cifs: use 64-bit timestamps for fscache
[linux-2.6/btrfs-unstable.git] / mm / hmm.c
blobde7b6bf7720104fa9312dab54618d7cc425c3f05
1 /*
2 * Copyright 2013 Red Hat Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * Authors: Jérôme Glisse <jglisse@redhat.com>
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
42 * struct hmm - HMM per mm struct
44 * @mm: mm struct this HMM struct is bound to
45 * @lock: lock protecting ranges list
46 * @sequence: we track updates to the CPU page table with a sequence number
47 * @ranges: list of range being snapshotted
48 * @mirrors: list of mirrors for this mm
49 * @mmu_notifier: mmu notifier to track updates to CPU page table
50 * @mirrors_sem: read/write semaphore protecting the mirrors list
52 struct hmm {
53 struct mm_struct *mm;
54 spinlock_t lock;
55 atomic_t sequence;
56 struct list_head ranges;
57 struct list_head mirrors;
58 struct mmu_notifier mmu_notifier;
59 struct rw_semaphore mirrors_sem;
63 * hmm_register - register HMM against an mm (HMM internal)
65 * @mm: mm struct to attach to
67 * This is not intended to be used directly by device drivers. It allocates an
68 * HMM struct if mm does not have one, and initializes it.
70 static struct hmm *hmm_register(struct mm_struct *mm)
72 struct hmm *hmm = READ_ONCE(mm->hmm);
73 bool cleanup = false;
76 * The hmm struct can only be freed once the mm_struct goes away,
77 * hence we should always have pre-allocated an new hmm struct
78 * above.
80 if (hmm)
81 return hmm;
83 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
84 if (!hmm)
85 return NULL;
86 INIT_LIST_HEAD(&hmm->mirrors);
87 init_rwsem(&hmm->mirrors_sem);
88 atomic_set(&hmm->sequence, 0);
89 hmm->mmu_notifier.ops = NULL;
90 INIT_LIST_HEAD(&hmm->ranges);
91 spin_lock_init(&hmm->lock);
92 hmm->mm = mm;
95 * We should only get here if hold the mmap_sem in write mode ie on
96 * registration of first mirror through hmm_mirror_register()
98 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
99 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
100 kfree(hmm);
101 return NULL;
104 spin_lock(&mm->page_table_lock);
105 if (!mm->hmm)
106 mm->hmm = hmm;
107 else
108 cleanup = true;
109 spin_unlock(&mm->page_table_lock);
111 if (cleanup) {
112 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
113 kfree(hmm);
116 return mm->hmm;
119 void hmm_mm_destroy(struct mm_struct *mm)
121 kfree(mm->hmm);
124 static void hmm_invalidate_range(struct hmm *hmm,
125 enum hmm_update_type action,
126 unsigned long start,
127 unsigned long end)
129 struct hmm_mirror *mirror;
130 struct hmm_range *range;
132 spin_lock(&hmm->lock);
133 list_for_each_entry(range, &hmm->ranges, list) {
134 unsigned long addr, idx, npages;
136 if (end < range->start || start >= range->end)
137 continue;
139 range->valid = false;
140 addr = max(start, range->start);
141 idx = (addr - range->start) >> PAGE_SHIFT;
142 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
143 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
145 spin_unlock(&hmm->lock);
147 down_read(&hmm->mirrors_sem);
148 list_for_each_entry(mirror, &hmm->mirrors, list)
149 mirror->ops->sync_cpu_device_pagetables(mirror, action,
150 start, end);
151 up_read(&hmm->mirrors_sem);
154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
156 struct hmm_mirror *mirror;
157 struct hmm *hmm = mm->hmm;
159 down_write(&hmm->mirrors_sem);
160 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
161 list);
162 while (mirror) {
163 list_del_init(&mirror->list);
164 if (mirror->ops->release) {
166 * Drop mirrors_sem so callback can wait on any pending
167 * work that might itself trigger mmu_notifier callback
168 * and thus would deadlock with us.
170 up_write(&hmm->mirrors_sem);
171 mirror->ops->release(mirror);
172 down_write(&hmm->mirrors_sem);
174 mirror = list_first_entry_or_null(&hmm->mirrors,
175 struct hmm_mirror, list);
177 up_write(&hmm->mirrors_sem);
180 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
181 struct mm_struct *mm,
182 unsigned long start,
183 unsigned long end)
185 struct hmm *hmm = mm->hmm;
187 VM_BUG_ON(!hmm);
189 atomic_inc(&hmm->sequence);
192 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
193 struct mm_struct *mm,
194 unsigned long start,
195 unsigned long end)
197 struct hmm *hmm = mm->hmm;
199 VM_BUG_ON(!hmm);
201 hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
204 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
205 .release = hmm_release,
206 .invalidate_range_start = hmm_invalidate_range_start,
207 .invalidate_range_end = hmm_invalidate_range_end,
211 * hmm_mirror_register() - register a mirror against an mm
213 * @mirror: new mirror struct to register
214 * @mm: mm to register against
216 * To start mirroring a process address space, the device driver must register
217 * an HMM mirror struct.
219 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
221 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
223 /* Sanity check */
224 if (!mm || !mirror || !mirror->ops)
225 return -EINVAL;
227 again:
228 mirror->hmm = hmm_register(mm);
229 if (!mirror->hmm)
230 return -ENOMEM;
232 down_write(&mirror->hmm->mirrors_sem);
233 if (mirror->hmm->mm == NULL) {
235 * A racing hmm_mirror_unregister() is about to destroy the hmm
236 * struct. Try again to allocate a new one.
238 up_write(&mirror->hmm->mirrors_sem);
239 mirror->hmm = NULL;
240 goto again;
241 } else {
242 list_add(&mirror->list, &mirror->hmm->mirrors);
243 up_write(&mirror->hmm->mirrors_sem);
246 return 0;
248 EXPORT_SYMBOL(hmm_mirror_register);
251 * hmm_mirror_unregister() - unregister a mirror
253 * @mirror: new mirror struct to register
255 * Stop mirroring a process address space, and cleanup.
257 void hmm_mirror_unregister(struct hmm_mirror *mirror)
259 bool should_unregister = false;
260 struct mm_struct *mm;
261 struct hmm *hmm;
263 if (mirror->hmm == NULL)
264 return;
266 hmm = mirror->hmm;
267 down_write(&hmm->mirrors_sem);
268 list_del_init(&mirror->list);
269 should_unregister = list_empty(&hmm->mirrors);
270 mirror->hmm = NULL;
271 mm = hmm->mm;
272 hmm->mm = NULL;
273 up_write(&hmm->mirrors_sem);
275 if (!should_unregister || mm == NULL)
276 return;
278 spin_lock(&mm->page_table_lock);
279 if (mm->hmm == hmm)
280 mm->hmm = NULL;
281 spin_unlock(&mm->page_table_lock);
283 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
284 kfree(hmm);
286 EXPORT_SYMBOL(hmm_mirror_unregister);
288 struct hmm_vma_walk {
289 struct hmm_range *range;
290 unsigned long last;
291 bool fault;
292 bool block;
295 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
296 bool write_fault, uint64_t *pfn)
298 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
299 struct hmm_vma_walk *hmm_vma_walk = walk->private;
300 struct hmm_range *range = hmm_vma_walk->range;
301 struct vm_area_struct *vma = walk->vma;
302 int r;
304 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
305 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
306 r = handle_mm_fault(vma, addr, flags);
307 if (r & VM_FAULT_RETRY)
308 return -EBUSY;
309 if (r & VM_FAULT_ERROR) {
310 *pfn = range->values[HMM_PFN_ERROR];
311 return -EFAULT;
314 return -EAGAIN;
317 static int hmm_pfns_bad(unsigned long addr,
318 unsigned long end,
319 struct mm_walk *walk)
321 struct hmm_vma_walk *hmm_vma_walk = walk->private;
322 struct hmm_range *range = hmm_vma_walk->range;
323 uint64_t *pfns = range->pfns;
324 unsigned long i;
326 i = (addr - range->start) >> PAGE_SHIFT;
327 for (; addr < end; addr += PAGE_SIZE, i++)
328 pfns[i] = range->values[HMM_PFN_ERROR];
330 return 0;
334 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
335 * @start: range virtual start address (inclusive)
336 * @end: range virtual end address (exclusive)
337 * @fault: should we fault or not ?
338 * @write_fault: write fault ?
339 * @walk: mm_walk structure
340 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
342 * This function will be called whenever pmd_none() or pte_none() returns true,
343 * or whenever there is no page directory covering the virtual address range.
345 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
346 bool fault, bool write_fault,
347 struct mm_walk *walk)
349 struct hmm_vma_walk *hmm_vma_walk = walk->private;
350 struct hmm_range *range = hmm_vma_walk->range;
351 uint64_t *pfns = range->pfns;
352 unsigned long i;
354 hmm_vma_walk->last = addr;
355 i = (addr - range->start) >> PAGE_SHIFT;
356 for (; addr < end; addr += PAGE_SIZE, i++) {
357 pfns[i] = range->values[HMM_PFN_NONE];
358 if (fault || write_fault) {
359 int ret;
361 ret = hmm_vma_do_fault(walk, addr, write_fault,
362 &pfns[i]);
363 if (ret != -EAGAIN)
364 return ret;
368 return (fault || write_fault) ? -EAGAIN : 0;
371 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
372 uint64_t pfns, uint64_t cpu_flags,
373 bool *fault, bool *write_fault)
375 struct hmm_range *range = hmm_vma_walk->range;
377 *fault = *write_fault = false;
378 if (!hmm_vma_walk->fault)
379 return;
381 /* We aren't ask to do anything ... */
382 if (!(pfns & range->flags[HMM_PFN_VALID]))
383 return;
384 /* If this is device memory than only fault if explicitly requested */
385 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
386 /* Do we fault on device memory ? */
387 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
388 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
389 *fault = true;
391 return;
394 /* If CPU page table is not valid then we need to fault */
395 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
396 /* Need to write fault ? */
397 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
398 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
399 *write_fault = true;
400 *fault = true;
404 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
405 const uint64_t *pfns, unsigned long npages,
406 uint64_t cpu_flags, bool *fault,
407 bool *write_fault)
409 unsigned long i;
411 if (!hmm_vma_walk->fault) {
412 *fault = *write_fault = false;
413 return;
416 for (i = 0; i < npages; ++i) {
417 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
418 fault, write_fault);
419 if ((*fault) || (*write_fault))
420 return;
424 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
425 struct mm_walk *walk)
427 struct hmm_vma_walk *hmm_vma_walk = walk->private;
428 struct hmm_range *range = hmm_vma_walk->range;
429 bool fault, write_fault;
430 unsigned long i, npages;
431 uint64_t *pfns;
433 i = (addr - range->start) >> PAGE_SHIFT;
434 npages = (end - addr) >> PAGE_SHIFT;
435 pfns = &range->pfns[i];
436 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
437 0, &fault, &write_fault);
438 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
441 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
443 if (pmd_protnone(pmd))
444 return 0;
445 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
446 range->flags[HMM_PFN_WRITE] :
447 range->flags[HMM_PFN_VALID];
450 static int hmm_vma_handle_pmd(struct mm_walk *walk,
451 unsigned long addr,
452 unsigned long end,
453 uint64_t *pfns,
454 pmd_t pmd)
456 struct hmm_vma_walk *hmm_vma_walk = walk->private;
457 struct hmm_range *range = hmm_vma_walk->range;
458 unsigned long pfn, npages, i;
459 bool fault, write_fault;
460 uint64_t cpu_flags;
462 npages = (end - addr) >> PAGE_SHIFT;
463 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
464 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
465 &fault, &write_fault);
467 if (pmd_protnone(pmd) || fault || write_fault)
468 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
470 pfn = pmd_pfn(pmd) + pte_index(addr);
471 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
472 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
473 hmm_vma_walk->last = end;
474 return 0;
477 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
479 if (pte_none(pte) || !pte_present(pte))
480 return 0;
481 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
482 range->flags[HMM_PFN_WRITE] :
483 range->flags[HMM_PFN_VALID];
486 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
487 unsigned long end, pmd_t *pmdp, pte_t *ptep,
488 uint64_t *pfn)
490 struct hmm_vma_walk *hmm_vma_walk = walk->private;
491 struct hmm_range *range = hmm_vma_walk->range;
492 struct vm_area_struct *vma = walk->vma;
493 bool fault, write_fault;
494 uint64_t cpu_flags;
495 pte_t pte = *ptep;
496 uint64_t orig_pfn = *pfn;
498 *pfn = range->values[HMM_PFN_NONE];
499 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
500 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
501 &fault, &write_fault);
503 if (pte_none(pte)) {
504 if (fault || write_fault)
505 goto fault;
506 return 0;
509 if (!pte_present(pte)) {
510 swp_entry_t entry = pte_to_swp_entry(pte);
512 if (!non_swap_entry(entry)) {
513 if (fault || write_fault)
514 goto fault;
515 return 0;
519 * This is a special swap entry, ignore migration, use
520 * device and report anything else as error.
522 if (is_device_private_entry(entry)) {
523 cpu_flags = range->flags[HMM_PFN_VALID] |
524 range->flags[HMM_PFN_DEVICE_PRIVATE];
525 cpu_flags |= is_write_device_private_entry(entry) ?
526 range->flags[HMM_PFN_WRITE] : 0;
527 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
528 &fault, &write_fault);
529 if (fault || write_fault)
530 goto fault;
531 *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
532 *pfn |= cpu_flags;
533 return 0;
536 if (is_migration_entry(entry)) {
537 if (fault || write_fault) {
538 pte_unmap(ptep);
539 hmm_vma_walk->last = addr;
540 migration_entry_wait(vma->vm_mm,
541 pmdp, addr);
542 return -EAGAIN;
544 return 0;
547 /* Report error for everything else */
548 *pfn = range->values[HMM_PFN_ERROR];
549 return -EFAULT;
552 if (fault || write_fault)
553 goto fault;
555 *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
556 return 0;
558 fault:
559 pte_unmap(ptep);
560 /* Fault any virtual address we were asked to fault */
561 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
564 static int hmm_vma_walk_pmd(pmd_t *pmdp,
565 unsigned long start,
566 unsigned long end,
567 struct mm_walk *walk)
569 struct hmm_vma_walk *hmm_vma_walk = walk->private;
570 struct hmm_range *range = hmm_vma_walk->range;
571 uint64_t *pfns = range->pfns;
572 unsigned long addr = start, i;
573 pte_t *ptep;
575 i = (addr - range->start) >> PAGE_SHIFT;
577 again:
578 if (pmd_none(*pmdp))
579 return hmm_vma_walk_hole(start, end, walk);
581 if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
582 return hmm_pfns_bad(start, end, walk);
584 if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
585 pmd_t pmd;
588 * No need to take pmd_lock here, even if some other threads
589 * is splitting the huge pmd we will get that event through
590 * mmu_notifier callback.
592 * So just read pmd value and check again its a transparent
593 * huge or device mapping one and compute corresponding pfn
594 * values.
596 pmd = pmd_read_atomic(pmdp);
597 barrier();
598 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
599 goto again;
601 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
604 if (pmd_bad(*pmdp))
605 return hmm_pfns_bad(start, end, walk);
607 ptep = pte_offset_map(pmdp, addr);
608 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
609 int r;
611 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
612 if (r) {
613 /* hmm_vma_handle_pte() did unmap pte directory */
614 hmm_vma_walk->last = addr;
615 return r;
618 pte_unmap(ptep - 1);
620 hmm_vma_walk->last = addr;
621 return 0;
624 static void hmm_pfns_clear(struct hmm_range *range,
625 uint64_t *pfns,
626 unsigned long addr,
627 unsigned long end)
629 for (; addr < end; addr += PAGE_SIZE, pfns++)
630 *pfns = range->values[HMM_PFN_NONE];
633 static void hmm_pfns_special(struct hmm_range *range)
635 unsigned long addr = range->start, i = 0;
637 for (; addr < range->end; addr += PAGE_SIZE, i++)
638 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
642 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
643 * @range: range being snapshotted
644 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
645 * vma permission, 0 success
647 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
648 * validity is tracked by range struct. See hmm_vma_range_done() for further
649 * information.
651 * The range struct is initialized here. It tracks the CPU page table, but only
652 * if the function returns success (0), in which case the caller must then call
653 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
655 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
656 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
658 int hmm_vma_get_pfns(struct hmm_range *range)
660 struct vm_area_struct *vma = range->vma;
661 struct hmm_vma_walk hmm_vma_walk;
662 struct mm_walk mm_walk;
663 struct hmm *hmm;
665 /* Sanity check, this really should not happen ! */
666 if (range->start < vma->vm_start || range->start >= vma->vm_end)
667 return -EINVAL;
668 if (range->end < vma->vm_start || range->end > vma->vm_end)
669 return -EINVAL;
671 hmm = hmm_register(vma->vm_mm);
672 if (!hmm)
673 return -ENOMEM;
674 /* Caller must have registered a mirror, via hmm_mirror_register() ! */
675 if (!hmm->mmu_notifier.ops)
676 return -EINVAL;
678 /* FIXME support hugetlb fs */
679 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
680 hmm_pfns_special(range);
681 return -EINVAL;
684 if (!(vma->vm_flags & VM_READ)) {
686 * If vma do not allow read access, then assume that it does
687 * not allow write access, either. Architecture that allow
688 * write without read access are not supported by HMM, because
689 * operations such has atomic access would not work.
691 hmm_pfns_clear(range, range->pfns, range->start, range->end);
692 return -EPERM;
695 /* Initialize range to track CPU page table update */
696 spin_lock(&hmm->lock);
697 range->valid = true;
698 list_add_rcu(&range->list, &hmm->ranges);
699 spin_unlock(&hmm->lock);
701 hmm_vma_walk.fault = false;
702 hmm_vma_walk.range = range;
703 mm_walk.private = &hmm_vma_walk;
705 mm_walk.vma = vma;
706 mm_walk.mm = vma->vm_mm;
707 mm_walk.pte_entry = NULL;
708 mm_walk.test_walk = NULL;
709 mm_walk.hugetlb_entry = NULL;
710 mm_walk.pmd_entry = hmm_vma_walk_pmd;
711 mm_walk.pte_hole = hmm_vma_walk_hole;
713 walk_page_range(range->start, range->end, &mm_walk);
714 return 0;
716 EXPORT_SYMBOL(hmm_vma_get_pfns);
719 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
720 * @range: range being tracked
721 * Returns: false if range data has been invalidated, true otherwise
723 * Range struct is used to track updates to the CPU page table after a call to
724 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
725 * using the data, or wants to lock updates to the data it got from those
726 * functions, it must call the hmm_vma_range_done() function, which will then
727 * stop tracking CPU page table updates.
729 * Note that device driver must still implement general CPU page table update
730 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
731 * the mmu_notifier API directly.
733 * CPU page table update tracking done through hmm_range is only temporary and
734 * to be used while trying to duplicate CPU page table contents for a range of
735 * virtual addresses.
737 * There are two ways to use this :
738 * again:
739 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
740 * trans = device_build_page_table_update_transaction(pfns);
741 * device_page_table_lock();
742 * if (!hmm_vma_range_done(range)) {
743 * device_page_table_unlock();
744 * goto again;
746 * device_commit_transaction(trans);
747 * device_page_table_unlock();
749 * Or:
750 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
751 * device_page_table_lock();
752 * hmm_vma_range_done(range);
753 * device_update_page_table(range->pfns);
754 * device_page_table_unlock();
756 bool hmm_vma_range_done(struct hmm_range *range)
758 unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
759 struct hmm *hmm;
761 if (range->end <= range->start) {
762 BUG();
763 return false;
766 hmm = hmm_register(range->vma->vm_mm);
767 if (!hmm) {
768 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
769 return false;
772 spin_lock(&hmm->lock);
773 list_del_rcu(&range->list);
774 spin_unlock(&hmm->lock);
776 return range->valid;
778 EXPORT_SYMBOL(hmm_vma_range_done);
781 * hmm_vma_fault() - try to fault some address in a virtual address range
782 * @range: range being faulted
783 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
784 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
786 * This is similar to a regular CPU page fault except that it will not trigger
787 * any memory migration if the memory being faulted is not accessible by CPUs.
789 * On error, for one virtual address in the range, the function will mark the
790 * corresponding HMM pfn entry with an error flag.
792 * Expected use pattern:
793 * retry:
794 * down_read(&mm->mmap_sem);
795 * // Find vma and address device wants to fault, initialize hmm_pfn_t
796 * // array accordingly
797 * ret = hmm_vma_fault(range, write, block);
798 * switch (ret) {
799 * case -EAGAIN:
800 * hmm_vma_range_done(range);
801 * // You might want to rate limit or yield to play nicely, you may
802 * // also commit any valid pfn in the array assuming that you are
803 * // getting true from hmm_vma_range_monitor_end()
804 * goto retry;
805 * case 0:
806 * break;
807 * case -ENOMEM:
808 * case -EINVAL:
809 * case -EPERM:
810 * default:
811 * // Handle error !
812 * up_read(&mm->mmap_sem)
813 * return;
815 * // Take device driver lock that serialize device page table update
816 * driver_lock_device_page_table_update();
817 * hmm_vma_range_done(range);
818 * // Commit pfns we got from hmm_vma_fault()
819 * driver_unlock_device_page_table_update();
820 * up_read(&mm->mmap_sem)
822 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
823 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
825 * YOU HAVE BEEN WARNED !
827 int hmm_vma_fault(struct hmm_range *range, bool block)
829 struct vm_area_struct *vma = range->vma;
830 unsigned long start = range->start;
831 struct hmm_vma_walk hmm_vma_walk;
832 struct mm_walk mm_walk;
833 struct hmm *hmm;
834 int ret;
836 /* Sanity check, this really should not happen ! */
837 if (range->start < vma->vm_start || range->start >= vma->vm_end)
838 return -EINVAL;
839 if (range->end < vma->vm_start || range->end > vma->vm_end)
840 return -EINVAL;
842 hmm = hmm_register(vma->vm_mm);
843 if (!hmm) {
844 hmm_pfns_clear(range, range->pfns, range->start, range->end);
845 return -ENOMEM;
847 /* Caller must have registered a mirror using hmm_mirror_register() */
848 if (!hmm->mmu_notifier.ops)
849 return -EINVAL;
851 /* FIXME support hugetlb fs */
852 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
853 hmm_pfns_special(range);
854 return -EINVAL;
857 if (!(vma->vm_flags & VM_READ)) {
859 * If vma do not allow read access, then assume that it does
860 * not allow write access, either. Architecture that allow
861 * write without read access are not supported by HMM, because
862 * operations such has atomic access would not work.
864 hmm_pfns_clear(range, range->pfns, range->start, range->end);
865 return -EPERM;
868 /* Initialize range to track CPU page table update */
869 spin_lock(&hmm->lock);
870 range->valid = true;
871 list_add_rcu(&range->list, &hmm->ranges);
872 spin_unlock(&hmm->lock);
874 hmm_vma_walk.fault = true;
875 hmm_vma_walk.block = block;
876 hmm_vma_walk.range = range;
877 mm_walk.private = &hmm_vma_walk;
878 hmm_vma_walk.last = range->start;
880 mm_walk.vma = vma;
881 mm_walk.mm = vma->vm_mm;
882 mm_walk.pte_entry = NULL;
883 mm_walk.test_walk = NULL;
884 mm_walk.hugetlb_entry = NULL;
885 mm_walk.pmd_entry = hmm_vma_walk_pmd;
886 mm_walk.pte_hole = hmm_vma_walk_hole;
888 do {
889 ret = walk_page_range(start, range->end, &mm_walk);
890 start = hmm_vma_walk.last;
891 } while (ret == -EAGAIN);
893 if (ret) {
894 unsigned long i;
896 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
897 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
898 range->end);
899 hmm_vma_range_done(range);
901 return ret;
903 EXPORT_SYMBOL(hmm_vma_fault);
904 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
907 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
908 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
909 unsigned long addr)
911 struct page *page;
913 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
914 if (!page)
915 return NULL;
916 lock_page(page);
917 return page;
919 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
922 static void hmm_devmem_ref_release(struct percpu_ref *ref)
924 struct hmm_devmem *devmem;
926 devmem = container_of(ref, struct hmm_devmem, ref);
927 complete(&devmem->completion);
930 static void hmm_devmem_ref_exit(void *data)
932 struct percpu_ref *ref = data;
933 struct hmm_devmem *devmem;
935 devmem = container_of(ref, struct hmm_devmem, ref);
936 percpu_ref_exit(ref);
937 devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
940 static void hmm_devmem_ref_kill(void *data)
942 struct percpu_ref *ref = data;
943 struct hmm_devmem *devmem;
945 devmem = container_of(ref, struct hmm_devmem, ref);
946 percpu_ref_kill(ref);
947 wait_for_completion(&devmem->completion);
948 devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
951 static int hmm_devmem_fault(struct vm_area_struct *vma,
952 unsigned long addr,
953 const struct page *page,
954 unsigned int flags,
955 pmd_t *pmdp)
957 struct hmm_devmem *devmem = page->pgmap->data;
959 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
962 static void hmm_devmem_free(struct page *page, void *data)
964 struct hmm_devmem *devmem = data;
966 devmem->ops->free(devmem, page);
969 static DEFINE_MUTEX(hmm_devmem_lock);
970 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
972 static void hmm_devmem_radix_release(struct resource *resource)
974 resource_size_t key, align_start, align_size;
976 align_start = resource->start & ~(PA_SECTION_SIZE - 1);
977 align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
979 mutex_lock(&hmm_devmem_lock);
980 for (key = resource->start;
981 key <= resource->end;
982 key += PA_SECTION_SIZE)
983 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
984 mutex_unlock(&hmm_devmem_lock);
987 static void hmm_devmem_release(struct device *dev, void *data)
989 struct hmm_devmem *devmem = data;
990 struct resource *resource = devmem->resource;
991 unsigned long start_pfn, npages;
992 struct zone *zone;
993 struct page *page;
995 if (percpu_ref_tryget_live(&devmem->ref)) {
996 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
997 percpu_ref_put(&devmem->ref);
1000 /* pages are dead and unused, undo the arch mapping */
1001 start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1002 npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1004 page = pfn_to_page(start_pfn);
1005 zone = page_zone(page);
1007 mem_hotplug_begin();
1008 if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1009 __remove_pages(zone, start_pfn, npages, NULL);
1010 else
1011 arch_remove_memory(start_pfn << PAGE_SHIFT,
1012 npages << PAGE_SHIFT, NULL);
1013 mem_hotplug_done();
1015 hmm_devmem_radix_release(resource);
1018 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1020 resource_size_t key, align_start, align_size, align_end;
1021 struct device *device = devmem->device;
1022 int ret, nid, is_ram;
1023 unsigned long pfn;
1025 align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1026 align_size = ALIGN(devmem->resource->start +
1027 resource_size(devmem->resource),
1028 PA_SECTION_SIZE) - align_start;
1030 is_ram = region_intersects(align_start, align_size,
1031 IORESOURCE_SYSTEM_RAM,
1032 IORES_DESC_NONE);
1033 if (is_ram == REGION_MIXED) {
1034 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1035 __func__, devmem->resource);
1036 return -ENXIO;
1038 if (is_ram == REGION_INTERSECTS)
1039 return -ENXIO;
1041 if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1042 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1043 else
1044 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1046 devmem->pagemap.res = *devmem->resource;
1047 devmem->pagemap.page_fault = hmm_devmem_fault;
1048 devmem->pagemap.page_free = hmm_devmem_free;
1049 devmem->pagemap.dev = devmem->device;
1050 devmem->pagemap.ref = &devmem->ref;
1051 devmem->pagemap.data = devmem;
1053 mutex_lock(&hmm_devmem_lock);
1054 align_end = align_start + align_size - 1;
1055 for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1056 struct hmm_devmem *dup;
1058 dup = radix_tree_lookup(&hmm_devmem_radix,
1059 key >> PA_SECTION_SHIFT);
1060 if (dup) {
1061 dev_err(device, "%s: collides with mapping for %s\n",
1062 __func__, dev_name(dup->device));
1063 mutex_unlock(&hmm_devmem_lock);
1064 ret = -EBUSY;
1065 goto error;
1067 ret = radix_tree_insert(&hmm_devmem_radix,
1068 key >> PA_SECTION_SHIFT,
1069 devmem);
1070 if (ret) {
1071 dev_err(device, "%s: failed: %d\n", __func__, ret);
1072 mutex_unlock(&hmm_devmem_lock);
1073 goto error_radix;
1076 mutex_unlock(&hmm_devmem_lock);
1078 nid = dev_to_node(device);
1079 if (nid < 0)
1080 nid = numa_mem_id();
1082 mem_hotplug_begin();
1084 * For device private memory we call add_pages() as we only need to
1085 * allocate and initialize struct page for the device memory. More-
1086 * over the device memory is un-accessible thus we do not want to
1087 * create a linear mapping for the memory like arch_add_memory()
1088 * would do.
1090 * For device public memory, which is accesible by the CPU, we do
1091 * want the linear mapping and thus use arch_add_memory().
1093 if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1094 ret = arch_add_memory(nid, align_start, align_size, NULL,
1095 false);
1096 else
1097 ret = add_pages(nid, align_start >> PAGE_SHIFT,
1098 align_size >> PAGE_SHIFT, NULL, false);
1099 if (ret) {
1100 mem_hotplug_done();
1101 goto error_add_memory;
1103 move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1104 align_start >> PAGE_SHIFT,
1105 align_size >> PAGE_SHIFT, NULL);
1106 mem_hotplug_done();
1108 for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1109 struct page *page = pfn_to_page(pfn);
1111 page->pgmap = &devmem->pagemap;
1113 return 0;
1115 error_add_memory:
1116 untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1117 error_radix:
1118 hmm_devmem_radix_release(devmem->resource);
1119 error:
1120 return ret;
1123 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1125 struct hmm_devmem *devmem = data;
1127 return devmem->resource == match_data;
1130 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1132 devres_release(devmem->device, &hmm_devmem_release,
1133 &hmm_devmem_match, devmem->resource);
1137 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1139 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1140 * @device: device struct to bind the resource too
1141 * @size: size in bytes of the device memory to add
1142 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1144 * This function first finds an empty range of physical address big enough to
1145 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1146 * in turn allocates struct pages. It does not do anything beyond that; all
1147 * events affecting the memory will go through the various callbacks provided
1148 * by hmm_devmem_ops struct.
1150 * Device driver should call this function during device initialization and
1151 * is then responsible of memory management. HMM only provides helpers.
1153 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1154 struct device *device,
1155 unsigned long size)
1157 struct hmm_devmem *devmem;
1158 resource_size_t addr;
1159 int ret;
1161 dev_pagemap_get_ops();
1163 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1164 GFP_KERNEL, dev_to_node(device));
1165 if (!devmem)
1166 return ERR_PTR(-ENOMEM);
1168 init_completion(&devmem->completion);
1169 devmem->pfn_first = -1UL;
1170 devmem->pfn_last = -1UL;
1171 devmem->resource = NULL;
1172 devmem->device = device;
1173 devmem->ops = ops;
1175 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1176 0, GFP_KERNEL);
1177 if (ret)
1178 goto error_percpu_ref;
1180 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1181 if (ret)
1182 goto error_devm_add_action;
1184 size = ALIGN(size, PA_SECTION_SIZE);
1185 addr = min((unsigned long)iomem_resource.end,
1186 (1UL << MAX_PHYSMEM_BITS) - 1);
1187 addr = addr - size + 1UL;
1190 * FIXME add a new helper to quickly walk resource tree and find free
1191 * range
1193 * FIXME what about ioport_resource resource ?
1195 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1196 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1197 if (ret != REGION_DISJOINT)
1198 continue;
1200 devmem->resource = devm_request_mem_region(device, addr, size,
1201 dev_name(device));
1202 if (!devmem->resource) {
1203 ret = -ENOMEM;
1204 goto error_no_resource;
1206 break;
1208 if (!devmem->resource) {
1209 ret = -ERANGE;
1210 goto error_no_resource;
1213 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1214 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1215 devmem->pfn_last = devmem->pfn_first +
1216 (resource_size(devmem->resource) >> PAGE_SHIFT);
1218 ret = hmm_devmem_pages_create(devmem);
1219 if (ret)
1220 goto error_pages;
1222 devres_add(device, devmem);
1224 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1225 if (ret) {
1226 hmm_devmem_remove(devmem);
1227 return ERR_PTR(ret);
1230 return devmem;
1232 error_pages:
1233 devm_release_mem_region(device, devmem->resource->start,
1234 resource_size(devmem->resource));
1235 error_no_resource:
1236 error_devm_add_action:
1237 hmm_devmem_ref_kill(&devmem->ref);
1238 hmm_devmem_ref_exit(&devmem->ref);
1239 error_percpu_ref:
1240 devres_free(devmem);
1241 return ERR_PTR(ret);
1243 EXPORT_SYMBOL(hmm_devmem_add);
1245 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1246 struct device *device,
1247 struct resource *res)
1249 struct hmm_devmem *devmem;
1250 int ret;
1252 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1253 return ERR_PTR(-EINVAL);
1255 dev_pagemap_get_ops();
1257 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1258 GFP_KERNEL, dev_to_node(device));
1259 if (!devmem)
1260 return ERR_PTR(-ENOMEM);
1262 init_completion(&devmem->completion);
1263 devmem->pfn_first = -1UL;
1264 devmem->pfn_last = -1UL;
1265 devmem->resource = res;
1266 devmem->device = device;
1267 devmem->ops = ops;
1269 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1270 0, GFP_KERNEL);
1271 if (ret)
1272 goto error_percpu_ref;
1274 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1275 if (ret)
1276 goto error_devm_add_action;
1279 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1280 devmem->pfn_last = devmem->pfn_first +
1281 (resource_size(devmem->resource) >> PAGE_SHIFT);
1283 ret = hmm_devmem_pages_create(devmem);
1284 if (ret)
1285 goto error_devm_add_action;
1287 devres_add(device, devmem);
1289 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1290 if (ret) {
1291 hmm_devmem_remove(devmem);
1292 return ERR_PTR(ret);
1295 return devmem;
1297 error_devm_add_action:
1298 hmm_devmem_ref_kill(&devmem->ref);
1299 hmm_devmem_ref_exit(&devmem->ref);
1300 error_percpu_ref:
1301 devres_free(devmem);
1302 return ERR_PTR(ret);
1304 EXPORT_SYMBOL(hmm_devmem_add_resource);
1307 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1309 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1311 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1312 * of the device driver. It will free struct page and remove the resource that
1313 * reserved the physical address range for this device memory.
1315 void hmm_devmem_remove(struct hmm_devmem *devmem)
1317 resource_size_t start, size;
1318 struct device *device;
1319 bool cdm = false;
1321 if (!devmem)
1322 return;
1324 device = devmem->device;
1325 start = devmem->resource->start;
1326 size = resource_size(devmem->resource);
1328 cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1329 hmm_devmem_ref_kill(&devmem->ref);
1330 hmm_devmem_ref_exit(&devmem->ref);
1331 hmm_devmem_pages_remove(devmem);
1333 if (!cdm)
1334 devm_release_mem_region(device, start, size);
1336 EXPORT_SYMBOL(hmm_devmem_remove);
1339 * A device driver that wants to handle multiple devices memory through a
1340 * single fake device can use hmm_device to do so. This is purely a helper
1341 * and it is not needed to make use of any HMM functionality.
1343 #define HMM_DEVICE_MAX 256
1345 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1346 static DEFINE_SPINLOCK(hmm_device_lock);
1347 static struct class *hmm_device_class;
1348 static dev_t hmm_device_devt;
1350 static void hmm_device_release(struct device *device)
1352 struct hmm_device *hmm_device;
1354 hmm_device = container_of(device, struct hmm_device, device);
1355 spin_lock(&hmm_device_lock);
1356 clear_bit(hmm_device->minor, hmm_device_mask);
1357 spin_unlock(&hmm_device_lock);
1359 kfree(hmm_device);
1362 struct hmm_device *hmm_device_new(void *drvdata)
1364 struct hmm_device *hmm_device;
1366 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1367 if (!hmm_device)
1368 return ERR_PTR(-ENOMEM);
1370 spin_lock(&hmm_device_lock);
1371 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1372 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1373 spin_unlock(&hmm_device_lock);
1374 kfree(hmm_device);
1375 return ERR_PTR(-EBUSY);
1377 set_bit(hmm_device->minor, hmm_device_mask);
1378 spin_unlock(&hmm_device_lock);
1380 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1381 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1382 hmm_device->minor);
1383 hmm_device->device.release = hmm_device_release;
1384 dev_set_drvdata(&hmm_device->device, drvdata);
1385 hmm_device->device.class = hmm_device_class;
1386 device_initialize(&hmm_device->device);
1388 return hmm_device;
1390 EXPORT_SYMBOL(hmm_device_new);
1392 void hmm_device_put(struct hmm_device *hmm_device)
1394 put_device(&hmm_device->device);
1396 EXPORT_SYMBOL(hmm_device_put);
1398 static int __init hmm_init(void)
1400 int ret;
1402 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1403 HMM_DEVICE_MAX,
1404 "hmm_device");
1405 if (ret)
1406 return ret;
1408 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1409 if (IS_ERR(hmm_device_class)) {
1410 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1411 return PTR_ERR(hmm_device_class);
1413 return 0;
1416 device_initcall(hmm_init);
1417 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */