Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / arch / x86 / kvm / svm.c
blobd96092b35936991c839ef5d66a5f58561ebdc149
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #define pr_fmt(fmt) "SVM: " fmt
20 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
54 #include <asm/virtext.h>
55 #include "trace.h"
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
74 #define SVM_FEATURE_NPT (1 << 0)
75 #define SVM_FEATURE_LBRV (1 << 1)
76 #define SVM_FEATURE_SVML (1 << 2)
77 #define SVM_FEATURE_NRIP (1 << 3)
78 #define SVM_FEATURE_TSC_RATE (1 << 4)
79 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
81 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
84 #define SVM_AVIC_DOORBELL 0xc001011b
86 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
92 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
93 #define TSC_RATIO_MIN 0x0000000000000001ULL
94 #define TSC_RATIO_MAX 0x000000ffffffffffULL
96 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
102 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS 8
110 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
112 #define AVIC_VM_ID_BITS 24
113 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
116 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
121 static bool erratum_383_found __read_mostly;
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 MSR_FS_BASE,
127 #endif
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 MSR_TSC_AUX,
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
134 struct kvm_sev_info {
135 bool active; /* SEV enabled guest */
136 unsigned int asid; /* ASID used for this guest */
137 unsigned int handle; /* SEV firmware handle */
138 int fd; /* SEV device fd */
139 unsigned long pages_locked; /* Number of pages locked */
140 struct list_head regions_list; /* List of registered regions */
143 struct kvm_svm {
144 struct kvm kvm;
146 /* Struct members for AVIC */
147 u32 avic_vm_id;
148 u32 ldr_mode;
149 struct page *avic_logical_id_table_page;
150 struct page *avic_physical_id_table_page;
151 struct hlist_node hnode;
153 struct kvm_sev_info sev_info;
156 struct kvm_vcpu;
158 struct nested_state {
159 struct vmcb *hsave;
160 u64 hsave_msr;
161 u64 vm_cr_msr;
162 u64 vmcb;
164 /* These are the merged vectors */
165 u32 *msrpm;
167 /* gpa pointers to the real vectors */
168 u64 vmcb_msrpm;
169 u64 vmcb_iopm;
171 /* A VMEXIT is required but not yet emulated */
172 bool exit_required;
174 /* cache for intercepts of the guest */
175 u32 intercept_cr;
176 u32 intercept_dr;
177 u32 intercept_exceptions;
178 u64 intercept;
180 /* Nested Paging related state */
181 u64 nested_cr3;
184 #define MSRPM_OFFSETS 16
185 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
188 * Set osvw_len to higher value when updated Revision Guides
189 * are published and we know what the new status bits are
191 static uint64_t osvw_len = 4, osvw_status;
193 struct vcpu_svm {
194 struct kvm_vcpu vcpu;
195 struct vmcb *vmcb;
196 unsigned long vmcb_pa;
197 struct svm_cpu_data *svm_data;
198 uint64_t asid_generation;
199 uint64_t sysenter_esp;
200 uint64_t sysenter_eip;
201 uint64_t tsc_aux;
203 u64 msr_decfg;
205 u64 next_rip;
207 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
208 struct {
209 u16 fs;
210 u16 gs;
211 u16 ldt;
212 u64 gs_base;
213 } host;
215 u64 spec_ctrl;
217 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218 * translated into the appropriate L2_CFG bits on the host to
219 * perform speculative control.
221 u64 virt_spec_ctrl;
223 u32 *msrpm;
225 ulong nmi_iret_rip;
227 struct nested_state nested;
229 bool nmi_singlestep;
230 u64 nmi_singlestep_guest_rflags;
232 unsigned int3_injected;
233 unsigned long int3_rip;
235 /* cached guest cpuid flags for faster access */
236 bool nrips_enabled : 1;
238 u32 ldr_reg;
239 struct page *avic_backing_page;
240 u64 *avic_physical_id_cache;
241 bool avic_is_running;
244 * Per-vcpu list of struct amd_svm_iommu_ir:
245 * This is used mainly to store interrupt remapping information used
246 * when update the vcpu affinity. This avoids the need to scan for
247 * IRTE and try to match ga_tag in the IOMMU driver.
249 struct list_head ir_list;
250 spinlock_t ir_list_lock;
252 /* which host CPU was used for running this vcpu */
253 unsigned int last_cpu;
257 * This is a wrapper of struct amd_iommu_ir_data.
259 struct amd_svm_iommu_ir {
260 struct list_head node; /* Used by SVM for per-vcpu ir_list */
261 void *data; /* Storing pointer to struct amd_ir_data */
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
267 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
268 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
269 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
270 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
272 static DEFINE_PER_CPU(u64, current_tsc_ratio);
273 #define TSC_RATIO_DEFAULT 0x0100000000ULL
275 #define MSR_INVALID 0xffffffffU
277 static const struct svm_direct_access_msrs {
278 u32 index; /* Index of the MSR */
279 bool always; /* True if intercept is always on */
280 } direct_access_msrs[] = {
281 { .index = MSR_STAR, .always = true },
282 { .index = MSR_IA32_SYSENTER_CS, .always = true },
283 #ifdef CONFIG_X86_64
284 { .index = MSR_GS_BASE, .always = true },
285 { .index = MSR_FS_BASE, .always = true },
286 { .index = MSR_KERNEL_GS_BASE, .always = true },
287 { .index = MSR_LSTAR, .always = true },
288 { .index = MSR_CSTAR, .always = true },
289 { .index = MSR_SYSCALL_MASK, .always = true },
290 #endif
291 { .index = MSR_IA32_SPEC_CTRL, .always = false },
292 { .index = MSR_IA32_PRED_CMD, .always = false },
293 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
294 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
295 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
296 { .index = MSR_IA32_LASTINTTOIP, .always = false },
297 { .index = MSR_INVALID, .always = false },
300 /* enable NPT for AMD64 and X86 with PAE */
301 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302 static bool npt_enabled = true;
303 #else
304 static bool npt_enabled;
305 #endif
308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309 * pause_filter_count: On processors that support Pause filtering(indicated
310 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311 * count value. On VMRUN this value is loaded into an internal counter.
312 * Each time a pause instruction is executed, this counter is decremented
313 * until it reaches zero at which time a #VMEXIT is generated if pause
314 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
315 * Intercept Filtering for more details.
316 * This also indicate if ple logic enabled.
318 * pause_filter_thresh: In addition, some processor families support advanced
319 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320 * the amount of time a guest is allowed to execute in a pause loop.
321 * In this mode, a 16-bit pause filter threshold field is added in the
322 * VMCB. The threshold value is a cycle count that is used to reset the
323 * pause counter. As with simple pause filtering, VMRUN loads the pause
324 * count value from VMCB into an internal counter. Then, on each pause
325 * instruction the hardware checks the elapsed number of cycles since
326 * the most recent pause instruction against the pause filter threshold.
327 * If the elapsed cycle count is greater than the pause filter threshold,
328 * then the internal pause count is reloaded from the VMCB and execution
329 * continues. If the elapsed cycle count is less than the pause filter
330 * threshold, then the internal pause count is decremented. If the count
331 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332 * triggered. If advanced pause filtering is supported and pause filter
333 * threshold field is set to zero, the filter will operate in the simpler,
334 * count only mode.
337 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338 module_param(pause_filter_thresh, ushort, 0444);
340 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341 module_param(pause_filter_count, ushort, 0444);
343 /* Default doubles per-vcpu window every exit. */
344 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345 module_param(pause_filter_count_grow, ushort, 0444);
347 /* Default resets per-vcpu window every exit to pause_filter_count. */
348 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349 module_param(pause_filter_count_shrink, ushort, 0444);
351 /* Default is to compute the maximum so we can never overflow. */
352 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353 module_param(pause_filter_count_max, ushort, 0444);
355 /* allow nested paging (virtualized MMU) for all guests */
356 static int npt = true;
357 module_param(npt, int, S_IRUGO);
359 /* allow nested virtualization in KVM/SVM */
360 static int nested = true;
361 module_param(nested, int, S_IRUGO);
363 /* enable / disable AVIC */
364 static int avic;
365 #ifdef CONFIG_X86_LOCAL_APIC
366 module_param(avic, int, S_IRUGO);
367 #endif
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
381 static u8 rsm_ins_bytes[] = "\x0f\xaa";
383 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385 static void svm_complete_interrupts(struct vcpu_svm *svm);
387 static int nested_svm_exit_handled(struct vcpu_svm *svm);
388 static int nested_svm_intercept(struct vcpu_svm *svm);
389 static int nested_svm_vmexit(struct vcpu_svm *svm);
390 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391 bool has_error_code, u32 error_code);
393 enum {
394 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395 pause filter count */
396 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
397 VMCB_ASID, /* ASID */
398 VMCB_INTR, /* int_ctl, int_vector */
399 VMCB_NPT, /* npt_en, nCR3, gPAT */
400 VMCB_CR, /* CR0, CR3, CR4, EFER */
401 VMCB_DR, /* DR6, DR7 */
402 VMCB_DT, /* GDT, IDT */
403 VMCB_SEG, /* CS, DS, SS, ES, CPL */
404 VMCB_CR2, /* CR2 only */
405 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407 * AVIC PHYSICAL_TABLE pointer,
408 * AVIC LOGICAL_TABLE pointer
410 VMCB_DIRTY_MAX,
413 /* TPR and CR2 are always written before VMRUN */
414 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
416 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
418 static unsigned int max_sev_asid;
419 static unsigned int min_sev_asid;
420 static unsigned long *sev_asid_bitmap;
421 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
423 struct enc_region {
424 struct list_head list;
425 unsigned long npages;
426 struct page **pages;
427 unsigned long uaddr;
428 unsigned long size;
432 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
434 return container_of(kvm, struct kvm_svm, kvm);
437 static inline bool svm_sev_enabled(void)
439 return max_sev_asid;
442 static inline bool sev_guest(struct kvm *kvm)
444 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
446 return sev->active;
449 static inline int sev_get_asid(struct kvm *kvm)
451 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
453 return sev->asid;
456 static inline void mark_all_dirty(struct vmcb *vmcb)
458 vmcb->control.clean = 0;
461 static inline void mark_all_clean(struct vmcb *vmcb)
463 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
464 & ~VMCB_ALWAYS_DIRTY_MASK;
467 static inline void mark_dirty(struct vmcb *vmcb, int bit)
469 vmcb->control.clean &= ~(1 << bit);
472 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
474 return container_of(vcpu, struct vcpu_svm, vcpu);
477 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
479 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
480 mark_dirty(svm->vmcb, VMCB_AVIC);
483 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
485 struct vcpu_svm *svm = to_svm(vcpu);
486 u64 *entry = svm->avic_physical_id_cache;
488 if (!entry)
489 return false;
491 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
494 static void recalc_intercepts(struct vcpu_svm *svm)
496 struct vmcb_control_area *c, *h;
497 struct nested_state *g;
499 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
501 if (!is_guest_mode(&svm->vcpu))
502 return;
504 c = &svm->vmcb->control;
505 h = &svm->nested.hsave->control;
506 g = &svm->nested;
508 c->intercept_cr = h->intercept_cr | g->intercept_cr;
509 c->intercept_dr = h->intercept_dr | g->intercept_dr;
510 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
511 c->intercept = h->intercept | g->intercept;
514 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
516 if (is_guest_mode(&svm->vcpu))
517 return svm->nested.hsave;
518 else
519 return svm->vmcb;
522 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
524 struct vmcb *vmcb = get_host_vmcb(svm);
526 vmcb->control.intercept_cr |= (1U << bit);
528 recalc_intercepts(svm);
531 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
533 struct vmcb *vmcb = get_host_vmcb(svm);
535 vmcb->control.intercept_cr &= ~(1U << bit);
537 recalc_intercepts(svm);
540 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
542 struct vmcb *vmcb = get_host_vmcb(svm);
544 return vmcb->control.intercept_cr & (1U << bit);
547 static inline void set_dr_intercepts(struct vcpu_svm *svm)
549 struct vmcb *vmcb = get_host_vmcb(svm);
551 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
552 | (1 << INTERCEPT_DR1_READ)
553 | (1 << INTERCEPT_DR2_READ)
554 | (1 << INTERCEPT_DR3_READ)
555 | (1 << INTERCEPT_DR4_READ)
556 | (1 << INTERCEPT_DR5_READ)
557 | (1 << INTERCEPT_DR6_READ)
558 | (1 << INTERCEPT_DR7_READ)
559 | (1 << INTERCEPT_DR0_WRITE)
560 | (1 << INTERCEPT_DR1_WRITE)
561 | (1 << INTERCEPT_DR2_WRITE)
562 | (1 << INTERCEPT_DR3_WRITE)
563 | (1 << INTERCEPT_DR4_WRITE)
564 | (1 << INTERCEPT_DR5_WRITE)
565 | (1 << INTERCEPT_DR6_WRITE)
566 | (1 << INTERCEPT_DR7_WRITE);
568 recalc_intercepts(svm);
571 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
573 struct vmcb *vmcb = get_host_vmcb(svm);
575 vmcb->control.intercept_dr = 0;
577 recalc_intercepts(svm);
580 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
582 struct vmcb *vmcb = get_host_vmcb(svm);
584 vmcb->control.intercept_exceptions |= (1U << bit);
586 recalc_intercepts(svm);
589 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
591 struct vmcb *vmcb = get_host_vmcb(svm);
593 vmcb->control.intercept_exceptions &= ~(1U << bit);
595 recalc_intercepts(svm);
598 static inline void set_intercept(struct vcpu_svm *svm, int bit)
600 struct vmcb *vmcb = get_host_vmcb(svm);
602 vmcb->control.intercept |= (1ULL << bit);
604 recalc_intercepts(svm);
607 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
609 struct vmcb *vmcb = get_host_vmcb(svm);
611 vmcb->control.intercept &= ~(1ULL << bit);
613 recalc_intercepts(svm);
616 static inline bool vgif_enabled(struct vcpu_svm *svm)
618 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
621 static inline void enable_gif(struct vcpu_svm *svm)
623 if (vgif_enabled(svm))
624 svm->vmcb->control.int_ctl |= V_GIF_MASK;
625 else
626 svm->vcpu.arch.hflags |= HF_GIF_MASK;
629 static inline void disable_gif(struct vcpu_svm *svm)
631 if (vgif_enabled(svm))
632 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
633 else
634 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
637 static inline bool gif_set(struct vcpu_svm *svm)
639 if (vgif_enabled(svm))
640 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
641 else
642 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
645 static unsigned long iopm_base;
647 struct kvm_ldttss_desc {
648 u16 limit0;
649 u16 base0;
650 unsigned base1:8, type:5, dpl:2, p:1;
651 unsigned limit1:4, zero0:3, g:1, base2:8;
652 u32 base3;
653 u32 zero1;
654 } __attribute__((packed));
656 struct svm_cpu_data {
657 int cpu;
659 u64 asid_generation;
660 u32 max_asid;
661 u32 next_asid;
662 u32 min_asid;
663 struct kvm_ldttss_desc *tss_desc;
665 struct page *save_area;
666 struct vmcb *current_vmcb;
668 /* index = sev_asid, value = vmcb pointer */
669 struct vmcb **sev_vmcbs;
672 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
674 struct svm_init_data {
675 int cpu;
676 int r;
679 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
681 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
682 #define MSRS_RANGE_SIZE 2048
683 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
685 static u32 svm_msrpm_offset(u32 msr)
687 u32 offset;
688 int i;
690 for (i = 0; i < NUM_MSR_MAPS; i++) {
691 if (msr < msrpm_ranges[i] ||
692 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
693 continue;
695 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
696 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
698 /* Now we have the u8 offset - but need the u32 offset */
699 return offset / 4;
702 /* MSR not in any range */
703 return MSR_INVALID;
706 #define MAX_INST_SIZE 15
708 static inline void clgi(void)
710 asm volatile (__ex(SVM_CLGI));
713 static inline void stgi(void)
715 asm volatile (__ex(SVM_STGI));
718 static inline void invlpga(unsigned long addr, u32 asid)
720 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
723 static int get_npt_level(struct kvm_vcpu *vcpu)
725 #ifdef CONFIG_X86_64
726 return PT64_ROOT_4LEVEL;
727 #else
728 return PT32E_ROOT_LEVEL;
729 #endif
732 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
734 vcpu->arch.efer = efer;
735 if (!npt_enabled && !(efer & EFER_LMA))
736 efer &= ~EFER_LME;
738 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
739 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
742 static int is_external_interrupt(u32 info)
744 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
745 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
748 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
750 struct vcpu_svm *svm = to_svm(vcpu);
751 u32 ret = 0;
753 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
754 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
755 return ret;
758 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
760 struct vcpu_svm *svm = to_svm(vcpu);
762 if (mask == 0)
763 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
764 else
765 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
769 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
771 struct vcpu_svm *svm = to_svm(vcpu);
773 if (svm->vmcb->control.next_rip != 0) {
774 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
775 svm->next_rip = svm->vmcb->control.next_rip;
778 if (!svm->next_rip) {
779 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
780 EMULATE_DONE)
781 printk(KERN_DEBUG "%s: NOP\n", __func__);
782 return;
784 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
785 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
786 __func__, kvm_rip_read(vcpu), svm->next_rip);
788 kvm_rip_write(vcpu, svm->next_rip);
789 svm_set_interrupt_shadow(vcpu, 0);
792 static void svm_queue_exception(struct kvm_vcpu *vcpu)
794 struct vcpu_svm *svm = to_svm(vcpu);
795 unsigned nr = vcpu->arch.exception.nr;
796 bool has_error_code = vcpu->arch.exception.has_error_code;
797 bool reinject = vcpu->arch.exception.injected;
798 u32 error_code = vcpu->arch.exception.error_code;
801 * If we are within a nested VM we'd better #VMEXIT and let the guest
802 * handle the exception
804 if (!reinject &&
805 nested_svm_check_exception(svm, nr, has_error_code, error_code))
806 return;
808 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
809 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
812 * For guest debugging where we have to reinject #BP if some
813 * INT3 is guest-owned:
814 * Emulate nRIP by moving RIP forward. Will fail if injection
815 * raises a fault that is not intercepted. Still better than
816 * failing in all cases.
818 skip_emulated_instruction(&svm->vcpu);
819 rip = kvm_rip_read(&svm->vcpu);
820 svm->int3_rip = rip + svm->vmcb->save.cs.base;
821 svm->int3_injected = rip - old_rip;
824 svm->vmcb->control.event_inj = nr
825 | SVM_EVTINJ_VALID
826 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
827 | SVM_EVTINJ_TYPE_EXEPT;
828 svm->vmcb->control.event_inj_err = error_code;
831 static void svm_init_erratum_383(void)
833 u32 low, high;
834 int err;
835 u64 val;
837 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
838 return;
840 /* Use _safe variants to not break nested virtualization */
841 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
842 if (err)
843 return;
845 val |= (1ULL << 47);
847 low = lower_32_bits(val);
848 high = upper_32_bits(val);
850 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
852 erratum_383_found = true;
855 static void svm_init_osvw(struct kvm_vcpu *vcpu)
858 * Guests should see errata 400 and 415 as fixed (assuming that
859 * HLT and IO instructions are intercepted).
861 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
862 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
865 * By increasing VCPU's osvw.length to 3 we are telling the guest that
866 * all osvw.status bits inside that length, including bit 0 (which is
867 * reserved for erratum 298), are valid. However, if host processor's
868 * osvw_len is 0 then osvw_status[0] carries no information. We need to
869 * be conservative here and therefore we tell the guest that erratum 298
870 * is present (because we really don't know).
872 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
873 vcpu->arch.osvw.status |= 1;
876 static int has_svm(void)
878 const char *msg;
880 if (!cpu_has_svm(&msg)) {
881 printk(KERN_INFO "has_svm: %s\n", msg);
882 return 0;
885 return 1;
888 static void svm_hardware_disable(void)
890 /* Make sure we clean up behind us */
891 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
892 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
894 cpu_svm_disable();
896 amd_pmu_disable_virt();
899 static int svm_hardware_enable(void)
902 struct svm_cpu_data *sd;
903 uint64_t efer;
904 struct desc_struct *gdt;
905 int me = raw_smp_processor_id();
907 rdmsrl(MSR_EFER, efer);
908 if (efer & EFER_SVME)
909 return -EBUSY;
911 if (!has_svm()) {
912 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
913 return -EINVAL;
915 sd = per_cpu(svm_data, me);
916 if (!sd) {
917 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
918 return -EINVAL;
921 sd->asid_generation = 1;
922 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
923 sd->next_asid = sd->max_asid + 1;
924 sd->min_asid = max_sev_asid + 1;
926 gdt = get_current_gdt_rw();
927 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
929 wrmsrl(MSR_EFER, efer | EFER_SVME);
931 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
933 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
934 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
935 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
940 * Get OSVW bits.
942 * Note that it is possible to have a system with mixed processor
943 * revisions and therefore different OSVW bits. If bits are not the same
944 * on different processors then choose the worst case (i.e. if erratum
945 * is present on one processor and not on another then assume that the
946 * erratum is present everywhere).
948 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
949 uint64_t len, status = 0;
950 int err;
952 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
953 if (!err)
954 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
955 &err);
957 if (err)
958 osvw_status = osvw_len = 0;
959 else {
960 if (len < osvw_len)
961 osvw_len = len;
962 osvw_status |= status;
963 osvw_status &= (1ULL << osvw_len) - 1;
965 } else
966 osvw_status = osvw_len = 0;
968 svm_init_erratum_383();
970 amd_pmu_enable_virt();
972 return 0;
975 static void svm_cpu_uninit(int cpu)
977 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
979 if (!sd)
980 return;
982 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
983 kfree(sd->sev_vmcbs);
984 __free_page(sd->save_area);
985 kfree(sd);
988 static int svm_cpu_init(int cpu)
990 struct svm_cpu_data *sd;
991 int r;
993 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
994 if (!sd)
995 return -ENOMEM;
996 sd->cpu = cpu;
997 r = -ENOMEM;
998 sd->save_area = alloc_page(GFP_KERNEL);
999 if (!sd->save_area)
1000 goto err_1;
1002 if (svm_sev_enabled()) {
1003 r = -ENOMEM;
1004 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1005 sizeof(void *),
1006 GFP_KERNEL);
1007 if (!sd->sev_vmcbs)
1008 goto err_1;
1011 per_cpu(svm_data, cpu) = sd;
1013 return 0;
1015 err_1:
1016 kfree(sd);
1017 return r;
1021 static bool valid_msr_intercept(u32 index)
1023 int i;
1025 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1026 if (direct_access_msrs[i].index == index)
1027 return true;
1029 return false;
1032 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1034 u8 bit_write;
1035 unsigned long tmp;
1036 u32 offset;
1037 u32 *msrpm;
1039 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1040 to_svm(vcpu)->msrpm;
1042 offset = svm_msrpm_offset(msr);
1043 bit_write = 2 * (msr & 0x0f) + 1;
1044 tmp = msrpm[offset];
1046 BUG_ON(offset == MSR_INVALID);
1048 return !!test_bit(bit_write, &tmp);
1051 static void set_msr_interception(u32 *msrpm, unsigned msr,
1052 int read, int write)
1054 u8 bit_read, bit_write;
1055 unsigned long tmp;
1056 u32 offset;
1059 * If this warning triggers extend the direct_access_msrs list at the
1060 * beginning of the file
1062 WARN_ON(!valid_msr_intercept(msr));
1064 offset = svm_msrpm_offset(msr);
1065 bit_read = 2 * (msr & 0x0f);
1066 bit_write = 2 * (msr & 0x0f) + 1;
1067 tmp = msrpm[offset];
1069 BUG_ON(offset == MSR_INVALID);
1071 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1072 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1074 msrpm[offset] = tmp;
1077 static void svm_vcpu_init_msrpm(u32 *msrpm)
1079 int i;
1081 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1083 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1084 if (!direct_access_msrs[i].always)
1085 continue;
1087 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1091 static void add_msr_offset(u32 offset)
1093 int i;
1095 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1097 /* Offset already in list? */
1098 if (msrpm_offsets[i] == offset)
1099 return;
1101 /* Slot used by another offset? */
1102 if (msrpm_offsets[i] != MSR_INVALID)
1103 continue;
1105 /* Add offset to list */
1106 msrpm_offsets[i] = offset;
1108 return;
1112 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1113 * increase MSRPM_OFFSETS in this case.
1115 BUG();
1118 static void init_msrpm_offsets(void)
1120 int i;
1122 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1124 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1125 u32 offset;
1127 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1128 BUG_ON(offset == MSR_INVALID);
1130 add_msr_offset(offset);
1134 static void svm_enable_lbrv(struct vcpu_svm *svm)
1136 u32 *msrpm = svm->msrpm;
1138 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1139 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1140 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1141 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1142 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1145 static void svm_disable_lbrv(struct vcpu_svm *svm)
1147 u32 *msrpm = svm->msrpm;
1149 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1150 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1151 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1152 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1153 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1156 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1158 svm->nmi_singlestep = false;
1160 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1161 /* Clear our flags if they were not set by the guest */
1162 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1163 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1164 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1165 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1169 /* Note:
1170 * This hash table is used to map VM_ID to a struct kvm_svm,
1171 * when handling AMD IOMMU GALOG notification to schedule in
1172 * a particular vCPU.
1174 #define SVM_VM_DATA_HASH_BITS 8
1175 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1176 static u32 next_vm_id = 0;
1177 static bool next_vm_id_wrapped = 0;
1178 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1180 /* Note:
1181 * This function is called from IOMMU driver to notify
1182 * SVM to schedule in a particular vCPU of a particular VM.
1184 static int avic_ga_log_notifier(u32 ga_tag)
1186 unsigned long flags;
1187 struct kvm_svm *kvm_svm;
1188 struct kvm_vcpu *vcpu = NULL;
1189 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1190 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1192 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1194 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1195 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1196 if (kvm_svm->avic_vm_id != vm_id)
1197 continue;
1198 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1199 break;
1201 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1203 /* Note:
1204 * At this point, the IOMMU should have already set the pending
1205 * bit in the vAPIC backing page. So, we just need to schedule
1206 * in the vcpu.
1208 if (vcpu)
1209 kvm_vcpu_wake_up(vcpu);
1211 return 0;
1214 static __init int sev_hardware_setup(void)
1216 struct sev_user_data_status *status;
1217 int rc;
1219 /* Maximum number of encrypted guests supported simultaneously */
1220 max_sev_asid = cpuid_ecx(0x8000001F);
1222 if (!max_sev_asid)
1223 return 1;
1225 /* Minimum ASID value that should be used for SEV guest */
1226 min_sev_asid = cpuid_edx(0x8000001F);
1228 /* Initialize SEV ASID bitmap */
1229 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1230 if (!sev_asid_bitmap)
1231 return 1;
1233 status = kmalloc(sizeof(*status), GFP_KERNEL);
1234 if (!status)
1235 return 1;
1238 * Check SEV platform status.
1240 * PLATFORM_STATUS can be called in any state, if we failed to query
1241 * the PLATFORM status then either PSP firmware does not support SEV
1242 * feature or SEV firmware is dead.
1244 rc = sev_platform_status(status, NULL);
1245 if (rc)
1246 goto err;
1248 pr_info("SEV supported\n");
1250 err:
1251 kfree(status);
1252 return rc;
1255 static void grow_ple_window(struct kvm_vcpu *vcpu)
1257 struct vcpu_svm *svm = to_svm(vcpu);
1258 struct vmcb_control_area *control = &svm->vmcb->control;
1259 int old = control->pause_filter_count;
1261 control->pause_filter_count = __grow_ple_window(old,
1262 pause_filter_count,
1263 pause_filter_count_grow,
1264 pause_filter_count_max);
1266 if (control->pause_filter_count != old)
1267 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1269 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1270 control->pause_filter_count, old);
1273 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1275 struct vcpu_svm *svm = to_svm(vcpu);
1276 struct vmcb_control_area *control = &svm->vmcb->control;
1277 int old = control->pause_filter_count;
1279 control->pause_filter_count =
1280 __shrink_ple_window(old,
1281 pause_filter_count,
1282 pause_filter_count_shrink,
1283 pause_filter_count);
1284 if (control->pause_filter_count != old)
1285 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1287 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1288 control->pause_filter_count, old);
1291 static __init int svm_hardware_setup(void)
1293 int cpu;
1294 struct page *iopm_pages;
1295 void *iopm_va;
1296 int r;
1298 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1300 if (!iopm_pages)
1301 return -ENOMEM;
1303 iopm_va = page_address(iopm_pages);
1304 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1305 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1307 init_msrpm_offsets();
1309 if (boot_cpu_has(X86_FEATURE_NX))
1310 kvm_enable_efer_bits(EFER_NX);
1312 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1313 kvm_enable_efer_bits(EFER_FFXSR);
1315 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1316 kvm_has_tsc_control = true;
1317 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1318 kvm_tsc_scaling_ratio_frac_bits = 32;
1321 /* Check for pause filtering support */
1322 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1323 pause_filter_count = 0;
1324 pause_filter_thresh = 0;
1325 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1326 pause_filter_thresh = 0;
1329 if (nested) {
1330 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1331 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1334 if (sev) {
1335 if (boot_cpu_has(X86_FEATURE_SEV) &&
1336 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1337 r = sev_hardware_setup();
1338 if (r)
1339 sev = false;
1340 } else {
1341 sev = false;
1345 for_each_possible_cpu(cpu) {
1346 r = svm_cpu_init(cpu);
1347 if (r)
1348 goto err;
1351 if (!boot_cpu_has(X86_FEATURE_NPT))
1352 npt_enabled = false;
1354 if (npt_enabled && !npt) {
1355 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1356 npt_enabled = false;
1359 if (npt_enabled) {
1360 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1361 kvm_enable_tdp();
1362 } else
1363 kvm_disable_tdp();
1365 if (avic) {
1366 if (!npt_enabled ||
1367 !boot_cpu_has(X86_FEATURE_AVIC) ||
1368 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1369 avic = false;
1370 } else {
1371 pr_info("AVIC enabled\n");
1373 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1377 if (vls) {
1378 if (!npt_enabled ||
1379 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1380 !IS_ENABLED(CONFIG_X86_64)) {
1381 vls = false;
1382 } else {
1383 pr_info("Virtual VMLOAD VMSAVE supported\n");
1387 if (vgif) {
1388 if (!boot_cpu_has(X86_FEATURE_VGIF))
1389 vgif = false;
1390 else
1391 pr_info("Virtual GIF supported\n");
1394 return 0;
1396 err:
1397 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1398 iopm_base = 0;
1399 return r;
1402 static __exit void svm_hardware_unsetup(void)
1404 int cpu;
1406 if (svm_sev_enabled())
1407 bitmap_free(sev_asid_bitmap);
1409 for_each_possible_cpu(cpu)
1410 svm_cpu_uninit(cpu);
1412 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1413 iopm_base = 0;
1416 static void init_seg(struct vmcb_seg *seg)
1418 seg->selector = 0;
1419 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1420 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1421 seg->limit = 0xffff;
1422 seg->base = 0;
1425 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1427 seg->selector = 0;
1428 seg->attrib = SVM_SELECTOR_P_MASK | type;
1429 seg->limit = 0xffff;
1430 seg->base = 0;
1433 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1435 struct vcpu_svm *svm = to_svm(vcpu);
1437 if (is_guest_mode(vcpu))
1438 return svm->nested.hsave->control.tsc_offset;
1440 return vcpu->arch.tsc_offset;
1443 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1445 struct vcpu_svm *svm = to_svm(vcpu);
1446 u64 g_tsc_offset = 0;
1448 if (is_guest_mode(vcpu)) {
1449 /* Write L1's TSC offset. */
1450 g_tsc_offset = svm->vmcb->control.tsc_offset -
1451 svm->nested.hsave->control.tsc_offset;
1452 svm->nested.hsave->control.tsc_offset = offset;
1453 } else
1454 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1455 svm->vmcb->control.tsc_offset,
1456 offset);
1458 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1460 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1463 static void avic_init_vmcb(struct vcpu_svm *svm)
1465 struct vmcb *vmcb = svm->vmcb;
1466 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1467 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1468 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1469 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1471 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1472 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1473 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1474 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1475 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1478 static void init_vmcb(struct vcpu_svm *svm)
1480 struct vmcb_control_area *control = &svm->vmcb->control;
1481 struct vmcb_save_area *save = &svm->vmcb->save;
1483 svm->vcpu.arch.hflags = 0;
1485 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1486 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1487 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1488 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1489 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1490 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1491 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1492 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1494 set_dr_intercepts(svm);
1496 set_exception_intercept(svm, PF_VECTOR);
1497 set_exception_intercept(svm, UD_VECTOR);
1498 set_exception_intercept(svm, MC_VECTOR);
1499 set_exception_intercept(svm, AC_VECTOR);
1500 set_exception_intercept(svm, DB_VECTOR);
1502 * Guest access to VMware backdoor ports could legitimately
1503 * trigger #GP because of TSS I/O permission bitmap.
1504 * We intercept those #GP and allow access to them anyway
1505 * as VMware does.
1507 if (enable_vmware_backdoor)
1508 set_exception_intercept(svm, GP_VECTOR);
1510 set_intercept(svm, INTERCEPT_INTR);
1511 set_intercept(svm, INTERCEPT_NMI);
1512 set_intercept(svm, INTERCEPT_SMI);
1513 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1514 set_intercept(svm, INTERCEPT_RDPMC);
1515 set_intercept(svm, INTERCEPT_CPUID);
1516 set_intercept(svm, INTERCEPT_INVD);
1517 set_intercept(svm, INTERCEPT_INVLPG);
1518 set_intercept(svm, INTERCEPT_INVLPGA);
1519 set_intercept(svm, INTERCEPT_IOIO_PROT);
1520 set_intercept(svm, INTERCEPT_MSR_PROT);
1521 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1522 set_intercept(svm, INTERCEPT_SHUTDOWN);
1523 set_intercept(svm, INTERCEPT_VMRUN);
1524 set_intercept(svm, INTERCEPT_VMMCALL);
1525 set_intercept(svm, INTERCEPT_VMLOAD);
1526 set_intercept(svm, INTERCEPT_VMSAVE);
1527 set_intercept(svm, INTERCEPT_STGI);
1528 set_intercept(svm, INTERCEPT_CLGI);
1529 set_intercept(svm, INTERCEPT_SKINIT);
1530 set_intercept(svm, INTERCEPT_WBINVD);
1531 set_intercept(svm, INTERCEPT_XSETBV);
1532 set_intercept(svm, INTERCEPT_RSM);
1534 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1535 set_intercept(svm, INTERCEPT_MONITOR);
1536 set_intercept(svm, INTERCEPT_MWAIT);
1539 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1540 set_intercept(svm, INTERCEPT_HLT);
1542 control->iopm_base_pa = __sme_set(iopm_base);
1543 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1544 control->int_ctl = V_INTR_MASKING_MASK;
1546 init_seg(&save->es);
1547 init_seg(&save->ss);
1548 init_seg(&save->ds);
1549 init_seg(&save->fs);
1550 init_seg(&save->gs);
1552 save->cs.selector = 0xf000;
1553 save->cs.base = 0xffff0000;
1554 /* Executable/Readable Code Segment */
1555 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1556 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1557 save->cs.limit = 0xffff;
1559 save->gdtr.limit = 0xffff;
1560 save->idtr.limit = 0xffff;
1562 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1563 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1565 svm_set_efer(&svm->vcpu, 0);
1566 save->dr6 = 0xffff0ff0;
1567 kvm_set_rflags(&svm->vcpu, 2);
1568 save->rip = 0x0000fff0;
1569 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1572 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1573 * It also updates the guest-visible cr0 value.
1575 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1576 kvm_mmu_reset_context(&svm->vcpu);
1578 save->cr4 = X86_CR4_PAE;
1579 /* rdx = ?? */
1581 if (npt_enabled) {
1582 /* Setup VMCB for Nested Paging */
1583 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1584 clr_intercept(svm, INTERCEPT_INVLPG);
1585 clr_exception_intercept(svm, PF_VECTOR);
1586 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1587 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1588 save->g_pat = svm->vcpu.arch.pat;
1589 save->cr3 = 0;
1590 save->cr4 = 0;
1592 svm->asid_generation = 0;
1594 svm->nested.vmcb = 0;
1595 svm->vcpu.arch.hflags = 0;
1597 if (pause_filter_count) {
1598 control->pause_filter_count = pause_filter_count;
1599 if (pause_filter_thresh)
1600 control->pause_filter_thresh = pause_filter_thresh;
1601 set_intercept(svm, INTERCEPT_PAUSE);
1602 } else {
1603 clr_intercept(svm, INTERCEPT_PAUSE);
1606 if (kvm_vcpu_apicv_active(&svm->vcpu))
1607 avic_init_vmcb(svm);
1610 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1611 * in VMCB and clear intercepts to avoid #VMEXIT.
1613 if (vls) {
1614 clr_intercept(svm, INTERCEPT_VMLOAD);
1615 clr_intercept(svm, INTERCEPT_VMSAVE);
1616 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1619 if (vgif) {
1620 clr_intercept(svm, INTERCEPT_STGI);
1621 clr_intercept(svm, INTERCEPT_CLGI);
1622 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1625 if (sev_guest(svm->vcpu.kvm)) {
1626 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1627 clr_exception_intercept(svm, UD_VECTOR);
1630 mark_all_dirty(svm->vmcb);
1632 enable_gif(svm);
1636 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1637 unsigned int index)
1639 u64 *avic_physical_id_table;
1640 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1642 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1643 return NULL;
1645 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1647 return &avic_physical_id_table[index];
1651 * Note:
1652 * AVIC hardware walks the nested page table to check permissions,
1653 * but does not use the SPA address specified in the leaf page
1654 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1655 * field of the VMCB. Therefore, we set up the
1656 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1658 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1660 struct kvm *kvm = vcpu->kvm;
1661 int ret;
1663 if (kvm->arch.apic_access_page_done)
1664 return 0;
1666 ret = x86_set_memory_region(kvm,
1667 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1668 APIC_DEFAULT_PHYS_BASE,
1669 PAGE_SIZE);
1670 if (ret)
1671 return ret;
1673 kvm->arch.apic_access_page_done = true;
1674 return 0;
1677 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1679 int ret;
1680 u64 *entry, new_entry;
1681 int id = vcpu->vcpu_id;
1682 struct vcpu_svm *svm = to_svm(vcpu);
1684 ret = avic_init_access_page(vcpu);
1685 if (ret)
1686 return ret;
1688 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1689 return -EINVAL;
1691 if (!svm->vcpu.arch.apic->regs)
1692 return -EINVAL;
1694 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1696 /* Setting AVIC backing page address in the phy APIC ID table */
1697 entry = avic_get_physical_id_entry(vcpu, id);
1698 if (!entry)
1699 return -EINVAL;
1701 new_entry = READ_ONCE(*entry);
1702 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1703 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1704 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1705 WRITE_ONCE(*entry, new_entry);
1707 svm->avic_physical_id_cache = entry;
1709 return 0;
1712 static void __sev_asid_free(int asid)
1714 struct svm_cpu_data *sd;
1715 int cpu, pos;
1717 pos = asid - 1;
1718 clear_bit(pos, sev_asid_bitmap);
1720 for_each_possible_cpu(cpu) {
1721 sd = per_cpu(svm_data, cpu);
1722 sd->sev_vmcbs[pos] = NULL;
1726 static void sev_asid_free(struct kvm *kvm)
1728 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1730 __sev_asid_free(sev->asid);
1733 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1735 struct sev_data_decommission *decommission;
1736 struct sev_data_deactivate *data;
1738 if (!handle)
1739 return;
1741 data = kzalloc(sizeof(*data), GFP_KERNEL);
1742 if (!data)
1743 return;
1745 /* deactivate handle */
1746 data->handle = handle;
1747 sev_guest_deactivate(data, NULL);
1749 wbinvd_on_all_cpus();
1750 sev_guest_df_flush(NULL);
1751 kfree(data);
1753 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1754 if (!decommission)
1755 return;
1757 /* decommission handle */
1758 decommission->handle = handle;
1759 sev_guest_decommission(decommission, NULL);
1761 kfree(decommission);
1764 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1765 unsigned long ulen, unsigned long *n,
1766 int write)
1768 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1769 unsigned long npages, npinned, size;
1770 unsigned long locked, lock_limit;
1771 struct page **pages;
1772 unsigned long first, last;
1774 if (ulen == 0 || uaddr + ulen < uaddr)
1775 return NULL;
1777 /* Calculate number of pages. */
1778 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1779 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1780 npages = (last - first + 1);
1782 locked = sev->pages_locked + npages;
1783 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1784 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1785 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1786 return NULL;
1789 /* Avoid using vmalloc for smaller buffers. */
1790 size = npages * sizeof(struct page *);
1791 if (size > PAGE_SIZE)
1792 pages = vmalloc(size);
1793 else
1794 pages = kmalloc(size, GFP_KERNEL);
1796 if (!pages)
1797 return NULL;
1799 /* Pin the user virtual address. */
1800 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1801 if (npinned != npages) {
1802 pr_err("SEV: Failure locking %lu pages.\n", npages);
1803 goto err;
1806 *n = npages;
1807 sev->pages_locked = locked;
1809 return pages;
1811 err:
1812 if (npinned > 0)
1813 release_pages(pages, npinned);
1815 kvfree(pages);
1816 return NULL;
1819 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1820 unsigned long npages)
1822 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1824 release_pages(pages, npages);
1825 kvfree(pages);
1826 sev->pages_locked -= npages;
1829 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1831 uint8_t *page_virtual;
1832 unsigned long i;
1834 if (npages == 0 || pages == NULL)
1835 return;
1837 for (i = 0; i < npages; i++) {
1838 page_virtual = kmap_atomic(pages[i]);
1839 clflush_cache_range(page_virtual, PAGE_SIZE);
1840 kunmap_atomic(page_virtual);
1844 static void __unregister_enc_region_locked(struct kvm *kvm,
1845 struct enc_region *region)
1848 * The guest may change the memory encryption attribute from C=0 -> C=1
1849 * or vice versa for this memory range. Lets make sure caches are
1850 * flushed to ensure that guest data gets written into memory with
1851 * correct C-bit.
1853 sev_clflush_pages(region->pages, region->npages);
1855 sev_unpin_memory(kvm, region->pages, region->npages);
1856 list_del(&region->list);
1857 kfree(region);
1860 static struct kvm *svm_vm_alloc(void)
1862 struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1863 return &kvm_svm->kvm;
1866 static void svm_vm_free(struct kvm *kvm)
1868 vfree(to_kvm_svm(kvm));
1871 static void sev_vm_destroy(struct kvm *kvm)
1873 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1874 struct list_head *head = &sev->regions_list;
1875 struct list_head *pos, *q;
1877 if (!sev_guest(kvm))
1878 return;
1880 mutex_lock(&kvm->lock);
1883 * if userspace was terminated before unregistering the memory regions
1884 * then lets unpin all the registered memory.
1886 if (!list_empty(head)) {
1887 list_for_each_safe(pos, q, head) {
1888 __unregister_enc_region_locked(kvm,
1889 list_entry(pos, struct enc_region, list));
1893 mutex_unlock(&kvm->lock);
1895 sev_unbind_asid(kvm, sev->handle);
1896 sev_asid_free(kvm);
1899 static void avic_vm_destroy(struct kvm *kvm)
1901 unsigned long flags;
1902 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1904 if (!avic)
1905 return;
1907 if (kvm_svm->avic_logical_id_table_page)
1908 __free_page(kvm_svm->avic_logical_id_table_page);
1909 if (kvm_svm->avic_physical_id_table_page)
1910 __free_page(kvm_svm->avic_physical_id_table_page);
1912 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1913 hash_del(&kvm_svm->hnode);
1914 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1917 static void svm_vm_destroy(struct kvm *kvm)
1919 avic_vm_destroy(kvm);
1920 sev_vm_destroy(kvm);
1923 static int avic_vm_init(struct kvm *kvm)
1925 unsigned long flags;
1926 int err = -ENOMEM;
1927 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1928 struct kvm_svm *k2;
1929 struct page *p_page;
1930 struct page *l_page;
1931 u32 vm_id;
1933 if (!avic)
1934 return 0;
1936 /* Allocating physical APIC ID table (4KB) */
1937 p_page = alloc_page(GFP_KERNEL);
1938 if (!p_page)
1939 goto free_avic;
1941 kvm_svm->avic_physical_id_table_page = p_page;
1942 clear_page(page_address(p_page));
1944 /* Allocating logical APIC ID table (4KB) */
1945 l_page = alloc_page(GFP_KERNEL);
1946 if (!l_page)
1947 goto free_avic;
1949 kvm_svm->avic_logical_id_table_page = l_page;
1950 clear_page(page_address(l_page));
1952 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1953 again:
1954 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1955 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1956 next_vm_id_wrapped = 1;
1957 goto again;
1959 /* Is it still in use? Only possible if wrapped at least once */
1960 if (next_vm_id_wrapped) {
1961 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1962 if (k2->avic_vm_id == vm_id)
1963 goto again;
1966 kvm_svm->avic_vm_id = vm_id;
1967 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1968 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1970 return 0;
1972 free_avic:
1973 avic_vm_destroy(kvm);
1974 return err;
1977 static inline int
1978 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1980 int ret = 0;
1981 unsigned long flags;
1982 struct amd_svm_iommu_ir *ir;
1983 struct vcpu_svm *svm = to_svm(vcpu);
1985 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1986 return 0;
1989 * Here, we go through the per-vcpu ir_list to update all existing
1990 * interrupt remapping table entry targeting this vcpu.
1992 spin_lock_irqsave(&svm->ir_list_lock, flags);
1994 if (list_empty(&svm->ir_list))
1995 goto out;
1997 list_for_each_entry(ir, &svm->ir_list, node) {
1998 ret = amd_iommu_update_ga(cpu, r, ir->data);
1999 if (ret)
2000 break;
2002 out:
2003 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2004 return ret;
2007 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2009 u64 entry;
2010 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2011 int h_physical_id = kvm_cpu_get_apicid(cpu);
2012 struct vcpu_svm *svm = to_svm(vcpu);
2014 if (!kvm_vcpu_apicv_active(vcpu))
2015 return;
2017 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2018 return;
2020 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2021 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2023 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2024 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2026 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2027 if (svm->avic_is_running)
2028 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2030 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2031 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2032 svm->avic_is_running);
2035 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2037 u64 entry;
2038 struct vcpu_svm *svm = to_svm(vcpu);
2040 if (!kvm_vcpu_apicv_active(vcpu))
2041 return;
2043 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2044 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2045 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2047 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2048 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2052 * This function is called during VCPU halt/unhalt.
2054 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2056 struct vcpu_svm *svm = to_svm(vcpu);
2058 svm->avic_is_running = is_run;
2059 if (is_run)
2060 avic_vcpu_load(vcpu, vcpu->cpu);
2061 else
2062 avic_vcpu_put(vcpu);
2065 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2067 struct vcpu_svm *svm = to_svm(vcpu);
2068 u32 dummy;
2069 u32 eax = 1;
2071 vcpu->arch.microcode_version = 0x01000065;
2072 svm->spec_ctrl = 0;
2073 svm->virt_spec_ctrl = 0;
2075 if (!init_event) {
2076 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2077 MSR_IA32_APICBASE_ENABLE;
2078 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2079 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2081 init_vmcb(svm);
2083 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2084 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2086 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2087 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2090 static int avic_init_vcpu(struct vcpu_svm *svm)
2092 int ret;
2094 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2095 return 0;
2097 ret = avic_init_backing_page(&svm->vcpu);
2098 if (ret)
2099 return ret;
2101 INIT_LIST_HEAD(&svm->ir_list);
2102 spin_lock_init(&svm->ir_list_lock);
2104 return ret;
2107 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2109 struct vcpu_svm *svm;
2110 struct page *page;
2111 struct page *msrpm_pages;
2112 struct page *hsave_page;
2113 struct page *nested_msrpm_pages;
2114 int err;
2116 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2117 if (!svm) {
2118 err = -ENOMEM;
2119 goto out;
2122 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2123 if (err)
2124 goto free_svm;
2126 err = -ENOMEM;
2127 page = alloc_page(GFP_KERNEL);
2128 if (!page)
2129 goto uninit;
2131 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2132 if (!msrpm_pages)
2133 goto free_page1;
2135 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2136 if (!nested_msrpm_pages)
2137 goto free_page2;
2139 hsave_page = alloc_page(GFP_KERNEL);
2140 if (!hsave_page)
2141 goto free_page3;
2143 err = avic_init_vcpu(svm);
2144 if (err)
2145 goto free_page4;
2147 /* We initialize this flag to true to make sure that the is_running
2148 * bit would be set the first time the vcpu is loaded.
2150 svm->avic_is_running = true;
2152 svm->nested.hsave = page_address(hsave_page);
2154 svm->msrpm = page_address(msrpm_pages);
2155 svm_vcpu_init_msrpm(svm->msrpm);
2157 svm->nested.msrpm = page_address(nested_msrpm_pages);
2158 svm_vcpu_init_msrpm(svm->nested.msrpm);
2160 svm->vmcb = page_address(page);
2161 clear_page(svm->vmcb);
2162 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2163 svm->asid_generation = 0;
2164 init_vmcb(svm);
2166 svm_init_osvw(&svm->vcpu);
2168 return &svm->vcpu;
2170 free_page4:
2171 __free_page(hsave_page);
2172 free_page3:
2173 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2174 free_page2:
2175 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2176 free_page1:
2177 __free_page(page);
2178 uninit:
2179 kvm_vcpu_uninit(&svm->vcpu);
2180 free_svm:
2181 kmem_cache_free(kvm_vcpu_cache, svm);
2182 out:
2183 return ERR_PTR(err);
2186 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2188 struct vcpu_svm *svm = to_svm(vcpu);
2190 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2191 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2192 __free_page(virt_to_page(svm->nested.hsave));
2193 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2194 kvm_vcpu_uninit(vcpu);
2195 kmem_cache_free(kvm_vcpu_cache, svm);
2197 * The vmcb page can be recycled, causing a false negative in
2198 * svm_vcpu_load(). So do a full IBPB now.
2200 indirect_branch_prediction_barrier();
2203 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2205 struct vcpu_svm *svm = to_svm(vcpu);
2206 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2207 int i;
2209 if (unlikely(cpu != vcpu->cpu)) {
2210 svm->asid_generation = 0;
2211 mark_all_dirty(svm->vmcb);
2214 #ifdef CONFIG_X86_64
2215 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2216 #endif
2217 savesegment(fs, svm->host.fs);
2218 savesegment(gs, svm->host.gs);
2219 svm->host.ldt = kvm_read_ldt();
2221 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2222 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2224 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2225 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2226 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2227 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2228 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2231 /* This assumes that the kernel never uses MSR_TSC_AUX */
2232 if (static_cpu_has(X86_FEATURE_RDTSCP))
2233 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2235 if (sd->current_vmcb != svm->vmcb) {
2236 sd->current_vmcb = svm->vmcb;
2237 indirect_branch_prediction_barrier();
2239 avic_vcpu_load(vcpu, cpu);
2242 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2244 struct vcpu_svm *svm = to_svm(vcpu);
2245 int i;
2247 avic_vcpu_put(vcpu);
2249 ++vcpu->stat.host_state_reload;
2250 kvm_load_ldt(svm->host.ldt);
2251 #ifdef CONFIG_X86_64
2252 loadsegment(fs, svm->host.fs);
2253 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2254 load_gs_index(svm->host.gs);
2255 #else
2256 #ifdef CONFIG_X86_32_LAZY_GS
2257 loadsegment(gs, svm->host.gs);
2258 #endif
2259 #endif
2260 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2261 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2264 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2266 avic_set_running(vcpu, false);
2269 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2271 avic_set_running(vcpu, true);
2274 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2276 struct vcpu_svm *svm = to_svm(vcpu);
2277 unsigned long rflags = svm->vmcb->save.rflags;
2279 if (svm->nmi_singlestep) {
2280 /* Hide our flags if they were not set by the guest */
2281 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2282 rflags &= ~X86_EFLAGS_TF;
2283 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2284 rflags &= ~X86_EFLAGS_RF;
2286 return rflags;
2289 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2291 if (to_svm(vcpu)->nmi_singlestep)
2292 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2295 * Any change of EFLAGS.VM is accompanied by a reload of SS
2296 * (caused by either a task switch or an inter-privilege IRET),
2297 * so we do not need to update the CPL here.
2299 to_svm(vcpu)->vmcb->save.rflags = rflags;
2302 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2304 switch (reg) {
2305 case VCPU_EXREG_PDPTR:
2306 BUG_ON(!npt_enabled);
2307 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2308 break;
2309 default:
2310 BUG();
2314 static void svm_set_vintr(struct vcpu_svm *svm)
2316 set_intercept(svm, INTERCEPT_VINTR);
2319 static void svm_clear_vintr(struct vcpu_svm *svm)
2321 clr_intercept(svm, INTERCEPT_VINTR);
2324 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2326 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2328 switch (seg) {
2329 case VCPU_SREG_CS: return &save->cs;
2330 case VCPU_SREG_DS: return &save->ds;
2331 case VCPU_SREG_ES: return &save->es;
2332 case VCPU_SREG_FS: return &save->fs;
2333 case VCPU_SREG_GS: return &save->gs;
2334 case VCPU_SREG_SS: return &save->ss;
2335 case VCPU_SREG_TR: return &save->tr;
2336 case VCPU_SREG_LDTR: return &save->ldtr;
2338 BUG();
2339 return NULL;
2342 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2344 struct vmcb_seg *s = svm_seg(vcpu, seg);
2346 return s->base;
2349 static void svm_get_segment(struct kvm_vcpu *vcpu,
2350 struct kvm_segment *var, int seg)
2352 struct vmcb_seg *s = svm_seg(vcpu, seg);
2354 var->base = s->base;
2355 var->limit = s->limit;
2356 var->selector = s->selector;
2357 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2358 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2359 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2360 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2361 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2362 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2363 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2366 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2367 * However, the SVM spec states that the G bit is not observed by the
2368 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2369 * So let's synthesize a legal G bit for all segments, this helps
2370 * running KVM nested. It also helps cross-vendor migration, because
2371 * Intel's vmentry has a check on the 'G' bit.
2373 var->g = s->limit > 0xfffff;
2376 * AMD's VMCB does not have an explicit unusable field, so emulate it
2377 * for cross vendor migration purposes by "not present"
2379 var->unusable = !var->present;
2381 switch (seg) {
2382 case VCPU_SREG_TR:
2384 * Work around a bug where the busy flag in the tr selector
2385 * isn't exposed
2387 var->type |= 0x2;
2388 break;
2389 case VCPU_SREG_DS:
2390 case VCPU_SREG_ES:
2391 case VCPU_SREG_FS:
2392 case VCPU_SREG_GS:
2394 * The accessed bit must always be set in the segment
2395 * descriptor cache, although it can be cleared in the
2396 * descriptor, the cached bit always remains at 1. Since
2397 * Intel has a check on this, set it here to support
2398 * cross-vendor migration.
2400 if (!var->unusable)
2401 var->type |= 0x1;
2402 break;
2403 case VCPU_SREG_SS:
2405 * On AMD CPUs sometimes the DB bit in the segment
2406 * descriptor is left as 1, although the whole segment has
2407 * been made unusable. Clear it here to pass an Intel VMX
2408 * entry check when cross vendor migrating.
2410 if (var->unusable)
2411 var->db = 0;
2412 /* This is symmetric with svm_set_segment() */
2413 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2414 break;
2418 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2420 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2422 return save->cpl;
2425 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2427 struct vcpu_svm *svm = to_svm(vcpu);
2429 dt->size = svm->vmcb->save.idtr.limit;
2430 dt->address = svm->vmcb->save.idtr.base;
2433 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2435 struct vcpu_svm *svm = to_svm(vcpu);
2437 svm->vmcb->save.idtr.limit = dt->size;
2438 svm->vmcb->save.idtr.base = dt->address ;
2439 mark_dirty(svm->vmcb, VMCB_DT);
2442 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2444 struct vcpu_svm *svm = to_svm(vcpu);
2446 dt->size = svm->vmcb->save.gdtr.limit;
2447 dt->address = svm->vmcb->save.gdtr.base;
2450 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2452 struct vcpu_svm *svm = to_svm(vcpu);
2454 svm->vmcb->save.gdtr.limit = dt->size;
2455 svm->vmcb->save.gdtr.base = dt->address ;
2456 mark_dirty(svm->vmcb, VMCB_DT);
2459 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2463 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2467 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2471 static void update_cr0_intercept(struct vcpu_svm *svm)
2473 ulong gcr0 = svm->vcpu.arch.cr0;
2474 u64 *hcr0 = &svm->vmcb->save.cr0;
2476 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2477 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2479 mark_dirty(svm->vmcb, VMCB_CR);
2481 if (gcr0 == *hcr0) {
2482 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2483 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2484 } else {
2485 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2486 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2490 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2492 struct vcpu_svm *svm = to_svm(vcpu);
2494 #ifdef CONFIG_X86_64
2495 if (vcpu->arch.efer & EFER_LME) {
2496 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2497 vcpu->arch.efer |= EFER_LMA;
2498 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2501 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2502 vcpu->arch.efer &= ~EFER_LMA;
2503 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2506 #endif
2507 vcpu->arch.cr0 = cr0;
2509 if (!npt_enabled)
2510 cr0 |= X86_CR0_PG | X86_CR0_WP;
2513 * re-enable caching here because the QEMU bios
2514 * does not do it - this results in some delay at
2515 * reboot
2517 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2518 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2519 svm->vmcb->save.cr0 = cr0;
2520 mark_dirty(svm->vmcb, VMCB_CR);
2521 update_cr0_intercept(svm);
2524 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2526 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2527 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2529 if (cr4 & X86_CR4_VMXE)
2530 return 1;
2532 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2533 svm_flush_tlb(vcpu, true);
2535 vcpu->arch.cr4 = cr4;
2536 if (!npt_enabled)
2537 cr4 |= X86_CR4_PAE;
2538 cr4 |= host_cr4_mce;
2539 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2540 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2541 return 0;
2544 static void svm_set_segment(struct kvm_vcpu *vcpu,
2545 struct kvm_segment *var, int seg)
2547 struct vcpu_svm *svm = to_svm(vcpu);
2548 struct vmcb_seg *s = svm_seg(vcpu, seg);
2550 s->base = var->base;
2551 s->limit = var->limit;
2552 s->selector = var->selector;
2553 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2554 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2555 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2556 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2557 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2558 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2559 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2560 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2563 * This is always accurate, except if SYSRET returned to a segment
2564 * with SS.DPL != 3. Intel does not have this quirk, and always
2565 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2566 * would entail passing the CPL to userspace and back.
2568 if (seg == VCPU_SREG_SS)
2569 /* This is symmetric with svm_get_segment() */
2570 svm->vmcb->save.cpl = (var->dpl & 3);
2572 mark_dirty(svm->vmcb, VMCB_SEG);
2575 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2577 struct vcpu_svm *svm = to_svm(vcpu);
2579 clr_exception_intercept(svm, BP_VECTOR);
2581 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2582 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2583 set_exception_intercept(svm, BP_VECTOR);
2584 } else
2585 vcpu->guest_debug = 0;
2588 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2590 if (sd->next_asid > sd->max_asid) {
2591 ++sd->asid_generation;
2592 sd->next_asid = sd->min_asid;
2593 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2596 svm->asid_generation = sd->asid_generation;
2597 svm->vmcb->control.asid = sd->next_asid++;
2599 mark_dirty(svm->vmcb, VMCB_ASID);
2602 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2604 return to_svm(vcpu)->vmcb->save.dr6;
2607 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2609 struct vcpu_svm *svm = to_svm(vcpu);
2611 svm->vmcb->save.dr6 = value;
2612 mark_dirty(svm->vmcb, VMCB_DR);
2615 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2617 struct vcpu_svm *svm = to_svm(vcpu);
2619 get_debugreg(vcpu->arch.db[0], 0);
2620 get_debugreg(vcpu->arch.db[1], 1);
2621 get_debugreg(vcpu->arch.db[2], 2);
2622 get_debugreg(vcpu->arch.db[3], 3);
2623 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2624 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2626 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2627 set_dr_intercepts(svm);
2630 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2632 struct vcpu_svm *svm = to_svm(vcpu);
2634 svm->vmcb->save.dr7 = value;
2635 mark_dirty(svm->vmcb, VMCB_DR);
2638 static int pf_interception(struct vcpu_svm *svm)
2640 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2641 u64 error_code = svm->vmcb->control.exit_info_1;
2643 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2644 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2645 svm->vmcb->control.insn_bytes : NULL,
2646 svm->vmcb->control.insn_len);
2649 static int npf_interception(struct vcpu_svm *svm)
2651 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2652 u64 error_code = svm->vmcb->control.exit_info_1;
2654 trace_kvm_page_fault(fault_address, error_code);
2655 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2656 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2657 svm->vmcb->control.insn_bytes : NULL,
2658 svm->vmcb->control.insn_len);
2661 static int db_interception(struct vcpu_svm *svm)
2663 struct kvm_run *kvm_run = svm->vcpu.run;
2665 if (!(svm->vcpu.guest_debug &
2666 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2667 !svm->nmi_singlestep) {
2668 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2669 return 1;
2672 if (svm->nmi_singlestep) {
2673 disable_nmi_singlestep(svm);
2676 if (svm->vcpu.guest_debug &
2677 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2678 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2679 kvm_run->debug.arch.pc =
2680 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2681 kvm_run->debug.arch.exception = DB_VECTOR;
2682 return 0;
2685 return 1;
2688 static int bp_interception(struct vcpu_svm *svm)
2690 struct kvm_run *kvm_run = svm->vcpu.run;
2692 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2693 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2694 kvm_run->debug.arch.exception = BP_VECTOR;
2695 return 0;
2698 static int ud_interception(struct vcpu_svm *svm)
2700 return handle_ud(&svm->vcpu);
2703 static int ac_interception(struct vcpu_svm *svm)
2705 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2706 return 1;
2709 static int gp_interception(struct vcpu_svm *svm)
2711 struct kvm_vcpu *vcpu = &svm->vcpu;
2712 u32 error_code = svm->vmcb->control.exit_info_1;
2713 int er;
2715 WARN_ON_ONCE(!enable_vmware_backdoor);
2717 er = kvm_emulate_instruction(vcpu,
2718 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2719 if (er == EMULATE_USER_EXIT)
2720 return 0;
2721 else if (er != EMULATE_DONE)
2722 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2723 return 1;
2726 static bool is_erratum_383(void)
2728 int err, i;
2729 u64 value;
2731 if (!erratum_383_found)
2732 return false;
2734 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2735 if (err)
2736 return false;
2738 /* Bit 62 may or may not be set for this mce */
2739 value &= ~(1ULL << 62);
2741 if (value != 0xb600000000010015ULL)
2742 return false;
2744 /* Clear MCi_STATUS registers */
2745 for (i = 0; i < 6; ++i)
2746 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2748 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2749 if (!err) {
2750 u32 low, high;
2752 value &= ~(1ULL << 2);
2753 low = lower_32_bits(value);
2754 high = upper_32_bits(value);
2756 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2759 /* Flush tlb to evict multi-match entries */
2760 __flush_tlb_all();
2762 return true;
2765 static void svm_handle_mce(struct vcpu_svm *svm)
2767 if (is_erratum_383()) {
2769 * Erratum 383 triggered. Guest state is corrupt so kill the
2770 * guest.
2772 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2774 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2776 return;
2780 * On an #MC intercept the MCE handler is not called automatically in
2781 * the host. So do it by hand here.
2783 asm volatile (
2784 "int $0x12\n");
2785 /* not sure if we ever come back to this point */
2787 return;
2790 static int mc_interception(struct vcpu_svm *svm)
2792 return 1;
2795 static int shutdown_interception(struct vcpu_svm *svm)
2797 struct kvm_run *kvm_run = svm->vcpu.run;
2800 * VMCB is undefined after a SHUTDOWN intercept
2801 * so reinitialize it.
2803 clear_page(svm->vmcb);
2804 init_vmcb(svm);
2806 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2807 return 0;
2810 static int io_interception(struct vcpu_svm *svm)
2812 struct kvm_vcpu *vcpu = &svm->vcpu;
2813 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2814 int size, in, string;
2815 unsigned port;
2817 ++svm->vcpu.stat.io_exits;
2818 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2819 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2820 if (string)
2821 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2823 port = io_info >> 16;
2824 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2825 svm->next_rip = svm->vmcb->control.exit_info_2;
2827 return kvm_fast_pio(&svm->vcpu, size, port, in);
2830 static int nmi_interception(struct vcpu_svm *svm)
2832 return 1;
2835 static int intr_interception(struct vcpu_svm *svm)
2837 ++svm->vcpu.stat.irq_exits;
2838 return 1;
2841 static int nop_on_interception(struct vcpu_svm *svm)
2843 return 1;
2846 static int halt_interception(struct vcpu_svm *svm)
2848 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2849 return kvm_emulate_halt(&svm->vcpu);
2852 static int vmmcall_interception(struct vcpu_svm *svm)
2854 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2855 return kvm_emulate_hypercall(&svm->vcpu);
2858 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2860 struct vcpu_svm *svm = to_svm(vcpu);
2862 return svm->nested.nested_cr3;
2865 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2867 struct vcpu_svm *svm = to_svm(vcpu);
2868 u64 cr3 = svm->nested.nested_cr3;
2869 u64 pdpte;
2870 int ret;
2872 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2873 offset_in_page(cr3) + index * 8, 8);
2874 if (ret)
2875 return 0;
2876 return pdpte;
2879 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2880 unsigned long root)
2882 struct vcpu_svm *svm = to_svm(vcpu);
2884 svm->vmcb->control.nested_cr3 = __sme_set(root);
2885 mark_dirty(svm->vmcb, VMCB_NPT);
2888 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2889 struct x86_exception *fault)
2891 struct vcpu_svm *svm = to_svm(vcpu);
2893 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2895 * TODO: track the cause of the nested page fault, and
2896 * correctly fill in the high bits of exit_info_1.
2898 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2899 svm->vmcb->control.exit_code_hi = 0;
2900 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2901 svm->vmcb->control.exit_info_2 = fault->address;
2904 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2905 svm->vmcb->control.exit_info_1 |= fault->error_code;
2908 * The present bit is always zero for page structure faults on real
2909 * hardware.
2911 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2912 svm->vmcb->control.exit_info_1 &= ~1;
2914 nested_svm_vmexit(svm);
2917 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2919 WARN_ON(mmu_is_nested(vcpu));
2920 kvm_init_shadow_mmu(vcpu);
2921 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2922 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2923 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2924 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2925 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2926 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2927 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2930 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2932 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2935 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2937 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2938 !is_paging(&svm->vcpu)) {
2939 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2940 return 1;
2943 if (svm->vmcb->save.cpl) {
2944 kvm_inject_gp(&svm->vcpu, 0);
2945 return 1;
2948 return 0;
2951 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2952 bool has_error_code, u32 error_code)
2954 int vmexit;
2956 if (!is_guest_mode(&svm->vcpu))
2957 return 0;
2959 vmexit = nested_svm_intercept(svm);
2960 if (vmexit != NESTED_EXIT_DONE)
2961 return 0;
2963 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2964 svm->vmcb->control.exit_code_hi = 0;
2965 svm->vmcb->control.exit_info_1 = error_code;
2968 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2969 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2970 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2971 * written only when inject_pending_event runs (DR6 would written here
2972 * too). This should be conditional on a new capability---if the
2973 * capability is disabled, kvm_multiple_exception would write the
2974 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2976 if (svm->vcpu.arch.exception.nested_apf)
2977 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2978 else
2979 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2981 svm->nested.exit_required = true;
2982 return vmexit;
2985 /* This function returns true if it is save to enable the irq window */
2986 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2988 if (!is_guest_mode(&svm->vcpu))
2989 return true;
2991 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2992 return true;
2994 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2995 return false;
2998 * if vmexit was already requested (by intercepted exception
2999 * for instance) do not overwrite it with "external interrupt"
3000 * vmexit.
3002 if (svm->nested.exit_required)
3003 return false;
3005 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3006 svm->vmcb->control.exit_info_1 = 0;
3007 svm->vmcb->control.exit_info_2 = 0;
3009 if (svm->nested.intercept & 1ULL) {
3011 * The #vmexit can't be emulated here directly because this
3012 * code path runs with irqs and preemption disabled. A
3013 * #vmexit emulation might sleep. Only signal request for
3014 * the #vmexit here.
3016 svm->nested.exit_required = true;
3017 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3018 return false;
3021 return true;
3024 /* This function returns true if it is save to enable the nmi window */
3025 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3027 if (!is_guest_mode(&svm->vcpu))
3028 return true;
3030 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3031 return true;
3033 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3034 svm->nested.exit_required = true;
3036 return false;
3039 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3041 struct page *page;
3043 might_sleep();
3045 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3046 if (is_error_page(page))
3047 goto error;
3049 *_page = page;
3051 return kmap(page);
3053 error:
3054 kvm_inject_gp(&svm->vcpu, 0);
3056 return NULL;
3059 static void nested_svm_unmap(struct page *page)
3061 kunmap(page);
3062 kvm_release_page_dirty(page);
3065 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3067 unsigned port, size, iopm_len;
3068 u16 val, mask;
3069 u8 start_bit;
3070 u64 gpa;
3072 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3073 return NESTED_EXIT_HOST;
3075 port = svm->vmcb->control.exit_info_1 >> 16;
3076 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3077 SVM_IOIO_SIZE_SHIFT;
3078 gpa = svm->nested.vmcb_iopm + (port / 8);
3079 start_bit = port % 8;
3080 iopm_len = (start_bit + size > 8) ? 2 : 1;
3081 mask = (0xf >> (4 - size)) << start_bit;
3082 val = 0;
3084 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3085 return NESTED_EXIT_DONE;
3087 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3090 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3092 u32 offset, msr, value;
3093 int write, mask;
3095 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3096 return NESTED_EXIT_HOST;
3098 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3099 offset = svm_msrpm_offset(msr);
3100 write = svm->vmcb->control.exit_info_1 & 1;
3101 mask = 1 << ((2 * (msr & 0xf)) + write);
3103 if (offset == MSR_INVALID)
3104 return NESTED_EXIT_DONE;
3106 /* Offset is in 32 bit units but need in 8 bit units */
3107 offset *= 4;
3109 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3110 return NESTED_EXIT_DONE;
3112 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3115 /* DB exceptions for our internal use must not cause vmexit */
3116 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3118 unsigned long dr6;
3120 /* if we're not singlestepping, it's not ours */
3121 if (!svm->nmi_singlestep)
3122 return NESTED_EXIT_DONE;
3124 /* if it's not a singlestep exception, it's not ours */
3125 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3126 return NESTED_EXIT_DONE;
3127 if (!(dr6 & DR6_BS))
3128 return NESTED_EXIT_DONE;
3130 /* if the guest is singlestepping, it should get the vmexit */
3131 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3132 disable_nmi_singlestep(svm);
3133 return NESTED_EXIT_DONE;
3136 /* it's ours, the nested hypervisor must not see this one */
3137 return NESTED_EXIT_HOST;
3140 static int nested_svm_exit_special(struct vcpu_svm *svm)
3142 u32 exit_code = svm->vmcb->control.exit_code;
3144 switch (exit_code) {
3145 case SVM_EXIT_INTR:
3146 case SVM_EXIT_NMI:
3147 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3148 return NESTED_EXIT_HOST;
3149 case SVM_EXIT_NPF:
3150 /* For now we are always handling NPFs when using them */
3151 if (npt_enabled)
3152 return NESTED_EXIT_HOST;
3153 break;
3154 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3155 /* When we're shadowing, trap PFs, but not async PF */
3156 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3157 return NESTED_EXIT_HOST;
3158 break;
3159 default:
3160 break;
3163 return NESTED_EXIT_CONTINUE;
3167 * If this function returns true, this #vmexit was already handled
3169 static int nested_svm_intercept(struct vcpu_svm *svm)
3171 u32 exit_code = svm->vmcb->control.exit_code;
3172 int vmexit = NESTED_EXIT_HOST;
3174 switch (exit_code) {
3175 case SVM_EXIT_MSR:
3176 vmexit = nested_svm_exit_handled_msr(svm);
3177 break;
3178 case SVM_EXIT_IOIO:
3179 vmexit = nested_svm_intercept_ioio(svm);
3180 break;
3181 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3182 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3183 if (svm->nested.intercept_cr & bit)
3184 vmexit = NESTED_EXIT_DONE;
3185 break;
3187 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3188 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3189 if (svm->nested.intercept_dr & bit)
3190 vmexit = NESTED_EXIT_DONE;
3191 break;
3193 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3194 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3195 if (svm->nested.intercept_exceptions & excp_bits) {
3196 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3197 vmexit = nested_svm_intercept_db(svm);
3198 else
3199 vmexit = NESTED_EXIT_DONE;
3201 /* async page fault always cause vmexit */
3202 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3203 svm->vcpu.arch.exception.nested_apf != 0)
3204 vmexit = NESTED_EXIT_DONE;
3205 break;
3207 case SVM_EXIT_ERR: {
3208 vmexit = NESTED_EXIT_DONE;
3209 break;
3211 default: {
3212 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3213 if (svm->nested.intercept & exit_bits)
3214 vmexit = NESTED_EXIT_DONE;
3218 return vmexit;
3221 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3223 int vmexit;
3225 vmexit = nested_svm_intercept(svm);
3227 if (vmexit == NESTED_EXIT_DONE)
3228 nested_svm_vmexit(svm);
3230 return vmexit;
3233 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3235 struct vmcb_control_area *dst = &dst_vmcb->control;
3236 struct vmcb_control_area *from = &from_vmcb->control;
3238 dst->intercept_cr = from->intercept_cr;
3239 dst->intercept_dr = from->intercept_dr;
3240 dst->intercept_exceptions = from->intercept_exceptions;
3241 dst->intercept = from->intercept;
3242 dst->iopm_base_pa = from->iopm_base_pa;
3243 dst->msrpm_base_pa = from->msrpm_base_pa;
3244 dst->tsc_offset = from->tsc_offset;
3245 dst->asid = from->asid;
3246 dst->tlb_ctl = from->tlb_ctl;
3247 dst->int_ctl = from->int_ctl;
3248 dst->int_vector = from->int_vector;
3249 dst->int_state = from->int_state;
3250 dst->exit_code = from->exit_code;
3251 dst->exit_code_hi = from->exit_code_hi;
3252 dst->exit_info_1 = from->exit_info_1;
3253 dst->exit_info_2 = from->exit_info_2;
3254 dst->exit_int_info = from->exit_int_info;
3255 dst->exit_int_info_err = from->exit_int_info_err;
3256 dst->nested_ctl = from->nested_ctl;
3257 dst->event_inj = from->event_inj;
3258 dst->event_inj_err = from->event_inj_err;
3259 dst->nested_cr3 = from->nested_cr3;
3260 dst->virt_ext = from->virt_ext;
3263 static int nested_svm_vmexit(struct vcpu_svm *svm)
3265 struct vmcb *nested_vmcb;
3266 struct vmcb *hsave = svm->nested.hsave;
3267 struct vmcb *vmcb = svm->vmcb;
3268 struct page *page;
3270 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3271 vmcb->control.exit_info_1,
3272 vmcb->control.exit_info_2,
3273 vmcb->control.exit_int_info,
3274 vmcb->control.exit_int_info_err,
3275 KVM_ISA_SVM);
3277 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3278 if (!nested_vmcb)
3279 return 1;
3281 /* Exit Guest-Mode */
3282 leave_guest_mode(&svm->vcpu);
3283 svm->nested.vmcb = 0;
3285 /* Give the current vmcb to the guest */
3286 disable_gif(svm);
3288 nested_vmcb->save.es = vmcb->save.es;
3289 nested_vmcb->save.cs = vmcb->save.cs;
3290 nested_vmcb->save.ss = vmcb->save.ss;
3291 nested_vmcb->save.ds = vmcb->save.ds;
3292 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3293 nested_vmcb->save.idtr = vmcb->save.idtr;
3294 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3295 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3296 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3297 nested_vmcb->save.cr2 = vmcb->save.cr2;
3298 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3299 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3300 nested_vmcb->save.rip = vmcb->save.rip;
3301 nested_vmcb->save.rsp = vmcb->save.rsp;
3302 nested_vmcb->save.rax = vmcb->save.rax;
3303 nested_vmcb->save.dr7 = vmcb->save.dr7;
3304 nested_vmcb->save.dr6 = vmcb->save.dr6;
3305 nested_vmcb->save.cpl = vmcb->save.cpl;
3307 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3308 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3309 nested_vmcb->control.int_state = vmcb->control.int_state;
3310 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3311 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3312 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3313 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3314 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3315 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3317 if (svm->nrips_enabled)
3318 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3321 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3322 * to make sure that we do not lose injected events. So check event_inj
3323 * here and copy it to exit_int_info if it is valid.
3324 * Exit_int_info and event_inj can't be both valid because the case
3325 * below only happens on a VMRUN instruction intercept which has
3326 * no valid exit_int_info set.
3328 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3329 struct vmcb_control_area *nc = &nested_vmcb->control;
3331 nc->exit_int_info = vmcb->control.event_inj;
3332 nc->exit_int_info_err = vmcb->control.event_inj_err;
3335 nested_vmcb->control.tlb_ctl = 0;
3336 nested_vmcb->control.event_inj = 0;
3337 nested_vmcb->control.event_inj_err = 0;
3339 /* We always set V_INTR_MASKING and remember the old value in hflags */
3340 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3341 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3343 /* Restore the original control entries */
3344 copy_vmcb_control_area(vmcb, hsave);
3346 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3347 kvm_clear_exception_queue(&svm->vcpu);
3348 kvm_clear_interrupt_queue(&svm->vcpu);
3350 svm->nested.nested_cr3 = 0;
3352 /* Restore selected save entries */
3353 svm->vmcb->save.es = hsave->save.es;
3354 svm->vmcb->save.cs = hsave->save.cs;
3355 svm->vmcb->save.ss = hsave->save.ss;
3356 svm->vmcb->save.ds = hsave->save.ds;
3357 svm->vmcb->save.gdtr = hsave->save.gdtr;
3358 svm->vmcb->save.idtr = hsave->save.idtr;
3359 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3360 svm_set_efer(&svm->vcpu, hsave->save.efer);
3361 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3362 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3363 if (npt_enabled) {
3364 svm->vmcb->save.cr3 = hsave->save.cr3;
3365 svm->vcpu.arch.cr3 = hsave->save.cr3;
3366 } else {
3367 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3369 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3370 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3371 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3372 svm->vmcb->save.dr7 = 0;
3373 svm->vmcb->save.cpl = 0;
3374 svm->vmcb->control.exit_int_info = 0;
3376 mark_all_dirty(svm->vmcb);
3378 nested_svm_unmap(page);
3380 nested_svm_uninit_mmu_context(&svm->vcpu);
3381 kvm_mmu_reset_context(&svm->vcpu);
3382 kvm_mmu_load(&svm->vcpu);
3384 return 0;
3387 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3390 * This function merges the msr permission bitmaps of kvm and the
3391 * nested vmcb. It is optimized in that it only merges the parts where
3392 * the kvm msr permission bitmap may contain zero bits
3394 int i;
3396 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3397 return true;
3399 for (i = 0; i < MSRPM_OFFSETS; i++) {
3400 u32 value, p;
3401 u64 offset;
3403 if (msrpm_offsets[i] == 0xffffffff)
3404 break;
3406 p = msrpm_offsets[i];
3407 offset = svm->nested.vmcb_msrpm + (p * 4);
3409 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3410 return false;
3412 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3415 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3417 return true;
3420 static bool nested_vmcb_checks(struct vmcb *vmcb)
3422 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3423 return false;
3425 if (vmcb->control.asid == 0)
3426 return false;
3428 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3429 !npt_enabled)
3430 return false;
3432 return true;
3435 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3436 struct vmcb *nested_vmcb, struct page *page)
3438 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3439 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3440 else
3441 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3443 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3444 kvm_mmu_unload(&svm->vcpu);
3445 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3446 nested_svm_init_mmu_context(&svm->vcpu);
3449 /* Load the nested guest state */
3450 svm->vmcb->save.es = nested_vmcb->save.es;
3451 svm->vmcb->save.cs = nested_vmcb->save.cs;
3452 svm->vmcb->save.ss = nested_vmcb->save.ss;
3453 svm->vmcb->save.ds = nested_vmcb->save.ds;
3454 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3455 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3456 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3457 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3458 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3459 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3460 if (npt_enabled) {
3461 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3462 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3463 } else
3464 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3466 /* Guest paging mode is active - reset mmu */
3467 kvm_mmu_reset_context(&svm->vcpu);
3469 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3470 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3471 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3472 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3474 /* In case we don't even reach vcpu_run, the fields are not updated */
3475 svm->vmcb->save.rax = nested_vmcb->save.rax;
3476 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3477 svm->vmcb->save.rip = nested_vmcb->save.rip;
3478 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3479 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3480 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3482 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3483 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3485 /* cache intercepts */
3486 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3487 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3488 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3489 svm->nested.intercept = nested_vmcb->control.intercept;
3491 svm_flush_tlb(&svm->vcpu, true);
3492 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3493 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3494 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3495 else
3496 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3498 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3499 /* We only want the cr8 intercept bits of the guest */
3500 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3501 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3504 /* We don't want to see VMMCALLs from a nested guest */
3505 clr_intercept(svm, INTERCEPT_VMMCALL);
3507 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3508 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3510 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3511 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3512 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3513 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3514 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3516 nested_svm_unmap(page);
3518 /* Enter Guest-Mode */
3519 enter_guest_mode(&svm->vcpu);
3522 * Merge guest and host intercepts - must be called with vcpu in
3523 * guest-mode to take affect here
3525 recalc_intercepts(svm);
3527 svm->nested.vmcb = vmcb_gpa;
3529 enable_gif(svm);
3531 mark_all_dirty(svm->vmcb);
3534 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3536 struct vmcb *nested_vmcb;
3537 struct vmcb *hsave = svm->nested.hsave;
3538 struct vmcb *vmcb = svm->vmcb;
3539 struct page *page;
3540 u64 vmcb_gpa;
3542 vmcb_gpa = svm->vmcb->save.rax;
3544 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3545 if (!nested_vmcb)
3546 return false;
3548 if (!nested_vmcb_checks(nested_vmcb)) {
3549 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3550 nested_vmcb->control.exit_code_hi = 0;
3551 nested_vmcb->control.exit_info_1 = 0;
3552 nested_vmcb->control.exit_info_2 = 0;
3554 nested_svm_unmap(page);
3556 return false;
3559 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3560 nested_vmcb->save.rip,
3561 nested_vmcb->control.int_ctl,
3562 nested_vmcb->control.event_inj,
3563 nested_vmcb->control.nested_ctl);
3565 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3566 nested_vmcb->control.intercept_cr >> 16,
3567 nested_vmcb->control.intercept_exceptions,
3568 nested_vmcb->control.intercept);
3570 /* Clear internal status */
3571 kvm_clear_exception_queue(&svm->vcpu);
3572 kvm_clear_interrupt_queue(&svm->vcpu);
3575 * Save the old vmcb, so we don't need to pick what we save, but can
3576 * restore everything when a VMEXIT occurs
3578 hsave->save.es = vmcb->save.es;
3579 hsave->save.cs = vmcb->save.cs;
3580 hsave->save.ss = vmcb->save.ss;
3581 hsave->save.ds = vmcb->save.ds;
3582 hsave->save.gdtr = vmcb->save.gdtr;
3583 hsave->save.idtr = vmcb->save.idtr;
3584 hsave->save.efer = svm->vcpu.arch.efer;
3585 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3586 hsave->save.cr4 = svm->vcpu.arch.cr4;
3587 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3588 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3589 hsave->save.rsp = vmcb->save.rsp;
3590 hsave->save.rax = vmcb->save.rax;
3591 if (npt_enabled)
3592 hsave->save.cr3 = vmcb->save.cr3;
3593 else
3594 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3596 copy_vmcb_control_area(hsave, vmcb);
3598 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3600 return true;
3603 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3605 to_vmcb->save.fs = from_vmcb->save.fs;
3606 to_vmcb->save.gs = from_vmcb->save.gs;
3607 to_vmcb->save.tr = from_vmcb->save.tr;
3608 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3609 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3610 to_vmcb->save.star = from_vmcb->save.star;
3611 to_vmcb->save.lstar = from_vmcb->save.lstar;
3612 to_vmcb->save.cstar = from_vmcb->save.cstar;
3613 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3614 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3615 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3616 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3619 static int vmload_interception(struct vcpu_svm *svm)
3621 struct vmcb *nested_vmcb;
3622 struct page *page;
3623 int ret;
3625 if (nested_svm_check_permissions(svm))
3626 return 1;
3628 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3629 if (!nested_vmcb)
3630 return 1;
3632 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3633 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3635 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3636 nested_svm_unmap(page);
3638 return ret;
3641 static int vmsave_interception(struct vcpu_svm *svm)
3643 struct vmcb *nested_vmcb;
3644 struct page *page;
3645 int ret;
3647 if (nested_svm_check_permissions(svm))
3648 return 1;
3650 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3651 if (!nested_vmcb)
3652 return 1;
3654 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3655 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3657 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3658 nested_svm_unmap(page);
3660 return ret;
3663 static int vmrun_interception(struct vcpu_svm *svm)
3665 if (nested_svm_check_permissions(svm))
3666 return 1;
3668 /* Save rip after vmrun instruction */
3669 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3671 if (!nested_svm_vmrun(svm))
3672 return 1;
3674 if (!nested_svm_vmrun_msrpm(svm))
3675 goto failed;
3677 return 1;
3679 failed:
3681 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3682 svm->vmcb->control.exit_code_hi = 0;
3683 svm->vmcb->control.exit_info_1 = 0;
3684 svm->vmcb->control.exit_info_2 = 0;
3686 nested_svm_vmexit(svm);
3688 return 1;
3691 static int stgi_interception(struct vcpu_svm *svm)
3693 int ret;
3695 if (nested_svm_check_permissions(svm))
3696 return 1;
3699 * If VGIF is enabled, the STGI intercept is only added to
3700 * detect the opening of the SMI/NMI window; remove it now.
3702 if (vgif_enabled(svm))
3703 clr_intercept(svm, INTERCEPT_STGI);
3705 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3706 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3707 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3709 enable_gif(svm);
3711 return ret;
3714 static int clgi_interception(struct vcpu_svm *svm)
3716 int ret;
3718 if (nested_svm_check_permissions(svm))
3719 return 1;
3721 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3722 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3724 disable_gif(svm);
3726 /* After a CLGI no interrupts should come */
3727 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3728 svm_clear_vintr(svm);
3729 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3730 mark_dirty(svm->vmcb, VMCB_INTR);
3733 return ret;
3736 static int invlpga_interception(struct vcpu_svm *svm)
3738 struct kvm_vcpu *vcpu = &svm->vcpu;
3740 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3741 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3743 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3744 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3746 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3747 return kvm_skip_emulated_instruction(&svm->vcpu);
3750 static int skinit_interception(struct vcpu_svm *svm)
3752 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3754 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3755 return 1;
3758 static int wbinvd_interception(struct vcpu_svm *svm)
3760 return kvm_emulate_wbinvd(&svm->vcpu);
3763 static int xsetbv_interception(struct vcpu_svm *svm)
3765 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3766 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3768 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3769 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3770 return kvm_skip_emulated_instruction(&svm->vcpu);
3773 return 1;
3776 static int task_switch_interception(struct vcpu_svm *svm)
3778 u16 tss_selector;
3779 int reason;
3780 int int_type = svm->vmcb->control.exit_int_info &
3781 SVM_EXITINTINFO_TYPE_MASK;
3782 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3783 uint32_t type =
3784 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3785 uint32_t idt_v =
3786 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3787 bool has_error_code = false;
3788 u32 error_code = 0;
3790 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3792 if (svm->vmcb->control.exit_info_2 &
3793 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3794 reason = TASK_SWITCH_IRET;
3795 else if (svm->vmcb->control.exit_info_2 &
3796 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3797 reason = TASK_SWITCH_JMP;
3798 else if (idt_v)
3799 reason = TASK_SWITCH_GATE;
3800 else
3801 reason = TASK_SWITCH_CALL;
3803 if (reason == TASK_SWITCH_GATE) {
3804 switch (type) {
3805 case SVM_EXITINTINFO_TYPE_NMI:
3806 svm->vcpu.arch.nmi_injected = false;
3807 break;
3808 case SVM_EXITINTINFO_TYPE_EXEPT:
3809 if (svm->vmcb->control.exit_info_2 &
3810 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3811 has_error_code = true;
3812 error_code =
3813 (u32)svm->vmcb->control.exit_info_2;
3815 kvm_clear_exception_queue(&svm->vcpu);
3816 break;
3817 case SVM_EXITINTINFO_TYPE_INTR:
3818 kvm_clear_interrupt_queue(&svm->vcpu);
3819 break;
3820 default:
3821 break;
3825 if (reason != TASK_SWITCH_GATE ||
3826 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3827 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3828 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3829 skip_emulated_instruction(&svm->vcpu);
3831 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3832 int_vec = -1;
3834 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3835 has_error_code, error_code) == EMULATE_FAIL) {
3836 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3837 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3838 svm->vcpu.run->internal.ndata = 0;
3839 return 0;
3841 return 1;
3844 static int cpuid_interception(struct vcpu_svm *svm)
3846 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3847 return kvm_emulate_cpuid(&svm->vcpu);
3850 static int iret_interception(struct vcpu_svm *svm)
3852 ++svm->vcpu.stat.nmi_window_exits;
3853 clr_intercept(svm, INTERCEPT_IRET);
3854 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3855 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3856 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3857 return 1;
3860 static int invlpg_interception(struct vcpu_svm *svm)
3862 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3863 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3865 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3866 return kvm_skip_emulated_instruction(&svm->vcpu);
3869 static int emulate_on_interception(struct vcpu_svm *svm)
3871 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3874 static int rsm_interception(struct vcpu_svm *svm)
3876 return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3877 rsm_ins_bytes, 2) == EMULATE_DONE;
3880 static int rdpmc_interception(struct vcpu_svm *svm)
3882 int err;
3884 if (!static_cpu_has(X86_FEATURE_NRIPS))
3885 return emulate_on_interception(svm);
3887 err = kvm_rdpmc(&svm->vcpu);
3888 return kvm_complete_insn_gp(&svm->vcpu, err);
3891 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3892 unsigned long val)
3894 unsigned long cr0 = svm->vcpu.arch.cr0;
3895 bool ret = false;
3896 u64 intercept;
3898 intercept = svm->nested.intercept;
3900 if (!is_guest_mode(&svm->vcpu) ||
3901 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3902 return false;
3904 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3905 val &= ~SVM_CR0_SELECTIVE_MASK;
3907 if (cr0 ^ val) {
3908 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3909 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3912 return ret;
3915 #define CR_VALID (1ULL << 63)
3917 static int cr_interception(struct vcpu_svm *svm)
3919 int reg, cr;
3920 unsigned long val;
3921 int err;
3923 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3924 return emulate_on_interception(svm);
3926 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3927 return emulate_on_interception(svm);
3929 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3930 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3931 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3932 else
3933 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3935 err = 0;
3936 if (cr >= 16) { /* mov to cr */
3937 cr -= 16;
3938 val = kvm_register_read(&svm->vcpu, reg);
3939 switch (cr) {
3940 case 0:
3941 if (!check_selective_cr0_intercepted(svm, val))
3942 err = kvm_set_cr0(&svm->vcpu, val);
3943 else
3944 return 1;
3946 break;
3947 case 3:
3948 err = kvm_set_cr3(&svm->vcpu, val);
3949 break;
3950 case 4:
3951 err = kvm_set_cr4(&svm->vcpu, val);
3952 break;
3953 case 8:
3954 err = kvm_set_cr8(&svm->vcpu, val);
3955 break;
3956 default:
3957 WARN(1, "unhandled write to CR%d", cr);
3958 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3959 return 1;
3961 } else { /* mov from cr */
3962 switch (cr) {
3963 case 0:
3964 val = kvm_read_cr0(&svm->vcpu);
3965 break;
3966 case 2:
3967 val = svm->vcpu.arch.cr2;
3968 break;
3969 case 3:
3970 val = kvm_read_cr3(&svm->vcpu);
3971 break;
3972 case 4:
3973 val = kvm_read_cr4(&svm->vcpu);
3974 break;
3975 case 8:
3976 val = kvm_get_cr8(&svm->vcpu);
3977 break;
3978 default:
3979 WARN(1, "unhandled read from CR%d", cr);
3980 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3981 return 1;
3983 kvm_register_write(&svm->vcpu, reg, val);
3985 return kvm_complete_insn_gp(&svm->vcpu, err);
3988 static int dr_interception(struct vcpu_svm *svm)
3990 int reg, dr;
3991 unsigned long val;
3993 if (svm->vcpu.guest_debug == 0) {
3995 * No more DR vmexits; force a reload of the debug registers
3996 * and reenter on this instruction. The next vmexit will
3997 * retrieve the full state of the debug registers.
3999 clr_dr_intercepts(svm);
4000 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4001 return 1;
4004 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4005 return emulate_on_interception(svm);
4007 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4008 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4010 if (dr >= 16) { /* mov to DRn */
4011 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4012 return 1;
4013 val = kvm_register_read(&svm->vcpu, reg);
4014 kvm_set_dr(&svm->vcpu, dr - 16, val);
4015 } else {
4016 if (!kvm_require_dr(&svm->vcpu, dr))
4017 return 1;
4018 kvm_get_dr(&svm->vcpu, dr, &val);
4019 kvm_register_write(&svm->vcpu, reg, val);
4022 return kvm_skip_emulated_instruction(&svm->vcpu);
4025 static int cr8_write_interception(struct vcpu_svm *svm)
4027 struct kvm_run *kvm_run = svm->vcpu.run;
4028 int r;
4030 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4031 /* instruction emulation calls kvm_set_cr8() */
4032 r = cr_interception(svm);
4033 if (lapic_in_kernel(&svm->vcpu))
4034 return r;
4035 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4036 return r;
4037 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4038 return 0;
4041 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4043 msr->data = 0;
4045 switch (msr->index) {
4046 case MSR_F10H_DECFG:
4047 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4048 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4049 break;
4050 default:
4051 return 1;
4054 return 0;
4057 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4059 struct vcpu_svm *svm = to_svm(vcpu);
4061 switch (msr_info->index) {
4062 case MSR_STAR:
4063 msr_info->data = svm->vmcb->save.star;
4064 break;
4065 #ifdef CONFIG_X86_64
4066 case MSR_LSTAR:
4067 msr_info->data = svm->vmcb->save.lstar;
4068 break;
4069 case MSR_CSTAR:
4070 msr_info->data = svm->vmcb->save.cstar;
4071 break;
4072 case MSR_KERNEL_GS_BASE:
4073 msr_info->data = svm->vmcb->save.kernel_gs_base;
4074 break;
4075 case MSR_SYSCALL_MASK:
4076 msr_info->data = svm->vmcb->save.sfmask;
4077 break;
4078 #endif
4079 case MSR_IA32_SYSENTER_CS:
4080 msr_info->data = svm->vmcb->save.sysenter_cs;
4081 break;
4082 case MSR_IA32_SYSENTER_EIP:
4083 msr_info->data = svm->sysenter_eip;
4084 break;
4085 case MSR_IA32_SYSENTER_ESP:
4086 msr_info->data = svm->sysenter_esp;
4087 break;
4088 case MSR_TSC_AUX:
4089 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4090 return 1;
4091 msr_info->data = svm->tsc_aux;
4092 break;
4094 * Nobody will change the following 5 values in the VMCB so we can
4095 * safely return them on rdmsr. They will always be 0 until LBRV is
4096 * implemented.
4098 case MSR_IA32_DEBUGCTLMSR:
4099 msr_info->data = svm->vmcb->save.dbgctl;
4100 break;
4101 case MSR_IA32_LASTBRANCHFROMIP:
4102 msr_info->data = svm->vmcb->save.br_from;
4103 break;
4104 case MSR_IA32_LASTBRANCHTOIP:
4105 msr_info->data = svm->vmcb->save.br_to;
4106 break;
4107 case MSR_IA32_LASTINTFROMIP:
4108 msr_info->data = svm->vmcb->save.last_excp_from;
4109 break;
4110 case MSR_IA32_LASTINTTOIP:
4111 msr_info->data = svm->vmcb->save.last_excp_to;
4112 break;
4113 case MSR_VM_HSAVE_PA:
4114 msr_info->data = svm->nested.hsave_msr;
4115 break;
4116 case MSR_VM_CR:
4117 msr_info->data = svm->nested.vm_cr_msr;
4118 break;
4119 case MSR_IA32_SPEC_CTRL:
4120 if (!msr_info->host_initiated &&
4121 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4122 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4123 return 1;
4125 msr_info->data = svm->spec_ctrl;
4126 break;
4127 case MSR_AMD64_VIRT_SPEC_CTRL:
4128 if (!msr_info->host_initiated &&
4129 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4130 return 1;
4132 msr_info->data = svm->virt_spec_ctrl;
4133 break;
4134 case MSR_F15H_IC_CFG: {
4136 int family, model;
4138 family = guest_cpuid_family(vcpu);
4139 model = guest_cpuid_model(vcpu);
4141 if (family < 0 || model < 0)
4142 return kvm_get_msr_common(vcpu, msr_info);
4144 msr_info->data = 0;
4146 if (family == 0x15 &&
4147 (model >= 0x2 && model < 0x20))
4148 msr_info->data = 0x1E;
4150 break;
4151 case MSR_F10H_DECFG:
4152 msr_info->data = svm->msr_decfg;
4153 break;
4154 default:
4155 return kvm_get_msr_common(vcpu, msr_info);
4157 return 0;
4160 static int rdmsr_interception(struct vcpu_svm *svm)
4162 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4163 struct msr_data msr_info;
4165 msr_info.index = ecx;
4166 msr_info.host_initiated = false;
4167 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4168 trace_kvm_msr_read_ex(ecx);
4169 kvm_inject_gp(&svm->vcpu, 0);
4170 return 1;
4171 } else {
4172 trace_kvm_msr_read(ecx, msr_info.data);
4174 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4175 msr_info.data & 0xffffffff);
4176 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4177 msr_info.data >> 32);
4178 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4179 return kvm_skip_emulated_instruction(&svm->vcpu);
4183 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4185 struct vcpu_svm *svm = to_svm(vcpu);
4186 int svm_dis, chg_mask;
4188 if (data & ~SVM_VM_CR_VALID_MASK)
4189 return 1;
4191 chg_mask = SVM_VM_CR_VALID_MASK;
4193 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4194 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4196 svm->nested.vm_cr_msr &= ~chg_mask;
4197 svm->nested.vm_cr_msr |= (data & chg_mask);
4199 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4201 /* check for svm_disable while efer.svme is set */
4202 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4203 return 1;
4205 return 0;
4208 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4210 struct vcpu_svm *svm = to_svm(vcpu);
4212 u32 ecx = msr->index;
4213 u64 data = msr->data;
4214 switch (ecx) {
4215 case MSR_IA32_CR_PAT:
4216 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4217 return 1;
4218 vcpu->arch.pat = data;
4219 svm->vmcb->save.g_pat = data;
4220 mark_dirty(svm->vmcb, VMCB_NPT);
4221 break;
4222 case MSR_IA32_SPEC_CTRL:
4223 if (!msr->host_initiated &&
4224 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4225 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4226 return 1;
4228 /* The STIBP bit doesn't fault even if it's not advertised */
4229 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4230 return 1;
4232 svm->spec_ctrl = data;
4234 if (!data)
4235 break;
4238 * For non-nested:
4239 * When it's written (to non-zero) for the first time, pass
4240 * it through.
4242 * For nested:
4243 * The handling of the MSR bitmap for L2 guests is done in
4244 * nested_svm_vmrun_msrpm.
4245 * We update the L1 MSR bit as well since it will end up
4246 * touching the MSR anyway now.
4248 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4249 break;
4250 case MSR_IA32_PRED_CMD:
4251 if (!msr->host_initiated &&
4252 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4253 return 1;
4255 if (data & ~PRED_CMD_IBPB)
4256 return 1;
4258 if (!data)
4259 break;
4261 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4262 if (is_guest_mode(vcpu))
4263 break;
4264 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4265 break;
4266 case MSR_AMD64_VIRT_SPEC_CTRL:
4267 if (!msr->host_initiated &&
4268 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4269 return 1;
4271 if (data & ~SPEC_CTRL_SSBD)
4272 return 1;
4274 svm->virt_spec_ctrl = data;
4275 break;
4276 case MSR_STAR:
4277 svm->vmcb->save.star = data;
4278 break;
4279 #ifdef CONFIG_X86_64
4280 case MSR_LSTAR:
4281 svm->vmcb->save.lstar = data;
4282 break;
4283 case MSR_CSTAR:
4284 svm->vmcb->save.cstar = data;
4285 break;
4286 case MSR_KERNEL_GS_BASE:
4287 svm->vmcb->save.kernel_gs_base = data;
4288 break;
4289 case MSR_SYSCALL_MASK:
4290 svm->vmcb->save.sfmask = data;
4291 break;
4292 #endif
4293 case MSR_IA32_SYSENTER_CS:
4294 svm->vmcb->save.sysenter_cs = data;
4295 break;
4296 case MSR_IA32_SYSENTER_EIP:
4297 svm->sysenter_eip = data;
4298 svm->vmcb->save.sysenter_eip = data;
4299 break;
4300 case MSR_IA32_SYSENTER_ESP:
4301 svm->sysenter_esp = data;
4302 svm->vmcb->save.sysenter_esp = data;
4303 break;
4304 case MSR_TSC_AUX:
4305 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4306 return 1;
4309 * This is rare, so we update the MSR here instead of using
4310 * direct_access_msrs. Doing that would require a rdmsr in
4311 * svm_vcpu_put.
4313 svm->tsc_aux = data;
4314 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4315 break;
4316 case MSR_IA32_DEBUGCTLMSR:
4317 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4318 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4319 __func__, data);
4320 break;
4322 if (data & DEBUGCTL_RESERVED_BITS)
4323 return 1;
4325 svm->vmcb->save.dbgctl = data;
4326 mark_dirty(svm->vmcb, VMCB_LBR);
4327 if (data & (1ULL<<0))
4328 svm_enable_lbrv(svm);
4329 else
4330 svm_disable_lbrv(svm);
4331 break;
4332 case MSR_VM_HSAVE_PA:
4333 svm->nested.hsave_msr = data;
4334 break;
4335 case MSR_VM_CR:
4336 return svm_set_vm_cr(vcpu, data);
4337 case MSR_VM_IGNNE:
4338 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4339 break;
4340 case MSR_F10H_DECFG: {
4341 struct kvm_msr_entry msr_entry;
4343 msr_entry.index = msr->index;
4344 if (svm_get_msr_feature(&msr_entry))
4345 return 1;
4347 /* Check the supported bits */
4348 if (data & ~msr_entry.data)
4349 return 1;
4351 /* Don't allow the guest to change a bit, #GP */
4352 if (!msr->host_initiated && (data ^ msr_entry.data))
4353 return 1;
4355 svm->msr_decfg = data;
4356 break;
4358 case MSR_IA32_APICBASE:
4359 if (kvm_vcpu_apicv_active(vcpu))
4360 avic_update_vapic_bar(to_svm(vcpu), data);
4361 /* Follow through */
4362 default:
4363 return kvm_set_msr_common(vcpu, msr);
4365 return 0;
4368 static int wrmsr_interception(struct vcpu_svm *svm)
4370 struct msr_data msr;
4371 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4372 u64 data = kvm_read_edx_eax(&svm->vcpu);
4374 msr.data = data;
4375 msr.index = ecx;
4376 msr.host_initiated = false;
4378 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4379 if (kvm_set_msr(&svm->vcpu, &msr)) {
4380 trace_kvm_msr_write_ex(ecx, data);
4381 kvm_inject_gp(&svm->vcpu, 0);
4382 return 1;
4383 } else {
4384 trace_kvm_msr_write(ecx, data);
4385 return kvm_skip_emulated_instruction(&svm->vcpu);
4389 static int msr_interception(struct vcpu_svm *svm)
4391 if (svm->vmcb->control.exit_info_1)
4392 return wrmsr_interception(svm);
4393 else
4394 return rdmsr_interception(svm);
4397 static int interrupt_window_interception(struct vcpu_svm *svm)
4399 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4400 svm_clear_vintr(svm);
4401 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4402 mark_dirty(svm->vmcb, VMCB_INTR);
4403 ++svm->vcpu.stat.irq_window_exits;
4404 return 1;
4407 static int pause_interception(struct vcpu_svm *svm)
4409 struct kvm_vcpu *vcpu = &svm->vcpu;
4410 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4412 if (pause_filter_thresh)
4413 grow_ple_window(vcpu);
4415 kvm_vcpu_on_spin(vcpu, in_kernel);
4416 return 1;
4419 static int nop_interception(struct vcpu_svm *svm)
4421 return kvm_skip_emulated_instruction(&(svm->vcpu));
4424 static int monitor_interception(struct vcpu_svm *svm)
4426 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4427 return nop_interception(svm);
4430 static int mwait_interception(struct vcpu_svm *svm)
4432 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4433 return nop_interception(svm);
4436 enum avic_ipi_failure_cause {
4437 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4438 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4439 AVIC_IPI_FAILURE_INVALID_TARGET,
4440 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4443 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4445 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4446 u32 icrl = svm->vmcb->control.exit_info_1;
4447 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4448 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4449 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4451 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4453 switch (id) {
4454 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4456 * AVIC hardware handles the generation of
4457 * IPIs when the specified Message Type is Fixed
4458 * (also known as fixed delivery mode) and
4459 * the Trigger Mode is edge-triggered. The hardware
4460 * also supports self and broadcast delivery modes
4461 * specified via the Destination Shorthand(DSH)
4462 * field of the ICRL. Logical and physical APIC ID
4463 * formats are supported. All other IPI types cause
4464 * a #VMEXIT, which needs to emulated.
4466 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4467 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4468 break;
4469 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4470 int i;
4471 struct kvm_vcpu *vcpu;
4472 struct kvm *kvm = svm->vcpu.kvm;
4473 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4476 * At this point, we expect that the AVIC HW has already
4477 * set the appropriate IRR bits on the valid target
4478 * vcpus. So, we just need to kick the appropriate vcpu.
4480 kvm_for_each_vcpu(i, vcpu, kvm) {
4481 bool m = kvm_apic_match_dest(vcpu, apic,
4482 icrl & KVM_APIC_SHORT_MASK,
4483 GET_APIC_DEST_FIELD(icrh),
4484 icrl & KVM_APIC_DEST_MASK);
4486 if (m && !avic_vcpu_is_running(vcpu))
4487 kvm_vcpu_wake_up(vcpu);
4489 break;
4491 case AVIC_IPI_FAILURE_INVALID_TARGET:
4492 break;
4493 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4494 WARN_ONCE(1, "Invalid backing page\n");
4495 break;
4496 default:
4497 pr_err("Unknown IPI interception\n");
4500 return 1;
4503 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4505 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4506 int index;
4507 u32 *logical_apic_id_table;
4508 int dlid = GET_APIC_LOGICAL_ID(ldr);
4510 if (!dlid)
4511 return NULL;
4513 if (flat) { /* flat */
4514 index = ffs(dlid) - 1;
4515 if (index > 7)
4516 return NULL;
4517 } else { /* cluster */
4518 int cluster = (dlid & 0xf0) >> 4;
4519 int apic = ffs(dlid & 0x0f) - 1;
4521 if ((apic < 0) || (apic > 7) ||
4522 (cluster >= 0xf))
4523 return NULL;
4524 index = (cluster << 2) + apic;
4527 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4529 return &logical_apic_id_table[index];
4532 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4533 bool valid)
4535 bool flat;
4536 u32 *entry, new_entry;
4538 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4539 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4540 if (!entry)
4541 return -EINVAL;
4543 new_entry = READ_ONCE(*entry);
4544 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4545 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4546 if (valid)
4547 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4548 else
4549 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4550 WRITE_ONCE(*entry, new_entry);
4552 return 0;
4555 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4557 int ret;
4558 struct vcpu_svm *svm = to_svm(vcpu);
4559 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4561 if (!ldr)
4562 return 1;
4564 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4565 if (ret && svm->ldr_reg) {
4566 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4567 svm->ldr_reg = 0;
4568 } else {
4569 svm->ldr_reg = ldr;
4571 return ret;
4574 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4576 u64 *old, *new;
4577 struct vcpu_svm *svm = to_svm(vcpu);
4578 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4579 u32 id = (apic_id_reg >> 24) & 0xff;
4581 if (vcpu->vcpu_id == id)
4582 return 0;
4584 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4585 new = avic_get_physical_id_entry(vcpu, id);
4586 if (!new || !old)
4587 return 1;
4589 /* We need to move physical_id_entry to new offset */
4590 *new = *old;
4591 *old = 0ULL;
4592 to_svm(vcpu)->avic_physical_id_cache = new;
4595 * Also update the guest physical APIC ID in the logical
4596 * APIC ID table entry if already setup the LDR.
4598 if (svm->ldr_reg)
4599 avic_handle_ldr_update(vcpu);
4601 return 0;
4604 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4606 struct vcpu_svm *svm = to_svm(vcpu);
4607 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4608 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4609 u32 mod = (dfr >> 28) & 0xf;
4612 * We assume that all local APICs are using the same type.
4613 * If this changes, we need to flush the AVIC logical
4614 * APID id table.
4616 if (kvm_svm->ldr_mode == mod)
4617 return 0;
4619 clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4620 kvm_svm->ldr_mode = mod;
4622 if (svm->ldr_reg)
4623 avic_handle_ldr_update(vcpu);
4624 return 0;
4627 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4629 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4630 u32 offset = svm->vmcb->control.exit_info_1 &
4631 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4633 switch (offset) {
4634 case APIC_ID:
4635 if (avic_handle_apic_id_update(&svm->vcpu))
4636 return 0;
4637 break;
4638 case APIC_LDR:
4639 if (avic_handle_ldr_update(&svm->vcpu))
4640 return 0;
4641 break;
4642 case APIC_DFR:
4643 avic_handle_dfr_update(&svm->vcpu);
4644 break;
4645 default:
4646 break;
4649 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4651 return 1;
4654 static bool is_avic_unaccelerated_access_trap(u32 offset)
4656 bool ret = false;
4658 switch (offset) {
4659 case APIC_ID:
4660 case APIC_EOI:
4661 case APIC_RRR:
4662 case APIC_LDR:
4663 case APIC_DFR:
4664 case APIC_SPIV:
4665 case APIC_ESR:
4666 case APIC_ICR:
4667 case APIC_LVTT:
4668 case APIC_LVTTHMR:
4669 case APIC_LVTPC:
4670 case APIC_LVT0:
4671 case APIC_LVT1:
4672 case APIC_LVTERR:
4673 case APIC_TMICT:
4674 case APIC_TDCR:
4675 ret = true;
4676 break;
4677 default:
4678 break;
4680 return ret;
4683 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4685 int ret = 0;
4686 u32 offset = svm->vmcb->control.exit_info_1 &
4687 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4688 u32 vector = svm->vmcb->control.exit_info_2 &
4689 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4690 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4691 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4692 bool trap = is_avic_unaccelerated_access_trap(offset);
4694 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4695 trap, write, vector);
4696 if (trap) {
4697 /* Handling Trap */
4698 WARN_ONCE(!write, "svm: Handling trap read.\n");
4699 ret = avic_unaccel_trap_write(svm);
4700 } else {
4701 /* Handling Fault */
4702 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4705 return ret;
4708 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4709 [SVM_EXIT_READ_CR0] = cr_interception,
4710 [SVM_EXIT_READ_CR3] = cr_interception,
4711 [SVM_EXIT_READ_CR4] = cr_interception,
4712 [SVM_EXIT_READ_CR8] = cr_interception,
4713 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4714 [SVM_EXIT_WRITE_CR0] = cr_interception,
4715 [SVM_EXIT_WRITE_CR3] = cr_interception,
4716 [SVM_EXIT_WRITE_CR4] = cr_interception,
4717 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4718 [SVM_EXIT_READ_DR0] = dr_interception,
4719 [SVM_EXIT_READ_DR1] = dr_interception,
4720 [SVM_EXIT_READ_DR2] = dr_interception,
4721 [SVM_EXIT_READ_DR3] = dr_interception,
4722 [SVM_EXIT_READ_DR4] = dr_interception,
4723 [SVM_EXIT_READ_DR5] = dr_interception,
4724 [SVM_EXIT_READ_DR6] = dr_interception,
4725 [SVM_EXIT_READ_DR7] = dr_interception,
4726 [SVM_EXIT_WRITE_DR0] = dr_interception,
4727 [SVM_EXIT_WRITE_DR1] = dr_interception,
4728 [SVM_EXIT_WRITE_DR2] = dr_interception,
4729 [SVM_EXIT_WRITE_DR3] = dr_interception,
4730 [SVM_EXIT_WRITE_DR4] = dr_interception,
4731 [SVM_EXIT_WRITE_DR5] = dr_interception,
4732 [SVM_EXIT_WRITE_DR6] = dr_interception,
4733 [SVM_EXIT_WRITE_DR7] = dr_interception,
4734 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4735 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4736 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4737 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4738 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4739 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4740 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4741 [SVM_EXIT_INTR] = intr_interception,
4742 [SVM_EXIT_NMI] = nmi_interception,
4743 [SVM_EXIT_SMI] = nop_on_interception,
4744 [SVM_EXIT_INIT] = nop_on_interception,
4745 [SVM_EXIT_VINTR] = interrupt_window_interception,
4746 [SVM_EXIT_RDPMC] = rdpmc_interception,
4747 [SVM_EXIT_CPUID] = cpuid_interception,
4748 [SVM_EXIT_IRET] = iret_interception,
4749 [SVM_EXIT_INVD] = emulate_on_interception,
4750 [SVM_EXIT_PAUSE] = pause_interception,
4751 [SVM_EXIT_HLT] = halt_interception,
4752 [SVM_EXIT_INVLPG] = invlpg_interception,
4753 [SVM_EXIT_INVLPGA] = invlpga_interception,
4754 [SVM_EXIT_IOIO] = io_interception,
4755 [SVM_EXIT_MSR] = msr_interception,
4756 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4757 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4758 [SVM_EXIT_VMRUN] = vmrun_interception,
4759 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4760 [SVM_EXIT_VMLOAD] = vmload_interception,
4761 [SVM_EXIT_VMSAVE] = vmsave_interception,
4762 [SVM_EXIT_STGI] = stgi_interception,
4763 [SVM_EXIT_CLGI] = clgi_interception,
4764 [SVM_EXIT_SKINIT] = skinit_interception,
4765 [SVM_EXIT_WBINVD] = wbinvd_interception,
4766 [SVM_EXIT_MONITOR] = monitor_interception,
4767 [SVM_EXIT_MWAIT] = mwait_interception,
4768 [SVM_EXIT_XSETBV] = xsetbv_interception,
4769 [SVM_EXIT_NPF] = npf_interception,
4770 [SVM_EXIT_RSM] = rsm_interception,
4771 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4772 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4775 static void dump_vmcb(struct kvm_vcpu *vcpu)
4777 struct vcpu_svm *svm = to_svm(vcpu);
4778 struct vmcb_control_area *control = &svm->vmcb->control;
4779 struct vmcb_save_area *save = &svm->vmcb->save;
4781 pr_err("VMCB Control Area:\n");
4782 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4783 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4784 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4785 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4786 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4787 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4788 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4789 pr_err("%-20s%d\n", "pause filter threshold:",
4790 control->pause_filter_thresh);
4791 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4792 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4793 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4794 pr_err("%-20s%d\n", "asid:", control->asid);
4795 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4796 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4797 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4798 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4799 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4800 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4801 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4802 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4803 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4804 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4805 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4806 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4807 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4808 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4809 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4810 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4811 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4812 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4813 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4814 pr_err("VMCB State Save Area:\n");
4815 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4816 "es:",
4817 save->es.selector, save->es.attrib,
4818 save->es.limit, save->es.base);
4819 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4820 "cs:",
4821 save->cs.selector, save->cs.attrib,
4822 save->cs.limit, save->cs.base);
4823 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4824 "ss:",
4825 save->ss.selector, save->ss.attrib,
4826 save->ss.limit, save->ss.base);
4827 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4828 "ds:",
4829 save->ds.selector, save->ds.attrib,
4830 save->ds.limit, save->ds.base);
4831 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4832 "fs:",
4833 save->fs.selector, save->fs.attrib,
4834 save->fs.limit, save->fs.base);
4835 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4836 "gs:",
4837 save->gs.selector, save->gs.attrib,
4838 save->gs.limit, save->gs.base);
4839 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4840 "gdtr:",
4841 save->gdtr.selector, save->gdtr.attrib,
4842 save->gdtr.limit, save->gdtr.base);
4843 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4844 "ldtr:",
4845 save->ldtr.selector, save->ldtr.attrib,
4846 save->ldtr.limit, save->ldtr.base);
4847 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4848 "idtr:",
4849 save->idtr.selector, save->idtr.attrib,
4850 save->idtr.limit, save->idtr.base);
4851 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4852 "tr:",
4853 save->tr.selector, save->tr.attrib,
4854 save->tr.limit, save->tr.base);
4855 pr_err("cpl: %d efer: %016llx\n",
4856 save->cpl, save->efer);
4857 pr_err("%-15s %016llx %-13s %016llx\n",
4858 "cr0:", save->cr0, "cr2:", save->cr2);
4859 pr_err("%-15s %016llx %-13s %016llx\n",
4860 "cr3:", save->cr3, "cr4:", save->cr4);
4861 pr_err("%-15s %016llx %-13s %016llx\n",
4862 "dr6:", save->dr6, "dr7:", save->dr7);
4863 pr_err("%-15s %016llx %-13s %016llx\n",
4864 "rip:", save->rip, "rflags:", save->rflags);
4865 pr_err("%-15s %016llx %-13s %016llx\n",
4866 "rsp:", save->rsp, "rax:", save->rax);
4867 pr_err("%-15s %016llx %-13s %016llx\n",
4868 "star:", save->star, "lstar:", save->lstar);
4869 pr_err("%-15s %016llx %-13s %016llx\n",
4870 "cstar:", save->cstar, "sfmask:", save->sfmask);
4871 pr_err("%-15s %016llx %-13s %016llx\n",
4872 "kernel_gs_base:", save->kernel_gs_base,
4873 "sysenter_cs:", save->sysenter_cs);
4874 pr_err("%-15s %016llx %-13s %016llx\n",
4875 "sysenter_esp:", save->sysenter_esp,
4876 "sysenter_eip:", save->sysenter_eip);
4877 pr_err("%-15s %016llx %-13s %016llx\n",
4878 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4879 pr_err("%-15s %016llx %-13s %016llx\n",
4880 "br_from:", save->br_from, "br_to:", save->br_to);
4881 pr_err("%-15s %016llx %-13s %016llx\n",
4882 "excp_from:", save->last_excp_from,
4883 "excp_to:", save->last_excp_to);
4886 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4888 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4890 *info1 = control->exit_info_1;
4891 *info2 = control->exit_info_2;
4894 static int handle_exit(struct kvm_vcpu *vcpu)
4896 struct vcpu_svm *svm = to_svm(vcpu);
4897 struct kvm_run *kvm_run = vcpu->run;
4898 u32 exit_code = svm->vmcb->control.exit_code;
4900 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4902 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4903 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4904 if (npt_enabled)
4905 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4907 if (unlikely(svm->nested.exit_required)) {
4908 nested_svm_vmexit(svm);
4909 svm->nested.exit_required = false;
4911 return 1;
4914 if (is_guest_mode(vcpu)) {
4915 int vmexit;
4917 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4918 svm->vmcb->control.exit_info_1,
4919 svm->vmcb->control.exit_info_2,
4920 svm->vmcb->control.exit_int_info,
4921 svm->vmcb->control.exit_int_info_err,
4922 KVM_ISA_SVM);
4924 vmexit = nested_svm_exit_special(svm);
4926 if (vmexit == NESTED_EXIT_CONTINUE)
4927 vmexit = nested_svm_exit_handled(svm);
4929 if (vmexit == NESTED_EXIT_DONE)
4930 return 1;
4933 svm_complete_interrupts(svm);
4935 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4936 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4937 kvm_run->fail_entry.hardware_entry_failure_reason
4938 = svm->vmcb->control.exit_code;
4939 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4940 dump_vmcb(vcpu);
4941 return 0;
4944 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4945 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4946 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4947 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4948 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4949 "exit_code 0x%x\n",
4950 __func__, svm->vmcb->control.exit_int_info,
4951 exit_code);
4953 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4954 || !svm_exit_handlers[exit_code]) {
4955 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4956 kvm_queue_exception(vcpu, UD_VECTOR);
4957 return 1;
4960 return svm_exit_handlers[exit_code](svm);
4963 static void reload_tss(struct kvm_vcpu *vcpu)
4965 int cpu = raw_smp_processor_id();
4967 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4968 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4969 load_TR_desc();
4972 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4974 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4975 int asid = sev_get_asid(svm->vcpu.kvm);
4977 /* Assign the asid allocated with this SEV guest */
4978 svm->vmcb->control.asid = asid;
4981 * Flush guest TLB:
4983 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4984 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4986 if (sd->sev_vmcbs[asid] == svm->vmcb &&
4987 svm->last_cpu == cpu)
4988 return;
4990 svm->last_cpu = cpu;
4991 sd->sev_vmcbs[asid] = svm->vmcb;
4992 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4993 mark_dirty(svm->vmcb, VMCB_ASID);
4996 static void pre_svm_run(struct vcpu_svm *svm)
4998 int cpu = raw_smp_processor_id();
5000 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5002 if (sev_guest(svm->vcpu.kvm))
5003 return pre_sev_run(svm, cpu);
5005 /* FIXME: handle wraparound of asid_generation */
5006 if (svm->asid_generation != sd->asid_generation)
5007 new_asid(svm, sd);
5010 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5012 struct vcpu_svm *svm = to_svm(vcpu);
5014 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5015 vcpu->arch.hflags |= HF_NMI_MASK;
5016 set_intercept(svm, INTERCEPT_IRET);
5017 ++vcpu->stat.nmi_injections;
5020 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5022 struct vmcb_control_area *control;
5024 /* The following fields are ignored when AVIC is enabled */
5025 control = &svm->vmcb->control;
5026 control->int_vector = irq;
5027 control->int_ctl &= ~V_INTR_PRIO_MASK;
5028 control->int_ctl |= V_IRQ_MASK |
5029 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5030 mark_dirty(svm->vmcb, VMCB_INTR);
5033 static void svm_set_irq(struct kvm_vcpu *vcpu)
5035 struct vcpu_svm *svm = to_svm(vcpu);
5037 BUG_ON(!(gif_set(svm)));
5039 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5040 ++vcpu->stat.irq_injections;
5042 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5043 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5046 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5048 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5051 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5053 struct vcpu_svm *svm = to_svm(vcpu);
5055 if (svm_nested_virtualize_tpr(vcpu) ||
5056 kvm_vcpu_apicv_active(vcpu))
5057 return;
5059 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5061 if (irr == -1)
5062 return;
5064 if (tpr >= irr)
5065 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5068 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5070 return;
5073 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5075 return avic && irqchip_split(vcpu->kvm);
5078 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5082 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5086 /* Note: Currently only used by Hyper-V. */
5087 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5089 struct vcpu_svm *svm = to_svm(vcpu);
5090 struct vmcb *vmcb = svm->vmcb;
5092 if (!kvm_vcpu_apicv_active(&svm->vcpu))
5093 return;
5095 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5096 mark_dirty(vmcb, VMCB_INTR);
5099 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5101 return;
5104 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5106 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5107 smp_mb__after_atomic();
5109 if (avic_vcpu_is_running(vcpu))
5110 wrmsrl(SVM_AVIC_DOORBELL,
5111 kvm_cpu_get_apicid(vcpu->cpu));
5112 else
5113 kvm_vcpu_wake_up(vcpu);
5116 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5118 unsigned long flags;
5119 struct amd_svm_iommu_ir *cur;
5121 spin_lock_irqsave(&svm->ir_list_lock, flags);
5122 list_for_each_entry(cur, &svm->ir_list, node) {
5123 if (cur->data != pi->ir_data)
5124 continue;
5125 list_del(&cur->node);
5126 kfree(cur);
5127 break;
5129 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5132 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5134 int ret = 0;
5135 unsigned long flags;
5136 struct amd_svm_iommu_ir *ir;
5139 * In some cases, the existing irte is updaed and re-set,
5140 * so we need to check here if it's already been * added
5141 * to the ir_list.
5143 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5144 struct kvm *kvm = svm->vcpu.kvm;
5145 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5146 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5147 struct vcpu_svm *prev_svm;
5149 if (!prev_vcpu) {
5150 ret = -EINVAL;
5151 goto out;
5154 prev_svm = to_svm(prev_vcpu);
5155 svm_ir_list_del(prev_svm, pi);
5159 * Allocating new amd_iommu_pi_data, which will get
5160 * add to the per-vcpu ir_list.
5162 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5163 if (!ir) {
5164 ret = -ENOMEM;
5165 goto out;
5167 ir->data = pi->ir_data;
5169 spin_lock_irqsave(&svm->ir_list_lock, flags);
5170 list_add(&ir->node, &svm->ir_list);
5171 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5172 out:
5173 return ret;
5177 * Note:
5178 * The HW cannot support posting multicast/broadcast
5179 * interrupts to a vCPU. So, we still use legacy interrupt
5180 * remapping for these kind of interrupts.
5182 * For lowest-priority interrupts, we only support
5183 * those with single CPU as the destination, e.g. user
5184 * configures the interrupts via /proc/irq or uses
5185 * irqbalance to make the interrupts single-CPU.
5187 static int
5188 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5189 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5191 struct kvm_lapic_irq irq;
5192 struct kvm_vcpu *vcpu = NULL;
5194 kvm_set_msi_irq(kvm, e, &irq);
5196 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5197 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5198 __func__, irq.vector);
5199 return -1;
5202 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5203 irq.vector);
5204 *svm = to_svm(vcpu);
5205 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5206 vcpu_info->vector = irq.vector;
5208 return 0;
5212 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5214 * @kvm: kvm
5215 * @host_irq: host irq of the interrupt
5216 * @guest_irq: gsi of the interrupt
5217 * @set: set or unset PI
5218 * returns 0 on success, < 0 on failure
5220 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5221 uint32_t guest_irq, bool set)
5223 struct kvm_kernel_irq_routing_entry *e;
5224 struct kvm_irq_routing_table *irq_rt;
5225 int idx, ret = -EINVAL;
5227 if (!kvm_arch_has_assigned_device(kvm) ||
5228 !irq_remapping_cap(IRQ_POSTING_CAP))
5229 return 0;
5231 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5232 __func__, host_irq, guest_irq, set);
5234 idx = srcu_read_lock(&kvm->irq_srcu);
5235 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5236 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5238 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5239 struct vcpu_data vcpu_info;
5240 struct vcpu_svm *svm = NULL;
5242 if (e->type != KVM_IRQ_ROUTING_MSI)
5243 continue;
5246 * Here, we setup with legacy mode in the following cases:
5247 * 1. When cannot target interrupt to a specific vcpu.
5248 * 2. Unsetting posted interrupt.
5249 * 3. APIC virtialization is disabled for the vcpu.
5251 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5252 kvm_vcpu_apicv_active(&svm->vcpu)) {
5253 struct amd_iommu_pi_data pi;
5255 /* Try to enable guest_mode in IRTE */
5256 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5257 AVIC_HPA_MASK);
5258 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5259 svm->vcpu.vcpu_id);
5260 pi.is_guest_mode = true;
5261 pi.vcpu_data = &vcpu_info;
5262 ret = irq_set_vcpu_affinity(host_irq, &pi);
5265 * Here, we successfully setting up vcpu affinity in
5266 * IOMMU guest mode. Now, we need to store the posted
5267 * interrupt information in a per-vcpu ir_list so that
5268 * we can reference to them directly when we update vcpu
5269 * scheduling information in IOMMU irte.
5271 if (!ret && pi.is_guest_mode)
5272 svm_ir_list_add(svm, &pi);
5273 } else {
5274 /* Use legacy mode in IRTE */
5275 struct amd_iommu_pi_data pi;
5278 * Here, pi is used to:
5279 * - Tell IOMMU to use legacy mode for this interrupt.
5280 * - Retrieve ga_tag of prior interrupt remapping data.
5282 pi.is_guest_mode = false;
5283 ret = irq_set_vcpu_affinity(host_irq, &pi);
5286 * Check if the posted interrupt was previously
5287 * setup with the guest_mode by checking if the ga_tag
5288 * was cached. If so, we need to clean up the per-vcpu
5289 * ir_list.
5291 if (!ret && pi.prev_ga_tag) {
5292 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5293 struct kvm_vcpu *vcpu;
5295 vcpu = kvm_get_vcpu_by_id(kvm, id);
5296 if (vcpu)
5297 svm_ir_list_del(to_svm(vcpu), &pi);
5301 if (!ret && svm) {
5302 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5303 e->gsi, vcpu_info.vector,
5304 vcpu_info.pi_desc_addr, set);
5307 if (ret < 0) {
5308 pr_err("%s: failed to update PI IRTE\n", __func__);
5309 goto out;
5313 ret = 0;
5314 out:
5315 srcu_read_unlock(&kvm->irq_srcu, idx);
5316 return ret;
5319 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5321 struct vcpu_svm *svm = to_svm(vcpu);
5322 struct vmcb *vmcb = svm->vmcb;
5323 int ret;
5324 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5325 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5326 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5328 return ret;
5331 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5333 struct vcpu_svm *svm = to_svm(vcpu);
5335 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5338 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5340 struct vcpu_svm *svm = to_svm(vcpu);
5342 if (masked) {
5343 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5344 set_intercept(svm, INTERCEPT_IRET);
5345 } else {
5346 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5347 clr_intercept(svm, INTERCEPT_IRET);
5351 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5353 struct vcpu_svm *svm = to_svm(vcpu);
5354 struct vmcb *vmcb = svm->vmcb;
5355 int ret;
5357 if (!gif_set(svm) ||
5358 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5359 return 0;
5361 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5363 if (is_guest_mode(vcpu))
5364 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5366 return ret;
5369 static void enable_irq_window(struct kvm_vcpu *vcpu)
5371 struct vcpu_svm *svm = to_svm(vcpu);
5373 if (kvm_vcpu_apicv_active(vcpu))
5374 return;
5377 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5378 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5379 * get that intercept, this function will be called again though and
5380 * we'll get the vintr intercept. However, if the vGIF feature is
5381 * enabled, the STGI interception will not occur. Enable the irq
5382 * window under the assumption that the hardware will set the GIF.
5384 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5385 svm_set_vintr(svm);
5386 svm_inject_irq(svm, 0x0);
5390 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5392 struct vcpu_svm *svm = to_svm(vcpu);
5394 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5395 == HF_NMI_MASK)
5396 return; /* IRET will cause a vm exit */
5398 if (!gif_set(svm)) {
5399 if (vgif_enabled(svm))
5400 set_intercept(svm, INTERCEPT_STGI);
5401 return; /* STGI will cause a vm exit */
5404 if (svm->nested.exit_required)
5405 return; /* we're not going to run the guest yet */
5408 * Something prevents NMI from been injected. Single step over possible
5409 * problem (IRET or exception injection or interrupt shadow)
5411 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5412 svm->nmi_singlestep = true;
5413 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5416 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5418 return 0;
5421 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5423 return 0;
5426 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5428 struct vcpu_svm *svm = to_svm(vcpu);
5430 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5431 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5432 else
5433 svm->asid_generation--;
5436 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5438 struct vcpu_svm *svm = to_svm(vcpu);
5440 invlpga(gva, svm->vmcb->control.asid);
5443 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5447 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5449 struct vcpu_svm *svm = to_svm(vcpu);
5451 if (svm_nested_virtualize_tpr(vcpu))
5452 return;
5454 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5455 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5456 kvm_set_cr8(vcpu, cr8);
5460 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5462 struct vcpu_svm *svm = to_svm(vcpu);
5463 u64 cr8;
5465 if (svm_nested_virtualize_tpr(vcpu) ||
5466 kvm_vcpu_apicv_active(vcpu))
5467 return;
5469 cr8 = kvm_get_cr8(vcpu);
5470 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5471 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5474 static void svm_complete_interrupts(struct vcpu_svm *svm)
5476 u8 vector;
5477 int type;
5478 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5479 unsigned int3_injected = svm->int3_injected;
5481 svm->int3_injected = 0;
5484 * If we've made progress since setting HF_IRET_MASK, we've
5485 * executed an IRET and can allow NMI injection.
5487 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5488 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5489 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5490 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5493 svm->vcpu.arch.nmi_injected = false;
5494 kvm_clear_exception_queue(&svm->vcpu);
5495 kvm_clear_interrupt_queue(&svm->vcpu);
5497 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5498 return;
5500 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5502 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5503 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5505 switch (type) {
5506 case SVM_EXITINTINFO_TYPE_NMI:
5507 svm->vcpu.arch.nmi_injected = true;
5508 break;
5509 case SVM_EXITINTINFO_TYPE_EXEPT:
5511 * In case of software exceptions, do not reinject the vector,
5512 * but re-execute the instruction instead. Rewind RIP first
5513 * if we emulated INT3 before.
5515 if (kvm_exception_is_soft(vector)) {
5516 if (vector == BP_VECTOR && int3_injected &&
5517 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5518 kvm_rip_write(&svm->vcpu,
5519 kvm_rip_read(&svm->vcpu) -
5520 int3_injected);
5521 break;
5523 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5524 u32 err = svm->vmcb->control.exit_int_info_err;
5525 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5527 } else
5528 kvm_requeue_exception(&svm->vcpu, vector);
5529 break;
5530 case SVM_EXITINTINFO_TYPE_INTR:
5531 kvm_queue_interrupt(&svm->vcpu, vector, false);
5532 break;
5533 default:
5534 break;
5538 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5540 struct vcpu_svm *svm = to_svm(vcpu);
5541 struct vmcb_control_area *control = &svm->vmcb->control;
5543 control->exit_int_info = control->event_inj;
5544 control->exit_int_info_err = control->event_inj_err;
5545 control->event_inj = 0;
5546 svm_complete_interrupts(svm);
5549 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5551 struct vcpu_svm *svm = to_svm(vcpu);
5553 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5554 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5555 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5558 * A vmexit emulation is required before the vcpu can be executed
5559 * again.
5561 if (unlikely(svm->nested.exit_required))
5562 return;
5565 * Disable singlestep if we're injecting an interrupt/exception.
5566 * We don't want our modified rflags to be pushed on the stack where
5567 * we might not be able to easily reset them if we disabled NMI
5568 * singlestep later.
5570 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5572 * Event injection happens before external interrupts cause a
5573 * vmexit and interrupts are disabled here, so smp_send_reschedule
5574 * is enough to force an immediate vmexit.
5576 disable_nmi_singlestep(svm);
5577 smp_send_reschedule(vcpu->cpu);
5580 pre_svm_run(svm);
5582 sync_lapic_to_cr8(vcpu);
5584 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5586 clgi();
5589 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5590 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5591 * is no need to worry about the conditional branch over the wrmsr
5592 * being speculatively taken.
5594 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5596 local_irq_enable();
5598 asm volatile (
5599 "push %%" _ASM_BP "; \n\t"
5600 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5601 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5602 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5603 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5604 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5605 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5606 #ifdef CONFIG_X86_64
5607 "mov %c[r8](%[svm]), %%r8 \n\t"
5608 "mov %c[r9](%[svm]), %%r9 \n\t"
5609 "mov %c[r10](%[svm]), %%r10 \n\t"
5610 "mov %c[r11](%[svm]), %%r11 \n\t"
5611 "mov %c[r12](%[svm]), %%r12 \n\t"
5612 "mov %c[r13](%[svm]), %%r13 \n\t"
5613 "mov %c[r14](%[svm]), %%r14 \n\t"
5614 "mov %c[r15](%[svm]), %%r15 \n\t"
5615 #endif
5617 /* Enter guest mode */
5618 "push %%" _ASM_AX " \n\t"
5619 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5620 __ex(SVM_VMLOAD) "\n\t"
5621 __ex(SVM_VMRUN) "\n\t"
5622 __ex(SVM_VMSAVE) "\n\t"
5623 "pop %%" _ASM_AX " \n\t"
5625 /* Save guest registers, load host registers */
5626 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5627 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5628 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5629 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5630 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5631 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5632 #ifdef CONFIG_X86_64
5633 "mov %%r8, %c[r8](%[svm]) \n\t"
5634 "mov %%r9, %c[r9](%[svm]) \n\t"
5635 "mov %%r10, %c[r10](%[svm]) \n\t"
5636 "mov %%r11, %c[r11](%[svm]) \n\t"
5637 "mov %%r12, %c[r12](%[svm]) \n\t"
5638 "mov %%r13, %c[r13](%[svm]) \n\t"
5639 "mov %%r14, %c[r14](%[svm]) \n\t"
5640 "mov %%r15, %c[r15](%[svm]) \n\t"
5641 #endif
5643 * Clear host registers marked as clobbered to prevent
5644 * speculative use.
5646 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5647 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5648 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5649 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5650 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5651 #ifdef CONFIG_X86_64
5652 "xor %%r8, %%r8 \n\t"
5653 "xor %%r9, %%r9 \n\t"
5654 "xor %%r10, %%r10 \n\t"
5655 "xor %%r11, %%r11 \n\t"
5656 "xor %%r12, %%r12 \n\t"
5657 "xor %%r13, %%r13 \n\t"
5658 "xor %%r14, %%r14 \n\t"
5659 "xor %%r15, %%r15 \n\t"
5660 #endif
5661 "pop %%" _ASM_BP
5663 : [svm]"a"(svm),
5664 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5665 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5666 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5667 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5668 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5669 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5670 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5671 #ifdef CONFIG_X86_64
5672 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5673 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5674 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5675 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5676 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5677 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5678 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5679 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5680 #endif
5681 : "cc", "memory"
5682 #ifdef CONFIG_X86_64
5683 , "rbx", "rcx", "rdx", "rsi", "rdi"
5684 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5685 #else
5686 , "ebx", "ecx", "edx", "esi", "edi"
5687 #endif
5690 /* Eliminate branch target predictions from guest mode */
5691 vmexit_fill_RSB();
5693 #ifdef CONFIG_X86_64
5694 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5695 #else
5696 loadsegment(fs, svm->host.fs);
5697 #ifndef CONFIG_X86_32_LAZY_GS
5698 loadsegment(gs, svm->host.gs);
5699 #endif
5700 #endif
5703 * We do not use IBRS in the kernel. If this vCPU has used the
5704 * SPEC_CTRL MSR it may have left it on; save the value and
5705 * turn it off. This is much more efficient than blindly adding
5706 * it to the atomic save/restore list. Especially as the former
5707 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5709 * For non-nested case:
5710 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5711 * save it.
5713 * For nested case:
5714 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5715 * save it.
5717 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5718 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5720 reload_tss(vcpu);
5722 local_irq_disable();
5724 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5726 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5727 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5728 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5729 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5731 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5732 kvm_before_interrupt(&svm->vcpu);
5734 stgi();
5736 /* Any pending NMI will happen here */
5738 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5739 kvm_after_interrupt(&svm->vcpu);
5741 sync_cr8_to_lapic(vcpu);
5743 svm->next_rip = 0;
5745 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5747 /* if exit due to PF check for async PF */
5748 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5749 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5751 if (npt_enabled) {
5752 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5753 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5757 * We need to handle MC intercepts here before the vcpu has a chance to
5758 * change the physical cpu
5760 if (unlikely(svm->vmcb->control.exit_code ==
5761 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5762 svm_handle_mce(svm);
5764 mark_all_clean(svm->vmcb);
5766 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5768 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5770 struct vcpu_svm *svm = to_svm(vcpu);
5772 svm->vmcb->save.cr3 = __sme_set(root);
5773 mark_dirty(svm->vmcb, VMCB_CR);
5776 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5778 struct vcpu_svm *svm = to_svm(vcpu);
5780 svm->vmcb->control.nested_cr3 = __sme_set(root);
5781 mark_dirty(svm->vmcb, VMCB_NPT);
5783 /* Also sync guest cr3 here in case we live migrate */
5784 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5785 mark_dirty(svm->vmcb, VMCB_CR);
5788 static int is_disabled(void)
5790 u64 vm_cr;
5792 rdmsrl(MSR_VM_CR, vm_cr);
5793 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5794 return 1;
5796 return 0;
5799 static void
5800 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5803 * Patch in the VMMCALL instruction:
5805 hypercall[0] = 0x0f;
5806 hypercall[1] = 0x01;
5807 hypercall[2] = 0xd9;
5810 static void svm_check_processor_compat(void *rtn)
5812 *(int *)rtn = 0;
5815 static bool svm_cpu_has_accelerated_tpr(void)
5817 return false;
5820 static bool svm_has_emulated_msr(int index)
5822 return true;
5825 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5827 return 0;
5830 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5832 struct vcpu_svm *svm = to_svm(vcpu);
5834 /* Update nrips enabled cache */
5835 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5837 if (!kvm_vcpu_apicv_active(vcpu))
5838 return;
5840 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5843 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5845 switch (func) {
5846 case 0x1:
5847 if (avic)
5848 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5849 break;
5850 case 0x80000001:
5851 if (nested)
5852 entry->ecx |= (1 << 2); /* Set SVM bit */
5853 break;
5854 case 0x8000000A:
5855 entry->eax = 1; /* SVM revision 1 */
5856 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5857 ASID emulation to nested SVM */
5858 entry->ecx = 0; /* Reserved */
5859 entry->edx = 0; /* Per default do not support any
5860 additional features */
5862 /* Support next_rip if host supports it */
5863 if (boot_cpu_has(X86_FEATURE_NRIPS))
5864 entry->edx |= SVM_FEATURE_NRIP;
5866 /* Support NPT for the guest if enabled */
5867 if (npt_enabled)
5868 entry->edx |= SVM_FEATURE_NPT;
5870 break;
5871 case 0x8000001F:
5872 /* Support memory encryption cpuid if host supports it */
5873 if (boot_cpu_has(X86_FEATURE_SEV))
5874 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5875 &entry->ecx, &entry->edx);
5880 static int svm_get_lpage_level(void)
5882 return PT_PDPE_LEVEL;
5885 static bool svm_rdtscp_supported(void)
5887 return boot_cpu_has(X86_FEATURE_RDTSCP);
5890 static bool svm_invpcid_supported(void)
5892 return false;
5895 static bool svm_mpx_supported(void)
5897 return false;
5900 static bool svm_xsaves_supported(void)
5902 return false;
5905 static bool svm_umip_emulated(void)
5907 return false;
5910 static bool svm_has_wbinvd_exit(void)
5912 return true;
5915 #define PRE_EX(exit) { .exit_code = (exit), \
5916 .stage = X86_ICPT_PRE_EXCEPT, }
5917 #define POST_EX(exit) { .exit_code = (exit), \
5918 .stage = X86_ICPT_POST_EXCEPT, }
5919 #define POST_MEM(exit) { .exit_code = (exit), \
5920 .stage = X86_ICPT_POST_MEMACCESS, }
5922 static const struct __x86_intercept {
5923 u32 exit_code;
5924 enum x86_intercept_stage stage;
5925 } x86_intercept_map[] = {
5926 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5927 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5928 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5929 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5930 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5931 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5932 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5933 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5934 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5935 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5936 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5937 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5938 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5939 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5940 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5941 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5942 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5943 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5944 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5945 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5946 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5947 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5948 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5949 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5950 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5951 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5952 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5953 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5954 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5955 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5956 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5957 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5958 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5959 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5960 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5961 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5962 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5963 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5964 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5965 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5966 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5967 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5968 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5969 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5970 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5971 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5974 #undef PRE_EX
5975 #undef POST_EX
5976 #undef POST_MEM
5978 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5979 struct x86_instruction_info *info,
5980 enum x86_intercept_stage stage)
5982 struct vcpu_svm *svm = to_svm(vcpu);
5983 int vmexit, ret = X86EMUL_CONTINUE;
5984 struct __x86_intercept icpt_info;
5985 struct vmcb *vmcb = svm->vmcb;
5987 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5988 goto out;
5990 icpt_info = x86_intercept_map[info->intercept];
5992 if (stage != icpt_info.stage)
5993 goto out;
5995 switch (icpt_info.exit_code) {
5996 case SVM_EXIT_READ_CR0:
5997 if (info->intercept == x86_intercept_cr_read)
5998 icpt_info.exit_code += info->modrm_reg;
5999 break;
6000 case SVM_EXIT_WRITE_CR0: {
6001 unsigned long cr0, val;
6002 u64 intercept;
6004 if (info->intercept == x86_intercept_cr_write)
6005 icpt_info.exit_code += info->modrm_reg;
6007 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6008 info->intercept == x86_intercept_clts)
6009 break;
6011 intercept = svm->nested.intercept;
6013 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6014 break;
6016 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6017 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6019 if (info->intercept == x86_intercept_lmsw) {
6020 cr0 &= 0xfUL;
6021 val &= 0xfUL;
6022 /* lmsw can't clear PE - catch this here */
6023 if (cr0 & X86_CR0_PE)
6024 val |= X86_CR0_PE;
6027 if (cr0 ^ val)
6028 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6030 break;
6032 case SVM_EXIT_READ_DR0:
6033 case SVM_EXIT_WRITE_DR0:
6034 icpt_info.exit_code += info->modrm_reg;
6035 break;
6036 case SVM_EXIT_MSR:
6037 if (info->intercept == x86_intercept_wrmsr)
6038 vmcb->control.exit_info_1 = 1;
6039 else
6040 vmcb->control.exit_info_1 = 0;
6041 break;
6042 case SVM_EXIT_PAUSE:
6044 * We get this for NOP only, but pause
6045 * is rep not, check this here
6047 if (info->rep_prefix != REPE_PREFIX)
6048 goto out;
6049 break;
6050 case SVM_EXIT_IOIO: {
6051 u64 exit_info;
6052 u32 bytes;
6054 if (info->intercept == x86_intercept_in ||
6055 info->intercept == x86_intercept_ins) {
6056 exit_info = ((info->src_val & 0xffff) << 16) |
6057 SVM_IOIO_TYPE_MASK;
6058 bytes = info->dst_bytes;
6059 } else {
6060 exit_info = (info->dst_val & 0xffff) << 16;
6061 bytes = info->src_bytes;
6064 if (info->intercept == x86_intercept_outs ||
6065 info->intercept == x86_intercept_ins)
6066 exit_info |= SVM_IOIO_STR_MASK;
6068 if (info->rep_prefix)
6069 exit_info |= SVM_IOIO_REP_MASK;
6071 bytes = min(bytes, 4u);
6073 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6075 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6077 vmcb->control.exit_info_1 = exit_info;
6078 vmcb->control.exit_info_2 = info->next_rip;
6080 break;
6082 default:
6083 break;
6086 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6087 if (static_cpu_has(X86_FEATURE_NRIPS))
6088 vmcb->control.next_rip = info->next_rip;
6089 vmcb->control.exit_code = icpt_info.exit_code;
6090 vmexit = nested_svm_exit_handled(svm);
6092 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6093 : X86EMUL_CONTINUE;
6095 out:
6096 return ret;
6099 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6101 local_irq_enable();
6103 * We must have an instruction with interrupts enabled, so
6104 * the timer interrupt isn't delayed by the interrupt shadow.
6106 asm("nop");
6107 local_irq_disable();
6110 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6112 if (pause_filter_thresh)
6113 shrink_ple_window(vcpu);
6116 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6118 if (avic_handle_apic_id_update(vcpu) != 0)
6119 return;
6120 if (avic_handle_dfr_update(vcpu) != 0)
6121 return;
6122 avic_handle_ldr_update(vcpu);
6125 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6127 /* [63:9] are reserved. */
6128 vcpu->arch.mcg_cap &= 0x1ff;
6131 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6133 struct vcpu_svm *svm = to_svm(vcpu);
6135 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6136 if (!gif_set(svm))
6137 return 0;
6139 if (is_guest_mode(&svm->vcpu) &&
6140 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6141 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6142 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6143 svm->nested.exit_required = true;
6144 return 0;
6147 return 1;
6150 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6152 struct vcpu_svm *svm = to_svm(vcpu);
6153 int ret;
6155 if (is_guest_mode(vcpu)) {
6156 /* FED8h - SVM Guest */
6157 put_smstate(u64, smstate, 0x7ed8, 1);
6158 /* FEE0h - SVM Guest VMCB Physical Address */
6159 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6161 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6162 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6163 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6165 ret = nested_svm_vmexit(svm);
6166 if (ret)
6167 return ret;
6169 return 0;
6172 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6174 struct vcpu_svm *svm = to_svm(vcpu);
6175 struct vmcb *nested_vmcb;
6176 struct page *page;
6177 struct {
6178 u64 guest;
6179 u64 vmcb;
6180 } svm_state_save;
6181 int ret;
6183 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6184 sizeof(svm_state_save));
6185 if (ret)
6186 return ret;
6188 if (svm_state_save.guest) {
6189 vcpu->arch.hflags &= ~HF_SMM_MASK;
6190 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6191 if (nested_vmcb)
6192 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6193 else
6194 ret = 1;
6195 vcpu->arch.hflags |= HF_SMM_MASK;
6197 return ret;
6200 static int enable_smi_window(struct kvm_vcpu *vcpu)
6202 struct vcpu_svm *svm = to_svm(vcpu);
6204 if (!gif_set(svm)) {
6205 if (vgif_enabled(svm))
6206 set_intercept(svm, INTERCEPT_STGI);
6207 /* STGI will cause a vm exit */
6208 return 1;
6210 return 0;
6213 static int sev_asid_new(void)
6215 int pos;
6218 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6220 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6221 if (pos >= max_sev_asid)
6222 return -EBUSY;
6224 set_bit(pos, sev_asid_bitmap);
6225 return pos + 1;
6228 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6230 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6231 int asid, ret;
6233 ret = -EBUSY;
6234 asid = sev_asid_new();
6235 if (asid < 0)
6236 return ret;
6238 ret = sev_platform_init(&argp->error);
6239 if (ret)
6240 goto e_free;
6242 sev->active = true;
6243 sev->asid = asid;
6244 INIT_LIST_HEAD(&sev->regions_list);
6246 return 0;
6248 e_free:
6249 __sev_asid_free(asid);
6250 return ret;
6253 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6255 struct sev_data_activate *data;
6256 int asid = sev_get_asid(kvm);
6257 int ret;
6259 wbinvd_on_all_cpus();
6261 ret = sev_guest_df_flush(error);
6262 if (ret)
6263 return ret;
6265 data = kzalloc(sizeof(*data), GFP_KERNEL);
6266 if (!data)
6267 return -ENOMEM;
6269 /* activate ASID on the given handle */
6270 data->handle = handle;
6271 data->asid = asid;
6272 ret = sev_guest_activate(data, error);
6273 kfree(data);
6275 return ret;
6278 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6280 struct fd f;
6281 int ret;
6283 f = fdget(fd);
6284 if (!f.file)
6285 return -EBADF;
6287 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6289 fdput(f);
6290 return ret;
6293 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6295 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6297 return __sev_issue_cmd(sev->fd, id, data, error);
6300 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6302 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6303 struct sev_data_launch_start *start;
6304 struct kvm_sev_launch_start params;
6305 void *dh_blob, *session_blob;
6306 int *error = &argp->error;
6307 int ret;
6309 if (!sev_guest(kvm))
6310 return -ENOTTY;
6312 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6313 return -EFAULT;
6315 start = kzalloc(sizeof(*start), GFP_KERNEL);
6316 if (!start)
6317 return -ENOMEM;
6319 dh_blob = NULL;
6320 if (params.dh_uaddr) {
6321 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6322 if (IS_ERR(dh_blob)) {
6323 ret = PTR_ERR(dh_blob);
6324 goto e_free;
6327 start->dh_cert_address = __sme_set(__pa(dh_blob));
6328 start->dh_cert_len = params.dh_len;
6331 session_blob = NULL;
6332 if (params.session_uaddr) {
6333 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6334 if (IS_ERR(session_blob)) {
6335 ret = PTR_ERR(session_blob);
6336 goto e_free_dh;
6339 start->session_address = __sme_set(__pa(session_blob));
6340 start->session_len = params.session_len;
6343 start->handle = params.handle;
6344 start->policy = params.policy;
6346 /* create memory encryption context */
6347 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6348 if (ret)
6349 goto e_free_session;
6351 /* Bind ASID to this guest */
6352 ret = sev_bind_asid(kvm, start->handle, error);
6353 if (ret)
6354 goto e_free_session;
6356 /* return handle to userspace */
6357 params.handle = start->handle;
6358 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6359 sev_unbind_asid(kvm, start->handle);
6360 ret = -EFAULT;
6361 goto e_free_session;
6364 sev->handle = start->handle;
6365 sev->fd = argp->sev_fd;
6367 e_free_session:
6368 kfree(session_blob);
6369 e_free_dh:
6370 kfree(dh_blob);
6371 e_free:
6372 kfree(start);
6373 return ret;
6376 static int get_num_contig_pages(int idx, struct page **inpages,
6377 unsigned long npages)
6379 unsigned long paddr, next_paddr;
6380 int i = idx + 1, pages = 1;
6382 /* find the number of contiguous pages starting from idx */
6383 paddr = __sme_page_pa(inpages[idx]);
6384 while (i < npages) {
6385 next_paddr = __sme_page_pa(inpages[i++]);
6386 if ((paddr + PAGE_SIZE) == next_paddr) {
6387 pages++;
6388 paddr = next_paddr;
6389 continue;
6391 break;
6394 return pages;
6397 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6399 unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6400 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6401 struct kvm_sev_launch_update_data params;
6402 struct sev_data_launch_update_data *data;
6403 struct page **inpages;
6404 int i, ret, pages;
6406 if (!sev_guest(kvm))
6407 return -ENOTTY;
6409 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6410 return -EFAULT;
6412 data = kzalloc(sizeof(*data), GFP_KERNEL);
6413 if (!data)
6414 return -ENOMEM;
6416 vaddr = params.uaddr;
6417 size = params.len;
6418 vaddr_end = vaddr + size;
6420 /* Lock the user memory. */
6421 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6422 if (!inpages) {
6423 ret = -ENOMEM;
6424 goto e_free;
6428 * The LAUNCH_UPDATE command will perform in-place encryption of the
6429 * memory content (i.e it will write the same memory region with C=1).
6430 * It's possible that the cache may contain the data with C=0, i.e.,
6431 * unencrypted so invalidate it first.
6433 sev_clflush_pages(inpages, npages);
6435 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6436 int offset, len;
6439 * If the user buffer is not page-aligned, calculate the offset
6440 * within the page.
6442 offset = vaddr & (PAGE_SIZE - 1);
6444 /* Calculate the number of pages that can be encrypted in one go. */
6445 pages = get_num_contig_pages(i, inpages, npages);
6447 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6449 data->handle = sev->handle;
6450 data->len = len;
6451 data->address = __sme_page_pa(inpages[i]) + offset;
6452 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6453 if (ret)
6454 goto e_unpin;
6456 size -= len;
6457 next_vaddr = vaddr + len;
6460 e_unpin:
6461 /* content of memory is updated, mark pages dirty */
6462 for (i = 0; i < npages; i++) {
6463 set_page_dirty_lock(inpages[i]);
6464 mark_page_accessed(inpages[i]);
6466 /* unlock the user pages */
6467 sev_unpin_memory(kvm, inpages, npages);
6468 e_free:
6469 kfree(data);
6470 return ret;
6473 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6475 void __user *measure = (void __user *)(uintptr_t)argp->data;
6476 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6477 struct sev_data_launch_measure *data;
6478 struct kvm_sev_launch_measure params;
6479 void __user *p = NULL;
6480 void *blob = NULL;
6481 int ret;
6483 if (!sev_guest(kvm))
6484 return -ENOTTY;
6486 if (copy_from_user(&params, measure, sizeof(params)))
6487 return -EFAULT;
6489 data = kzalloc(sizeof(*data), GFP_KERNEL);
6490 if (!data)
6491 return -ENOMEM;
6493 /* User wants to query the blob length */
6494 if (!params.len)
6495 goto cmd;
6497 p = (void __user *)(uintptr_t)params.uaddr;
6498 if (p) {
6499 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6500 ret = -EINVAL;
6501 goto e_free;
6504 ret = -ENOMEM;
6505 blob = kmalloc(params.len, GFP_KERNEL);
6506 if (!blob)
6507 goto e_free;
6509 data->address = __psp_pa(blob);
6510 data->len = params.len;
6513 cmd:
6514 data->handle = sev->handle;
6515 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6518 * If we query the session length, FW responded with expected data.
6520 if (!params.len)
6521 goto done;
6523 if (ret)
6524 goto e_free_blob;
6526 if (blob) {
6527 if (copy_to_user(p, blob, params.len))
6528 ret = -EFAULT;
6531 done:
6532 params.len = data->len;
6533 if (copy_to_user(measure, &params, sizeof(params)))
6534 ret = -EFAULT;
6535 e_free_blob:
6536 kfree(blob);
6537 e_free:
6538 kfree(data);
6539 return ret;
6542 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6544 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6545 struct sev_data_launch_finish *data;
6546 int ret;
6548 if (!sev_guest(kvm))
6549 return -ENOTTY;
6551 data = kzalloc(sizeof(*data), GFP_KERNEL);
6552 if (!data)
6553 return -ENOMEM;
6555 data->handle = sev->handle;
6556 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6558 kfree(data);
6559 return ret;
6562 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6564 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6565 struct kvm_sev_guest_status params;
6566 struct sev_data_guest_status *data;
6567 int ret;
6569 if (!sev_guest(kvm))
6570 return -ENOTTY;
6572 data = kzalloc(sizeof(*data), GFP_KERNEL);
6573 if (!data)
6574 return -ENOMEM;
6576 data->handle = sev->handle;
6577 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6578 if (ret)
6579 goto e_free;
6581 params.policy = data->policy;
6582 params.state = data->state;
6583 params.handle = data->handle;
6585 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6586 ret = -EFAULT;
6587 e_free:
6588 kfree(data);
6589 return ret;
6592 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6593 unsigned long dst, int size,
6594 int *error, bool enc)
6596 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6597 struct sev_data_dbg *data;
6598 int ret;
6600 data = kzalloc(sizeof(*data), GFP_KERNEL);
6601 if (!data)
6602 return -ENOMEM;
6604 data->handle = sev->handle;
6605 data->dst_addr = dst;
6606 data->src_addr = src;
6607 data->len = size;
6609 ret = sev_issue_cmd(kvm,
6610 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6611 data, error);
6612 kfree(data);
6613 return ret;
6616 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6617 unsigned long dst_paddr, int sz, int *err)
6619 int offset;
6622 * Its safe to read more than we are asked, caller should ensure that
6623 * destination has enough space.
6625 src_paddr = round_down(src_paddr, 16);
6626 offset = src_paddr & 15;
6627 sz = round_up(sz + offset, 16);
6629 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6632 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6633 unsigned long __user dst_uaddr,
6634 unsigned long dst_paddr,
6635 int size, int *err)
6637 struct page *tpage = NULL;
6638 int ret, offset;
6640 /* if inputs are not 16-byte then use intermediate buffer */
6641 if (!IS_ALIGNED(dst_paddr, 16) ||
6642 !IS_ALIGNED(paddr, 16) ||
6643 !IS_ALIGNED(size, 16)) {
6644 tpage = (void *)alloc_page(GFP_KERNEL);
6645 if (!tpage)
6646 return -ENOMEM;
6648 dst_paddr = __sme_page_pa(tpage);
6651 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6652 if (ret)
6653 goto e_free;
6655 if (tpage) {
6656 offset = paddr & 15;
6657 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6658 page_address(tpage) + offset, size))
6659 ret = -EFAULT;
6662 e_free:
6663 if (tpage)
6664 __free_page(tpage);
6666 return ret;
6669 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6670 unsigned long __user vaddr,
6671 unsigned long dst_paddr,
6672 unsigned long __user dst_vaddr,
6673 int size, int *error)
6675 struct page *src_tpage = NULL;
6676 struct page *dst_tpage = NULL;
6677 int ret, len = size;
6679 /* If source buffer is not aligned then use an intermediate buffer */
6680 if (!IS_ALIGNED(vaddr, 16)) {
6681 src_tpage = alloc_page(GFP_KERNEL);
6682 if (!src_tpage)
6683 return -ENOMEM;
6685 if (copy_from_user(page_address(src_tpage),
6686 (void __user *)(uintptr_t)vaddr, size)) {
6687 __free_page(src_tpage);
6688 return -EFAULT;
6691 paddr = __sme_page_pa(src_tpage);
6695 * If destination buffer or length is not aligned then do read-modify-write:
6696 * - decrypt destination in an intermediate buffer
6697 * - copy the source buffer in an intermediate buffer
6698 * - use the intermediate buffer as source buffer
6700 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6701 int dst_offset;
6703 dst_tpage = alloc_page(GFP_KERNEL);
6704 if (!dst_tpage) {
6705 ret = -ENOMEM;
6706 goto e_free;
6709 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6710 __sme_page_pa(dst_tpage), size, error);
6711 if (ret)
6712 goto e_free;
6715 * If source is kernel buffer then use memcpy() otherwise
6716 * copy_from_user().
6718 dst_offset = dst_paddr & 15;
6720 if (src_tpage)
6721 memcpy(page_address(dst_tpage) + dst_offset,
6722 page_address(src_tpage), size);
6723 else {
6724 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6725 (void __user *)(uintptr_t)vaddr, size)) {
6726 ret = -EFAULT;
6727 goto e_free;
6731 paddr = __sme_page_pa(dst_tpage);
6732 dst_paddr = round_down(dst_paddr, 16);
6733 len = round_up(size, 16);
6736 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6738 e_free:
6739 if (src_tpage)
6740 __free_page(src_tpage);
6741 if (dst_tpage)
6742 __free_page(dst_tpage);
6743 return ret;
6746 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6748 unsigned long vaddr, vaddr_end, next_vaddr;
6749 unsigned long dst_vaddr;
6750 struct page **src_p, **dst_p;
6751 struct kvm_sev_dbg debug;
6752 unsigned long n;
6753 int ret, size;
6755 if (!sev_guest(kvm))
6756 return -ENOTTY;
6758 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6759 return -EFAULT;
6761 vaddr = debug.src_uaddr;
6762 size = debug.len;
6763 vaddr_end = vaddr + size;
6764 dst_vaddr = debug.dst_uaddr;
6766 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6767 int len, s_off, d_off;
6769 /* lock userspace source and destination page */
6770 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6771 if (!src_p)
6772 return -EFAULT;
6774 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6775 if (!dst_p) {
6776 sev_unpin_memory(kvm, src_p, n);
6777 return -EFAULT;
6781 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6782 * memory content (i.e it will write the same memory region with C=1).
6783 * It's possible that the cache may contain the data with C=0, i.e.,
6784 * unencrypted so invalidate it first.
6786 sev_clflush_pages(src_p, 1);
6787 sev_clflush_pages(dst_p, 1);
6790 * Since user buffer may not be page aligned, calculate the
6791 * offset within the page.
6793 s_off = vaddr & ~PAGE_MASK;
6794 d_off = dst_vaddr & ~PAGE_MASK;
6795 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6797 if (dec)
6798 ret = __sev_dbg_decrypt_user(kvm,
6799 __sme_page_pa(src_p[0]) + s_off,
6800 dst_vaddr,
6801 __sme_page_pa(dst_p[0]) + d_off,
6802 len, &argp->error);
6803 else
6804 ret = __sev_dbg_encrypt_user(kvm,
6805 __sme_page_pa(src_p[0]) + s_off,
6806 vaddr,
6807 __sme_page_pa(dst_p[0]) + d_off,
6808 dst_vaddr,
6809 len, &argp->error);
6811 sev_unpin_memory(kvm, src_p, 1);
6812 sev_unpin_memory(kvm, dst_p, 1);
6814 if (ret)
6815 goto err;
6817 next_vaddr = vaddr + len;
6818 dst_vaddr = dst_vaddr + len;
6819 size -= len;
6821 err:
6822 return ret;
6825 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6827 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6828 struct sev_data_launch_secret *data;
6829 struct kvm_sev_launch_secret params;
6830 struct page **pages;
6831 void *blob, *hdr;
6832 unsigned long n;
6833 int ret, offset;
6835 if (!sev_guest(kvm))
6836 return -ENOTTY;
6838 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6839 return -EFAULT;
6841 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6842 if (!pages)
6843 return -ENOMEM;
6846 * The secret must be copied into contiguous memory region, lets verify
6847 * that userspace memory pages are contiguous before we issue command.
6849 if (get_num_contig_pages(0, pages, n) != n) {
6850 ret = -EINVAL;
6851 goto e_unpin_memory;
6854 ret = -ENOMEM;
6855 data = kzalloc(sizeof(*data), GFP_KERNEL);
6856 if (!data)
6857 goto e_unpin_memory;
6859 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6860 data->guest_address = __sme_page_pa(pages[0]) + offset;
6861 data->guest_len = params.guest_len;
6863 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6864 if (IS_ERR(blob)) {
6865 ret = PTR_ERR(blob);
6866 goto e_free;
6869 data->trans_address = __psp_pa(blob);
6870 data->trans_len = params.trans_len;
6872 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6873 if (IS_ERR(hdr)) {
6874 ret = PTR_ERR(hdr);
6875 goto e_free_blob;
6877 data->hdr_address = __psp_pa(hdr);
6878 data->hdr_len = params.hdr_len;
6880 data->handle = sev->handle;
6881 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6883 kfree(hdr);
6885 e_free_blob:
6886 kfree(blob);
6887 e_free:
6888 kfree(data);
6889 e_unpin_memory:
6890 sev_unpin_memory(kvm, pages, n);
6891 return ret;
6894 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6896 struct kvm_sev_cmd sev_cmd;
6897 int r;
6899 if (!svm_sev_enabled())
6900 return -ENOTTY;
6902 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6903 return -EFAULT;
6905 mutex_lock(&kvm->lock);
6907 switch (sev_cmd.id) {
6908 case KVM_SEV_INIT:
6909 r = sev_guest_init(kvm, &sev_cmd);
6910 break;
6911 case KVM_SEV_LAUNCH_START:
6912 r = sev_launch_start(kvm, &sev_cmd);
6913 break;
6914 case KVM_SEV_LAUNCH_UPDATE_DATA:
6915 r = sev_launch_update_data(kvm, &sev_cmd);
6916 break;
6917 case KVM_SEV_LAUNCH_MEASURE:
6918 r = sev_launch_measure(kvm, &sev_cmd);
6919 break;
6920 case KVM_SEV_LAUNCH_FINISH:
6921 r = sev_launch_finish(kvm, &sev_cmd);
6922 break;
6923 case KVM_SEV_GUEST_STATUS:
6924 r = sev_guest_status(kvm, &sev_cmd);
6925 break;
6926 case KVM_SEV_DBG_DECRYPT:
6927 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6928 break;
6929 case KVM_SEV_DBG_ENCRYPT:
6930 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6931 break;
6932 case KVM_SEV_LAUNCH_SECRET:
6933 r = sev_launch_secret(kvm, &sev_cmd);
6934 break;
6935 default:
6936 r = -EINVAL;
6937 goto out;
6940 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6941 r = -EFAULT;
6943 out:
6944 mutex_unlock(&kvm->lock);
6945 return r;
6948 static int svm_register_enc_region(struct kvm *kvm,
6949 struct kvm_enc_region *range)
6951 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6952 struct enc_region *region;
6953 int ret = 0;
6955 if (!sev_guest(kvm))
6956 return -ENOTTY;
6958 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
6959 return -EINVAL;
6961 region = kzalloc(sizeof(*region), GFP_KERNEL);
6962 if (!region)
6963 return -ENOMEM;
6965 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6966 if (!region->pages) {
6967 ret = -ENOMEM;
6968 goto e_free;
6972 * The guest may change the memory encryption attribute from C=0 -> C=1
6973 * or vice versa for this memory range. Lets make sure caches are
6974 * flushed to ensure that guest data gets written into memory with
6975 * correct C-bit.
6977 sev_clflush_pages(region->pages, region->npages);
6979 region->uaddr = range->addr;
6980 region->size = range->size;
6982 mutex_lock(&kvm->lock);
6983 list_add_tail(&region->list, &sev->regions_list);
6984 mutex_unlock(&kvm->lock);
6986 return ret;
6988 e_free:
6989 kfree(region);
6990 return ret;
6993 static struct enc_region *
6994 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6996 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6997 struct list_head *head = &sev->regions_list;
6998 struct enc_region *i;
7000 list_for_each_entry(i, head, list) {
7001 if (i->uaddr == range->addr &&
7002 i->size == range->size)
7003 return i;
7006 return NULL;
7010 static int svm_unregister_enc_region(struct kvm *kvm,
7011 struct kvm_enc_region *range)
7013 struct enc_region *region;
7014 int ret;
7016 mutex_lock(&kvm->lock);
7018 if (!sev_guest(kvm)) {
7019 ret = -ENOTTY;
7020 goto failed;
7023 region = find_enc_region(kvm, range);
7024 if (!region) {
7025 ret = -EINVAL;
7026 goto failed;
7029 __unregister_enc_region_locked(kvm, region);
7031 mutex_unlock(&kvm->lock);
7032 return 0;
7034 failed:
7035 mutex_unlock(&kvm->lock);
7036 return ret;
7039 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7040 .cpu_has_kvm_support = has_svm,
7041 .disabled_by_bios = is_disabled,
7042 .hardware_setup = svm_hardware_setup,
7043 .hardware_unsetup = svm_hardware_unsetup,
7044 .check_processor_compatibility = svm_check_processor_compat,
7045 .hardware_enable = svm_hardware_enable,
7046 .hardware_disable = svm_hardware_disable,
7047 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7048 .has_emulated_msr = svm_has_emulated_msr,
7050 .vcpu_create = svm_create_vcpu,
7051 .vcpu_free = svm_free_vcpu,
7052 .vcpu_reset = svm_vcpu_reset,
7054 .vm_alloc = svm_vm_alloc,
7055 .vm_free = svm_vm_free,
7056 .vm_init = avic_vm_init,
7057 .vm_destroy = svm_vm_destroy,
7059 .prepare_guest_switch = svm_prepare_guest_switch,
7060 .vcpu_load = svm_vcpu_load,
7061 .vcpu_put = svm_vcpu_put,
7062 .vcpu_blocking = svm_vcpu_blocking,
7063 .vcpu_unblocking = svm_vcpu_unblocking,
7065 .update_bp_intercept = update_bp_intercept,
7066 .get_msr_feature = svm_get_msr_feature,
7067 .get_msr = svm_get_msr,
7068 .set_msr = svm_set_msr,
7069 .get_segment_base = svm_get_segment_base,
7070 .get_segment = svm_get_segment,
7071 .set_segment = svm_set_segment,
7072 .get_cpl = svm_get_cpl,
7073 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7074 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7075 .decache_cr3 = svm_decache_cr3,
7076 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7077 .set_cr0 = svm_set_cr0,
7078 .set_cr3 = svm_set_cr3,
7079 .set_cr4 = svm_set_cr4,
7080 .set_efer = svm_set_efer,
7081 .get_idt = svm_get_idt,
7082 .set_idt = svm_set_idt,
7083 .get_gdt = svm_get_gdt,
7084 .set_gdt = svm_set_gdt,
7085 .get_dr6 = svm_get_dr6,
7086 .set_dr6 = svm_set_dr6,
7087 .set_dr7 = svm_set_dr7,
7088 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7089 .cache_reg = svm_cache_reg,
7090 .get_rflags = svm_get_rflags,
7091 .set_rflags = svm_set_rflags,
7093 .tlb_flush = svm_flush_tlb,
7094 .tlb_flush_gva = svm_flush_tlb_gva,
7096 .run = svm_vcpu_run,
7097 .handle_exit = handle_exit,
7098 .skip_emulated_instruction = skip_emulated_instruction,
7099 .set_interrupt_shadow = svm_set_interrupt_shadow,
7100 .get_interrupt_shadow = svm_get_interrupt_shadow,
7101 .patch_hypercall = svm_patch_hypercall,
7102 .set_irq = svm_set_irq,
7103 .set_nmi = svm_inject_nmi,
7104 .queue_exception = svm_queue_exception,
7105 .cancel_injection = svm_cancel_injection,
7106 .interrupt_allowed = svm_interrupt_allowed,
7107 .nmi_allowed = svm_nmi_allowed,
7108 .get_nmi_mask = svm_get_nmi_mask,
7109 .set_nmi_mask = svm_set_nmi_mask,
7110 .enable_nmi_window = enable_nmi_window,
7111 .enable_irq_window = enable_irq_window,
7112 .update_cr8_intercept = update_cr8_intercept,
7113 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7114 .get_enable_apicv = svm_get_enable_apicv,
7115 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7116 .load_eoi_exitmap = svm_load_eoi_exitmap,
7117 .hwapic_irr_update = svm_hwapic_irr_update,
7118 .hwapic_isr_update = svm_hwapic_isr_update,
7119 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7120 .apicv_post_state_restore = avic_post_state_restore,
7122 .set_tss_addr = svm_set_tss_addr,
7123 .set_identity_map_addr = svm_set_identity_map_addr,
7124 .get_tdp_level = get_npt_level,
7125 .get_mt_mask = svm_get_mt_mask,
7127 .get_exit_info = svm_get_exit_info,
7129 .get_lpage_level = svm_get_lpage_level,
7131 .cpuid_update = svm_cpuid_update,
7133 .rdtscp_supported = svm_rdtscp_supported,
7134 .invpcid_supported = svm_invpcid_supported,
7135 .mpx_supported = svm_mpx_supported,
7136 .xsaves_supported = svm_xsaves_supported,
7137 .umip_emulated = svm_umip_emulated,
7139 .set_supported_cpuid = svm_set_supported_cpuid,
7141 .has_wbinvd_exit = svm_has_wbinvd_exit,
7143 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7144 .write_tsc_offset = svm_write_tsc_offset,
7146 .set_tdp_cr3 = set_tdp_cr3,
7148 .check_intercept = svm_check_intercept,
7149 .handle_external_intr = svm_handle_external_intr,
7151 .request_immediate_exit = __kvm_request_immediate_exit,
7153 .sched_in = svm_sched_in,
7155 .pmu_ops = &amd_pmu_ops,
7156 .deliver_posted_interrupt = svm_deliver_avic_intr,
7157 .update_pi_irte = svm_update_pi_irte,
7158 .setup_mce = svm_setup_mce,
7160 .smi_allowed = svm_smi_allowed,
7161 .pre_enter_smm = svm_pre_enter_smm,
7162 .pre_leave_smm = svm_pre_leave_smm,
7163 .enable_smi_window = enable_smi_window,
7165 .mem_enc_op = svm_mem_enc_op,
7166 .mem_enc_reg_region = svm_register_enc_region,
7167 .mem_enc_unreg_region = svm_unregister_enc_region,
7170 static int __init svm_init(void)
7172 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7173 __alignof__(struct vcpu_svm), THIS_MODULE);
7176 static void __exit svm_exit(void)
7178 kvm_exit();
7181 module_init(svm_init)
7182 module_exit(svm_exit)