
12292 * COMMON ramrods is not more than the EQ and SPQ can
12293 * accommodate.
12295 if (type == ETH_CONNECTION_TYPE) {
12296 if (!atomic_read(&bp->cq_spq_left))
12297 break;
12298 else
12299 atomic_dec(&bp->cq_spq_left);
12300 } else if (type == NONE_CONNECTION_TYPE) {
12301 if (!atomic_read(&bp->eq_spq_left))
12302 break;
12303 else
12304 atomic_dec(&bp->eq_spq_left);
12305 } else if ((type == ISCSI_CONNECTION_TYPE) ||
12306 (type == FCOE_CONNECTION_TYPE)) {
12307 if (bp->cnic_spq_pending >=
12308 bp->cnic_eth_dev.max_kwqe_pending)
12309 break;
12310 else
12311 bp->cnic_spq_pending++;
12312 } else {
12313 BNX2X_ERR("Unknown SPE type: %d\n", type);
12314 bnx2x_panic();
12315 break;
12318 spe = bnx2x_sp_get_next(bp);
12319 *spe = *bp->cnic_kwq_cons;
12321 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12322 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12324 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12325 bp->cnic_kwq_cons = bp->cnic_kwq;
12326 else
12327 bp->cnic_kwq_cons++;
12329 bnx2x_sp_prod_update(bp);
12330 spin_unlock_bh(&bp->spq_lock);
12333 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12334 struct kwqe_16 *kwqes[], u32 count)
12336 struct bnx2x *bp = netdev_priv(dev);
12337 int i;
12339 #ifdef BNX2X_STOP_ON_ERROR
12340 if (unlikely(bp->panic)) {
12341 BNX2X_ERR("Can't post to SP queue while panic\n");
12342 return -EIO;
12344 #endif
12346 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12347 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12348 BNX2X_ERR("Handling parity error recovery. Try again later\n");
12349 return -EAGAIN;
12352 spin_lock_bh(&bp->spq_lock);
12354 for (i = 0; i < count; i++) {
12355 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12357 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12358 break;
12360 *bp->cnic_kwq_prod = *spe;
12362 bp->cnic_kwq_pending++;
12364 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12365 spe->hdr.conn_and_cmd_data, spe->hdr.type,
12366 spe->data.update_data_addr.hi,
12367 spe->data.update_data_addr.lo,
12368 bp->cnic_kwq_pending);
12370 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12371 bp->cnic_kwq_prod = bp->cnic_kwq;
12372 else
12373 bp->cnic_kwq_prod++;
12376 spin_unlock_bh(&bp->spq_lock);
12378 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12379 bnx2x_cnic_sp_post(bp, 0);
12381 return i;
12384 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12386 struct cnic_ops *c_ops;
12387 int rc = 0;
12389 mutex_lock(&bp->cnic_mutex);
12390 c_ops = rcu_dereference_protected(bp->cnic_ops,
12391 lockdep_is_held(&bp->cnic_mutex));
12392 if (c_ops)
12393 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12394 mutex_unlock(&bp->cnic_mutex);
12396 return rc;
12399 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12401 struct cnic_ops *c_ops;
12402 int rc = 0;
12404 rcu_read_lock();
12405 c_ops = rcu_dereference(bp->cnic_ops);
12406 if (c_ops)
12407 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12408 rcu_read_unlock();
12410 return rc;
12414 * for commands that have no data
12416 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12418 struct cnic_ctl_info ctl = {0};
12420 ctl.cmd = cmd;
12422 return bnx2x_cnic_ctl_send(bp, &ctl);
12425 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12427 struct cnic_ctl_info ctl = {0};
12429 /* first we tell CNIC and only then we count this as a completion */
12430 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12431 ctl.data.comp.cid = cid;
12432 ctl.data.comp.error = err;
12434 bnx2x_cnic_ctl_send_bh(bp, &ctl);
12435 bnx2x_cnic_sp_post(bp, 0);
12439 /* Called with netif_addr_lock_bh() taken.
12440 * Sets an rx_mode config for an iSCSI ETH client.
12441 * Doesn't block.
12442 * Completion should be checked outside.
12444 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12446 unsigned long accept_flags = 0, ramrod_flags = 0;
12447 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12448 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12450 if (start) {
12451 /* Start accepting on iSCSI L2 ring. Accept all multicasts
12452 * because it's the only way for UIO Queue to accept
12453 * multicasts (in non-promiscuous mode only one Queue per
12454 * function will receive multicast packets (leading in our
12455 * case).
12457 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12458 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12459 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12460 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12462 /* Clear STOP_PENDING bit if START is requested */
12463 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12465 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12466 } else
12467 /* Clear START_PENDING bit if STOP is requested */
12468 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12470 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12471 set_bit(sched_state, &bp->sp_state);
12472 else {
12473 __set_bit(RAMROD_RX, &ramrod_flags);
12474 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12475 ramrod_flags);
12480 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12482 struct bnx2x *bp = netdev_priv(dev);
12483 int rc = 0;
12485 switch (ctl->cmd) {
12486 case DRV_CTL_CTXTBL_WR_CMD: {
12487 u32 index = ctl->data.io.offset;
12488 dma_addr_t addr = ctl->data.io.dma_addr;
12490 bnx2x_ilt_wr(bp, index, addr);
12491 break;
12494 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12495 int count = ctl->data.credit.credit_count;
12497 bnx2x_cnic_sp_post(bp, count);
12498 break;
12501 /* rtnl_lock is held. */
12502 case DRV_CTL_START_L2_CMD: {
12503 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12504 unsigned long sp_bits = 0;
12506 /* Configure the iSCSI classification object */
12507 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12508 cp->iscsi_l2_client_id,
12509 cp->iscsi_l2_cid, BP_FUNC(bp),
12510 bnx2x_sp(bp, mac_rdata),
12511 bnx2x_sp_mapping(bp, mac_rdata),
12512 BNX2X_FILTER_MAC_PENDING,
12513 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12514 &bp->macs_pool);
12516 /* Set iSCSI MAC address */
12517 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12518 if (rc)
12519 break;
12521 mmiowb();
12522 barrier();
12524 /* Start accepting on iSCSI L2 ring */
12526 netif_addr_lock_bh(dev);
12527 bnx2x_set_iscsi_eth_rx_mode(bp, true);
12528 netif_addr_unlock_bh(dev);
12530 /* bits to wait on */
12531 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12532 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12534 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12535 BNX2X_ERR("rx_mode completion timed out!\n");
12537 break;
12540 /* rtnl_lock is held. */
12541 case DRV_CTL_STOP_L2_CMD: {
12542 unsigned long sp_bits = 0;
12544 /* Stop accepting on iSCSI L2 ring */
12545 netif_addr_lock_bh(dev);
12546 bnx2x_set_iscsi_eth_rx_mode(bp, false);
12547 netif_addr_unlock_bh(dev);
12549 /* bits to wait on */
12550 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12551 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12553 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12554 BNX2X_ERR("rx_mode completion timed out!\n");
12556 mmiowb();
12557 barrier();
12559 /* Unset iSCSI L2 MAC */
12560 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12561 BNX2X_ISCSI_ETH_MAC, true);
12562 break;
12564 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12565 int count = ctl->data.credit.credit_count;
12567 smp_mb__before_atomic_inc();
12568 atomic_add(count, &bp->cq_spq_left);
12569 smp_mb__after_atomic_inc();
12570 break;
12572 case DRV_CTL_ULP_REGISTER_CMD: {
12573 int ulp_type = ctl->data.register_data.ulp_type;
12575 if (CHIP_IS_E3(bp)) {
12576 int idx = BP_FW_MB_IDX(bp);
12577 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12578 int path = BP_PATH(bp);
12579 int port = BP_PORT(bp);
12580 int i;
12581 u32 scratch_offset;
12582 u32 *host_addr;
12584 /* first write capability to shmem2 */
12585 if (ulp_type == CNIC_ULP_ISCSI)
12586 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12587 else if (ulp_type == CNIC_ULP_FCOE)
12588 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12589 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12591 if ((ulp_type != CNIC_ULP_FCOE) ||
12592 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
12593 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
12594 break;
12596 /* if reached here - should write fcoe capabilities */
12597 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
12598 if (!scratch_offset)
12599 break;
12600 scratch_offset += offsetof(struct glob_ncsi_oem_data,
12601 fcoe_features[path][port]);
12602 host_addr = (u32 *) &(ctl->data.register_data.
12603 fcoe_features);
12604 for (i = 0; i < sizeof(struct fcoe_capabilities);
12605 i += 4)
12606 REG_WR(bp, scratch_offset + i,
12607 *(host_addr + i/4));
12609 break;
12612 case DRV_CTL_ULP_UNREGISTER_CMD: {
12613 int ulp_type = ctl->data.ulp_type;
12615 if (CHIP_IS_E3(bp)) {
12616 int idx = BP_FW_MB_IDX(bp);
12617 u32 cap;
12619 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12620 if (ulp_type == CNIC_ULP_ISCSI)
12621 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12622 else if (ulp_type == CNIC_ULP_FCOE)
12623 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12624 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12626 break;
12629 default:
12630 BNX2X_ERR("unknown command %x\n", ctl->cmd);
12631 rc = -EINVAL;
12634 return rc;
12637 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12639 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12641 if (bp->flags & USING_MSIX_FLAG) {
12642 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12643 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12644 cp->irq_arr[0].vector = bp->msix_table[1].vector;
12645 } else {
12646 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12647 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12649 if (!CHIP_IS_E1x(bp))
12650 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12651 else
12652 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12654 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
12655 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12656 cp->irq_arr[1].status_blk = bp->def_status_blk;
12657 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12658 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12660 cp->num_irq = 2;
12663 void bnx2x_setup_cnic_info(struct bnx2x *bp)
12665 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12668 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12669 bnx2x_cid_ilt_lines(bp);
12670 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12671 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12672 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12674 if (NO_ISCSI_OOO(bp))
12675 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12678 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12679 void *data)
12681 struct bnx2x *bp = netdev_priv(dev);
12682 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12684 if (ops == NULL) {
12685 BNX2X_ERR("NULL ops received\n");
12686 return -EINVAL;
12689 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12690 if (!bp->cnic_kwq)
12691 return -ENOMEM;
12693 bp->cnic_kwq_cons = bp->cnic_kwq;
12694 bp->cnic_kwq_prod = bp->cnic_kwq;
12695 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12697 bp->cnic_spq_pending = 0;
12698 bp->cnic_kwq_pending = 0;
12700 bp->cnic_data = data;
12702 cp->num_irq = 0;
12703 cp->drv_state |= CNIC_DRV_STATE_REGD;
12704 cp->iro_arr = bp->iro_arr;
12706 bnx2x_setup_cnic_irq_info(bp);
12708 rcu_assign_pointer(bp->cnic_ops, ops);
12710 return 0;
12713 static int bnx2x_unregister_cnic(struct net_device *dev)
12715 struct bnx2x *bp = netdev_priv(dev);
12716 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12718 mutex_lock(&bp->cnic_mutex);
12719 cp->drv_state = 0;
12720 RCU_INIT_POINTER(bp->cnic_ops, NULL);
12721 mutex_unlock(&bp->cnic_mutex);
12722 synchronize_rcu();
12723 kfree(bp->cnic_kwq);
12724 bp->cnic_kwq = NULL;
12726 return 0;
12729 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
12731 struct bnx2x *bp = netdev_priv(dev);
12732 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12734 /* If both iSCSI and FCoE are disabled - return NULL in
12735 * order to indicate CNIC that it should not try to work
12736 * with this device.
12738 if (NO_ISCSI(bp) && NO_FCOE(bp))
12739 return NULL;
12741 cp->drv_owner = THIS_MODULE;
12742 cp->chip_id = CHIP_ID(bp);
12743 cp->pdev = bp->pdev;
12744 cp->io_base = bp->regview;
12745 cp->io_base2 = bp->doorbells;
12746 cp->max_kwqe_pending = 8;
12747 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
12748 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12749 bnx2x_cid_ilt_lines(bp);
12750 cp->ctx_tbl_len = CNIC_ILT_LINES;
12751 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12752 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
12753 cp->drv_ctl = bnx2x_drv_ctl;
12754 cp->drv_register_cnic = bnx2x_register_cnic;
12755 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
12756 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12757 cp->iscsi_l2_client_id =
12758 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12759 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12761 if (NO_ISCSI_OOO(bp))
12762 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12764 if (NO_ISCSI(bp))
12765 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
12767 if (NO_FCOE(bp))
12768 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
12770 BNX2X_DEV_INFO(
12771 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
12772 cp->ctx_blk_size,
12773 cp->ctx_tbl_offset,
12774 cp->ctx_tbl_len,
12775 cp->starting_cid);
12776 return cp;
12778 EXPORT_SYMBOL(bnx2x_cnic_probe);
12780 #endif /* BCM_CNIC */