Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / drivers / regulator / core.c
blob9577d89418468a06f1030ff69d2699f71b5710bc
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
39 #include "dummy.h"
40 #include "internal.h"
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
59 static struct dentry *debugfs_root;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio {
79 struct list_head list;
80 struct gpio_desc *gpiod;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
113 static const char *rdev_get_name(struct regulator_dev *rdev)
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
123 static bool have_full_constraints(void)
125 return has_full_constraints || of_have_populated_dt();
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
130 if (!rdev->constraints) {
131 rdev_err(rdev, "no constraints\n");
132 return false;
135 if (rdev->constraints->valid_ops_mask & ops)
136 return true;
138 return false;
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
143 if (rdev && rdev->supply)
144 return rdev->supply->rdev;
146 return NULL;
150 * regulator_lock_nested - lock a single regulator
151 * @rdev: regulator source
152 * @subclass: mutex subclass used for lockdep
154 * This function can be called many times by one task on
155 * a single regulator and its mutex will be locked only
156 * once. If a task, which is calling this function is other
157 * than the one, which initially locked the mutex, it will
158 * wait on mutex.
160 static void regulator_lock_nested(struct regulator_dev *rdev,
161 unsigned int subclass)
163 if (!mutex_trylock(&rdev->mutex)) {
164 if (rdev->mutex_owner == current) {
165 rdev->ref_cnt++;
166 return;
168 mutex_lock_nested(&rdev->mutex, subclass);
171 rdev->ref_cnt = 1;
172 rdev->mutex_owner = current;
175 static inline void regulator_lock(struct regulator_dev *rdev)
177 regulator_lock_nested(rdev, 0);
181 * regulator_unlock - unlock a single regulator
182 * @rdev: regulator_source
184 * This function unlocks the mutex when the
185 * reference counter reaches 0.
187 static void regulator_unlock(struct regulator_dev *rdev)
189 if (rdev->ref_cnt != 0) {
190 rdev->ref_cnt--;
192 if (!rdev->ref_cnt) {
193 rdev->mutex_owner = NULL;
194 mutex_unlock(&rdev->mutex);
200 * regulator_lock_supply - lock a regulator and its supplies
201 * @rdev: regulator source
203 static void regulator_lock_supply(struct regulator_dev *rdev)
205 int i;
207 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
208 regulator_lock_nested(rdev, i);
212 * regulator_unlock_supply - unlock a regulator and its supplies
213 * @rdev: regulator source
215 static void regulator_unlock_supply(struct regulator_dev *rdev)
217 struct regulator *supply;
219 while (1) {
220 regulator_unlock(rdev);
221 supply = rdev->supply;
223 if (!rdev->supply)
224 return;
226 rdev = supply->rdev;
231 * of_get_regulator - get a regulator device node based on supply name
232 * @dev: Device pointer for the consumer (of regulator) device
233 * @supply: regulator supply name
235 * Extract the regulator device node corresponding to the supply name.
236 * returns the device node corresponding to the regulator if found, else
237 * returns NULL.
239 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
241 struct device_node *regnode = NULL;
242 char prop_name[32]; /* 32 is max size of property name */
244 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
246 snprintf(prop_name, 32, "%s-supply", supply);
247 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
249 if (!regnode) {
250 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
251 prop_name, dev->of_node);
252 return NULL;
254 return regnode;
257 /* Platform voltage constraint check */
258 static int regulator_check_voltage(struct regulator_dev *rdev,
259 int *min_uV, int *max_uV)
261 BUG_ON(*min_uV > *max_uV);
263 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264 rdev_err(rdev, "voltage operation not allowed\n");
265 return -EPERM;
268 if (*max_uV > rdev->constraints->max_uV)
269 *max_uV = rdev->constraints->max_uV;
270 if (*min_uV < rdev->constraints->min_uV)
271 *min_uV = rdev->constraints->min_uV;
273 if (*min_uV > *max_uV) {
274 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275 *min_uV, *max_uV);
276 return -EINVAL;
279 return 0;
282 /* return 0 if the state is valid */
283 static int regulator_check_states(suspend_state_t state)
285 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
288 /* Make sure we select a voltage that suits the needs of all
289 * regulator consumers
291 static int regulator_check_consumers(struct regulator_dev *rdev,
292 int *min_uV, int *max_uV,
293 suspend_state_t state)
295 struct regulator *regulator;
296 struct regulator_voltage *voltage;
298 list_for_each_entry(regulator, &rdev->consumer_list, list) {
299 voltage = &regulator->voltage[state];
301 * Assume consumers that didn't say anything are OK
302 * with anything in the constraint range.
304 if (!voltage->min_uV && !voltage->max_uV)
305 continue;
307 if (*max_uV > voltage->max_uV)
308 *max_uV = voltage->max_uV;
309 if (*min_uV < voltage->min_uV)
310 *min_uV = voltage->min_uV;
313 if (*min_uV > *max_uV) {
314 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
315 *min_uV, *max_uV);
316 return -EINVAL;
319 return 0;
322 /* current constraint check */
323 static int regulator_check_current_limit(struct regulator_dev *rdev,
324 int *min_uA, int *max_uA)
326 BUG_ON(*min_uA > *max_uA);
328 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329 rdev_err(rdev, "current operation not allowed\n");
330 return -EPERM;
333 if (*max_uA > rdev->constraints->max_uA)
334 *max_uA = rdev->constraints->max_uA;
335 if (*min_uA < rdev->constraints->min_uA)
336 *min_uA = rdev->constraints->min_uA;
338 if (*min_uA > *max_uA) {
339 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340 *min_uA, *max_uA);
341 return -EINVAL;
344 return 0;
347 /* operating mode constraint check */
348 static int regulator_mode_constrain(struct regulator_dev *rdev,
349 unsigned int *mode)
351 switch (*mode) {
352 case REGULATOR_MODE_FAST:
353 case REGULATOR_MODE_NORMAL:
354 case REGULATOR_MODE_IDLE:
355 case REGULATOR_MODE_STANDBY:
356 break;
357 default:
358 rdev_err(rdev, "invalid mode %x specified\n", *mode);
359 return -EINVAL;
362 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363 rdev_err(rdev, "mode operation not allowed\n");
364 return -EPERM;
367 /* The modes are bitmasks, the most power hungry modes having
368 * the lowest values. If the requested mode isn't supported
369 * try higher modes. */
370 while (*mode) {
371 if (rdev->constraints->valid_modes_mask & *mode)
372 return 0;
373 *mode /= 2;
376 return -EINVAL;
379 static inline struct regulator_state *
380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
382 if (rdev->constraints == NULL)
383 return NULL;
385 switch (state) {
386 case PM_SUSPEND_STANDBY:
387 return &rdev->constraints->state_standby;
388 case PM_SUSPEND_MEM:
389 return &rdev->constraints->state_mem;
390 case PM_SUSPEND_MAX:
391 return &rdev->constraints->state_disk;
392 default:
393 return NULL;
397 static ssize_t regulator_uV_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 ssize_t ret;
403 regulator_lock(rdev);
404 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405 regulator_unlock(rdev);
407 return ret;
409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
411 static ssize_t regulator_uA_show(struct device *dev,
412 struct device_attribute *attr, char *buf)
414 struct regulator_dev *rdev = dev_get_drvdata(dev);
416 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
420 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
421 char *buf)
423 struct regulator_dev *rdev = dev_get_drvdata(dev);
425 return sprintf(buf, "%s\n", rdev_get_name(rdev));
427 static DEVICE_ATTR_RO(name);
429 static ssize_t regulator_print_opmode(char *buf, int mode)
431 switch (mode) {
432 case REGULATOR_MODE_FAST:
433 return sprintf(buf, "fast\n");
434 case REGULATOR_MODE_NORMAL:
435 return sprintf(buf, "normal\n");
436 case REGULATOR_MODE_IDLE:
437 return sprintf(buf, "idle\n");
438 case REGULATOR_MODE_STANDBY:
439 return sprintf(buf, "standby\n");
441 return sprintf(buf, "unknown\n");
444 static ssize_t regulator_opmode_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
447 struct regulator_dev *rdev = dev_get_drvdata(dev);
449 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
453 static ssize_t regulator_print_state(char *buf, int state)
455 if (state > 0)
456 return sprintf(buf, "enabled\n");
457 else if (state == 0)
458 return sprintf(buf, "disabled\n");
459 else
460 return sprintf(buf, "unknown\n");
463 static ssize_t regulator_state_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
466 struct regulator_dev *rdev = dev_get_drvdata(dev);
467 ssize_t ret;
469 regulator_lock(rdev);
470 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
471 regulator_unlock(rdev);
473 return ret;
475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
477 static ssize_t regulator_status_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 int status;
482 char *label;
484 status = rdev->desc->ops->get_status(rdev);
485 if (status < 0)
486 return status;
488 switch (status) {
489 case REGULATOR_STATUS_OFF:
490 label = "off";
491 break;
492 case REGULATOR_STATUS_ON:
493 label = "on";
494 break;
495 case REGULATOR_STATUS_ERROR:
496 label = "error";
497 break;
498 case REGULATOR_STATUS_FAST:
499 label = "fast";
500 break;
501 case REGULATOR_STATUS_NORMAL:
502 label = "normal";
503 break;
504 case REGULATOR_STATUS_IDLE:
505 label = "idle";
506 break;
507 case REGULATOR_STATUS_STANDBY:
508 label = "standby";
509 break;
510 case REGULATOR_STATUS_BYPASS:
511 label = "bypass";
512 break;
513 case REGULATOR_STATUS_UNDEFINED:
514 label = "undefined";
515 break;
516 default:
517 return -ERANGE;
520 return sprintf(buf, "%s\n", label);
522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
524 static ssize_t regulator_min_uA_show(struct device *dev,
525 struct device_attribute *attr, char *buf)
527 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 if (!rdev->constraints)
530 return sprintf(buf, "constraint not defined\n");
532 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
536 static ssize_t regulator_max_uA_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
541 if (!rdev->constraints)
542 return sprintf(buf, "constraint not defined\n");
544 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
548 static ssize_t regulator_min_uV_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
553 if (!rdev->constraints)
554 return sprintf(buf, "constraint not defined\n");
556 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
560 static ssize_t regulator_max_uV_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
563 struct regulator_dev *rdev = dev_get_drvdata(dev);
565 if (!rdev->constraints)
566 return sprintf(buf, "constraint not defined\n");
568 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
572 static ssize_t regulator_total_uA_show(struct device *dev,
573 struct device_attribute *attr, char *buf)
575 struct regulator_dev *rdev = dev_get_drvdata(dev);
576 struct regulator *regulator;
577 int uA = 0;
579 regulator_lock(rdev);
580 list_for_each_entry(regulator, &rdev->consumer_list, list)
581 uA += regulator->uA_load;
582 regulator_unlock(rdev);
583 return sprintf(buf, "%d\n", uA);
585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
588 char *buf)
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591 return sprintf(buf, "%d\n", rdev->use_count);
593 static DEVICE_ATTR_RO(num_users);
595 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
596 char *buf)
598 struct regulator_dev *rdev = dev_get_drvdata(dev);
600 switch (rdev->desc->type) {
601 case REGULATOR_VOLTAGE:
602 return sprintf(buf, "voltage\n");
603 case REGULATOR_CURRENT:
604 return sprintf(buf, "current\n");
606 return sprintf(buf, "unknown\n");
608 static DEVICE_ATTR_RO(type);
610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
611 struct device_attribute *attr, char *buf)
613 struct regulator_dev *rdev = dev_get_drvdata(dev);
615 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
617 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
618 regulator_suspend_mem_uV_show, NULL);
620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
621 struct device_attribute *attr, char *buf)
623 struct regulator_dev *rdev = dev_get_drvdata(dev);
625 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
627 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
628 regulator_suspend_disk_uV_show, NULL);
630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
631 struct device_attribute *attr, char *buf)
633 struct regulator_dev *rdev = dev_get_drvdata(dev);
635 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
637 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
638 regulator_suspend_standby_uV_show, NULL);
640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
641 struct device_attribute *attr, char *buf)
643 struct regulator_dev *rdev = dev_get_drvdata(dev);
645 return regulator_print_opmode(buf,
646 rdev->constraints->state_mem.mode);
648 static DEVICE_ATTR(suspend_mem_mode, 0444,
649 regulator_suspend_mem_mode_show, NULL);
651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
652 struct device_attribute *attr, char *buf)
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
656 return regulator_print_opmode(buf,
657 rdev->constraints->state_disk.mode);
659 static DEVICE_ATTR(suspend_disk_mode, 0444,
660 regulator_suspend_disk_mode_show, NULL);
662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
663 struct device_attribute *attr, char *buf)
665 struct regulator_dev *rdev = dev_get_drvdata(dev);
667 return regulator_print_opmode(buf,
668 rdev->constraints->state_standby.mode);
670 static DEVICE_ATTR(suspend_standby_mode, 0444,
671 regulator_suspend_standby_mode_show, NULL);
673 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
674 struct device_attribute *attr, char *buf)
676 struct regulator_dev *rdev = dev_get_drvdata(dev);
678 return regulator_print_state(buf,
679 rdev->constraints->state_mem.enabled);
681 static DEVICE_ATTR(suspend_mem_state, 0444,
682 regulator_suspend_mem_state_show, NULL);
684 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
685 struct device_attribute *attr, char *buf)
687 struct regulator_dev *rdev = dev_get_drvdata(dev);
689 return regulator_print_state(buf,
690 rdev->constraints->state_disk.enabled);
692 static DEVICE_ATTR(suspend_disk_state, 0444,
693 regulator_suspend_disk_state_show, NULL);
695 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
696 struct device_attribute *attr, char *buf)
698 struct regulator_dev *rdev = dev_get_drvdata(dev);
700 return regulator_print_state(buf,
701 rdev->constraints->state_standby.enabled);
703 static DEVICE_ATTR(suspend_standby_state, 0444,
704 regulator_suspend_standby_state_show, NULL);
706 static ssize_t regulator_bypass_show(struct device *dev,
707 struct device_attribute *attr, char *buf)
709 struct regulator_dev *rdev = dev_get_drvdata(dev);
710 const char *report;
711 bool bypass;
712 int ret;
714 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
716 if (ret != 0)
717 report = "unknown";
718 else if (bypass)
719 report = "enabled";
720 else
721 report = "disabled";
723 return sprintf(buf, "%s\n", report);
725 static DEVICE_ATTR(bypass, 0444,
726 regulator_bypass_show, NULL);
728 /* Calculate the new optimum regulator operating mode based on the new total
729 * consumer load. All locks held by caller */
730 static int drms_uA_update(struct regulator_dev *rdev)
732 struct regulator *sibling;
733 int current_uA = 0, output_uV, input_uV, err;
734 unsigned int mode;
736 lockdep_assert_held_once(&rdev->mutex);
739 * first check to see if we can set modes at all, otherwise just
740 * tell the consumer everything is OK.
742 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
743 return 0;
745 if (!rdev->desc->ops->get_optimum_mode &&
746 !rdev->desc->ops->set_load)
747 return 0;
749 if (!rdev->desc->ops->set_mode &&
750 !rdev->desc->ops->set_load)
751 return -EINVAL;
753 /* calc total requested load */
754 list_for_each_entry(sibling, &rdev->consumer_list, list)
755 current_uA += sibling->uA_load;
757 current_uA += rdev->constraints->system_load;
759 if (rdev->desc->ops->set_load) {
760 /* set the optimum mode for our new total regulator load */
761 err = rdev->desc->ops->set_load(rdev, current_uA);
762 if (err < 0)
763 rdev_err(rdev, "failed to set load %d\n", current_uA);
764 } else {
765 /* get output voltage */
766 output_uV = _regulator_get_voltage(rdev);
767 if (output_uV <= 0) {
768 rdev_err(rdev, "invalid output voltage found\n");
769 return -EINVAL;
772 /* get input voltage */
773 input_uV = 0;
774 if (rdev->supply)
775 input_uV = regulator_get_voltage(rdev->supply);
776 if (input_uV <= 0)
777 input_uV = rdev->constraints->input_uV;
778 if (input_uV <= 0) {
779 rdev_err(rdev, "invalid input voltage found\n");
780 return -EINVAL;
783 /* now get the optimum mode for our new total regulator load */
784 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
785 output_uV, current_uA);
787 /* check the new mode is allowed */
788 err = regulator_mode_constrain(rdev, &mode);
789 if (err < 0) {
790 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
791 current_uA, input_uV, output_uV);
792 return err;
795 err = rdev->desc->ops->set_mode(rdev, mode);
796 if (err < 0)
797 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
800 return err;
803 static int suspend_set_state(struct regulator_dev *rdev,
804 suspend_state_t state)
806 int ret = 0;
807 struct regulator_state *rstate;
809 rstate = regulator_get_suspend_state(rdev, state);
810 if (rstate == NULL)
811 return 0;
813 /* If we have no suspend mode configration don't set anything;
814 * only warn if the driver implements set_suspend_voltage or
815 * set_suspend_mode callback.
817 if (rstate->enabled != ENABLE_IN_SUSPEND &&
818 rstate->enabled != DISABLE_IN_SUSPEND) {
819 if (rdev->desc->ops->set_suspend_voltage ||
820 rdev->desc->ops->set_suspend_mode)
821 rdev_warn(rdev, "No configuration\n");
822 return 0;
825 if (rstate->enabled == ENABLE_IN_SUSPEND &&
826 rdev->desc->ops->set_suspend_enable)
827 ret = rdev->desc->ops->set_suspend_enable(rdev);
828 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
829 rdev->desc->ops->set_suspend_disable)
830 ret = rdev->desc->ops->set_suspend_disable(rdev);
831 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
832 ret = 0;
834 if (ret < 0) {
835 rdev_err(rdev, "failed to enabled/disable\n");
836 return ret;
839 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
840 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
841 if (ret < 0) {
842 rdev_err(rdev, "failed to set voltage\n");
843 return ret;
847 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
848 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
849 if (ret < 0) {
850 rdev_err(rdev, "failed to set mode\n");
851 return ret;
855 return ret;
858 static void print_constraints(struct regulator_dev *rdev)
860 struct regulation_constraints *constraints = rdev->constraints;
861 char buf[160] = "";
862 size_t len = sizeof(buf) - 1;
863 int count = 0;
864 int ret;
866 if (constraints->min_uV && constraints->max_uV) {
867 if (constraints->min_uV == constraints->max_uV)
868 count += scnprintf(buf + count, len - count, "%d mV ",
869 constraints->min_uV / 1000);
870 else
871 count += scnprintf(buf + count, len - count,
872 "%d <--> %d mV ",
873 constraints->min_uV / 1000,
874 constraints->max_uV / 1000);
877 if (!constraints->min_uV ||
878 constraints->min_uV != constraints->max_uV) {
879 ret = _regulator_get_voltage(rdev);
880 if (ret > 0)
881 count += scnprintf(buf + count, len - count,
882 "at %d mV ", ret / 1000);
885 if (constraints->uV_offset)
886 count += scnprintf(buf + count, len - count, "%dmV offset ",
887 constraints->uV_offset / 1000);
889 if (constraints->min_uA && constraints->max_uA) {
890 if (constraints->min_uA == constraints->max_uA)
891 count += scnprintf(buf + count, len - count, "%d mA ",
892 constraints->min_uA / 1000);
893 else
894 count += scnprintf(buf + count, len - count,
895 "%d <--> %d mA ",
896 constraints->min_uA / 1000,
897 constraints->max_uA / 1000);
900 if (!constraints->min_uA ||
901 constraints->min_uA != constraints->max_uA) {
902 ret = _regulator_get_current_limit(rdev);
903 if (ret > 0)
904 count += scnprintf(buf + count, len - count,
905 "at %d mA ", ret / 1000);
908 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
909 count += scnprintf(buf + count, len - count, "fast ");
910 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
911 count += scnprintf(buf + count, len - count, "normal ");
912 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
913 count += scnprintf(buf + count, len - count, "idle ");
914 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
915 count += scnprintf(buf + count, len - count, "standby");
917 if (!count)
918 scnprintf(buf, len, "no parameters");
920 rdev_dbg(rdev, "%s\n", buf);
922 if ((constraints->min_uV != constraints->max_uV) &&
923 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
924 rdev_warn(rdev,
925 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
928 static int machine_constraints_voltage(struct regulator_dev *rdev,
929 struct regulation_constraints *constraints)
931 const struct regulator_ops *ops = rdev->desc->ops;
932 int ret;
934 /* do we need to apply the constraint voltage */
935 if (rdev->constraints->apply_uV &&
936 rdev->constraints->min_uV && rdev->constraints->max_uV) {
937 int target_min, target_max;
938 int current_uV = _regulator_get_voltage(rdev);
940 if (current_uV == -ENOTRECOVERABLE) {
941 /* This regulator can't be read and must be initted */
942 rdev_info(rdev, "Setting %d-%duV\n",
943 rdev->constraints->min_uV,
944 rdev->constraints->max_uV);
945 _regulator_do_set_voltage(rdev,
946 rdev->constraints->min_uV,
947 rdev->constraints->max_uV);
948 current_uV = _regulator_get_voltage(rdev);
951 if (current_uV < 0) {
952 rdev_err(rdev,
953 "failed to get the current voltage(%d)\n",
954 current_uV);
955 return current_uV;
959 * If we're below the minimum voltage move up to the
960 * minimum voltage, if we're above the maximum voltage
961 * then move down to the maximum.
963 target_min = current_uV;
964 target_max = current_uV;
966 if (current_uV < rdev->constraints->min_uV) {
967 target_min = rdev->constraints->min_uV;
968 target_max = rdev->constraints->min_uV;
971 if (current_uV > rdev->constraints->max_uV) {
972 target_min = rdev->constraints->max_uV;
973 target_max = rdev->constraints->max_uV;
976 if (target_min != current_uV || target_max != current_uV) {
977 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
978 current_uV, target_min, target_max);
979 ret = _regulator_do_set_voltage(
980 rdev, target_min, target_max);
981 if (ret < 0) {
982 rdev_err(rdev,
983 "failed to apply %d-%duV constraint(%d)\n",
984 target_min, target_max, ret);
985 return ret;
990 /* constrain machine-level voltage specs to fit
991 * the actual range supported by this regulator.
993 if (ops->list_voltage && rdev->desc->n_voltages) {
994 int count = rdev->desc->n_voltages;
995 int i;
996 int min_uV = INT_MAX;
997 int max_uV = INT_MIN;
998 int cmin = constraints->min_uV;
999 int cmax = constraints->max_uV;
1001 /* it's safe to autoconfigure fixed-voltage supplies
1002 and the constraints are used by list_voltage. */
1003 if (count == 1 && !cmin) {
1004 cmin = 1;
1005 cmax = INT_MAX;
1006 constraints->min_uV = cmin;
1007 constraints->max_uV = cmax;
1010 /* voltage constraints are optional */
1011 if ((cmin == 0) && (cmax == 0))
1012 return 0;
1014 /* else require explicit machine-level constraints */
1015 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016 rdev_err(rdev, "invalid voltage constraints\n");
1017 return -EINVAL;
1020 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021 for (i = 0; i < count; i++) {
1022 int value;
1024 value = ops->list_voltage(rdev, i);
1025 if (value <= 0)
1026 continue;
1028 /* maybe adjust [min_uV..max_uV] */
1029 if (value >= cmin && value < min_uV)
1030 min_uV = value;
1031 if (value <= cmax && value > max_uV)
1032 max_uV = value;
1035 /* final: [min_uV..max_uV] valid iff constraints valid */
1036 if (max_uV < min_uV) {
1037 rdev_err(rdev,
1038 "unsupportable voltage constraints %u-%uuV\n",
1039 min_uV, max_uV);
1040 return -EINVAL;
1043 /* use regulator's subset of machine constraints */
1044 if (constraints->min_uV < min_uV) {
1045 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1046 constraints->min_uV, min_uV);
1047 constraints->min_uV = min_uV;
1049 if (constraints->max_uV > max_uV) {
1050 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1051 constraints->max_uV, max_uV);
1052 constraints->max_uV = max_uV;
1056 return 0;
1059 static int machine_constraints_current(struct regulator_dev *rdev,
1060 struct regulation_constraints *constraints)
1062 const struct regulator_ops *ops = rdev->desc->ops;
1063 int ret;
1065 if (!constraints->min_uA && !constraints->max_uA)
1066 return 0;
1068 if (constraints->min_uA > constraints->max_uA) {
1069 rdev_err(rdev, "Invalid current constraints\n");
1070 return -EINVAL;
1073 if (!ops->set_current_limit || !ops->get_current_limit) {
1074 rdev_warn(rdev, "Operation of current configuration missing\n");
1075 return 0;
1078 /* Set regulator current in constraints range */
1079 ret = ops->set_current_limit(rdev, constraints->min_uA,
1080 constraints->max_uA);
1081 if (ret < 0) {
1082 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1083 return ret;
1086 return 0;
1089 static int _regulator_do_enable(struct regulator_dev *rdev);
1092 * set_machine_constraints - sets regulator constraints
1093 * @rdev: regulator source
1094 * @constraints: constraints to apply
1096 * Allows platform initialisation code to define and constrain
1097 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1098 * Constraints *must* be set by platform code in order for some
1099 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1100 * set_mode.
1102 static int set_machine_constraints(struct regulator_dev *rdev,
1103 const struct regulation_constraints *constraints)
1105 int ret = 0;
1106 const struct regulator_ops *ops = rdev->desc->ops;
1108 if (constraints)
1109 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1110 GFP_KERNEL);
1111 else
1112 rdev->constraints = kzalloc(sizeof(*constraints),
1113 GFP_KERNEL);
1114 if (!rdev->constraints)
1115 return -ENOMEM;
1117 ret = machine_constraints_voltage(rdev, rdev->constraints);
1118 if (ret != 0)
1119 return ret;
1121 ret = machine_constraints_current(rdev, rdev->constraints);
1122 if (ret != 0)
1123 return ret;
1125 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1126 ret = ops->set_input_current_limit(rdev,
1127 rdev->constraints->ilim_uA);
1128 if (ret < 0) {
1129 rdev_err(rdev, "failed to set input limit\n");
1130 return ret;
1134 /* do we need to setup our suspend state */
1135 if (rdev->constraints->initial_state) {
1136 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1137 if (ret < 0) {
1138 rdev_err(rdev, "failed to set suspend state\n");
1139 return ret;
1143 if (rdev->constraints->initial_mode) {
1144 if (!ops->set_mode) {
1145 rdev_err(rdev, "no set_mode operation\n");
1146 return -EINVAL;
1149 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1150 if (ret < 0) {
1151 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1152 return ret;
1156 /* If the constraints say the regulator should be on at this point
1157 * and we have control then make sure it is enabled.
1159 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1160 ret = _regulator_do_enable(rdev);
1161 if (ret < 0 && ret != -EINVAL) {
1162 rdev_err(rdev, "failed to enable\n");
1163 return ret;
1167 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1168 && ops->set_ramp_delay) {
1169 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1170 if (ret < 0) {
1171 rdev_err(rdev, "failed to set ramp_delay\n");
1172 return ret;
1176 if (rdev->constraints->pull_down && ops->set_pull_down) {
1177 ret = ops->set_pull_down(rdev);
1178 if (ret < 0) {
1179 rdev_err(rdev, "failed to set pull down\n");
1180 return ret;
1184 if (rdev->constraints->soft_start && ops->set_soft_start) {
1185 ret = ops->set_soft_start(rdev);
1186 if (ret < 0) {
1187 rdev_err(rdev, "failed to set soft start\n");
1188 return ret;
1192 if (rdev->constraints->over_current_protection
1193 && ops->set_over_current_protection) {
1194 ret = ops->set_over_current_protection(rdev);
1195 if (ret < 0) {
1196 rdev_err(rdev, "failed to set over current protection\n");
1197 return ret;
1201 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1202 bool ad_state = (rdev->constraints->active_discharge ==
1203 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1205 ret = ops->set_active_discharge(rdev, ad_state);
1206 if (ret < 0) {
1207 rdev_err(rdev, "failed to set active discharge\n");
1208 return ret;
1212 print_constraints(rdev);
1213 return 0;
1217 * set_supply - set regulator supply regulator
1218 * @rdev: regulator name
1219 * @supply_rdev: supply regulator name
1221 * Called by platform initialisation code to set the supply regulator for this
1222 * regulator. This ensures that a regulators supply will also be enabled by the
1223 * core if it's child is enabled.
1225 static int set_supply(struct regulator_dev *rdev,
1226 struct regulator_dev *supply_rdev)
1228 int err;
1230 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1232 if (!try_module_get(supply_rdev->owner))
1233 return -ENODEV;
1235 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1236 if (rdev->supply == NULL) {
1237 err = -ENOMEM;
1238 return err;
1240 supply_rdev->open_count++;
1242 return 0;
1246 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1247 * @rdev: regulator source
1248 * @consumer_dev_name: dev_name() string for device supply applies to
1249 * @supply: symbolic name for supply
1251 * Allows platform initialisation code to map physical regulator
1252 * sources to symbolic names for supplies for use by devices. Devices
1253 * should use these symbolic names to request regulators, avoiding the
1254 * need to provide board-specific regulator names as platform data.
1256 static int set_consumer_device_supply(struct regulator_dev *rdev,
1257 const char *consumer_dev_name,
1258 const char *supply)
1260 struct regulator_map *node;
1261 int has_dev;
1263 if (supply == NULL)
1264 return -EINVAL;
1266 if (consumer_dev_name != NULL)
1267 has_dev = 1;
1268 else
1269 has_dev = 0;
1271 list_for_each_entry(node, &regulator_map_list, list) {
1272 if (node->dev_name && consumer_dev_name) {
1273 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1274 continue;
1275 } else if (node->dev_name || consumer_dev_name) {
1276 continue;
1279 if (strcmp(node->supply, supply) != 0)
1280 continue;
1282 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1283 consumer_dev_name,
1284 dev_name(&node->regulator->dev),
1285 node->regulator->desc->name,
1286 supply,
1287 dev_name(&rdev->dev), rdev_get_name(rdev));
1288 return -EBUSY;
1291 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1292 if (node == NULL)
1293 return -ENOMEM;
1295 node->regulator = rdev;
1296 node->supply = supply;
1298 if (has_dev) {
1299 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1300 if (node->dev_name == NULL) {
1301 kfree(node);
1302 return -ENOMEM;
1306 list_add(&node->list, &regulator_map_list);
1307 return 0;
1310 static void unset_regulator_supplies(struct regulator_dev *rdev)
1312 struct regulator_map *node, *n;
1314 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1315 if (rdev == node->regulator) {
1316 list_del(&node->list);
1317 kfree(node->dev_name);
1318 kfree(node);
1323 #ifdef CONFIG_DEBUG_FS
1324 static ssize_t constraint_flags_read_file(struct file *file,
1325 char __user *user_buf,
1326 size_t count, loff_t *ppos)
1328 const struct regulator *regulator = file->private_data;
1329 const struct regulation_constraints *c = regulator->rdev->constraints;
1330 char *buf;
1331 ssize_t ret;
1333 if (!c)
1334 return 0;
1336 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1337 if (!buf)
1338 return -ENOMEM;
1340 ret = snprintf(buf, PAGE_SIZE,
1341 "always_on: %u\n"
1342 "boot_on: %u\n"
1343 "apply_uV: %u\n"
1344 "ramp_disable: %u\n"
1345 "soft_start: %u\n"
1346 "pull_down: %u\n"
1347 "over_current_protection: %u\n",
1348 c->always_on,
1349 c->boot_on,
1350 c->apply_uV,
1351 c->ramp_disable,
1352 c->soft_start,
1353 c->pull_down,
1354 c->over_current_protection);
1356 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1357 kfree(buf);
1359 return ret;
1362 #endif
1364 static const struct file_operations constraint_flags_fops = {
1365 #ifdef CONFIG_DEBUG_FS
1366 .open = simple_open,
1367 .read = constraint_flags_read_file,
1368 .llseek = default_llseek,
1369 #endif
1372 #define REG_STR_SIZE 64
1374 static struct regulator *create_regulator(struct regulator_dev *rdev,
1375 struct device *dev,
1376 const char *supply_name)
1378 struct regulator *regulator;
1379 char buf[REG_STR_SIZE];
1380 int err, size;
1382 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1383 if (regulator == NULL)
1384 return NULL;
1386 regulator_lock(rdev);
1387 regulator->rdev = rdev;
1388 list_add(&regulator->list, &rdev->consumer_list);
1390 if (dev) {
1391 regulator->dev = dev;
1393 /* Add a link to the device sysfs entry */
1394 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1395 dev->kobj.name, supply_name);
1396 if (size >= REG_STR_SIZE)
1397 goto overflow_err;
1399 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1400 if (regulator->supply_name == NULL)
1401 goto overflow_err;
1403 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1404 buf);
1405 if (err) {
1406 rdev_dbg(rdev, "could not add device link %s err %d\n",
1407 dev->kobj.name, err);
1408 /* non-fatal */
1410 } else {
1411 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1412 if (regulator->supply_name == NULL)
1413 goto overflow_err;
1416 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1417 rdev->debugfs);
1418 if (!regulator->debugfs) {
1419 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1420 } else {
1421 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1422 &regulator->uA_load);
1423 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1424 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1425 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1426 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1427 debugfs_create_file("constraint_flags", 0444,
1428 regulator->debugfs, regulator,
1429 &constraint_flags_fops);
1433 * Check now if the regulator is an always on regulator - if
1434 * it is then we don't need to do nearly so much work for
1435 * enable/disable calls.
1437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1438 _regulator_is_enabled(rdev))
1439 regulator->always_on = true;
1441 regulator_unlock(rdev);
1442 return regulator;
1443 overflow_err:
1444 list_del(&regulator->list);
1445 kfree(regulator);
1446 regulator_unlock(rdev);
1447 return NULL;
1450 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1452 if (rdev->constraints && rdev->constraints->enable_time)
1453 return rdev->constraints->enable_time;
1454 if (!rdev->desc->ops->enable_time)
1455 return rdev->desc->enable_time;
1456 return rdev->desc->ops->enable_time(rdev);
1459 static struct regulator_supply_alias *regulator_find_supply_alias(
1460 struct device *dev, const char *supply)
1462 struct regulator_supply_alias *map;
1464 list_for_each_entry(map, &regulator_supply_alias_list, list)
1465 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1466 return map;
1468 return NULL;
1471 static void regulator_supply_alias(struct device **dev, const char **supply)
1473 struct regulator_supply_alias *map;
1475 map = regulator_find_supply_alias(*dev, *supply);
1476 if (map) {
1477 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1478 *supply, map->alias_supply,
1479 dev_name(map->alias_dev));
1480 *dev = map->alias_dev;
1481 *supply = map->alias_supply;
1485 static int regulator_match(struct device *dev, const void *data)
1487 struct regulator_dev *r = dev_to_rdev(dev);
1489 return strcmp(rdev_get_name(r), data) == 0;
1492 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1494 struct device *dev;
1496 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1498 return dev ? dev_to_rdev(dev) : NULL;
1502 * regulator_dev_lookup - lookup a regulator device.
1503 * @dev: device for regulator "consumer".
1504 * @supply: Supply name or regulator ID.
1506 * If successful, returns a struct regulator_dev that corresponds to the name
1507 * @supply and with the embedded struct device refcount incremented by one.
1508 * The refcount must be dropped by calling put_device().
1509 * On failure one of the following ERR-PTR-encoded values is returned:
1510 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1511 * in the future.
1513 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1514 const char *supply)
1516 struct regulator_dev *r = NULL;
1517 struct device_node *node;
1518 struct regulator_map *map;
1519 const char *devname = NULL;
1521 regulator_supply_alias(&dev, &supply);
1523 /* first do a dt based lookup */
1524 if (dev && dev->of_node) {
1525 node = of_get_regulator(dev, supply);
1526 if (node) {
1527 r = of_find_regulator_by_node(node);
1528 if (r)
1529 return r;
1532 * We have a node, but there is no device.
1533 * assume it has not registered yet.
1535 return ERR_PTR(-EPROBE_DEFER);
1539 /* if not found, try doing it non-dt way */
1540 if (dev)
1541 devname = dev_name(dev);
1543 mutex_lock(&regulator_list_mutex);
1544 list_for_each_entry(map, &regulator_map_list, list) {
1545 /* If the mapping has a device set up it must match */
1546 if (map->dev_name &&
1547 (!devname || strcmp(map->dev_name, devname)))
1548 continue;
1550 if (strcmp(map->supply, supply) == 0 &&
1551 get_device(&map->regulator->dev)) {
1552 r = map->regulator;
1553 break;
1556 mutex_unlock(&regulator_list_mutex);
1558 if (r)
1559 return r;
1561 r = regulator_lookup_by_name(supply);
1562 if (r)
1563 return r;
1565 return ERR_PTR(-ENODEV);
1568 static int regulator_resolve_supply(struct regulator_dev *rdev)
1570 struct regulator_dev *r;
1571 struct device *dev = rdev->dev.parent;
1572 int ret;
1574 /* No supply to resovle? */
1575 if (!rdev->supply_name)
1576 return 0;
1578 /* Supply already resolved? */
1579 if (rdev->supply)
1580 return 0;
1582 r = regulator_dev_lookup(dev, rdev->supply_name);
1583 if (IS_ERR(r)) {
1584 ret = PTR_ERR(r);
1586 /* Did the lookup explicitly defer for us? */
1587 if (ret == -EPROBE_DEFER)
1588 return ret;
1590 if (have_full_constraints()) {
1591 r = dummy_regulator_rdev;
1592 get_device(&r->dev);
1593 } else {
1594 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1595 rdev->supply_name, rdev->desc->name);
1596 return -EPROBE_DEFER;
1601 * If the supply's parent device is not the same as the
1602 * regulator's parent device, then ensure the parent device
1603 * is bound before we resolve the supply, in case the parent
1604 * device get probe deferred and unregisters the supply.
1606 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1607 if (!device_is_bound(r->dev.parent)) {
1608 put_device(&r->dev);
1609 return -EPROBE_DEFER;
1613 /* Recursively resolve the supply of the supply */
1614 ret = regulator_resolve_supply(r);
1615 if (ret < 0) {
1616 put_device(&r->dev);
1617 return ret;
1620 ret = set_supply(rdev, r);
1621 if (ret < 0) {
1622 put_device(&r->dev);
1623 return ret;
1626 /* Cascade always-on state to supply */
1627 if (_regulator_is_enabled(rdev)) {
1628 ret = regulator_enable(rdev->supply);
1629 if (ret < 0) {
1630 _regulator_put(rdev->supply);
1631 rdev->supply = NULL;
1632 return ret;
1636 return 0;
1639 /* Internal regulator request function */
1640 struct regulator *_regulator_get(struct device *dev, const char *id,
1641 enum regulator_get_type get_type)
1643 struct regulator_dev *rdev;
1644 struct regulator *regulator;
1645 const char *devname = dev ? dev_name(dev) : "deviceless";
1646 int ret;
1648 if (get_type >= MAX_GET_TYPE) {
1649 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1650 return ERR_PTR(-EINVAL);
1653 if (id == NULL) {
1654 pr_err("get() with no identifier\n");
1655 return ERR_PTR(-EINVAL);
1658 rdev = regulator_dev_lookup(dev, id);
1659 if (IS_ERR(rdev)) {
1660 ret = PTR_ERR(rdev);
1663 * If regulator_dev_lookup() fails with error other
1664 * than -ENODEV our job here is done, we simply return it.
1666 if (ret != -ENODEV)
1667 return ERR_PTR(ret);
1669 if (!have_full_constraints()) {
1670 dev_warn(dev,
1671 "incomplete constraints, dummy supplies not allowed\n");
1672 return ERR_PTR(-ENODEV);
1675 switch (get_type) {
1676 case NORMAL_GET:
1678 * Assume that a regulator is physically present and
1679 * enabled, even if it isn't hooked up, and just
1680 * provide a dummy.
1682 dev_warn(dev,
1683 "%s supply %s not found, using dummy regulator\n",
1684 devname, id);
1685 rdev = dummy_regulator_rdev;
1686 get_device(&rdev->dev);
1687 break;
1689 case EXCLUSIVE_GET:
1690 dev_warn(dev,
1691 "dummy supplies not allowed for exclusive requests\n");
1692 /* fall through */
1694 default:
1695 return ERR_PTR(-ENODEV);
1699 if (rdev->exclusive) {
1700 regulator = ERR_PTR(-EPERM);
1701 put_device(&rdev->dev);
1702 return regulator;
1705 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1706 regulator = ERR_PTR(-EBUSY);
1707 put_device(&rdev->dev);
1708 return regulator;
1711 ret = regulator_resolve_supply(rdev);
1712 if (ret < 0) {
1713 regulator = ERR_PTR(ret);
1714 put_device(&rdev->dev);
1715 return regulator;
1718 if (!try_module_get(rdev->owner)) {
1719 regulator = ERR_PTR(-EPROBE_DEFER);
1720 put_device(&rdev->dev);
1721 return regulator;
1724 regulator = create_regulator(rdev, dev, id);
1725 if (regulator == NULL) {
1726 regulator = ERR_PTR(-ENOMEM);
1727 put_device(&rdev->dev);
1728 module_put(rdev->owner);
1729 return regulator;
1732 rdev->open_count++;
1733 if (get_type == EXCLUSIVE_GET) {
1734 rdev->exclusive = 1;
1736 ret = _regulator_is_enabled(rdev);
1737 if (ret > 0)
1738 rdev->use_count = 1;
1739 else
1740 rdev->use_count = 0;
1743 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1745 return regulator;
1749 * regulator_get - lookup and obtain a reference to a regulator.
1750 * @dev: device for regulator "consumer"
1751 * @id: Supply name or regulator ID.
1753 * Returns a struct regulator corresponding to the regulator producer,
1754 * or IS_ERR() condition containing errno.
1756 * Use of supply names configured via regulator_set_device_supply() is
1757 * strongly encouraged. It is recommended that the supply name used
1758 * should match the name used for the supply and/or the relevant
1759 * device pins in the datasheet.
1761 struct regulator *regulator_get(struct device *dev, const char *id)
1763 return _regulator_get(dev, id, NORMAL_GET);
1765 EXPORT_SYMBOL_GPL(regulator_get);
1768 * regulator_get_exclusive - obtain exclusive access to a regulator.
1769 * @dev: device for regulator "consumer"
1770 * @id: Supply name or regulator ID.
1772 * Returns a struct regulator corresponding to the regulator producer,
1773 * or IS_ERR() condition containing errno. Other consumers will be
1774 * unable to obtain this regulator while this reference is held and the
1775 * use count for the regulator will be initialised to reflect the current
1776 * state of the regulator.
1778 * This is intended for use by consumers which cannot tolerate shared
1779 * use of the regulator such as those which need to force the
1780 * regulator off for correct operation of the hardware they are
1781 * controlling.
1783 * Use of supply names configured via regulator_set_device_supply() is
1784 * strongly encouraged. It is recommended that the supply name used
1785 * should match the name used for the supply and/or the relevant
1786 * device pins in the datasheet.
1788 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1790 return _regulator_get(dev, id, EXCLUSIVE_GET);
1792 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1795 * regulator_get_optional - obtain optional access to a regulator.
1796 * @dev: device for regulator "consumer"
1797 * @id: Supply name or regulator ID.
1799 * Returns a struct regulator corresponding to the regulator producer,
1800 * or IS_ERR() condition containing errno.
1802 * This is intended for use by consumers for devices which can have
1803 * some supplies unconnected in normal use, such as some MMC devices.
1804 * It can allow the regulator core to provide stub supplies for other
1805 * supplies requested using normal regulator_get() calls without
1806 * disrupting the operation of drivers that can handle absent
1807 * supplies.
1809 * Use of supply names configured via regulator_set_device_supply() is
1810 * strongly encouraged. It is recommended that the supply name used
1811 * should match the name used for the supply and/or the relevant
1812 * device pins in the datasheet.
1814 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1816 return _regulator_get(dev, id, OPTIONAL_GET);
1818 EXPORT_SYMBOL_GPL(regulator_get_optional);
1820 /* regulator_list_mutex lock held by regulator_put() */
1821 static void _regulator_put(struct regulator *regulator)
1823 struct regulator_dev *rdev;
1825 if (IS_ERR_OR_NULL(regulator))
1826 return;
1828 lockdep_assert_held_once(&regulator_list_mutex);
1830 rdev = regulator->rdev;
1832 debugfs_remove_recursive(regulator->debugfs);
1834 if (regulator->dev) {
1835 int count = 0;
1836 struct regulator *r;
1838 list_for_each_entry(r, &rdev->consumer_list, list)
1839 if (r->dev == regulator->dev)
1840 count++;
1842 if (count == 1)
1843 device_link_remove(regulator->dev, &rdev->dev);
1845 /* remove any sysfs entries */
1846 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1849 regulator_lock(rdev);
1850 list_del(&regulator->list);
1852 rdev->open_count--;
1853 rdev->exclusive = 0;
1854 put_device(&rdev->dev);
1855 regulator_unlock(rdev);
1857 kfree_const(regulator->supply_name);
1858 kfree(regulator);
1860 module_put(rdev->owner);
1864 * regulator_put - "free" the regulator source
1865 * @regulator: regulator source
1867 * Note: drivers must ensure that all regulator_enable calls made on this
1868 * regulator source are balanced by regulator_disable calls prior to calling
1869 * this function.
1871 void regulator_put(struct regulator *regulator)
1873 mutex_lock(&regulator_list_mutex);
1874 _regulator_put(regulator);
1875 mutex_unlock(&regulator_list_mutex);
1877 EXPORT_SYMBOL_GPL(regulator_put);
1880 * regulator_register_supply_alias - Provide device alias for supply lookup
1882 * @dev: device that will be given as the regulator "consumer"
1883 * @id: Supply name or regulator ID
1884 * @alias_dev: device that should be used to lookup the supply
1885 * @alias_id: Supply name or regulator ID that should be used to lookup the
1886 * supply
1888 * All lookups for id on dev will instead be conducted for alias_id on
1889 * alias_dev.
1891 int regulator_register_supply_alias(struct device *dev, const char *id,
1892 struct device *alias_dev,
1893 const char *alias_id)
1895 struct regulator_supply_alias *map;
1897 map = regulator_find_supply_alias(dev, id);
1898 if (map)
1899 return -EEXIST;
1901 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1902 if (!map)
1903 return -ENOMEM;
1905 map->src_dev = dev;
1906 map->src_supply = id;
1907 map->alias_dev = alias_dev;
1908 map->alias_supply = alias_id;
1910 list_add(&map->list, &regulator_supply_alias_list);
1912 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1913 id, dev_name(dev), alias_id, dev_name(alias_dev));
1915 return 0;
1917 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1920 * regulator_unregister_supply_alias - Remove device alias
1922 * @dev: device that will be given as the regulator "consumer"
1923 * @id: Supply name or regulator ID
1925 * Remove a lookup alias if one exists for id on dev.
1927 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1929 struct regulator_supply_alias *map;
1931 map = regulator_find_supply_alias(dev, id);
1932 if (map) {
1933 list_del(&map->list);
1934 kfree(map);
1937 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1940 * regulator_bulk_register_supply_alias - register multiple aliases
1942 * @dev: device that will be given as the regulator "consumer"
1943 * @id: List of supply names or regulator IDs
1944 * @alias_dev: device that should be used to lookup the supply
1945 * @alias_id: List of supply names or regulator IDs that should be used to
1946 * lookup the supply
1947 * @num_id: Number of aliases to register
1949 * @return 0 on success, an errno on failure.
1951 * This helper function allows drivers to register several supply
1952 * aliases in one operation. If any of the aliases cannot be
1953 * registered any aliases that were registered will be removed
1954 * before returning to the caller.
1956 int regulator_bulk_register_supply_alias(struct device *dev,
1957 const char *const *id,
1958 struct device *alias_dev,
1959 const char *const *alias_id,
1960 int num_id)
1962 int i;
1963 int ret;
1965 for (i = 0; i < num_id; ++i) {
1966 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1967 alias_id[i]);
1968 if (ret < 0)
1969 goto err;
1972 return 0;
1974 err:
1975 dev_err(dev,
1976 "Failed to create supply alias %s,%s -> %s,%s\n",
1977 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1979 while (--i >= 0)
1980 regulator_unregister_supply_alias(dev, id[i]);
1982 return ret;
1984 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1987 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1989 * @dev: device that will be given as the regulator "consumer"
1990 * @id: List of supply names or regulator IDs
1991 * @num_id: Number of aliases to unregister
1993 * This helper function allows drivers to unregister several supply
1994 * aliases in one operation.
1996 void regulator_bulk_unregister_supply_alias(struct device *dev,
1997 const char *const *id,
1998 int num_id)
2000 int i;
2002 for (i = 0; i < num_id; ++i)
2003 regulator_unregister_supply_alias(dev, id[i]);
2005 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2008 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2009 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2010 const struct regulator_config *config)
2012 struct regulator_enable_gpio *pin;
2013 struct gpio_desc *gpiod;
2014 int ret;
2016 if (config->ena_gpiod)
2017 gpiod = config->ena_gpiod;
2018 else
2019 gpiod = gpio_to_desc(config->ena_gpio);
2021 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2022 if (pin->gpiod == gpiod) {
2023 rdev_dbg(rdev, "GPIO %d is already used\n",
2024 config->ena_gpio);
2025 goto update_ena_gpio_to_rdev;
2029 if (!config->ena_gpiod) {
2030 ret = gpio_request_one(config->ena_gpio,
2031 GPIOF_DIR_OUT | config->ena_gpio_flags,
2032 rdev_get_name(rdev));
2033 if (ret)
2034 return ret;
2037 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2038 if (pin == NULL) {
2039 if (!config->ena_gpiod)
2040 gpio_free(config->ena_gpio);
2041 return -ENOMEM;
2044 pin->gpiod = gpiod;
2045 pin->ena_gpio_invert = config->ena_gpio_invert;
2046 list_add(&pin->list, &regulator_ena_gpio_list);
2048 update_ena_gpio_to_rdev:
2049 pin->request_count++;
2050 rdev->ena_pin = pin;
2051 return 0;
2054 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2056 struct regulator_enable_gpio *pin, *n;
2058 if (!rdev->ena_pin)
2059 return;
2061 /* Free the GPIO only in case of no use */
2062 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2063 if (pin->gpiod == rdev->ena_pin->gpiod) {
2064 if (pin->request_count <= 1) {
2065 pin->request_count = 0;
2066 gpiod_put(pin->gpiod);
2067 list_del(&pin->list);
2068 kfree(pin);
2069 rdev->ena_pin = NULL;
2070 return;
2071 } else {
2072 pin->request_count--;
2079 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2080 * @rdev: regulator_dev structure
2081 * @enable: enable GPIO at initial use?
2083 * GPIO is enabled in case of initial use. (enable_count is 0)
2084 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2086 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2088 struct regulator_enable_gpio *pin = rdev->ena_pin;
2090 if (!pin)
2091 return -EINVAL;
2093 if (enable) {
2094 /* Enable GPIO at initial use */
2095 if (pin->enable_count == 0)
2096 gpiod_set_value_cansleep(pin->gpiod,
2097 !pin->ena_gpio_invert);
2099 pin->enable_count++;
2100 } else {
2101 if (pin->enable_count > 1) {
2102 pin->enable_count--;
2103 return 0;
2106 /* Disable GPIO if not used */
2107 if (pin->enable_count <= 1) {
2108 gpiod_set_value_cansleep(pin->gpiod,
2109 pin->ena_gpio_invert);
2110 pin->enable_count = 0;
2114 return 0;
2118 * _regulator_enable_delay - a delay helper function
2119 * @delay: time to delay in microseconds
2121 * Delay for the requested amount of time as per the guidelines in:
2123 * Documentation/timers/timers-howto.txt
2125 * The assumption here is that regulators will never be enabled in
2126 * atomic context and therefore sleeping functions can be used.
2128 static void _regulator_enable_delay(unsigned int delay)
2130 unsigned int ms = delay / 1000;
2131 unsigned int us = delay % 1000;
2133 if (ms > 0) {
2135 * For small enough values, handle super-millisecond
2136 * delays in the usleep_range() call below.
2138 if (ms < 20)
2139 us += ms * 1000;
2140 else
2141 msleep(ms);
2145 * Give the scheduler some room to coalesce with any other
2146 * wakeup sources. For delays shorter than 10 us, don't even
2147 * bother setting up high-resolution timers and just busy-
2148 * loop.
2150 if (us >= 10)
2151 usleep_range(us, us + 100);
2152 else
2153 udelay(us);
2156 static int _regulator_do_enable(struct regulator_dev *rdev)
2158 int ret, delay;
2160 /* Query before enabling in case configuration dependent. */
2161 ret = _regulator_get_enable_time(rdev);
2162 if (ret >= 0) {
2163 delay = ret;
2164 } else {
2165 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2166 delay = 0;
2169 trace_regulator_enable(rdev_get_name(rdev));
2171 if (rdev->desc->off_on_delay) {
2172 /* if needed, keep a distance of off_on_delay from last time
2173 * this regulator was disabled.
2175 unsigned long start_jiffy = jiffies;
2176 unsigned long intended, max_delay, remaining;
2178 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2179 intended = rdev->last_off_jiffy + max_delay;
2181 if (time_before(start_jiffy, intended)) {
2182 /* calc remaining jiffies to deal with one-time
2183 * timer wrapping.
2184 * in case of multiple timer wrapping, either it can be
2185 * detected by out-of-range remaining, or it cannot be
2186 * detected and we gets a panelty of
2187 * _regulator_enable_delay().
2189 remaining = intended - start_jiffy;
2190 if (remaining <= max_delay)
2191 _regulator_enable_delay(
2192 jiffies_to_usecs(remaining));
2196 if (rdev->ena_pin) {
2197 if (!rdev->ena_gpio_state) {
2198 ret = regulator_ena_gpio_ctrl(rdev, true);
2199 if (ret < 0)
2200 return ret;
2201 rdev->ena_gpio_state = 1;
2203 } else if (rdev->desc->ops->enable) {
2204 ret = rdev->desc->ops->enable(rdev);
2205 if (ret < 0)
2206 return ret;
2207 } else {
2208 return -EINVAL;
2211 /* Allow the regulator to ramp; it would be useful to extend
2212 * this for bulk operations so that the regulators can ramp
2213 * together. */
2214 trace_regulator_enable_delay(rdev_get_name(rdev));
2216 _regulator_enable_delay(delay);
2218 trace_regulator_enable_complete(rdev_get_name(rdev));
2220 return 0;
2223 /* locks held by regulator_enable() */
2224 static int _regulator_enable(struct regulator_dev *rdev)
2226 int ret;
2228 lockdep_assert_held_once(&rdev->mutex);
2230 /* check voltage and requested load before enabling */
2231 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2232 drms_uA_update(rdev);
2234 if (rdev->use_count == 0) {
2235 /* The regulator may on if it's not switchable or left on */
2236 ret = _regulator_is_enabled(rdev);
2237 if (ret == -EINVAL || ret == 0) {
2238 if (!regulator_ops_is_valid(rdev,
2239 REGULATOR_CHANGE_STATUS))
2240 return -EPERM;
2242 ret = _regulator_do_enable(rdev);
2243 if (ret < 0)
2244 return ret;
2246 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2247 NULL);
2248 } else if (ret < 0) {
2249 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2250 return ret;
2252 /* Fallthrough on positive return values - already enabled */
2255 rdev->use_count++;
2257 return 0;
2261 * regulator_enable - enable regulator output
2262 * @regulator: regulator source
2264 * Request that the regulator be enabled with the regulator output at
2265 * the predefined voltage or current value. Calls to regulator_enable()
2266 * must be balanced with calls to regulator_disable().
2268 * NOTE: the output value can be set by other drivers, boot loader or may be
2269 * hardwired in the regulator.
2271 int regulator_enable(struct regulator *regulator)
2273 struct regulator_dev *rdev = regulator->rdev;
2274 int ret = 0;
2276 if (regulator->always_on)
2277 return 0;
2279 if (rdev->supply) {
2280 ret = regulator_enable(rdev->supply);
2281 if (ret != 0)
2282 return ret;
2285 mutex_lock(&rdev->mutex);
2286 ret = _regulator_enable(rdev);
2287 mutex_unlock(&rdev->mutex);
2289 if (ret != 0 && rdev->supply)
2290 regulator_disable(rdev->supply);
2292 return ret;
2294 EXPORT_SYMBOL_GPL(regulator_enable);
2296 static int _regulator_do_disable(struct regulator_dev *rdev)
2298 int ret;
2300 trace_regulator_disable(rdev_get_name(rdev));
2302 if (rdev->ena_pin) {
2303 if (rdev->ena_gpio_state) {
2304 ret = regulator_ena_gpio_ctrl(rdev, false);
2305 if (ret < 0)
2306 return ret;
2307 rdev->ena_gpio_state = 0;
2310 } else if (rdev->desc->ops->disable) {
2311 ret = rdev->desc->ops->disable(rdev);
2312 if (ret != 0)
2313 return ret;
2316 /* cares about last_off_jiffy only if off_on_delay is required by
2317 * device.
2319 if (rdev->desc->off_on_delay)
2320 rdev->last_off_jiffy = jiffies;
2322 trace_regulator_disable_complete(rdev_get_name(rdev));
2324 return 0;
2327 /* locks held by regulator_disable() */
2328 static int _regulator_disable(struct regulator_dev *rdev)
2330 int ret = 0;
2332 lockdep_assert_held_once(&rdev->mutex);
2334 if (WARN(rdev->use_count <= 0,
2335 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2336 return -EIO;
2338 /* are we the last user and permitted to disable ? */
2339 if (rdev->use_count == 1 &&
2340 (rdev->constraints && !rdev->constraints->always_on)) {
2342 /* we are last user */
2343 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2344 ret = _notifier_call_chain(rdev,
2345 REGULATOR_EVENT_PRE_DISABLE,
2346 NULL);
2347 if (ret & NOTIFY_STOP_MASK)
2348 return -EINVAL;
2350 ret = _regulator_do_disable(rdev);
2351 if (ret < 0) {
2352 rdev_err(rdev, "failed to disable\n");
2353 _notifier_call_chain(rdev,
2354 REGULATOR_EVENT_ABORT_DISABLE,
2355 NULL);
2356 return ret;
2358 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2359 NULL);
2362 rdev->use_count = 0;
2363 } else if (rdev->use_count > 1) {
2364 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2365 drms_uA_update(rdev);
2367 rdev->use_count--;
2370 return ret;
2374 * regulator_disable - disable regulator output
2375 * @regulator: regulator source
2377 * Disable the regulator output voltage or current. Calls to
2378 * regulator_enable() must be balanced with calls to
2379 * regulator_disable().
2381 * NOTE: this will only disable the regulator output if no other consumer
2382 * devices have it enabled, the regulator device supports disabling and
2383 * machine constraints permit this operation.
2385 int regulator_disable(struct regulator *regulator)
2387 struct regulator_dev *rdev = regulator->rdev;
2388 int ret = 0;
2390 if (regulator->always_on)
2391 return 0;
2393 mutex_lock(&rdev->mutex);
2394 ret = _regulator_disable(rdev);
2395 mutex_unlock(&rdev->mutex);
2397 if (ret == 0 && rdev->supply)
2398 regulator_disable(rdev->supply);
2400 return ret;
2402 EXPORT_SYMBOL_GPL(regulator_disable);
2404 /* locks held by regulator_force_disable() */
2405 static int _regulator_force_disable(struct regulator_dev *rdev)
2407 int ret = 0;
2409 lockdep_assert_held_once(&rdev->mutex);
2411 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2412 REGULATOR_EVENT_PRE_DISABLE, NULL);
2413 if (ret & NOTIFY_STOP_MASK)
2414 return -EINVAL;
2416 ret = _regulator_do_disable(rdev);
2417 if (ret < 0) {
2418 rdev_err(rdev, "failed to force disable\n");
2419 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2420 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2421 return ret;
2424 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2425 REGULATOR_EVENT_DISABLE, NULL);
2427 return 0;
2431 * regulator_force_disable - force disable regulator output
2432 * @regulator: regulator source
2434 * Forcibly disable the regulator output voltage or current.
2435 * NOTE: this *will* disable the regulator output even if other consumer
2436 * devices have it enabled. This should be used for situations when device
2437 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2439 int regulator_force_disable(struct regulator *regulator)
2441 struct regulator_dev *rdev = regulator->rdev;
2442 int ret;
2444 mutex_lock(&rdev->mutex);
2445 regulator->uA_load = 0;
2446 ret = _regulator_force_disable(regulator->rdev);
2447 mutex_unlock(&rdev->mutex);
2449 if (rdev->supply)
2450 while (rdev->open_count--)
2451 regulator_disable(rdev->supply);
2453 return ret;
2455 EXPORT_SYMBOL_GPL(regulator_force_disable);
2457 static void regulator_disable_work(struct work_struct *work)
2459 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2460 disable_work.work);
2461 int count, i, ret;
2463 regulator_lock(rdev);
2465 BUG_ON(!rdev->deferred_disables);
2467 count = rdev->deferred_disables;
2468 rdev->deferred_disables = 0;
2471 * Workqueue functions queue the new work instance while the previous
2472 * work instance is being processed. Cancel the queued work instance
2473 * as the work instance under processing does the job of the queued
2474 * work instance.
2476 cancel_delayed_work(&rdev->disable_work);
2478 for (i = 0; i < count; i++) {
2479 ret = _regulator_disable(rdev);
2480 if (ret != 0)
2481 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2484 regulator_unlock(rdev);
2486 if (rdev->supply) {
2487 for (i = 0; i < count; i++) {
2488 ret = regulator_disable(rdev->supply);
2489 if (ret != 0) {
2490 rdev_err(rdev,
2491 "Supply disable failed: %d\n", ret);
2498 * regulator_disable_deferred - disable regulator output with delay
2499 * @regulator: regulator source
2500 * @ms: miliseconds until the regulator is disabled
2502 * Execute regulator_disable() on the regulator after a delay. This
2503 * is intended for use with devices that require some time to quiesce.
2505 * NOTE: this will only disable the regulator output if no other consumer
2506 * devices have it enabled, the regulator device supports disabling and
2507 * machine constraints permit this operation.
2509 int regulator_disable_deferred(struct regulator *regulator, int ms)
2511 struct regulator_dev *rdev = regulator->rdev;
2513 if (regulator->always_on)
2514 return 0;
2516 if (!ms)
2517 return regulator_disable(regulator);
2519 regulator_lock(rdev);
2520 rdev->deferred_disables++;
2521 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2522 msecs_to_jiffies(ms));
2523 regulator_unlock(rdev);
2525 return 0;
2527 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2529 static int _regulator_is_enabled(struct regulator_dev *rdev)
2531 /* A GPIO control always takes precedence */
2532 if (rdev->ena_pin)
2533 return rdev->ena_gpio_state;
2535 /* If we don't know then assume that the regulator is always on */
2536 if (!rdev->desc->ops->is_enabled)
2537 return 1;
2539 return rdev->desc->ops->is_enabled(rdev);
2542 static int _regulator_list_voltage(struct regulator_dev *rdev,
2543 unsigned selector, int lock)
2545 const struct regulator_ops *ops = rdev->desc->ops;
2546 int ret;
2548 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2549 return rdev->desc->fixed_uV;
2551 if (ops->list_voltage) {
2552 if (selector >= rdev->desc->n_voltages)
2553 return -EINVAL;
2554 if (lock)
2555 regulator_lock(rdev);
2556 ret = ops->list_voltage(rdev, selector);
2557 if (lock)
2558 regulator_unlock(rdev);
2559 } else if (rdev->is_switch && rdev->supply) {
2560 ret = _regulator_list_voltage(rdev->supply->rdev,
2561 selector, lock);
2562 } else {
2563 return -EINVAL;
2566 if (ret > 0) {
2567 if (ret < rdev->constraints->min_uV)
2568 ret = 0;
2569 else if (ret > rdev->constraints->max_uV)
2570 ret = 0;
2573 return ret;
2577 * regulator_is_enabled - is the regulator output enabled
2578 * @regulator: regulator source
2580 * Returns positive if the regulator driver backing the source/client
2581 * has requested that the device be enabled, zero if it hasn't, else a
2582 * negative errno code.
2584 * Note that the device backing this regulator handle can have multiple
2585 * users, so it might be enabled even if regulator_enable() was never
2586 * called for this particular source.
2588 int regulator_is_enabled(struct regulator *regulator)
2590 int ret;
2592 if (regulator->always_on)
2593 return 1;
2595 mutex_lock(&regulator->rdev->mutex);
2596 ret = _regulator_is_enabled(regulator->rdev);
2597 mutex_unlock(&regulator->rdev->mutex);
2599 return ret;
2601 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2604 * regulator_count_voltages - count regulator_list_voltage() selectors
2605 * @regulator: regulator source
2607 * Returns number of selectors, or negative errno. Selectors are
2608 * numbered starting at zero, and typically correspond to bitfields
2609 * in hardware registers.
2611 int regulator_count_voltages(struct regulator *regulator)
2613 struct regulator_dev *rdev = regulator->rdev;
2615 if (rdev->desc->n_voltages)
2616 return rdev->desc->n_voltages;
2618 if (!rdev->is_switch || !rdev->supply)
2619 return -EINVAL;
2621 return regulator_count_voltages(rdev->supply);
2623 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2626 * regulator_list_voltage - enumerate supported voltages
2627 * @regulator: regulator source
2628 * @selector: identify voltage to list
2629 * Context: can sleep
2631 * Returns a voltage that can be passed to @regulator_set_voltage(),
2632 * zero if this selector code can't be used on this system, or a
2633 * negative errno.
2635 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2637 return _regulator_list_voltage(regulator->rdev, selector, 1);
2639 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2642 * regulator_get_regmap - get the regulator's register map
2643 * @regulator: regulator source
2645 * Returns the register map for the given regulator, or an ERR_PTR value
2646 * if the regulator doesn't use regmap.
2648 struct regmap *regulator_get_regmap(struct regulator *regulator)
2650 struct regmap *map = regulator->rdev->regmap;
2652 return map ? map : ERR_PTR(-EOPNOTSUPP);
2656 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2657 * @regulator: regulator source
2658 * @vsel_reg: voltage selector register, output parameter
2659 * @vsel_mask: mask for voltage selector bitfield, output parameter
2661 * Returns the hardware register offset and bitmask used for setting the
2662 * regulator voltage. This might be useful when configuring voltage-scaling
2663 * hardware or firmware that can make I2C requests behind the kernel's back,
2664 * for example.
2666 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2667 * and 0 is returned, otherwise a negative errno is returned.
2669 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2670 unsigned *vsel_reg,
2671 unsigned *vsel_mask)
2673 struct regulator_dev *rdev = regulator->rdev;
2674 const struct regulator_ops *ops = rdev->desc->ops;
2676 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2677 return -EOPNOTSUPP;
2679 *vsel_reg = rdev->desc->vsel_reg;
2680 *vsel_mask = rdev->desc->vsel_mask;
2682 return 0;
2684 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2687 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2688 * @regulator: regulator source
2689 * @selector: identify voltage to list
2691 * Converts the selector to a hardware-specific voltage selector that can be
2692 * directly written to the regulator registers. The address of the voltage
2693 * register can be determined by calling @regulator_get_hardware_vsel_register.
2695 * On error a negative errno is returned.
2697 int regulator_list_hardware_vsel(struct regulator *regulator,
2698 unsigned selector)
2700 struct regulator_dev *rdev = regulator->rdev;
2701 const struct regulator_ops *ops = rdev->desc->ops;
2703 if (selector >= rdev->desc->n_voltages)
2704 return -EINVAL;
2705 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2706 return -EOPNOTSUPP;
2708 return selector;
2710 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2713 * regulator_get_linear_step - return the voltage step size between VSEL values
2714 * @regulator: regulator source
2716 * Returns the voltage step size between VSEL values for linear
2717 * regulators, or return 0 if the regulator isn't a linear regulator.
2719 unsigned int regulator_get_linear_step(struct regulator *regulator)
2721 struct regulator_dev *rdev = regulator->rdev;
2723 return rdev->desc->uV_step;
2725 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2728 * regulator_is_supported_voltage - check if a voltage range can be supported
2730 * @regulator: Regulator to check.
2731 * @min_uV: Minimum required voltage in uV.
2732 * @max_uV: Maximum required voltage in uV.
2734 * Returns a boolean or a negative error code.
2736 int regulator_is_supported_voltage(struct regulator *regulator,
2737 int min_uV, int max_uV)
2739 struct regulator_dev *rdev = regulator->rdev;
2740 int i, voltages, ret;
2742 /* If we can't change voltage check the current voltage */
2743 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2744 ret = regulator_get_voltage(regulator);
2745 if (ret >= 0)
2746 return min_uV <= ret && ret <= max_uV;
2747 else
2748 return ret;
2751 /* Any voltage within constrains range is fine? */
2752 if (rdev->desc->continuous_voltage_range)
2753 return min_uV >= rdev->constraints->min_uV &&
2754 max_uV <= rdev->constraints->max_uV;
2756 ret = regulator_count_voltages(regulator);
2757 if (ret < 0)
2758 return ret;
2759 voltages = ret;
2761 for (i = 0; i < voltages; i++) {
2762 ret = regulator_list_voltage(regulator, i);
2764 if (ret >= min_uV && ret <= max_uV)
2765 return 1;
2768 return 0;
2770 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2772 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2773 int max_uV)
2775 const struct regulator_desc *desc = rdev->desc;
2777 if (desc->ops->map_voltage)
2778 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2780 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2781 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2783 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2784 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2786 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2789 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2790 int min_uV, int max_uV,
2791 unsigned *selector)
2793 struct pre_voltage_change_data data;
2794 int ret;
2796 data.old_uV = _regulator_get_voltage(rdev);
2797 data.min_uV = min_uV;
2798 data.max_uV = max_uV;
2799 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2800 &data);
2801 if (ret & NOTIFY_STOP_MASK)
2802 return -EINVAL;
2804 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2805 if (ret >= 0)
2806 return ret;
2808 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2809 (void *)data.old_uV);
2811 return ret;
2814 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2815 int uV, unsigned selector)
2817 struct pre_voltage_change_data data;
2818 int ret;
2820 data.old_uV = _regulator_get_voltage(rdev);
2821 data.min_uV = uV;
2822 data.max_uV = uV;
2823 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2824 &data);
2825 if (ret & NOTIFY_STOP_MASK)
2826 return -EINVAL;
2828 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2829 if (ret >= 0)
2830 return ret;
2832 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2833 (void *)data.old_uV);
2835 return ret;
2838 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2839 int old_uV, int new_uV)
2841 unsigned int ramp_delay = 0;
2843 if (rdev->constraints->ramp_delay)
2844 ramp_delay = rdev->constraints->ramp_delay;
2845 else if (rdev->desc->ramp_delay)
2846 ramp_delay = rdev->desc->ramp_delay;
2847 else if (rdev->constraints->settling_time)
2848 return rdev->constraints->settling_time;
2849 else if (rdev->constraints->settling_time_up &&
2850 (new_uV > old_uV))
2851 return rdev->constraints->settling_time_up;
2852 else if (rdev->constraints->settling_time_down &&
2853 (new_uV < old_uV))
2854 return rdev->constraints->settling_time_down;
2856 if (ramp_delay == 0) {
2857 rdev_dbg(rdev, "ramp_delay not set\n");
2858 return 0;
2861 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2864 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2865 int min_uV, int max_uV)
2867 int ret;
2868 int delay = 0;
2869 int best_val = 0;
2870 unsigned int selector;
2871 int old_selector = -1;
2872 const struct regulator_ops *ops = rdev->desc->ops;
2873 int old_uV = _regulator_get_voltage(rdev);
2875 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2877 min_uV += rdev->constraints->uV_offset;
2878 max_uV += rdev->constraints->uV_offset;
2881 * If we can't obtain the old selector there is not enough
2882 * info to call set_voltage_time_sel().
2884 if (_regulator_is_enabled(rdev) &&
2885 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2886 old_selector = ops->get_voltage_sel(rdev);
2887 if (old_selector < 0)
2888 return old_selector;
2891 if (ops->set_voltage) {
2892 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2893 &selector);
2895 if (ret >= 0) {
2896 if (ops->list_voltage)
2897 best_val = ops->list_voltage(rdev,
2898 selector);
2899 else
2900 best_val = _regulator_get_voltage(rdev);
2903 } else if (ops->set_voltage_sel) {
2904 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2905 if (ret >= 0) {
2906 best_val = ops->list_voltage(rdev, ret);
2907 if (min_uV <= best_val && max_uV >= best_val) {
2908 selector = ret;
2909 if (old_selector == selector)
2910 ret = 0;
2911 else
2912 ret = _regulator_call_set_voltage_sel(
2913 rdev, best_val, selector);
2914 } else {
2915 ret = -EINVAL;
2918 } else {
2919 ret = -EINVAL;
2922 if (ret)
2923 goto out;
2925 if (ops->set_voltage_time_sel) {
2927 * Call set_voltage_time_sel if successfully obtained
2928 * old_selector
2930 if (old_selector >= 0 && old_selector != selector)
2931 delay = ops->set_voltage_time_sel(rdev, old_selector,
2932 selector);
2933 } else {
2934 if (old_uV != best_val) {
2935 if (ops->set_voltage_time)
2936 delay = ops->set_voltage_time(rdev, old_uV,
2937 best_val);
2938 else
2939 delay = _regulator_set_voltage_time(rdev,
2940 old_uV,
2941 best_val);
2945 if (delay < 0) {
2946 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2947 delay = 0;
2950 /* Insert any necessary delays */
2951 if (delay >= 1000) {
2952 mdelay(delay / 1000);
2953 udelay(delay % 1000);
2954 } else if (delay) {
2955 udelay(delay);
2958 if (best_val >= 0) {
2959 unsigned long data = best_val;
2961 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2962 (void *)data);
2965 out:
2966 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2968 return ret;
2971 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2972 int min_uV, int max_uV, suspend_state_t state)
2974 struct regulator_state *rstate;
2975 int uV, sel;
2977 rstate = regulator_get_suspend_state(rdev, state);
2978 if (rstate == NULL)
2979 return -EINVAL;
2981 if (min_uV < rstate->min_uV)
2982 min_uV = rstate->min_uV;
2983 if (max_uV > rstate->max_uV)
2984 max_uV = rstate->max_uV;
2986 sel = regulator_map_voltage(rdev, min_uV, max_uV);
2987 if (sel < 0)
2988 return sel;
2990 uV = rdev->desc->ops->list_voltage(rdev, sel);
2991 if (uV >= min_uV && uV <= max_uV)
2992 rstate->uV = uV;
2994 return 0;
2997 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2998 int min_uV, int max_uV,
2999 suspend_state_t state)
3001 struct regulator_dev *rdev = regulator->rdev;
3002 struct regulator_voltage *voltage = &regulator->voltage[state];
3003 int ret = 0;
3004 int old_min_uV, old_max_uV;
3005 int current_uV;
3006 int best_supply_uV = 0;
3007 int supply_change_uV = 0;
3009 /* If we're setting the same range as last time the change
3010 * should be a noop (some cpufreq implementations use the same
3011 * voltage for multiple frequencies, for example).
3013 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3014 goto out;
3016 /* If we're trying to set a range that overlaps the current voltage,
3017 * return successfully even though the regulator does not support
3018 * changing the voltage.
3020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3021 current_uV = _regulator_get_voltage(rdev);
3022 if (min_uV <= current_uV && current_uV <= max_uV) {
3023 voltage->min_uV = min_uV;
3024 voltage->max_uV = max_uV;
3025 goto out;
3029 /* sanity check */
3030 if (!rdev->desc->ops->set_voltage &&
3031 !rdev->desc->ops->set_voltage_sel) {
3032 ret = -EINVAL;
3033 goto out;
3036 /* constraints check */
3037 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3038 if (ret < 0)
3039 goto out;
3041 /* restore original values in case of error */
3042 old_min_uV = voltage->min_uV;
3043 old_max_uV = voltage->max_uV;
3044 voltage->min_uV = min_uV;
3045 voltage->max_uV = max_uV;
3047 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3048 if (ret < 0)
3049 goto out2;
3051 if (rdev->supply &&
3052 regulator_ops_is_valid(rdev->supply->rdev,
3053 REGULATOR_CHANGE_VOLTAGE) &&
3054 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3055 rdev->desc->ops->get_voltage_sel))) {
3056 int current_supply_uV;
3057 int selector;
3059 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3060 if (selector < 0) {
3061 ret = selector;
3062 goto out2;
3065 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3066 if (best_supply_uV < 0) {
3067 ret = best_supply_uV;
3068 goto out2;
3071 best_supply_uV += rdev->desc->min_dropout_uV;
3073 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3074 if (current_supply_uV < 0) {
3075 ret = current_supply_uV;
3076 goto out2;
3079 supply_change_uV = best_supply_uV - current_supply_uV;
3082 if (supply_change_uV > 0) {
3083 ret = regulator_set_voltage_unlocked(rdev->supply,
3084 best_supply_uV, INT_MAX, state);
3085 if (ret) {
3086 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3087 ret);
3088 goto out2;
3092 if (state == PM_SUSPEND_ON)
3093 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3094 else
3095 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3096 max_uV, state);
3097 if (ret < 0)
3098 goto out2;
3100 if (supply_change_uV < 0) {
3101 ret = regulator_set_voltage_unlocked(rdev->supply,
3102 best_supply_uV, INT_MAX, state);
3103 if (ret)
3104 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3105 ret);
3106 /* No need to fail here */
3107 ret = 0;
3110 out:
3111 return ret;
3112 out2:
3113 voltage->min_uV = old_min_uV;
3114 voltage->max_uV = old_max_uV;
3116 return ret;
3120 * regulator_set_voltage - set regulator output voltage
3121 * @regulator: regulator source
3122 * @min_uV: Minimum required voltage in uV
3123 * @max_uV: Maximum acceptable voltage in uV
3125 * Sets a voltage regulator to the desired output voltage. This can be set
3126 * during any regulator state. IOW, regulator can be disabled or enabled.
3128 * If the regulator is enabled then the voltage will change to the new value
3129 * immediately otherwise if the regulator is disabled the regulator will
3130 * output at the new voltage when enabled.
3132 * NOTE: If the regulator is shared between several devices then the lowest
3133 * request voltage that meets the system constraints will be used.
3134 * Regulator system constraints must be set for this regulator before
3135 * calling this function otherwise this call will fail.
3137 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3139 int ret = 0;
3141 regulator_lock_supply(regulator->rdev);
3143 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3144 PM_SUSPEND_ON);
3146 regulator_unlock_supply(regulator->rdev);
3148 return ret;
3150 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3152 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3153 suspend_state_t state, bool en)
3155 struct regulator_state *rstate;
3157 rstate = regulator_get_suspend_state(rdev, state);
3158 if (rstate == NULL)
3159 return -EINVAL;
3161 if (!rstate->changeable)
3162 return -EPERM;
3164 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3166 return 0;
3169 int regulator_suspend_enable(struct regulator_dev *rdev,
3170 suspend_state_t state)
3172 return regulator_suspend_toggle(rdev, state, true);
3174 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3176 int regulator_suspend_disable(struct regulator_dev *rdev,
3177 suspend_state_t state)
3179 struct regulator *regulator;
3180 struct regulator_voltage *voltage;
3183 * if any consumer wants this regulator device keeping on in
3184 * suspend states, don't set it as disabled.
3186 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3187 voltage = &regulator->voltage[state];
3188 if (voltage->min_uV || voltage->max_uV)
3189 return 0;
3192 return regulator_suspend_toggle(rdev, state, false);
3194 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3196 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3197 int min_uV, int max_uV,
3198 suspend_state_t state)
3200 struct regulator_dev *rdev = regulator->rdev;
3201 struct regulator_state *rstate;
3203 rstate = regulator_get_suspend_state(rdev, state);
3204 if (rstate == NULL)
3205 return -EINVAL;
3207 if (rstate->min_uV == rstate->max_uV) {
3208 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3209 return -EPERM;
3212 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3215 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3216 int max_uV, suspend_state_t state)
3218 int ret = 0;
3220 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3221 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3222 return -EINVAL;
3224 regulator_lock_supply(regulator->rdev);
3226 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3227 max_uV, state);
3229 regulator_unlock_supply(regulator->rdev);
3231 return ret;
3233 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3236 * regulator_set_voltage_time - get raise/fall time
3237 * @regulator: regulator source
3238 * @old_uV: starting voltage in microvolts
3239 * @new_uV: target voltage in microvolts
3241 * Provided with the starting and ending voltage, this function attempts to
3242 * calculate the time in microseconds required to rise or fall to this new
3243 * voltage.
3245 int regulator_set_voltage_time(struct regulator *regulator,
3246 int old_uV, int new_uV)
3248 struct regulator_dev *rdev = regulator->rdev;
3249 const struct regulator_ops *ops = rdev->desc->ops;
3250 int old_sel = -1;
3251 int new_sel = -1;
3252 int voltage;
3253 int i;
3255 if (ops->set_voltage_time)
3256 return ops->set_voltage_time(rdev, old_uV, new_uV);
3257 else if (!ops->set_voltage_time_sel)
3258 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3260 /* Currently requires operations to do this */
3261 if (!ops->list_voltage || !rdev->desc->n_voltages)
3262 return -EINVAL;
3264 for (i = 0; i < rdev->desc->n_voltages; i++) {
3265 /* We only look for exact voltage matches here */
3266 voltage = regulator_list_voltage(regulator, i);
3267 if (voltage < 0)
3268 return -EINVAL;
3269 if (voltage == 0)
3270 continue;
3271 if (voltage == old_uV)
3272 old_sel = i;
3273 if (voltage == new_uV)
3274 new_sel = i;
3277 if (old_sel < 0 || new_sel < 0)
3278 return -EINVAL;
3280 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3282 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3285 * regulator_set_voltage_time_sel - get raise/fall time
3286 * @rdev: regulator source device
3287 * @old_selector: selector for starting voltage
3288 * @new_selector: selector for target voltage
3290 * Provided with the starting and target voltage selectors, this function
3291 * returns time in microseconds required to rise or fall to this new voltage
3293 * Drivers providing ramp_delay in regulation_constraints can use this as their
3294 * set_voltage_time_sel() operation.
3296 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3297 unsigned int old_selector,
3298 unsigned int new_selector)
3300 int old_volt, new_volt;
3302 /* sanity check */
3303 if (!rdev->desc->ops->list_voltage)
3304 return -EINVAL;
3306 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3307 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3309 if (rdev->desc->ops->set_voltage_time)
3310 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3311 new_volt);
3312 else
3313 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3315 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3318 * regulator_sync_voltage - re-apply last regulator output voltage
3319 * @regulator: regulator source
3321 * Re-apply the last configured voltage. This is intended to be used
3322 * where some external control source the consumer is cooperating with
3323 * has caused the configured voltage to change.
3325 int regulator_sync_voltage(struct regulator *regulator)
3327 struct regulator_dev *rdev = regulator->rdev;
3328 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3329 int ret, min_uV, max_uV;
3331 regulator_lock(rdev);
3333 if (!rdev->desc->ops->set_voltage &&
3334 !rdev->desc->ops->set_voltage_sel) {
3335 ret = -EINVAL;
3336 goto out;
3339 /* This is only going to work if we've had a voltage configured. */
3340 if (!voltage->min_uV && !voltage->max_uV) {
3341 ret = -EINVAL;
3342 goto out;
3345 min_uV = voltage->min_uV;
3346 max_uV = voltage->max_uV;
3348 /* This should be a paranoia check... */
3349 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3350 if (ret < 0)
3351 goto out;
3353 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3354 if (ret < 0)
3355 goto out;
3357 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3359 out:
3360 regulator_unlock(rdev);
3361 return ret;
3363 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3365 static int _regulator_get_voltage(struct regulator_dev *rdev)
3367 int sel, ret;
3368 bool bypassed;
3370 if (rdev->desc->ops->get_bypass) {
3371 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3372 if (ret < 0)
3373 return ret;
3374 if (bypassed) {
3375 /* if bypassed the regulator must have a supply */
3376 if (!rdev->supply) {
3377 rdev_err(rdev,
3378 "bypassed regulator has no supply!\n");
3379 return -EPROBE_DEFER;
3382 return _regulator_get_voltage(rdev->supply->rdev);
3386 if (rdev->desc->ops->get_voltage_sel) {
3387 sel = rdev->desc->ops->get_voltage_sel(rdev);
3388 if (sel < 0)
3389 return sel;
3390 ret = rdev->desc->ops->list_voltage(rdev, sel);
3391 } else if (rdev->desc->ops->get_voltage) {
3392 ret = rdev->desc->ops->get_voltage(rdev);
3393 } else if (rdev->desc->ops->list_voltage) {
3394 ret = rdev->desc->ops->list_voltage(rdev, 0);
3395 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3396 ret = rdev->desc->fixed_uV;
3397 } else if (rdev->supply) {
3398 ret = _regulator_get_voltage(rdev->supply->rdev);
3399 } else {
3400 return -EINVAL;
3403 if (ret < 0)
3404 return ret;
3405 return ret - rdev->constraints->uV_offset;
3409 * regulator_get_voltage - get regulator output voltage
3410 * @regulator: regulator source
3412 * This returns the current regulator voltage in uV.
3414 * NOTE: If the regulator is disabled it will return the voltage value. This
3415 * function should not be used to determine regulator state.
3417 int regulator_get_voltage(struct regulator *regulator)
3419 int ret;
3421 regulator_lock_supply(regulator->rdev);
3423 ret = _regulator_get_voltage(regulator->rdev);
3425 regulator_unlock_supply(regulator->rdev);
3427 return ret;
3429 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3432 * regulator_set_current_limit - set regulator output current limit
3433 * @regulator: regulator source
3434 * @min_uA: Minimum supported current in uA
3435 * @max_uA: Maximum supported current in uA
3437 * Sets current sink to the desired output current. This can be set during
3438 * any regulator state. IOW, regulator can be disabled or enabled.
3440 * If the regulator is enabled then the current will change to the new value
3441 * immediately otherwise if the regulator is disabled the regulator will
3442 * output at the new current when enabled.
3444 * NOTE: Regulator system constraints must be set for this regulator before
3445 * calling this function otherwise this call will fail.
3447 int regulator_set_current_limit(struct regulator *regulator,
3448 int min_uA, int max_uA)
3450 struct regulator_dev *rdev = regulator->rdev;
3451 int ret;
3453 regulator_lock(rdev);
3455 /* sanity check */
3456 if (!rdev->desc->ops->set_current_limit) {
3457 ret = -EINVAL;
3458 goto out;
3461 /* constraints check */
3462 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3463 if (ret < 0)
3464 goto out;
3466 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3467 out:
3468 regulator_unlock(rdev);
3469 return ret;
3471 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3473 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3475 int ret;
3477 regulator_lock(rdev);
3479 /* sanity check */
3480 if (!rdev->desc->ops->get_current_limit) {
3481 ret = -EINVAL;
3482 goto out;
3485 ret = rdev->desc->ops->get_current_limit(rdev);
3486 out:
3487 regulator_unlock(rdev);
3488 return ret;
3492 * regulator_get_current_limit - get regulator output current
3493 * @regulator: regulator source
3495 * This returns the current supplied by the specified current sink in uA.
3497 * NOTE: If the regulator is disabled it will return the current value. This
3498 * function should not be used to determine regulator state.
3500 int regulator_get_current_limit(struct regulator *regulator)
3502 return _regulator_get_current_limit(regulator->rdev);
3504 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3507 * regulator_set_mode - set regulator operating mode
3508 * @regulator: regulator source
3509 * @mode: operating mode - one of the REGULATOR_MODE constants
3511 * Set regulator operating mode to increase regulator efficiency or improve
3512 * regulation performance.
3514 * NOTE: Regulator system constraints must be set for this regulator before
3515 * calling this function otherwise this call will fail.
3517 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3519 struct regulator_dev *rdev = regulator->rdev;
3520 int ret;
3521 int regulator_curr_mode;
3523 regulator_lock(rdev);
3525 /* sanity check */
3526 if (!rdev->desc->ops->set_mode) {
3527 ret = -EINVAL;
3528 goto out;
3531 /* return if the same mode is requested */
3532 if (rdev->desc->ops->get_mode) {
3533 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3534 if (regulator_curr_mode == mode) {
3535 ret = 0;
3536 goto out;
3540 /* constraints check */
3541 ret = regulator_mode_constrain(rdev, &mode);
3542 if (ret < 0)
3543 goto out;
3545 ret = rdev->desc->ops->set_mode(rdev, mode);
3546 out:
3547 regulator_unlock(rdev);
3548 return ret;
3550 EXPORT_SYMBOL_GPL(regulator_set_mode);
3552 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3554 int ret;
3556 regulator_lock(rdev);
3558 /* sanity check */
3559 if (!rdev->desc->ops->get_mode) {
3560 ret = -EINVAL;
3561 goto out;
3564 ret = rdev->desc->ops->get_mode(rdev);
3565 out:
3566 regulator_unlock(rdev);
3567 return ret;
3571 * regulator_get_mode - get regulator operating mode
3572 * @regulator: regulator source
3574 * Get the current regulator operating mode.
3576 unsigned int regulator_get_mode(struct regulator *regulator)
3578 return _regulator_get_mode(regulator->rdev);
3580 EXPORT_SYMBOL_GPL(regulator_get_mode);
3582 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3583 unsigned int *flags)
3585 int ret;
3587 regulator_lock(rdev);
3589 /* sanity check */
3590 if (!rdev->desc->ops->get_error_flags) {
3591 ret = -EINVAL;
3592 goto out;
3595 ret = rdev->desc->ops->get_error_flags(rdev, flags);
3596 out:
3597 regulator_unlock(rdev);
3598 return ret;
3602 * regulator_get_error_flags - get regulator error information
3603 * @regulator: regulator source
3604 * @flags: pointer to store error flags
3606 * Get the current regulator error information.
3608 int regulator_get_error_flags(struct regulator *regulator,
3609 unsigned int *flags)
3611 return _regulator_get_error_flags(regulator->rdev, flags);
3613 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3616 * regulator_set_load - set regulator load
3617 * @regulator: regulator source
3618 * @uA_load: load current
3620 * Notifies the regulator core of a new device load. This is then used by
3621 * DRMS (if enabled by constraints) to set the most efficient regulator
3622 * operating mode for the new regulator loading.
3624 * Consumer devices notify their supply regulator of the maximum power
3625 * they will require (can be taken from device datasheet in the power
3626 * consumption tables) when they change operational status and hence power
3627 * state. Examples of operational state changes that can affect power
3628 * consumption are :-
3630 * o Device is opened / closed.
3631 * o Device I/O is about to begin or has just finished.
3632 * o Device is idling in between work.
3634 * This information is also exported via sysfs to userspace.
3636 * DRMS will sum the total requested load on the regulator and change
3637 * to the most efficient operating mode if platform constraints allow.
3639 * On error a negative errno is returned.
3641 int regulator_set_load(struct regulator *regulator, int uA_load)
3643 struct regulator_dev *rdev = regulator->rdev;
3644 int ret;
3646 regulator_lock(rdev);
3647 regulator->uA_load = uA_load;
3648 ret = drms_uA_update(rdev);
3649 regulator_unlock(rdev);
3651 return ret;
3653 EXPORT_SYMBOL_GPL(regulator_set_load);
3656 * regulator_allow_bypass - allow the regulator to go into bypass mode
3658 * @regulator: Regulator to configure
3659 * @enable: enable or disable bypass mode
3661 * Allow the regulator to go into bypass mode if all other consumers
3662 * for the regulator also enable bypass mode and the machine
3663 * constraints allow this. Bypass mode means that the regulator is
3664 * simply passing the input directly to the output with no regulation.
3666 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3668 struct regulator_dev *rdev = regulator->rdev;
3669 int ret = 0;
3671 if (!rdev->desc->ops->set_bypass)
3672 return 0;
3674 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3675 return 0;
3677 regulator_lock(rdev);
3679 if (enable && !regulator->bypass) {
3680 rdev->bypass_count++;
3682 if (rdev->bypass_count == rdev->open_count) {
3683 ret = rdev->desc->ops->set_bypass(rdev, enable);
3684 if (ret != 0)
3685 rdev->bypass_count--;
3688 } else if (!enable && regulator->bypass) {
3689 rdev->bypass_count--;
3691 if (rdev->bypass_count != rdev->open_count) {
3692 ret = rdev->desc->ops->set_bypass(rdev, enable);
3693 if (ret != 0)
3694 rdev->bypass_count++;
3698 if (ret == 0)
3699 regulator->bypass = enable;
3701 regulator_unlock(rdev);
3703 return ret;
3705 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3708 * regulator_register_notifier - register regulator event notifier
3709 * @regulator: regulator source
3710 * @nb: notifier block
3712 * Register notifier block to receive regulator events.
3714 int regulator_register_notifier(struct regulator *regulator,
3715 struct notifier_block *nb)
3717 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3718 nb);
3720 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3723 * regulator_unregister_notifier - unregister regulator event notifier
3724 * @regulator: regulator source
3725 * @nb: notifier block
3727 * Unregister regulator event notifier block.
3729 int regulator_unregister_notifier(struct regulator *regulator,
3730 struct notifier_block *nb)
3732 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3733 nb);
3735 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3737 /* notify regulator consumers and downstream regulator consumers.
3738 * Note mutex must be held by caller.
3740 static int _notifier_call_chain(struct regulator_dev *rdev,
3741 unsigned long event, void *data)
3743 /* call rdev chain first */
3744 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3748 * regulator_bulk_get - get multiple regulator consumers
3750 * @dev: Device to supply
3751 * @num_consumers: Number of consumers to register
3752 * @consumers: Configuration of consumers; clients are stored here.
3754 * @return 0 on success, an errno on failure.
3756 * This helper function allows drivers to get several regulator
3757 * consumers in one operation. If any of the regulators cannot be
3758 * acquired then any regulators that were allocated will be freed
3759 * before returning to the caller.
3761 int regulator_bulk_get(struct device *dev, int num_consumers,
3762 struct regulator_bulk_data *consumers)
3764 int i;
3765 int ret;
3767 for (i = 0; i < num_consumers; i++)
3768 consumers[i].consumer = NULL;
3770 for (i = 0; i < num_consumers; i++) {
3771 consumers[i].consumer = regulator_get(dev,
3772 consumers[i].supply);
3773 if (IS_ERR(consumers[i].consumer)) {
3774 ret = PTR_ERR(consumers[i].consumer);
3775 dev_err(dev, "Failed to get supply '%s': %d\n",
3776 consumers[i].supply, ret);
3777 consumers[i].consumer = NULL;
3778 goto err;
3782 return 0;
3784 err:
3785 while (--i >= 0)
3786 regulator_put(consumers[i].consumer);
3788 return ret;
3790 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3792 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3794 struct regulator_bulk_data *bulk = data;
3796 bulk->ret = regulator_enable(bulk->consumer);
3800 * regulator_bulk_enable - enable multiple regulator consumers
3802 * @num_consumers: Number of consumers
3803 * @consumers: Consumer data; clients are stored here.
3804 * @return 0 on success, an errno on failure
3806 * This convenience API allows consumers to enable multiple regulator
3807 * clients in a single API call. If any consumers cannot be enabled
3808 * then any others that were enabled will be disabled again prior to
3809 * return.
3811 int regulator_bulk_enable(int num_consumers,
3812 struct regulator_bulk_data *consumers)
3814 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3815 int i;
3816 int ret = 0;
3818 for (i = 0; i < num_consumers; i++) {
3819 if (consumers[i].consumer->always_on)
3820 consumers[i].ret = 0;
3821 else
3822 async_schedule_domain(regulator_bulk_enable_async,
3823 &consumers[i], &async_domain);
3826 async_synchronize_full_domain(&async_domain);
3828 /* If any consumer failed we need to unwind any that succeeded */
3829 for (i = 0; i < num_consumers; i++) {
3830 if (consumers[i].ret != 0) {
3831 ret = consumers[i].ret;
3832 goto err;
3836 return 0;
3838 err:
3839 for (i = 0; i < num_consumers; i++) {
3840 if (consumers[i].ret < 0)
3841 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3842 consumers[i].ret);
3843 else
3844 regulator_disable(consumers[i].consumer);
3847 return ret;
3849 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3852 * regulator_bulk_disable - disable multiple regulator consumers
3854 * @num_consumers: Number of consumers
3855 * @consumers: Consumer data; clients are stored here.
3856 * @return 0 on success, an errno on failure
3858 * This convenience API allows consumers to disable multiple regulator
3859 * clients in a single API call. If any consumers cannot be disabled
3860 * then any others that were disabled will be enabled again prior to
3861 * return.
3863 int regulator_bulk_disable(int num_consumers,
3864 struct regulator_bulk_data *consumers)
3866 int i;
3867 int ret, r;
3869 for (i = num_consumers - 1; i >= 0; --i) {
3870 ret = regulator_disable(consumers[i].consumer);
3871 if (ret != 0)
3872 goto err;
3875 return 0;
3877 err:
3878 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3879 for (++i; i < num_consumers; ++i) {
3880 r = regulator_enable(consumers[i].consumer);
3881 if (r != 0)
3882 pr_err("Failed to re-enable %s: %d\n",
3883 consumers[i].supply, r);
3886 return ret;
3888 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3891 * regulator_bulk_force_disable - force disable multiple regulator consumers
3893 * @num_consumers: Number of consumers
3894 * @consumers: Consumer data; clients are stored here.
3895 * @return 0 on success, an errno on failure
3897 * This convenience API allows consumers to forcibly disable multiple regulator
3898 * clients in a single API call.
3899 * NOTE: This should be used for situations when device damage will
3900 * likely occur if the regulators are not disabled (e.g. over temp).
3901 * Although regulator_force_disable function call for some consumers can
3902 * return error numbers, the function is called for all consumers.
3904 int regulator_bulk_force_disable(int num_consumers,
3905 struct regulator_bulk_data *consumers)
3907 int i;
3908 int ret = 0;
3910 for (i = 0; i < num_consumers; i++) {
3911 consumers[i].ret =
3912 regulator_force_disable(consumers[i].consumer);
3914 /* Store first error for reporting */
3915 if (consumers[i].ret && !ret)
3916 ret = consumers[i].ret;
3919 return ret;
3921 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3924 * regulator_bulk_free - free multiple regulator consumers
3926 * @num_consumers: Number of consumers
3927 * @consumers: Consumer data; clients are stored here.
3929 * This convenience API allows consumers to free multiple regulator
3930 * clients in a single API call.
3932 void regulator_bulk_free(int num_consumers,
3933 struct regulator_bulk_data *consumers)
3935 int i;
3937 for (i = 0; i < num_consumers; i++) {
3938 regulator_put(consumers[i].consumer);
3939 consumers[i].consumer = NULL;
3942 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3945 * regulator_notifier_call_chain - call regulator event notifier
3946 * @rdev: regulator source
3947 * @event: notifier block
3948 * @data: callback-specific data.
3950 * Called by regulator drivers to notify clients a regulator event has
3951 * occurred. We also notify regulator clients downstream.
3952 * Note lock must be held by caller.
3954 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3955 unsigned long event, void *data)
3957 lockdep_assert_held_once(&rdev->mutex);
3959 _notifier_call_chain(rdev, event, data);
3960 return NOTIFY_DONE;
3963 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3966 * regulator_mode_to_status - convert a regulator mode into a status
3968 * @mode: Mode to convert
3970 * Convert a regulator mode into a status.
3972 int regulator_mode_to_status(unsigned int mode)
3974 switch (mode) {
3975 case REGULATOR_MODE_FAST:
3976 return REGULATOR_STATUS_FAST;
3977 case REGULATOR_MODE_NORMAL:
3978 return REGULATOR_STATUS_NORMAL;
3979 case REGULATOR_MODE_IDLE:
3980 return REGULATOR_STATUS_IDLE;
3981 case REGULATOR_MODE_STANDBY:
3982 return REGULATOR_STATUS_STANDBY;
3983 default:
3984 return REGULATOR_STATUS_UNDEFINED;
3987 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3989 static struct attribute *regulator_dev_attrs[] = {
3990 &dev_attr_name.attr,
3991 &dev_attr_num_users.attr,
3992 &dev_attr_type.attr,
3993 &dev_attr_microvolts.attr,
3994 &dev_attr_microamps.attr,
3995 &dev_attr_opmode.attr,
3996 &dev_attr_state.attr,
3997 &dev_attr_status.attr,
3998 &dev_attr_bypass.attr,
3999 &dev_attr_requested_microamps.attr,
4000 &dev_attr_min_microvolts.attr,
4001 &dev_attr_max_microvolts.attr,
4002 &dev_attr_min_microamps.attr,
4003 &dev_attr_max_microamps.attr,
4004 &dev_attr_suspend_standby_state.attr,
4005 &dev_attr_suspend_mem_state.attr,
4006 &dev_attr_suspend_disk_state.attr,
4007 &dev_attr_suspend_standby_microvolts.attr,
4008 &dev_attr_suspend_mem_microvolts.attr,
4009 &dev_attr_suspend_disk_microvolts.attr,
4010 &dev_attr_suspend_standby_mode.attr,
4011 &dev_attr_suspend_mem_mode.attr,
4012 &dev_attr_suspend_disk_mode.attr,
4013 NULL
4017 * To avoid cluttering sysfs (and memory) with useless state, only
4018 * create attributes that can be meaningfully displayed.
4020 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4021 struct attribute *attr, int idx)
4023 struct device *dev = kobj_to_dev(kobj);
4024 struct regulator_dev *rdev = dev_to_rdev(dev);
4025 const struct regulator_ops *ops = rdev->desc->ops;
4026 umode_t mode = attr->mode;
4028 /* these three are always present */
4029 if (attr == &dev_attr_name.attr ||
4030 attr == &dev_attr_num_users.attr ||
4031 attr == &dev_attr_type.attr)
4032 return mode;
4034 /* some attributes need specific methods to be displayed */
4035 if (attr == &dev_attr_microvolts.attr) {
4036 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4037 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4038 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4039 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4040 return mode;
4041 return 0;
4044 if (attr == &dev_attr_microamps.attr)
4045 return ops->get_current_limit ? mode : 0;
4047 if (attr == &dev_attr_opmode.attr)
4048 return ops->get_mode ? mode : 0;
4050 if (attr == &dev_attr_state.attr)
4051 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4053 if (attr == &dev_attr_status.attr)
4054 return ops->get_status ? mode : 0;
4056 if (attr == &dev_attr_bypass.attr)
4057 return ops->get_bypass ? mode : 0;
4059 /* some attributes are type-specific */
4060 if (attr == &dev_attr_requested_microamps.attr)
4061 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4063 /* constraints need specific supporting methods */
4064 if (attr == &dev_attr_min_microvolts.attr ||
4065 attr == &dev_attr_max_microvolts.attr)
4066 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4068 if (attr == &dev_attr_min_microamps.attr ||
4069 attr == &dev_attr_max_microamps.attr)
4070 return ops->set_current_limit ? mode : 0;
4072 if (attr == &dev_attr_suspend_standby_state.attr ||
4073 attr == &dev_attr_suspend_mem_state.attr ||
4074 attr == &dev_attr_suspend_disk_state.attr)
4075 return mode;
4077 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4078 attr == &dev_attr_suspend_mem_microvolts.attr ||
4079 attr == &dev_attr_suspend_disk_microvolts.attr)
4080 return ops->set_suspend_voltage ? mode : 0;
4082 if (attr == &dev_attr_suspend_standby_mode.attr ||
4083 attr == &dev_attr_suspend_mem_mode.attr ||
4084 attr == &dev_attr_suspend_disk_mode.attr)
4085 return ops->set_suspend_mode ? mode : 0;
4087 return mode;
4090 static const struct attribute_group regulator_dev_group = {
4091 .attrs = regulator_dev_attrs,
4092 .is_visible = regulator_attr_is_visible,
4095 static const struct attribute_group *regulator_dev_groups[] = {
4096 &regulator_dev_group,
4097 NULL
4100 static void regulator_dev_release(struct device *dev)
4102 struct regulator_dev *rdev = dev_get_drvdata(dev);
4104 kfree(rdev->constraints);
4105 of_node_put(rdev->dev.of_node);
4106 kfree(rdev);
4109 static void rdev_init_debugfs(struct regulator_dev *rdev)
4111 struct device *parent = rdev->dev.parent;
4112 const char *rname = rdev_get_name(rdev);
4113 char name[NAME_MAX];
4115 /* Avoid duplicate debugfs directory names */
4116 if (parent && rname == rdev->desc->name) {
4117 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4118 rname);
4119 rname = name;
4122 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4123 if (!rdev->debugfs) {
4124 rdev_warn(rdev, "Failed to create debugfs directory\n");
4125 return;
4128 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4129 &rdev->use_count);
4130 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4131 &rdev->open_count);
4132 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4133 &rdev->bypass_count);
4136 static int regulator_register_resolve_supply(struct device *dev, void *data)
4138 struct regulator_dev *rdev = dev_to_rdev(dev);
4140 if (regulator_resolve_supply(rdev))
4141 rdev_dbg(rdev, "unable to resolve supply\n");
4143 return 0;
4146 static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4148 struct coupling_desc *c_desc = &rdev->coupling_desc;
4149 int n_coupled = c_desc->n_coupled;
4150 struct regulator_dev *c_rdev;
4151 int i;
4153 for (i = 1; i < n_coupled; i++) {
4154 /* already resolved */
4155 if (c_desc->coupled_rdevs[i])
4156 continue;
4158 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4160 if (c_rdev) {
4161 c_desc->coupled_rdevs[i] = c_rdev;
4162 c_desc->n_resolved++;
4166 if (rdev->coupling_desc.n_resolved < n_coupled)
4167 return -1;
4168 else
4169 return 0;
4172 static int regulator_register_fill_coupling_array(struct device *dev,
4173 void *data)
4175 struct regulator_dev *rdev = dev_to_rdev(dev);
4177 if (!IS_ENABLED(CONFIG_OF))
4178 return 0;
4180 if (regulator_fill_coupling_array(rdev))
4181 rdev_dbg(rdev, "unable to resolve coupling\n");
4183 return 0;
4186 static int regulator_resolve_coupling(struct regulator_dev *rdev)
4188 int n_phandles;
4190 if (!IS_ENABLED(CONFIG_OF))
4191 n_phandles = 0;
4192 else
4193 n_phandles = of_get_n_coupled(rdev);
4195 if (n_phandles + 1 > MAX_COUPLED) {
4196 rdev_err(rdev, "too many regulators coupled\n");
4197 return -EPERM;
4201 * Every regulator should always have coupling descriptor filled with
4202 * at least pointer to itself.
4204 rdev->coupling_desc.coupled_rdevs[0] = rdev;
4205 rdev->coupling_desc.n_coupled = n_phandles + 1;
4206 rdev->coupling_desc.n_resolved++;
4208 /* regulator isn't coupled */
4209 if (n_phandles == 0)
4210 return 0;
4212 /* regulator, which can't change its voltage, can't be coupled */
4213 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4214 rdev_err(rdev, "voltage operation not allowed\n");
4215 return -EPERM;
4218 if (rdev->constraints->max_spread <= 0) {
4219 rdev_err(rdev, "wrong max_spread value\n");
4220 return -EPERM;
4223 if (!of_check_coupling_data(rdev))
4224 return -EPERM;
4227 * After everything has been checked, try to fill rdevs array
4228 * with pointers to regulators parsed from device tree. If some
4229 * regulators are not registered yet, retry in late init call
4231 regulator_fill_coupling_array(rdev);
4233 return 0;
4237 * regulator_register - register regulator
4238 * @regulator_desc: regulator to register
4239 * @cfg: runtime configuration for regulator
4241 * Called by regulator drivers to register a regulator.
4242 * Returns a valid pointer to struct regulator_dev on success
4243 * or an ERR_PTR() on error.
4245 struct regulator_dev *
4246 regulator_register(const struct regulator_desc *regulator_desc,
4247 const struct regulator_config *cfg)
4249 const struct regulation_constraints *constraints = NULL;
4250 const struct regulator_init_data *init_data;
4251 struct regulator_config *config = NULL;
4252 static atomic_t regulator_no = ATOMIC_INIT(-1);
4253 struct regulator_dev *rdev;
4254 struct device *dev;
4255 int ret, i;
4257 if (regulator_desc == NULL || cfg == NULL)
4258 return ERR_PTR(-EINVAL);
4260 dev = cfg->dev;
4261 WARN_ON(!dev);
4263 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4264 return ERR_PTR(-EINVAL);
4266 if (regulator_desc->type != REGULATOR_VOLTAGE &&
4267 regulator_desc->type != REGULATOR_CURRENT)
4268 return ERR_PTR(-EINVAL);
4270 /* Only one of each should be implemented */
4271 WARN_ON(regulator_desc->ops->get_voltage &&
4272 regulator_desc->ops->get_voltage_sel);
4273 WARN_ON(regulator_desc->ops->set_voltage &&
4274 regulator_desc->ops->set_voltage_sel);
4276 /* If we're using selectors we must implement list_voltage. */
4277 if (regulator_desc->ops->get_voltage_sel &&
4278 !regulator_desc->ops->list_voltage) {
4279 return ERR_PTR(-EINVAL);
4281 if (regulator_desc->ops->set_voltage_sel &&
4282 !regulator_desc->ops->list_voltage) {
4283 return ERR_PTR(-EINVAL);
4286 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4287 if (rdev == NULL)
4288 return ERR_PTR(-ENOMEM);
4291 * Duplicate the config so the driver could override it after
4292 * parsing init data.
4294 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4295 if (config == NULL) {
4296 kfree(rdev);
4297 return ERR_PTR(-ENOMEM);
4300 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4301 &rdev->dev.of_node);
4302 if (!init_data) {
4303 init_data = config->init_data;
4304 rdev->dev.of_node = of_node_get(config->of_node);
4307 mutex_init(&rdev->mutex);
4308 rdev->reg_data = config->driver_data;
4309 rdev->owner = regulator_desc->owner;
4310 rdev->desc = regulator_desc;
4311 if (config->regmap)
4312 rdev->regmap = config->regmap;
4313 else if (dev_get_regmap(dev, NULL))
4314 rdev->regmap = dev_get_regmap(dev, NULL);
4315 else if (dev->parent)
4316 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4317 INIT_LIST_HEAD(&rdev->consumer_list);
4318 INIT_LIST_HEAD(&rdev->list);
4319 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4320 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4322 /* preform any regulator specific init */
4323 if (init_data && init_data->regulator_init) {
4324 ret = init_data->regulator_init(rdev->reg_data);
4325 if (ret < 0)
4326 goto clean;
4329 if (config->ena_gpiod ||
4330 ((config->ena_gpio || config->ena_gpio_initialized) &&
4331 gpio_is_valid(config->ena_gpio))) {
4332 mutex_lock(&regulator_list_mutex);
4333 ret = regulator_ena_gpio_request(rdev, config);
4334 mutex_unlock(&regulator_list_mutex);
4335 if (ret != 0) {
4336 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4337 config->ena_gpio, ret);
4338 goto clean;
4342 /* register with sysfs */
4343 rdev->dev.class = &regulator_class;
4344 rdev->dev.parent = dev;
4345 dev_set_name(&rdev->dev, "regulator.%lu",
4346 (unsigned long) atomic_inc_return(&regulator_no));
4348 /* set regulator constraints */
4349 if (init_data)
4350 constraints = &init_data->constraints;
4352 if (init_data && init_data->supply_regulator)
4353 rdev->supply_name = init_data->supply_regulator;
4354 else if (regulator_desc->supply_name)
4355 rdev->supply_name = regulator_desc->supply_name;
4358 * Attempt to resolve the regulator supply, if specified,
4359 * but don't return an error if we fail because we will try
4360 * to resolve it again later as more regulators are added.
4362 if (regulator_resolve_supply(rdev))
4363 rdev_dbg(rdev, "unable to resolve supply\n");
4365 ret = set_machine_constraints(rdev, constraints);
4366 if (ret < 0)
4367 goto wash;
4369 mutex_lock(&regulator_list_mutex);
4370 ret = regulator_resolve_coupling(rdev);
4371 mutex_unlock(&regulator_list_mutex);
4373 if (ret != 0)
4374 goto wash;
4376 /* add consumers devices */
4377 if (init_data) {
4378 mutex_lock(&regulator_list_mutex);
4379 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4380 ret = set_consumer_device_supply(rdev,
4381 init_data->consumer_supplies[i].dev_name,
4382 init_data->consumer_supplies[i].supply);
4383 if (ret < 0) {
4384 mutex_unlock(&regulator_list_mutex);
4385 dev_err(dev, "Failed to set supply %s\n",
4386 init_data->consumer_supplies[i].supply);
4387 goto unset_supplies;
4390 mutex_unlock(&regulator_list_mutex);
4393 if (!rdev->desc->ops->get_voltage &&
4394 !rdev->desc->ops->list_voltage &&
4395 !rdev->desc->fixed_uV)
4396 rdev->is_switch = true;
4398 dev_set_drvdata(&rdev->dev, rdev);
4399 ret = device_register(&rdev->dev);
4400 if (ret != 0) {
4401 put_device(&rdev->dev);
4402 goto unset_supplies;
4405 rdev_init_debugfs(rdev);
4407 /* try to resolve regulators supply since a new one was registered */
4408 class_for_each_device(&regulator_class, NULL, NULL,
4409 regulator_register_resolve_supply);
4410 kfree(config);
4411 return rdev;
4413 unset_supplies:
4414 mutex_lock(&regulator_list_mutex);
4415 unset_regulator_supplies(rdev);
4416 mutex_unlock(&regulator_list_mutex);
4417 wash:
4418 kfree(rdev->constraints);
4419 mutex_lock(&regulator_list_mutex);
4420 regulator_ena_gpio_free(rdev);
4421 mutex_unlock(&regulator_list_mutex);
4422 clean:
4423 kfree(rdev);
4424 kfree(config);
4425 return ERR_PTR(ret);
4427 EXPORT_SYMBOL_GPL(regulator_register);
4430 * regulator_unregister - unregister regulator
4431 * @rdev: regulator to unregister
4433 * Called by regulator drivers to unregister a regulator.
4435 void regulator_unregister(struct regulator_dev *rdev)
4437 if (rdev == NULL)
4438 return;
4440 if (rdev->supply) {
4441 while (rdev->use_count--)
4442 regulator_disable(rdev->supply);
4443 regulator_put(rdev->supply);
4445 mutex_lock(&regulator_list_mutex);
4446 debugfs_remove_recursive(rdev->debugfs);
4447 flush_work(&rdev->disable_work.work);
4448 WARN_ON(rdev->open_count);
4449 unset_regulator_supplies(rdev);
4450 list_del(&rdev->list);
4451 regulator_ena_gpio_free(rdev);
4452 mutex_unlock(&regulator_list_mutex);
4453 device_unregister(&rdev->dev);
4455 EXPORT_SYMBOL_GPL(regulator_unregister);
4457 #ifdef CONFIG_SUSPEND
4458 static int _regulator_suspend(struct device *dev, void *data)
4460 struct regulator_dev *rdev = dev_to_rdev(dev);
4461 suspend_state_t *state = data;
4462 int ret;
4464 regulator_lock(rdev);
4465 ret = suspend_set_state(rdev, *state);
4466 regulator_unlock(rdev);
4468 return ret;
4472 * regulator_suspend - prepare regulators for system wide suspend
4473 * @state: system suspend state
4475 * Configure each regulator with it's suspend operating parameters for state.
4477 static int regulator_suspend(struct device *dev)
4479 suspend_state_t state = pm_suspend_target_state;
4481 return class_for_each_device(&regulator_class, NULL, &state,
4482 _regulator_suspend);
4485 static int _regulator_resume(struct device *dev, void *data)
4487 int ret = 0;
4488 struct regulator_dev *rdev = dev_to_rdev(dev);
4489 suspend_state_t *state = data;
4490 struct regulator_state *rstate;
4492 rstate = regulator_get_suspend_state(rdev, *state);
4493 if (rstate == NULL)
4494 return 0;
4496 regulator_lock(rdev);
4498 if (rdev->desc->ops->resume &&
4499 (rstate->enabled == ENABLE_IN_SUSPEND ||
4500 rstate->enabled == DISABLE_IN_SUSPEND))
4501 ret = rdev->desc->ops->resume(rdev);
4503 regulator_unlock(rdev);
4505 return ret;
4508 static int regulator_resume(struct device *dev)
4510 suspend_state_t state = pm_suspend_target_state;
4512 return class_for_each_device(&regulator_class, NULL, &state,
4513 _regulator_resume);
4516 #else /* !CONFIG_SUSPEND */
4518 #define regulator_suspend NULL
4519 #define regulator_resume NULL
4521 #endif /* !CONFIG_SUSPEND */
4523 #ifdef CONFIG_PM
4524 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4525 .suspend = regulator_suspend,
4526 .resume = regulator_resume,
4528 #endif
4530 struct class regulator_class = {
4531 .name = "regulator",
4532 .dev_release = regulator_dev_release,
4533 .dev_groups = regulator_dev_groups,
4534 #ifdef CONFIG_PM
4535 .pm = &regulator_pm_ops,
4536 #endif
4539 * regulator_has_full_constraints - the system has fully specified constraints
4541 * Calling this function will cause the regulator API to disable all
4542 * regulators which have a zero use count and don't have an always_on
4543 * constraint in a late_initcall.
4545 * The intention is that this will become the default behaviour in a
4546 * future kernel release so users are encouraged to use this facility
4547 * now.
4549 void regulator_has_full_constraints(void)
4551 has_full_constraints = 1;
4553 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4556 * rdev_get_drvdata - get rdev regulator driver data
4557 * @rdev: regulator
4559 * Get rdev regulator driver private data. This call can be used in the
4560 * regulator driver context.
4562 void *rdev_get_drvdata(struct regulator_dev *rdev)
4564 return rdev->reg_data;
4566 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4569 * regulator_get_drvdata - get regulator driver data
4570 * @regulator: regulator
4572 * Get regulator driver private data. This call can be used in the consumer
4573 * driver context when non API regulator specific functions need to be called.
4575 void *regulator_get_drvdata(struct regulator *regulator)
4577 return regulator->rdev->reg_data;
4579 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4582 * regulator_set_drvdata - set regulator driver data
4583 * @regulator: regulator
4584 * @data: data
4586 void regulator_set_drvdata(struct regulator *regulator, void *data)
4588 regulator->rdev->reg_data = data;
4590 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4593 * regulator_get_id - get regulator ID
4594 * @rdev: regulator
4596 int rdev_get_id(struct regulator_dev *rdev)
4598 return rdev->desc->id;
4600 EXPORT_SYMBOL_GPL(rdev_get_id);
4602 struct device *rdev_get_dev(struct regulator_dev *rdev)
4604 return &rdev->dev;
4606 EXPORT_SYMBOL_GPL(rdev_get_dev);
4608 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4610 return reg_init_data->driver_data;
4612 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4614 #ifdef CONFIG_DEBUG_FS
4615 static int supply_map_show(struct seq_file *sf, void *data)
4617 struct regulator_map *map;
4619 list_for_each_entry(map, &regulator_map_list, list) {
4620 seq_printf(sf, "%s -> %s.%s\n",
4621 rdev_get_name(map->regulator), map->dev_name,
4622 map->supply);
4625 return 0;
4628 static int supply_map_open(struct inode *inode, struct file *file)
4630 return single_open(file, supply_map_show, inode->i_private);
4632 #endif
4634 static const struct file_operations supply_map_fops = {
4635 #ifdef CONFIG_DEBUG_FS
4636 .open = supply_map_open,
4637 .read = seq_read,
4638 .llseek = seq_lseek,
4639 .release = single_release,
4640 #endif
4643 #ifdef CONFIG_DEBUG_FS
4644 struct summary_data {
4645 struct seq_file *s;
4646 struct regulator_dev *parent;
4647 int level;
4650 static void regulator_summary_show_subtree(struct seq_file *s,
4651 struct regulator_dev *rdev,
4652 int level);
4654 static int regulator_summary_show_children(struct device *dev, void *data)
4656 struct regulator_dev *rdev = dev_to_rdev(dev);
4657 struct summary_data *summary_data = data;
4659 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4660 regulator_summary_show_subtree(summary_data->s, rdev,
4661 summary_data->level + 1);
4663 return 0;
4666 static void regulator_summary_show_subtree(struct seq_file *s,
4667 struct regulator_dev *rdev,
4668 int level)
4670 struct regulation_constraints *c;
4671 struct regulator *consumer;
4672 struct summary_data summary_data;
4674 if (!rdev)
4675 return;
4677 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4678 level * 3 + 1, "",
4679 30 - level * 3, rdev_get_name(rdev),
4680 rdev->use_count, rdev->open_count, rdev->bypass_count);
4682 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4683 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4685 c = rdev->constraints;
4686 if (c) {
4687 switch (rdev->desc->type) {
4688 case REGULATOR_VOLTAGE:
4689 seq_printf(s, "%5dmV %5dmV ",
4690 c->min_uV / 1000, c->max_uV / 1000);
4691 break;
4692 case REGULATOR_CURRENT:
4693 seq_printf(s, "%5dmA %5dmA ",
4694 c->min_uA / 1000, c->max_uA / 1000);
4695 break;
4699 seq_puts(s, "\n");
4701 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4702 if (consumer->dev && consumer->dev->class == &regulator_class)
4703 continue;
4705 seq_printf(s, "%*s%-*s ",
4706 (level + 1) * 3 + 1, "",
4707 30 - (level + 1) * 3,
4708 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4710 switch (rdev->desc->type) {
4711 case REGULATOR_VOLTAGE:
4712 seq_printf(s, "%37dmV %5dmV",
4713 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4714 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4715 break;
4716 case REGULATOR_CURRENT:
4717 break;
4720 seq_puts(s, "\n");
4723 summary_data.s = s;
4724 summary_data.level = level;
4725 summary_data.parent = rdev;
4727 class_for_each_device(&regulator_class, NULL, &summary_data,
4728 regulator_summary_show_children);
4731 static int regulator_summary_show_roots(struct device *dev, void *data)
4733 struct regulator_dev *rdev = dev_to_rdev(dev);
4734 struct seq_file *s = data;
4736 if (!rdev->supply)
4737 regulator_summary_show_subtree(s, rdev, 0);
4739 return 0;
4742 static int regulator_summary_show(struct seq_file *s, void *data)
4744 seq_puts(s, " regulator use open bypass voltage current min max\n");
4745 seq_puts(s, "-------------------------------------------------------------------------------\n");
4747 class_for_each_device(&regulator_class, NULL, s,
4748 regulator_summary_show_roots);
4750 return 0;
4753 static int regulator_summary_open(struct inode *inode, struct file *file)
4755 return single_open(file, regulator_summary_show, inode->i_private);
4757 #endif
4759 static const struct file_operations regulator_summary_fops = {
4760 #ifdef CONFIG_DEBUG_FS
4761 .open = regulator_summary_open,
4762 .read = seq_read,
4763 .llseek = seq_lseek,
4764 .release = single_release,
4765 #endif
4768 static int __init regulator_init(void)
4770 int ret;
4772 ret = class_register(&regulator_class);
4774 debugfs_root = debugfs_create_dir("regulator", NULL);
4775 if (!debugfs_root)
4776 pr_warn("regulator: Failed to create debugfs directory\n");
4778 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4779 &supply_map_fops);
4781 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4782 NULL, &regulator_summary_fops);
4784 regulator_dummy_init();
4786 return ret;
4789 /* init early to allow our consumers to complete system booting */
4790 core_initcall(regulator_init);
4792 static int __init regulator_late_cleanup(struct device *dev, void *data)
4794 struct regulator_dev *rdev = dev_to_rdev(dev);
4795 const struct regulator_ops *ops = rdev->desc->ops;
4796 struct regulation_constraints *c = rdev->constraints;
4797 int enabled, ret;
4799 if (c && c->always_on)
4800 return 0;
4802 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4803 return 0;
4805 regulator_lock(rdev);
4807 if (rdev->use_count)
4808 goto unlock;
4810 /* If we can't read the status assume it's on. */
4811 if (ops->is_enabled)
4812 enabled = ops->is_enabled(rdev);
4813 else
4814 enabled = 1;
4816 if (!enabled)
4817 goto unlock;
4819 if (have_full_constraints()) {
4820 /* We log since this may kill the system if it goes
4821 * wrong. */
4822 rdev_info(rdev, "disabling\n");
4823 ret = _regulator_do_disable(rdev);
4824 if (ret != 0)
4825 rdev_err(rdev, "couldn't disable: %d\n", ret);
4826 } else {
4827 /* The intention is that in future we will
4828 * assume that full constraints are provided
4829 * so warn even if we aren't going to do
4830 * anything here.
4832 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4835 unlock:
4836 regulator_unlock(rdev);
4838 return 0;
4841 static int __init regulator_init_complete(void)
4844 * Since DT doesn't provide an idiomatic mechanism for
4845 * enabling full constraints and since it's much more natural
4846 * with DT to provide them just assume that a DT enabled
4847 * system has full constraints.
4849 if (of_have_populated_dt())
4850 has_full_constraints = true;
4853 * Regulators may had failed to resolve their input supplies
4854 * when were registered, either because the input supply was
4855 * not registered yet or because its parent device was not
4856 * bound yet. So attempt to resolve the input supplies for
4857 * pending regulators before trying to disable unused ones.
4859 class_for_each_device(&regulator_class, NULL, NULL,
4860 regulator_register_resolve_supply);
4862 /* If we have a full configuration then disable any regulators
4863 * we have permission to change the status for and which are
4864 * not in use or always_on. This is effectively the default
4865 * for DT and ACPI as they have full constraints.
4867 class_for_each_device(&regulator_class, NULL, NULL,
4868 regulator_late_cleanup);
4870 class_for_each_device(&regulator_class, NULL, NULL,
4871 regulator_register_fill_coupling_array);
4873 return 0;
4875 late_initcall_sync(regulator_init_complete);