video: Kconfig: move drm and fb into separate menus
[linux-2.6/btrfs-unstable.git] / drivers / regulator / core.c
blob9a09f3cdbabb85cec71e7afece30308e4ccead7b
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
38 #include "dummy.h"
39 #include "internal.h"
41 #define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
59 static struct dentry *debugfs_root;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio {
79 struct list_head list;
80 int gpio;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
112 static const char *rdev_get_name(struct regulator_dev *rdev)
114 if (rdev->constraints && rdev->constraints->name)
115 return rdev->constraints->name;
116 else if (rdev->desc->name)
117 return rdev->desc->name;
118 else
119 return "";
122 static bool have_full_constraints(void)
124 return has_full_constraints || of_have_populated_dt();
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
151 return regnode;
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 if (!rdev->constraints)
157 return 0;
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
169 BUG_ON(*min_uV > *max_uV);
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
191 return 0;
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
200 struct regulator *regulator;
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
222 return 0;
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
229 BUG_ON(*min_uA > *max_uA);
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
251 return 0;
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
286 return -EINVAL;
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
300 return 0;
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
313 return ret;
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 char *buf)
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 static DEVICE_ATTR_RO(name);
335 static ssize_t regulator_print_opmode(char *buf, int mode)
337 switch (mode) {
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
347 return sprintf(buf, "unknown\n");
350 static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 static ssize_t regulator_print_state(char *buf, int state)
361 if (state > 0)
362 return sprintf(buf, "enabled\n");
363 else if (state == 0)
364 return sprintf(buf, "disabled\n");
365 else
366 return sprintf(buf, "unknown\n");
369 static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
373 ssize_t ret;
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
379 return ret;
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 int status;
388 char *label;
390 status = rdev->desc->ops->get_status(rdev);
391 if (status < 0)
392 return status;
394 switch (status) {
395 case REGULATOR_STATUS_OFF:
396 label = "off";
397 break;
398 case REGULATOR_STATUS_ON:
399 label = "on";
400 break;
401 case REGULATOR_STATUS_ERROR:
402 label = "error";
403 break;
404 case REGULATOR_STATUS_FAST:
405 label = "fast";
406 break;
407 case REGULATOR_STATUS_NORMAL:
408 label = "normal";
409 break;
410 case REGULATOR_STATUS_IDLE:
411 label = "idle";
412 break;
413 case REGULATOR_STATUS_STANDBY:
414 label = "standby";
415 break;
416 case REGULATOR_STATUS_BYPASS:
417 label = "bypass";
418 break;
419 case REGULATOR_STATUS_UNDEFINED:
420 label = "undefined";
421 break;
422 default:
423 return -ERANGE;
426 return sprintf(buf, "%s\n", label);
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
483 int uA = 0;
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 char *buf)
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
499 static DEVICE_ATTR_RO(num_users);
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
512 return sprintf(buf, "unknown\n");
514 static DEVICE_ATTR_RO(type);
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
612 static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
616 const char *report;
617 bool bypass;
618 int ret;
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622 if (ret != 0)
623 report = "unknown";
624 else if (bypass)
625 report = "enabled";
626 else
627 report = "disabled";
629 return sprintf(buf, "%s\n", report);
631 static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute *regulator_dev_attrs[] = {
639 &dev_attr_name.attr,
640 &dev_attr_num_users.attr,
641 &dev_attr_type.attr,
642 NULL,
644 ATTRIBUTE_GROUPS(regulator_dev);
646 static void regulator_dev_release(struct device *dev)
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 kfree(rdev);
652 static struct class regulator_class = {
653 .name = "regulator",
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
671 return;
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
675 if (output_uV <= 0)
676 return;
678 /* get input voltage */
679 input_uV = 0;
680 if (rdev->supply)
681 input_uV = regulator_get_voltage(rdev->supply);
682 if (input_uV <= 0)
683 input_uV = rdev->constraints->input_uV;
684 if (input_uV <= 0)
685 return;
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err == 0)
698 rdev->desc->ops->set_mode(rdev, mode);
701 static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
704 int ret = 0;
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
714 return 0;
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
719 return -EINVAL;
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 ret = 0;
729 if (ret < 0) {
730 rdev_err(rdev, "failed to enabled/disable\n");
731 return ret;
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 if (ret < 0) {
737 rdev_err(rdev, "failed to set voltage\n");
738 return ret;
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set mode\n");
746 return ret;
749 return ret;
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 if (!rdev->constraints)
756 return -EINVAL;
758 switch (state) {
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
762 case PM_SUSPEND_MEM:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
765 case PM_SUSPEND_MAX:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
768 default:
769 return -EINVAL;
773 static void print_constraints(struct regulator_dev *rdev)
775 struct regulation_constraints *constraints = rdev->constraints;
776 char buf[80] = "";
777 int count = 0;
778 int ret;
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
805 else
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
814 if (ret > 0)
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
827 if (!count)
828 sprintf(buf, "no parameters");
830 rdev_info(rdev, "%s\n", buf);
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 rdev_warn(rdev,
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
841 struct regulator_ops *ops = rdev->desc->ops;
842 int ret;
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 ret = _regulator_do_set_voltage(rdev,
848 rdev->constraints->min_uV,
849 rdev->constraints->max_uV);
850 if (ret < 0) {
851 rdev_err(rdev, "failed to apply %duV constraint\n",
852 rdev->constraints->min_uV);
853 return ret;
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
860 if (ops->list_voltage && rdev->desc->n_voltages) {
861 int count = rdev->desc->n_voltages;
862 int i;
863 int min_uV = INT_MAX;
864 int max_uV = INT_MIN;
865 int cmin = constraints->min_uV;
866 int cmax = constraints->max_uV;
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count == 1 && !cmin) {
871 cmin = 1;
872 cmax = INT_MAX;
873 constraints->min_uV = cmin;
874 constraints->max_uV = cmax;
877 /* voltage constraints are optional */
878 if ((cmin == 0) && (cmax == 0))
879 return 0;
881 /* else require explicit machine-level constraints */
882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 rdev_err(rdev, "invalid voltage constraints\n");
884 return -EINVAL;
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i = 0; i < count; i++) {
889 int value;
891 value = ops->list_voltage(rdev, i);
892 if (value <= 0)
893 continue;
895 /* maybe adjust [min_uV..max_uV] */
896 if (value >= cmin && value < min_uV)
897 min_uV = value;
898 if (value <= cmax && value > max_uV)
899 max_uV = value;
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV < min_uV) {
904 rdev_err(rdev,
905 "unsupportable voltage constraints %u-%uuV\n",
906 min_uV, max_uV);
907 return -EINVAL;
910 /* use regulator's subset of machine constraints */
911 if (constraints->min_uV < min_uV) {
912 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 constraints->min_uV, min_uV);
914 constraints->min_uV = min_uV;
916 if (constraints->max_uV > max_uV) {
917 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 constraints->max_uV, max_uV);
919 constraints->max_uV = max_uV;
923 return 0;
926 static int machine_constraints_current(struct regulator_dev *rdev,
927 struct regulation_constraints *constraints)
929 struct regulator_ops *ops = rdev->desc->ops;
930 int ret;
932 if (!constraints->min_uA && !constraints->max_uA)
933 return 0;
935 if (constraints->min_uA > constraints->max_uA) {
936 rdev_err(rdev, "Invalid current constraints\n");
937 return -EINVAL;
940 if (!ops->set_current_limit || !ops->get_current_limit) {
941 rdev_warn(rdev, "Operation of current configuration missing\n");
942 return 0;
945 /* Set regulator current in constraints range */
946 ret = ops->set_current_limit(rdev, constraints->min_uA,
947 constraints->max_uA);
948 if (ret < 0) {
949 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950 return ret;
953 return 0;
956 static int _regulator_do_enable(struct regulator_dev *rdev);
959 * set_machine_constraints - sets regulator constraints
960 * @rdev: regulator source
961 * @constraints: constraints to apply
963 * Allows platform initialisation code to define and constrain
964 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
965 * Constraints *must* be set by platform code in order for some
966 * regulator operations to proceed i.e. set_voltage, set_current_limit,
967 * set_mode.
969 static int set_machine_constraints(struct regulator_dev *rdev,
970 const struct regulation_constraints *constraints)
972 int ret = 0;
973 struct regulator_ops *ops = rdev->desc->ops;
975 if (constraints)
976 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
977 GFP_KERNEL);
978 else
979 rdev->constraints = kzalloc(sizeof(*constraints),
980 GFP_KERNEL);
981 if (!rdev->constraints)
982 return -ENOMEM;
984 ret = machine_constraints_voltage(rdev, rdev->constraints);
985 if (ret != 0)
986 goto out;
988 ret = machine_constraints_current(rdev, rdev->constraints);
989 if (ret != 0)
990 goto out;
992 /* do we need to setup our suspend state */
993 if (rdev->constraints->initial_state) {
994 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
995 if (ret < 0) {
996 rdev_err(rdev, "failed to set suspend state\n");
997 goto out;
1001 if (rdev->constraints->initial_mode) {
1002 if (!ops->set_mode) {
1003 rdev_err(rdev, "no set_mode operation\n");
1004 ret = -EINVAL;
1005 goto out;
1008 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009 if (ret < 0) {
1010 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011 goto out;
1015 /* If the constraints say the regulator should be on at this point
1016 * and we have control then make sure it is enabled.
1018 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019 ret = _regulator_do_enable(rdev);
1020 if (ret < 0 && ret != -EINVAL) {
1021 rdev_err(rdev, "failed to enable\n");
1022 goto out;
1026 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027 && ops->set_ramp_delay) {
1028 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029 if (ret < 0) {
1030 rdev_err(rdev, "failed to set ramp_delay\n");
1031 goto out;
1035 print_constraints(rdev);
1036 return 0;
1037 out:
1038 kfree(rdev->constraints);
1039 rdev->constraints = NULL;
1040 return ret;
1044 * set_supply - set regulator supply regulator
1045 * @rdev: regulator name
1046 * @supply_rdev: supply regulator name
1048 * Called by platform initialisation code to set the supply regulator for this
1049 * regulator. This ensures that a regulators supply will also be enabled by the
1050 * core if it's child is enabled.
1052 static int set_supply(struct regulator_dev *rdev,
1053 struct regulator_dev *supply_rdev)
1055 int err;
1057 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1059 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060 if (rdev->supply == NULL) {
1061 err = -ENOMEM;
1062 return err;
1064 supply_rdev->open_count++;
1066 return 0;
1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071 * @rdev: regulator source
1072 * @consumer_dev_name: dev_name() string for device supply applies to
1073 * @supply: symbolic name for supply
1075 * Allows platform initialisation code to map physical regulator
1076 * sources to symbolic names for supplies for use by devices. Devices
1077 * should use these symbolic names to request regulators, avoiding the
1078 * need to provide board-specific regulator names as platform data.
1080 static int set_consumer_device_supply(struct regulator_dev *rdev,
1081 const char *consumer_dev_name,
1082 const char *supply)
1084 struct regulator_map *node;
1085 int has_dev;
1087 if (supply == NULL)
1088 return -EINVAL;
1090 if (consumer_dev_name != NULL)
1091 has_dev = 1;
1092 else
1093 has_dev = 0;
1095 list_for_each_entry(node, &regulator_map_list, list) {
1096 if (node->dev_name && consumer_dev_name) {
1097 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098 continue;
1099 } else if (node->dev_name || consumer_dev_name) {
1100 continue;
1103 if (strcmp(node->supply, supply) != 0)
1104 continue;
1106 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107 consumer_dev_name,
1108 dev_name(&node->regulator->dev),
1109 node->regulator->desc->name,
1110 supply,
1111 dev_name(&rdev->dev), rdev_get_name(rdev));
1112 return -EBUSY;
1115 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116 if (node == NULL)
1117 return -ENOMEM;
1119 node->regulator = rdev;
1120 node->supply = supply;
1122 if (has_dev) {
1123 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124 if (node->dev_name == NULL) {
1125 kfree(node);
1126 return -ENOMEM;
1130 list_add(&node->list, &regulator_map_list);
1131 return 0;
1134 static void unset_regulator_supplies(struct regulator_dev *rdev)
1136 struct regulator_map *node, *n;
1138 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1139 if (rdev == node->regulator) {
1140 list_del(&node->list);
1141 kfree(node->dev_name);
1142 kfree(node);
1147 #define REG_STR_SIZE 64
1149 static struct regulator *create_regulator(struct regulator_dev *rdev,
1150 struct device *dev,
1151 const char *supply_name)
1153 struct regulator *regulator;
1154 char buf[REG_STR_SIZE];
1155 int err, size;
1157 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158 if (regulator == NULL)
1159 return NULL;
1161 mutex_lock(&rdev->mutex);
1162 regulator->rdev = rdev;
1163 list_add(&regulator->list, &rdev->consumer_list);
1165 if (dev) {
1166 regulator->dev = dev;
1168 /* Add a link to the device sysfs entry */
1169 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170 dev->kobj.name, supply_name);
1171 if (size >= REG_STR_SIZE)
1172 goto overflow_err;
1174 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175 if (regulator->supply_name == NULL)
1176 goto overflow_err;
1178 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179 buf);
1180 if (err) {
1181 rdev_warn(rdev, "could not add device link %s err %d\n",
1182 dev->kobj.name, err);
1183 /* non-fatal */
1185 } else {
1186 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187 if (regulator->supply_name == NULL)
1188 goto overflow_err;
1191 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192 rdev->debugfs);
1193 if (!regulator->debugfs) {
1194 rdev_warn(rdev, "Failed to create debugfs directory\n");
1195 } else {
1196 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197 &regulator->uA_load);
1198 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199 &regulator->min_uV);
1200 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201 &regulator->max_uV);
1205 * Check now if the regulator is an always on regulator - if
1206 * it is then we don't need to do nearly so much work for
1207 * enable/disable calls.
1209 if (!_regulator_can_change_status(rdev) &&
1210 _regulator_is_enabled(rdev))
1211 regulator->always_on = true;
1213 mutex_unlock(&rdev->mutex);
1214 return regulator;
1215 overflow_err:
1216 list_del(&regulator->list);
1217 kfree(regulator);
1218 mutex_unlock(&rdev->mutex);
1219 return NULL;
1222 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1224 if (rdev->constraints && rdev->constraints->enable_time)
1225 return rdev->constraints->enable_time;
1226 if (!rdev->desc->ops->enable_time)
1227 return rdev->desc->enable_time;
1228 return rdev->desc->ops->enable_time(rdev);
1231 static struct regulator_supply_alias *regulator_find_supply_alias(
1232 struct device *dev, const char *supply)
1234 struct regulator_supply_alias *map;
1236 list_for_each_entry(map, &regulator_supply_alias_list, list)
1237 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238 return map;
1240 return NULL;
1243 static void regulator_supply_alias(struct device **dev, const char **supply)
1245 struct regulator_supply_alias *map;
1247 map = regulator_find_supply_alias(*dev, *supply);
1248 if (map) {
1249 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250 *supply, map->alias_supply,
1251 dev_name(map->alias_dev));
1252 *dev = map->alias_dev;
1253 *supply = map->alias_supply;
1257 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258 const char *supply,
1259 int *ret)
1261 struct regulator_dev *r;
1262 struct device_node *node;
1263 struct regulator_map *map;
1264 const char *devname = NULL;
1266 regulator_supply_alias(&dev, &supply);
1268 /* first do a dt based lookup */
1269 if (dev && dev->of_node) {
1270 node = of_get_regulator(dev, supply);
1271 if (node) {
1272 list_for_each_entry(r, &regulator_list, list)
1273 if (r->dev.parent &&
1274 node == r->dev.of_node)
1275 return r;
1276 *ret = -EPROBE_DEFER;
1277 return NULL;
1278 } else {
1280 * If we couldn't even get the node then it's
1281 * not just that the device didn't register
1282 * yet, there's no node and we'll never
1283 * succeed.
1285 *ret = -ENODEV;
1289 /* if not found, try doing it non-dt way */
1290 if (dev)
1291 devname = dev_name(dev);
1293 list_for_each_entry(r, &regulator_list, list)
1294 if (strcmp(rdev_get_name(r), supply) == 0)
1295 return r;
1297 list_for_each_entry(map, &regulator_map_list, list) {
1298 /* If the mapping has a device set up it must match */
1299 if (map->dev_name &&
1300 (!devname || strcmp(map->dev_name, devname)))
1301 continue;
1303 if (strcmp(map->supply, supply) == 0)
1304 return map->regulator;
1308 return NULL;
1311 /* Internal regulator request function */
1312 static struct regulator *_regulator_get(struct device *dev, const char *id,
1313 bool exclusive, bool allow_dummy)
1315 struct regulator_dev *rdev;
1316 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317 const char *devname = NULL;
1318 int ret;
1320 if (id == NULL) {
1321 pr_err("get() with no identifier\n");
1322 return ERR_PTR(-EINVAL);
1325 if (dev)
1326 devname = dev_name(dev);
1328 if (have_full_constraints())
1329 ret = -ENODEV;
1330 else
1331 ret = -EPROBE_DEFER;
1333 mutex_lock(&regulator_list_mutex);
1335 rdev = regulator_dev_lookup(dev, id, &ret);
1336 if (rdev)
1337 goto found;
1339 regulator = ERR_PTR(ret);
1342 * If we have return value from dev_lookup fail, we do not expect to
1343 * succeed, so, quit with appropriate error value
1345 if (ret && ret != -ENODEV)
1346 goto out;
1348 if (!devname)
1349 devname = "deviceless";
1352 * Assume that a regulator is physically present and enabled
1353 * even if it isn't hooked up and just provide a dummy.
1355 if (have_full_constraints() && allow_dummy) {
1356 pr_warn("%s supply %s not found, using dummy regulator\n",
1357 devname, id);
1359 rdev = dummy_regulator_rdev;
1360 goto found;
1361 /* Don't log an error when called from regulator_get_optional() */
1362 } else if (!have_full_constraints() || exclusive) {
1363 dev_warn(dev, "dummy supplies not allowed\n");
1366 mutex_unlock(&regulator_list_mutex);
1367 return regulator;
1369 found:
1370 if (rdev->exclusive) {
1371 regulator = ERR_PTR(-EPERM);
1372 goto out;
1375 if (exclusive && rdev->open_count) {
1376 regulator = ERR_PTR(-EBUSY);
1377 goto out;
1380 if (!try_module_get(rdev->owner))
1381 goto out;
1383 regulator = create_regulator(rdev, dev, id);
1384 if (regulator == NULL) {
1385 regulator = ERR_PTR(-ENOMEM);
1386 module_put(rdev->owner);
1387 goto out;
1390 rdev->open_count++;
1391 if (exclusive) {
1392 rdev->exclusive = 1;
1394 ret = _regulator_is_enabled(rdev);
1395 if (ret > 0)
1396 rdev->use_count = 1;
1397 else
1398 rdev->use_count = 0;
1401 out:
1402 mutex_unlock(&regulator_list_mutex);
1404 return regulator;
1408 * regulator_get - lookup and obtain a reference to a regulator.
1409 * @dev: device for regulator "consumer"
1410 * @id: Supply name or regulator ID.
1412 * Returns a struct regulator corresponding to the regulator producer,
1413 * or IS_ERR() condition containing errno.
1415 * Use of supply names configured via regulator_set_device_supply() is
1416 * strongly encouraged. It is recommended that the supply name used
1417 * should match the name used for the supply and/or the relevant
1418 * device pins in the datasheet.
1420 struct regulator *regulator_get(struct device *dev, const char *id)
1422 return _regulator_get(dev, id, false, true);
1424 EXPORT_SYMBOL_GPL(regulator_get);
1427 * regulator_get_exclusive - obtain exclusive access to a regulator.
1428 * @dev: device for regulator "consumer"
1429 * @id: Supply name or regulator ID.
1431 * Returns a struct regulator corresponding to the regulator producer,
1432 * or IS_ERR() condition containing errno. Other consumers will be
1433 * unable to obtain this reference is held and the use count for the
1434 * regulator will be initialised to reflect the current state of the
1435 * regulator.
1437 * This is intended for use by consumers which cannot tolerate shared
1438 * use of the regulator such as those which need to force the
1439 * regulator off for correct operation of the hardware they are
1440 * controlling.
1442 * Use of supply names configured via regulator_set_device_supply() is
1443 * strongly encouraged. It is recommended that the supply name used
1444 * should match the name used for the supply and/or the relevant
1445 * device pins in the datasheet.
1447 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1449 return _regulator_get(dev, id, true, false);
1451 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1454 * regulator_get_optional - obtain optional access to a regulator.
1455 * @dev: device for regulator "consumer"
1456 * @id: Supply name or regulator ID.
1458 * Returns a struct regulator corresponding to the regulator producer,
1459 * or IS_ERR() condition containing errno. Other consumers will be
1460 * unable to obtain this reference is held and the use count for the
1461 * regulator will be initialised to reflect the current state of the
1462 * regulator.
1464 * This is intended for use by consumers for devices which can have
1465 * some supplies unconnected in normal use, such as some MMC devices.
1466 * It can allow the regulator core to provide stub supplies for other
1467 * supplies requested using normal regulator_get() calls without
1468 * disrupting the operation of drivers that can handle absent
1469 * supplies.
1471 * Use of supply names configured via regulator_set_device_supply() is
1472 * strongly encouraged. It is recommended that the supply name used
1473 * should match the name used for the supply and/or the relevant
1474 * device pins in the datasheet.
1476 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1478 return _regulator_get(dev, id, false, false);
1480 EXPORT_SYMBOL_GPL(regulator_get_optional);
1482 /* Locks held by regulator_put() */
1483 static void _regulator_put(struct regulator *regulator)
1485 struct regulator_dev *rdev;
1487 if (regulator == NULL || IS_ERR(regulator))
1488 return;
1490 rdev = regulator->rdev;
1492 debugfs_remove_recursive(regulator->debugfs);
1494 /* remove any sysfs entries */
1495 if (regulator->dev)
1496 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1497 kfree(regulator->supply_name);
1498 list_del(&regulator->list);
1499 kfree(regulator);
1501 rdev->open_count--;
1502 rdev->exclusive = 0;
1504 module_put(rdev->owner);
1508 * regulator_put - "free" the regulator source
1509 * @regulator: regulator source
1511 * Note: drivers must ensure that all regulator_enable calls made on this
1512 * regulator source are balanced by regulator_disable calls prior to calling
1513 * this function.
1515 void regulator_put(struct regulator *regulator)
1517 mutex_lock(&regulator_list_mutex);
1518 _regulator_put(regulator);
1519 mutex_unlock(&regulator_list_mutex);
1521 EXPORT_SYMBOL_GPL(regulator_put);
1524 * regulator_register_supply_alias - Provide device alias for supply lookup
1526 * @dev: device that will be given as the regulator "consumer"
1527 * @id: Supply name or regulator ID
1528 * @alias_dev: device that should be used to lookup the supply
1529 * @alias_id: Supply name or regulator ID that should be used to lookup the
1530 * supply
1532 * All lookups for id on dev will instead be conducted for alias_id on
1533 * alias_dev.
1535 int regulator_register_supply_alias(struct device *dev, const char *id,
1536 struct device *alias_dev,
1537 const char *alias_id)
1539 struct regulator_supply_alias *map;
1541 map = regulator_find_supply_alias(dev, id);
1542 if (map)
1543 return -EEXIST;
1545 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546 if (!map)
1547 return -ENOMEM;
1549 map->src_dev = dev;
1550 map->src_supply = id;
1551 map->alias_dev = alias_dev;
1552 map->alias_supply = alias_id;
1554 list_add(&map->list, &regulator_supply_alias_list);
1556 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557 id, dev_name(dev), alias_id, dev_name(alias_dev));
1559 return 0;
1561 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1564 * regulator_unregister_supply_alias - Remove device alias
1566 * @dev: device that will be given as the regulator "consumer"
1567 * @id: Supply name or regulator ID
1569 * Remove a lookup alias if one exists for id on dev.
1571 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1573 struct regulator_supply_alias *map;
1575 map = regulator_find_supply_alias(dev, id);
1576 if (map) {
1577 list_del(&map->list);
1578 kfree(map);
1581 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1584 * regulator_bulk_register_supply_alias - register multiple aliases
1586 * @dev: device that will be given as the regulator "consumer"
1587 * @id: List of supply names or regulator IDs
1588 * @alias_dev: device that should be used to lookup the supply
1589 * @alias_id: List of supply names or regulator IDs that should be used to
1590 * lookup the supply
1591 * @num_id: Number of aliases to register
1593 * @return 0 on success, an errno on failure.
1595 * This helper function allows drivers to register several supply
1596 * aliases in one operation. If any of the aliases cannot be
1597 * registered any aliases that were registered will be removed
1598 * before returning to the caller.
1600 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1601 struct device *alias_dev,
1602 const char **alias_id,
1603 int num_id)
1605 int i;
1606 int ret;
1608 for (i = 0; i < num_id; ++i) {
1609 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610 alias_id[i]);
1611 if (ret < 0)
1612 goto err;
1615 return 0;
1617 err:
1618 dev_err(dev,
1619 "Failed to create supply alias %s,%s -> %s,%s\n",
1620 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1622 while (--i >= 0)
1623 regulator_unregister_supply_alias(dev, id[i]);
1625 return ret;
1627 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1630 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1632 * @dev: device that will be given as the regulator "consumer"
1633 * @id: List of supply names or regulator IDs
1634 * @num_id: Number of aliases to unregister
1636 * This helper function allows drivers to unregister several supply
1637 * aliases in one operation.
1639 void regulator_bulk_unregister_supply_alias(struct device *dev,
1640 const char **id,
1641 int num_id)
1643 int i;
1645 for (i = 0; i < num_id; ++i)
1646 regulator_unregister_supply_alias(dev, id[i]);
1648 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1651 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653 const struct regulator_config *config)
1655 struct regulator_enable_gpio *pin;
1656 int ret;
1658 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1659 if (pin->gpio == config->ena_gpio) {
1660 rdev_dbg(rdev, "GPIO %d is already used\n",
1661 config->ena_gpio);
1662 goto update_ena_gpio_to_rdev;
1666 ret = gpio_request_one(config->ena_gpio,
1667 GPIOF_DIR_OUT | config->ena_gpio_flags,
1668 rdev_get_name(rdev));
1669 if (ret)
1670 return ret;
1672 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673 if (pin == NULL) {
1674 gpio_free(config->ena_gpio);
1675 return -ENOMEM;
1678 pin->gpio = config->ena_gpio;
1679 pin->ena_gpio_invert = config->ena_gpio_invert;
1680 list_add(&pin->list, &regulator_ena_gpio_list);
1682 update_ena_gpio_to_rdev:
1683 pin->request_count++;
1684 rdev->ena_pin = pin;
1685 return 0;
1688 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1690 struct regulator_enable_gpio *pin, *n;
1692 if (!rdev->ena_pin)
1693 return;
1695 /* Free the GPIO only in case of no use */
1696 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1697 if (pin->gpio == rdev->ena_pin->gpio) {
1698 if (pin->request_count <= 1) {
1699 pin->request_count = 0;
1700 gpio_free(pin->gpio);
1701 list_del(&pin->list);
1702 kfree(pin);
1703 } else {
1704 pin->request_count--;
1711 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712 * @rdev: regulator_dev structure
1713 * @enable: enable GPIO at initial use?
1715 * GPIO is enabled in case of initial use. (enable_count is 0)
1716 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1718 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1720 struct regulator_enable_gpio *pin = rdev->ena_pin;
1722 if (!pin)
1723 return -EINVAL;
1725 if (enable) {
1726 /* Enable GPIO at initial use */
1727 if (pin->enable_count == 0)
1728 gpio_set_value_cansleep(pin->gpio,
1729 !pin->ena_gpio_invert);
1731 pin->enable_count++;
1732 } else {
1733 if (pin->enable_count > 1) {
1734 pin->enable_count--;
1735 return 0;
1738 /* Disable GPIO if not used */
1739 if (pin->enable_count <= 1) {
1740 gpio_set_value_cansleep(pin->gpio,
1741 pin->ena_gpio_invert);
1742 pin->enable_count = 0;
1746 return 0;
1749 static int _regulator_do_enable(struct regulator_dev *rdev)
1751 int ret, delay;
1753 /* Query before enabling in case configuration dependent. */
1754 ret = _regulator_get_enable_time(rdev);
1755 if (ret >= 0) {
1756 delay = ret;
1757 } else {
1758 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759 delay = 0;
1762 trace_regulator_enable(rdev_get_name(rdev));
1764 if (rdev->ena_pin) {
1765 ret = regulator_ena_gpio_ctrl(rdev, true);
1766 if (ret < 0)
1767 return ret;
1768 rdev->ena_gpio_state = 1;
1769 } else if (rdev->desc->ops->enable) {
1770 ret = rdev->desc->ops->enable(rdev);
1771 if (ret < 0)
1772 return ret;
1773 } else {
1774 return -EINVAL;
1777 /* Allow the regulator to ramp; it would be useful to extend
1778 * this for bulk operations so that the regulators can ramp
1779 * together. */
1780 trace_regulator_enable_delay(rdev_get_name(rdev));
1783 * Delay for the requested amount of time as per the guidelines in:
1785 * Documentation/timers/timers-howto.txt
1787 * The assumption here is that regulators will never be enabled in
1788 * atomic context and therefore sleeping functions can be used.
1790 if (delay) {
1791 unsigned int ms = delay / 1000;
1792 unsigned int us = delay % 1000;
1794 if (ms > 0) {
1796 * For small enough values, handle super-millisecond
1797 * delays in the usleep_range() call below.
1799 if (ms < 20)
1800 us += ms * 1000;
1801 else
1802 msleep(ms);
1806 * Give the scheduler some room to coalesce with any other
1807 * wakeup sources. For delays shorter than 10 us, don't even
1808 * bother setting up high-resolution timers and just busy-
1809 * loop.
1811 if (us >= 10)
1812 usleep_range(us, us + 100);
1813 else
1814 udelay(us);
1817 trace_regulator_enable_complete(rdev_get_name(rdev));
1819 return 0;
1822 /* locks held by regulator_enable() */
1823 static int _regulator_enable(struct regulator_dev *rdev)
1825 int ret;
1827 /* check voltage and requested load before enabling */
1828 if (rdev->constraints &&
1829 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830 drms_uA_update(rdev);
1832 if (rdev->use_count == 0) {
1833 /* The regulator may on if it's not switchable or left on */
1834 ret = _regulator_is_enabled(rdev);
1835 if (ret == -EINVAL || ret == 0) {
1836 if (!_regulator_can_change_status(rdev))
1837 return -EPERM;
1839 ret = _regulator_do_enable(rdev);
1840 if (ret < 0)
1841 return ret;
1843 } else if (ret < 0) {
1844 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845 return ret;
1847 /* Fallthrough on positive return values - already enabled */
1850 rdev->use_count++;
1852 return 0;
1856 * regulator_enable - enable regulator output
1857 * @regulator: regulator source
1859 * Request that the regulator be enabled with the regulator output at
1860 * the predefined voltage or current value. Calls to regulator_enable()
1861 * must be balanced with calls to regulator_disable().
1863 * NOTE: the output value can be set by other drivers, boot loader or may be
1864 * hardwired in the regulator.
1866 int regulator_enable(struct regulator *regulator)
1868 struct regulator_dev *rdev = regulator->rdev;
1869 int ret = 0;
1871 if (regulator->always_on)
1872 return 0;
1874 if (rdev->supply) {
1875 ret = regulator_enable(rdev->supply);
1876 if (ret != 0)
1877 return ret;
1880 mutex_lock(&rdev->mutex);
1881 ret = _regulator_enable(rdev);
1882 mutex_unlock(&rdev->mutex);
1884 if (ret != 0 && rdev->supply)
1885 regulator_disable(rdev->supply);
1887 return ret;
1889 EXPORT_SYMBOL_GPL(regulator_enable);
1891 static int _regulator_do_disable(struct regulator_dev *rdev)
1893 int ret;
1895 trace_regulator_disable(rdev_get_name(rdev));
1897 if (rdev->ena_pin) {
1898 ret = regulator_ena_gpio_ctrl(rdev, false);
1899 if (ret < 0)
1900 return ret;
1901 rdev->ena_gpio_state = 0;
1903 } else if (rdev->desc->ops->disable) {
1904 ret = rdev->desc->ops->disable(rdev);
1905 if (ret != 0)
1906 return ret;
1909 trace_regulator_disable_complete(rdev_get_name(rdev));
1911 return 0;
1914 /* locks held by regulator_disable() */
1915 static int _regulator_disable(struct regulator_dev *rdev)
1917 int ret = 0;
1919 if (WARN(rdev->use_count <= 0,
1920 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921 return -EIO;
1923 /* are we the last user and permitted to disable ? */
1924 if (rdev->use_count == 1 &&
1925 (rdev->constraints && !rdev->constraints->always_on)) {
1927 /* we are last user */
1928 if (_regulator_can_change_status(rdev)) {
1929 ret = _regulator_do_disable(rdev);
1930 if (ret < 0) {
1931 rdev_err(rdev, "failed to disable\n");
1932 return ret;
1934 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935 NULL);
1938 rdev->use_count = 0;
1939 } else if (rdev->use_count > 1) {
1941 if (rdev->constraints &&
1942 (rdev->constraints->valid_ops_mask &
1943 REGULATOR_CHANGE_DRMS))
1944 drms_uA_update(rdev);
1946 rdev->use_count--;
1949 return ret;
1953 * regulator_disable - disable regulator output
1954 * @regulator: regulator source
1956 * Disable the regulator output voltage or current. Calls to
1957 * regulator_enable() must be balanced with calls to
1958 * regulator_disable().
1960 * NOTE: this will only disable the regulator output if no other consumer
1961 * devices have it enabled, the regulator device supports disabling and
1962 * machine constraints permit this operation.
1964 int regulator_disable(struct regulator *regulator)
1966 struct regulator_dev *rdev = regulator->rdev;
1967 int ret = 0;
1969 if (regulator->always_on)
1970 return 0;
1972 mutex_lock(&rdev->mutex);
1973 ret = _regulator_disable(rdev);
1974 mutex_unlock(&rdev->mutex);
1976 if (ret == 0 && rdev->supply)
1977 regulator_disable(rdev->supply);
1979 return ret;
1981 EXPORT_SYMBOL_GPL(regulator_disable);
1983 /* locks held by regulator_force_disable() */
1984 static int _regulator_force_disable(struct regulator_dev *rdev)
1986 int ret = 0;
1988 ret = _regulator_do_disable(rdev);
1989 if (ret < 0) {
1990 rdev_err(rdev, "failed to force disable\n");
1991 return ret;
1994 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995 REGULATOR_EVENT_DISABLE, NULL);
1997 return 0;
2001 * regulator_force_disable - force disable regulator output
2002 * @regulator: regulator source
2004 * Forcibly disable the regulator output voltage or current.
2005 * NOTE: this *will* disable the regulator output even if other consumer
2006 * devices have it enabled. This should be used for situations when device
2007 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2009 int regulator_force_disable(struct regulator *regulator)
2011 struct regulator_dev *rdev = regulator->rdev;
2012 int ret;
2014 mutex_lock(&rdev->mutex);
2015 regulator->uA_load = 0;
2016 ret = _regulator_force_disable(regulator->rdev);
2017 mutex_unlock(&rdev->mutex);
2019 if (rdev->supply)
2020 while (rdev->open_count--)
2021 regulator_disable(rdev->supply);
2023 return ret;
2025 EXPORT_SYMBOL_GPL(regulator_force_disable);
2027 static void regulator_disable_work(struct work_struct *work)
2029 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030 disable_work.work);
2031 int count, i, ret;
2033 mutex_lock(&rdev->mutex);
2035 BUG_ON(!rdev->deferred_disables);
2037 count = rdev->deferred_disables;
2038 rdev->deferred_disables = 0;
2040 for (i = 0; i < count; i++) {
2041 ret = _regulator_disable(rdev);
2042 if (ret != 0)
2043 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2046 mutex_unlock(&rdev->mutex);
2048 if (rdev->supply) {
2049 for (i = 0; i < count; i++) {
2050 ret = regulator_disable(rdev->supply);
2051 if (ret != 0) {
2052 rdev_err(rdev,
2053 "Supply disable failed: %d\n", ret);
2060 * regulator_disable_deferred - disable regulator output with delay
2061 * @regulator: regulator source
2062 * @ms: miliseconds until the regulator is disabled
2064 * Execute regulator_disable() on the regulator after a delay. This
2065 * is intended for use with devices that require some time to quiesce.
2067 * NOTE: this will only disable the regulator output if no other consumer
2068 * devices have it enabled, the regulator device supports disabling and
2069 * machine constraints permit this operation.
2071 int regulator_disable_deferred(struct regulator *regulator, int ms)
2073 struct regulator_dev *rdev = regulator->rdev;
2074 int ret;
2076 if (regulator->always_on)
2077 return 0;
2079 if (!ms)
2080 return regulator_disable(regulator);
2082 mutex_lock(&rdev->mutex);
2083 rdev->deferred_disables++;
2084 mutex_unlock(&rdev->mutex);
2086 ret = queue_delayed_work(system_power_efficient_wq,
2087 &rdev->disable_work,
2088 msecs_to_jiffies(ms));
2089 if (ret < 0)
2090 return ret;
2091 else
2092 return 0;
2094 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2096 static int _regulator_is_enabled(struct regulator_dev *rdev)
2098 /* A GPIO control always takes precedence */
2099 if (rdev->ena_pin)
2100 return rdev->ena_gpio_state;
2102 /* If we don't know then assume that the regulator is always on */
2103 if (!rdev->desc->ops->is_enabled)
2104 return 1;
2106 return rdev->desc->ops->is_enabled(rdev);
2110 * regulator_is_enabled - is the regulator output enabled
2111 * @regulator: regulator source
2113 * Returns positive if the regulator driver backing the source/client
2114 * has requested that the device be enabled, zero if it hasn't, else a
2115 * negative errno code.
2117 * Note that the device backing this regulator handle can have multiple
2118 * users, so it might be enabled even if regulator_enable() was never
2119 * called for this particular source.
2121 int regulator_is_enabled(struct regulator *regulator)
2123 int ret;
2125 if (regulator->always_on)
2126 return 1;
2128 mutex_lock(&regulator->rdev->mutex);
2129 ret = _regulator_is_enabled(regulator->rdev);
2130 mutex_unlock(&regulator->rdev->mutex);
2132 return ret;
2134 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2137 * regulator_can_change_voltage - check if regulator can change voltage
2138 * @regulator: regulator source
2140 * Returns positive if the regulator driver backing the source/client
2141 * can change its voltage, false otherwise. Useful for detecting fixed
2142 * or dummy regulators and disabling voltage change logic in the client
2143 * driver.
2145 int regulator_can_change_voltage(struct regulator *regulator)
2147 struct regulator_dev *rdev = regulator->rdev;
2149 if (rdev->constraints &&
2150 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152 return 1;
2154 if (rdev->desc->continuous_voltage_range &&
2155 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156 rdev->constraints->min_uV != rdev->constraints->max_uV)
2157 return 1;
2160 return 0;
2162 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2165 * regulator_count_voltages - count regulator_list_voltage() selectors
2166 * @regulator: regulator source
2168 * Returns number of selectors, or negative errno. Selectors are
2169 * numbered starting at zero, and typically correspond to bitfields
2170 * in hardware registers.
2172 int regulator_count_voltages(struct regulator *regulator)
2174 struct regulator_dev *rdev = regulator->rdev;
2176 return rdev->desc->n_voltages ? : -EINVAL;
2178 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2181 * regulator_list_voltage - enumerate supported voltages
2182 * @regulator: regulator source
2183 * @selector: identify voltage to list
2184 * Context: can sleep
2186 * Returns a voltage that can be passed to @regulator_set_voltage(),
2187 * zero if this selector code can't be used on this system, or a
2188 * negative errno.
2190 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2192 struct regulator_dev *rdev = regulator->rdev;
2193 struct regulator_ops *ops = rdev->desc->ops;
2194 int ret;
2196 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197 return rdev->desc->fixed_uV;
2199 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200 return -EINVAL;
2202 mutex_lock(&rdev->mutex);
2203 ret = ops->list_voltage(rdev, selector);
2204 mutex_unlock(&rdev->mutex);
2206 if (ret > 0) {
2207 if (ret < rdev->constraints->min_uV)
2208 ret = 0;
2209 else if (ret > rdev->constraints->max_uV)
2210 ret = 0;
2213 return ret;
2215 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2218 * regulator_get_linear_step - return the voltage step size between VSEL values
2219 * @regulator: regulator source
2221 * Returns the voltage step size between VSEL values for linear
2222 * regulators, or return 0 if the regulator isn't a linear regulator.
2224 unsigned int regulator_get_linear_step(struct regulator *regulator)
2226 struct regulator_dev *rdev = regulator->rdev;
2228 return rdev->desc->uV_step;
2230 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2233 * regulator_is_supported_voltage - check if a voltage range can be supported
2235 * @regulator: Regulator to check.
2236 * @min_uV: Minimum required voltage in uV.
2237 * @max_uV: Maximum required voltage in uV.
2239 * Returns a boolean or a negative error code.
2241 int regulator_is_supported_voltage(struct regulator *regulator,
2242 int min_uV, int max_uV)
2244 struct regulator_dev *rdev = regulator->rdev;
2245 int i, voltages, ret;
2247 /* If we can't change voltage check the current voltage */
2248 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249 ret = regulator_get_voltage(regulator);
2250 if (ret >= 0)
2251 return min_uV <= ret && ret <= max_uV;
2252 else
2253 return ret;
2256 /* Any voltage within constrains range is fine? */
2257 if (rdev->desc->continuous_voltage_range)
2258 return min_uV >= rdev->constraints->min_uV &&
2259 max_uV <= rdev->constraints->max_uV;
2261 ret = regulator_count_voltages(regulator);
2262 if (ret < 0)
2263 return ret;
2264 voltages = ret;
2266 for (i = 0; i < voltages; i++) {
2267 ret = regulator_list_voltage(regulator, i);
2269 if (ret >= min_uV && ret <= max_uV)
2270 return 1;
2273 return 0;
2275 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2277 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278 int min_uV, int max_uV)
2280 int ret;
2281 int delay = 0;
2282 int best_val = 0;
2283 unsigned int selector;
2284 int old_selector = -1;
2286 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2288 min_uV += rdev->constraints->uV_offset;
2289 max_uV += rdev->constraints->uV_offset;
2292 * If we can't obtain the old selector there is not enough
2293 * info to call set_voltage_time_sel().
2295 if (_regulator_is_enabled(rdev) &&
2296 rdev->desc->ops->set_voltage_time_sel &&
2297 rdev->desc->ops->get_voltage_sel) {
2298 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299 if (old_selector < 0)
2300 return old_selector;
2303 if (rdev->desc->ops->set_voltage) {
2304 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305 &selector);
2307 if (ret >= 0) {
2308 if (rdev->desc->ops->list_voltage)
2309 best_val = rdev->desc->ops->list_voltage(rdev,
2310 selector);
2311 else
2312 best_val = _regulator_get_voltage(rdev);
2315 } else if (rdev->desc->ops->set_voltage_sel) {
2316 if (rdev->desc->ops->map_voltage) {
2317 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318 max_uV);
2319 } else {
2320 if (rdev->desc->ops->list_voltage ==
2321 regulator_list_voltage_linear)
2322 ret = regulator_map_voltage_linear(rdev,
2323 min_uV, max_uV);
2324 else
2325 ret = regulator_map_voltage_iterate(rdev,
2326 min_uV, max_uV);
2329 if (ret >= 0) {
2330 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331 if (min_uV <= best_val && max_uV >= best_val) {
2332 selector = ret;
2333 if (old_selector == selector)
2334 ret = 0;
2335 else
2336 ret = rdev->desc->ops->set_voltage_sel(
2337 rdev, ret);
2338 } else {
2339 ret = -EINVAL;
2342 } else {
2343 ret = -EINVAL;
2346 /* Call set_voltage_time_sel if successfully obtained old_selector */
2347 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348 && old_selector != selector) {
2350 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2351 old_selector, selector);
2352 if (delay < 0) {
2353 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354 delay);
2355 delay = 0;
2358 /* Insert any necessary delays */
2359 if (delay >= 1000) {
2360 mdelay(delay / 1000);
2361 udelay(delay % 1000);
2362 } else if (delay) {
2363 udelay(delay);
2367 if (ret == 0 && best_val >= 0) {
2368 unsigned long data = best_val;
2370 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371 (void *)data);
2374 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2376 return ret;
2380 * regulator_set_voltage - set regulator output voltage
2381 * @regulator: regulator source
2382 * @min_uV: Minimum required voltage in uV
2383 * @max_uV: Maximum acceptable voltage in uV
2385 * Sets a voltage regulator to the desired output voltage. This can be set
2386 * during any regulator state. IOW, regulator can be disabled or enabled.
2388 * If the regulator is enabled then the voltage will change to the new value
2389 * immediately otherwise if the regulator is disabled the regulator will
2390 * output at the new voltage when enabled.
2392 * NOTE: If the regulator is shared between several devices then the lowest
2393 * request voltage that meets the system constraints will be used.
2394 * Regulator system constraints must be set for this regulator before
2395 * calling this function otherwise this call will fail.
2397 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2399 struct regulator_dev *rdev = regulator->rdev;
2400 int ret = 0;
2401 int old_min_uV, old_max_uV;
2402 int current_uV;
2404 mutex_lock(&rdev->mutex);
2406 /* If we're setting the same range as last time the change
2407 * should be a noop (some cpufreq implementations use the same
2408 * voltage for multiple frequencies, for example).
2410 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2411 goto out;
2413 /* If we're trying to set a range that overlaps the current voltage,
2414 * return succesfully even though the regulator does not support
2415 * changing the voltage.
2417 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2418 current_uV = _regulator_get_voltage(rdev);
2419 if (min_uV <= current_uV && current_uV <= max_uV) {
2420 regulator->min_uV = min_uV;
2421 regulator->max_uV = max_uV;
2422 goto out;
2426 /* sanity check */
2427 if (!rdev->desc->ops->set_voltage &&
2428 !rdev->desc->ops->set_voltage_sel) {
2429 ret = -EINVAL;
2430 goto out;
2433 /* constraints check */
2434 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2435 if (ret < 0)
2436 goto out;
2438 /* restore original values in case of error */
2439 old_min_uV = regulator->min_uV;
2440 old_max_uV = regulator->max_uV;
2441 regulator->min_uV = min_uV;
2442 regulator->max_uV = max_uV;
2444 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2445 if (ret < 0)
2446 goto out2;
2448 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2449 if (ret < 0)
2450 goto out2;
2452 out:
2453 mutex_unlock(&rdev->mutex);
2454 return ret;
2455 out2:
2456 regulator->min_uV = old_min_uV;
2457 regulator->max_uV = old_max_uV;
2458 mutex_unlock(&rdev->mutex);
2459 return ret;
2461 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2464 * regulator_set_voltage_time - get raise/fall time
2465 * @regulator: regulator source
2466 * @old_uV: starting voltage in microvolts
2467 * @new_uV: target voltage in microvolts
2469 * Provided with the starting and ending voltage, this function attempts to
2470 * calculate the time in microseconds required to rise or fall to this new
2471 * voltage.
2473 int regulator_set_voltage_time(struct regulator *regulator,
2474 int old_uV, int new_uV)
2476 struct regulator_dev *rdev = regulator->rdev;
2477 struct regulator_ops *ops = rdev->desc->ops;
2478 int old_sel = -1;
2479 int new_sel = -1;
2480 int voltage;
2481 int i;
2483 /* Currently requires operations to do this */
2484 if (!ops->list_voltage || !ops->set_voltage_time_sel
2485 || !rdev->desc->n_voltages)
2486 return -EINVAL;
2488 for (i = 0; i < rdev->desc->n_voltages; i++) {
2489 /* We only look for exact voltage matches here */
2490 voltage = regulator_list_voltage(regulator, i);
2491 if (voltage < 0)
2492 return -EINVAL;
2493 if (voltage == 0)
2494 continue;
2495 if (voltage == old_uV)
2496 old_sel = i;
2497 if (voltage == new_uV)
2498 new_sel = i;
2501 if (old_sel < 0 || new_sel < 0)
2502 return -EINVAL;
2504 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2506 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2509 * regulator_set_voltage_time_sel - get raise/fall time
2510 * @rdev: regulator source device
2511 * @old_selector: selector for starting voltage
2512 * @new_selector: selector for target voltage
2514 * Provided with the starting and target voltage selectors, this function
2515 * returns time in microseconds required to rise or fall to this new voltage
2517 * Drivers providing ramp_delay in regulation_constraints can use this as their
2518 * set_voltage_time_sel() operation.
2520 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2521 unsigned int old_selector,
2522 unsigned int new_selector)
2524 unsigned int ramp_delay = 0;
2525 int old_volt, new_volt;
2527 if (rdev->constraints->ramp_delay)
2528 ramp_delay = rdev->constraints->ramp_delay;
2529 else if (rdev->desc->ramp_delay)
2530 ramp_delay = rdev->desc->ramp_delay;
2532 if (ramp_delay == 0) {
2533 rdev_warn(rdev, "ramp_delay not set\n");
2534 return 0;
2537 /* sanity check */
2538 if (!rdev->desc->ops->list_voltage)
2539 return -EINVAL;
2541 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2542 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2544 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2546 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2549 * regulator_sync_voltage - re-apply last regulator output voltage
2550 * @regulator: regulator source
2552 * Re-apply the last configured voltage. This is intended to be used
2553 * where some external control source the consumer is cooperating with
2554 * has caused the configured voltage to change.
2556 int regulator_sync_voltage(struct regulator *regulator)
2558 struct regulator_dev *rdev = regulator->rdev;
2559 int ret, min_uV, max_uV;
2561 mutex_lock(&rdev->mutex);
2563 if (!rdev->desc->ops->set_voltage &&
2564 !rdev->desc->ops->set_voltage_sel) {
2565 ret = -EINVAL;
2566 goto out;
2569 /* This is only going to work if we've had a voltage configured. */
2570 if (!regulator->min_uV && !regulator->max_uV) {
2571 ret = -EINVAL;
2572 goto out;
2575 min_uV = regulator->min_uV;
2576 max_uV = regulator->max_uV;
2578 /* This should be a paranoia check... */
2579 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2580 if (ret < 0)
2581 goto out;
2583 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2584 if (ret < 0)
2585 goto out;
2587 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2589 out:
2590 mutex_unlock(&rdev->mutex);
2591 return ret;
2593 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2595 static int _regulator_get_voltage(struct regulator_dev *rdev)
2597 int sel, ret;
2599 if (rdev->desc->ops->get_voltage_sel) {
2600 sel = rdev->desc->ops->get_voltage_sel(rdev);
2601 if (sel < 0)
2602 return sel;
2603 ret = rdev->desc->ops->list_voltage(rdev, sel);
2604 } else if (rdev->desc->ops->get_voltage) {
2605 ret = rdev->desc->ops->get_voltage(rdev);
2606 } else if (rdev->desc->ops->list_voltage) {
2607 ret = rdev->desc->ops->list_voltage(rdev, 0);
2608 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2609 ret = rdev->desc->fixed_uV;
2610 } else {
2611 return -EINVAL;
2614 if (ret < 0)
2615 return ret;
2616 return ret - rdev->constraints->uV_offset;
2620 * regulator_get_voltage - get regulator output voltage
2621 * @regulator: regulator source
2623 * This returns the current regulator voltage in uV.
2625 * NOTE: If the regulator is disabled it will return the voltage value. This
2626 * function should not be used to determine regulator state.
2628 int regulator_get_voltage(struct regulator *regulator)
2630 int ret;
2632 mutex_lock(&regulator->rdev->mutex);
2634 ret = _regulator_get_voltage(regulator->rdev);
2636 mutex_unlock(&regulator->rdev->mutex);
2638 return ret;
2640 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2643 * regulator_set_current_limit - set regulator output current limit
2644 * @regulator: regulator source
2645 * @min_uA: Minimum supported current in uA
2646 * @max_uA: Maximum supported current in uA
2648 * Sets current sink to the desired output current. This can be set during
2649 * any regulator state. IOW, regulator can be disabled or enabled.
2651 * If the regulator is enabled then the current will change to the new value
2652 * immediately otherwise if the regulator is disabled the regulator will
2653 * output at the new current when enabled.
2655 * NOTE: Regulator system constraints must be set for this regulator before
2656 * calling this function otherwise this call will fail.
2658 int regulator_set_current_limit(struct regulator *regulator,
2659 int min_uA, int max_uA)
2661 struct regulator_dev *rdev = regulator->rdev;
2662 int ret;
2664 mutex_lock(&rdev->mutex);
2666 /* sanity check */
2667 if (!rdev->desc->ops->set_current_limit) {
2668 ret = -EINVAL;
2669 goto out;
2672 /* constraints check */
2673 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2674 if (ret < 0)
2675 goto out;
2677 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2678 out:
2679 mutex_unlock(&rdev->mutex);
2680 return ret;
2682 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2684 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2686 int ret;
2688 mutex_lock(&rdev->mutex);
2690 /* sanity check */
2691 if (!rdev->desc->ops->get_current_limit) {
2692 ret = -EINVAL;
2693 goto out;
2696 ret = rdev->desc->ops->get_current_limit(rdev);
2697 out:
2698 mutex_unlock(&rdev->mutex);
2699 return ret;
2703 * regulator_get_current_limit - get regulator output current
2704 * @regulator: regulator source
2706 * This returns the current supplied by the specified current sink in uA.
2708 * NOTE: If the regulator is disabled it will return the current value. This
2709 * function should not be used to determine regulator state.
2711 int regulator_get_current_limit(struct regulator *regulator)
2713 return _regulator_get_current_limit(regulator->rdev);
2715 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2718 * regulator_set_mode - set regulator operating mode
2719 * @regulator: regulator source
2720 * @mode: operating mode - one of the REGULATOR_MODE constants
2722 * Set regulator operating mode to increase regulator efficiency or improve
2723 * regulation performance.
2725 * NOTE: Regulator system constraints must be set for this regulator before
2726 * calling this function otherwise this call will fail.
2728 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2730 struct regulator_dev *rdev = regulator->rdev;
2731 int ret;
2732 int regulator_curr_mode;
2734 mutex_lock(&rdev->mutex);
2736 /* sanity check */
2737 if (!rdev->desc->ops->set_mode) {
2738 ret = -EINVAL;
2739 goto out;
2742 /* return if the same mode is requested */
2743 if (rdev->desc->ops->get_mode) {
2744 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2745 if (regulator_curr_mode == mode) {
2746 ret = 0;
2747 goto out;
2751 /* constraints check */
2752 ret = regulator_mode_constrain(rdev, &mode);
2753 if (ret < 0)
2754 goto out;
2756 ret = rdev->desc->ops->set_mode(rdev, mode);
2757 out:
2758 mutex_unlock(&rdev->mutex);
2759 return ret;
2761 EXPORT_SYMBOL_GPL(regulator_set_mode);
2763 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2765 int ret;
2767 mutex_lock(&rdev->mutex);
2769 /* sanity check */
2770 if (!rdev->desc->ops->get_mode) {
2771 ret = -EINVAL;
2772 goto out;
2775 ret = rdev->desc->ops->get_mode(rdev);
2776 out:
2777 mutex_unlock(&rdev->mutex);
2778 return ret;
2782 * regulator_get_mode - get regulator operating mode
2783 * @regulator: regulator source
2785 * Get the current regulator operating mode.
2787 unsigned int regulator_get_mode(struct regulator *regulator)
2789 return _regulator_get_mode(regulator->rdev);
2791 EXPORT_SYMBOL_GPL(regulator_get_mode);
2794 * regulator_set_optimum_mode - set regulator optimum operating mode
2795 * @regulator: regulator source
2796 * @uA_load: load current
2798 * Notifies the regulator core of a new device load. This is then used by
2799 * DRMS (if enabled by constraints) to set the most efficient regulator
2800 * operating mode for the new regulator loading.
2802 * Consumer devices notify their supply regulator of the maximum power
2803 * they will require (can be taken from device datasheet in the power
2804 * consumption tables) when they change operational status and hence power
2805 * state. Examples of operational state changes that can affect power
2806 * consumption are :-
2808 * o Device is opened / closed.
2809 * o Device I/O is about to begin or has just finished.
2810 * o Device is idling in between work.
2812 * This information is also exported via sysfs to userspace.
2814 * DRMS will sum the total requested load on the regulator and change
2815 * to the most efficient operating mode if platform constraints allow.
2817 * Returns the new regulator mode or error.
2819 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2821 struct regulator_dev *rdev = regulator->rdev;
2822 struct regulator *consumer;
2823 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2824 unsigned int mode;
2826 if (rdev->supply)
2827 input_uV = regulator_get_voltage(rdev->supply);
2829 mutex_lock(&rdev->mutex);
2832 * first check to see if we can set modes at all, otherwise just
2833 * tell the consumer everything is OK.
2835 regulator->uA_load = uA_load;
2836 ret = regulator_check_drms(rdev);
2837 if (ret < 0) {
2838 ret = 0;
2839 goto out;
2842 if (!rdev->desc->ops->get_optimum_mode)
2843 goto out;
2846 * we can actually do this so any errors are indicators of
2847 * potential real failure.
2849 ret = -EINVAL;
2851 if (!rdev->desc->ops->set_mode)
2852 goto out;
2854 /* get output voltage */
2855 output_uV = _regulator_get_voltage(rdev);
2856 if (output_uV <= 0) {
2857 rdev_err(rdev, "invalid output voltage found\n");
2858 goto out;
2861 /* No supply? Use constraint voltage */
2862 if (input_uV <= 0)
2863 input_uV = rdev->constraints->input_uV;
2864 if (input_uV <= 0) {
2865 rdev_err(rdev, "invalid input voltage found\n");
2866 goto out;
2869 /* calc total requested load for this regulator */
2870 list_for_each_entry(consumer, &rdev->consumer_list, list)
2871 total_uA_load += consumer->uA_load;
2873 mode = rdev->desc->ops->get_optimum_mode(rdev,
2874 input_uV, output_uV,
2875 total_uA_load);
2876 ret = regulator_mode_constrain(rdev, &mode);
2877 if (ret < 0) {
2878 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2879 total_uA_load, input_uV, output_uV);
2880 goto out;
2883 ret = rdev->desc->ops->set_mode(rdev, mode);
2884 if (ret < 0) {
2885 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2886 goto out;
2888 ret = mode;
2889 out:
2890 mutex_unlock(&rdev->mutex);
2891 return ret;
2893 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2896 * regulator_allow_bypass - allow the regulator to go into bypass mode
2898 * @regulator: Regulator to configure
2899 * @enable: enable or disable bypass mode
2901 * Allow the regulator to go into bypass mode if all other consumers
2902 * for the regulator also enable bypass mode and the machine
2903 * constraints allow this. Bypass mode means that the regulator is
2904 * simply passing the input directly to the output with no regulation.
2906 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2908 struct regulator_dev *rdev = regulator->rdev;
2909 int ret = 0;
2911 if (!rdev->desc->ops->set_bypass)
2912 return 0;
2914 if (rdev->constraints &&
2915 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2916 return 0;
2918 mutex_lock(&rdev->mutex);
2920 if (enable && !regulator->bypass) {
2921 rdev->bypass_count++;
2923 if (rdev->bypass_count == rdev->open_count) {
2924 ret = rdev->desc->ops->set_bypass(rdev, enable);
2925 if (ret != 0)
2926 rdev->bypass_count--;
2929 } else if (!enable && regulator->bypass) {
2930 rdev->bypass_count--;
2932 if (rdev->bypass_count != rdev->open_count) {
2933 ret = rdev->desc->ops->set_bypass(rdev, enable);
2934 if (ret != 0)
2935 rdev->bypass_count++;
2939 if (ret == 0)
2940 regulator->bypass = enable;
2942 mutex_unlock(&rdev->mutex);
2944 return ret;
2946 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2949 * regulator_register_notifier - register regulator event notifier
2950 * @regulator: regulator source
2951 * @nb: notifier block
2953 * Register notifier block to receive regulator events.
2955 int regulator_register_notifier(struct regulator *regulator,
2956 struct notifier_block *nb)
2958 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2959 nb);
2961 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2964 * regulator_unregister_notifier - unregister regulator event notifier
2965 * @regulator: regulator source
2966 * @nb: notifier block
2968 * Unregister regulator event notifier block.
2970 int regulator_unregister_notifier(struct regulator *regulator,
2971 struct notifier_block *nb)
2973 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2974 nb);
2976 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2978 /* notify regulator consumers and downstream regulator consumers.
2979 * Note mutex must be held by caller.
2981 static void _notifier_call_chain(struct regulator_dev *rdev,
2982 unsigned long event, void *data)
2984 /* call rdev chain first */
2985 blocking_notifier_call_chain(&rdev->notifier, event, data);
2989 * regulator_bulk_get - get multiple regulator consumers
2991 * @dev: Device to supply
2992 * @num_consumers: Number of consumers to register
2993 * @consumers: Configuration of consumers; clients are stored here.
2995 * @return 0 on success, an errno on failure.
2997 * This helper function allows drivers to get several regulator
2998 * consumers in one operation. If any of the regulators cannot be
2999 * acquired then any regulators that were allocated will be freed
3000 * before returning to the caller.
3002 int regulator_bulk_get(struct device *dev, int num_consumers,
3003 struct regulator_bulk_data *consumers)
3005 int i;
3006 int ret;
3008 for (i = 0; i < num_consumers; i++)
3009 consumers[i].consumer = NULL;
3011 for (i = 0; i < num_consumers; i++) {
3012 consumers[i].consumer = regulator_get(dev,
3013 consumers[i].supply);
3014 if (IS_ERR(consumers[i].consumer)) {
3015 ret = PTR_ERR(consumers[i].consumer);
3016 dev_err(dev, "Failed to get supply '%s': %d\n",
3017 consumers[i].supply, ret);
3018 consumers[i].consumer = NULL;
3019 goto err;
3023 return 0;
3025 err:
3026 while (--i >= 0)
3027 regulator_put(consumers[i].consumer);
3029 return ret;
3031 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3033 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3035 struct regulator_bulk_data *bulk = data;
3037 bulk->ret = regulator_enable(bulk->consumer);
3041 * regulator_bulk_enable - enable multiple regulator consumers
3043 * @num_consumers: Number of consumers
3044 * @consumers: Consumer data; clients are stored here.
3045 * @return 0 on success, an errno on failure
3047 * This convenience API allows consumers to enable multiple regulator
3048 * clients in a single API call. If any consumers cannot be enabled
3049 * then any others that were enabled will be disabled again prior to
3050 * return.
3052 int regulator_bulk_enable(int num_consumers,
3053 struct regulator_bulk_data *consumers)
3055 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3056 int i;
3057 int ret = 0;
3059 for (i = 0; i < num_consumers; i++) {
3060 if (consumers[i].consumer->always_on)
3061 consumers[i].ret = 0;
3062 else
3063 async_schedule_domain(regulator_bulk_enable_async,
3064 &consumers[i], &async_domain);
3067 async_synchronize_full_domain(&async_domain);
3069 /* If any consumer failed we need to unwind any that succeeded */
3070 for (i = 0; i < num_consumers; i++) {
3071 if (consumers[i].ret != 0) {
3072 ret = consumers[i].ret;
3073 goto err;
3077 return 0;
3079 err:
3080 for (i = 0; i < num_consumers; i++) {
3081 if (consumers[i].ret < 0)
3082 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3083 consumers[i].ret);
3084 else
3085 regulator_disable(consumers[i].consumer);
3088 return ret;
3090 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3093 * regulator_bulk_disable - disable multiple regulator consumers
3095 * @num_consumers: Number of consumers
3096 * @consumers: Consumer data; clients are stored here.
3097 * @return 0 on success, an errno on failure
3099 * This convenience API allows consumers to disable multiple regulator
3100 * clients in a single API call. If any consumers cannot be disabled
3101 * then any others that were disabled will be enabled again prior to
3102 * return.
3104 int regulator_bulk_disable(int num_consumers,
3105 struct regulator_bulk_data *consumers)
3107 int i;
3108 int ret, r;
3110 for (i = num_consumers - 1; i >= 0; --i) {
3111 ret = regulator_disable(consumers[i].consumer);
3112 if (ret != 0)
3113 goto err;
3116 return 0;
3118 err:
3119 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3120 for (++i; i < num_consumers; ++i) {
3121 r = regulator_enable(consumers[i].consumer);
3122 if (r != 0)
3123 pr_err("Failed to reename %s: %d\n",
3124 consumers[i].supply, r);
3127 return ret;
3129 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3132 * regulator_bulk_force_disable - force disable multiple regulator consumers
3134 * @num_consumers: Number of consumers
3135 * @consumers: Consumer data; clients are stored here.
3136 * @return 0 on success, an errno on failure
3138 * This convenience API allows consumers to forcibly disable multiple regulator
3139 * clients in a single API call.
3140 * NOTE: This should be used for situations when device damage will
3141 * likely occur if the regulators are not disabled (e.g. over temp).
3142 * Although regulator_force_disable function call for some consumers can
3143 * return error numbers, the function is called for all consumers.
3145 int regulator_bulk_force_disable(int num_consumers,
3146 struct regulator_bulk_data *consumers)
3148 int i;
3149 int ret;
3151 for (i = 0; i < num_consumers; i++)
3152 consumers[i].ret =
3153 regulator_force_disable(consumers[i].consumer);
3155 for (i = 0; i < num_consumers; i++) {
3156 if (consumers[i].ret != 0) {
3157 ret = consumers[i].ret;
3158 goto out;
3162 return 0;
3163 out:
3164 return ret;
3166 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3169 * regulator_bulk_free - free multiple regulator consumers
3171 * @num_consumers: Number of consumers
3172 * @consumers: Consumer data; clients are stored here.
3174 * This convenience API allows consumers to free multiple regulator
3175 * clients in a single API call.
3177 void regulator_bulk_free(int num_consumers,
3178 struct regulator_bulk_data *consumers)
3180 int i;
3182 for (i = 0; i < num_consumers; i++) {
3183 regulator_put(consumers[i].consumer);
3184 consumers[i].consumer = NULL;
3187 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3190 * regulator_notifier_call_chain - call regulator event notifier
3191 * @rdev: regulator source
3192 * @event: notifier block
3193 * @data: callback-specific data.
3195 * Called by regulator drivers to notify clients a regulator event has
3196 * occurred. We also notify regulator clients downstream.
3197 * Note lock must be held by caller.
3199 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3200 unsigned long event, void *data)
3202 _notifier_call_chain(rdev, event, data);
3203 return NOTIFY_DONE;
3206 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3209 * regulator_mode_to_status - convert a regulator mode into a status
3211 * @mode: Mode to convert
3213 * Convert a regulator mode into a status.
3215 int regulator_mode_to_status(unsigned int mode)
3217 switch (mode) {
3218 case REGULATOR_MODE_FAST:
3219 return REGULATOR_STATUS_FAST;
3220 case REGULATOR_MODE_NORMAL:
3221 return REGULATOR_STATUS_NORMAL;
3222 case REGULATOR_MODE_IDLE:
3223 return REGULATOR_STATUS_IDLE;
3224 case REGULATOR_MODE_STANDBY:
3225 return REGULATOR_STATUS_STANDBY;
3226 default:
3227 return REGULATOR_STATUS_UNDEFINED;
3230 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3233 * To avoid cluttering sysfs (and memory) with useless state, only
3234 * create attributes that can be meaningfully displayed.
3236 static int add_regulator_attributes(struct regulator_dev *rdev)
3238 struct device *dev = &rdev->dev;
3239 struct regulator_ops *ops = rdev->desc->ops;
3240 int status = 0;
3242 /* some attributes need specific methods to be displayed */
3243 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3244 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3245 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3246 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3247 status = device_create_file(dev, &dev_attr_microvolts);
3248 if (status < 0)
3249 return status;
3251 if (ops->get_current_limit) {
3252 status = device_create_file(dev, &dev_attr_microamps);
3253 if (status < 0)
3254 return status;
3256 if (ops->get_mode) {
3257 status = device_create_file(dev, &dev_attr_opmode);
3258 if (status < 0)
3259 return status;
3261 if (rdev->ena_pin || ops->is_enabled) {
3262 status = device_create_file(dev, &dev_attr_state);
3263 if (status < 0)
3264 return status;
3266 if (ops->get_status) {
3267 status = device_create_file(dev, &dev_attr_status);
3268 if (status < 0)
3269 return status;
3271 if (ops->get_bypass) {
3272 status = device_create_file(dev, &dev_attr_bypass);
3273 if (status < 0)
3274 return status;
3277 /* some attributes are type-specific */
3278 if (rdev->desc->type == REGULATOR_CURRENT) {
3279 status = device_create_file(dev, &dev_attr_requested_microamps);
3280 if (status < 0)
3281 return status;
3284 /* all the other attributes exist to support constraints;
3285 * don't show them if there are no constraints, or if the
3286 * relevant supporting methods are missing.
3288 if (!rdev->constraints)
3289 return status;
3291 /* constraints need specific supporting methods */
3292 if (ops->set_voltage || ops->set_voltage_sel) {
3293 status = device_create_file(dev, &dev_attr_min_microvolts);
3294 if (status < 0)
3295 return status;
3296 status = device_create_file(dev, &dev_attr_max_microvolts);
3297 if (status < 0)
3298 return status;
3300 if (ops->set_current_limit) {
3301 status = device_create_file(dev, &dev_attr_min_microamps);
3302 if (status < 0)
3303 return status;
3304 status = device_create_file(dev, &dev_attr_max_microamps);
3305 if (status < 0)
3306 return status;
3309 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3310 if (status < 0)
3311 return status;
3312 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3313 if (status < 0)
3314 return status;
3315 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3316 if (status < 0)
3317 return status;
3319 if (ops->set_suspend_voltage) {
3320 status = device_create_file(dev,
3321 &dev_attr_suspend_standby_microvolts);
3322 if (status < 0)
3323 return status;
3324 status = device_create_file(dev,
3325 &dev_attr_suspend_mem_microvolts);
3326 if (status < 0)
3327 return status;
3328 status = device_create_file(dev,
3329 &dev_attr_suspend_disk_microvolts);
3330 if (status < 0)
3331 return status;
3334 if (ops->set_suspend_mode) {
3335 status = device_create_file(dev,
3336 &dev_attr_suspend_standby_mode);
3337 if (status < 0)
3338 return status;
3339 status = device_create_file(dev,
3340 &dev_attr_suspend_mem_mode);
3341 if (status < 0)
3342 return status;
3343 status = device_create_file(dev,
3344 &dev_attr_suspend_disk_mode);
3345 if (status < 0)
3346 return status;
3349 return status;
3352 static void rdev_init_debugfs(struct regulator_dev *rdev)
3354 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3355 if (!rdev->debugfs) {
3356 rdev_warn(rdev, "Failed to create debugfs directory\n");
3357 return;
3360 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3361 &rdev->use_count);
3362 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3363 &rdev->open_count);
3364 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3365 &rdev->bypass_count);
3369 * regulator_register - register regulator
3370 * @regulator_desc: regulator to register
3371 * @config: runtime configuration for regulator
3373 * Called by regulator drivers to register a regulator.
3374 * Returns a valid pointer to struct regulator_dev on success
3375 * or an ERR_PTR() on error.
3377 struct regulator_dev *
3378 regulator_register(const struct regulator_desc *regulator_desc,
3379 const struct regulator_config *config)
3381 const struct regulation_constraints *constraints = NULL;
3382 const struct regulator_init_data *init_data;
3383 static atomic_t regulator_no = ATOMIC_INIT(0);
3384 struct regulator_dev *rdev;
3385 struct device *dev;
3386 int ret, i;
3387 const char *supply = NULL;
3389 if (regulator_desc == NULL || config == NULL)
3390 return ERR_PTR(-EINVAL);
3392 dev = config->dev;
3393 WARN_ON(!dev);
3395 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3396 return ERR_PTR(-EINVAL);
3398 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3399 regulator_desc->type != REGULATOR_CURRENT)
3400 return ERR_PTR(-EINVAL);
3402 /* Only one of each should be implemented */
3403 WARN_ON(regulator_desc->ops->get_voltage &&
3404 regulator_desc->ops->get_voltage_sel);
3405 WARN_ON(regulator_desc->ops->set_voltage &&
3406 regulator_desc->ops->set_voltage_sel);
3408 /* If we're using selectors we must implement list_voltage. */
3409 if (regulator_desc->ops->get_voltage_sel &&
3410 !regulator_desc->ops->list_voltage) {
3411 return ERR_PTR(-EINVAL);
3413 if (regulator_desc->ops->set_voltage_sel &&
3414 !regulator_desc->ops->list_voltage) {
3415 return ERR_PTR(-EINVAL);
3418 init_data = config->init_data;
3420 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3421 if (rdev == NULL)
3422 return ERR_PTR(-ENOMEM);
3424 mutex_lock(&regulator_list_mutex);
3426 mutex_init(&rdev->mutex);
3427 rdev->reg_data = config->driver_data;
3428 rdev->owner = regulator_desc->owner;
3429 rdev->desc = regulator_desc;
3430 if (config->regmap)
3431 rdev->regmap = config->regmap;
3432 else if (dev_get_regmap(dev, NULL))
3433 rdev->regmap = dev_get_regmap(dev, NULL);
3434 else if (dev->parent)
3435 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3436 INIT_LIST_HEAD(&rdev->consumer_list);
3437 INIT_LIST_HEAD(&rdev->list);
3438 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3439 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3441 /* preform any regulator specific init */
3442 if (init_data && init_data->regulator_init) {
3443 ret = init_data->regulator_init(rdev->reg_data);
3444 if (ret < 0)
3445 goto clean;
3448 /* register with sysfs */
3449 rdev->dev.class = &regulator_class;
3450 rdev->dev.of_node = config->of_node;
3451 rdev->dev.parent = dev;
3452 dev_set_name(&rdev->dev, "regulator.%d",
3453 atomic_inc_return(&regulator_no) - 1);
3454 ret = device_register(&rdev->dev);
3455 if (ret != 0) {
3456 put_device(&rdev->dev);
3457 goto clean;
3460 dev_set_drvdata(&rdev->dev, rdev);
3462 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3463 ret = regulator_ena_gpio_request(rdev, config);
3464 if (ret != 0) {
3465 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3466 config->ena_gpio, ret);
3467 goto wash;
3470 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3471 rdev->ena_gpio_state = 1;
3473 if (config->ena_gpio_invert)
3474 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3477 /* set regulator constraints */
3478 if (init_data)
3479 constraints = &init_data->constraints;
3481 ret = set_machine_constraints(rdev, constraints);
3482 if (ret < 0)
3483 goto scrub;
3485 /* add attributes supported by this regulator */
3486 ret = add_regulator_attributes(rdev);
3487 if (ret < 0)
3488 goto scrub;
3490 if (init_data && init_data->supply_regulator)
3491 supply = init_data->supply_regulator;
3492 else if (regulator_desc->supply_name)
3493 supply = regulator_desc->supply_name;
3495 if (supply) {
3496 struct regulator_dev *r;
3498 r = regulator_dev_lookup(dev, supply, &ret);
3500 if (ret == -ENODEV) {
3502 * No supply was specified for this regulator and
3503 * there will never be one.
3505 ret = 0;
3506 goto add_dev;
3507 } else if (!r) {
3508 dev_err(dev, "Failed to find supply %s\n", supply);
3509 ret = -EPROBE_DEFER;
3510 goto scrub;
3513 ret = set_supply(rdev, r);
3514 if (ret < 0)
3515 goto scrub;
3517 /* Enable supply if rail is enabled */
3518 if (_regulator_is_enabled(rdev)) {
3519 ret = regulator_enable(rdev->supply);
3520 if (ret < 0)
3521 goto scrub;
3525 add_dev:
3526 /* add consumers devices */
3527 if (init_data) {
3528 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3529 ret = set_consumer_device_supply(rdev,
3530 init_data->consumer_supplies[i].dev_name,
3531 init_data->consumer_supplies[i].supply);
3532 if (ret < 0) {
3533 dev_err(dev, "Failed to set supply %s\n",
3534 init_data->consumer_supplies[i].supply);
3535 goto unset_supplies;
3540 list_add(&rdev->list, &regulator_list);
3542 rdev_init_debugfs(rdev);
3543 out:
3544 mutex_unlock(&regulator_list_mutex);
3545 return rdev;
3547 unset_supplies:
3548 unset_regulator_supplies(rdev);
3550 scrub:
3551 if (rdev->supply)
3552 _regulator_put(rdev->supply);
3553 regulator_ena_gpio_free(rdev);
3554 kfree(rdev->constraints);
3555 wash:
3556 device_unregister(&rdev->dev);
3557 /* device core frees rdev */
3558 rdev = ERR_PTR(ret);
3559 goto out;
3561 clean:
3562 kfree(rdev);
3563 rdev = ERR_PTR(ret);
3564 goto out;
3566 EXPORT_SYMBOL_GPL(regulator_register);
3569 * regulator_unregister - unregister regulator
3570 * @rdev: regulator to unregister
3572 * Called by regulator drivers to unregister a regulator.
3574 void regulator_unregister(struct regulator_dev *rdev)
3576 if (rdev == NULL)
3577 return;
3579 if (rdev->supply) {
3580 while (rdev->use_count--)
3581 regulator_disable(rdev->supply);
3582 regulator_put(rdev->supply);
3584 mutex_lock(&regulator_list_mutex);
3585 debugfs_remove_recursive(rdev->debugfs);
3586 flush_work(&rdev->disable_work.work);
3587 WARN_ON(rdev->open_count);
3588 unset_regulator_supplies(rdev);
3589 list_del(&rdev->list);
3590 kfree(rdev->constraints);
3591 regulator_ena_gpio_free(rdev);
3592 device_unregister(&rdev->dev);
3593 mutex_unlock(&regulator_list_mutex);
3595 EXPORT_SYMBOL_GPL(regulator_unregister);
3598 * regulator_suspend_prepare - prepare regulators for system wide suspend
3599 * @state: system suspend state
3601 * Configure each regulator with it's suspend operating parameters for state.
3602 * This will usually be called by machine suspend code prior to supending.
3604 int regulator_suspend_prepare(suspend_state_t state)
3606 struct regulator_dev *rdev;
3607 int ret = 0;
3609 /* ON is handled by regulator active state */
3610 if (state == PM_SUSPEND_ON)
3611 return -EINVAL;
3613 mutex_lock(&regulator_list_mutex);
3614 list_for_each_entry(rdev, &regulator_list, list) {
3616 mutex_lock(&rdev->mutex);
3617 ret = suspend_prepare(rdev, state);
3618 mutex_unlock(&rdev->mutex);
3620 if (ret < 0) {
3621 rdev_err(rdev, "failed to prepare\n");
3622 goto out;
3625 out:
3626 mutex_unlock(&regulator_list_mutex);
3627 return ret;
3629 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3632 * regulator_suspend_finish - resume regulators from system wide suspend
3634 * Turn on regulators that might be turned off by regulator_suspend_prepare
3635 * and that should be turned on according to the regulators properties.
3637 int regulator_suspend_finish(void)
3639 struct regulator_dev *rdev;
3640 int ret = 0, error;
3642 mutex_lock(&regulator_list_mutex);
3643 list_for_each_entry(rdev, &regulator_list, list) {
3644 mutex_lock(&rdev->mutex);
3645 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3646 error = _regulator_do_enable(rdev);
3647 if (error)
3648 ret = error;
3649 } else {
3650 if (!have_full_constraints())
3651 goto unlock;
3652 if (!_regulator_is_enabled(rdev))
3653 goto unlock;
3655 error = _regulator_do_disable(rdev);
3656 if (error)
3657 ret = error;
3659 unlock:
3660 mutex_unlock(&rdev->mutex);
3662 mutex_unlock(&regulator_list_mutex);
3663 return ret;
3665 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3668 * regulator_has_full_constraints - the system has fully specified constraints
3670 * Calling this function will cause the regulator API to disable all
3671 * regulators which have a zero use count and don't have an always_on
3672 * constraint in a late_initcall.
3674 * The intention is that this will become the default behaviour in a
3675 * future kernel release so users are encouraged to use this facility
3676 * now.
3678 void regulator_has_full_constraints(void)
3680 has_full_constraints = 1;
3682 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3685 * rdev_get_drvdata - get rdev regulator driver data
3686 * @rdev: regulator
3688 * Get rdev regulator driver private data. This call can be used in the
3689 * regulator driver context.
3691 void *rdev_get_drvdata(struct regulator_dev *rdev)
3693 return rdev->reg_data;
3695 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3698 * regulator_get_drvdata - get regulator driver data
3699 * @regulator: regulator
3701 * Get regulator driver private data. This call can be used in the consumer
3702 * driver context when non API regulator specific functions need to be called.
3704 void *regulator_get_drvdata(struct regulator *regulator)
3706 return regulator->rdev->reg_data;
3708 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3711 * regulator_set_drvdata - set regulator driver data
3712 * @regulator: regulator
3713 * @data: data
3715 void regulator_set_drvdata(struct regulator *regulator, void *data)
3717 regulator->rdev->reg_data = data;
3719 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3722 * regulator_get_id - get regulator ID
3723 * @rdev: regulator
3725 int rdev_get_id(struct regulator_dev *rdev)
3727 return rdev->desc->id;
3729 EXPORT_SYMBOL_GPL(rdev_get_id);
3731 struct device *rdev_get_dev(struct regulator_dev *rdev)
3733 return &rdev->dev;
3735 EXPORT_SYMBOL_GPL(rdev_get_dev);
3737 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3739 return reg_init_data->driver_data;
3741 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3743 #ifdef CONFIG_DEBUG_FS
3744 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3745 size_t count, loff_t *ppos)
3747 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3748 ssize_t len, ret = 0;
3749 struct regulator_map *map;
3751 if (!buf)
3752 return -ENOMEM;
3754 list_for_each_entry(map, &regulator_map_list, list) {
3755 len = snprintf(buf + ret, PAGE_SIZE - ret,
3756 "%s -> %s.%s\n",
3757 rdev_get_name(map->regulator), map->dev_name,
3758 map->supply);
3759 if (len >= 0)
3760 ret += len;
3761 if (ret > PAGE_SIZE) {
3762 ret = PAGE_SIZE;
3763 break;
3767 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3769 kfree(buf);
3771 return ret;
3773 #endif
3775 static const struct file_operations supply_map_fops = {
3776 #ifdef CONFIG_DEBUG_FS
3777 .read = supply_map_read_file,
3778 .llseek = default_llseek,
3779 #endif
3782 static int __init regulator_init(void)
3784 int ret;
3786 ret = class_register(&regulator_class);
3788 debugfs_root = debugfs_create_dir("regulator", NULL);
3789 if (!debugfs_root)
3790 pr_warn("regulator: Failed to create debugfs directory\n");
3792 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3793 &supply_map_fops);
3795 regulator_dummy_init();
3797 return ret;
3800 /* init early to allow our consumers to complete system booting */
3801 core_initcall(regulator_init);
3803 static int __init regulator_init_complete(void)
3805 struct regulator_dev *rdev;
3806 struct regulator_ops *ops;
3807 struct regulation_constraints *c;
3808 int enabled, ret;
3811 * Since DT doesn't provide an idiomatic mechanism for
3812 * enabling full constraints and since it's much more natural
3813 * with DT to provide them just assume that a DT enabled
3814 * system has full constraints.
3816 if (of_have_populated_dt())
3817 has_full_constraints = true;
3819 mutex_lock(&regulator_list_mutex);
3821 /* If we have a full configuration then disable any regulators
3822 * which are not in use or always_on. This will become the
3823 * default behaviour in the future.
3825 list_for_each_entry(rdev, &regulator_list, list) {
3826 ops = rdev->desc->ops;
3827 c = rdev->constraints;
3829 if (c && c->always_on)
3830 continue;
3832 mutex_lock(&rdev->mutex);
3834 if (rdev->use_count)
3835 goto unlock;
3837 /* If we can't read the status assume it's on. */
3838 if (ops->is_enabled)
3839 enabled = ops->is_enabled(rdev);
3840 else
3841 enabled = 1;
3843 if (!enabled)
3844 goto unlock;
3846 if (have_full_constraints()) {
3847 /* We log since this may kill the system if it
3848 * goes wrong. */
3849 rdev_info(rdev, "disabling\n");
3850 ret = _regulator_do_disable(rdev);
3851 if (ret != 0)
3852 rdev_err(rdev, "couldn't disable: %d\n", ret);
3853 } else {
3854 /* The intention is that in future we will
3855 * assume that full constraints are provided
3856 * so warn even if we aren't going to do
3857 * anything here.
3859 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3862 unlock:
3863 mutex_unlock(&rdev->mutex);
3866 mutex_unlock(&regulator_list_mutex);
3868 return 0;
3870 late_initcall(regulator_init_complete);