header cleaning: don't include smp_lock.h when not used
[linux-2.6/kmemtrace.git] / arch / mips / kernel / traps.c
blobff45a4b8fbaaad11c28abc39a9c27c55446d9e6b
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/kallsyms.h>
21 #include <linux/bootmem.h>
22 #include <linux/interrupt.h>
24 #include <asm/bootinfo.h>
25 #include <asm/branch.h>
26 #include <asm/break.h>
27 #include <asm/cpu.h>
28 #include <asm/dsp.h>
29 #include <asm/fpu.h>
30 #include <asm/mipsregs.h>
31 #include <asm/mipsmtregs.h>
32 #include <asm/module.h>
33 #include <asm/pgtable.h>
34 #include <asm/ptrace.h>
35 #include <asm/sections.h>
36 #include <asm/system.h>
37 #include <asm/tlbdebug.h>
38 #include <asm/traps.h>
39 #include <asm/uaccess.h>
40 #include <asm/mmu_context.h>
41 #include <asm/watch.h>
42 #include <asm/types.h>
43 #include <asm/stacktrace.h>
45 extern asmlinkage void handle_int(void);
46 extern asmlinkage void handle_tlbm(void);
47 extern asmlinkage void handle_tlbl(void);
48 extern asmlinkage void handle_tlbs(void);
49 extern asmlinkage void handle_adel(void);
50 extern asmlinkage void handle_ades(void);
51 extern asmlinkage void handle_ibe(void);
52 extern asmlinkage void handle_dbe(void);
53 extern asmlinkage void handle_sys(void);
54 extern asmlinkage void handle_bp(void);
55 extern asmlinkage void handle_ri(void);
56 extern asmlinkage void handle_ri_rdhwr_vivt(void);
57 extern asmlinkage void handle_ri_rdhwr(void);
58 extern asmlinkage void handle_cpu(void);
59 extern asmlinkage void handle_ov(void);
60 extern asmlinkage void handle_tr(void);
61 extern asmlinkage void handle_fpe(void);
62 extern asmlinkage void handle_mdmx(void);
63 extern asmlinkage void handle_watch(void);
64 extern asmlinkage void handle_mt(void);
65 extern asmlinkage void handle_dsp(void);
66 extern asmlinkage void handle_mcheck(void);
67 extern asmlinkage void handle_reserved(void);
69 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
70 struct mips_fpu_struct *ctx, int has_fpu);
72 void (*board_be_init)(void);
73 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
74 void (*board_nmi_handler_setup)(void);
75 void (*board_ejtag_handler_setup)(void);
76 void (*board_bind_eic_interrupt)(int irq, int regset);
79 static void show_raw_backtrace(unsigned long reg29)
81 unsigned long *sp = (unsigned long *)reg29;
82 unsigned long addr;
84 printk("Call Trace:");
85 #ifdef CONFIG_KALLSYMS
86 printk("\n");
87 #endif
88 while (!kstack_end(sp)) {
89 addr = *sp++;
90 if (__kernel_text_address(addr))
91 print_ip_sym(addr);
93 printk("\n");
96 #ifdef CONFIG_KALLSYMS
97 int raw_show_trace;
98 static int __init set_raw_show_trace(char *str)
100 raw_show_trace = 1;
101 return 1;
103 __setup("raw_show_trace", set_raw_show_trace);
104 #endif
106 static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
108 unsigned long sp = regs->regs[29];
109 unsigned long ra = regs->regs[31];
110 unsigned long pc = regs->cp0_epc;
112 if (raw_show_trace || !__kernel_text_address(pc)) {
113 show_raw_backtrace(sp);
114 return;
116 printk("Call Trace:\n");
117 do {
118 print_ip_sym(pc);
119 pc = unwind_stack(task, &sp, pc, &ra);
120 } while (pc);
121 printk("\n");
125 * This routine abuses get_user()/put_user() to reference pointers
126 * with at least a bit of error checking ...
128 static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
130 const int field = 2 * sizeof(unsigned long);
131 long stackdata;
132 int i;
133 unsigned long *sp = (unsigned long *)regs->regs[29];
135 printk("Stack :");
136 i = 0;
137 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
138 if (i && ((i % (64 / field)) == 0))
139 printk("\n ");
140 if (i > 39) {
141 printk(" ...");
142 break;
145 if (__get_user(stackdata, sp++)) {
146 printk(" (Bad stack address)");
147 break;
150 printk(" %0*lx", field, stackdata);
151 i++;
153 printk("\n");
154 show_backtrace(task, regs);
157 void show_stack(struct task_struct *task, unsigned long *sp)
159 struct pt_regs regs;
160 if (sp) {
161 regs.regs[29] = (unsigned long)sp;
162 regs.regs[31] = 0;
163 regs.cp0_epc = 0;
164 } else {
165 if (task && task != current) {
166 regs.regs[29] = task->thread.reg29;
167 regs.regs[31] = 0;
168 regs.cp0_epc = task->thread.reg31;
169 } else {
170 prepare_frametrace(&regs);
173 show_stacktrace(task, &regs);
177 * The architecture-independent dump_stack generator
179 void dump_stack(void)
181 struct pt_regs regs;
183 prepare_frametrace(&regs);
184 show_backtrace(current, &regs);
187 EXPORT_SYMBOL(dump_stack);
189 void show_code(unsigned int *pc)
191 long i;
193 printk("\nCode:");
195 for(i = -3 ; i < 6 ; i++) {
196 unsigned int insn;
197 if (__get_user(insn, pc + i)) {
198 printk(" (Bad address in epc)\n");
199 break;
201 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
205 void show_regs(struct pt_regs *regs)
207 const int field = 2 * sizeof(unsigned long);
208 unsigned int cause = regs->cp0_cause;
209 int i;
211 printk("Cpu %d\n", smp_processor_id());
214 * Saved main processor registers
216 for (i = 0; i < 32; ) {
217 if ((i % 4) == 0)
218 printk("$%2d :", i);
219 if (i == 0)
220 printk(" %0*lx", field, 0UL);
221 else if (i == 26 || i == 27)
222 printk(" %*s", field, "");
223 else
224 printk(" %0*lx", field, regs->regs[i]);
226 i++;
227 if ((i % 4) == 0)
228 printk("\n");
231 #ifdef CONFIG_CPU_HAS_SMARTMIPS
232 printk("Acx : %0*lx\n", field, regs->acx);
233 #endif
234 printk("Hi : %0*lx\n", field, regs->hi);
235 printk("Lo : %0*lx\n", field, regs->lo);
238 * Saved cp0 registers
240 printk("epc : %0*lx ", field, regs->cp0_epc);
241 print_symbol("%s ", regs->cp0_epc);
242 printk(" %s\n", print_tainted());
243 printk("ra : %0*lx ", field, regs->regs[31]);
244 print_symbol("%s\n", regs->regs[31]);
246 printk("Status: %08x ", (uint32_t) regs->cp0_status);
248 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
249 if (regs->cp0_status & ST0_KUO)
250 printk("KUo ");
251 if (regs->cp0_status & ST0_IEO)
252 printk("IEo ");
253 if (regs->cp0_status & ST0_KUP)
254 printk("KUp ");
255 if (regs->cp0_status & ST0_IEP)
256 printk("IEp ");
257 if (regs->cp0_status & ST0_KUC)
258 printk("KUc ");
259 if (regs->cp0_status & ST0_IEC)
260 printk("IEc ");
261 } else {
262 if (regs->cp0_status & ST0_KX)
263 printk("KX ");
264 if (regs->cp0_status & ST0_SX)
265 printk("SX ");
266 if (regs->cp0_status & ST0_UX)
267 printk("UX ");
268 switch (regs->cp0_status & ST0_KSU) {
269 case KSU_USER:
270 printk("USER ");
271 break;
272 case KSU_SUPERVISOR:
273 printk("SUPERVISOR ");
274 break;
275 case KSU_KERNEL:
276 printk("KERNEL ");
277 break;
278 default:
279 printk("BAD_MODE ");
280 break;
282 if (regs->cp0_status & ST0_ERL)
283 printk("ERL ");
284 if (regs->cp0_status & ST0_EXL)
285 printk("EXL ");
286 if (regs->cp0_status & ST0_IE)
287 printk("IE ");
289 printk("\n");
291 printk("Cause : %08x\n", cause);
293 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
294 if (1 <= cause && cause <= 5)
295 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
297 printk("PrId : %08x\n", read_c0_prid());
300 void show_registers(struct pt_regs *regs)
302 show_regs(regs);
303 print_modules();
304 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
305 current->comm, current->pid, current_thread_info(), current);
306 show_stacktrace(current, regs);
307 show_code((unsigned int *) regs->cp0_epc);
308 printk("\n");
311 static DEFINE_SPINLOCK(die_lock);
313 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
315 static int die_counter;
316 #ifdef CONFIG_MIPS_MT_SMTC
317 unsigned long dvpret = dvpe();
318 #endif /* CONFIG_MIPS_MT_SMTC */
320 console_verbose();
321 spin_lock_irq(&die_lock);
322 bust_spinlocks(1);
323 #ifdef CONFIG_MIPS_MT_SMTC
324 mips_mt_regdump(dvpret);
325 #endif /* CONFIG_MIPS_MT_SMTC */
326 printk("%s[#%d]:\n", str, ++die_counter);
327 show_registers(regs);
328 spin_unlock_irq(&die_lock);
330 if (in_interrupt())
331 panic("Fatal exception in interrupt");
333 if (panic_on_oops) {
334 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
335 ssleep(5);
336 panic("Fatal exception");
339 do_exit(SIGSEGV);
342 extern const struct exception_table_entry __start___dbe_table[];
343 extern const struct exception_table_entry __stop___dbe_table[];
345 __asm__(
346 " .section __dbe_table, \"a\"\n"
347 " .previous \n");
349 /* Given an address, look for it in the exception tables. */
350 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
352 const struct exception_table_entry *e;
354 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
355 if (!e)
356 e = search_module_dbetables(addr);
357 return e;
360 asmlinkage void do_be(struct pt_regs *regs)
362 const int field = 2 * sizeof(unsigned long);
363 const struct exception_table_entry *fixup = NULL;
364 int data = regs->cp0_cause & 4;
365 int action = MIPS_BE_FATAL;
367 /* XXX For now. Fixme, this searches the wrong table ... */
368 if (data && !user_mode(regs))
369 fixup = search_dbe_tables(exception_epc(regs));
371 if (fixup)
372 action = MIPS_BE_FIXUP;
374 if (board_be_handler)
375 action = board_be_handler(regs, fixup != 0);
377 switch (action) {
378 case MIPS_BE_DISCARD:
379 return;
380 case MIPS_BE_FIXUP:
381 if (fixup) {
382 regs->cp0_epc = fixup->nextinsn;
383 return;
385 break;
386 default:
387 break;
391 * Assume it would be too dangerous to continue ...
393 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
394 data ? "Data" : "Instruction",
395 field, regs->cp0_epc, field, regs->regs[31]);
396 die_if_kernel("Oops", regs);
397 force_sig(SIGBUS, current);
401 * ll/sc emulation
404 #define OPCODE 0xfc000000
405 #define BASE 0x03e00000
406 #define RT 0x001f0000
407 #define OFFSET 0x0000ffff
408 #define LL 0xc0000000
409 #define SC 0xe0000000
410 #define SPEC3 0x7c000000
411 #define RD 0x0000f800
412 #define FUNC 0x0000003f
413 #define RDHWR 0x0000003b
416 * The ll_bit is cleared by r*_switch.S
419 unsigned long ll_bit;
421 static struct task_struct *ll_task = NULL;
423 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
425 unsigned long value, __user *vaddr;
426 long offset;
427 int signal = 0;
430 * analyse the ll instruction that just caused a ri exception
431 * and put the referenced address to addr.
434 /* sign extend offset */
435 offset = opcode & OFFSET;
436 offset <<= 16;
437 offset >>= 16;
439 vaddr = (unsigned long __user *)
440 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
442 if ((unsigned long)vaddr & 3) {
443 signal = SIGBUS;
444 goto sig;
446 if (get_user(value, vaddr)) {
447 signal = SIGSEGV;
448 goto sig;
451 preempt_disable();
453 if (ll_task == NULL || ll_task == current) {
454 ll_bit = 1;
455 } else {
456 ll_bit = 0;
458 ll_task = current;
460 preempt_enable();
462 compute_return_epc(regs);
464 regs->regs[(opcode & RT) >> 16] = value;
466 return;
468 sig:
469 force_sig(signal, current);
472 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
474 unsigned long __user *vaddr;
475 unsigned long reg;
476 long offset;
477 int signal = 0;
480 * analyse the sc instruction that just caused a ri exception
481 * and put the referenced address to addr.
484 /* sign extend offset */
485 offset = opcode & OFFSET;
486 offset <<= 16;
487 offset >>= 16;
489 vaddr = (unsigned long __user *)
490 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
491 reg = (opcode & RT) >> 16;
493 if ((unsigned long)vaddr & 3) {
494 signal = SIGBUS;
495 goto sig;
498 preempt_disable();
500 if (ll_bit == 0 || ll_task != current) {
501 compute_return_epc(regs);
502 regs->regs[reg] = 0;
503 preempt_enable();
504 return;
507 preempt_enable();
509 if (put_user(regs->regs[reg], vaddr)) {
510 signal = SIGSEGV;
511 goto sig;
514 compute_return_epc(regs);
515 regs->regs[reg] = 1;
517 return;
519 sig:
520 force_sig(signal, current);
524 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
525 * opcodes are supposed to result in coprocessor unusable exceptions if
526 * executed on ll/sc-less processors. That's the theory. In practice a
527 * few processors such as NEC's VR4100 throw reserved instruction exceptions
528 * instead, so we're doing the emulation thing in both exception handlers.
530 static inline int simulate_llsc(struct pt_regs *regs)
532 unsigned int opcode;
534 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
535 goto out_sigsegv;
537 if ((opcode & OPCODE) == LL) {
538 simulate_ll(regs, opcode);
539 return 0;
541 if ((opcode & OPCODE) == SC) {
542 simulate_sc(regs, opcode);
543 return 0;
546 return -EFAULT; /* Strange things going on ... */
548 out_sigsegv:
549 force_sig(SIGSEGV, current);
550 return -EFAULT;
554 * Simulate trapping 'rdhwr' instructions to provide user accessible
555 * registers not implemented in hardware. The only current use of this
556 * is the thread area pointer.
558 static inline int simulate_rdhwr(struct pt_regs *regs)
560 struct thread_info *ti = task_thread_info(current);
561 unsigned int opcode;
563 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
564 goto out_sigsegv;
566 if (unlikely(compute_return_epc(regs)))
567 return -EFAULT;
569 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
570 int rd = (opcode & RD) >> 11;
571 int rt = (opcode & RT) >> 16;
572 switch (rd) {
573 case 29:
574 regs->regs[rt] = ti->tp_value;
575 return 0;
576 default:
577 return -EFAULT;
581 /* Not ours. */
582 return -EFAULT;
584 out_sigsegv:
585 force_sig(SIGSEGV, current);
586 return -EFAULT;
589 asmlinkage void do_ov(struct pt_regs *regs)
591 siginfo_t info;
593 die_if_kernel("Integer overflow", regs);
595 info.si_code = FPE_INTOVF;
596 info.si_signo = SIGFPE;
597 info.si_errno = 0;
598 info.si_addr = (void __user *) regs->cp0_epc;
599 force_sig_info(SIGFPE, &info, current);
603 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
605 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
607 die_if_kernel("FP exception in kernel code", regs);
609 if (fcr31 & FPU_CSR_UNI_X) {
610 int sig;
613 * Unimplemented operation exception. If we've got the full
614 * software emulator on-board, let's use it...
616 * Force FPU to dump state into task/thread context. We're
617 * moving a lot of data here for what is probably a single
618 * instruction, but the alternative is to pre-decode the FP
619 * register operands before invoking the emulator, which seems
620 * a bit extreme for what should be an infrequent event.
622 /* Ensure 'resume' not overwrite saved fp context again. */
623 lose_fpu(1);
625 /* Run the emulator */
626 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu, 1);
629 * We can't allow the emulated instruction to leave any of
630 * the cause bit set in $fcr31.
632 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
634 /* Restore the hardware register state */
635 own_fpu(1); /* Using the FPU again. */
637 /* If something went wrong, signal */
638 if (sig)
639 force_sig(sig, current);
641 return;
644 force_sig(SIGFPE, current);
647 asmlinkage void do_bp(struct pt_regs *regs)
649 unsigned int opcode, bcode;
650 siginfo_t info;
652 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
653 goto out_sigsegv;
656 * There is the ancient bug in the MIPS assemblers that the break
657 * code starts left to bit 16 instead to bit 6 in the opcode.
658 * Gas is bug-compatible, but not always, grrr...
659 * We handle both cases with a simple heuristics. --macro
661 bcode = ((opcode >> 6) & ((1 << 20) - 1));
662 if (bcode < (1 << 10))
663 bcode <<= 10;
666 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
667 * insns, even for break codes that indicate arithmetic failures.
668 * Weird ...)
669 * But should we continue the brokenness??? --macro
671 switch (bcode) {
672 case BRK_OVERFLOW << 10:
673 case BRK_DIVZERO << 10:
674 die_if_kernel("Break instruction in kernel code", regs);
675 if (bcode == (BRK_DIVZERO << 10))
676 info.si_code = FPE_INTDIV;
677 else
678 info.si_code = FPE_INTOVF;
679 info.si_signo = SIGFPE;
680 info.si_errno = 0;
681 info.si_addr = (void __user *) regs->cp0_epc;
682 force_sig_info(SIGFPE, &info, current);
683 break;
684 case BRK_BUG:
685 die("Kernel bug detected", regs);
686 break;
687 default:
688 die_if_kernel("Break instruction in kernel code", regs);
689 force_sig(SIGTRAP, current);
691 return;
693 out_sigsegv:
694 force_sig(SIGSEGV, current);
697 asmlinkage void do_tr(struct pt_regs *regs)
699 unsigned int opcode, tcode = 0;
700 siginfo_t info;
702 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
703 goto out_sigsegv;
705 /* Immediate versions don't provide a code. */
706 if (!(opcode & OPCODE))
707 tcode = ((opcode >> 6) & ((1 << 10) - 1));
710 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
711 * insns, even for trap codes that indicate arithmetic failures.
712 * Weird ...)
713 * But should we continue the brokenness??? --macro
715 switch (tcode) {
716 case BRK_OVERFLOW:
717 case BRK_DIVZERO:
718 die_if_kernel("Trap instruction in kernel code", regs);
719 if (tcode == BRK_DIVZERO)
720 info.si_code = FPE_INTDIV;
721 else
722 info.si_code = FPE_INTOVF;
723 info.si_signo = SIGFPE;
724 info.si_errno = 0;
725 info.si_addr = (void __user *) regs->cp0_epc;
726 force_sig_info(SIGFPE, &info, current);
727 break;
728 case BRK_BUG:
729 die("Kernel bug detected", regs);
730 break;
731 default:
732 die_if_kernel("Trap instruction in kernel code", regs);
733 force_sig(SIGTRAP, current);
735 return;
737 out_sigsegv:
738 force_sig(SIGSEGV, current);
741 asmlinkage void do_ri(struct pt_regs *regs)
743 die_if_kernel("Reserved instruction in kernel code", regs);
745 if (!cpu_has_llsc)
746 if (!simulate_llsc(regs))
747 return;
749 if (!simulate_rdhwr(regs))
750 return;
752 force_sig(SIGILL, current);
755 asmlinkage void do_cpu(struct pt_regs *regs)
757 unsigned int cpid;
759 die_if_kernel("do_cpu invoked from kernel context!", regs);
761 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
763 switch (cpid) {
764 case 0:
765 if (!cpu_has_llsc)
766 if (!simulate_llsc(regs))
767 return;
769 if (!simulate_rdhwr(regs))
770 return;
772 break;
774 case 1:
775 if (used_math()) /* Using the FPU again. */
776 own_fpu(1);
777 else { /* First time FPU user. */
778 init_fpu();
779 set_used_math();
782 if (!raw_cpu_has_fpu) {
783 int sig;
784 sig = fpu_emulator_cop1Handler(regs,
785 &current->thread.fpu, 0);
786 if (sig)
787 force_sig(sig, current);
788 #ifdef CONFIG_MIPS_MT_FPAFF
789 else {
791 * MIPS MT processors may have fewer FPU contexts
792 * than CPU threads. If we've emulated more than
793 * some threshold number of instructions, force
794 * migration to a "CPU" that has FP support.
796 if(mt_fpemul_threshold > 0
797 && ((current->thread.emulated_fp++
798 > mt_fpemul_threshold))) {
800 * If there's no FPU present, or if the
801 * application has already restricted
802 * the allowed set to exclude any CPUs
803 * with FPUs, we'll skip the procedure.
805 if (cpus_intersects(current->cpus_allowed,
806 mt_fpu_cpumask)) {
807 cpumask_t tmask;
809 cpus_and(tmask,
810 current->thread.user_cpus_allowed,
811 mt_fpu_cpumask);
812 set_cpus_allowed(current, tmask);
813 current->thread.mflags |= MF_FPUBOUND;
817 #endif /* CONFIG_MIPS_MT_FPAFF */
820 return;
822 case 2:
823 case 3:
824 break;
827 force_sig(SIGILL, current);
830 asmlinkage void do_mdmx(struct pt_regs *regs)
832 force_sig(SIGILL, current);
835 asmlinkage void do_watch(struct pt_regs *regs)
838 * We use the watch exception where available to detect stack
839 * overflows.
841 dump_tlb_all();
842 show_regs(regs);
843 panic("Caught WATCH exception - probably caused by stack overflow.");
846 asmlinkage void do_mcheck(struct pt_regs *regs)
848 const int field = 2 * sizeof(unsigned long);
849 int multi_match = regs->cp0_status & ST0_TS;
851 show_regs(regs);
853 if (multi_match) {
854 printk("Index : %0x\n", read_c0_index());
855 printk("Pagemask: %0x\n", read_c0_pagemask());
856 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
857 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
858 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
859 printk("\n");
860 dump_tlb_all();
863 show_code((unsigned int *) regs->cp0_epc);
866 * Some chips may have other causes of machine check (e.g. SB1
867 * graduation timer)
869 panic("Caught Machine Check exception - %scaused by multiple "
870 "matching entries in the TLB.",
871 (multi_match) ? "" : "not ");
874 asmlinkage void do_mt(struct pt_regs *regs)
876 int subcode;
878 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
879 >> VPECONTROL_EXCPT_SHIFT;
880 switch (subcode) {
881 case 0:
882 printk(KERN_DEBUG "Thread Underflow\n");
883 break;
884 case 1:
885 printk(KERN_DEBUG "Thread Overflow\n");
886 break;
887 case 2:
888 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
889 break;
890 case 3:
891 printk(KERN_DEBUG "Gating Storage Exception\n");
892 break;
893 case 4:
894 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
895 break;
896 case 5:
897 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
898 break;
899 default:
900 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
901 subcode);
902 break;
904 die_if_kernel("MIPS MT Thread exception in kernel", regs);
906 force_sig(SIGILL, current);
910 asmlinkage void do_dsp(struct pt_regs *regs)
912 if (cpu_has_dsp)
913 panic("Unexpected DSP exception\n");
915 force_sig(SIGILL, current);
918 asmlinkage void do_reserved(struct pt_regs *regs)
921 * Game over - no way to handle this if it ever occurs. Most probably
922 * caused by a new unknown cpu type or after another deadly
923 * hard/software error.
925 show_regs(regs);
926 panic("Caught reserved exception %ld - should not happen.",
927 (regs->cp0_cause & 0x7f) >> 2);
930 asmlinkage void do_default_vi(struct pt_regs *regs)
932 show_regs(regs);
933 panic("Caught unexpected vectored interrupt.");
937 * Some MIPS CPUs can enable/disable for cache parity detection, but do
938 * it different ways.
940 static inline void parity_protection_init(void)
942 switch (current_cpu_data.cputype) {
943 case CPU_24K:
944 case CPU_34K:
945 case CPU_5KC:
946 write_c0_ecc(0x80000000);
947 back_to_back_c0_hazard();
948 /* Set the PE bit (bit 31) in the c0_errctl register. */
949 printk(KERN_INFO "Cache parity protection %sabled\n",
950 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
951 break;
952 case CPU_20KC:
953 case CPU_25KF:
954 /* Clear the DE bit (bit 16) in the c0_status register. */
955 printk(KERN_INFO "Enable cache parity protection for "
956 "MIPS 20KC/25KF CPUs.\n");
957 clear_c0_status(ST0_DE);
958 break;
959 default:
960 break;
964 asmlinkage void cache_parity_error(void)
966 const int field = 2 * sizeof(unsigned long);
967 unsigned int reg_val;
969 /* For the moment, report the problem and hang. */
970 printk("Cache error exception:\n");
971 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
972 reg_val = read_c0_cacheerr();
973 printk("c0_cacheerr == %08x\n", reg_val);
975 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
976 reg_val & (1<<30) ? "secondary" : "primary",
977 reg_val & (1<<31) ? "data" : "insn");
978 printk("Error bits: %s%s%s%s%s%s%s\n",
979 reg_val & (1<<29) ? "ED " : "",
980 reg_val & (1<<28) ? "ET " : "",
981 reg_val & (1<<26) ? "EE " : "",
982 reg_val & (1<<25) ? "EB " : "",
983 reg_val & (1<<24) ? "EI " : "",
984 reg_val & (1<<23) ? "E1 " : "",
985 reg_val & (1<<22) ? "E0 " : "");
986 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
988 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
989 if (reg_val & (1<<22))
990 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
992 if (reg_val & (1<<23))
993 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
994 #endif
996 panic("Can't handle the cache error!");
1000 * SDBBP EJTAG debug exception handler.
1001 * We skip the instruction and return to the next instruction.
1003 void ejtag_exception_handler(struct pt_regs *regs)
1005 const int field = 2 * sizeof(unsigned long);
1006 unsigned long depc, old_epc;
1007 unsigned int debug;
1009 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1010 depc = read_c0_depc();
1011 debug = read_c0_debug();
1012 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1013 if (debug & 0x80000000) {
1015 * In branch delay slot.
1016 * We cheat a little bit here and use EPC to calculate the
1017 * debug return address (DEPC). EPC is restored after the
1018 * calculation.
1020 old_epc = regs->cp0_epc;
1021 regs->cp0_epc = depc;
1022 __compute_return_epc(regs);
1023 depc = regs->cp0_epc;
1024 regs->cp0_epc = old_epc;
1025 } else
1026 depc += 4;
1027 write_c0_depc(depc);
1029 #if 0
1030 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1031 write_c0_debug(debug | 0x100);
1032 #endif
1036 * NMI exception handler.
1038 void nmi_exception_handler(struct pt_regs *regs)
1040 #ifdef CONFIG_MIPS_MT_SMTC
1041 unsigned long dvpret = dvpe();
1042 bust_spinlocks(1);
1043 printk("NMI taken!!!!\n");
1044 mips_mt_regdump(dvpret);
1045 #else
1046 bust_spinlocks(1);
1047 printk("NMI taken!!!!\n");
1048 #endif /* CONFIG_MIPS_MT_SMTC */
1049 die("NMI", regs);
1050 while(1) ;
1053 #define VECTORSPACING 0x100 /* for EI/VI mode */
1055 unsigned long ebase;
1056 unsigned long exception_handlers[32];
1057 unsigned long vi_handlers[64];
1060 * As a side effect of the way this is implemented we're limited
1061 * to interrupt handlers in the address range from
1062 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1064 void *set_except_vector(int n, void *addr)
1066 unsigned long handler = (unsigned long) addr;
1067 unsigned long old_handler = exception_handlers[n];
1069 exception_handlers[n] = handler;
1070 if (n == 0 && cpu_has_divec) {
1071 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1072 (0x03ffffff & (handler >> 2));
1073 flush_icache_range(ebase + 0x200, ebase + 0x204);
1075 return (void *)old_handler;
1078 #ifdef CONFIG_CPU_MIPSR2_SRS
1080 * MIPSR2 shadow register set allocation
1081 * FIXME: SMP...
1084 static struct shadow_registers {
1086 * Number of shadow register sets supported
1088 unsigned long sr_supported;
1090 * Bitmap of allocated shadow registers
1092 unsigned long sr_allocated;
1093 } shadow_registers;
1095 static void mips_srs_init(void)
1097 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1098 printk(KERN_INFO "%ld MIPSR2 register sets available\n",
1099 shadow_registers.sr_supported);
1100 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1103 int mips_srs_max(void)
1105 return shadow_registers.sr_supported;
1108 int mips_srs_alloc(void)
1110 struct shadow_registers *sr = &shadow_registers;
1111 int set;
1113 again:
1114 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1115 if (set >= sr->sr_supported)
1116 return -1;
1118 if (test_and_set_bit(set, &sr->sr_allocated))
1119 goto again;
1121 return set;
1124 void mips_srs_free(int set)
1126 struct shadow_registers *sr = &shadow_registers;
1128 clear_bit(set, &sr->sr_allocated);
1131 static void *set_vi_srs_handler(int n, void *addr, int srs)
1133 unsigned long handler;
1134 unsigned long old_handler = vi_handlers[n];
1135 u32 *w;
1136 unsigned char *b;
1138 if (!cpu_has_veic && !cpu_has_vint)
1139 BUG();
1141 if (addr == NULL) {
1142 handler = (unsigned long) do_default_vi;
1143 srs = 0;
1144 } else
1145 handler = (unsigned long) addr;
1146 vi_handlers[n] = (unsigned long) addr;
1148 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1150 if (srs >= mips_srs_max())
1151 panic("Shadow register set %d not supported", srs);
1153 if (cpu_has_veic) {
1154 if (board_bind_eic_interrupt)
1155 board_bind_eic_interrupt (n, srs);
1156 } else if (cpu_has_vint) {
1157 /* SRSMap is only defined if shadow sets are implemented */
1158 if (mips_srs_max() > 1)
1159 change_c0_srsmap (0xf << n*4, srs << n*4);
1162 if (srs == 0) {
1164 * If no shadow set is selected then use the default handler
1165 * that does normal register saving and a standard interrupt exit
1168 extern char except_vec_vi, except_vec_vi_lui;
1169 extern char except_vec_vi_ori, except_vec_vi_end;
1170 #ifdef CONFIG_MIPS_MT_SMTC
1172 * We need to provide the SMTC vectored interrupt handler
1173 * not only with the address of the handler, but with the
1174 * Status.IM bit to be masked before going there.
1176 extern char except_vec_vi_mori;
1177 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1178 #endif /* CONFIG_MIPS_MT_SMTC */
1179 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1180 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1181 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1183 if (handler_len > VECTORSPACING) {
1185 * Sigh... panicing won't help as the console
1186 * is probably not configured :(
1188 panic ("VECTORSPACING too small");
1191 memcpy (b, &except_vec_vi, handler_len);
1192 #ifdef CONFIG_MIPS_MT_SMTC
1193 if (n > 7)
1194 printk("Vector index %d exceeds SMTC maximum\n", n);
1195 w = (u32 *)(b + mori_offset);
1196 *w = (*w & 0xffff0000) | (0x100 << n);
1197 #endif /* CONFIG_MIPS_MT_SMTC */
1198 w = (u32 *)(b + lui_offset);
1199 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1200 w = (u32 *)(b + ori_offset);
1201 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1202 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1204 else {
1206 * In other cases jump directly to the interrupt handler
1208 * It is the handlers responsibility to save registers if required
1209 * (eg hi/lo) and return from the exception using "eret"
1211 w = (u32 *)b;
1212 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1213 *w = 0;
1214 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1217 return (void *)old_handler;
1220 void *set_vi_handler(int n, void *addr)
1222 return set_vi_srs_handler(n, addr, 0);
1225 #else
1227 static inline void mips_srs_init(void)
1231 #endif /* CONFIG_CPU_MIPSR2_SRS */
1234 * This is used by native signal handling
1236 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1237 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1239 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1240 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1242 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1243 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1245 #ifdef CONFIG_SMP
1246 static int smp_save_fp_context(struct sigcontext __user *sc)
1248 return raw_cpu_has_fpu
1249 ? _save_fp_context(sc)
1250 : fpu_emulator_save_context(sc);
1253 static int smp_restore_fp_context(struct sigcontext __user *sc)
1255 return raw_cpu_has_fpu
1256 ? _restore_fp_context(sc)
1257 : fpu_emulator_restore_context(sc);
1259 #endif
1261 static inline void signal_init(void)
1263 #ifdef CONFIG_SMP
1264 /* For now just do the cpu_has_fpu check when the functions are invoked */
1265 save_fp_context = smp_save_fp_context;
1266 restore_fp_context = smp_restore_fp_context;
1267 #else
1268 if (cpu_has_fpu) {
1269 save_fp_context = _save_fp_context;
1270 restore_fp_context = _restore_fp_context;
1271 } else {
1272 save_fp_context = fpu_emulator_save_context;
1273 restore_fp_context = fpu_emulator_restore_context;
1275 #endif
1278 #ifdef CONFIG_MIPS32_COMPAT
1281 * This is used by 32-bit signal stuff on the 64-bit kernel
1283 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1284 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1286 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1287 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1289 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1290 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1292 static inline void signal32_init(void)
1294 if (cpu_has_fpu) {
1295 save_fp_context32 = _save_fp_context32;
1296 restore_fp_context32 = _restore_fp_context32;
1297 } else {
1298 save_fp_context32 = fpu_emulator_save_context32;
1299 restore_fp_context32 = fpu_emulator_restore_context32;
1302 #endif
1304 extern void cpu_cache_init(void);
1305 extern void tlb_init(void);
1306 extern void flush_tlb_handlers(void);
1308 void __init per_cpu_trap_init(void)
1310 unsigned int cpu = smp_processor_id();
1311 unsigned int status_set = ST0_CU0;
1312 #ifdef CONFIG_MIPS_MT_SMTC
1313 int secondaryTC = 0;
1314 int bootTC = (cpu == 0);
1317 * Only do per_cpu_trap_init() for first TC of Each VPE.
1318 * Note that this hack assumes that the SMTC init code
1319 * assigns TCs consecutively and in ascending order.
1322 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1323 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1324 secondaryTC = 1;
1325 #endif /* CONFIG_MIPS_MT_SMTC */
1328 * Disable coprocessors and select 32-bit or 64-bit addressing
1329 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1330 * flag that some firmware may have left set and the TS bit (for
1331 * IP27). Set XX for ISA IV code to work.
1333 #ifdef CONFIG_64BIT
1334 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1335 #endif
1336 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1337 status_set |= ST0_XX;
1338 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1339 status_set);
1341 if (cpu_has_dsp)
1342 set_c0_status(ST0_MX);
1344 #ifdef CONFIG_CPU_MIPSR2
1345 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1346 #endif
1348 #ifdef CONFIG_MIPS_MT_SMTC
1349 if (!secondaryTC) {
1350 #endif /* CONFIG_MIPS_MT_SMTC */
1353 * Interrupt handling.
1355 if (cpu_has_veic || cpu_has_vint) {
1356 write_c0_ebase (ebase);
1357 /* Setting vector spacing enables EI/VI mode */
1358 change_c0_intctl (0x3e0, VECTORSPACING);
1360 if (cpu_has_divec) {
1361 if (cpu_has_mipsmt) {
1362 unsigned int vpflags = dvpe();
1363 set_c0_cause(CAUSEF_IV);
1364 evpe(vpflags);
1365 } else
1366 set_c0_cause(CAUSEF_IV);
1368 #ifdef CONFIG_MIPS_MT_SMTC
1370 #endif /* CONFIG_MIPS_MT_SMTC */
1372 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1373 TLBMISS_HANDLER_SETUP();
1375 atomic_inc(&init_mm.mm_count);
1376 current->active_mm = &init_mm;
1377 BUG_ON(current->mm);
1378 enter_lazy_tlb(&init_mm, current);
1380 #ifdef CONFIG_MIPS_MT_SMTC
1381 if (bootTC) {
1382 #endif /* CONFIG_MIPS_MT_SMTC */
1383 cpu_cache_init();
1384 tlb_init();
1385 #ifdef CONFIG_MIPS_MT_SMTC
1387 #endif /* CONFIG_MIPS_MT_SMTC */
1390 /* Install CPU exception handler */
1391 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1393 memcpy((void *)(ebase + offset), addr, size);
1394 flush_icache_range(ebase + offset, ebase + offset + size);
1397 /* Install uncached CPU exception handler */
1398 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1400 #ifdef CONFIG_32BIT
1401 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1402 #endif
1403 #ifdef CONFIG_64BIT
1404 unsigned long uncached_ebase = TO_UNCAC(ebase);
1405 #endif
1407 memcpy((void *)(uncached_ebase + offset), addr, size);
1410 static int __initdata rdhwr_noopt;
1411 static int __init set_rdhwr_noopt(char *str)
1413 rdhwr_noopt = 1;
1414 return 1;
1417 __setup("rdhwr_noopt", set_rdhwr_noopt);
1419 void __init trap_init(void)
1421 extern char except_vec3_generic, except_vec3_r4000;
1422 extern char except_vec4;
1423 unsigned long i;
1425 if (cpu_has_veic || cpu_has_vint)
1426 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1427 else
1428 ebase = CAC_BASE;
1430 mips_srs_init();
1432 per_cpu_trap_init();
1435 * Copy the generic exception handlers to their final destination.
1436 * This will be overriden later as suitable for a particular
1437 * configuration.
1439 set_handler(0x180, &except_vec3_generic, 0x80);
1442 * Setup default vectors
1444 for (i = 0; i <= 31; i++)
1445 set_except_vector(i, handle_reserved);
1448 * Copy the EJTAG debug exception vector handler code to it's final
1449 * destination.
1451 if (cpu_has_ejtag && board_ejtag_handler_setup)
1452 board_ejtag_handler_setup ();
1455 * Only some CPUs have the watch exceptions.
1457 if (cpu_has_watch)
1458 set_except_vector(23, handle_watch);
1461 * Initialise interrupt handlers
1463 if (cpu_has_veic || cpu_has_vint) {
1464 int nvec = cpu_has_veic ? 64 : 8;
1465 for (i = 0; i < nvec; i++)
1466 set_vi_handler(i, NULL);
1468 else if (cpu_has_divec)
1469 set_handler(0x200, &except_vec4, 0x8);
1472 * Some CPUs can enable/disable for cache parity detection, but does
1473 * it different ways.
1475 parity_protection_init();
1478 * The Data Bus Errors / Instruction Bus Errors are signaled
1479 * by external hardware. Therefore these two exceptions
1480 * may have board specific handlers.
1482 if (board_be_init)
1483 board_be_init();
1485 set_except_vector(0, handle_int);
1486 set_except_vector(1, handle_tlbm);
1487 set_except_vector(2, handle_tlbl);
1488 set_except_vector(3, handle_tlbs);
1490 set_except_vector(4, handle_adel);
1491 set_except_vector(5, handle_ades);
1493 set_except_vector(6, handle_ibe);
1494 set_except_vector(7, handle_dbe);
1496 set_except_vector(8, handle_sys);
1497 set_except_vector(9, handle_bp);
1498 set_except_vector(10, rdhwr_noopt ? handle_ri :
1499 (cpu_has_vtag_icache ?
1500 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1501 set_except_vector(11, handle_cpu);
1502 set_except_vector(12, handle_ov);
1503 set_except_vector(13, handle_tr);
1505 if (current_cpu_data.cputype == CPU_R6000 ||
1506 current_cpu_data.cputype == CPU_R6000A) {
1508 * The R6000 is the only R-series CPU that features a machine
1509 * check exception (similar to the R4000 cache error) and
1510 * unaligned ldc1/sdc1 exception. The handlers have not been
1511 * written yet. Well, anyway there is no R6000 machine on the
1512 * current list of targets for Linux/MIPS.
1513 * (Duh, crap, there is someone with a triple R6k machine)
1515 //set_except_vector(14, handle_mc);
1516 //set_except_vector(15, handle_ndc);
1520 if (board_nmi_handler_setup)
1521 board_nmi_handler_setup();
1523 if (cpu_has_fpu && !cpu_has_nofpuex)
1524 set_except_vector(15, handle_fpe);
1526 set_except_vector(22, handle_mdmx);
1528 if (cpu_has_mcheck)
1529 set_except_vector(24, handle_mcheck);
1531 if (cpu_has_mipsmt)
1532 set_except_vector(25, handle_mt);
1534 if (cpu_has_dsp)
1535 set_except_vector(26, handle_dsp);
1537 if (cpu_has_vce)
1538 /* Special exception: R4[04]00 uses also the divec space. */
1539 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1540 else if (cpu_has_4kex)
1541 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1542 else
1543 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1545 signal_init();
1546 #ifdef CONFIG_MIPS32_COMPAT
1547 signal32_init();
1548 #endif
1550 flush_icache_range(ebase, ebase + 0x400);
1551 flush_tlb_handlers();