KVM: SVM: Don't sync nested cr8 to lapic and back
[linux-2.6/btrfs-unstable.git] / arch / x86 / kvm / svm.c
blob481bd0ee5f7e06d324ad82ca0e21372ff5ef81fe
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
16 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29 #include <linux/slab.h>
31 #include <asm/desc.h>
33 #include <asm/virtext.h>
34 #include "trace.h"
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
41 #define IOPM_ALLOC_ORDER 2
42 #define MSRPM_ALLOC_ORDER 1
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
47 #define SVM_FEATURE_NPT (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
52 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
53 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
54 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
56 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
58 static const u32 host_save_user_msrs[] = {
59 #ifdef CONFIG_X86_64
60 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
61 MSR_FS_BASE,
62 #endif
63 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
66 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
68 struct kvm_vcpu;
70 struct nested_state {
71 struct vmcb *hsave;
72 u64 hsave_msr;
73 u64 vmcb;
75 /* These are the merged vectors */
76 u32 *msrpm;
78 /* gpa pointers to the real vectors */
79 u64 vmcb_msrpm;
81 /* A VMEXIT is required but not yet emulated */
82 bool exit_required;
84 /* cache for intercepts of the guest */
85 u16 intercept_cr_read;
86 u16 intercept_cr_write;
87 u16 intercept_dr_read;
88 u16 intercept_dr_write;
89 u32 intercept_exceptions;
90 u64 intercept;
94 struct vcpu_svm {
95 struct kvm_vcpu vcpu;
96 struct vmcb *vmcb;
97 unsigned long vmcb_pa;
98 struct svm_cpu_data *svm_data;
99 uint64_t asid_generation;
100 uint64_t sysenter_esp;
101 uint64_t sysenter_eip;
103 u64 next_rip;
105 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
106 u64 host_gs_base;
108 u32 *msrpm;
110 struct nested_state nested;
112 bool nmi_singlestep;
115 /* enable NPT for AMD64 and X86 with PAE */
116 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
117 static bool npt_enabled = true;
118 #else
119 static bool npt_enabled = false;
120 #endif
121 static int npt = 1;
123 module_param(npt, int, S_IRUGO);
125 static int nested = 1;
126 module_param(nested, int, S_IRUGO);
128 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
129 static void svm_complete_interrupts(struct vcpu_svm *svm);
131 static int nested_svm_exit_handled(struct vcpu_svm *svm);
132 static int nested_svm_intercept(struct vcpu_svm *svm);
133 static int nested_svm_vmexit(struct vcpu_svm *svm);
134 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
135 bool has_error_code, u32 error_code);
137 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
139 return container_of(vcpu, struct vcpu_svm, vcpu);
142 static inline bool is_nested(struct vcpu_svm *svm)
144 return svm->nested.vmcb;
147 static inline void enable_gif(struct vcpu_svm *svm)
149 svm->vcpu.arch.hflags |= HF_GIF_MASK;
152 static inline void disable_gif(struct vcpu_svm *svm)
154 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
157 static inline bool gif_set(struct vcpu_svm *svm)
159 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
162 static unsigned long iopm_base;
164 struct kvm_ldttss_desc {
165 u16 limit0;
166 u16 base0;
167 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
168 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
169 u32 base3;
170 u32 zero1;
171 } __attribute__((packed));
173 struct svm_cpu_data {
174 int cpu;
176 u64 asid_generation;
177 u32 max_asid;
178 u32 next_asid;
179 struct kvm_ldttss_desc *tss_desc;
181 struct page *save_area;
184 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
185 static uint32_t svm_features;
187 struct svm_init_data {
188 int cpu;
189 int r;
192 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
194 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
195 #define MSRS_RANGE_SIZE 2048
196 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
198 #define MAX_INST_SIZE 15
200 static inline u32 svm_has(u32 feat)
202 return svm_features & feat;
205 static inline void clgi(void)
207 asm volatile (__ex(SVM_CLGI));
210 static inline void stgi(void)
212 asm volatile (__ex(SVM_STGI));
215 static inline void invlpga(unsigned long addr, u32 asid)
217 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
220 static inline void force_new_asid(struct kvm_vcpu *vcpu)
222 to_svm(vcpu)->asid_generation--;
225 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
227 force_new_asid(vcpu);
230 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
232 if (!npt_enabled && !(efer & EFER_LMA))
233 efer &= ~EFER_LME;
235 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
236 vcpu->arch.efer = efer;
239 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
240 bool has_error_code, u32 error_code)
242 struct vcpu_svm *svm = to_svm(vcpu);
244 /* If we are within a nested VM we'd better #VMEXIT and let the
245 guest handle the exception */
246 if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
247 return;
249 svm->vmcb->control.event_inj = nr
250 | SVM_EVTINJ_VALID
251 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
252 | SVM_EVTINJ_TYPE_EXEPT;
253 svm->vmcb->control.event_inj_err = error_code;
256 static int is_external_interrupt(u32 info)
258 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
259 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
262 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
264 struct vcpu_svm *svm = to_svm(vcpu);
265 u32 ret = 0;
267 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
268 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
269 return ret & mask;
272 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
274 struct vcpu_svm *svm = to_svm(vcpu);
276 if (mask == 0)
277 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
278 else
279 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
283 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
285 struct vcpu_svm *svm = to_svm(vcpu);
287 if (!svm->next_rip) {
288 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
289 EMULATE_DONE)
290 printk(KERN_DEBUG "%s: NOP\n", __func__);
291 return;
293 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
294 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
295 __func__, kvm_rip_read(vcpu), svm->next_rip);
297 kvm_rip_write(vcpu, svm->next_rip);
298 svm_set_interrupt_shadow(vcpu, 0);
301 static int has_svm(void)
303 const char *msg;
305 if (!cpu_has_svm(&msg)) {
306 printk(KERN_INFO "has_svm: %s\n", msg);
307 return 0;
310 return 1;
313 static void svm_hardware_disable(void *garbage)
315 cpu_svm_disable();
318 static int svm_hardware_enable(void *garbage)
321 struct svm_cpu_data *sd;
322 uint64_t efer;
323 struct desc_ptr gdt_descr;
324 struct desc_struct *gdt;
325 int me = raw_smp_processor_id();
327 rdmsrl(MSR_EFER, efer);
328 if (efer & EFER_SVME)
329 return -EBUSY;
331 if (!has_svm()) {
332 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
333 me);
334 return -EINVAL;
336 sd = per_cpu(svm_data, me);
338 if (!sd) {
339 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
340 me);
341 return -EINVAL;
344 sd->asid_generation = 1;
345 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
346 sd->next_asid = sd->max_asid + 1;
348 kvm_get_gdt(&gdt_descr);
349 gdt = (struct desc_struct *)gdt_descr.address;
350 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
352 wrmsrl(MSR_EFER, efer | EFER_SVME);
354 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
356 return 0;
359 static void svm_cpu_uninit(int cpu)
361 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
363 if (!sd)
364 return;
366 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
367 __free_page(sd->save_area);
368 kfree(sd);
371 static int svm_cpu_init(int cpu)
373 struct svm_cpu_data *sd;
374 int r;
376 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
377 if (!sd)
378 return -ENOMEM;
379 sd->cpu = cpu;
380 sd->save_area = alloc_page(GFP_KERNEL);
381 r = -ENOMEM;
382 if (!sd->save_area)
383 goto err_1;
385 per_cpu(svm_data, cpu) = sd;
387 return 0;
389 err_1:
390 kfree(sd);
391 return r;
395 static void set_msr_interception(u32 *msrpm, unsigned msr,
396 int read, int write)
398 int i;
400 for (i = 0; i < NUM_MSR_MAPS; i++) {
401 if (msr >= msrpm_ranges[i] &&
402 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
403 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
404 msrpm_ranges[i]) * 2;
406 u32 *base = msrpm + (msr_offset / 32);
407 u32 msr_shift = msr_offset % 32;
408 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
409 *base = (*base & ~(0x3 << msr_shift)) |
410 (mask << msr_shift);
411 return;
414 BUG();
417 static void svm_vcpu_init_msrpm(u32 *msrpm)
419 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
421 #ifdef CONFIG_X86_64
422 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
423 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
424 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
425 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
426 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
427 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
428 #endif
429 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
430 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
433 static void svm_enable_lbrv(struct vcpu_svm *svm)
435 u32 *msrpm = svm->msrpm;
437 svm->vmcb->control.lbr_ctl = 1;
438 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
439 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
440 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
441 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
444 static void svm_disable_lbrv(struct vcpu_svm *svm)
446 u32 *msrpm = svm->msrpm;
448 svm->vmcb->control.lbr_ctl = 0;
449 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
450 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
451 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
452 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
455 static __init int svm_hardware_setup(void)
457 int cpu;
458 struct page *iopm_pages;
459 void *iopm_va;
460 int r;
462 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
464 if (!iopm_pages)
465 return -ENOMEM;
467 iopm_va = page_address(iopm_pages);
468 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
469 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
471 if (boot_cpu_has(X86_FEATURE_NX))
472 kvm_enable_efer_bits(EFER_NX);
474 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
475 kvm_enable_efer_bits(EFER_FFXSR);
477 if (nested) {
478 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
479 kvm_enable_efer_bits(EFER_SVME);
482 for_each_possible_cpu(cpu) {
483 r = svm_cpu_init(cpu);
484 if (r)
485 goto err;
488 svm_features = cpuid_edx(SVM_CPUID_FUNC);
490 if (!svm_has(SVM_FEATURE_NPT))
491 npt_enabled = false;
493 if (npt_enabled && !npt) {
494 printk(KERN_INFO "kvm: Nested Paging disabled\n");
495 npt_enabled = false;
498 if (npt_enabled) {
499 printk(KERN_INFO "kvm: Nested Paging enabled\n");
500 kvm_enable_tdp();
501 } else
502 kvm_disable_tdp();
504 return 0;
506 err:
507 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
508 iopm_base = 0;
509 return r;
512 static __exit void svm_hardware_unsetup(void)
514 int cpu;
516 for_each_possible_cpu(cpu)
517 svm_cpu_uninit(cpu);
519 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
520 iopm_base = 0;
523 static void init_seg(struct vmcb_seg *seg)
525 seg->selector = 0;
526 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
527 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
528 seg->limit = 0xffff;
529 seg->base = 0;
532 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
534 seg->selector = 0;
535 seg->attrib = SVM_SELECTOR_P_MASK | type;
536 seg->limit = 0xffff;
537 seg->base = 0;
540 static void init_vmcb(struct vcpu_svm *svm)
542 struct vmcb_control_area *control = &svm->vmcb->control;
543 struct vmcb_save_area *save = &svm->vmcb->save;
545 svm->vcpu.fpu_active = 1;
547 control->intercept_cr_read = INTERCEPT_CR0_MASK |
548 INTERCEPT_CR3_MASK |
549 INTERCEPT_CR4_MASK;
551 control->intercept_cr_write = INTERCEPT_CR0_MASK |
552 INTERCEPT_CR3_MASK |
553 INTERCEPT_CR4_MASK |
554 INTERCEPT_CR8_MASK;
556 control->intercept_dr_read = INTERCEPT_DR0_MASK |
557 INTERCEPT_DR1_MASK |
558 INTERCEPT_DR2_MASK |
559 INTERCEPT_DR3_MASK |
560 INTERCEPT_DR4_MASK |
561 INTERCEPT_DR5_MASK |
562 INTERCEPT_DR6_MASK |
563 INTERCEPT_DR7_MASK;
565 control->intercept_dr_write = INTERCEPT_DR0_MASK |
566 INTERCEPT_DR1_MASK |
567 INTERCEPT_DR2_MASK |
568 INTERCEPT_DR3_MASK |
569 INTERCEPT_DR4_MASK |
570 INTERCEPT_DR5_MASK |
571 INTERCEPT_DR6_MASK |
572 INTERCEPT_DR7_MASK;
574 control->intercept_exceptions = (1 << PF_VECTOR) |
575 (1 << UD_VECTOR) |
576 (1 << MC_VECTOR);
579 control->intercept = (1ULL << INTERCEPT_INTR) |
580 (1ULL << INTERCEPT_NMI) |
581 (1ULL << INTERCEPT_SMI) |
582 (1ULL << INTERCEPT_SELECTIVE_CR0) |
583 (1ULL << INTERCEPT_CPUID) |
584 (1ULL << INTERCEPT_INVD) |
585 (1ULL << INTERCEPT_HLT) |
586 (1ULL << INTERCEPT_INVLPG) |
587 (1ULL << INTERCEPT_INVLPGA) |
588 (1ULL << INTERCEPT_IOIO_PROT) |
589 (1ULL << INTERCEPT_MSR_PROT) |
590 (1ULL << INTERCEPT_TASK_SWITCH) |
591 (1ULL << INTERCEPT_SHUTDOWN) |
592 (1ULL << INTERCEPT_VMRUN) |
593 (1ULL << INTERCEPT_VMMCALL) |
594 (1ULL << INTERCEPT_VMLOAD) |
595 (1ULL << INTERCEPT_VMSAVE) |
596 (1ULL << INTERCEPT_STGI) |
597 (1ULL << INTERCEPT_CLGI) |
598 (1ULL << INTERCEPT_SKINIT) |
599 (1ULL << INTERCEPT_WBINVD) |
600 (1ULL << INTERCEPT_MONITOR) |
601 (1ULL << INTERCEPT_MWAIT);
603 control->iopm_base_pa = iopm_base;
604 control->msrpm_base_pa = __pa(svm->msrpm);
605 control->tsc_offset = 0;
606 control->int_ctl = V_INTR_MASKING_MASK;
608 init_seg(&save->es);
609 init_seg(&save->ss);
610 init_seg(&save->ds);
611 init_seg(&save->fs);
612 init_seg(&save->gs);
614 save->cs.selector = 0xf000;
615 /* Executable/Readable Code Segment */
616 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
617 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
618 save->cs.limit = 0xffff;
620 * cs.base should really be 0xffff0000, but vmx can't handle that, so
621 * be consistent with it.
623 * Replace when we have real mode working for vmx.
625 save->cs.base = 0xf0000;
627 save->gdtr.limit = 0xffff;
628 save->idtr.limit = 0xffff;
630 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
631 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
633 save->efer = EFER_SVME;
634 save->dr6 = 0xffff0ff0;
635 save->dr7 = 0x400;
636 save->rflags = 2;
637 save->rip = 0x0000fff0;
638 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
640 /* This is the guest-visible cr0 value.
641 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
643 svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
644 kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
646 save->cr4 = X86_CR4_PAE;
647 /* rdx = ?? */
649 if (npt_enabled) {
650 /* Setup VMCB for Nested Paging */
651 control->nested_ctl = 1;
652 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
653 (1ULL << INTERCEPT_INVLPG));
654 control->intercept_exceptions &= ~(1 << PF_VECTOR);
655 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
656 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
657 save->g_pat = 0x0007040600070406ULL;
658 save->cr3 = 0;
659 save->cr4 = 0;
661 force_new_asid(&svm->vcpu);
663 svm->nested.vmcb = 0;
664 svm->vcpu.arch.hflags = 0;
666 if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
667 control->pause_filter_count = 3000;
668 control->intercept |= (1ULL << INTERCEPT_PAUSE);
671 enable_gif(svm);
674 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
676 struct vcpu_svm *svm = to_svm(vcpu);
678 init_vmcb(svm);
680 if (!kvm_vcpu_is_bsp(vcpu)) {
681 kvm_rip_write(vcpu, 0);
682 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
683 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
685 vcpu->arch.regs_avail = ~0;
686 vcpu->arch.regs_dirty = ~0;
688 return 0;
691 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
693 struct vcpu_svm *svm;
694 struct page *page;
695 struct page *msrpm_pages;
696 struct page *hsave_page;
697 struct page *nested_msrpm_pages;
698 int err;
700 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
701 if (!svm) {
702 err = -ENOMEM;
703 goto out;
706 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
707 if (err)
708 goto free_svm;
710 err = -ENOMEM;
711 page = alloc_page(GFP_KERNEL);
712 if (!page)
713 goto uninit;
715 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
716 if (!msrpm_pages)
717 goto free_page1;
719 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
720 if (!nested_msrpm_pages)
721 goto free_page2;
723 hsave_page = alloc_page(GFP_KERNEL);
724 if (!hsave_page)
725 goto free_page3;
727 svm->nested.hsave = page_address(hsave_page);
729 svm->msrpm = page_address(msrpm_pages);
730 svm_vcpu_init_msrpm(svm->msrpm);
732 svm->nested.msrpm = page_address(nested_msrpm_pages);
734 svm->vmcb = page_address(page);
735 clear_page(svm->vmcb);
736 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
737 svm->asid_generation = 0;
738 init_vmcb(svm);
740 fx_init(&svm->vcpu);
741 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
742 if (kvm_vcpu_is_bsp(&svm->vcpu))
743 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
745 return &svm->vcpu;
747 free_page3:
748 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
749 free_page2:
750 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
751 free_page1:
752 __free_page(page);
753 uninit:
754 kvm_vcpu_uninit(&svm->vcpu);
755 free_svm:
756 kmem_cache_free(kvm_vcpu_cache, svm);
757 out:
758 return ERR_PTR(err);
761 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
763 struct vcpu_svm *svm = to_svm(vcpu);
765 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
766 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
767 __free_page(virt_to_page(svm->nested.hsave));
768 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
769 kvm_vcpu_uninit(vcpu);
770 kmem_cache_free(kvm_vcpu_cache, svm);
773 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
775 struct vcpu_svm *svm = to_svm(vcpu);
776 int i;
778 if (unlikely(cpu != vcpu->cpu)) {
779 u64 delta;
781 if (check_tsc_unstable()) {
783 * Make sure that the guest sees a monotonically
784 * increasing TSC.
786 delta = vcpu->arch.host_tsc - native_read_tsc();
787 svm->vmcb->control.tsc_offset += delta;
788 if (is_nested(svm))
789 svm->nested.hsave->control.tsc_offset += delta;
791 vcpu->cpu = cpu;
792 kvm_migrate_timers(vcpu);
793 svm->asid_generation = 0;
796 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
797 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
800 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
802 struct vcpu_svm *svm = to_svm(vcpu);
803 int i;
805 ++vcpu->stat.host_state_reload;
806 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
807 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
809 vcpu->arch.host_tsc = native_read_tsc();
812 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
814 return to_svm(vcpu)->vmcb->save.rflags;
817 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
819 to_svm(vcpu)->vmcb->save.rflags = rflags;
822 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
824 switch (reg) {
825 case VCPU_EXREG_PDPTR:
826 BUG_ON(!npt_enabled);
827 load_pdptrs(vcpu, vcpu->arch.cr3);
828 break;
829 default:
830 BUG();
834 static void svm_set_vintr(struct vcpu_svm *svm)
836 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
839 static void svm_clear_vintr(struct vcpu_svm *svm)
841 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
844 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
846 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
848 switch (seg) {
849 case VCPU_SREG_CS: return &save->cs;
850 case VCPU_SREG_DS: return &save->ds;
851 case VCPU_SREG_ES: return &save->es;
852 case VCPU_SREG_FS: return &save->fs;
853 case VCPU_SREG_GS: return &save->gs;
854 case VCPU_SREG_SS: return &save->ss;
855 case VCPU_SREG_TR: return &save->tr;
856 case VCPU_SREG_LDTR: return &save->ldtr;
858 BUG();
859 return NULL;
862 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
864 struct vmcb_seg *s = svm_seg(vcpu, seg);
866 return s->base;
869 static void svm_get_segment(struct kvm_vcpu *vcpu,
870 struct kvm_segment *var, int seg)
872 struct vmcb_seg *s = svm_seg(vcpu, seg);
874 var->base = s->base;
875 var->limit = s->limit;
876 var->selector = s->selector;
877 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
878 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
879 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
880 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
881 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
882 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
883 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
884 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
886 /* AMD's VMCB does not have an explicit unusable field, so emulate it
887 * for cross vendor migration purposes by "not present"
889 var->unusable = !var->present || (var->type == 0);
891 switch (seg) {
892 case VCPU_SREG_CS:
894 * SVM always stores 0 for the 'G' bit in the CS selector in
895 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
896 * Intel's VMENTRY has a check on the 'G' bit.
898 var->g = s->limit > 0xfffff;
899 break;
900 case VCPU_SREG_TR:
902 * Work around a bug where the busy flag in the tr selector
903 * isn't exposed
905 var->type |= 0x2;
906 break;
907 case VCPU_SREG_DS:
908 case VCPU_SREG_ES:
909 case VCPU_SREG_FS:
910 case VCPU_SREG_GS:
912 * The accessed bit must always be set in the segment
913 * descriptor cache, although it can be cleared in the
914 * descriptor, the cached bit always remains at 1. Since
915 * Intel has a check on this, set it here to support
916 * cross-vendor migration.
918 if (!var->unusable)
919 var->type |= 0x1;
920 break;
921 case VCPU_SREG_SS:
922 /* On AMD CPUs sometimes the DB bit in the segment
923 * descriptor is left as 1, although the whole segment has
924 * been made unusable. Clear it here to pass an Intel VMX
925 * entry check when cross vendor migrating.
927 if (var->unusable)
928 var->db = 0;
929 break;
933 static int svm_get_cpl(struct kvm_vcpu *vcpu)
935 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
937 return save->cpl;
940 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
942 struct vcpu_svm *svm = to_svm(vcpu);
944 dt->size = svm->vmcb->save.idtr.limit;
945 dt->address = svm->vmcb->save.idtr.base;
948 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
950 struct vcpu_svm *svm = to_svm(vcpu);
952 svm->vmcb->save.idtr.limit = dt->size;
953 svm->vmcb->save.idtr.base = dt->address ;
956 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
958 struct vcpu_svm *svm = to_svm(vcpu);
960 dt->size = svm->vmcb->save.gdtr.limit;
961 dt->address = svm->vmcb->save.gdtr.base;
964 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
966 struct vcpu_svm *svm = to_svm(vcpu);
968 svm->vmcb->save.gdtr.limit = dt->size;
969 svm->vmcb->save.gdtr.base = dt->address ;
972 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
976 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
980 static void update_cr0_intercept(struct vcpu_svm *svm)
982 ulong gcr0 = svm->vcpu.arch.cr0;
983 u64 *hcr0 = &svm->vmcb->save.cr0;
985 if (!svm->vcpu.fpu_active)
986 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
987 else
988 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
989 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
992 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
993 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
994 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
995 } else {
996 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
997 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1001 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1003 struct vcpu_svm *svm = to_svm(vcpu);
1005 #ifdef CONFIG_X86_64
1006 if (vcpu->arch.efer & EFER_LME) {
1007 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1008 vcpu->arch.efer |= EFER_LMA;
1009 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1012 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1013 vcpu->arch.efer &= ~EFER_LMA;
1014 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1017 #endif
1018 vcpu->arch.cr0 = cr0;
1020 if (!npt_enabled)
1021 cr0 |= X86_CR0_PG | X86_CR0_WP;
1023 if (!vcpu->fpu_active)
1024 cr0 |= X86_CR0_TS;
1026 * re-enable caching here because the QEMU bios
1027 * does not do it - this results in some delay at
1028 * reboot
1030 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1031 svm->vmcb->save.cr0 = cr0;
1032 update_cr0_intercept(svm);
1035 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1037 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1038 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1040 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1041 force_new_asid(vcpu);
1043 vcpu->arch.cr4 = cr4;
1044 if (!npt_enabled)
1045 cr4 |= X86_CR4_PAE;
1046 cr4 |= host_cr4_mce;
1047 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1050 static void svm_set_segment(struct kvm_vcpu *vcpu,
1051 struct kvm_segment *var, int seg)
1053 struct vcpu_svm *svm = to_svm(vcpu);
1054 struct vmcb_seg *s = svm_seg(vcpu, seg);
1056 s->base = var->base;
1057 s->limit = var->limit;
1058 s->selector = var->selector;
1059 if (var->unusable)
1060 s->attrib = 0;
1061 else {
1062 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1063 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1064 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1065 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1066 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1067 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1068 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1069 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1071 if (seg == VCPU_SREG_CS)
1072 svm->vmcb->save.cpl
1073 = (svm->vmcb->save.cs.attrib
1074 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1078 static void update_db_intercept(struct kvm_vcpu *vcpu)
1080 struct vcpu_svm *svm = to_svm(vcpu);
1082 svm->vmcb->control.intercept_exceptions &=
1083 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1085 if (svm->nmi_singlestep)
1086 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1088 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1089 if (vcpu->guest_debug &
1090 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1091 svm->vmcb->control.intercept_exceptions |=
1092 1 << DB_VECTOR;
1093 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1094 svm->vmcb->control.intercept_exceptions |=
1095 1 << BP_VECTOR;
1096 } else
1097 vcpu->guest_debug = 0;
1100 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1102 struct vcpu_svm *svm = to_svm(vcpu);
1104 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1105 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1106 else
1107 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1109 update_db_intercept(vcpu);
1112 static void load_host_msrs(struct kvm_vcpu *vcpu)
1114 #ifdef CONFIG_X86_64
1115 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1116 #endif
1119 static void save_host_msrs(struct kvm_vcpu *vcpu)
1121 #ifdef CONFIG_X86_64
1122 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1123 #endif
1126 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1128 if (sd->next_asid > sd->max_asid) {
1129 ++sd->asid_generation;
1130 sd->next_asid = 1;
1131 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1134 svm->asid_generation = sd->asid_generation;
1135 svm->vmcb->control.asid = sd->next_asid++;
1138 static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
1140 struct vcpu_svm *svm = to_svm(vcpu);
1142 switch (dr) {
1143 case 0 ... 3:
1144 *dest = vcpu->arch.db[dr];
1145 break;
1146 case 4:
1147 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1148 return EMULATE_FAIL; /* will re-inject UD */
1149 /* fall through */
1150 case 6:
1151 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1152 *dest = vcpu->arch.dr6;
1153 else
1154 *dest = svm->vmcb->save.dr6;
1155 break;
1156 case 5:
1157 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1158 return EMULATE_FAIL; /* will re-inject UD */
1159 /* fall through */
1160 case 7:
1161 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1162 *dest = vcpu->arch.dr7;
1163 else
1164 *dest = svm->vmcb->save.dr7;
1165 break;
1168 return EMULATE_DONE;
1171 static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
1173 struct vcpu_svm *svm = to_svm(vcpu);
1175 switch (dr) {
1176 case 0 ... 3:
1177 vcpu->arch.db[dr] = value;
1178 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1179 vcpu->arch.eff_db[dr] = value;
1180 break;
1181 case 4:
1182 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1183 return EMULATE_FAIL; /* will re-inject UD */
1184 /* fall through */
1185 case 6:
1186 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1187 break;
1188 case 5:
1189 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1190 return EMULATE_FAIL; /* will re-inject UD */
1191 /* fall through */
1192 case 7:
1193 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1194 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1195 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1196 vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1198 break;
1201 return EMULATE_DONE;
1204 static int pf_interception(struct vcpu_svm *svm)
1206 u64 fault_address;
1207 u32 error_code;
1209 fault_address = svm->vmcb->control.exit_info_2;
1210 error_code = svm->vmcb->control.exit_info_1;
1212 trace_kvm_page_fault(fault_address, error_code);
1213 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1214 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1215 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1218 static int db_interception(struct vcpu_svm *svm)
1220 struct kvm_run *kvm_run = svm->vcpu.run;
1222 if (!(svm->vcpu.guest_debug &
1223 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1224 !svm->nmi_singlestep) {
1225 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1226 return 1;
1229 if (svm->nmi_singlestep) {
1230 svm->nmi_singlestep = false;
1231 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1232 svm->vmcb->save.rflags &=
1233 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1234 update_db_intercept(&svm->vcpu);
1237 if (svm->vcpu.guest_debug &
1238 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1239 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1240 kvm_run->debug.arch.pc =
1241 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1242 kvm_run->debug.arch.exception = DB_VECTOR;
1243 return 0;
1246 return 1;
1249 static int bp_interception(struct vcpu_svm *svm)
1251 struct kvm_run *kvm_run = svm->vcpu.run;
1253 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1254 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1255 kvm_run->debug.arch.exception = BP_VECTOR;
1256 return 0;
1259 static int ud_interception(struct vcpu_svm *svm)
1261 int er;
1263 er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1264 if (er != EMULATE_DONE)
1265 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1266 return 1;
1269 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1271 struct vcpu_svm *svm = to_svm(vcpu);
1272 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1273 svm->vcpu.fpu_active = 1;
1274 update_cr0_intercept(svm);
1277 static int nm_interception(struct vcpu_svm *svm)
1279 svm_fpu_activate(&svm->vcpu);
1280 return 1;
1283 static int mc_interception(struct vcpu_svm *svm)
1286 * On an #MC intercept the MCE handler is not called automatically in
1287 * the host. So do it by hand here.
1289 asm volatile (
1290 "int $0x12\n");
1291 /* not sure if we ever come back to this point */
1293 return 1;
1296 static int shutdown_interception(struct vcpu_svm *svm)
1298 struct kvm_run *kvm_run = svm->vcpu.run;
1301 * VMCB is undefined after a SHUTDOWN intercept
1302 * so reinitialize it.
1304 clear_page(svm->vmcb);
1305 init_vmcb(svm);
1307 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1308 return 0;
1311 static int io_interception(struct vcpu_svm *svm)
1313 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1314 int size, in, string;
1315 unsigned port;
1317 ++svm->vcpu.stat.io_exits;
1319 svm->next_rip = svm->vmcb->control.exit_info_2;
1321 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1323 if (string) {
1324 if (emulate_instruction(&svm->vcpu,
1325 0, 0, 0) == EMULATE_DO_MMIO)
1326 return 0;
1327 return 1;
1330 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1331 port = io_info >> 16;
1332 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1334 skip_emulated_instruction(&svm->vcpu);
1335 return kvm_emulate_pio(&svm->vcpu, in, size, port);
1338 static int nmi_interception(struct vcpu_svm *svm)
1340 return 1;
1343 static int intr_interception(struct vcpu_svm *svm)
1345 ++svm->vcpu.stat.irq_exits;
1346 return 1;
1349 static int nop_on_interception(struct vcpu_svm *svm)
1351 return 1;
1354 static int halt_interception(struct vcpu_svm *svm)
1356 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1357 skip_emulated_instruction(&svm->vcpu);
1358 return kvm_emulate_halt(&svm->vcpu);
1361 static int vmmcall_interception(struct vcpu_svm *svm)
1363 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1364 skip_emulated_instruction(&svm->vcpu);
1365 kvm_emulate_hypercall(&svm->vcpu);
1366 return 1;
1369 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1371 if (!(svm->vcpu.arch.efer & EFER_SVME)
1372 || !is_paging(&svm->vcpu)) {
1373 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1374 return 1;
1377 if (svm->vmcb->save.cpl) {
1378 kvm_inject_gp(&svm->vcpu, 0);
1379 return 1;
1382 return 0;
1385 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1386 bool has_error_code, u32 error_code)
1388 int vmexit;
1390 if (!is_nested(svm))
1391 return 0;
1393 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1394 svm->vmcb->control.exit_code_hi = 0;
1395 svm->vmcb->control.exit_info_1 = error_code;
1396 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1398 vmexit = nested_svm_intercept(svm);
1399 if (vmexit == NESTED_EXIT_DONE)
1400 svm->nested.exit_required = true;
1402 return vmexit;
1405 static inline int nested_svm_intr(struct vcpu_svm *svm)
1407 if (!is_nested(svm))
1408 return 0;
1410 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1411 return 0;
1413 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1414 return 0;
1416 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1418 if (svm->nested.intercept & 1ULL) {
1420 * The #vmexit can't be emulated here directly because this
1421 * code path runs with irqs and preemtion disabled. A
1422 * #vmexit emulation might sleep. Only signal request for
1423 * the #vmexit here.
1425 svm->nested.exit_required = true;
1426 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1427 return 1;
1430 return 0;
1433 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1435 struct page *page;
1437 might_sleep();
1439 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1440 if (is_error_page(page))
1441 goto error;
1443 *_page = page;
1445 return kmap(page);
1447 error:
1448 kvm_release_page_clean(page);
1449 kvm_inject_gp(&svm->vcpu, 0);
1451 return NULL;
1454 static void nested_svm_unmap(struct page *page)
1456 kunmap(page);
1457 kvm_release_page_dirty(page);
1460 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1462 u32 param = svm->vmcb->control.exit_info_1 & 1;
1463 u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1464 bool ret = false;
1465 u32 t0, t1;
1466 u8 val;
1468 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1469 return false;
1471 switch (msr) {
1472 case 0 ... 0x1fff:
1473 t0 = (msr * 2) % 8;
1474 t1 = msr / 8;
1475 break;
1476 case 0xc0000000 ... 0xc0001fff:
1477 t0 = (8192 + msr - 0xc0000000) * 2;
1478 t1 = (t0 / 8);
1479 t0 %= 8;
1480 break;
1481 case 0xc0010000 ... 0xc0011fff:
1482 t0 = (16384 + msr - 0xc0010000) * 2;
1483 t1 = (t0 / 8);
1484 t0 %= 8;
1485 break;
1486 default:
1487 ret = true;
1488 goto out;
1491 if (!kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + t1, &val, 1))
1492 ret = val & ((1 << param) << t0);
1494 out:
1495 return ret;
1498 static int nested_svm_exit_special(struct vcpu_svm *svm)
1500 u32 exit_code = svm->vmcb->control.exit_code;
1502 switch (exit_code) {
1503 case SVM_EXIT_INTR:
1504 case SVM_EXIT_NMI:
1505 return NESTED_EXIT_HOST;
1506 /* For now we are always handling NPFs when using them */
1507 case SVM_EXIT_NPF:
1508 if (npt_enabled)
1509 return NESTED_EXIT_HOST;
1510 break;
1511 /* When we're shadowing, trap PFs */
1512 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1513 if (!npt_enabled)
1514 return NESTED_EXIT_HOST;
1515 break;
1516 default:
1517 break;
1520 return NESTED_EXIT_CONTINUE;
1524 * If this function returns true, this #vmexit was already handled
1526 static int nested_svm_intercept(struct vcpu_svm *svm)
1528 u32 exit_code = svm->vmcb->control.exit_code;
1529 int vmexit = NESTED_EXIT_HOST;
1531 switch (exit_code) {
1532 case SVM_EXIT_MSR:
1533 vmexit = nested_svm_exit_handled_msr(svm);
1534 break;
1535 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1536 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1537 if (svm->nested.intercept_cr_read & cr_bits)
1538 vmexit = NESTED_EXIT_DONE;
1539 break;
1541 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1542 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1543 if (svm->nested.intercept_cr_write & cr_bits)
1544 vmexit = NESTED_EXIT_DONE;
1545 break;
1547 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1548 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1549 if (svm->nested.intercept_dr_read & dr_bits)
1550 vmexit = NESTED_EXIT_DONE;
1551 break;
1553 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1554 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1555 if (svm->nested.intercept_dr_write & dr_bits)
1556 vmexit = NESTED_EXIT_DONE;
1557 break;
1559 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1560 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1561 if (svm->nested.intercept_exceptions & excp_bits)
1562 vmexit = NESTED_EXIT_DONE;
1563 break;
1565 default: {
1566 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1567 if (svm->nested.intercept & exit_bits)
1568 vmexit = NESTED_EXIT_DONE;
1572 return vmexit;
1575 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1577 int vmexit;
1579 vmexit = nested_svm_intercept(svm);
1581 if (vmexit == NESTED_EXIT_DONE)
1582 nested_svm_vmexit(svm);
1584 return vmexit;
1587 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1589 struct vmcb_control_area *dst = &dst_vmcb->control;
1590 struct vmcb_control_area *from = &from_vmcb->control;
1592 dst->intercept_cr_read = from->intercept_cr_read;
1593 dst->intercept_cr_write = from->intercept_cr_write;
1594 dst->intercept_dr_read = from->intercept_dr_read;
1595 dst->intercept_dr_write = from->intercept_dr_write;
1596 dst->intercept_exceptions = from->intercept_exceptions;
1597 dst->intercept = from->intercept;
1598 dst->iopm_base_pa = from->iopm_base_pa;
1599 dst->msrpm_base_pa = from->msrpm_base_pa;
1600 dst->tsc_offset = from->tsc_offset;
1601 dst->asid = from->asid;
1602 dst->tlb_ctl = from->tlb_ctl;
1603 dst->int_ctl = from->int_ctl;
1604 dst->int_vector = from->int_vector;
1605 dst->int_state = from->int_state;
1606 dst->exit_code = from->exit_code;
1607 dst->exit_code_hi = from->exit_code_hi;
1608 dst->exit_info_1 = from->exit_info_1;
1609 dst->exit_info_2 = from->exit_info_2;
1610 dst->exit_int_info = from->exit_int_info;
1611 dst->exit_int_info_err = from->exit_int_info_err;
1612 dst->nested_ctl = from->nested_ctl;
1613 dst->event_inj = from->event_inj;
1614 dst->event_inj_err = from->event_inj_err;
1615 dst->nested_cr3 = from->nested_cr3;
1616 dst->lbr_ctl = from->lbr_ctl;
1619 static int nested_svm_vmexit(struct vcpu_svm *svm)
1621 struct vmcb *nested_vmcb;
1622 struct vmcb *hsave = svm->nested.hsave;
1623 struct vmcb *vmcb = svm->vmcb;
1624 struct page *page;
1626 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1627 vmcb->control.exit_info_1,
1628 vmcb->control.exit_info_2,
1629 vmcb->control.exit_int_info,
1630 vmcb->control.exit_int_info_err);
1632 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1633 if (!nested_vmcb)
1634 return 1;
1636 /* Give the current vmcb to the guest */
1637 disable_gif(svm);
1639 nested_vmcb->save.es = vmcb->save.es;
1640 nested_vmcb->save.cs = vmcb->save.cs;
1641 nested_vmcb->save.ss = vmcb->save.ss;
1642 nested_vmcb->save.ds = vmcb->save.ds;
1643 nested_vmcb->save.gdtr = vmcb->save.gdtr;
1644 nested_vmcb->save.idtr = vmcb->save.idtr;
1645 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
1646 if (npt_enabled)
1647 nested_vmcb->save.cr3 = vmcb->save.cr3;
1648 else
1649 nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
1650 nested_vmcb->save.cr2 = vmcb->save.cr2;
1651 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
1652 nested_vmcb->save.rflags = vmcb->save.rflags;
1653 nested_vmcb->save.rip = vmcb->save.rip;
1654 nested_vmcb->save.rsp = vmcb->save.rsp;
1655 nested_vmcb->save.rax = vmcb->save.rax;
1656 nested_vmcb->save.dr7 = vmcb->save.dr7;
1657 nested_vmcb->save.dr6 = vmcb->save.dr6;
1658 nested_vmcb->save.cpl = vmcb->save.cpl;
1660 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
1661 nested_vmcb->control.int_vector = vmcb->control.int_vector;
1662 nested_vmcb->control.int_state = vmcb->control.int_state;
1663 nested_vmcb->control.exit_code = vmcb->control.exit_code;
1664 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
1665 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
1666 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
1667 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
1668 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1671 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1672 * to make sure that we do not lose injected events. So check event_inj
1673 * here and copy it to exit_int_info if it is valid.
1674 * Exit_int_info and event_inj can't be both valid because the case
1675 * below only happens on a VMRUN instruction intercept which has
1676 * no valid exit_int_info set.
1678 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1679 struct vmcb_control_area *nc = &nested_vmcb->control;
1681 nc->exit_int_info = vmcb->control.event_inj;
1682 nc->exit_int_info_err = vmcb->control.event_inj_err;
1685 nested_vmcb->control.tlb_ctl = 0;
1686 nested_vmcb->control.event_inj = 0;
1687 nested_vmcb->control.event_inj_err = 0;
1689 /* We always set V_INTR_MASKING and remember the old value in hflags */
1690 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1691 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1693 /* Restore the original control entries */
1694 copy_vmcb_control_area(vmcb, hsave);
1696 kvm_clear_exception_queue(&svm->vcpu);
1697 kvm_clear_interrupt_queue(&svm->vcpu);
1699 /* Restore selected save entries */
1700 svm->vmcb->save.es = hsave->save.es;
1701 svm->vmcb->save.cs = hsave->save.cs;
1702 svm->vmcb->save.ss = hsave->save.ss;
1703 svm->vmcb->save.ds = hsave->save.ds;
1704 svm->vmcb->save.gdtr = hsave->save.gdtr;
1705 svm->vmcb->save.idtr = hsave->save.idtr;
1706 svm->vmcb->save.rflags = hsave->save.rflags;
1707 svm_set_efer(&svm->vcpu, hsave->save.efer);
1708 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1709 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1710 if (npt_enabled) {
1711 svm->vmcb->save.cr3 = hsave->save.cr3;
1712 svm->vcpu.arch.cr3 = hsave->save.cr3;
1713 } else {
1714 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1716 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1717 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1718 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1719 svm->vmcb->save.dr7 = 0;
1720 svm->vmcb->save.cpl = 0;
1721 svm->vmcb->control.exit_int_info = 0;
1723 /* Exit nested SVM mode */
1724 svm->nested.vmcb = 0;
1726 nested_svm_unmap(page);
1728 kvm_mmu_reset_context(&svm->vcpu);
1729 kvm_mmu_load(&svm->vcpu);
1731 return 0;
1734 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1736 u32 *nested_msrpm;
1737 struct page *page;
1738 int i;
1740 nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, &page);
1741 if (!nested_msrpm)
1742 return false;
1744 for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1745 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1747 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1749 nested_svm_unmap(page);
1751 return true;
1754 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1756 struct vmcb *nested_vmcb;
1757 struct vmcb *hsave = svm->nested.hsave;
1758 struct vmcb *vmcb = svm->vmcb;
1759 struct page *page;
1761 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1762 if (!nested_vmcb)
1763 return false;
1765 /* nested_vmcb is our indicator if nested SVM is activated */
1766 svm->nested.vmcb = svm->vmcb->save.rax;
1768 trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
1769 nested_vmcb->save.rip,
1770 nested_vmcb->control.int_ctl,
1771 nested_vmcb->control.event_inj,
1772 nested_vmcb->control.nested_ctl);
1774 /* Clear internal status */
1775 kvm_clear_exception_queue(&svm->vcpu);
1776 kvm_clear_interrupt_queue(&svm->vcpu);
1778 /* Save the old vmcb, so we don't need to pick what we save, but
1779 can restore everything when a VMEXIT occurs */
1780 hsave->save.es = vmcb->save.es;
1781 hsave->save.cs = vmcb->save.cs;
1782 hsave->save.ss = vmcb->save.ss;
1783 hsave->save.ds = vmcb->save.ds;
1784 hsave->save.gdtr = vmcb->save.gdtr;
1785 hsave->save.idtr = vmcb->save.idtr;
1786 hsave->save.efer = svm->vcpu.arch.efer;
1787 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
1788 hsave->save.cr4 = svm->vcpu.arch.cr4;
1789 hsave->save.rflags = vmcb->save.rflags;
1790 hsave->save.rip = svm->next_rip;
1791 hsave->save.rsp = vmcb->save.rsp;
1792 hsave->save.rax = vmcb->save.rax;
1793 if (npt_enabled)
1794 hsave->save.cr3 = vmcb->save.cr3;
1795 else
1796 hsave->save.cr3 = svm->vcpu.arch.cr3;
1798 copy_vmcb_control_area(hsave, vmcb);
1800 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1801 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1802 else
1803 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1805 /* Load the nested guest state */
1806 svm->vmcb->save.es = nested_vmcb->save.es;
1807 svm->vmcb->save.cs = nested_vmcb->save.cs;
1808 svm->vmcb->save.ss = nested_vmcb->save.ss;
1809 svm->vmcb->save.ds = nested_vmcb->save.ds;
1810 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1811 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1812 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1813 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1814 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1815 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1816 if (npt_enabled) {
1817 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1818 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1819 } else {
1820 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1821 kvm_mmu_reset_context(&svm->vcpu);
1823 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1824 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1825 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1826 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1827 /* In case we don't even reach vcpu_run, the fields are not updated */
1828 svm->vmcb->save.rax = nested_vmcb->save.rax;
1829 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1830 svm->vmcb->save.rip = nested_vmcb->save.rip;
1831 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1832 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1833 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1835 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1837 /* cache intercepts */
1838 svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
1839 svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
1840 svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
1841 svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
1842 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1843 svm->nested.intercept = nested_vmcb->control.intercept;
1845 force_new_asid(&svm->vcpu);
1846 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1847 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1848 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1849 else
1850 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1852 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
1853 /* We only want the cr8 intercept bits of the guest */
1854 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
1855 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
1858 /* We don't want a nested guest to be more powerful than the guest,
1859 so all intercepts are ORed */
1860 svm->vmcb->control.intercept_cr_read |=
1861 nested_vmcb->control.intercept_cr_read;
1862 svm->vmcb->control.intercept_cr_write |=
1863 nested_vmcb->control.intercept_cr_write;
1864 svm->vmcb->control.intercept_dr_read |=
1865 nested_vmcb->control.intercept_dr_read;
1866 svm->vmcb->control.intercept_dr_write |=
1867 nested_vmcb->control.intercept_dr_write;
1868 svm->vmcb->control.intercept_exceptions |=
1869 nested_vmcb->control.intercept_exceptions;
1871 svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1873 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
1874 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1875 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1876 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1877 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1878 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1880 nested_svm_unmap(page);
1882 enable_gif(svm);
1884 return true;
1887 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1889 to_vmcb->save.fs = from_vmcb->save.fs;
1890 to_vmcb->save.gs = from_vmcb->save.gs;
1891 to_vmcb->save.tr = from_vmcb->save.tr;
1892 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1893 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1894 to_vmcb->save.star = from_vmcb->save.star;
1895 to_vmcb->save.lstar = from_vmcb->save.lstar;
1896 to_vmcb->save.cstar = from_vmcb->save.cstar;
1897 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1898 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1899 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1900 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1903 static int vmload_interception(struct vcpu_svm *svm)
1905 struct vmcb *nested_vmcb;
1906 struct page *page;
1908 if (nested_svm_check_permissions(svm))
1909 return 1;
1911 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1912 skip_emulated_instruction(&svm->vcpu);
1914 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1915 if (!nested_vmcb)
1916 return 1;
1918 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1919 nested_svm_unmap(page);
1921 return 1;
1924 static int vmsave_interception(struct vcpu_svm *svm)
1926 struct vmcb *nested_vmcb;
1927 struct page *page;
1929 if (nested_svm_check_permissions(svm))
1930 return 1;
1932 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1933 skip_emulated_instruction(&svm->vcpu);
1935 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1936 if (!nested_vmcb)
1937 return 1;
1939 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1940 nested_svm_unmap(page);
1942 return 1;
1945 static int vmrun_interception(struct vcpu_svm *svm)
1947 if (nested_svm_check_permissions(svm))
1948 return 1;
1950 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1951 skip_emulated_instruction(&svm->vcpu);
1953 if (!nested_svm_vmrun(svm))
1954 return 1;
1956 if (!nested_svm_vmrun_msrpm(svm))
1957 goto failed;
1959 return 1;
1961 failed:
1963 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
1964 svm->vmcb->control.exit_code_hi = 0;
1965 svm->vmcb->control.exit_info_1 = 0;
1966 svm->vmcb->control.exit_info_2 = 0;
1968 nested_svm_vmexit(svm);
1970 return 1;
1973 static int stgi_interception(struct vcpu_svm *svm)
1975 if (nested_svm_check_permissions(svm))
1976 return 1;
1978 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1979 skip_emulated_instruction(&svm->vcpu);
1981 enable_gif(svm);
1983 return 1;
1986 static int clgi_interception(struct vcpu_svm *svm)
1988 if (nested_svm_check_permissions(svm))
1989 return 1;
1991 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1992 skip_emulated_instruction(&svm->vcpu);
1994 disable_gif(svm);
1996 /* After a CLGI no interrupts should come */
1997 svm_clear_vintr(svm);
1998 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2000 return 1;
2003 static int invlpga_interception(struct vcpu_svm *svm)
2005 struct kvm_vcpu *vcpu = &svm->vcpu;
2007 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2008 vcpu->arch.regs[VCPU_REGS_RAX]);
2010 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2011 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2013 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2014 skip_emulated_instruction(&svm->vcpu);
2015 return 1;
2018 static int skinit_interception(struct vcpu_svm *svm)
2020 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2022 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2023 return 1;
2026 static int invalid_op_interception(struct vcpu_svm *svm)
2028 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2029 return 1;
2032 static int task_switch_interception(struct vcpu_svm *svm)
2034 u16 tss_selector;
2035 int reason;
2036 int int_type = svm->vmcb->control.exit_int_info &
2037 SVM_EXITINTINFO_TYPE_MASK;
2038 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2039 uint32_t type =
2040 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2041 uint32_t idt_v =
2042 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2044 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2046 if (svm->vmcb->control.exit_info_2 &
2047 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2048 reason = TASK_SWITCH_IRET;
2049 else if (svm->vmcb->control.exit_info_2 &
2050 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2051 reason = TASK_SWITCH_JMP;
2052 else if (idt_v)
2053 reason = TASK_SWITCH_GATE;
2054 else
2055 reason = TASK_SWITCH_CALL;
2057 if (reason == TASK_SWITCH_GATE) {
2058 switch (type) {
2059 case SVM_EXITINTINFO_TYPE_NMI:
2060 svm->vcpu.arch.nmi_injected = false;
2061 break;
2062 case SVM_EXITINTINFO_TYPE_EXEPT:
2063 kvm_clear_exception_queue(&svm->vcpu);
2064 break;
2065 case SVM_EXITINTINFO_TYPE_INTR:
2066 kvm_clear_interrupt_queue(&svm->vcpu);
2067 break;
2068 default:
2069 break;
2073 if (reason != TASK_SWITCH_GATE ||
2074 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2075 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2076 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2077 skip_emulated_instruction(&svm->vcpu);
2079 return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2082 static int cpuid_interception(struct vcpu_svm *svm)
2084 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2085 kvm_emulate_cpuid(&svm->vcpu);
2086 return 1;
2089 static int iret_interception(struct vcpu_svm *svm)
2091 ++svm->vcpu.stat.nmi_window_exits;
2092 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2093 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2094 return 1;
2097 static int invlpg_interception(struct vcpu_svm *svm)
2099 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2100 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2101 return 1;
2104 static int emulate_on_interception(struct vcpu_svm *svm)
2106 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2107 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2108 return 1;
2111 static int cr8_write_interception(struct vcpu_svm *svm)
2113 struct kvm_run *kvm_run = svm->vcpu.run;
2115 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2116 /* instruction emulation calls kvm_set_cr8() */
2117 emulate_instruction(&svm->vcpu, 0, 0, 0);
2118 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2119 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2120 return 1;
2122 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2123 return 1;
2124 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2125 return 0;
2128 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2130 struct vcpu_svm *svm = to_svm(vcpu);
2132 switch (ecx) {
2133 case MSR_IA32_TSC: {
2134 u64 tsc_offset;
2136 if (is_nested(svm))
2137 tsc_offset = svm->nested.hsave->control.tsc_offset;
2138 else
2139 tsc_offset = svm->vmcb->control.tsc_offset;
2141 *data = tsc_offset + native_read_tsc();
2142 break;
2144 case MSR_K6_STAR:
2145 *data = svm->vmcb->save.star;
2146 break;
2147 #ifdef CONFIG_X86_64
2148 case MSR_LSTAR:
2149 *data = svm->vmcb->save.lstar;
2150 break;
2151 case MSR_CSTAR:
2152 *data = svm->vmcb->save.cstar;
2153 break;
2154 case MSR_KERNEL_GS_BASE:
2155 *data = svm->vmcb->save.kernel_gs_base;
2156 break;
2157 case MSR_SYSCALL_MASK:
2158 *data = svm->vmcb->save.sfmask;
2159 break;
2160 #endif
2161 case MSR_IA32_SYSENTER_CS:
2162 *data = svm->vmcb->save.sysenter_cs;
2163 break;
2164 case MSR_IA32_SYSENTER_EIP:
2165 *data = svm->sysenter_eip;
2166 break;
2167 case MSR_IA32_SYSENTER_ESP:
2168 *data = svm->sysenter_esp;
2169 break;
2170 /* Nobody will change the following 5 values in the VMCB so
2171 we can safely return them on rdmsr. They will always be 0
2172 until LBRV is implemented. */
2173 case MSR_IA32_DEBUGCTLMSR:
2174 *data = svm->vmcb->save.dbgctl;
2175 break;
2176 case MSR_IA32_LASTBRANCHFROMIP:
2177 *data = svm->vmcb->save.br_from;
2178 break;
2179 case MSR_IA32_LASTBRANCHTOIP:
2180 *data = svm->vmcb->save.br_to;
2181 break;
2182 case MSR_IA32_LASTINTFROMIP:
2183 *data = svm->vmcb->save.last_excp_from;
2184 break;
2185 case MSR_IA32_LASTINTTOIP:
2186 *data = svm->vmcb->save.last_excp_to;
2187 break;
2188 case MSR_VM_HSAVE_PA:
2189 *data = svm->nested.hsave_msr;
2190 break;
2191 case MSR_VM_CR:
2192 *data = 0;
2193 break;
2194 case MSR_IA32_UCODE_REV:
2195 *data = 0x01000065;
2196 break;
2197 default:
2198 return kvm_get_msr_common(vcpu, ecx, data);
2200 return 0;
2203 static int rdmsr_interception(struct vcpu_svm *svm)
2205 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2206 u64 data;
2208 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2209 trace_kvm_msr_read_ex(ecx);
2210 kvm_inject_gp(&svm->vcpu, 0);
2211 } else {
2212 trace_kvm_msr_read(ecx, data);
2214 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2215 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2216 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2217 skip_emulated_instruction(&svm->vcpu);
2219 return 1;
2222 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2224 struct vcpu_svm *svm = to_svm(vcpu);
2226 switch (ecx) {
2227 case MSR_IA32_TSC: {
2228 u64 tsc_offset = data - native_read_tsc();
2229 u64 g_tsc_offset = 0;
2231 if (is_nested(svm)) {
2232 g_tsc_offset = svm->vmcb->control.tsc_offset -
2233 svm->nested.hsave->control.tsc_offset;
2234 svm->nested.hsave->control.tsc_offset = tsc_offset;
2237 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2239 break;
2241 case MSR_K6_STAR:
2242 svm->vmcb->save.star = data;
2243 break;
2244 #ifdef CONFIG_X86_64
2245 case MSR_LSTAR:
2246 svm->vmcb->save.lstar = data;
2247 break;
2248 case MSR_CSTAR:
2249 svm->vmcb->save.cstar = data;
2250 break;
2251 case MSR_KERNEL_GS_BASE:
2252 svm->vmcb->save.kernel_gs_base = data;
2253 break;
2254 case MSR_SYSCALL_MASK:
2255 svm->vmcb->save.sfmask = data;
2256 break;
2257 #endif
2258 case MSR_IA32_SYSENTER_CS:
2259 svm->vmcb->save.sysenter_cs = data;
2260 break;
2261 case MSR_IA32_SYSENTER_EIP:
2262 svm->sysenter_eip = data;
2263 svm->vmcb->save.sysenter_eip = data;
2264 break;
2265 case MSR_IA32_SYSENTER_ESP:
2266 svm->sysenter_esp = data;
2267 svm->vmcb->save.sysenter_esp = data;
2268 break;
2269 case MSR_IA32_DEBUGCTLMSR:
2270 if (!svm_has(SVM_FEATURE_LBRV)) {
2271 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2272 __func__, data);
2273 break;
2275 if (data & DEBUGCTL_RESERVED_BITS)
2276 return 1;
2278 svm->vmcb->save.dbgctl = data;
2279 if (data & (1ULL<<0))
2280 svm_enable_lbrv(svm);
2281 else
2282 svm_disable_lbrv(svm);
2283 break;
2284 case MSR_VM_HSAVE_PA:
2285 svm->nested.hsave_msr = data;
2286 break;
2287 case MSR_VM_CR:
2288 case MSR_VM_IGNNE:
2289 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2290 break;
2291 default:
2292 return kvm_set_msr_common(vcpu, ecx, data);
2294 return 0;
2297 static int wrmsr_interception(struct vcpu_svm *svm)
2299 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2300 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2301 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2304 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2305 if (svm_set_msr(&svm->vcpu, ecx, data)) {
2306 trace_kvm_msr_write_ex(ecx, data);
2307 kvm_inject_gp(&svm->vcpu, 0);
2308 } else {
2309 trace_kvm_msr_write(ecx, data);
2310 skip_emulated_instruction(&svm->vcpu);
2312 return 1;
2315 static int msr_interception(struct vcpu_svm *svm)
2317 if (svm->vmcb->control.exit_info_1)
2318 return wrmsr_interception(svm);
2319 else
2320 return rdmsr_interception(svm);
2323 static int interrupt_window_interception(struct vcpu_svm *svm)
2325 struct kvm_run *kvm_run = svm->vcpu.run;
2327 svm_clear_vintr(svm);
2328 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2330 * If the user space waits to inject interrupts, exit as soon as
2331 * possible
2333 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2334 kvm_run->request_interrupt_window &&
2335 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2336 ++svm->vcpu.stat.irq_window_exits;
2337 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2338 return 0;
2341 return 1;
2344 static int pause_interception(struct vcpu_svm *svm)
2346 kvm_vcpu_on_spin(&(svm->vcpu));
2347 return 1;
2350 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2351 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2352 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2353 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2354 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2355 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
2356 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
2357 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2358 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2359 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2360 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2361 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2362 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2363 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2364 [SVM_EXIT_READ_DR4] = emulate_on_interception,
2365 [SVM_EXIT_READ_DR5] = emulate_on_interception,
2366 [SVM_EXIT_READ_DR6] = emulate_on_interception,
2367 [SVM_EXIT_READ_DR7] = emulate_on_interception,
2368 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2369 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2370 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2371 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2372 [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
2373 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2374 [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
2375 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2376 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2377 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2378 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2379 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2380 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2381 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2382 [SVM_EXIT_INTR] = intr_interception,
2383 [SVM_EXIT_NMI] = nmi_interception,
2384 [SVM_EXIT_SMI] = nop_on_interception,
2385 [SVM_EXIT_INIT] = nop_on_interception,
2386 [SVM_EXIT_VINTR] = interrupt_window_interception,
2387 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2388 [SVM_EXIT_CPUID] = cpuid_interception,
2389 [SVM_EXIT_IRET] = iret_interception,
2390 [SVM_EXIT_INVD] = emulate_on_interception,
2391 [SVM_EXIT_PAUSE] = pause_interception,
2392 [SVM_EXIT_HLT] = halt_interception,
2393 [SVM_EXIT_INVLPG] = invlpg_interception,
2394 [SVM_EXIT_INVLPGA] = invlpga_interception,
2395 [SVM_EXIT_IOIO] = io_interception,
2396 [SVM_EXIT_MSR] = msr_interception,
2397 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2398 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2399 [SVM_EXIT_VMRUN] = vmrun_interception,
2400 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2401 [SVM_EXIT_VMLOAD] = vmload_interception,
2402 [SVM_EXIT_VMSAVE] = vmsave_interception,
2403 [SVM_EXIT_STGI] = stgi_interception,
2404 [SVM_EXIT_CLGI] = clgi_interception,
2405 [SVM_EXIT_SKINIT] = skinit_interception,
2406 [SVM_EXIT_WBINVD] = emulate_on_interception,
2407 [SVM_EXIT_MONITOR] = invalid_op_interception,
2408 [SVM_EXIT_MWAIT] = invalid_op_interception,
2409 [SVM_EXIT_NPF] = pf_interception,
2412 static int handle_exit(struct kvm_vcpu *vcpu)
2414 struct vcpu_svm *svm = to_svm(vcpu);
2415 struct kvm_run *kvm_run = vcpu->run;
2416 u32 exit_code = svm->vmcb->control.exit_code;
2418 trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2420 if (unlikely(svm->nested.exit_required)) {
2421 nested_svm_vmexit(svm);
2422 svm->nested.exit_required = false;
2424 return 1;
2427 if (is_nested(svm)) {
2428 int vmexit;
2430 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2431 svm->vmcb->control.exit_info_1,
2432 svm->vmcb->control.exit_info_2,
2433 svm->vmcb->control.exit_int_info,
2434 svm->vmcb->control.exit_int_info_err);
2436 vmexit = nested_svm_exit_special(svm);
2438 if (vmexit == NESTED_EXIT_CONTINUE)
2439 vmexit = nested_svm_exit_handled(svm);
2441 if (vmexit == NESTED_EXIT_DONE)
2442 return 1;
2445 svm_complete_interrupts(svm);
2447 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2448 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2449 if (npt_enabled)
2450 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2452 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2453 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2454 kvm_run->fail_entry.hardware_entry_failure_reason
2455 = svm->vmcb->control.exit_code;
2456 return 0;
2459 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2460 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2461 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2462 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2463 "exit_code 0x%x\n",
2464 __func__, svm->vmcb->control.exit_int_info,
2465 exit_code);
2467 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2468 || !svm_exit_handlers[exit_code]) {
2469 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2470 kvm_run->hw.hardware_exit_reason = exit_code;
2471 return 0;
2474 return svm_exit_handlers[exit_code](svm);
2477 static void reload_tss(struct kvm_vcpu *vcpu)
2479 int cpu = raw_smp_processor_id();
2481 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2482 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2483 load_TR_desc();
2486 static void pre_svm_run(struct vcpu_svm *svm)
2488 int cpu = raw_smp_processor_id();
2490 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2492 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2493 /* FIXME: handle wraparound of asid_generation */
2494 if (svm->asid_generation != sd->asid_generation)
2495 new_asid(svm, sd);
2498 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2500 struct vcpu_svm *svm = to_svm(vcpu);
2502 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2503 vcpu->arch.hflags |= HF_NMI_MASK;
2504 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2505 ++vcpu->stat.nmi_injections;
2508 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2510 struct vmcb_control_area *control;
2512 trace_kvm_inj_virq(irq);
2514 ++svm->vcpu.stat.irq_injections;
2515 control = &svm->vmcb->control;
2516 control->int_vector = irq;
2517 control->int_ctl &= ~V_INTR_PRIO_MASK;
2518 control->int_ctl |= V_IRQ_MASK |
2519 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2522 static void svm_set_irq(struct kvm_vcpu *vcpu)
2524 struct vcpu_svm *svm = to_svm(vcpu);
2526 BUG_ON(!(gif_set(svm)));
2528 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2529 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2532 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2534 struct vcpu_svm *svm = to_svm(vcpu);
2536 if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2537 return;
2539 if (irr == -1)
2540 return;
2542 if (tpr >= irr)
2543 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2546 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2548 struct vcpu_svm *svm = to_svm(vcpu);
2549 struct vmcb *vmcb = svm->vmcb;
2550 return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2551 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2554 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2556 struct vcpu_svm *svm = to_svm(vcpu);
2558 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2561 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2563 struct vcpu_svm *svm = to_svm(vcpu);
2565 if (masked) {
2566 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2567 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2568 } else {
2569 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2570 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2574 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2576 struct vcpu_svm *svm = to_svm(vcpu);
2577 struct vmcb *vmcb = svm->vmcb;
2578 int ret;
2580 if (!gif_set(svm) ||
2581 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2582 return 0;
2584 ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2586 if (is_nested(svm))
2587 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2589 return ret;
2592 static void enable_irq_window(struct kvm_vcpu *vcpu)
2594 struct vcpu_svm *svm = to_svm(vcpu);
2596 nested_svm_intr(svm);
2598 /* In case GIF=0 we can't rely on the CPU to tell us when
2599 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2600 * The next time we get that intercept, this function will be
2601 * called again though and we'll get the vintr intercept. */
2602 if (gif_set(svm)) {
2603 svm_set_vintr(svm);
2604 svm_inject_irq(svm, 0x0);
2608 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2610 struct vcpu_svm *svm = to_svm(vcpu);
2612 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2613 == HF_NMI_MASK)
2614 return; /* IRET will cause a vm exit */
2616 /* Something prevents NMI from been injected. Single step over
2617 possible problem (IRET or exception injection or interrupt
2618 shadow) */
2619 svm->nmi_singlestep = true;
2620 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2621 update_db_intercept(vcpu);
2624 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2626 return 0;
2629 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2631 force_new_asid(vcpu);
2634 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2638 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2640 struct vcpu_svm *svm = to_svm(vcpu);
2642 if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2643 return;
2645 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2646 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2647 kvm_set_cr8(vcpu, cr8);
2651 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2653 struct vcpu_svm *svm = to_svm(vcpu);
2654 u64 cr8;
2656 if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2657 return;
2659 cr8 = kvm_get_cr8(vcpu);
2660 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2661 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2664 static void svm_complete_interrupts(struct vcpu_svm *svm)
2666 u8 vector;
2667 int type;
2668 u32 exitintinfo = svm->vmcb->control.exit_int_info;
2670 if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2671 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2673 svm->vcpu.arch.nmi_injected = false;
2674 kvm_clear_exception_queue(&svm->vcpu);
2675 kvm_clear_interrupt_queue(&svm->vcpu);
2677 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2678 return;
2680 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2681 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2683 switch (type) {
2684 case SVM_EXITINTINFO_TYPE_NMI:
2685 svm->vcpu.arch.nmi_injected = true;
2686 break;
2687 case SVM_EXITINTINFO_TYPE_EXEPT:
2688 /* In case of software exception do not reinject an exception
2689 vector, but re-execute and instruction instead */
2690 if (is_nested(svm))
2691 break;
2692 if (kvm_exception_is_soft(vector))
2693 break;
2694 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2695 u32 err = svm->vmcb->control.exit_int_info_err;
2696 kvm_queue_exception_e(&svm->vcpu, vector, err);
2698 } else
2699 kvm_queue_exception(&svm->vcpu, vector);
2700 break;
2701 case SVM_EXITINTINFO_TYPE_INTR:
2702 kvm_queue_interrupt(&svm->vcpu, vector, false);
2703 break;
2704 default:
2705 break;
2709 #ifdef CONFIG_X86_64
2710 #define R "r"
2711 #else
2712 #define R "e"
2713 #endif
2715 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2717 struct vcpu_svm *svm = to_svm(vcpu);
2718 u16 fs_selector;
2719 u16 gs_selector;
2720 u16 ldt_selector;
2723 * A vmexit emulation is required before the vcpu can be executed
2724 * again.
2726 if (unlikely(svm->nested.exit_required))
2727 return;
2729 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2730 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2731 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2733 pre_svm_run(svm);
2735 sync_lapic_to_cr8(vcpu);
2737 save_host_msrs(vcpu);
2738 fs_selector = kvm_read_fs();
2739 gs_selector = kvm_read_gs();
2740 ldt_selector = kvm_read_ldt();
2741 svm->vmcb->save.cr2 = vcpu->arch.cr2;
2742 /* required for live migration with NPT */
2743 if (npt_enabled)
2744 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2746 clgi();
2748 local_irq_enable();
2750 asm volatile (
2751 "push %%"R"bp; \n\t"
2752 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2753 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2754 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2755 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2756 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2757 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2758 #ifdef CONFIG_X86_64
2759 "mov %c[r8](%[svm]), %%r8 \n\t"
2760 "mov %c[r9](%[svm]), %%r9 \n\t"
2761 "mov %c[r10](%[svm]), %%r10 \n\t"
2762 "mov %c[r11](%[svm]), %%r11 \n\t"
2763 "mov %c[r12](%[svm]), %%r12 \n\t"
2764 "mov %c[r13](%[svm]), %%r13 \n\t"
2765 "mov %c[r14](%[svm]), %%r14 \n\t"
2766 "mov %c[r15](%[svm]), %%r15 \n\t"
2767 #endif
2769 /* Enter guest mode */
2770 "push %%"R"ax \n\t"
2771 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2772 __ex(SVM_VMLOAD) "\n\t"
2773 __ex(SVM_VMRUN) "\n\t"
2774 __ex(SVM_VMSAVE) "\n\t"
2775 "pop %%"R"ax \n\t"
2777 /* Save guest registers, load host registers */
2778 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2779 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2780 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2781 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2782 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2783 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2784 #ifdef CONFIG_X86_64
2785 "mov %%r8, %c[r8](%[svm]) \n\t"
2786 "mov %%r9, %c[r9](%[svm]) \n\t"
2787 "mov %%r10, %c[r10](%[svm]) \n\t"
2788 "mov %%r11, %c[r11](%[svm]) \n\t"
2789 "mov %%r12, %c[r12](%[svm]) \n\t"
2790 "mov %%r13, %c[r13](%[svm]) \n\t"
2791 "mov %%r14, %c[r14](%[svm]) \n\t"
2792 "mov %%r15, %c[r15](%[svm]) \n\t"
2793 #endif
2794 "pop %%"R"bp"
2796 : [svm]"a"(svm),
2797 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2798 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2799 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2800 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2801 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2802 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2803 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2804 #ifdef CONFIG_X86_64
2805 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2806 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2807 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2808 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2809 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2810 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2811 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2812 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2813 #endif
2814 : "cc", "memory"
2815 , R"bx", R"cx", R"dx", R"si", R"di"
2816 #ifdef CONFIG_X86_64
2817 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2818 #endif
2821 vcpu->arch.cr2 = svm->vmcb->save.cr2;
2822 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2823 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2824 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2826 kvm_load_fs(fs_selector);
2827 kvm_load_gs(gs_selector);
2828 kvm_load_ldt(ldt_selector);
2829 load_host_msrs(vcpu);
2831 reload_tss(vcpu);
2833 local_irq_disable();
2835 stgi();
2837 sync_cr8_to_lapic(vcpu);
2839 svm->next_rip = 0;
2841 if (npt_enabled) {
2842 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2843 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2847 #undef R
2849 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2851 struct vcpu_svm *svm = to_svm(vcpu);
2853 if (npt_enabled) {
2854 svm->vmcb->control.nested_cr3 = root;
2855 force_new_asid(vcpu);
2856 return;
2859 svm->vmcb->save.cr3 = root;
2860 force_new_asid(vcpu);
2863 static int is_disabled(void)
2865 u64 vm_cr;
2867 rdmsrl(MSR_VM_CR, vm_cr);
2868 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2869 return 1;
2871 return 0;
2874 static void
2875 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2878 * Patch in the VMMCALL instruction:
2880 hypercall[0] = 0x0f;
2881 hypercall[1] = 0x01;
2882 hypercall[2] = 0xd9;
2885 static void svm_check_processor_compat(void *rtn)
2887 *(int *)rtn = 0;
2890 static bool svm_cpu_has_accelerated_tpr(void)
2892 return false;
2895 static int get_npt_level(void)
2897 #ifdef CONFIG_X86_64
2898 return PT64_ROOT_LEVEL;
2899 #else
2900 return PT32E_ROOT_LEVEL;
2901 #endif
2904 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2906 return 0;
2909 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
2913 static const struct trace_print_flags svm_exit_reasons_str[] = {
2914 { SVM_EXIT_READ_CR0, "read_cr0" },
2915 { SVM_EXIT_READ_CR3, "read_cr3" },
2916 { SVM_EXIT_READ_CR4, "read_cr4" },
2917 { SVM_EXIT_READ_CR8, "read_cr8" },
2918 { SVM_EXIT_WRITE_CR0, "write_cr0" },
2919 { SVM_EXIT_WRITE_CR3, "write_cr3" },
2920 { SVM_EXIT_WRITE_CR4, "write_cr4" },
2921 { SVM_EXIT_WRITE_CR8, "write_cr8" },
2922 { SVM_EXIT_READ_DR0, "read_dr0" },
2923 { SVM_EXIT_READ_DR1, "read_dr1" },
2924 { SVM_EXIT_READ_DR2, "read_dr2" },
2925 { SVM_EXIT_READ_DR3, "read_dr3" },
2926 { SVM_EXIT_WRITE_DR0, "write_dr0" },
2927 { SVM_EXIT_WRITE_DR1, "write_dr1" },
2928 { SVM_EXIT_WRITE_DR2, "write_dr2" },
2929 { SVM_EXIT_WRITE_DR3, "write_dr3" },
2930 { SVM_EXIT_WRITE_DR5, "write_dr5" },
2931 { SVM_EXIT_WRITE_DR7, "write_dr7" },
2932 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
2933 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
2934 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
2935 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
2936 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
2937 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
2938 { SVM_EXIT_INTR, "interrupt" },
2939 { SVM_EXIT_NMI, "nmi" },
2940 { SVM_EXIT_SMI, "smi" },
2941 { SVM_EXIT_INIT, "init" },
2942 { SVM_EXIT_VINTR, "vintr" },
2943 { SVM_EXIT_CPUID, "cpuid" },
2944 { SVM_EXIT_INVD, "invd" },
2945 { SVM_EXIT_HLT, "hlt" },
2946 { SVM_EXIT_INVLPG, "invlpg" },
2947 { SVM_EXIT_INVLPGA, "invlpga" },
2948 { SVM_EXIT_IOIO, "io" },
2949 { SVM_EXIT_MSR, "msr" },
2950 { SVM_EXIT_TASK_SWITCH, "task_switch" },
2951 { SVM_EXIT_SHUTDOWN, "shutdown" },
2952 { SVM_EXIT_VMRUN, "vmrun" },
2953 { SVM_EXIT_VMMCALL, "hypercall" },
2954 { SVM_EXIT_VMLOAD, "vmload" },
2955 { SVM_EXIT_VMSAVE, "vmsave" },
2956 { SVM_EXIT_STGI, "stgi" },
2957 { SVM_EXIT_CLGI, "clgi" },
2958 { SVM_EXIT_SKINIT, "skinit" },
2959 { SVM_EXIT_WBINVD, "wbinvd" },
2960 { SVM_EXIT_MONITOR, "monitor" },
2961 { SVM_EXIT_MWAIT, "mwait" },
2962 { SVM_EXIT_NPF, "npf" },
2963 { -1, NULL }
2966 static int svm_get_lpage_level(void)
2968 return PT_PDPE_LEVEL;
2971 static bool svm_rdtscp_supported(void)
2973 return false;
2976 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
2978 struct vcpu_svm *svm = to_svm(vcpu);
2980 update_cr0_intercept(svm);
2981 svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
2984 static struct kvm_x86_ops svm_x86_ops = {
2985 .cpu_has_kvm_support = has_svm,
2986 .disabled_by_bios = is_disabled,
2987 .hardware_setup = svm_hardware_setup,
2988 .hardware_unsetup = svm_hardware_unsetup,
2989 .check_processor_compatibility = svm_check_processor_compat,
2990 .hardware_enable = svm_hardware_enable,
2991 .hardware_disable = svm_hardware_disable,
2992 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2994 .vcpu_create = svm_create_vcpu,
2995 .vcpu_free = svm_free_vcpu,
2996 .vcpu_reset = svm_vcpu_reset,
2998 .prepare_guest_switch = svm_prepare_guest_switch,
2999 .vcpu_load = svm_vcpu_load,
3000 .vcpu_put = svm_vcpu_put,
3002 .set_guest_debug = svm_guest_debug,
3003 .get_msr = svm_get_msr,
3004 .set_msr = svm_set_msr,
3005 .get_segment_base = svm_get_segment_base,
3006 .get_segment = svm_get_segment,
3007 .set_segment = svm_set_segment,
3008 .get_cpl = svm_get_cpl,
3009 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3010 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3011 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3012 .set_cr0 = svm_set_cr0,
3013 .set_cr3 = svm_set_cr3,
3014 .set_cr4 = svm_set_cr4,
3015 .set_efer = svm_set_efer,
3016 .get_idt = svm_get_idt,
3017 .set_idt = svm_set_idt,
3018 .get_gdt = svm_get_gdt,
3019 .set_gdt = svm_set_gdt,
3020 .get_dr = svm_get_dr,
3021 .set_dr = svm_set_dr,
3022 .cache_reg = svm_cache_reg,
3023 .get_rflags = svm_get_rflags,
3024 .set_rflags = svm_set_rflags,
3025 .fpu_activate = svm_fpu_activate,
3026 .fpu_deactivate = svm_fpu_deactivate,
3028 .tlb_flush = svm_flush_tlb,
3030 .run = svm_vcpu_run,
3031 .handle_exit = handle_exit,
3032 .skip_emulated_instruction = skip_emulated_instruction,
3033 .set_interrupt_shadow = svm_set_interrupt_shadow,
3034 .get_interrupt_shadow = svm_get_interrupt_shadow,
3035 .patch_hypercall = svm_patch_hypercall,
3036 .set_irq = svm_set_irq,
3037 .set_nmi = svm_inject_nmi,
3038 .queue_exception = svm_queue_exception,
3039 .interrupt_allowed = svm_interrupt_allowed,
3040 .nmi_allowed = svm_nmi_allowed,
3041 .get_nmi_mask = svm_get_nmi_mask,
3042 .set_nmi_mask = svm_set_nmi_mask,
3043 .enable_nmi_window = enable_nmi_window,
3044 .enable_irq_window = enable_irq_window,
3045 .update_cr8_intercept = update_cr8_intercept,
3047 .set_tss_addr = svm_set_tss_addr,
3048 .get_tdp_level = get_npt_level,
3049 .get_mt_mask = svm_get_mt_mask,
3051 .exit_reasons_str = svm_exit_reasons_str,
3052 .get_lpage_level = svm_get_lpage_level,
3054 .cpuid_update = svm_cpuid_update,
3056 .rdtscp_supported = svm_rdtscp_supported,
3059 static int __init svm_init(void)
3061 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3062 THIS_MODULE);
3065 static void __exit svm_exit(void)
3067 kvm_exit();
3070 module_init(svm_init)
3071 module_exit(svm_exit)