2 * Copyright 2013 Red Hat Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * Authors: Jérôme Glisse <jglisse@redhat.com>
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops
;
42 * struct hmm - HMM per mm struct
44 * @mm: mm struct this HMM struct is bound to
45 * @lock: lock protecting ranges list
46 * @sequence: we track updates to the CPU page table with a sequence number
47 * @ranges: list of range being snapshotted
48 * @mirrors: list of mirrors for this mm
49 * @mmu_notifier: mmu notifier to track updates to CPU page table
50 * @mirrors_sem: read/write semaphore protecting the mirrors list
56 struct list_head ranges
;
57 struct list_head mirrors
;
58 struct mmu_notifier mmu_notifier
;
59 struct rw_semaphore mirrors_sem
;
63 * hmm_register - register HMM against an mm (HMM internal)
65 * @mm: mm struct to attach to
67 * This is not intended to be used directly by device drivers. It allocates an
68 * HMM struct if mm does not have one, and initializes it.
70 static struct hmm
*hmm_register(struct mm_struct
*mm
)
72 struct hmm
*hmm
= READ_ONCE(mm
->hmm
);
76 * The hmm struct can only be freed once the mm_struct goes away,
77 * hence we should always have pre-allocated an new hmm struct
83 hmm
= kmalloc(sizeof(*hmm
), GFP_KERNEL
);
86 INIT_LIST_HEAD(&hmm
->mirrors
);
87 init_rwsem(&hmm
->mirrors_sem
);
88 atomic_set(&hmm
->sequence
, 0);
89 hmm
->mmu_notifier
.ops
= NULL
;
90 INIT_LIST_HEAD(&hmm
->ranges
);
91 spin_lock_init(&hmm
->lock
);
95 * We should only get here if hold the mmap_sem in write mode ie on
96 * registration of first mirror through hmm_mirror_register()
98 hmm
->mmu_notifier
.ops
= &hmm_mmu_notifier_ops
;
99 if (__mmu_notifier_register(&hmm
->mmu_notifier
, mm
)) {
104 spin_lock(&mm
->page_table_lock
);
109 spin_unlock(&mm
->page_table_lock
);
112 mmu_notifier_unregister(&hmm
->mmu_notifier
, mm
);
119 void hmm_mm_destroy(struct mm_struct
*mm
)
124 static void hmm_invalidate_range(struct hmm
*hmm
,
125 enum hmm_update_type action
,
129 struct hmm_mirror
*mirror
;
130 struct hmm_range
*range
;
132 spin_lock(&hmm
->lock
);
133 list_for_each_entry(range
, &hmm
->ranges
, list
) {
134 unsigned long addr
, idx
, npages
;
136 if (end
< range
->start
|| start
>= range
->end
)
139 range
->valid
= false;
140 addr
= max(start
, range
->start
);
141 idx
= (addr
- range
->start
) >> PAGE_SHIFT
;
142 npages
= (min(range
->end
, end
) - addr
) >> PAGE_SHIFT
;
143 memset(&range
->pfns
[idx
], 0, sizeof(*range
->pfns
) * npages
);
145 spin_unlock(&hmm
->lock
);
147 down_read(&hmm
->mirrors_sem
);
148 list_for_each_entry(mirror
, &hmm
->mirrors
, list
)
149 mirror
->ops
->sync_cpu_device_pagetables(mirror
, action
,
151 up_read(&hmm
->mirrors_sem
);
154 static void hmm_release(struct mmu_notifier
*mn
, struct mm_struct
*mm
)
156 struct hmm_mirror
*mirror
;
157 struct hmm
*hmm
= mm
->hmm
;
159 down_write(&hmm
->mirrors_sem
);
160 mirror
= list_first_entry_or_null(&hmm
->mirrors
, struct hmm_mirror
,
163 list_del_init(&mirror
->list
);
164 if (mirror
->ops
->release
) {
166 * Drop mirrors_sem so callback can wait on any pending
167 * work that might itself trigger mmu_notifier callback
168 * and thus would deadlock with us.
170 up_write(&hmm
->mirrors_sem
);
171 mirror
->ops
->release(mirror
);
172 down_write(&hmm
->mirrors_sem
);
174 mirror
= list_first_entry_or_null(&hmm
->mirrors
,
175 struct hmm_mirror
, list
);
177 up_write(&hmm
->mirrors_sem
);
180 static int hmm_invalidate_range_start(struct mmu_notifier
*mn
,
181 struct mm_struct
*mm
,
186 struct hmm
*hmm
= mm
->hmm
;
190 atomic_inc(&hmm
->sequence
);
195 static void hmm_invalidate_range_end(struct mmu_notifier
*mn
,
196 struct mm_struct
*mm
,
200 struct hmm
*hmm
= mm
->hmm
;
204 hmm_invalidate_range(mm
->hmm
, HMM_UPDATE_INVALIDATE
, start
, end
);
207 static const struct mmu_notifier_ops hmm_mmu_notifier_ops
= {
208 .release
= hmm_release
,
209 .invalidate_range_start
= hmm_invalidate_range_start
,
210 .invalidate_range_end
= hmm_invalidate_range_end
,
214 * hmm_mirror_register() - register a mirror against an mm
216 * @mirror: new mirror struct to register
217 * @mm: mm to register against
219 * To start mirroring a process address space, the device driver must register
220 * an HMM mirror struct.
222 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
224 int hmm_mirror_register(struct hmm_mirror
*mirror
, struct mm_struct
*mm
)
227 if (!mm
|| !mirror
|| !mirror
->ops
)
231 mirror
->hmm
= hmm_register(mm
);
235 down_write(&mirror
->hmm
->mirrors_sem
);
236 if (mirror
->hmm
->mm
== NULL
) {
238 * A racing hmm_mirror_unregister() is about to destroy the hmm
239 * struct. Try again to allocate a new one.
241 up_write(&mirror
->hmm
->mirrors_sem
);
245 list_add(&mirror
->list
, &mirror
->hmm
->mirrors
);
246 up_write(&mirror
->hmm
->mirrors_sem
);
251 EXPORT_SYMBOL(hmm_mirror_register
);
254 * hmm_mirror_unregister() - unregister a mirror
256 * @mirror: new mirror struct to register
258 * Stop mirroring a process address space, and cleanup.
260 void hmm_mirror_unregister(struct hmm_mirror
*mirror
)
262 bool should_unregister
= false;
263 struct mm_struct
*mm
;
266 if (mirror
->hmm
== NULL
)
270 down_write(&hmm
->mirrors_sem
);
271 list_del_init(&mirror
->list
);
272 should_unregister
= list_empty(&hmm
->mirrors
);
276 up_write(&hmm
->mirrors_sem
);
278 if (!should_unregister
|| mm
== NULL
)
281 spin_lock(&mm
->page_table_lock
);
284 spin_unlock(&mm
->page_table_lock
);
286 mmu_notifier_unregister_no_release(&hmm
->mmu_notifier
, mm
);
289 EXPORT_SYMBOL(hmm_mirror_unregister
);
291 struct hmm_vma_walk
{
292 struct hmm_range
*range
;
298 static int hmm_vma_do_fault(struct mm_walk
*walk
, unsigned long addr
,
299 bool write_fault
, uint64_t *pfn
)
301 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_REMOTE
;
302 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
303 struct hmm_range
*range
= hmm_vma_walk
->range
;
304 struct vm_area_struct
*vma
= walk
->vma
;
307 flags
|= hmm_vma_walk
->block
? 0 : FAULT_FLAG_ALLOW_RETRY
;
308 flags
|= write_fault
? FAULT_FLAG_WRITE
: 0;
309 ret
= handle_mm_fault(vma
, addr
, flags
);
310 if (ret
& VM_FAULT_RETRY
)
312 if (ret
& VM_FAULT_ERROR
) {
313 *pfn
= range
->values
[HMM_PFN_ERROR
];
320 static int hmm_pfns_bad(unsigned long addr
,
322 struct mm_walk
*walk
)
324 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
325 struct hmm_range
*range
= hmm_vma_walk
->range
;
326 uint64_t *pfns
= range
->pfns
;
329 i
= (addr
- range
->start
) >> PAGE_SHIFT
;
330 for (; addr
< end
; addr
+= PAGE_SIZE
, i
++)
331 pfns
[i
] = range
->values
[HMM_PFN_ERROR
];
337 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
338 * @start: range virtual start address (inclusive)
339 * @end: range virtual end address (exclusive)
340 * @fault: should we fault or not ?
341 * @write_fault: write fault ?
342 * @walk: mm_walk structure
343 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
345 * This function will be called whenever pmd_none() or pte_none() returns true,
346 * or whenever there is no page directory covering the virtual address range.
348 static int hmm_vma_walk_hole_(unsigned long addr
, unsigned long end
,
349 bool fault
, bool write_fault
,
350 struct mm_walk
*walk
)
352 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
353 struct hmm_range
*range
= hmm_vma_walk
->range
;
354 uint64_t *pfns
= range
->pfns
;
357 hmm_vma_walk
->last
= addr
;
358 i
= (addr
- range
->start
) >> PAGE_SHIFT
;
359 for (; addr
< end
; addr
+= PAGE_SIZE
, i
++) {
360 pfns
[i
] = range
->values
[HMM_PFN_NONE
];
361 if (fault
|| write_fault
) {
364 ret
= hmm_vma_do_fault(walk
, addr
, write_fault
,
371 return (fault
|| write_fault
) ? -EAGAIN
: 0;
374 static inline void hmm_pte_need_fault(const struct hmm_vma_walk
*hmm_vma_walk
,
375 uint64_t pfns
, uint64_t cpu_flags
,
376 bool *fault
, bool *write_fault
)
378 struct hmm_range
*range
= hmm_vma_walk
->range
;
380 *fault
= *write_fault
= false;
381 if (!hmm_vma_walk
->fault
)
384 /* We aren't ask to do anything ... */
385 if (!(pfns
& range
->flags
[HMM_PFN_VALID
]))
387 /* If this is device memory than only fault if explicitly requested */
388 if ((cpu_flags
& range
->flags
[HMM_PFN_DEVICE_PRIVATE
])) {
389 /* Do we fault on device memory ? */
390 if (pfns
& range
->flags
[HMM_PFN_DEVICE_PRIVATE
]) {
391 *write_fault
= pfns
& range
->flags
[HMM_PFN_WRITE
];
397 /* If CPU page table is not valid then we need to fault */
398 *fault
= !(cpu_flags
& range
->flags
[HMM_PFN_VALID
]);
399 /* Need to write fault ? */
400 if ((pfns
& range
->flags
[HMM_PFN_WRITE
]) &&
401 !(cpu_flags
& range
->flags
[HMM_PFN_WRITE
])) {
407 static void hmm_range_need_fault(const struct hmm_vma_walk
*hmm_vma_walk
,
408 const uint64_t *pfns
, unsigned long npages
,
409 uint64_t cpu_flags
, bool *fault
,
414 if (!hmm_vma_walk
->fault
) {
415 *fault
= *write_fault
= false;
419 for (i
= 0; i
< npages
; ++i
) {
420 hmm_pte_need_fault(hmm_vma_walk
, pfns
[i
], cpu_flags
,
422 if ((*fault
) || (*write_fault
))
427 static int hmm_vma_walk_hole(unsigned long addr
, unsigned long end
,
428 struct mm_walk
*walk
)
430 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
431 struct hmm_range
*range
= hmm_vma_walk
->range
;
432 bool fault
, write_fault
;
433 unsigned long i
, npages
;
436 i
= (addr
- range
->start
) >> PAGE_SHIFT
;
437 npages
= (end
- addr
) >> PAGE_SHIFT
;
438 pfns
= &range
->pfns
[i
];
439 hmm_range_need_fault(hmm_vma_walk
, pfns
, npages
,
440 0, &fault
, &write_fault
);
441 return hmm_vma_walk_hole_(addr
, end
, fault
, write_fault
, walk
);
444 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range
*range
, pmd_t pmd
)
446 if (pmd_protnone(pmd
))
448 return pmd_write(pmd
) ? range
->flags
[HMM_PFN_VALID
] |
449 range
->flags
[HMM_PFN_WRITE
] :
450 range
->flags
[HMM_PFN_VALID
];
453 static int hmm_vma_handle_pmd(struct mm_walk
*walk
,
459 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
460 struct hmm_range
*range
= hmm_vma_walk
->range
;
461 unsigned long pfn
, npages
, i
;
462 bool fault
, write_fault
;
465 npages
= (end
- addr
) >> PAGE_SHIFT
;
466 cpu_flags
= pmd_to_hmm_pfn_flags(range
, pmd
);
467 hmm_range_need_fault(hmm_vma_walk
, pfns
, npages
, cpu_flags
,
468 &fault
, &write_fault
);
470 if (pmd_protnone(pmd
) || fault
|| write_fault
)
471 return hmm_vma_walk_hole_(addr
, end
, fault
, write_fault
, walk
);
473 pfn
= pmd_pfn(pmd
) + pte_index(addr
);
474 for (i
= 0; addr
< end
; addr
+= PAGE_SIZE
, i
++, pfn
++)
475 pfns
[i
] = hmm_pfn_from_pfn(range
, pfn
) | cpu_flags
;
476 hmm_vma_walk
->last
= end
;
480 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range
*range
, pte_t pte
)
482 if (pte_none(pte
) || !pte_present(pte
))
484 return pte_write(pte
) ? range
->flags
[HMM_PFN_VALID
] |
485 range
->flags
[HMM_PFN_WRITE
] :
486 range
->flags
[HMM_PFN_VALID
];
489 static int hmm_vma_handle_pte(struct mm_walk
*walk
, unsigned long addr
,
490 unsigned long end
, pmd_t
*pmdp
, pte_t
*ptep
,
493 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
494 struct hmm_range
*range
= hmm_vma_walk
->range
;
495 struct vm_area_struct
*vma
= walk
->vma
;
496 bool fault
, write_fault
;
499 uint64_t orig_pfn
= *pfn
;
501 *pfn
= range
->values
[HMM_PFN_NONE
];
502 cpu_flags
= pte_to_hmm_pfn_flags(range
, pte
);
503 hmm_pte_need_fault(hmm_vma_walk
, orig_pfn
, cpu_flags
,
504 &fault
, &write_fault
);
507 if (fault
|| write_fault
)
512 if (!pte_present(pte
)) {
513 swp_entry_t entry
= pte_to_swp_entry(pte
);
515 if (!non_swap_entry(entry
)) {
516 if (fault
|| write_fault
)
522 * This is a special swap entry, ignore migration, use
523 * device and report anything else as error.
525 if (is_device_private_entry(entry
)) {
526 cpu_flags
= range
->flags
[HMM_PFN_VALID
] |
527 range
->flags
[HMM_PFN_DEVICE_PRIVATE
];
528 cpu_flags
|= is_write_device_private_entry(entry
) ?
529 range
->flags
[HMM_PFN_WRITE
] : 0;
530 hmm_pte_need_fault(hmm_vma_walk
, orig_pfn
, cpu_flags
,
531 &fault
, &write_fault
);
532 if (fault
|| write_fault
)
534 *pfn
= hmm_pfn_from_pfn(range
, swp_offset(entry
));
539 if (is_migration_entry(entry
)) {
540 if (fault
|| write_fault
) {
542 hmm_vma_walk
->last
= addr
;
543 migration_entry_wait(vma
->vm_mm
,
550 /* Report error for everything else */
551 *pfn
= range
->values
[HMM_PFN_ERROR
];
555 if (fault
|| write_fault
)
558 *pfn
= hmm_pfn_from_pfn(range
, pte_pfn(pte
)) | cpu_flags
;
563 /* Fault any virtual address we were asked to fault */
564 return hmm_vma_walk_hole_(addr
, end
, fault
, write_fault
, walk
);
567 static int hmm_vma_walk_pmd(pmd_t
*pmdp
,
570 struct mm_walk
*walk
)
572 struct hmm_vma_walk
*hmm_vma_walk
= walk
->private;
573 struct hmm_range
*range
= hmm_vma_walk
->range
;
574 uint64_t *pfns
= range
->pfns
;
575 unsigned long addr
= start
, i
;
578 i
= (addr
- range
->start
) >> PAGE_SHIFT
;
582 return hmm_vma_walk_hole(start
, end
, walk
);
584 if (pmd_huge(*pmdp
) && (range
->vma
->vm_flags
& VM_HUGETLB
))
585 return hmm_pfns_bad(start
, end
, walk
);
587 if (pmd_devmap(*pmdp
) || pmd_trans_huge(*pmdp
)) {
591 * No need to take pmd_lock here, even if some other threads
592 * is splitting the huge pmd we will get that event through
593 * mmu_notifier callback.
595 * So just read pmd value and check again its a transparent
596 * huge or device mapping one and compute corresponding pfn
599 pmd
= pmd_read_atomic(pmdp
);
601 if (!pmd_devmap(pmd
) && !pmd_trans_huge(pmd
))
604 return hmm_vma_handle_pmd(walk
, addr
, end
, &pfns
[i
], pmd
);
608 return hmm_pfns_bad(start
, end
, walk
);
610 ptep
= pte_offset_map(pmdp
, addr
);
611 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++, i
++) {
614 r
= hmm_vma_handle_pte(walk
, addr
, end
, pmdp
, ptep
, &pfns
[i
]);
616 /* hmm_vma_handle_pte() did unmap pte directory */
617 hmm_vma_walk
->last
= addr
;
623 hmm_vma_walk
->last
= addr
;
627 static void hmm_pfns_clear(struct hmm_range
*range
,
632 for (; addr
< end
; addr
+= PAGE_SIZE
, pfns
++)
633 *pfns
= range
->values
[HMM_PFN_NONE
];
636 static void hmm_pfns_special(struct hmm_range
*range
)
638 unsigned long addr
= range
->start
, i
= 0;
640 for (; addr
< range
->end
; addr
+= PAGE_SIZE
, i
++)
641 range
->pfns
[i
] = range
->values
[HMM_PFN_SPECIAL
];
645 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
646 * @range: range being snapshotted
647 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
648 * vma permission, 0 success
650 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
651 * validity is tracked by range struct. See hmm_vma_range_done() for further
654 * The range struct is initialized here. It tracks the CPU page table, but only
655 * if the function returns success (0), in which case the caller must then call
656 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
658 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
659 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
661 int hmm_vma_get_pfns(struct hmm_range
*range
)
663 struct vm_area_struct
*vma
= range
->vma
;
664 struct hmm_vma_walk hmm_vma_walk
;
665 struct mm_walk mm_walk
;
668 /* Sanity check, this really should not happen ! */
669 if (range
->start
< vma
->vm_start
|| range
->start
>= vma
->vm_end
)
671 if (range
->end
< vma
->vm_start
|| range
->end
> vma
->vm_end
)
674 hmm
= hmm_register(vma
->vm_mm
);
677 /* Caller must have registered a mirror, via hmm_mirror_register() ! */
678 if (!hmm
->mmu_notifier
.ops
)
681 /* FIXME support hugetlb fs */
682 if (is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
) ||
684 hmm_pfns_special(range
);
688 if (!(vma
->vm_flags
& VM_READ
)) {
690 * If vma do not allow read access, then assume that it does
691 * not allow write access, either. Architecture that allow
692 * write without read access are not supported by HMM, because
693 * operations such has atomic access would not work.
695 hmm_pfns_clear(range
, range
->pfns
, range
->start
, range
->end
);
699 /* Initialize range to track CPU page table update */
700 spin_lock(&hmm
->lock
);
702 list_add_rcu(&range
->list
, &hmm
->ranges
);
703 spin_unlock(&hmm
->lock
);
705 hmm_vma_walk
.fault
= false;
706 hmm_vma_walk
.range
= range
;
707 mm_walk
.private = &hmm_vma_walk
;
710 mm_walk
.mm
= vma
->vm_mm
;
711 mm_walk
.pte_entry
= NULL
;
712 mm_walk
.test_walk
= NULL
;
713 mm_walk
.hugetlb_entry
= NULL
;
714 mm_walk
.pmd_entry
= hmm_vma_walk_pmd
;
715 mm_walk
.pte_hole
= hmm_vma_walk_hole
;
717 walk_page_range(range
->start
, range
->end
, &mm_walk
);
720 EXPORT_SYMBOL(hmm_vma_get_pfns
);
723 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
724 * @range: range being tracked
725 * Returns: false if range data has been invalidated, true otherwise
727 * Range struct is used to track updates to the CPU page table after a call to
728 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
729 * using the data, or wants to lock updates to the data it got from those
730 * functions, it must call the hmm_vma_range_done() function, which will then
731 * stop tracking CPU page table updates.
733 * Note that device driver must still implement general CPU page table update
734 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
735 * the mmu_notifier API directly.
737 * CPU page table update tracking done through hmm_range is only temporary and
738 * to be used while trying to duplicate CPU page table contents for a range of
741 * There are two ways to use this :
743 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
744 * trans = device_build_page_table_update_transaction(pfns);
745 * device_page_table_lock();
746 * if (!hmm_vma_range_done(range)) {
747 * device_page_table_unlock();
750 * device_commit_transaction(trans);
751 * device_page_table_unlock();
754 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
755 * device_page_table_lock();
756 * hmm_vma_range_done(range);
757 * device_update_page_table(range->pfns);
758 * device_page_table_unlock();
760 bool hmm_vma_range_done(struct hmm_range
*range
)
762 unsigned long npages
= (range
->end
- range
->start
) >> PAGE_SHIFT
;
765 if (range
->end
<= range
->start
) {
770 hmm
= hmm_register(range
->vma
->vm_mm
);
772 memset(range
->pfns
, 0, sizeof(*range
->pfns
) * npages
);
776 spin_lock(&hmm
->lock
);
777 list_del_rcu(&range
->list
);
778 spin_unlock(&hmm
->lock
);
782 EXPORT_SYMBOL(hmm_vma_range_done
);
785 * hmm_vma_fault() - try to fault some address in a virtual address range
786 * @range: range being faulted
787 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
788 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
790 * This is similar to a regular CPU page fault except that it will not trigger
791 * any memory migration if the memory being faulted is not accessible by CPUs.
793 * On error, for one virtual address in the range, the function will mark the
794 * corresponding HMM pfn entry with an error flag.
796 * Expected use pattern:
798 * down_read(&mm->mmap_sem);
799 * // Find vma and address device wants to fault, initialize hmm_pfn_t
800 * // array accordingly
801 * ret = hmm_vma_fault(range, write, block);
804 * hmm_vma_range_done(range);
805 * // You might want to rate limit or yield to play nicely, you may
806 * // also commit any valid pfn in the array assuming that you are
807 * // getting true from hmm_vma_range_monitor_end()
816 * up_read(&mm->mmap_sem)
819 * // Take device driver lock that serialize device page table update
820 * driver_lock_device_page_table_update();
821 * hmm_vma_range_done(range);
822 * // Commit pfns we got from hmm_vma_fault()
823 * driver_unlock_device_page_table_update();
824 * up_read(&mm->mmap_sem)
826 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
827 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
829 * YOU HAVE BEEN WARNED !
831 int hmm_vma_fault(struct hmm_range
*range
, bool block
)
833 struct vm_area_struct
*vma
= range
->vma
;
834 unsigned long start
= range
->start
;
835 struct hmm_vma_walk hmm_vma_walk
;
836 struct mm_walk mm_walk
;
840 /* Sanity check, this really should not happen ! */
841 if (range
->start
< vma
->vm_start
|| range
->start
>= vma
->vm_end
)
843 if (range
->end
< vma
->vm_start
|| range
->end
> vma
->vm_end
)
846 hmm
= hmm_register(vma
->vm_mm
);
848 hmm_pfns_clear(range
, range
->pfns
, range
->start
, range
->end
);
851 /* Caller must have registered a mirror using hmm_mirror_register() */
852 if (!hmm
->mmu_notifier
.ops
)
855 /* FIXME support hugetlb fs */
856 if (is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
) ||
858 hmm_pfns_special(range
);
862 if (!(vma
->vm_flags
& VM_READ
)) {
864 * If vma do not allow read access, then assume that it does
865 * not allow write access, either. Architecture that allow
866 * write without read access are not supported by HMM, because
867 * operations such has atomic access would not work.
869 hmm_pfns_clear(range
, range
->pfns
, range
->start
, range
->end
);
873 /* Initialize range to track CPU page table update */
874 spin_lock(&hmm
->lock
);
876 list_add_rcu(&range
->list
, &hmm
->ranges
);
877 spin_unlock(&hmm
->lock
);
879 hmm_vma_walk
.fault
= true;
880 hmm_vma_walk
.block
= block
;
881 hmm_vma_walk
.range
= range
;
882 mm_walk
.private = &hmm_vma_walk
;
883 hmm_vma_walk
.last
= range
->start
;
886 mm_walk
.mm
= vma
->vm_mm
;
887 mm_walk
.pte_entry
= NULL
;
888 mm_walk
.test_walk
= NULL
;
889 mm_walk
.hugetlb_entry
= NULL
;
890 mm_walk
.pmd_entry
= hmm_vma_walk_pmd
;
891 mm_walk
.pte_hole
= hmm_vma_walk_hole
;
894 ret
= walk_page_range(start
, range
->end
, &mm_walk
);
895 start
= hmm_vma_walk
.last
;
896 } while (ret
== -EAGAIN
);
901 i
= (hmm_vma_walk
.last
- range
->start
) >> PAGE_SHIFT
;
902 hmm_pfns_clear(range
, &range
->pfns
[i
], hmm_vma_walk
.last
,
904 hmm_vma_range_done(range
);
908 EXPORT_SYMBOL(hmm_vma_fault
);
909 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
912 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
913 struct page
*hmm_vma_alloc_locked_page(struct vm_area_struct
*vma
,
918 page
= alloc_page_vma(GFP_HIGHUSER
, vma
, addr
);
924 EXPORT_SYMBOL(hmm_vma_alloc_locked_page
);
927 static void hmm_devmem_ref_release(struct percpu_ref
*ref
)
929 struct hmm_devmem
*devmem
;
931 devmem
= container_of(ref
, struct hmm_devmem
, ref
);
932 complete(&devmem
->completion
);
935 static void hmm_devmem_ref_exit(void *data
)
937 struct percpu_ref
*ref
= data
;
938 struct hmm_devmem
*devmem
;
940 devmem
= container_of(ref
, struct hmm_devmem
, ref
);
941 percpu_ref_exit(ref
);
942 devm_remove_action(devmem
->device
, &hmm_devmem_ref_exit
, data
);
945 static void hmm_devmem_ref_kill(void *data
)
947 struct percpu_ref
*ref
= data
;
948 struct hmm_devmem
*devmem
;
950 devmem
= container_of(ref
, struct hmm_devmem
, ref
);
951 percpu_ref_kill(ref
);
952 wait_for_completion(&devmem
->completion
);
953 devm_remove_action(devmem
->device
, &hmm_devmem_ref_kill
, data
);
956 static int hmm_devmem_fault(struct vm_area_struct
*vma
,
958 const struct page
*page
,
962 struct hmm_devmem
*devmem
= page
->pgmap
->data
;
964 return devmem
->ops
->fault(devmem
, vma
, addr
, page
, flags
, pmdp
);
967 static void hmm_devmem_free(struct page
*page
, void *data
)
969 struct hmm_devmem
*devmem
= data
;
971 page
->mapping
= NULL
;
973 devmem
->ops
->free(devmem
, page
);
976 static DEFINE_MUTEX(hmm_devmem_lock
);
977 static RADIX_TREE(hmm_devmem_radix
, GFP_KERNEL
);
979 static void hmm_devmem_radix_release(struct resource
*resource
)
983 mutex_lock(&hmm_devmem_lock
);
984 for (key
= resource
->start
;
985 key
<= resource
->end
;
986 key
+= PA_SECTION_SIZE
)
987 radix_tree_delete(&hmm_devmem_radix
, key
>> PA_SECTION_SHIFT
);
988 mutex_unlock(&hmm_devmem_lock
);
991 static void hmm_devmem_release(struct device
*dev
, void *data
)
993 struct hmm_devmem
*devmem
= data
;
994 struct resource
*resource
= devmem
->resource
;
995 unsigned long start_pfn
, npages
;
999 if (percpu_ref_tryget_live(&devmem
->ref
)) {
1000 dev_WARN(dev
, "%s: page mapping is still live!\n", __func__
);
1001 percpu_ref_put(&devmem
->ref
);
1004 /* pages are dead and unused, undo the arch mapping */
1005 start_pfn
= (resource
->start
& ~(PA_SECTION_SIZE
- 1)) >> PAGE_SHIFT
;
1006 npages
= ALIGN(resource_size(resource
), PA_SECTION_SIZE
) >> PAGE_SHIFT
;
1008 page
= pfn_to_page(start_pfn
);
1009 zone
= page_zone(page
);
1011 mem_hotplug_begin();
1012 if (resource
->desc
== IORES_DESC_DEVICE_PRIVATE_MEMORY
)
1013 __remove_pages(zone
, start_pfn
, npages
, NULL
);
1015 arch_remove_memory(start_pfn
<< PAGE_SHIFT
,
1016 npages
<< PAGE_SHIFT
, NULL
);
1019 hmm_devmem_radix_release(resource
);
1022 static int hmm_devmem_pages_create(struct hmm_devmem
*devmem
)
1024 resource_size_t key
, align_start
, align_size
, align_end
;
1025 struct device
*device
= devmem
->device
;
1026 int ret
, nid
, is_ram
;
1029 align_start
= devmem
->resource
->start
& ~(PA_SECTION_SIZE
- 1);
1030 align_size
= ALIGN(devmem
->resource
->start
+
1031 resource_size(devmem
->resource
),
1032 PA_SECTION_SIZE
) - align_start
;
1034 is_ram
= region_intersects(align_start
, align_size
,
1035 IORESOURCE_SYSTEM_RAM
,
1037 if (is_ram
== REGION_MIXED
) {
1038 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1039 __func__
, devmem
->resource
);
1042 if (is_ram
== REGION_INTERSECTS
)
1045 if (devmem
->resource
->desc
== IORES_DESC_DEVICE_PUBLIC_MEMORY
)
1046 devmem
->pagemap
.type
= MEMORY_DEVICE_PUBLIC
;
1048 devmem
->pagemap
.type
= MEMORY_DEVICE_PRIVATE
;
1050 devmem
->pagemap
.res
= *devmem
->resource
;
1051 devmem
->pagemap
.page_fault
= hmm_devmem_fault
;
1052 devmem
->pagemap
.page_free
= hmm_devmem_free
;
1053 devmem
->pagemap
.dev
= devmem
->device
;
1054 devmem
->pagemap
.ref
= &devmem
->ref
;
1055 devmem
->pagemap
.data
= devmem
;
1057 mutex_lock(&hmm_devmem_lock
);
1058 align_end
= align_start
+ align_size
- 1;
1059 for (key
= align_start
; key
<= align_end
; key
+= PA_SECTION_SIZE
) {
1060 struct hmm_devmem
*dup
;
1062 dup
= radix_tree_lookup(&hmm_devmem_radix
,
1063 key
>> PA_SECTION_SHIFT
);
1065 dev_err(device
, "%s: collides with mapping for %s\n",
1066 __func__
, dev_name(dup
->device
));
1067 mutex_unlock(&hmm_devmem_lock
);
1071 ret
= radix_tree_insert(&hmm_devmem_radix
,
1072 key
>> PA_SECTION_SHIFT
,
1075 dev_err(device
, "%s: failed: %d\n", __func__
, ret
);
1076 mutex_unlock(&hmm_devmem_lock
);
1080 mutex_unlock(&hmm_devmem_lock
);
1082 nid
= dev_to_node(device
);
1084 nid
= numa_mem_id();
1086 mem_hotplug_begin();
1088 * For device private memory we call add_pages() as we only need to
1089 * allocate and initialize struct page for the device memory. More-
1090 * over the device memory is un-accessible thus we do not want to
1091 * create a linear mapping for the memory like arch_add_memory()
1094 * For device public memory, which is accesible by the CPU, we do
1095 * want the linear mapping and thus use arch_add_memory().
1097 if (devmem
->pagemap
.type
== MEMORY_DEVICE_PUBLIC
)
1098 ret
= arch_add_memory(nid
, align_start
, align_size
, NULL
,
1101 ret
= add_pages(nid
, align_start
>> PAGE_SHIFT
,
1102 align_size
>> PAGE_SHIFT
, NULL
, false);
1105 goto error_add_memory
;
1107 move_pfn_range_to_zone(&NODE_DATA(nid
)->node_zones
[ZONE_DEVICE
],
1108 align_start
>> PAGE_SHIFT
,
1109 align_size
>> PAGE_SHIFT
, NULL
);
1112 for (pfn
= devmem
->pfn_first
; pfn
< devmem
->pfn_last
; pfn
++) {
1113 struct page
*page
= pfn_to_page(pfn
);
1115 page
->pgmap
= &devmem
->pagemap
;
1120 untrack_pfn(NULL
, PHYS_PFN(align_start
), align_size
);
1122 hmm_devmem_radix_release(devmem
->resource
);
1127 static int hmm_devmem_match(struct device
*dev
, void *data
, void *match_data
)
1129 struct hmm_devmem
*devmem
= data
;
1131 return devmem
->resource
== match_data
;
1134 static void hmm_devmem_pages_remove(struct hmm_devmem
*devmem
)
1136 devres_release(devmem
->device
, &hmm_devmem_release
,
1137 &hmm_devmem_match
, devmem
->resource
);
1141 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1143 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1144 * @device: device struct to bind the resource too
1145 * @size: size in bytes of the device memory to add
1146 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1148 * This function first finds an empty range of physical address big enough to
1149 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1150 * in turn allocates struct pages. It does not do anything beyond that; all
1151 * events affecting the memory will go through the various callbacks provided
1152 * by hmm_devmem_ops struct.
1154 * Device driver should call this function during device initialization and
1155 * is then responsible of memory management. HMM only provides helpers.
1157 struct hmm_devmem
*hmm_devmem_add(const struct hmm_devmem_ops
*ops
,
1158 struct device
*device
,
1161 struct hmm_devmem
*devmem
;
1162 resource_size_t addr
;
1165 dev_pagemap_get_ops();
1167 devmem
= devres_alloc_node(&hmm_devmem_release
, sizeof(*devmem
),
1168 GFP_KERNEL
, dev_to_node(device
));
1170 return ERR_PTR(-ENOMEM
);
1172 init_completion(&devmem
->completion
);
1173 devmem
->pfn_first
= -1UL;
1174 devmem
->pfn_last
= -1UL;
1175 devmem
->resource
= NULL
;
1176 devmem
->device
= device
;
1179 ret
= percpu_ref_init(&devmem
->ref
, &hmm_devmem_ref_release
,
1182 goto error_percpu_ref
;
1184 ret
= devm_add_action(device
, hmm_devmem_ref_exit
, &devmem
->ref
);
1186 goto error_devm_add_action
;
1188 size
= ALIGN(size
, PA_SECTION_SIZE
);
1189 addr
= min((unsigned long)iomem_resource
.end
,
1190 (1UL << MAX_PHYSMEM_BITS
) - 1);
1191 addr
= addr
- size
+ 1UL;
1194 * FIXME add a new helper to quickly walk resource tree and find free
1197 * FIXME what about ioport_resource resource ?
1199 for (; addr
> size
&& addr
>= iomem_resource
.start
; addr
-= size
) {
1200 ret
= region_intersects(addr
, size
, 0, IORES_DESC_NONE
);
1201 if (ret
!= REGION_DISJOINT
)
1204 devmem
->resource
= devm_request_mem_region(device
, addr
, size
,
1206 if (!devmem
->resource
) {
1208 goto error_no_resource
;
1212 if (!devmem
->resource
) {
1214 goto error_no_resource
;
1217 devmem
->resource
->desc
= IORES_DESC_DEVICE_PRIVATE_MEMORY
;
1218 devmem
->pfn_first
= devmem
->resource
->start
>> PAGE_SHIFT
;
1219 devmem
->pfn_last
= devmem
->pfn_first
+
1220 (resource_size(devmem
->resource
) >> PAGE_SHIFT
);
1222 ret
= hmm_devmem_pages_create(devmem
);
1226 devres_add(device
, devmem
);
1228 ret
= devm_add_action(device
, hmm_devmem_ref_kill
, &devmem
->ref
);
1230 hmm_devmem_remove(devmem
);
1231 return ERR_PTR(ret
);
1237 devm_release_mem_region(device
, devmem
->resource
->start
,
1238 resource_size(devmem
->resource
));
1240 error_devm_add_action
:
1241 hmm_devmem_ref_kill(&devmem
->ref
);
1242 hmm_devmem_ref_exit(&devmem
->ref
);
1244 devres_free(devmem
);
1245 return ERR_PTR(ret
);
1247 EXPORT_SYMBOL(hmm_devmem_add
);
1249 struct hmm_devmem
*hmm_devmem_add_resource(const struct hmm_devmem_ops
*ops
,
1250 struct device
*device
,
1251 struct resource
*res
)
1253 struct hmm_devmem
*devmem
;
1256 if (res
->desc
!= IORES_DESC_DEVICE_PUBLIC_MEMORY
)
1257 return ERR_PTR(-EINVAL
);
1259 dev_pagemap_get_ops();
1261 devmem
= devres_alloc_node(&hmm_devmem_release
, sizeof(*devmem
),
1262 GFP_KERNEL
, dev_to_node(device
));
1264 return ERR_PTR(-ENOMEM
);
1266 init_completion(&devmem
->completion
);
1267 devmem
->pfn_first
= -1UL;
1268 devmem
->pfn_last
= -1UL;
1269 devmem
->resource
= res
;
1270 devmem
->device
= device
;
1273 ret
= percpu_ref_init(&devmem
->ref
, &hmm_devmem_ref_release
,
1276 goto error_percpu_ref
;
1278 ret
= devm_add_action(device
, hmm_devmem_ref_exit
, &devmem
->ref
);
1280 goto error_devm_add_action
;
1283 devmem
->pfn_first
= devmem
->resource
->start
>> PAGE_SHIFT
;
1284 devmem
->pfn_last
= devmem
->pfn_first
+
1285 (resource_size(devmem
->resource
) >> PAGE_SHIFT
);
1287 ret
= hmm_devmem_pages_create(devmem
);
1289 goto error_devm_add_action
;
1291 devres_add(device
, devmem
);
1293 ret
= devm_add_action(device
, hmm_devmem_ref_kill
, &devmem
->ref
);
1295 hmm_devmem_remove(devmem
);
1296 return ERR_PTR(ret
);
1301 error_devm_add_action
:
1302 hmm_devmem_ref_kill(&devmem
->ref
);
1303 hmm_devmem_ref_exit(&devmem
->ref
);
1305 devres_free(devmem
);
1306 return ERR_PTR(ret
);
1308 EXPORT_SYMBOL(hmm_devmem_add_resource
);
1311 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1313 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1315 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1316 * of the device driver. It will free struct page and remove the resource that
1317 * reserved the physical address range for this device memory.
1319 void hmm_devmem_remove(struct hmm_devmem
*devmem
)
1321 resource_size_t start
, size
;
1322 struct device
*device
;
1328 device
= devmem
->device
;
1329 start
= devmem
->resource
->start
;
1330 size
= resource_size(devmem
->resource
);
1332 cdm
= devmem
->resource
->desc
== IORES_DESC_DEVICE_PUBLIC_MEMORY
;
1333 hmm_devmem_ref_kill(&devmem
->ref
);
1334 hmm_devmem_ref_exit(&devmem
->ref
);
1335 hmm_devmem_pages_remove(devmem
);
1338 devm_release_mem_region(device
, start
, size
);
1340 EXPORT_SYMBOL(hmm_devmem_remove
);
1343 * A device driver that wants to handle multiple devices memory through a
1344 * single fake device can use hmm_device to do so. This is purely a helper
1345 * and it is not needed to make use of any HMM functionality.
1347 #define HMM_DEVICE_MAX 256
1349 static DECLARE_BITMAP(hmm_device_mask
, HMM_DEVICE_MAX
);
1350 static DEFINE_SPINLOCK(hmm_device_lock
);
1351 static struct class *hmm_device_class
;
1352 static dev_t hmm_device_devt
;
1354 static void hmm_device_release(struct device
*device
)
1356 struct hmm_device
*hmm_device
;
1358 hmm_device
= container_of(device
, struct hmm_device
, device
);
1359 spin_lock(&hmm_device_lock
);
1360 clear_bit(hmm_device
->minor
, hmm_device_mask
);
1361 spin_unlock(&hmm_device_lock
);
1366 struct hmm_device
*hmm_device_new(void *drvdata
)
1368 struct hmm_device
*hmm_device
;
1370 hmm_device
= kzalloc(sizeof(*hmm_device
), GFP_KERNEL
);
1372 return ERR_PTR(-ENOMEM
);
1374 spin_lock(&hmm_device_lock
);
1375 hmm_device
->minor
= find_first_zero_bit(hmm_device_mask
, HMM_DEVICE_MAX
);
1376 if (hmm_device
->minor
>= HMM_DEVICE_MAX
) {
1377 spin_unlock(&hmm_device_lock
);
1379 return ERR_PTR(-EBUSY
);
1381 set_bit(hmm_device
->minor
, hmm_device_mask
);
1382 spin_unlock(&hmm_device_lock
);
1384 dev_set_name(&hmm_device
->device
, "hmm_device%d", hmm_device
->minor
);
1385 hmm_device
->device
.devt
= MKDEV(MAJOR(hmm_device_devt
),
1387 hmm_device
->device
.release
= hmm_device_release
;
1388 dev_set_drvdata(&hmm_device
->device
, drvdata
);
1389 hmm_device
->device
.class = hmm_device_class
;
1390 device_initialize(&hmm_device
->device
);
1394 EXPORT_SYMBOL(hmm_device_new
);
1396 void hmm_device_put(struct hmm_device
*hmm_device
)
1398 put_device(&hmm_device
->device
);
1400 EXPORT_SYMBOL(hmm_device_put
);
1402 static int __init
hmm_init(void)
1406 ret
= alloc_chrdev_region(&hmm_device_devt
, 0,
1412 hmm_device_class
= class_create(THIS_MODULE
, "hmm_device");
1413 if (IS_ERR(hmm_device_class
)) {
1414 unregister_chrdev_region(hmm_device_devt
, HMM_DEVICE_MAX
);
1415 return PTR_ERR(hmm_device_class
);
1420 device_initcall(hmm_init
);
1421 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */