2 * Copyright 2013 Red Hat Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * Authors: Jérôme Glisse <jglisse@redhat.com>
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops
;
42 * struct hmm - HMM per mm struct
44 * @mm: mm struct this HMM struct is bound to
45 * @lock: lock protecting ranges list
46 * @sequence: we track updates to the CPU page table with a sequence number
47 * @ranges: list of range being snapshotted
48 * @mirrors: list of mirrors for this mm
49 * @mmu_notifier: mmu notifier to track updates to CPU page table
50 * @mirrors_sem: read/write semaphore protecting the mirrors list
56 struct list_head ranges
;
57 struct list_head mirrors
;
58 struct mmu_notifier mmu_notifier
;
59 struct rw_semaphore mirrors_sem
;
63 * hmm_register - register HMM against an mm (HMM internal)
65 * @mm: mm struct to attach to
67 * This is not intended to be used directly by device drivers. It allocates an
68 * HMM struct if mm does not have one, and initializes it.
70 static struct hmm
*hmm_register(struct mm_struct
*mm
)
72 struct hmm
*hmm
= READ_ONCE(mm
->hmm
);
76 * The hmm struct can only be freed once the mm_struct goes away,
77 * hence we should always have pre-allocated an new hmm struct
83 hmm
= kmalloc(sizeof(*hmm
), GFP_KERNEL
);
86 INIT_LIST_HEAD(&hmm
->mirrors
);
87 init_rwsem(&hmm
->mirrors_sem
);
88 atomic_set(&hmm
->sequence
, 0);
89 hmm
->mmu_notifier
.ops
= NULL
;
90 INIT_LIST_HEAD(&hmm
->ranges
);
91 spin_lock_init(&hmm
->lock
);
95 * We should only get here if hold the mmap_sem in write mode ie on
96 * registration of first mirror through hmm_mirror_register()
98 hmm
->mmu_notifier
.ops
= &hmm_mmu_notifier_ops
;
99 if (__mmu_notifier_register(&hmm
->mmu_notifier
, mm
)) {
104 spin_lock(&mm
->page_table_lock
);
109 spin_unlock(&mm
->page_table_lock
);
112 mmu_notifier_unregister(&hmm
->mmu_notifier
, mm
);
119 void hmm_mm_destroy(struct mm_struct
*mm
)
124 static void hmm_invalidate_range(struct hmm
*hmm
,
125 enum hmm_update_type action
,
129 struct hmm_mirror
*mirror
;
130 struct hmm_range
*range
;
132 spin_lock(&hmm
->lock
);
133 list_for_each_entry(range
, &hmm
->ranges
, list
) {
134 unsigned long addr
, idx
, npages
;
136 if (end
< range
->start
|| start
>= range
->end
)
139 range
->valid
= false;
140 addr
= max(start
, range
->start
);
141 idx
= (addr
- range
->start
) >> PAGE_SHIFT
;
142 npages
= (min(range
->end
, end
) - addr
) >> PAGE_SHIFT
;
143 memset(&range
->pfns
[idx
], 0, sizeof(*range
->pfns
) * npages
);
145 spin_unlock(&hmm
->lock
);
147 down_read(&hmm
->mirrors_sem
);
148 list_for_each_entry(mirror
, &hmm
->mirrors
, list
)
149 mirror
->ops
->sync_cpu_device_pagetables(mirror
, action
,
151 up_read(&hmm
->mirrors_sem
);
154 static void hmm_release(struct mmu_notifier
*mn
, struct mm_struct
*mm
)
156 struct hmm_mirror
*mirror
;
157 struct hmm
*hmm
= mm
->hmm
;
159 down_write(&hmm
->mirrors_sem
);
160 mirror
= list_first_entry_or_null(&hmm
->mirrors
, struct hmm_mirror
,
163 list_del_init(&mirror
->list
);
164 if (mirror
->ops
->release
) {
166 * Drop mirrors_sem so callback can wait on any pending
167 * work that might itself trigger mmu_notifier callback
168 * and thus would deadlock with us.
170 up_write(&hmm
->mirrors_sem
);
171 mirror
->ops
->release(mirror
);
172 down_write(&hmm
->mirrors_sem
);
174 mirror
= list_first_entry_or_null(&hmm
->mirrors
,
175 struct hmm_mirror
, list
);
177 up_write(&hmm
->mirrors_sem
);
180 static void hmm_invalidate_range_start(struct mmu_notifier
*mn
,
181 struct mm_struct
*mm
,
185 struct hmm
*hmm
= mm
->hmm
;
189 atomic_inc(&hmm
->sequence
);
192 static void hmm_invalidate_range_end(struct mmu_notifier
*mn
,
193 struct mm_struct
*mm
,
197 struct hmm
*hmm
= mm
->hmm
;
201 hmm_invalidate_range(mm
->hmm
, HMM_UPDATE_INVALIDATE
, start
, end
);
204 static const struct mmu_notifier_ops hmm_mmu_notifier_ops
= {
205 .release
= hmm_release
,
206 .invalidate_range_start
= hmm_invalidate_range_start
,
207 .invalidate_range_end
= hmm_invalidate_range_end
,
211 * hmm_mirror_register() - register a mirror against an mm
213 * @mirror: new mirror struct to register
214 * @mm: mm to register against
216 * To start mirroring a process address space, the device driver must register
217 * an HMM mirror struct.
219 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
221 int hmm_mirror_register(struct hmm_mirror
*mirror
, struct mm_struct
*mm
)
224 if (!mm
|| !mirror
|| !mirror
->ops
)
228 mirror
->hmm
= hmm_register(mm
);
232 down_write(&mirror
->hmm
->mirrors_sem
);
233 if (mirror
->hmm
->mm
== NULL
) {
235 * A racing hmm_mirror_unregister() is about to destroy the hmm
236 * struct. Try again to allocate a new one.
238 up_write(&mirror
->hmm
->mirrors_sem
);
242 list_add(&mirror
->list
, &mirror
->hmm
->mirrors
);
243 up_write(&mirror
->hmm
->mirrors_sem
);
248 EXPORT_SYMBOL(hmm_mirror_register
);
251 * hmm_mirror_unregister() - unregister a mirror
253 * @mirror: new mirror struct to register
255 * Stop mirroring a process address space, and cleanup.
257 void hmm_mirror_unregister(struct hmm_mirror
*mirror
)
259 bool should_unregister
= false;
260 struct mm_struct
*mm
;
263 if (mirror
->hmm
== NULL
)
267 down_write(&hmm
->mirrors_sem
);
268 list_del_init(&mirror
->list
);
269 should_unregister
= list_empty(&hmm
->mirrors
);
273 up_write(&hmm
->mirrors_sem
);
275 if (!should_unregister
|| mm
== NULL
)
278 spin_lock(&mm
->page_table_lock
);
281 spin_unlock(&mm
->page_table_lock
);
283 mmu_notifier_unregister_no_release(&hmm
->mmu_notifier
, mm
);
286 EXPORT_SYMBOL(hmm_mirror_unregister
);
288 struct hmm_vma_walk
{
289 struct hmm_range
*range
;
295 static int hmm_vma_do_fault(struct mm_walk
*walk
, unsigned long addr
,
296 bool write_fault
, uint64_t *pfn
)
298 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_REMOTE
;
299 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
300 struct hmm_range
*range
= hmm_vma_walk
->range
;
301 struct vm_area_struct
*vma
= walk
->vma
;
304 flags
|= hmm_vma_walk
->block
? 0 : FAULT_FLAG_ALLOW_RETRY
;
305 flags
|= write_fault
? FAULT_FLAG_WRITE
: 0;
306 r
= handle_mm_fault(vma
, addr
, flags
);
307 if (r
& VM_FAULT_RETRY
)
309 if (r
& VM_FAULT_ERROR
) {
310 *pfn
= range
->values
[HMM_PFN_ERROR
];
317 static int hmm_pfns_bad(unsigned long addr
,
319 struct mm_walk
*walk
)
321 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
322 struct hmm_range
*range
= hmm_vma_walk
->range
;
323 uint64_t *pfns
= range
->pfns
;
326 i
= (addr
- range
->start
) >> PAGE_SHIFT
;
327 for (; addr
< end
; addr
+= PAGE_SIZE
, i
++)
328 pfns
[i
] = range
->values
[HMM_PFN_ERROR
];
334 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
335 * @start: range virtual start address (inclusive)
336 * @end: range virtual end address (exclusive)
337 * @fault: should we fault or not ?
338 * @write_fault: write fault ?
339 * @walk: mm_walk structure
340 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
342 * This function will be called whenever pmd_none() or pte_none() returns true,
343 * or whenever there is no page directory covering the virtual address range.
345 static int hmm_vma_walk_hole_(unsigned long addr
, unsigned long end
,
346 bool fault
, bool write_fault
,
347 struct mm_walk
*walk
)
349 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
350 struct hmm_range
*range
= hmm_vma_walk
->range
;
351 uint64_t *pfns
= range
->pfns
;
354 hmm_vma_walk
->last
= addr
;
355 i
= (addr
- range
->start
) >> PAGE_SHIFT
;
356 for (; addr
< end
; addr
+= PAGE_SIZE
, i
++) {
357 pfns
[i
] = range
->values
[HMM_PFN_NONE
];
358 if (fault
|| write_fault
) {
361 ret
= hmm_vma_do_fault(walk
, addr
, write_fault
,
368 return (fault
|| write_fault
) ? -EAGAIN
: 0;
371 static inline void hmm_pte_need_fault(const struct hmm_vma_walk
*hmm_vma_walk
,
372 uint64_t pfns
, uint64_t cpu_flags
,
373 bool *fault
, bool *write_fault
)
375 struct hmm_range
*range
= hmm_vma_walk
->range
;
377 *fault
= *write_fault
= false;
378 if (!hmm_vma_walk
->fault
)
381 /* We aren't ask to do anything ... */
382 if (!(pfns
& range
->flags
[HMM_PFN_VALID
]))
384 /* If this is device memory than only fault if explicitly requested */
385 if ((cpu_flags
& range
->flags
[HMM_PFN_DEVICE_PRIVATE
])) {
386 /* Do we fault on device memory ? */
387 if (pfns
& range
->flags
[HMM_PFN_DEVICE_PRIVATE
]) {
388 *write_fault
= pfns
& range
->flags
[HMM_PFN_WRITE
];
394 /* If CPU page table is not valid then we need to fault */
395 *fault
= !(cpu_flags
& range
->flags
[HMM_PFN_VALID
]);
396 /* Need to write fault ? */
397 if ((pfns
& range
->flags
[HMM_PFN_WRITE
]) &&
398 !(cpu_flags
& range
->flags
[HMM_PFN_WRITE
])) {
404 static void hmm_range_need_fault(const struct hmm_vma_walk
*hmm_vma_walk
,
405 const uint64_t *pfns
, unsigned long npages
,
406 uint64_t cpu_flags
, bool *fault
,
411 if (!hmm_vma_walk
->fault
) {
412 *fault
= *write_fault
= false;
416 for (i
= 0; i
< npages
; ++i
) {
417 hmm_pte_need_fault(hmm_vma_walk
, pfns
[i
], cpu_flags
,
419 if ((*fault
) || (*write_fault
))
424 static int hmm_vma_walk_hole(unsigned long addr
, unsigned long end
,
425 struct mm_walk
*walk
)
427 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
428 struct hmm_range
*range
= hmm_vma_walk
->range
;
429 bool fault
, write_fault
;
430 unsigned long i
, npages
;
433 i
= (addr
- range
->start
) >> PAGE_SHIFT
;
434 npages
= (end
- addr
) >> PAGE_SHIFT
;
435 pfns
= &range
->pfns
[i
];
436 hmm_range_need_fault(hmm_vma_walk
, pfns
, npages
,
437 0, &fault
, &write_fault
);
438 return hmm_vma_walk_hole_(addr
, end
, fault
, write_fault
, walk
);
441 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range
*range
, pmd_t pmd
)
443 if (pmd_protnone(pmd
))
445 return pmd_write(pmd
) ? range
->flags
[HMM_PFN_VALID
] |
446 range
->flags
[HMM_PFN_WRITE
] :
447 range
->flags
[HMM_PFN_VALID
];
450 static int hmm_vma_handle_pmd(struct mm_walk
*walk
,
456 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
457 struct hmm_range
*range
= hmm_vma_walk
->range
;
458 unsigned long pfn
, npages
, i
;
459 bool fault
, write_fault
;
462 npages
= (end
- addr
) >> PAGE_SHIFT
;
463 cpu_flags
= pmd_to_hmm_pfn_flags(range
, pmd
);
464 hmm_range_need_fault(hmm_vma_walk
, pfns
, npages
, cpu_flags
,
465 &fault
, &write_fault
);
467 if (pmd_protnone(pmd
) || fault
|| write_fault
)
468 return hmm_vma_walk_hole_(addr
, end
, fault
, write_fault
, walk
);
470 pfn
= pmd_pfn(pmd
) + pte_index(addr
);
471 for (i
= 0; addr
< end
; addr
+= PAGE_SIZE
, i
++, pfn
++)
472 pfns
[i
] = hmm_pfn_from_pfn(range
, pfn
) | cpu_flags
;
473 hmm_vma_walk
->last
= end
;
477 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range
*range
, pte_t pte
)
479 if (pte_none(pte
) || !pte_present(pte
))
481 return pte_write(pte
) ? range
->flags
[HMM_PFN_VALID
] |
482 range
->flags
[HMM_PFN_WRITE
] :
483 range
->flags
[HMM_PFN_VALID
];
486 static int hmm_vma_handle_pte(struct mm_walk
*walk
, unsigned long addr
,
487 unsigned long end
, pmd_t
*pmdp
, pte_t
*ptep
,
490 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
491 struct hmm_range
*range
= hmm_vma_walk
->range
;
492 struct vm_area_struct
*vma
= walk
->vma
;
493 bool fault
, write_fault
;
496 uint64_t orig_pfn
= *pfn
;
498 *pfn
= range
->values
[HMM_PFN_NONE
];
499 cpu_flags
= pte_to_hmm_pfn_flags(range
, pte
);
500 hmm_pte_need_fault(hmm_vma_walk
, orig_pfn
, cpu_flags
,
501 &fault
, &write_fault
);
504 if (fault
|| write_fault
)
509 if (!pte_present(pte
)) {
510 swp_entry_t entry
= pte_to_swp_entry(pte
);
512 if (!non_swap_entry(entry
)) {
513 if (fault
|| write_fault
)
519 * This is a special swap entry, ignore migration, use
520 * device and report anything else as error.
522 if (is_device_private_entry(entry
)) {
523 cpu_flags
= range
->flags
[HMM_PFN_VALID
] |
524 range
->flags
[HMM_PFN_DEVICE_PRIVATE
];
525 cpu_flags
|= is_write_device_private_entry(entry
) ?
526 range
->flags
[HMM_PFN_WRITE
] : 0;
527 hmm_pte_need_fault(hmm_vma_walk
, orig_pfn
, cpu_flags
,
528 &fault
, &write_fault
);
529 if (fault
|| write_fault
)
531 *pfn
= hmm_pfn_from_pfn(range
, swp_offset(entry
));
536 if (is_migration_entry(entry
)) {
537 if (fault
|| write_fault
) {
539 hmm_vma_walk
->last
= addr
;
540 migration_entry_wait(vma
->vm_mm
,
547 /* Report error for everything else */
548 *pfn
= range
->values
[HMM_PFN_ERROR
];
552 if (fault
|| write_fault
)
555 *pfn
= hmm_pfn_from_pfn(range
, pte_pfn(pte
)) | cpu_flags
;
560 /* Fault any virtual address we were asked to fault */
561 return hmm_vma_walk_hole_(addr
, end
, fault
, write_fault
, walk
);
564 static int hmm_vma_walk_pmd(pmd_t
*pmdp
,
567 struct mm_walk
*walk
)
569 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
570 struct hmm_range
*range
= hmm_vma_walk
->range
;
571 uint64_t *pfns
= range
->pfns
;
572 unsigned long addr
= start
, i
;
575 i
= (addr
- range
->start
) >> PAGE_SHIFT
;
579 return hmm_vma_walk_hole(start
, end
, walk
);
581 if (pmd_huge(*pmdp
) && (range
->vma
->vm_flags
& VM_HUGETLB
))
582 return hmm_pfns_bad(start
, end
, walk
);
584 if (pmd_devmap(*pmdp
) || pmd_trans_huge(*pmdp
)) {
588 * No need to take pmd_lock here, even if some other threads
589 * is splitting the huge pmd we will get that event through
590 * mmu_notifier callback.
592 * So just read pmd value and check again its a transparent
593 * huge or device mapping one and compute corresponding pfn
596 pmd
= pmd_read_atomic(pmdp
);
598 if (!pmd_devmap(pmd
) && !pmd_trans_huge(pmd
))
601 return hmm_vma_handle_pmd(walk
, addr
, end
, &pfns
[i
], pmd
);
605 return hmm_pfns_bad(start
, end
, walk
);
607 ptep
= pte_offset_map(pmdp
, addr
);
608 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++, i
++) {
611 r
= hmm_vma_handle_pte(walk
, addr
, end
, pmdp
, ptep
, &pfns
[i
]);
613 /* hmm_vma_handle_pte() did unmap pte directory */
614 hmm_vma_walk
->last
= addr
;
620 hmm_vma_walk
->last
= addr
;
624 static void hmm_pfns_clear(struct hmm_range
*range
,
629 for (; addr
< end
; addr
+= PAGE_SIZE
, pfns
++)
630 *pfns
= range
->values
[HMM_PFN_NONE
];
633 static void hmm_pfns_special(struct hmm_range
*range
)
635 unsigned long addr
= range
->start
, i
= 0;
637 for (; addr
< range
->end
; addr
+= PAGE_SIZE
, i
++)
638 range
->pfns
[i
] = range
->values
[HMM_PFN_SPECIAL
];
642 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
643 * @range: range being snapshotted
644 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
645 * vma permission, 0 success
647 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
648 * validity is tracked by range struct. See hmm_vma_range_done() for further
651 * The range struct is initialized here. It tracks the CPU page table, but only
652 * if the function returns success (0), in which case the caller must then call
653 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
655 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
656 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
658 int hmm_vma_get_pfns(struct hmm_range
*range
)
660 struct vm_area_struct
*vma
= range
->vma
;
661 struct hmm_vma_walk hmm_vma_walk
;
662 struct mm_walk mm_walk
;
665 /* Sanity check, this really should not happen ! */
666 if (range
->start
< vma
->vm_start
|| range
->start
>= vma
->vm_end
)
668 if (range
->end
< vma
->vm_start
|| range
->end
> vma
->vm_end
)
671 hmm
= hmm_register(vma
->vm_mm
);
674 /* Caller must have registered a mirror, via hmm_mirror_register() ! */
675 if (!hmm
->mmu_notifier
.ops
)
678 /* FIXME support hugetlb fs */
679 if (is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
)) {
680 hmm_pfns_special(range
);
684 if (!(vma
->vm_flags
& VM_READ
)) {
686 * If vma do not allow read access, then assume that it does
687 * not allow write access, either. Architecture that allow
688 * write without read access are not supported by HMM, because
689 * operations such has atomic access would not work.
691 hmm_pfns_clear(range
, range
->pfns
, range
->start
, range
->end
);
695 /* Initialize range to track CPU page table update */
696 spin_lock(&hmm
->lock
);
698 list_add_rcu(&range
->list
, &hmm
->ranges
);
699 spin_unlock(&hmm
->lock
);
701 hmm_vma_walk
.fault
= false;
702 hmm_vma_walk
.range
= range
;
703 mm_walk
.private = &hmm_vma_walk
;
706 mm_walk
.mm
= vma
->vm_mm
;
707 mm_walk
.pte_entry
= NULL
;
708 mm_walk
.test_walk
= NULL
;
709 mm_walk
.hugetlb_entry
= NULL
;
710 mm_walk
.pmd_entry
= hmm_vma_walk_pmd
;
711 mm_walk
.pte_hole
= hmm_vma_walk_hole
;
713 walk_page_range(range
->start
, range
->end
, &mm_walk
);
716 EXPORT_SYMBOL(hmm_vma_get_pfns
);
719 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
720 * @range: range being tracked
721 * Returns: false if range data has been invalidated, true otherwise
723 * Range struct is used to track updates to the CPU page table after a call to
724 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
725 * using the data, or wants to lock updates to the data it got from those
726 * functions, it must call the hmm_vma_range_done() function, which will then
727 * stop tracking CPU page table updates.
729 * Note that device driver must still implement general CPU page table update
730 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
731 * the mmu_notifier API directly.
733 * CPU page table update tracking done through hmm_range is only temporary and
734 * to be used while trying to duplicate CPU page table contents for a range of
737 * There are two ways to use this :
739 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
740 * trans = device_build_page_table_update_transaction(pfns);
741 * device_page_table_lock();
742 * if (!hmm_vma_range_done(range)) {
743 * device_page_table_unlock();
746 * device_commit_transaction(trans);
747 * device_page_table_unlock();
750 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
751 * device_page_table_lock();
752 * hmm_vma_range_done(range);
753 * device_update_page_table(range->pfns);
754 * device_page_table_unlock();
756 bool hmm_vma_range_done(struct hmm_range
*range
)
758 unsigned long npages
= (range
->end
- range
->start
) >> PAGE_SHIFT
;
761 if (range
->end
<= range
->start
) {
766 hmm
= hmm_register(range
->vma
->vm_mm
);
768 memset(range
->pfns
, 0, sizeof(*range
->pfns
) * npages
);
772 spin_lock(&hmm
->lock
);
773 list_del_rcu(&range
->list
);
774 spin_unlock(&hmm
->lock
);
778 EXPORT_SYMBOL(hmm_vma_range_done
);
781 * hmm_vma_fault() - try to fault some address in a virtual address range
782 * @range: range being faulted
783 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
784 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
786 * This is similar to a regular CPU page fault except that it will not trigger
787 * any memory migration if the memory being faulted is not accessible by CPUs.
789 * On error, for one virtual address in the range, the function will mark the
790 * corresponding HMM pfn entry with an error flag.
792 * Expected use pattern:
794 * down_read(&mm->mmap_sem);
795 * // Find vma and address device wants to fault, initialize hmm_pfn_t
796 * // array accordingly
797 * ret = hmm_vma_fault(range, write, block);
800 * hmm_vma_range_done(range);
801 * // You might want to rate limit or yield to play nicely, you may
802 * // also commit any valid pfn in the array assuming that you are
803 * // getting true from hmm_vma_range_monitor_end()
812 * up_read(&mm->mmap_sem)
815 * // Take device driver lock that serialize device page table update
816 * driver_lock_device_page_table_update();
817 * hmm_vma_range_done(range);
818 * // Commit pfns we got from hmm_vma_fault()
819 * driver_unlock_device_page_table_update();
820 * up_read(&mm->mmap_sem)
822 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
823 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
825 * YOU HAVE BEEN WARNED !
827 int hmm_vma_fault(struct hmm_range
*range
, bool block
)
829 struct vm_area_struct
*vma
= range
->vma
;
830 unsigned long start
= range
->start
;
831 struct hmm_vma_walk hmm_vma_walk
;
832 struct mm_walk mm_walk
;
836 /* Sanity check, this really should not happen ! */
837 if (range
->start
< vma
->vm_start
|| range
->start
>= vma
->vm_end
)
839 if (range
->end
< vma
->vm_start
|| range
->end
> vma
->vm_end
)
842 hmm
= hmm_register(vma
->vm_mm
);
844 hmm_pfns_clear(range
, range
->pfns
, range
->start
, range
->end
);
847 /* Caller must have registered a mirror using hmm_mirror_register() */
848 if (!hmm
->mmu_notifier
.ops
)
851 /* FIXME support hugetlb fs */
852 if (is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
)) {
853 hmm_pfns_special(range
);
857 if (!(vma
->vm_flags
& VM_READ
)) {
859 * If vma do not allow read access, then assume that it does
860 * not allow write access, either. Architecture that allow
861 * write without read access are not supported by HMM, because
862 * operations such has atomic access would not work.
864 hmm_pfns_clear(range
, range
->pfns
, range
->start
, range
->end
);
868 /* Initialize range to track CPU page table update */
869 spin_lock(&hmm
->lock
);
871 list_add_rcu(&range
->list
, &hmm
->ranges
);
872 spin_unlock(&hmm
->lock
);
874 hmm_vma_walk
.fault
= true;
875 hmm_vma_walk
.block
= block
;
876 hmm_vma_walk
.range
= range
;
877 mm_walk
.private = &hmm_vma_walk
;
878 hmm_vma_walk
.last
= range
->start
;
881 mm_walk
.mm
= vma
->vm_mm
;
882 mm_walk
.pte_entry
= NULL
;
883 mm_walk
.test_walk
= NULL
;
884 mm_walk
.hugetlb_entry
= NULL
;
885 mm_walk
.pmd_entry
= hmm_vma_walk_pmd
;
886 mm_walk
.pte_hole
= hmm_vma_walk_hole
;
889 ret
= walk_page_range(start
, range
->end
, &mm_walk
);
890 start
= hmm_vma_walk
.last
;
891 } while (ret
== -EAGAIN
);
896 i
= (hmm_vma_walk
.last
- range
->start
) >> PAGE_SHIFT
;
897 hmm_pfns_clear(range
, &range
->pfns
[i
], hmm_vma_walk
.last
,
899 hmm_vma_range_done(range
);
903 EXPORT_SYMBOL(hmm_vma_fault
);
904 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
907 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
908 struct page
*hmm_vma_alloc_locked_page(struct vm_area_struct
*vma
,
913 page
= alloc_page_vma(GFP_HIGHUSER
, vma
, addr
);
919 EXPORT_SYMBOL(hmm_vma_alloc_locked_page
);
922 static void hmm_devmem_ref_release(struct percpu_ref
*ref
)
924 struct hmm_devmem
*devmem
;
926 devmem
= container_of(ref
, struct hmm_devmem
, ref
);
927 complete(&devmem
->completion
);
930 static void hmm_devmem_ref_exit(void *data
)
932 struct percpu_ref
*ref
= data
;
933 struct hmm_devmem
*devmem
;
935 devmem
= container_of(ref
, struct hmm_devmem
, ref
);
936 percpu_ref_exit(ref
);
937 devm_remove_action(devmem
->device
, &hmm_devmem_ref_exit
, data
);
940 static void hmm_devmem_ref_kill(void *data
)
942 struct percpu_ref
*ref
= data
;
943 struct hmm_devmem
*devmem
;
945 devmem
= container_of(ref
, struct hmm_devmem
, ref
);
946 percpu_ref_kill(ref
);
947 wait_for_completion(&devmem
->completion
);
948 devm_remove_action(devmem
->device
, &hmm_devmem_ref_kill
, data
);
951 static int hmm_devmem_fault(struct vm_area_struct
*vma
,
953 const struct page
*page
,
957 struct hmm_devmem
*devmem
= page
->pgmap
->data
;
959 return devmem
->ops
->fault(devmem
, vma
, addr
, page
, flags
, pmdp
);
962 static void hmm_devmem_free(struct page
*page
, void *data
)
964 struct hmm_devmem
*devmem
= data
;
966 devmem
->ops
->free(devmem
, page
);
969 static DEFINE_MUTEX(hmm_devmem_lock
);
970 static RADIX_TREE(hmm_devmem_radix
, GFP_KERNEL
);
972 static void hmm_devmem_radix_release(struct resource
*resource
)
974 resource_size_t key
, align_start
, align_size
;
976 align_start
= resource
->start
& ~(PA_SECTION_SIZE
- 1);
977 align_size
= ALIGN(resource_size(resource
), PA_SECTION_SIZE
);
979 mutex_lock(&hmm_devmem_lock
);
980 for (key
= resource
->start
;
981 key
<= resource
->end
;
982 key
+= PA_SECTION_SIZE
)
983 radix_tree_delete(&hmm_devmem_radix
, key
>> PA_SECTION_SHIFT
);
984 mutex_unlock(&hmm_devmem_lock
);
987 static void hmm_devmem_release(struct device
*dev
, void *data
)
989 struct hmm_devmem
*devmem
= data
;
990 struct resource
*resource
= devmem
->resource
;
991 unsigned long start_pfn
, npages
;
995 if (percpu_ref_tryget_live(&devmem
->ref
)) {
996 dev_WARN(dev
, "%s: page mapping is still live!\n", __func__
);
997 percpu_ref_put(&devmem
->ref
);
1000 /* pages are dead and unused, undo the arch mapping */
1001 start_pfn
= (resource
->start
& ~(PA_SECTION_SIZE
- 1)) >> PAGE_SHIFT
;
1002 npages
= ALIGN(resource_size(resource
), PA_SECTION_SIZE
) >> PAGE_SHIFT
;
1004 page
= pfn_to_page(start_pfn
);
1005 zone
= page_zone(page
);
1007 mem_hotplug_begin();
1008 if (resource
->desc
== IORES_DESC_DEVICE_PRIVATE_MEMORY
)
1009 __remove_pages(zone
, start_pfn
, npages
, NULL
);
1011 arch_remove_memory(start_pfn
<< PAGE_SHIFT
,
1012 npages
<< PAGE_SHIFT
, NULL
);
1015 hmm_devmem_radix_release(resource
);
1018 static int hmm_devmem_pages_create(struct hmm_devmem
*devmem
)
1020 resource_size_t key
, align_start
, align_size
, align_end
;
1021 struct device
*device
= devmem
->device
;
1022 int ret
, nid
, is_ram
;
1025 align_start
= devmem
->resource
->start
& ~(PA_SECTION_SIZE
- 1);
1026 align_size
= ALIGN(devmem
->resource
->start
+
1027 resource_size(devmem
->resource
),
1028 PA_SECTION_SIZE
) - align_start
;
1030 is_ram
= region_intersects(align_start
, align_size
,
1031 IORESOURCE_SYSTEM_RAM
,
1033 if (is_ram
== REGION_MIXED
) {
1034 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1035 __func__
, devmem
->resource
);
1038 if (is_ram
== REGION_INTERSECTS
)
1041 if (devmem
->resource
->desc
== IORES_DESC_DEVICE_PUBLIC_MEMORY
)
1042 devmem
->pagemap
.type
= MEMORY_DEVICE_PUBLIC
;
1044 devmem
->pagemap
.type
= MEMORY_DEVICE_PRIVATE
;
1046 devmem
->pagemap
.res
= *devmem
->resource
;
1047 devmem
->pagemap
.page_fault
= hmm_devmem_fault
;
1048 devmem
->pagemap
.page_free
= hmm_devmem_free
;
1049 devmem
->pagemap
.dev
= devmem
->device
;
1050 devmem
->pagemap
.ref
= &devmem
->ref
;
1051 devmem
->pagemap
.data
= devmem
;
1053 mutex_lock(&hmm_devmem_lock
);
1054 align_end
= align_start
+ align_size
- 1;
1055 for (key
= align_start
; key
<= align_end
; key
+= PA_SECTION_SIZE
) {
1056 struct hmm_devmem
*dup
;
1058 dup
= radix_tree_lookup(&hmm_devmem_radix
,
1059 key
>> PA_SECTION_SHIFT
);
1061 dev_err(device
, "%s: collides with mapping for %s\n",
1062 __func__
, dev_name(dup
->device
));
1063 mutex_unlock(&hmm_devmem_lock
);
1067 ret
= radix_tree_insert(&hmm_devmem_radix
,
1068 key
>> PA_SECTION_SHIFT
,
1071 dev_err(device
, "%s: failed: %d\n", __func__
, ret
);
1072 mutex_unlock(&hmm_devmem_lock
);
1076 mutex_unlock(&hmm_devmem_lock
);
1078 nid
= dev_to_node(device
);
1080 nid
= numa_mem_id();
1082 mem_hotplug_begin();
1084 * For device private memory we call add_pages() as we only need to
1085 * allocate and initialize struct page for the device memory. More-
1086 * over the device memory is un-accessible thus we do not want to
1087 * create a linear mapping for the memory like arch_add_memory()
1090 * For device public memory, which is accesible by the CPU, we do
1091 * want the linear mapping and thus use arch_add_memory().
1093 if (devmem
->pagemap
.type
== MEMORY_DEVICE_PUBLIC
)
1094 ret
= arch_add_memory(nid
, align_start
, align_size
, NULL
,
1097 ret
= add_pages(nid
, align_start
>> PAGE_SHIFT
,
1098 align_size
>> PAGE_SHIFT
, NULL
, false);
1101 goto error_add_memory
;
1103 move_pfn_range_to_zone(&NODE_DATA(nid
)->node_zones
[ZONE_DEVICE
],
1104 align_start
>> PAGE_SHIFT
,
1105 align_size
>> PAGE_SHIFT
, NULL
);
1108 for (pfn
= devmem
->pfn_first
; pfn
< devmem
->pfn_last
; pfn
++) {
1109 struct page
*page
= pfn_to_page(pfn
);
1111 page
->pgmap
= &devmem
->pagemap
;
1116 untrack_pfn(NULL
, PHYS_PFN(align_start
), align_size
);
1118 hmm_devmem_radix_release(devmem
->resource
);
1123 static int hmm_devmem_match(struct device
*dev
, void *data
, void *match_data
)
1125 struct hmm_devmem
*devmem
= data
;
1127 return devmem
->resource
== match_data
;
1130 static void hmm_devmem_pages_remove(struct hmm_devmem
*devmem
)
1132 devres_release(devmem
->device
, &hmm_devmem_release
,
1133 &hmm_devmem_match
, devmem
->resource
);
1137 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1139 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1140 * @device: device struct to bind the resource too
1141 * @size: size in bytes of the device memory to add
1142 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1144 * This function first finds an empty range of physical address big enough to
1145 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1146 * in turn allocates struct pages. It does not do anything beyond that; all
1147 * events affecting the memory will go through the various callbacks provided
1148 * by hmm_devmem_ops struct.
1150 * Device driver should call this function during device initialization and
1151 * is then responsible of memory management. HMM only provides helpers.
1153 struct hmm_devmem
*hmm_devmem_add(const struct hmm_devmem_ops
*ops
,
1154 struct device
*device
,
1157 struct hmm_devmem
*devmem
;
1158 resource_size_t addr
;
1161 dev_pagemap_get_ops();
1163 devmem
= devres_alloc_node(&hmm_devmem_release
, sizeof(*devmem
),
1164 GFP_KERNEL
, dev_to_node(device
));
1166 return ERR_PTR(-ENOMEM
);
1168 init_completion(&devmem
->completion
);
1169 devmem
->pfn_first
= -1UL;
1170 devmem
->pfn_last
= -1UL;
1171 devmem
->resource
= NULL
;
1172 devmem
->device
= device
;
1175 ret
= percpu_ref_init(&devmem
->ref
, &hmm_devmem_ref_release
,
1178 goto error_percpu_ref
;
1180 ret
= devm_add_action(device
, hmm_devmem_ref_exit
, &devmem
->ref
);
1182 goto error_devm_add_action
;
1184 size
= ALIGN(size
, PA_SECTION_SIZE
);
1185 addr
= min((unsigned long)iomem_resource
.end
,
1186 (1UL << MAX_PHYSMEM_BITS
) - 1);
1187 addr
= addr
- size
+ 1UL;
1190 * FIXME add a new helper to quickly walk resource tree and find free
1193 * FIXME what about ioport_resource resource ?
1195 for (; addr
> size
&& addr
>= iomem_resource
.start
; addr
-= size
) {
1196 ret
= region_intersects(addr
, size
, 0, IORES_DESC_NONE
);
1197 if (ret
!= REGION_DISJOINT
)
1200 devmem
->resource
= devm_request_mem_region(device
, addr
, size
,
1202 if (!devmem
->resource
) {
1204 goto error_no_resource
;
1208 if (!devmem
->resource
) {
1210 goto error_no_resource
;
1213 devmem
->resource
->desc
= IORES_DESC_DEVICE_PRIVATE_MEMORY
;
1214 devmem
->pfn_first
= devmem
->resource
->start
>> PAGE_SHIFT
;
1215 devmem
->pfn_last
= devmem
->pfn_first
+
1216 (resource_size(devmem
->resource
) >> PAGE_SHIFT
);
1218 ret
= hmm_devmem_pages_create(devmem
);
1222 devres_add(device
, devmem
);
1224 ret
= devm_add_action(device
, hmm_devmem_ref_kill
, &devmem
->ref
);
1226 hmm_devmem_remove(devmem
);
1227 return ERR_PTR(ret
);
1233 devm_release_mem_region(device
, devmem
->resource
->start
,
1234 resource_size(devmem
->resource
));
1236 error_devm_add_action
:
1237 hmm_devmem_ref_kill(&devmem
->ref
);
1238 hmm_devmem_ref_exit(&devmem
->ref
);
1240 devres_free(devmem
);
1241 return ERR_PTR(ret
);
1243 EXPORT_SYMBOL(hmm_devmem_add
);
1245 struct hmm_devmem
*hmm_devmem_add_resource(const struct hmm_devmem_ops
*ops
,
1246 struct device
*device
,
1247 struct resource
*res
)
1249 struct hmm_devmem
*devmem
;
1252 if (res
->desc
!= IORES_DESC_DEVICE_PUBLIC_MEMORY
)
1253 return ERR_PTR(-EINVAL
);
1255 dev_pagemap_get_ops();
1257 devmem
= devres_alloc_node(&hmm_devmem_release
, sizeof(*devmem
),
1258 GFP_KERNEL
, dev_to_node(device
));
1260 return ERR_PTR(-ENOMEM
);
1262 init_completion(&devmem
->completion
);
1263 devmem
->pfn_first
= -1UL;
1264 devmem
->pfn_last
= -1UL;
1265 devmem
->resource
= res
;
1266 devmem
->device
= device
;
1269 ret
= percpu_ref_init(&devmem
->ref
, &hmm_devmem_ref_release
,
1272 goto error_percpu_ref
;
1274 ret
= devm_add_action(device
, hmm_devmem_ref_exit
, &devmem
->ref
);
1276 goto error_devm_add_action
;
1279 devmem
->pfn_first
= devmem
->resource
->start
>> PAGE_SHIFT
;
1280 devmem
->pfn_last
= devmem
->pfn_first
+
1281 (resource_size(devmem
->resource
) >> PAGE_SHIFT
);
1283 ret
= hmm_devmem_pages_create(devmem
);
1285 goto error_devm_add_action
;
1287 devres_add(device
, devmem
);
1289 ret
= devm_add_action(device
, hmm_devmem_ref_kill
, &devmem
->ref
);
1291 hmm_devmem_remove(devmem
);
1292 return ERR_PTR(ret
);
1297 error_devm_add_action
:
1298 hmm_devmem_ref_kill(&devmem
->ref
);
1299 hmm_devmem_ref_exit(&devmem
->ref
);
1301 devres_free(devmem
);
1302 return ERR_PTR(ret
);
1304 EXPORT_SYMBOL(hmm_devmem_add_resource
);
1307 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1309 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1311 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1312 * of the device driver. It will free struct page and remove the resource that
1313 * reserved the physical address range for this device memory.
1315 void hmm_devmem_remove(struct hmm_devmem
*devmem
)
1317 resource_size_t start
, size
;
1318 struct device
*device
;
1324 device
= devmem
->device
;
1325 start
= devmem
->resource
->start
;
1326 size
= resource_size(devmem
->resource
);
1328 cdm
= devmem
->resource
->desc
== IORES_DESC_DEVICE_PUBLIC_MEMORY
;
1329 hmm_devmem_ref_kill(&devmem
->ref
);
1330 hmm_devmem_ref_exit(&devmem
->ref
);
1331 hmm_devmem_pages_remove(devmem
);
1334 devm_release_mem_region(device
, start
, size
);
1336 EXPORT_SYMBOL(hmm_devmem_remove
);
1339 * A device driver that wants to handle multiple devices memory through a
1340 * single fake device can use hmm_device to do so. This is purely a helper
1341 * and it is not needed to make use of any HMM functionality.
1343 #define HMM_DEVICE_MAX 256
1345 static DECLARE_BITMAP(hmm_device_mask
, HMM_DEVICE_MAX
);
1346 static DEFINE_SPINLOCK(hmm_device_lock
);
1347 static struct class *hmm_device_class
;
1348 static dev_t hmm_device_devt
;
1350 static void hmm_device_release(struct device
*device
)
1352 struct hmm_device
*hmm_device
;
1354 hmm_device
= container_of(device
, struct hmm_device
, device
);
1355 spin_lock(&hmm_device_lock
);
1356 clear_bit(hmm_device
->minor
, hmm_device_mask
);
1357 spin_unlock(&hmm_device_lock
);
1362 struct hmm_device
*hmm_device_new(void *drvdata
)
1364 struct hmm_device
*hmm_device
;
1366 hmm_device
= kzalloc(sizeof(*hmm_device
), GFP_KERNEL
);
1368 return ERR_PTR(-ENOMEM
);
1370 spin_lock(&hmm_device_lock
);
1371 hmm_device
->minor
= find_first_zero_bit(hmm_device_mask
, HMM_DEVICE_MAX
);
1372 if (hmm_device
->minor
>= HMM_DEVICE_MAX
) {
1373 spin_unlock(&hmm_device_lock
);
1375 return ERR_PTR(-EBUSY
);
1377 set_bit(hmm_device
->minor
, hmm_device_mask
);
1378 spin_unlock(&hmm_device_lock
);
1380 dev_set_name(&hmm_device
->device
, "hmm_device%d", hmm_device
->minor
);
1381 hmm_device
->device
.devt
= MKDEV(MAJOR(hmm_device_devt
),
1383 hmm_device
->device
.release
= hmm_device_release
;
1384 dev_set_drvdata(&hmm_device
->device
, drvdata
);
1385 hmm_device
->device
.class = hmm_device_class
;
1386 device_initialize(&hmm_device
->device
);
1390 EXPORT_SYMBOL(hmm_device_new
);
1392 void hmm_device_put(struct hmm_device
*hmm_device
)
1394 put_device(&hmm_device
->device
);
1396 EXPORT_SYMBOL(hmm_device_put
);
1398 static int __init
hmm_init(void)
1402 ret
= alloc_chrdev_region(&hmm_device_devt
, 0,
1408 hmm_device_class
= class_create(THIS_MODULE
, "hmm_device");
1409 if (IS_ERR(hmm_device_class
)) {
1410 unregister_chrdev_region(hmm_device_devt
, HMM_DEVICE_MAX
);
1411 return PTR_ERR(hmm_device_class
);
1416 device_initcall(hmm_init
);
1417 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */