Merge tag 'iio-for-4.18b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[linux-2.6/btrfs-unstable.git] / mm / hmm.c
blob486dc394a5a3cd1fe226e215717631619c8a4195
1 /*
2 * Copyright 2013 Red Hat Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * Authors: Jérôme Glisse <jglisse@redhat.com>
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
40 * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
51 * struct hmm - HMM per mm struct
53 * @mm: mm struct this HMM struct is bound to
54 * @lock: lock protecting ranges list
55 * @sequence: we track updates to the CPU page table with a sequence number
56 * @ranges: list of range being snapshotted
57 * @mirrors: list of mirrors for this mm
58 * @mmu_notifier: mmu notifier to track updates to CPU page table
59 * @mirrors_sem: read/write semaphore protecting the mirrors list
61 struct hmm {
62 struct mm_struct *mm;
63 spinlock_t lock;
64 atomic_t sequence;
65 struct list_head ranges;
66 struct list_head mirrors;
67 struct mmu_notifier mmu_notifier;
68 struct rw_semaphore mirrors_sem;
72 * hmm_register - register HMM against an mm (HMM internal)
74 * @mm: mm struct to attach to
76 * This is not intended to be used directly by device drivers. It allocates an
77 * HMM struct if mm does not have one, and initializes it.
79 static struct hmm *hmm_register(struct mm_struct *mm)
81 struct hmm *hmm = READ_ONCE(mm->hmm);
82 bool cleanup = false;
85 * The hmm struct can only be freed once the mm_struct goes away,
86 * hence we should always have pre-allocated an new hmm struct
87 * above.
89 if (hmm)
90 return hmm;
92 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93 if (!hmm)
94 return NULL;
95 INIT_LIST_HEAD(&hmm->mirrors);
96 init_rwsem(&hmm->mirrors_sem);
97 atomic_set(&hmm->sequence, 0);
98 hmm->mmu_notifier.ops = NULL;
99 INIT_LIST_HEAD(&hmm->ranges);
100 spin_lock_init(&hmm->lock);
101 hmm->mm = mm;
104 * We should only get here if hold the mmap_sem in write mode ie on
105 * registration of first mirror through hmm_mirror_register()
107 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109 kfree(hmm);
110 return NULL;
113 spin_lock(&mm->page_table_lock);
114 if (!mm->hmm)
115 mm->hmm = hmm;
116 else
117 cleanup = true;
118 spin_unlock(&mm->page_table_lock);
120 if (cleanup) {
121 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122 kfree(hmm);
125 return mm->hmm;
128 void hmm_mm_destroy(struct mm_struct *mm)
130 kfree(mm->hmm);
133 static void hmm_invalidate_range(struct hmm *hmm,
134 enum hmm_update_type action,
135 unsigned long start,
136 unsigned long end)
138 struct hmm_mirror *mirror;
139 struct hmm_range *range;
141 spin_lock(&hmm->lock);
142 list_for_each_entry(range, &hmm->ranges, list) {
143 unsigned long addr, idx, npages;
145 if (end < range->start || start >= range->end)
146 continue;
148 range->valid = false;
149 addr = max(start, range->start);
150 idx = (addr - range->start) >> PAGE_SHIFT;
151 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
154 spin_unlock(&hmm->lock);
156 down_read(&hmm->mirrors_sem);
157 list_for_each_entry(mirror, &hmm->mirrors, list)
158 mirror->ops->sync_cpu_device_pagetables(mirror, action,
159 start, end);
160 up_read(&hmm->mirrors_sem);
163 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
165 struct hmm_mirror *mirror;
166 struct hmm *hmm = mm->hmm;
168 down_write(&hmm->mirrors_sem);
169 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
170 list);
171 while (mirror) {
172 list_del_init(&mirror->list);
173 if (mirror->ops->release) {
175 * Drop mirrors_sem so callback can wait on any pending
176 * work that might itself trigger mmu_notifier callback
177 * and thus would deadlock with us.
179 up_write(&hmm->mirrors_sem);
180 mirror->ops->release(mirror);
181 down_write(&hmm->mirrors_sem);
183 mirror = list_first_entry_or_null(&hmm->mirrors,
184 struct hmm_mirror, list);
186 up_write(&hmm->mirrors_sem);
189 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
190 struct mm_struct *mm,
191 unsigned long start,
192 unsigned long end)
194 struct hmm *hmm = mm->hmm;
196 VM_BUG_ON(!hmm);
198 atomic_inc(&hmm->sequence);
201 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
202 struct mm_struct *mm,
203 unsigned long start,
204 unsigned long end)
206 struct hmm *hmm = mm->hmm;
208 VM_BUG_ON(!hmm);
210 hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
213 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
214 .release = hmm_release,
215 .invalidate_range_start = hmm_invalidate_range_start,
216 .invalidate_range_end = hmm_invalidate_range_end,
220 * hmm_mirror_register() - register a mirror against an mm
222 * @mirror: new mirror struct to register
223 * @mm: mm to register against
225 * To start mirroring a process address space, the device driver must register
226 * an HMM mirror struct.
228 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
230 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
232 /* Sanity check */
233 if (!mm || !mirror || !mirror->ops)
234 return -EINVAL;
236 again:
237 mirror->hmm = hmm_register(mm);
238 if (!mirror->hmm)
239 return -ENOMEM;
241 down_write(&mirror->hmm->mirrors_sem);
242 if (mirror->hmm->mm == NULL) {
244 * A racing hmm_mirror_unregister() is about to destroy the hmm
245 * struct. Try again to allocate a new one.
247 up_write(&mirror->hmm->mirrors_sem);
248 mirror->hmm = NULL;
249 goto again;
250 } else {
251 list_add(&mirror->list, &mirror->hmm->mirrors);
252 up_write(&mirror->hmm->mirrors_sem);
255 return 0;
257 EXPORT_SYMBOL(hmm_mirror_register);
260 * hmm_mirror_unregister() - unregister a mirror
262 * @mirror: new mirror struct to register
264 * Stop mirroring a process address space, and cleanup.
266 void hmm_mirror_unregister(struct hmm_mirror *mirror)
268 bool should_unregister = false;
269 struct mm_struct *mm;
270 struct hmm *hmm;
272 if (mirror->hmm == NULL)
273 return;
275 hmm = mirror->hmm;
276 down_write(&hmm->mirrors_sem);
277 list_del_init(&mirror->list);
278 should_unregister = list_empty(&hmm->mirrors);
279 mirror->hmm = NULL;
280 mm = hmm->mm;
281 hmm->mm = NULL;
282 up_write(&hmm->mirrors_sem);
284 if (!should_unregister || mm == NULL)
285 return;
287 spin_lock(&mm->page_table_lock);
288 if (mm->hmm == hmm)
289 mm->hmm = NULL;
290 spin_unlock(&mm->page_table_lock);
292 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
293 kfree(hmm);
295 EXPORT_SYMBOL(hmm_mirror_unregister);
297 struct hmm_vma_walk {
298 struct hmm_range *range;
299 unsigned long last;
300 bool fault;
301 bool block;
304 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
305 bool write_fault, uint64_t *pfn)
307 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
308 struct hmm_vma_walk *hmm_vma_walk = walk->private;
309 struct hmm_range *range = hmm_vma_walk->range;
310 struct vm_area_struct *vma = walk->vma;
311 int r;
313 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
314 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
315 r = handle_mm_fault(vma, addr, flags);
316 if (r & VM_FAULT_RETRY)
317 return -EBUSY;
318 if (r & VM_FAULT_ERROR) {
319 *pfn = range->values[HMM_PFN_ERROR];
320 return -EFAULT;
323 return -EAGAIN;
326 static int hmm_pfns_bad(unsigned long addr,
327 unsigned long end,
328 struct mm_walk *walk)
330 struct hmm_vma_walk *hmm_vma_walk = walk->private;
331 struct hmm_range *range = hmm_vma_walk->range;
332 uint64_t *pfns = range->pfns;
333 unsigned long i;
335 i = (addr - range->start) >> PAGE_SHIFT;
336 for (; addr < end; addr += PAGE_SIZE, i++)
337 pfns[i] = range->values[HMM_PFN_ERROR];
339 return 0;
343 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
344 * @start: range virtual start address (inclusive)
345 * @end: range virtual end address (exclusive)
346 * @fault: should we fault or not ?
347 * @write_fault: write fault ?
348 * @walk: mm_walk structure
349 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
351 * This function will be called whenever pmd_none() or pte_none() returns true,
352 * or whenever there is no page directory covering the virtual address range.
354 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
355 bool fault, bool write_fault,
356 struct mm_walk *walk)
358 struct hmm_vma_walk *hmm_vma_walk = walk->private;
359 struct hmm_range *range = hmm_vma_walk->range;
360 uint64_t *pfns = range->pfns;
361 unsigned long i;
363 hmm_vma_walk->last = addr;
364 i = (addr - range->start) >> PAGE_SHIFT;
365 for (; addr < end; addr += PAGE_SIZE, i++) {
366 pfns[i] = range->values[HMM_PFN_NONE];
367 if (fault || write_fault) {
368 int ret;
370 ret = hmm_vma_do_fault(walk, addr, write_fault,
371 &pfns[i]);
372 if (ret != -EAGAIN)
373 return ret;
377 return (fault || write_fault) ? -EAGAIN : 0;
380 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
381 uint64_t pfns, uint64_t cpu_flags,
382 bool *fault, bool *write_fault)
384 struct hmm_range *range = hmm_vma_walk->range;
386 *fault = *write_fault = false;
387 if (!hmm_vma_walk->fault)
388 return;
390 /* We aren't ask to do anything ... */
391 if (!(pfns & range->flags[HMM_PFN_VALID]))
392 return;
393 /* If this is device memory than only fault if explicitly requested */
394 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
395 /* Do we fault on device memory ? */
396 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
397 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
398 *fault = true;
400 return;
403 /* If CPU page table is not valid then we need to fault */
404 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
405 /* Need to write fault ? */
406 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
407 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
408 *write_fault = true;
409 *fault = true;
413 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
414 const uint64_t *pfns, unsigned long npages,
415 uint64_t cpu_flags, bool *fault,
416 bool *write_fault)
418 unsigned long i;
420 if (!hmm_vma_walk->fault) {
421 *fault = *write_fault = false;
422 return;
425 for (i = 0; i < npages; ++i) {
426 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
427 fault, write_fault);
428 if ((*fault) || (*write_fault))
429 return;
433 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
434 struct mm_walk *walk)
436 struct hmm_vma_walk *hmm_vma_walk = walk->private;
437 struct hmm_range *range = hmm_vma_walk->range;
438 bool fault, write_fault;
439 unsigned long i, npages;
440 uint64_t *pfns;
442 i = (addr - range->start) >> PAGE_SHIFT;
443 npages = (end - addr) >> PAGE_SHIFT;
444 pfns = &range->pfns[i];
445 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
446 0, &fault, &write_fault);
447 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
450 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
452 if (pmd_protnone(pmd))
453 return 0;
454 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
455 range->flags[HMM_PFN_WRITE] :
456 range->flags[HMM_PFN_VALID];
459 static int hmm_vma_handle_pmd(struct mm_walk *walk,
460 unsigned long addr,
461 unsigned long end,
462 uint64_t *pfns,
463 pmd_t pmd)
465 struct hmm_vma_walk *hmm_vma_walk = walk->private;
466 struct hmm_range *range = hmm_vma_walk->range;
467 unsigned long pfn, npages, i;
468 bool fault, write_fault;
469 uint64_t cpu_flags;
471 npages = (end - addr) >> PAGE_SHIFT;
472 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
473 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
474 &fault, &write_fault);
476 if (pmd_protnone(pmd) || fault || write_fault)
477 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
479 pfn = pmd_pfn(pmd) + pte_index(addr);
480 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
481 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
482 hmm_vma_walk->last = end;
483 return 0;
486 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
488 if (pte_none(pte) || !pte_present(pte))
489 return 0;
490 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
491 range->flags[HMM_PFN_WRITE] :
492 range->flags[HMM_PFN_VALID];
495 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
496 unsigned long end, pmd_t *pmdp, pte_t *ptep,
497 uint64_t *pfn)
499 struct hmm_vma_walk *hmm_vma_walk = walk->private;
500 struct hmm_range *range = hmm_vma_walk->range;
501 struct vm_area_struct *vma = walk->vma;
502 bool fault, write_fault;
503 uint64_t cpu_flags;
504 pte_t pte = *ptep;
505 uint64_t orig_pfn = *pfn;
507 *pfn = range->values[HMM_PFN_NONE];
508 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
509 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
510 &fault, &write_fault);
512 if (pte_none(pte)) {
513 if (fault || write_fault)
514 goto fault;
515 return 0;
518 if (!pte_present(pte)) {
519 swp_entry_t entry = pte_to_swp_entry(pte);
521 if (!non_swap_entry(entry)) {
522 if (fault || write_fault)
523 goto fault;
524 return 0;
528 * This is a special swap entry, ignore migration, use
529 * device and report anything else as error.
531 if (is_device_private_entry(entry)) {
532 cpu_flags = range->flags[HMM_PFN_VALID] |
533 range->flags[HMM_PFN_DEVICE_PRIVATE];
534 cpu_flags |= is_write_device_private_entry(entry) ?
535 range->flags[HMM_PFN_WRITE] : 0;
536 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
537 &fault, &write_fault);
538 if (fault || write_fault)
539 goto fault;
540 *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
541 *pfn |= cpu_flags;
542 return 0;
545 if (is_migration_entry(entry)) {
546 if (fault || write_fault) {
547 pte_unmap(ptep);
548 hmm_vma_walk->last = addr;
549 migration_entry_wait(vma->vm_mm,
550 pmdp, addr);
551 return -EAGAIN;
553 return 0;
556 /* Report error for everything else */
557 *pfn = range->values[HMM_PFN_ERROR];
558 return -EFAULT;
561 if (fault || write_fault)
562 goto fault;
564 *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
565 return 0;
567 fault:
568 pte_unmap(ptep);
569 /* Fault any virtual address we were asked to fault */
570 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
573 static int hmm_vma_walk_pmd(pmd_t *pmdp,
574 unsigned long start,
575 unsigned long end,
576 struct mm_walk *walk)
578 struct hmm_vma_walk *hmm_vma_walk = walk->private;
579 struct hmm_range *range = hmm_vma_walk->range;
580 uint64_t *pfns = range->pfns;
581 unsigned long addr = start, i;
582 pte_t *ptep;
584 i = (addr - range->start) >> PAGE_SHIFT;
586 again:
587 if (pmd_none(*pmdp))
588 return hmm_vma_walk_hole(start, end, walk);
590 if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
591 return hmm_pfns_bad(start, end, walk);
593 if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
594 pmd_t pmd;
597 * No need to take pmd_lock here, even if some other threads
598 * is splitting the huge pmd we will get that event through
599 * mmu_notifier callback.
601 * So just read pmd value and check again its a transparent
602 * huge or device mapping one and compute corresponding pfn
603 * values.
605 pmd = pmd_read_atomic(pmdp);
606 barrier();
607 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
608 goto again;
610 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
613 if (pmd_bad(*pmdp))
614 return hmm_pfns_bad(start, end, walk);
616 ptep = pte_offset_map(pmdp, addr);
617 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
618 int r;
620 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
621 if (r) {
622 /* hmm_vma_handle_pte() did unmap pte directory */
623 hmm_vma_walk->last = addr;
624 return r;
627 pte_unmap(ptep - 1);
629 hmm_vma_walk->last = addr;
630 return 0;
633 static void hmm_pfns_clear(struct hmm_range *range,
634 uint64_t *pfns,
635 unsigned long addr,
636 unsigned long end)
638 for (; addr < end; addr += PAGE_SIZE, pfns++)
639 *pfns = range->values[HMM_PFN_NONE];
642 static void hmm_pfns_special(struct hmm_range *range)
644 unsigned long addr = range->start, i = 0;
646 for (; addr < range->end; addr += PAGE_SIZE, i++)
647 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
651 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
652 * @range: range being snapshotted
653 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
654 * vma permission, 0 success
656 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
657 * validity is tracked by range struct. See hmm_vma_range_done() for further
658 * information.
660 * The range struct is initialized here. It tracks the CPU page table, but only
661 * if the function returns success (0), in which case the caller must then call
662 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
664 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
665 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
667 int hmm_vma_get_pfns(struct hmm_range *range)
669 struct vm_area_struct *vma = range->vma;
670 struct hmm_vma_walk hmm_vma_walk;
671 struct mm_walk mm_walk;
672 struct hmm *hmm;
674 /* Sanity check, this really should not happen ! */
675 if (range->start < vma->vm_start || range->start >= vma->vm_end)
676 return -EINVAL;
677 if (range->end < vma->vm_start || range->end > vma->vm_end)
678 return -EINVAL;
680 hmm = hmm_register(vma->vm_mm);
681 if (!hmm)
682 return -ENOMEM;
683 /* Caller must have registered a mirror, via hmm_mirror_register() ! */
684 if (!hmm->mmu_notifier.ops)
685 return -EINVAL;
687 /* FIXME support hugetlb fs */
688 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
689 hmm_pfns_special(range);
690 return -EINVAL;
693 if (!(vma->vm_flags & VM_READ)) {
695 * If vma do not allow read access, then assume that it does
696 * not allow write access, either. Architecture that allow
697 * write without read access are not supported by HMM, because
698 * operations such has atomic access would not work.
700 hmm_pfns_clear(range, range->pfns, range->start, range->end);
701 return -EPERM;
704 /* Initialize range to track CPU page table update */
705 spin_lock(&hmm->lock);
706 range->valid = true;
707 list_add_rcu(&range->list, &hmm->ranges);
708 spin_unlock(&hmm->lock);
710 hmm_vma_walk.fault = false;
711 hmm_vma_walk.range = range;
712 mm_walk.private = &hmm_vma_walk;
714 mm_walk.vma = vma;
715 mm_walk.mm = vma->vm_mm;
716 mm_walk.pte_entry = NULL;
717 mm_walk.test_walk = NULL;
718 mm_walk.hugetlb_entry = NULL;
719 mm_walk.pmd_entry = hmm_vma_walk_pmd;
720 mm_walk.pte_hole = hmm_vma_walk_hole;
722 walk_page_range(range->start, range->end, &mm_walk);
723 return 0;
725 EXPORT_SYMBOL(hmm_vma_get_pfns);
728 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
729 * @range: range being tracked
730 * Returns: false if range data has been invalidated, true otherwise
732 * Range struct is used to track updates to the CPU page table after a call to
733 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
734 * using the data, or wants to lock updates to the data it got from those
735 * functions, it must call the hmm_vma_range_done() function, which will then
736 * stop tracking CPU page table updates.
738 * Note that device driver must still implement general CPU page table update
739 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
740 * the mmu_notifier API directly.
742 * CPU page table update tracking done through hmm_range is only temporary and
743 * to be used while trying to duplicate CPU page table contents for a range of
744 * virtual addresses.
746 * There are two ways to use this :
747 * again:
748 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
749 * trans = device_build_page_table_update_transaction(pfns);
750 * device_page_table_lock();
751 * if (!hmm_vma_range_done(range)) {
752 * device_page_table_unlock();
753 * goto again;
755 * device_commit_transaction(trans);
756 * device_page_table_unlock();
758 * Or:
759 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
760 * device_page_table_lock();
761 * hmm_vma_range_done(range);
762 * device_update_page_table(range->pfns);
763 * device_page_table_unlock();
765 bool hmm_vma_range_done(struct hmm_range *range)
767 unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
768 struct hmm *hmm;
770 if (range->end <= range->start) {
771 BUG();
772 return false;
775 hmm = hmm_register(range->vma->vm_mm);
776 if (!hmm) {
777 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
778 return false;
781 spin_lock(&hmm->lock);
782 list_del_rcu(&range->list);
783 spin_unlock(&hmm->lock);
785 return range->valid;
787 EXPORT_SYMBOL(hmm_vma_range_done);
790 * hmm_vma_fault() - try to fault some address in a virtual address range
791 * @range: range being faulted
792 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
793 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
795 * This is similar to a regular CPU page fault except that it will not trigger
796 * any memory migration if the memory being faulted is not accessible by CPUs.
798 * On error, for one virtual address in the range, the function will mark the
799 * corresponding HMM pfn entry with an error flag.
801 * Expected use pattern:
802 * retry:
803 * down_read(&mm->mmap_sem);
804 * // Find vma and address device wants to fault, initialize hmm_pfn_t
805 * // array accordingly
806 * ret = hmm_vma_fault(range, write, block);
807 * switch (ret) {
808 * case -EAGAIN:
809 * hmm_vma_range_done(range);
810 * // You might want to rate limit or yield to play nicely, you may
811 * // also commit any valid pfn in the array assuming that you are
812 * // getting true from hmm_vma_range_monitor_end()
813 * goto retry;
814 * case 0:
815 * break;
816 * case -ENOMEM:
817 * case -EINVAL:
818 * case -EPERM:
819 * default:
820 * // Handle error !
821 * up_read(&mm->mmap_sem)
822 * return;
824 * // Take device driver lock that serialize device page table update
825 * driver_lock_device_page_table_update();
826 * hmm_vma_range_done(range);
827 * // Commit pfns we got from hmm_vma_fault()
828 * driver_unlock_device_page_table_update();
829 * up_read(&mm->mmap_sem)
831 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
832 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
834 * YOU HAVE BEEN WARNED !
836 int hmm_vma_fault(struct hmm_range *range, bool block)
838 struct vm_area_struct *vma = range->vma;
839 unsigned long start = range->start;
840 struct hmm_vma_walk hmm_vma_walk;
841 struct mm_walk mm_walk;
842 struct hmm *hmm;
843 int ret;
845 /* Sanity check, this really should not happen ! */
846 if (range->start < vma->vm_start || range->start >= vma->vm_end)
847 return -EINVAL;
848 if (range->end < vma->vm_start || range->end > vma->vm_end)
849 return -EINVAL;
851 hmm = hmm_register(vma->vm_mm);
852 if (!hmm) {
853 hmm_pfns_clear(range, range->pfns, range->start, range->end);
854 return -ENOMEM;
856 /* Caller must have registered a mirror using hmm_mirror_register() */
857 if (!hmm->mmu_notifier.ops)
858 return -EINVAL;
860 /* FIXME support hugetlb fs */
861 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
862 hmm_pfns_special(range);
863 return -EINVAL;
866 if (!(vma->vm_flags & VM_READ)) {
868 * If vma do not allow read access, then assume that it does
869 * not allow write access, either. Architecture that allow
870 * write without read access are not supported by HMM, because
871 * operations such has atomic access would not work.
873 hmm_pfns_clear(range, range->pfns, range->start, range->end);
874 return -EPERM;
877 /* Initialize range to track CPU page table update */
878 spin_lock(&hmm->lock);
879 range->valid = true;
880 list_add_rcu(&range->list, &hmm->ranges);
881 spin_unlock(&hmm->lock);
883 hmm_vma_walk.fault = true;
884 hmm_vma_walk.block = block;
885 hmm_vma_walk.range = range;
886 mm_walk.private = &hmm_vma_walk;
887 hmm_vma_walk.last = range->start;
889 mm_walk.vma = vma;
890 mm_walk.mm = vma->vm_mm;
891 mm_walk.pte_entry = NULL;
892 mm_walk.test_walk = NULL;
893 mm_walk.hugetlb_entry = NULL;
894 mm_walk.pmd_entry = hmm_vma_walk_pmd;
895 mm_walk.pte_hole = hmm_vma_walk_hole;
897 do {
898 ret = walk_page_range(start, range->end, &mm_walk);
899 start = hmm_vma_walk.last;
900 } while (ret == -EAGAIN);
902 if (ret) {
903 unsigned long i;
905 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
906 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
907 range->end);
908 hmm_vma_range_done(range);
910 return ret;
912 EXPORT_SYMBOL(hmm_vma_fault);
913 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
916 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
917 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
918 unsigned long addr)
920 struct page *page;
922 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
923 if (!page)
924 return NULL;
925 lock_page(page);
926 return page;
928 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
931 static void hmm_devmem_ref_release(struct percpu_ref *ref)
933 struct hmm_devmem *devmem;
935 devmem = container_of(ref, struct hmm_devmem, ref);
936 complete(&devmem->completion);
939 static void hmm_devmem_ref_exit(void *data)
941 struct percpu_ref *ref = data;
942 struct hmm_devmem *devmem;
944 devmem = container_of(ref, struct hmm_devmem, ref);
945 percpu_ref_exit(ref);
946 devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
949 static void hmm_devmem_ref_kill(void *data)
951 struct percpu_ref *ref = data;
952 struct hmm_devmem *devmem;
954 devmem = container_of(ref, struct hmm_devmem, ref);
955 percpu_ref_kill(ref);
956 wait_for_completion(&devmem->completion);
957 devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
960 static int hmm_devmem_fault(struct vm_area_struct *vma,
961 unsigned long addr,
962 const struct page *page,
963 unsigned int flags,
964 pmd_t *pmdp)
966 struct hmm_devmem *devmem = page->pgmap->data;
968 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
971 static void hmm_devmem_free(struct page *page, void *data)
973 struct hmm_devmem *devmem = data;
975 devmem->ops->free(devmem, page);
978 static DEFINE_MUTEX(hmm_devmem_lock);
979 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
981 static void hmm_devmem_radix_release(struct resource *resource)
983 resource_size_t key, align_start, align_size;
985 align_start = resource->start & ~(PA_SECTION_SIZE - 1);
986 align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
988 mutex_lock(&hmm_devmem_lock);
989 for (key = resource->start;
990 key <= resource->end;
991 key += PA_SECTION_SIZE)
992 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
993 mutex_unlock(&hmm_devmem_lock);
996 static void hmm_devmem_release(struct device *dev, void *data)
998 struct hmm_devmem *devmem = data;
999 struct resource *resource = devmem->resource;
1000 unsigned long start_pfn, npages;
1001 struct zone *zone;
1002 struct page *page;
1004 if (percpu_ref_tryget_live(&devmem->ref)) {
1005 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
1006 percpu_ref_put(&devmem->ref);
1009 /* pages are dead and unused, undo the arch mapping */
1010 start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1011 npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1013 page = pfn_to_page(start_pfn);
1014 zone = page_zone(page);
1016 mem_hotplug_begin();
1017 if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1018 __remove_pages(zone, start_pfn, npages, NULL);
1019 else
1020 arch_remove_memory(start_pfn << PAGE_SHIFT,
1021 npages << PAGE_SHIFT, NULL);
1022 mem_hotplug_done();
1024 hmm_devmem_radix_release(resource);
1027 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1029 resource_size_t key, align_start, align_size, align_end;
1030 struct device *device = devmem->device;
1031 int ret, nid, is_ram;
1032 unsigned long pfn;
1034 align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1035 align_size = ALIGN(devmem->resource->start +
1036 resource_size(devmem->resource),
1037 PA_SECTION_SIZE) - align_start;
1039 is_ram = region_intersects(align_start, align_size,
1040 IORESOURCE_SYSTEM_RAM,
1041 IORES_DESC_NONE);
1042 if (is_ram == REGION_MIXED) {
1043 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1044 __func__, devmem->resource);
1045 return -ENXIO;
1047 if (is_ram == REGION_INTERSECTS)
1048 return -ENXIO;
1050 if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1051 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1052 else
1053 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1055 devmem->pagemap.res = *devmem->resource;
1056 devmem->pagemap.page_fault = hmm_devmem_fault;
1057 devmem->pagemap.page_free = hmm_devmem_free;
1058 devmem->pagemap.dev = devmem->device;
1059 devmem->pagemap.ref = &devmem->ref;
1060 devmem->pagemap.data = devmem;
1062 mutex_lock(&hmm_devmem_lock);
1063 align_end = align_start + align_size - 1;
1064 for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1065 struct hmm_devmem *dup;
1067 dup = radix_tree_lookup(&hmm_devmem_radix,
1068 key >> PA_SECTION_SHIFT);
1069 if (dup) {
1070 dev_err(device, "%s: collides with mapping for %s\n",
1071 __func__, dev_name(dup->device));
1072 mutex_unlock(&hmm_devmem_lock);
1073 ret = -EBUSY;
1074 goto error;
1076 ret = radix_tree_insert(&hmm_devmem_radix,
1077 key >> PA_SECTION_SHIFT,
1078 devmem);
1079 if (ret) {
1080 dev_err(device, "%s: failed: %d\n", __func__, ret);
1081 mutex_unlock(&hmm_devmem_lock);
1082 goto error_radix;
1085 mutex_unlock(&hmm_devmem_lock);
1087 nid = dev_to_node(device);
1088 if (nid < 0)
1089 nid = numa_mem_id();
1091 mem_hotplug_begin();
1093 * For device private memory we call add_pages() as we only need to
1094 * allocate and initialize struct page for the device memory. More-
1095 * over the device memory is un-accessible thus we do not want to
1096 * create a linear mapping for the memory like arch_add_memory()
1097 * would do.
1099 * For device public memory, which is accesible by the CPU, we do
1100 * want the linear mapping and thus use arch_add_memory().
1102 if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1103 ret = arch_add_memory(nid, align_start, align_size, NULL,
1104 false);
1105 else
1106 ret = add_pages(nid, align_start >> PAGE_SHIFT,
1107 align_size >> PAGE_SHIFT, NULL, false);
1108 if (ret) {
1109 mem_hotplug_done();
1110 goto error_add_memory;
1112 move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1113 align_start >> PAGE_SHIFT,
1114 align_size >> PAGE_SHIFT, NULL);
1115 mem_hotplug_done();
1117 for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1118 struct page *page = pfn_to_page(pfn);
1120 page->pgmap = &devmem->pagemap;
1122 return 0;
1124 error_add_memory:
1125 untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1126 error_radix:
1127 hmm_devmem_radix_release(devmem->resource);
1128 error:
1129 return ret;
1132 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1134 struct hmm_devmem *devmem = data;
1136 return devmem->resource == match_data;
1139 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1141 devres_release(devmem->device, &hmm_devmem_release,
1142 &hmm_devmem_match, devmem->resource);
1146 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1148 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1149 * @device: device struct to bind the resource too
1150 * @size: size in bytes of the device memory to add
1151 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1153 * This function first finds an empty range of physical address big enough to
1154 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1155 * in turn allocates struct pages. It does not do anything beyond that; all
1156 * events affecting the memory will go through the various callbacks provided
1157 * by hmm_devmem_ops struct.
1159 * Device driver should call this function during device initialization and
1160 * is then responsible of memory management. HMM only provides helpers.
1162 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1163 struct device *device,
1164 unsigned long size)
1166 struct hmm_devmem *devmem;
1167 resource_size_t addr;
1168 int ret;
1170 static_branch_enable(&device_private_key);
1172 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1173 GFP_KERNEL, dev_to_node(device));
1174 if (!devmem)
1175 return ERR_PTR(-ENOMEM);
1177 init_completion(&devmem->completion);
1178 devmem->pfn_first = -1UL;
1179 devmem->pfn_last = -1UL;
1180 devmem->resource = NULL;
1181 devmem->device = device;
1182 devmem->ops = ops;
1184 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1185 0, GFP_KERNEL);
1186 if (ret)
1187 goto error_percpu_ref;
1189 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1190 if (ret)
1191 goto error_devm_add_action;
1193 size = ALIGN(size, PA_SECTION_SIZE);
1194 addr = min((unsigned long)iomem_resource.end,
1195 (1UL << MAX_PHYSMEM_BITS) - 1);
1196 addr = addr - size + 1UL;
1199 * FIXME add a new helper to quickly walk resource tree and find free
1200 * range
1202 * FIXME what about ioport_resource resource ?
1204 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1205 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1206 if (ret != REGION_DISJOINT)
1207 continue;
1209 devmem->resource = devm_request_mem_region(device, addr, size,
1210 dev_name(device));
1211 if (!devmem->resource) {
1212 ret = -ENOMEM;
1213 goto error_no_resource;
1215 break;
1217 if (!devmem->resource) {
1218 ret = -ERANGE;
1219 goto error_no_resource;
1222 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1223 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1224 devmem->pfn_last = devmem->pfn_first +
1225 (resource_size(devmem->resource) >> PAGE_SHIFT);
1227 ret = hmm_devmem_pages_create(devmem);
1228 if (ret)
1229 goto error_pages;
1231 devres_add(device, devmem);
1233 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1234 if (ret) {
1235 hmm_devmem_remove(devmem);
1236 return ERR_PTR(ret);
1239 return devmem;
1241 error_pages:
1242 devm_release_mem_region(device, devmem->resource->start,
1243 resource_size(devmem->resource));
1244 error_no_resource:
1245 error_devm_add_action:
1246 hmm_devmem_ref_kill(&devmem->ref);
1247 hmm_devmem_ref_exit(&devmem->ref);
1248 error_percpu_ref:
1249 devres_free(devmem);
1250 return ERR_PTR(ret);
1252 EXPORT_SYMBOL(hmm_devmem_add);
1254 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1255 struct device *device,
1256 struct resource *res)
1258 struct hmm_devmem *devmem;
1259 int ret;
1261 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1262 return ERR_PTR(-EINVAL);
1264 static_branch_enable(&device_private_key);
1266 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1267 GFP_KERNEL, dev_to_node(device));
1268 if (!devmem)
1269 return ERR_PTR(-ENOMEM);
1271 init_completion(&devmem->completion);
1272 devmem->pfn_first = -1UL;
1273 devmem->pfn_last = -1UL;
1274 devmem->resource = res;
1275 devmem->device = device;
1276 devmem->ops = ops;
1278 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1279 0, GFP_KERNEL);
1280 if (ret)
1281 goto error_percpu_ref;
1283 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1284 if (ret)
1285 goto error_devm_add_action;
1288 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1289 devmem->pfn_last = devmem->pfn_first +
1290 (resource_size(devmem->resource) >> PAGE_SHIFT);
1292 ret = hmm_devmem_pages_create(devmem);
1293 if (ret)
1294 goto error_devm_add_action;
1296 devres_add(device, devmem);
1298 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1299 if (ret) {
1300 hmm_devmem_remove(devmem);
1301 return ERR_PTR(ret);
1304 return devmem;
1306 error_devm_add_action:
1307 hmm_devmem_ref_kill(&devmem->ref);
1308 hmm_devmem_ref_exit(&devmem->ref);
1309 error_percpu_ref:
1310 devres_free(devmem);
1311 return ERR_PTR(ret);
1313 EXPORT_SYMBOL(hmm_devmem_add_resource);
1316 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1318 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1320 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1321 * of the device driver. It will free struct page and remove the resource that
1322 * reserved the physical address range for this device memory.
1324 void hmm_devmem_remove(struct hmm_devmem *devmem)
1326 resource_size_t start, size;
1327 struct device *device;
1328 bool cdm = false;
1330 if (!devmem)
1331 return;
1333 device = devmem->device;
1334 start = devmem->resource->start;
1335 size = resource_size(devmem->resource);
1337 cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1338 hmm_devmem_ref_kill(&devmem->ref);
1339 hmm_devmem_ref_exit(&devmem->ref);
1340 hmm_devmem_pages_remove(devmem);
1342 if (!cdm)
1343 devm_release_mem_region(device, start, size);
1345 EXPORT_SYMBOL(hmm_devmem_remove);
1348 * A device driver that wants to handle multiple devices memory through a
1349 * single fake device can use hmm_device to do so. This is purely a helper
1350 * and it is not needed to make use of any HMM functionality.
1352 #define HMM_DEVICE_MAX 256
1354 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1355 static DEFINE_SPINLOCK(hmm_device_lock);
1356 static struct class *hmm_device_class;
1357 static dev_t hmm_device_devt;
1359 static void hmm_device_release(struct device *device)
1361 struct hmm_device *hmm_device;
1363 hmm_device = container_of(device, struct hmm_device, device);
1364 spin_lock(&hmm_device_lock);
1365 clear_bit(hmm_device->minor, hmm_device_mask);
1366 spin_unlock(&hmm_device_lock);
1368 kfree(hmm_device);
1371 struct hmm_device *hmm_device_new(void *drvdata)
1373 struct hmm_device *hmm_device;
1375 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1376 if (!hmm_device)
1377 return ERR_PTR(-ENOMEM);
1379 spin_lock(&hmm_device_lock);
1380 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1381 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1382 spin_unlock(&hmm_device_lock);
1383 kfree(hmm_device);
1384 return ERR_PTR(-EBUSY);
1386 set_bit(hmm_device->minor, hmm_device_mask);
1387 spin_unlock(&hmm_device_lock);
1389 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1390 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1391 hmm_device->minor);
1392 hmm_device->device.release = hmm_device_release;
1393 dev_set_drvdata(&hmm_device->device, drvdata);
1394 hmm_device->device.class = hmm_device_class;
1395 device_initialize(&hmm_device->device);
1397 return hmm_device;
1399 EXPORT_SYMBOL(hmm_device_new);
1401 void hmm_device_put(struct hmm_device *hmm_device)
1403 put_device(&hmm_device->device);
1405 EXPORT_SYMBOL(hmm_device_put);
1407 static int __init hmm_init(void)
1409 int ret;
1411 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1412 HMM_DEVICE_MAX,
1413 "hmm_device");
1414 if (ret)
1415 return ret;
1417 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1418 if (IS_ERR(hmm_device_class)) {
1419 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1420 return PTR_ERR(hmm_device_class);
1422 return 0;
1425 device_initcall(hmm_init);
1426 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */