regulator: Allow drivers to report voltages as selectors
[linux-2.6/btrfs-unstable.git] / drivers / regulator / core.c
blobb362dbde80f76cb4c8b0133ac8fe3d1eb443b696
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #define pr_fmt(fmt) "%s: " fmt, __func__
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
33 #include "dummy.h"
35 #define rdev_err(rdev, fmt, ...) \
36 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37 #define rdev_warn(rdev, fmt, ...) \
38 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_info(rdev, fmt, ...) \
40 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_dbg(rdev, fmt, ...) \
42 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 static DEFINE_MUTEX(regulator_list_mutex);
45 static LIST_HEAD(regulator_list);
46 static LIST_HEAD(regulator_map_list);
47 static int has_full_constraints;
48 static bool board_wants_dummy_regulator;
51 * struct regulator_map
53 * Used to provide symbolic supply names to devices.
55 struct regulator_map {
56 struct list_head list;
57 const char *dev_name; /* The dev_name() for the consumer */
58 const char *supply;
59 struct regulator_dev *regulator;
63 * struct regulator
65 * One for each consumer device.
67 struct regulator {
68 struct device *dev;
69 struct list_head list;
70 int uA_load;
71 int min_uV;
72 int max_uV;
73 char *supply_name;
74 struct device_attribute dev_attr;
75 struct regulator_dev *rdev;
78 static int _regulator_is_enabled(struct regulator_dev *rdev);
79 static int _regulator_disable(struct regulator_dev *rdev,
80 struct regulator_dev **supply_rdev_ptr);
81 static int _regulator_get_voltage(struct regulator_dev *rdev);
82 static int _regulator_get_current_limit(struct regulator_dev *rdev);
83 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84 static void _notifier_call_chain(struct regulator_dev *rdev,
85 unsigned long event, void *data);
87 static const char *rdev_get_name(struct regulator_dev *rdev)
89 if (rdev->constraints && rdev->constraints->name)
90 return rdev->constraints->name;
91 else if (rdev->desc->name)
92 return rdev->desc->name;
93 else
94 return "";
97 /* gets the regulator for a given consumer device */
98 static struct regulator *get_device_regulator(struct device *dev)
100 struct regulator *regulator = NULL;
101 struct regulator_dev *rdev;
103 mutex_lock(&regulator_list_mutex);
104 list_for_each_entry(rdev, &regulator_list, list) {
105 mutex_lock(&rdev->mutex);
106 list_for_each_entry(regulator, &rdev->consumer_list, list) {
107 if (regulator->dev == dev) {
108 mutex_unlock(&rdev->mutex);
109 mutex_unlock(&regulator_list_mutex);
110 return regulator;
113 mutex_unlock(&rdev->mutex);
115 mutex_unlock(&regulator_list_mutex);
116 return NULL;
119 /* Platform voltage constraint check */
120 static int regulator_check_voltage(struct regulator_dev *rdev,
121 int *min_uV, int *max_uV)
123 BUG_ON(*min_uV > *max_uV);
125 if (!rdev->constraints) {
126 rdev_err(rdev, "no constraints\n");
127 return -ENODEV;
129 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130 rdev_err(rdev, "operation not allowed\n");
131 return -EPERM;
134 if (*max_uV > rdev->constraints->max_uV)
135 *max_uV = rdev->constraints->max_uV;
136 if (*min_uV < rdev->constraints->min_uV)
137 *min_uV = rdev->constraints->min_uV;
139 if (*min_uV > *max_uV)
140 return -EINVAL;
142 return 0;
145 /* Make sure we select a voltage that suits the needs of all
146 * regulator consumers
148 static int regulator_check_consumers(struct regulator_dev *rdev,
149 int *min_uV, int *max_uV)
151 struct regulator *regulator;
153 list_for_each_entry(regulator, &rdev->consumer_list, list) {
154 if (*max_uV > regulator->max_uV)
155 *max_uV = regulator->max_uV;
156 if (*min_uV < regulator->min_uV)
157 *min_uV = regulator->min_uV;
160 if (*min_uV > *max_uV)
161 return -EINVAL;
163 return 0;
166 /* current constraint check */
167 static int regulator_check_current_limit(struct regulator_dev *rdev,
168 int *min_uA, int *max_uA)
170 BUG_ON(*min_uA > *max_uA);
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
181 if (*max_uA > rdev->constraints->max_uA)
182 *max_uA = rdev->constraints->max_uA;
183 if (*min_uA < rdev->constraints->min_uA)
184 *min_uA = rdev->constraints->min_uA;
186 if (*min_uA > *max_uA)
187 return -EINVAL;
189 return 0;
192 /* operating mode constraint check */
193 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
195 switch (mode) {
196 case REGULATOR_MODE_FAST:
197 case REGULATOR_MODE_NORMAL:
198 case REGULATOR_MODE_IDLE:
199 case REGULATOR_MODE_STANDBY:
200 break;
201 default:
202 return -EINVAL;
205 if (!rdev->constraints) {
206 rdev_err(rdev, "no constraints\n");
207 return -ENODEV;
209 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
210 rdev_err(rdev, "operation not allowed\n");
211 return -EPERM;
213 if (!(rdev->constraints->valid_modes_mask & mode)) {
214 rdev_err(rdev, "invalid mode %x\n", mode);
215 return -EINVAL;
217 return 0;
220 /* dynamic regulator mode switching constraint check */
221 static int regulator_check_drms(struct regulator_dev *rdev)
223 if (!rdev->constraints) {
224 rdev_err(rdev, "no constraints\n");
225 return -ENODEV;
227 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
228 rdev_err(rdev, "operation not allowed\n");
229 return -EPERM;
231 return 0;
234 static ssize_t device_requested_uA_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct regulator *regulator;
239 regulator = get_device_regulator(dev);
240 if (regulator == NULL)
241 return 0;
243 return sprintf(buf, "%d\n", regulator->uA_load);
246 static ssize_t regulator_uV_show(struct device *dev,
247 struct device_attribute *attr, char *buf)
249 struct regulator_dev *rdev = dev_get_drvdata(dev);
250 ssize_t ret;
252 mutex_lock(&rdev->mutex);
253 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
254 mutex_unlock(&rdev->mutex);
256 return ret;
258 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
260 static ssize_t regulator_uA_show(struct device *dev,
261 struct device_attribute *attr, char *buf)
263 struct regulator_dev *rdev = dev_get_drvdata(dev);
265 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
267 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
269 static ssize_t regulator_name_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
272 struct regulator_dev *rdev = dev_get_drvdata(dev);
274 return sprintf(buf, "%s\n", rdev_get_name(rdev));
277 static ssize_t regulator_print_opmode(char *buf, int mode)
279 switch (mode) {
280 case REGULATOR_MODE_FAST:
281 return sprintf(buf, "fast\n");
282 case REGULATOR_MODE_NORMAL:
283 return sprintf(buf, "normal\n");
284 case REGULATOR_MODE_IDLE:
285 return sprintf(buf, "idle\n");
286 case REGULATOR_MODE_STANDBY:
287 return sprintf(buf, "standby\n");
289 return sprintf(buf, "unknown\n");
292 static ssize_t regulator_opmode_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
295 struct regulator_dev *rdev = dev_get_drvdata(dev);
297 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
299 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
301 static ssize_t regulator_print_state(char *buf, int state)
303 if (state > 0)
304 return sprintf(buf, "enabled\n");
305 else if (state == 0)
306 return sprintf(buf, "disabled\n");
307 else
308 return sprintf(buf, "unknown\n");
311 static ssize_t regulator_state_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
314 struct regulator_dev *rdev = dev_get_drvdata(dev);
315 ssize_t ret;
317 mutex_lock(&rdev->mutex);
318 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
319 mutex_unlock(&rdev->mutex);
321 return ret;
323 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
325 static ssize_t regulator_status_show(struct device *dev,
326 struct device_attribute *attr, char *buf)
328 struct regulator_dev *rdev = dev_get_drvdata(dev);
329 int status;
330 char *label;
332 status = rdev->desc->ops->get_status(rdev);
333 if (status < 0)
334 return status;
336 switch (status) {
337 case REGULATOR_STATUS_OFF:
338 label = "off";
339 break;
340 case REGULATOR_STATUS_ON:
341 label = "on";
342 break;
343 case REGULATOR_STATUS_ERROR:
344 label = "error";
345 break;
346 case REGULATOR_STATUS_FAST:
347 label = "fast";
348 break;
349 case REGULATOR_STATUS_NORMAL:
350 label = "normal";
351 break;
352 case REGULATOR_STATUS_IDLE:
353 label = "idle";
354 break;
355 case REGULATOR_STATUS_STANDBY:
356 label = "standby";
357 break;
358 default:
359 return -ERANGE;
362 return sprintf(buf, "%s\n", label);
364 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
366 static ssize_t regulator_min_uA_show(struct device *dev,
367 struct device_attribute *attr, char *buf)
369 struct regulator_dev *rdev = dev_get_drvdata(dev);
371 if (!rdev->constraints)
372 return sprintf(buf, "constraint not defined\n");
374 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
376 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
378 static ssize_t regulator_max_uA_show(struct device *dev,
379 struct device_attribute *attr, char *buf)
381 struct regulator_dev *rdev = dev_get_drvdata(dev);
383 if (!rdev->constraints)
384 return sprintf(buf, "constraint not defined\n");
386 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
388 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
390 static ssize_t regulator_min_uV_show(struct device *dev,
391 struct device_attribute *attr, char *buf)
393 struct regulator_dev *rdev = dev_get_drvdata(dev);
395 if (!rdev->constraints)
396 return sprintf(buf, "constraint not defined\n");
398 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
400 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
402 static ssize_t regulator_max_uV_show(struct device *dev,
403 struct device_attribute *attr, char *buf)
405 struct regulator_dev *rdev = dev_get_drvdata(dev);
407 if (!rdev->constraints)
408 return sprintf(buf, "constraint not defined\n");
410 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
412 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
414 static ssize_t regulator_total_uA_show(struct device *dev,
415 struct device_attribute *attr, char *buf)
417 struct regulator_dev *rdev = dev_get_drvdata(dev);
418 struct regulator *regulator;
419 int uA = 0;
421 mutex_lock(&rdev->mutex);
422 list_for_each_entry(regulator, &rdev->consumer_list, list)
423 uA += regulator->uA_load;
424 mutex_unlock(&rdev->mutex);
425 return sprintf(buf, "%d\n", uA);
427 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
429 static ssize_t regulator_num_users_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
432 struct regulator_dev *rdev = dev_get_drvdata(dev);
433 return sprintf(buf, "%d\n", rdev->use_count);
436 static ssize_t regulator_type_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
439 struct regulator_dev *rdev = dev_get_drvdata(dev);
441 switch (rdev->desc->type) {
442 case REGULATOR_VOLTAGE:
443 return sprintf(buf, "voltage\n");
444 case REGULATOR_CURRENT:
445 return sprintf(buf, "current\n");
447 return sprintf(buf, "unknown\n");
450 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
453 struct regulator_dev *rdev = dev_get_drvdata(dev);
455 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
457 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
458 regulator_suspend_mem_uV_show, NULL);
460 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
461 struct device_attribute *attr, char *buf)
463 struct regulator_dev *rdev = dev_get_drvdata(dev);
465 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
467 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
468 regulator_suspend_disk_uV_show, NULL);
470 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
471 struct device_attribute *attr, char *buf)
473 struct regulator_dev *rdev = dev_get_drvdata(dev);
475 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
477 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
478 regulator_suspend_standby_uV_show, NULL);
480 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
481 struct device_attribute *attr, char *buf)
483 struct regulator_dev *rdev = dev_get_drvdata(dev);
485 return regulator_print_opmode(buf,
486 rdev->constraints->state_mem.mode);
488 static DEVICE_ATTR(suspend_mem_mode, 0444,
489 regulator_suspend_mem_mode_show, NULL);
491 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
492 struct device_attribute *attr, char *buf)
494 struct regulator_dev *rdev = dev_get_drvdata(dev);
496 return regulator_print_opmode(buf,
497 rdev->constraints->state_disk.mode);
499 static DEVICE_ATTR(suspend_disk_mode, 0444,
500 regulator_suspend_disk_mode_show, NULL);
502 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
503 struct device_attribute *attr, char *buf)
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
507 return regulator_print_opmode(buf,
508 rdev->constraints->state_standby.mode);
510 static DEVICE_ATTR(suspend_standby_mode, 0444,
511 regulator_suspend_standby_mode_show, NULL);
513 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
518 return regulator_print_state(buf,
519 rdev->constraints->state_mem.enabled);
521 static DEVICE_ATTR(suspend_mem_state, 0444,
522 regulator_suspend_mem_state_show, NULL);
524 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
525 struct device_attribute *attr, char *buf)
527 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 return regulator_print_state(buf,
530 rdev->constraints->state_disk.enabled);
532 static DEVICE_ATTR(suspend_disk_state, 0444,
533 regulator_suspend_disk_state_show, NULL);
535 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
536 struct device_attribute *attr, char *buf)
538 struct regulator_dev *rdev = dev_get_drvdata(dev);
540 return regulator_print_state(buf,
541 rdev->constraints->state_standby.enabled);
543 static DEVICE_ATTR(suspend_standby_state, 0444,
544 regulator_suspend_standby_state_show, NULL);
548 * These are the only attributes are present for all regulators.
549 * Other attributes are a function of regulator functionality.
551 static struct device_attribute regulator_dev_attrs[] = {
552 __ATTR(name, 0444, regulator_name_show, NULL),
553 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
554 __ATTR(type, 0444, regulator_type_show, NULL),
555 __ATTR_NULL,
558 static void regulator_dev_release(struct device *dev)
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
561 kfree(rdev);
564 static struct class regulator_class = {
565 .name = "regulator",
566 .dev_release = regulator_dev_release,
567 .dev_attrs = regulator_dev_attrs,
570 /* Calculate the new optimum regulator operating mode based on the new total
571 * consumer load. All locks held by caller */
572 static void drms_uA_update(struct regulator_dev *rdev)
574 struct regulator *sibling;
575 int current_uA = 0, output_uV, input_uV, err;
576 unsigned int mode;
578 err = regulator_check_drms(rdev);
579 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
580 (!rdev->desc->ops->get_voltage &&
581 !rdev->desc->ops->get_voltage_sel) ||
582 !rdev->desc->ops->set_mode)
583 return;
585 /* get output voltage */
586 output_uV = _regulator_get_voltage(rdev);
587 if (output_uV <= 0)
588 return;
590 /* get input voltage */
591 input_uV = 0;
592 if (rdev->supply)
593 input_uV = _regulator_get_voltage(rdev);
594 if (input_uV <= 0)
595 input_uV = rdev->constraints->input_uV;
596 if (input_uV <= 0)
597 return;
599 /* calc total requested load */
600 list_for_each_entry(sibling, &rdev->consumer_list, list)
601 current_uA += sibling->uA_load;
603 /* now get the optimum mode for our new total regulator load */
604 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
605 output_uV, current_uA);
607 /* check the new mode is allowed */
608 err = regulator_check_mode(rdev, mode);
609 if (err == 0)
610 rdev->desc->ops->set_mode(rdev, mode);
613 static int suspend_set_state(struct regulator_dev *rdev,
614 struct regulator_state *rstate)
616 int ret = 0;
617 bool can_set_state;
619 can_set_state = rdev->desc->ops->set_suspend_enable &&
620 rdev->desc->ops->set_suspend_disable;
622 /* If we have no suspend mode configration don't set anything;
623 * only warn if the driver actually makes the suspend mode
624 * configurable.
626 if (!rstate->enabled && !rstate->disabled) {
627 if (can_set_state)
628 rdev_warn(rdev, "No configuration\n");
629 return 0;
632 if (rstate->enabled && rstate->disabled) {
633 rdev_err(rdev, "invalid configuration\n");
634 return -EINVAL;
637 if (!can_set_state) {
638 rdev_err(rdev, "no way to set suspend state\n");
639 return -EINVAL;
642 if (rstate->enabled)
643 ret = rdev->desc->ops->set_suspend_enable(rdev);
644 else
645 ret = rdev->desc->ops->set_suspend_disable(rdev);
646 if (ret < 0) {
647 rdev_err(rdev, "failed to enabled/disable\n");
648 return ret;
651 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
652 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
653 if (ret < 0) {
654 rdev_err(rdev, "failed to set voltage\n");
655 return ret;
659 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
660 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
661 if (ret < 0) {
662 rdev_err(rdev, "failed to set mode\n");
663 return ret;
666 return ret;
669 /* locks held by caller */
670 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
672 if (!rdev->constraints)
673 return -EINVAL;
675 switch (state) {
676 case PM_SUSPEND_STANDBY:
677 return suspend_set_state(rdev,
678 &rdev->constraints->state_standby);
679 case PM_SUSPEND_MEM:
680 return suspend_set_state(rdev,
681 &rdev->constraints->state_mem);
682 case PM_SUSPEND_MAX:
683 return suspend_set_state(rdev,
684 &rdev->constraints->state_disk);
685 default:
686 return -EINVAL;
690 static void print_constraints(struct regulator_dev *rdev)
692 struct regulation_constraints *constraints = rdev->constraints;
693 char buf[80] = "";
694 int count = 0;
695 int ret;
697 if (constraints->min_uV && constraints->max_uV) {
698 if (constraints->min_uV == constraints->max_uV)
699 count += sprintf(buf + count, "%d mV ",
700 constraints->min_uV / 1000);
701 else
702 count += sprintf(buf + count, "%d <--> %d mV ",
703 constraints->min_uV / 1000,
704 constraints->max_uV / 1000);
707 if (!constraints->min_uV ||
708 constraints->min_uV != constraints->max_uV) {
709 ret = _regulator_get_voltage(rdev);
710 if (ret > 0)
711 count += sprintf(buf + count, "at %d mV ", ret / 1000);
714 if (constraints->min_uA && constraints->max_uA) {
715 if (constraints->min_uA == constraints->max_uA)
716 count += sprintf(buf + count, "%d mA ",
717 constraints->min_uA / 1000);
718 else
719 count += sprintf(buf + count, "%d <--> %d mA ",
720 constraints->min_uA / 1000,
721 constraints->max_uA / 1000);
724 if (!constraints->min_uA ||
725 constraints->min_uA != constraints->max_uA) {
726 ret = _regulator_get_current_limit(rdev);
727 if (ret > 0)
728 count += sprintf(buf + count, "at %d mA ", ret / 1000);
731 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
732 count += sprintf(buf + count, "fast ");
733 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
734 count += sprintf(buf + count, "normal ");
735 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
736 count += sprintf(buf + count, "idle ");
737 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
738 count += sprintf(buf + count, "standby");
740 rdev_info(rdev, "regulator: %s\n", buf);
743 static int machine_constraints_voltage(struct regulator_dev *rdev,
744 struct regulation_constraints *constraints)
746 struct regulator_ops *ops = rdev->desc->ops;
747 int ret;
748 unsigned selector;
750 /* do we need to apply the constraint voltage */
751 if (rdev->constraints->apply_uV &&
752 rdev->constraints->min_uV == rdev->constraints->max_uV &&
753 ops->set_voltage) {
754 ret = ops->set_voltage(rdev,
755 rdev->constraints->min_uV,
756 rdev->constraints->max_uV,
757 &selector);
758 if (ret < 0) {
759 rdev_err(rdev, "failed to apply %duV constraint\n",
760 rdev->constraints->min_uV);
761 rdev->constraints = NULL;
762 return ret;
766 /* constrain machine-level voltage specs to fit
767 * the actual range supported by this regulator.
769 if (ops->list_voltage && rdev->desc->n_voltages) {
770 int count = rdev->desc->n_voltages;
771 int i;
772 int min_uV = INT_MAX;
773 int max_uV = INT_MIN;
774 int cmin = constraints->min_uV;
775 int cmax = constraints->max_uV;
777 /* it's safe to autoconfigure fixed-voltage supplies
778 and the constraints are used by list_voltage. */
779 if (count == 1 && !cmin) {
780 cmin = 1;
781 cmax = INT_MAX;
782 constraints->min_uV = cmin;
783 constraints->max_uV = cmax;
786 /* voltage constraints are optional */
787 if ((cmin == 0) && (cmax == 0))
788 return 0;
790 /* else require explicit machine-level constraints */
791 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
792 rdev_err(rdev, "invalid voltage constraints\n");
793 return -EINVAL;
796 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
797 for (i = 0; i < count; i++) {
798 int value;
800 value = ops->list_voltage(rdev, i);
801 if (value <= 0)
802 continue;
804 /* maybe adjust [min_uV..max_uV] */
805 if (value >= cmin && value < min_uV)
806 min_uV = value;
807 if (value <= cmax && value > max_uV)
808 max_uV = value;
811 /* final: [min_uV..max_uV] valid iff constraints valid */
812 if (max_uV < min_uV) {
813 rdev_err(rdev, "unsupportable voltage constraints\n");
814 return -EINVAL;
817 /* use regulator's subset of machine constraints */
818 if (constraints->min_uV < min_uV) {
819 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
820 constraints->min_uV, min_uV);
821 constraints->min_uV = min_uV;
823 if (constraints->max_uV > max_uV) {
824 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
825 constraints->max_uV, max_uV);
826 constraints->max_uV = max_uV;
830 return 0;
834 * set_machine_constraints - sets regulator constraints
835 * @rdev: regulator source
836 * @constraints: constraints to apply
838 * Allows platform initialisation code to define and constrain
839 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
840 * Constraints *must* be set by platform code in order for some
841 * regulator operations to proceed i.e. set_voltage, set_current_limit,
842 * set_mode.
844 static int set_machine_constraints(struct regulator_dev *rdev,
845 const struct regulation_constraints *constraints)
847 int ret = 0;
848 struct regulator_ops *ops = rdev->desc->ops;
850 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
851 GFP_KERNEL);
852 if (!rdev->constraints)
853 return -ENOMEM;
855 ret = machine_constraints_voltage(rdev, rdev->constraints);
856 if (ret != 0)
857 goto out;
859 /* do we need to setup our suspend state */
860 if (constraints->initial_state) {
861 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
862 if (ret < 0) {
863 rdev_err(rdev, "failed to set suspend state\n");
864 rdev->constraints = NULL;
865 goto out;
869 if (constraints->initial_mode) {
870 if (!ops->set_mode) {
871 rdev_err(rdev, "no set_mode operation\n");
872 ret = -EINVAL;
873 goto out;
876 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
877 if (ret < 0) {
878 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
879 goto out;
883 /* If the constraints say the regulator should be on at this point
884 * and we have control then make sure it is enabled.
886 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
887 ops->enable) {
888 ret = ops->enable(rdev);
889 if (ret < 0) {
890 rdev_err(rdev, "failed to enable\n");
891 rdev->constraints = NULL;
892 goto out;
896 print_constraints(rdev);
897 out:
898 return ret;
902 * set_supply - set regulator supply regulator
903 * @rdev: regulator name
904 * @supply_rdev: supply regulator name
906 * Called by platform initialisation code to set the supply regulator for this
907 * regulator. This ensures that a regulators supply will also be enabled by the
908 * core if it's child is enabled.
910 static int set_supply(struct regulator_dev *rdev,
911 struct regulator_dev *supply_rdev)
913 int err;
915 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
916 "supply");
917 if (err) {
918 rdev_err(rdev, "could not add device link %s err %d\n",
919 supply_rdev->dev.kobj.name, err);
920 goto out;
922 rdev->supply = supply_rdev;
923 list_add(&rdev->slist, &supply_rdev->supply_list);
924 out:
925 return err;
929 * set_consumer_device_supply - Bind a regulator to a symbolic supply
930 * @rdev: regulator source
931 * @consumer_dev: device the supply applies to
932 * @consumer_dev_name: dev_name() string for device supply applies to
933 * @supply: symbolic name for supply
935 * Allows platform initialisation code to map physical regulator
936 * sources to symbolic names for supplies for use by devices. Devices
937 * should use these symbolic names to request regulators, avoiding the
938 * need to provide board-specific regulator names as platform data.
940 * Only one of consumer_dev and consumer_dev_name may be specified.
942 static int set_consumer_device_supply(struct regulator_dev *rdev,
943 struct device *consumer_dev, const char *consumer_dev_name,
944 const char *supply)
946 struct regulator_map *node;
947 int has_dev;
949 if (consumer_dev && consumer_dev_name)
950 return -EINVAL;
952 if (!consumer_dev_name && consumer_dev)
953 consumer_dev_name = dev_name(consumer_dev);
955 if (supply == NULL)
956 return -EINVAL;
958 if (consumer_dev_name != NULL)
959 has_dev = 1;
960 else
961 has_dev = 0;
963 list_for_each_entry(node, &regulator_map_list, list) {
964 if (node->dev_name && consumer_dev_name) {
965 if (strcmp(node->dev_name, consumer_dev_name) != 0)
966 continue;
967 } else if (node->dev_name || consumer_dev_name) {
968 continue;
971 if (strcmp(node->supply, supply) != 0)
972 continue;
974 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
975 dev_name(&node->regulator->dev),
976 node->regulator->desc->name,
977 supply,
978 dev_name(&rdev->dev), rdev_get_name(rdev));
979 return -EBUSY;
982 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
983 if (node == NULL)
984 return -ENOMEM;
986 node->regulator = rdev;
987 node->supply = supply;
989 if (has_dev) {
990 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
991 if (node->dev_name == NULL) {
992 kfree(node);
993 return -ENOMEM;
997 list_add(&node->list, &regulator_map_list);
998 return 0;
1001 static void unset_regulator_supplies(struct regulator_dev *rdev)
1003 struct regulator_map *node, *n;
1005 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1006 if (rdev == node->regulator) {
1007 list_del(&node->list);
1008 kfree(node->dev_name);
1009 kfree(node);
1014 #define REG_STR_SIZE 32
1016 static struct regulator *create_regulator(struct regulator_dev *rdev,
1017 struct device *dev,
1018 const char *supply_name)
1020 struct regulator *regulator;
1021 char buf[REG_STR_SIZE];
1022 int err, size;
1024 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1025 if (regulator == NULL)
1026 return NULL;
1028 mutex_lock(&rdev->mutex);
1029 regulator->rdev = rdev;
1030 list_add(&regulator->list, &rdev->consumer_list);
1032 if (dev) {
1033 /* create a 'requested_microamps_name' sysfs entry */
1034 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1035 supply_name);
1036 if (size >= REG_STR_SIZE)
1037 goto overflow_err;
1039 regulator->dev = dev;
1040 sysfs_attr_init(&regulator->dev_attr.attr);
1041 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1042 if (regulator->dev_attr.attr.name == NULL)
1043 goto attr_name_err;
1045 regulator->dev_attr.attr.mode = 0444;
1046 regulator->dev_attr.show = device_requested_uA_show;
1047 err = device_create_file(dev, &regulator->dev_attr);
1048 if (err < 0) {
1049 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1050 goto attr_name_err;
1053 /* also add a link to the device sysfs entry */
1054 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1055 dev->kobj.name, supply_name);
1056 if (size >= REG_STR_SIZE)
1057 goto attr_err;
1059 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1060 if (regulator->supply_name == NULL)
1061 goto attr_err;
1063 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1064 buf);
1065 if (err) {
1066 rdev_warn(rdev, "could not add device link %s err %d\n",
1067 dev->kobj.name, err);
1068 goto link_name_err;
1071 mutex_unlock(&rdev->mutex);
1072 return regulator;
1073 link_name_err:
1074 kfree(regulator->supply_name);
1075 attr_err:
1076 device_remove_file(regulator->dev, &regulator->dev_attr);
1077 attr_name_err:
1078 kfree(regulator->dev_attr.attr.name);
1079 overflow_err:
1080 list_del(&regulator->list);
1081 kfree(regulator);
1082 mutex_unlock(&rdev->mutex);
1083 return NULL;
1086 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1088 if (!rdev->desc->ops->enable_time)
1089 return 0;
1090 return rdev->desc->ops->enable_time(rdev);
1093 /* Internal regulator request function */
1094 static struct regulator *_regulator_get(struct device *dev, const char *id,
1095 int exclusive)
1097 struct regulator_dev *rdev;
1098 struct regulator_map *map;
1099 struct regulator *regulator = ERR_PTR(-ENODEV);
1100 const char *devname = NULL;
1101 int ret;
1103 if (id == NULL) {
1104 pr_err("get() with no identifier\n");
1105 return regulator;
1108 if (dev)
1109 devname = dev_name(dev);
1111 mutex_lock(&regulator_list_mutex);
1113 list_for_each_entry(map, &regulator_map_list, list) {
1114 /* If the mapping has a device set up it must match */
1115 if (map->dev_name &&
1116 (!devname || strcmp(map->dev_name, devname)))
1117 continue;
1119 if (strcmp(map->supply, id) == 0) {
1120 rdev = map->regulator;
1121 goto found;
1125 if (board_wants_dummy_regulator) {
1126 rdev = dummy_regulator_rdev;
1127 goto found;
1130 #ifdef CONFIG_REGULATOR_DUMMY
1131 if (!devname)
1132 devname = "deviceless";
1134 /* If the board didn't flag that it was fully constrained then
1135 * substitute in a dummy regulator so consumers can continue.
1137 if (!has_full_constraints) {
1138 pr_warn("%s supply %s not found, using dummy regulator\n",
1139 devname, id);
1140 rdev = dummy_regulator_rdev;
1141 goto found;
1143 #endif
1145 mutex_unlock(&regulator_list_mutex);
1146 return regulator;
1148 found:
1149 if (rdev->exclusive) {
1150 regulator = ERR_PTR(-EPERM);
1151 goto out;
1154 if (exclusive && rdev->open_count) {
1155 regulator = ERR_PTR(-EBUSY);
1156 goto out;
1159 if (!try_module_get(rdev->owner))
1160 goto out;
1162 regulator = create_regulator(rdev, dev, id);
1163 if (regulator == NULL) {
1164 regulator = ERR_PTR(-ENOMEM);
1165 module_put(rdev->owner);
1168 rdev->open_count++;
1169 if (exclusive) {
1170 rdev->exclusive = 1;
1172 ret = _regulator_is_enabled(rdev);
1173 if (ret > 0)
1174 rdev->use_count = 1;
1175 else
1176 rdev->use_count = 0;
1179 out:
1180 mutex_unlock(&regulator_list_mutex);
1182 return regulator;
1186 * regulator_get - lookup and obtain a reference to a regulator.
1187 * @dev: device for regulator "consumer"
1188 * @id: Supply name or regulator ID.
1190 * Returns a struct regulator corresponding to the regulator producer,
1191 * or IS_ERR() condition containing errno.
1193 * Use of supply names configured via regulator_set_device_supply() is
1194 * strongly encouraged. It is recommended that the supply name used
1195 * should match the name used for the supply and/or the relevant
1196 * device pins in the datasheet.
1198 struct regulator *regulator_get(struct device *dev, const char *id)
1200 return _regulator_get(dev, id, 0);
1202 EXPORT_SYMBOL_GPL(regulator_get);
1205 * regulator_get_exclusive - obtain exclusive access to a regulator.
1206 * @dev: device for regulator "consumer"
1207 * @id: Supply name or regulator ID.
1209 * Returns a struct regulator corresponding to the regulator producer,
1210 * or IS_ERR() condition containing errno. Other consumers will be
1211 * unable to obtain this reference is held and the use count for the
1212 * regulator will be initialised to reflect the current state of the
1213 * regulator.
1215 * This is intended for use by consumers which cannot tolerate shared
1216 * use of the regulator such as those which need to force the
1217 * regulator off for correct operation of the hardware they are
1218 * controlling.
1220 * Use of supply names configured via regulator_set_device_supply() is
1221 * strongly encouraged. It is recommended that the supply name used
1222 * should match the name used for the supply and/or the relevant
1223 * device pins in the datasheet.
1225 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1227 return _regulator_get(dev, id, 1);
1229 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1232 * regulator_put - "free" the regulator source
1233 * @regulator: regulator source
1235 * Note: drivers must ensure that all regulator_enable calls made on this
1236 * regulator source are balanced by regulator_disable calls prior to calling
1237 * this function.
1239 void regulator_put(struct regulator *regulator)
1241 struct regulator_dev *rdev;
1243 if (regulator == NULL || IS_ERR(regulator))
1244 return;
1246 mutex_lock(&regulator_list_mutex);
1247 rdev = regulator->rdev;
1249 /* remove any sysfs entries */
1250 if (regulator->dev) {
1251 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1252 kfree(regulator->supply_name);
1253 device_remove_file(regulator->dev, &regulator->dev_attr);
1254 kfree(regulator->dev_attr.attr.name);
1256 list_del(&regulator->list);
1257 kfree(regulator);
1259 rdev->open_count--;
1260 rdev->exclusive = 0;
1262 module_put(rdev->owner);
1263 mutex_unlock(&regulator_list_mutex);
1265 EXPORT_SYMBOL_GPL(regulator_put);
1267 static int _regulator_can_change_status(struct regulator_dev *rdev)
1269 if (!rdev->constraints)
1270 return 0;
1272 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1273 return 1;
1274 else
1275 return 0;
1278 /* locks held by regulator_enable() */
1279 static int _regulator_enable(struct regulator_dev *rdev)
1281 int ret, delay;
1283 if (rdev->use_count == 0) {
1284 /* do we need to enable the supply regulator first */
1285 if (rdev->supply) {
1286 mutex_lock(&rdev->supply->mutex);
1287 ret = _regulator_enable(rdev->supply);
1288 mutex_unlock(&rdev->supply->mutex);
1289 if (ret < 0) {
1290 rdev_err(rdev, "failed to enable: %d\n", ret);
1291 return ret;
1296 /* check voltage and requested load before enabling */
1297 if (rdev->constraints &&
1298 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1299 drms_uA_update(rdev);
1301 if (rdev->use_count == 0) {
1302 /* The regulator may on if it's not switchable or left on */
1303 ret = _regulator_is_enabled(rdev);
1304 if (ret == -EINVAL || ret == 0) {
1305 if (!_regulator_can_change_status(rdev))
1306 return -EPERM;
1308 if (!rdev->desc->ops->enable)
1309 return -EINVAL;
1311 /* Query before enabling in case configuration
1312 * dependant. */
1313 ret = _regulator_get_enable_time(rdev);
1314 if (ret >= 0) {
1315 delay = ret;
1316 } else {
1317 rdev_warn(rdev, "enable_time() failed: %d\n",
1318 ret);
1319 delay = 0;
1322 trace_regulator_enable(rdev_get_name(rdev));
1324 /* Allow the regulator to ramp; it would be useful
1325 * to extend this for bulk operations so that the
1326 * regulators can ramp together. */
1327 ret = rdev->desc->ops->enable(rdev);
1328 if (ret < 0)
1329 return ret;
1331 trace_regulator_enable_delay(rdev_get_name(rdev));
1333 if (delay >= 1000) {
1334 mdelay(delay / 1000);
1335 udelay(delay % 1000);
1336 } else if (delay) {
1337 udelay(delay);
1340 trace_regulator_enable_complete(rdev_get_name(rdev));
1342 } else if (ret < 0) {
1343 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1344 return ret;
1346 /* Fallthrough on positive return values - already enabled */
1349 rdev->use_count++;
1351 return 0;
1355 * regulator_enable - enable regulator output
1356 * @regulator: regulator source
1358 * Request that the regulator be enabled with the regulator output at
1359 * the predefined voltage or current value. Calls to regulator_enable()
1360 * must be balanced with calls to regulator_disable().
1362 * NOTE: the output value can be set by other drivers, boot loader or may be
1363 * hardwired in the regulator.
1365 int regulator_enable(struct regulator *regulator)
1367 struct regulator_dev *rdev = regulator->rdev;
1368 int ret = 0;
1370 mutex_lock(&rdev->mutex);
1371 ret = _regulator_enable(rdev);
1372 mutex_unlock(&rdev->mutex);
1373 return ret;
1375 EXPORT_SYMBOL_GPL(regulator_enable);
1377 /* locks held by regulator_disable() */
1378 static int _regulator_disable(struct regulator_dev *rdev,
1379 struct regulator_dev **supply_rdev_ptr)
1381 int ret = 0;
1382 *supply_rdev_ptr = NULL;
1384 if (WARN(rdev->use_count <= 0,
1385 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1386 return -EIO;
1388 /* are we the last user and permitted to disable ? */
1389 if (rdev->use_count == 1 &&
1390 (rdev->constraints && !rdev->constraints->always_on)) {
1392 /* we are last user */
1393 if (_regulator_can_change_status(rdev) &&
1394 rdev->desc->ops->disable) {
1395 trace_regulator_disable(rdev_get_name(rdev));
1397 ret = rdev->desc->ops->disable(rdev);
1398 if (ret < 0) {
1399 rdev_err(rdev, "failed to disable\n");
1400 return ret;
1403 trace_regulator_disable_complete(rdev_get_name(rdev));
1405 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1406 NULL);
1409 /* decrease our supplies ref count and disable if required */
1410 *supply_rdev_ptr = rdev->supply;
1412 rdev->use_count = 0;
1413 } else if (rdev->use_count > 1) {
1415 if (rdev->constraints &&
1416 (rdev->constraints->valid_ops_mask &
1417 REGULATOR_CHANGE_DRMS))
1418 drms_uA_update(rdev);
1420 rdev->use_count--;
1422 return ret;
1426 * regulator_disable - disable regulator output
1427 * @regulator: regulator source
1429 * Disable the regulator output voltage or current. Calls to
1430 * regulator_enable() must be balanced with calls to
1431 * regulator_disable().
1433 * NOTE: this will only disable the regulator output if no other consumer
1434 * devices have it enabled, the regulator device supports disabling and
1435 * machine constraints permit this operation.
1437 int regulator_disable(struct regulator *regulator)
1439 struct regulator_dev *rdev = regulator->rdev;
1440 struct regulator_dev *supply_rdev = NULL;
1441 int ret = 0;
1443 mutex_lock(&rdev->mutex);
1444 ret = _regulator_disable(rdev, &supply_rdev);
1445 mutex_unlock(&rdev->mutex);
1447 /* decrease our supplies ref count and disable if required */
1448 while (supply_rdev != NULL) {
1449 rdev = supply_rdev;
1451 mutex_lock(&rdev->mutex);
1452 _regulator_disable(rdev, &supply_rdev);
1453 mutex_unlock(&rdev->mutex);
1456 return ret;
1458 EXPORT_SYMBOL_GPL(regulator_disable);
1460 /* locks held by regulator_force_disable() */
1461 static int _regulator_force_disable(struct regulator_dev *rdev,
1462 struct regulator_dev **supply_rdev_ptr)
1464 int ret = 0;
1466 /* force disable */
1467 if (rdev->desc->ops->disable) {
1468 /* ah well, who wants to live forever... */
1469 ret = rdev->desc->ops->disable(rdev);
1470 if (ret < 0) {
1471 rdev_err(rdev, "failed to force disable\n");
1472 return ret;
1474 /* notify other consumers that power has been forced off */
1475 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1476 REGULATOR_EVENT_DISABLE, NULL);
1479 /* decrease our supplies ref count and disable if required */
1480 *supply_rdev_ptr = rdev->supply;
1482 rdev->use_count = 0;
1483 return ret;
1487 * regulator_force_disable - force disable regulator output
1488 * @regulator: regulator source
1490 * Forcibly disable the regulator output voltage or current.
1491 * NOTE: this *will* disable the regulator output even if other consumer
1492 * devices have it enabled. This should be used for situations when device
1493 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1495 int regulator_force_disable(struct regulator *regulator)
1497 struct regulator_dev *supply_rdev = NULL;
1498 int ret;
1500 mutex_lock(&regulator->rdev->mutex);
1501 regulator->uA_load = 0;
1502 ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1503 mutex_unlock(&regulator->rdev->mutex);
1505 if (supply_rdev)
1506 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1508 return ret;
1510 EXPORT_SYMBOL_GPL(regulator_force_disable);
1512 static int _regulator_is_enabled(struct regulator_dev *rdev)
1514 /* If we don't know then assume that the regulator is always on */
1515 if (!rdev->desc->ops->is_enabled)
1516 return 1;
1518 return rdev->desc->ops->is_enabled(rdev);
1522 * regulator_is_enabled - is the regulator output enabled
1523 * @regulator: regulator source
1525 * Returns positive if the regulator driver backing the source/client
1526 * has requested that the device be enabled, zero if it hasn't, else a
1527 * negative errno code.
1529 * Note that the device backing this regulator handle can have multiple
1530 * users, so it might be enabled even if regulator_enable() was never
1531 * called for this particular source.
1533 int regulator_is_enabled(struct regulator *regulator)
1535 int ret;
1537 mutex_lock(&regulator->rdev->mutex);
1538 ret = _regulator_is_enabled(regulator->rdev);
1539 mutex_unlock(&regulator->rdev->mutex);
1541 return ret;
1543 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1546 * regulator_count_voltages - count regulator_list_voltage() selectors
1547 * @regulator: regulator source
1549 * Returns number of selectors, or negative errno. Selectors are
1550 * numbered starting at zero, and typically correspond to bitfields
1551 * in hardware registers.
1553 int regulator_count_voltages(struct regulator *regulator)
1555 struct regulator_dev *rdev = regulator->rdev;
1557 return rdev->desc->n_voltages ? : -EINVAL;
1559 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1562 * regulator_list_voltage - enumerate supported voltages
1563 * @regulator: regulator source
1564 * @selector: identify voltage to list
1565 * Context: can sleep
1567 * Returns a voltage that can be passed to @regulator_set_voltage(),
1568 * zero if this selector code can't be used on this system, or a
1569 * negative errno.
1571 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1573 struct regulator_dev *rdev = regulator->rdev;
1574 struct regulator_ops *ops = rdev->desc->ops;
1575 int ret;
1577 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1578 return -EINVAL;
1580 mutex_lock(&rdev->mutex);
1581 ret = ops->list_voltage(rdev, selector);
1582 mutex_unlock(&rdev->mutex);
1584 if (ret > 0) {
1585 if (ret < rdev->constraints->min_uV)
1586 ret = 0;
1587 else if (ret > rdev->constraints->max_uV)
1588 ret = 0;
1591 return ret;
1593 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1596 * regulator_is_supported_voltage - check if a voltage range can be supported
1598 * @regulator: Regulator to check.
1599 * @min_uV: Minimum required voltage in uV.
1600 * @max_uV: Maximum required voltage in uV.
1602 * Returns a boolean or a negative error code.
1604 int regulator_is_supported_voltage(struct regulator *regulator,
1605 int min_uV, int max_uV)
1607 int i, voltages, ret;
1609 ret = regulator_count_voltages(regulator);
1610 if (ret < 0)
1611 return ret;
1612 voltages = ret;
1614 for (i = 0; i < voltages; i++) {
1615 ret = regulator_list_voltage(regulator, i);
1617 if (ret >= min_uV && ret <= max_uV)
1618 return 1;
1621 return 0;
1625 * regulator_set_voltage - set regulator output voltage
1626 * @regulator: regulator source
1627 * @min_uV: Minimum required voltage in uV
1628 * @max_uV: Maximum acceptable voltage in uV
1630 * Sets a voltage regulator to the desired output voltage. This can be set
1631 * during any regulator state. IOW, regulator can be disabled or enabled.
1633 * If the regulator is enabled then the voltage will change to the new value
1634 * immediately otherwise if the regulator is disabled the regulator will
1635 * output at the new voltage when enabled.
1637 * NOTE: If the regulator is shared between several devices then the lowest
1638 * request voltage that meets the system constraints will be used.
1639 * Regulator system constraints must be set for this regulator before
1640 * calling this function otherwise this call will fail.
1642 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1644 struct regulator_dev *rdev = regulator->rdev;
1645 int ret;
1646 unsigned selector;
1648 mutex_lock(&rdev->mutex);
1650 /* sanity check */
1651 if (!rdev->desc->ops->set_voltage) {
1652 ret = -EINVAL;
1653 goto out;
1656 /* constraints check */
1657 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1658 if (ret < 0)
1659 goto out;
1660 regulator->min_uV = min_uV;
1661 regulator->max_uV = max_uV;
1663 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1664 if (ret < 0)
1665 goto out;
1667 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1669 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1671 if (rdev->desc->ops->list_voltage)
1672 selector = rdev->desc->ops->list_voltage(rdev, selector);
1673 else
1674 selector = -1;
1676 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1678 out:
1679 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1680 mutex_unlock(&rdev->mutex);
1681 return ret;
1683 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1685 static int _regulator_get_voltage(struct regulator_dev *rdev)
1687 int sel;
1689 if (rdev->desc->ops->get_voltage_sel) {
1690 sel = rdev->desc->ops->get_voltage_sel(rdev);
1691 if (sel < 0)
1692 return sel;
1693 return rdev->desc->ops->list_voltage(rdev, sel);
1695 if (rdev->desc->ops->get_voltage)
1696 return rdev->desc->ops->get_voltage(rdev);
1697 else
1698 return -EINVAL;
1702 * regulator_get_voltage - get regulator output voltage
1703 * @regulator: regulator source
1705 * This returns the current regulator voltage in uV.
1707 * NOTE: If the regulator is disabled it will return the voltage value. This
1708 * function should not be used to determine regulator state.
1710 int regulator_get_voltage(struct regulator *regulator)
1712 int ret;
1714 mutex_lock(&regulator->rdev->mutex);
1716 ret = _regulator_get_voltage(regulator->rdev);
1718 mutex_unlock(&regulator->rdev->mutex);
1720 return ret;
1722 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1725 * regulator_set_current_limit - set regulator output current limit
1726 * @regulator: regulator source
1727 * @min_uA: Minimuum supported current in uA
1728 * @max_uA: Maximum supported current in uA
1730 * Sets current sink to the desired output current. This can be set during
1731 * any regulator state. IOW, regulator can be disabled or enabled.
1733 * If the regulator is enabled then the current will change to the new value
1734 * immediately otherwise if the regulator is disabled the regulator will
1735 * output at the new current when enabled.
1737 * NOTE: Regulator system constraints must be set for this regulator before
1738 * calling this function otherwise this call will fail.
1740 int regulator_set_current_limit(struct regulator *regulator,
1741 int min_uA, int max_uA)
1743 struct regulator_dev *rdev = regulator->rdev;
1744 int ret;
1746 mutex_lock(&rdev->mutex);
1748 /* sanity check */
1749 if (!rdev->desc->ops->set_current_limit) {
1750 ret = -EINVAL;
1751 goto out;
1754 /* constraints check */
1755 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1756 if (ret < 0)
1757 goto out;
1759 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1760 out:
1761 mutex_unlock(&rdev->mutex);
1762 return ret;
1764 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1766 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1768 int ret;
1770 mutex_lock(&rdev->mutex);
1772 /* sanity check */
1773 if (!rdev->desc->ops->get_current_limit) {
1774 ret = -EINVAL;
1775 goto out;
1778 ret = rdev->desc->ops->get_current_limit(rdev);
1779 out:
1780 mutex_unlock(&rdev->mutex);
1781 return ret;
1785 * regulator_get_current_limit - get regulator output current
1786 * @regulator: regulator source
1788 * This returns the current supplied by the specified current sink in uA.
1790 * NOTE: If the regulator is disabled it will return the current value. This
1791 * function should not be used to determine regulator state.
1793 int regulator_get_current_limit(struct regulator *regulator)
1795 return _regulator_get_current_limit(regulator->rdev);
1797 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1800 * regulator_set_mode - set regulator operating mode
1801 * @regulator: regulator source
1802 * @mode: operating mode - one of the REGULATOR_MODE constants
1804 * Set regulator operating mode to increase regulator efficiency or improve
1805 * regulation performance.
1807 * NOTE: Regulator system constraints must be set for this regulator before
1808 * calling this function otherwise this call will fail.
1810 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1812 struct regulator_dev *rdev = regulator->rdev;
1813 int ret;
1814 int regulator_curr_mode;
1816 mutex_lock(&rdev->mutex);
1818 /* sanity check */
1819 if (!rdev->desc->ops->set_mode) {
1820 ret = -EINVAL;
1821 goto out;
1824 /* return if the same mode is requested */
1825 if (rdev->desc->ops->get_mode) {
1826 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1827 if (regulator_curr_mode == mode) {
1828 ret = 0;
1829 goto out;
1833 /* constraints check */
1834 ret = regulator_check_mode(rdev, mode);
1835 if (ret < 0)
1836 goto out;
1838 ret = rdev->desc->ops->set_mode(rdev, mode);
1839 out:
1840 mutex_unlock(&rdev->mutex);
1841 return ret;
1843 EXPORT_SYMBOL_GPL(regulator_set_mode);
1845 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1847 int ret;
1849 mutex_lock(&rdev->mutex);
1851 /* sanity check */
1852 if (!rdev->desc->ops->get_mode) {
1853 ret = -EINVAL;
1854 goto out;
1857 ret = rdev->desc->ops->get_mode(rdev);
1858 out:
1859 mutex_unlock(&rdev->mutex);
1860 return ret;
1864 * regulator_get_mode - get regulator operating mode
1865 * @regulator: regulator source
1867 * Get the current regulator operating mode.
1869 unsigned int regulator_get_mode(struct regulator *regulator)
1871 return _regulator_get_mode(regulator->rdev);
1873 EXPORT_SYMBOL_GPL(regulator_get_mode);
1876 * regulator_set_optimum_mode - set regulator optimum operating mode
1877 * @regulator: regulator source
1878 * @uA_load: load current
1880 * Notifies the regulator core of a new device load. This is then used by
1881 * DRMS (if enabled by constraints) to set the most efficient regulator
1882 * operating mode for the new regulator loading.
1884 * Consumer devices notify their supply regulator of the maximum power
1885 * they will require (can be taken from device datasheet in the power
1886 * consumption tables) when they change operational status and hence power
1887 * state. Examples of operational state changes that can affect power
1888 * consumption are :-
1890 * o Device is opened / closed.
1891 * o Device I/O is about to begin or has just finished.
1892 * o Device is idling in between work.
1894 * This information is also exported via sysfs to userspace.
1896 * DRMS will sum the total requested load on the regulator and change
1897 * to the most efficient operating mode if platform constraints allow.
1899 * Returns the new regulator mode or error.
1901 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1903 struct regulator_dev *rdev = regulator->rdev;
1904 struct regulator *consumer;
1905 int ret, output_uV, input_uV, total_uA_load = 0;
1906 unsigned int mode;
1908 mutex_lock(&rdev->mutex);
1910 regulator->uA_load = uA_load;
1911 ret = regulator_check_drms(rdev);
1912 if (ret < 0)
1913 goto out;
1914 ret = -EINVAL;
1916 /* sanity check */
1917 if (!rdev->desc->ops->get_optimum_mode)
1918 goto out;
1920 /* get output voltage */
1921 output_uV = _regulator_get_voltage(rdev);
1922 if (output_uV <= 0) {
1923 rdev_err(rdev, "invalid output voltage found\n");
1924 goto out;
1927 /* get input voltage */
1928 input_uV = 0;
1929 if (rdev->supply)
1930 input_uV = _regulator_get_voltage(rdev->supply);
1931 if (input_uV <= 0)
1932 input_uV = rdev->constraints->input_uV;
1933 if (input_uV <= 0) {
1934 rdev_err(rdev, "invalid input voltage found\n");
1935 goto out;
1938 /* calc total requested load for this regulator */
1939 list_for_each_entry(consumer, &rdev->consumer_list, list)
1940 total_uA_load += consumer->uA_load;
1942 mode = rdev->desc->ops->get_optimum_mode(rdev,
1943 input_uV, output_uV,
1944 total_uA_load);
1945 ret = regulator_check_mode(rdev, mode);
1946 if (ret < 0) {
1947 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
1948 total_uA_load, input_uV, output_uV);
1949 goto out;
1952 ret = rdev->desc->ops->set_mode(rdev, mode);
1953 if (ret < 0) {
1954 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1955 goto out;
1957 ret = mode;
1958 out:
1959 mutex_unlock(&rdev->mutex);
1960 return ret;
1962 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1965 * regulator_register_notifier - register regulator event notifier
1966 * @regulator: regulator source
1967 * @nb: notifier block
1969 * Register notifier block to receive regulator events.
1971 int regulator_register_notifier(struct regulator *regulator,
1972 struct notifier_block *nb)
1974 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1975 nb);
1977 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1980 * regulator_unregister_notifier - unregister regulator event notifier
1981 * @regulator: regulator source
1982 * @nb: notifier block
1984 * Unregister regulator event notifier block.
1986 int regulator_unregister_notifier(struct regulator *regulator,
1987 struct notifier_block *nb)
1989 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1990 nb);
1992 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1994 /* notify regulator consumers and downstream regulator consumers.
1995 * Note mutex must be held by caller.
1997 static void _notifier_call_chain(struct regulator_dev *rdev,
1998 unsigned long event, void *data)
2000 struct regulator_dev *_rdev;
2002 /* call rdev chain first */
2003 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2005 /* now notify regulator we supply */
2006 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2007 mutex_lock(&_rdev->mutex);
2008 _notifier_call_chain(_rdev, event, data);
2009 mutex_unlock(&_rdev->mutex);
2014 * regulator_bulk_get - get multiple regulator consumers
2016 * @dev: Device to supply
2017 * @num_consumers: Number of consumers to register
2018 * @consumers: Configuration of consumers; clients are stored here.
2020 * @return 0 on success, an errno on failure.
2022 * This helper function allows drivers to get several regulator
2023 * consumers in one operation. If any of the regulators cannot be
2024 * acquired then any regulators that were allocated will be freed
2025 * before returning to the caller.
2027 int regulator_bulk_get(struct device *dev, int num_consumers,
2028 struct regulator_bulk_data *consumers)
2030 int i;
2031 int ret;
2033 for (i = 0; i < num_consumers; i++)
2034 consumers[i].consumer = NULL;
2036 for (i = 0; i < num_consumers; i++) {
2037 consumers[i].consumer = regulator_get(dev,
2038 consumers[i].supply);
2039 if (IS_ERR(consumers[i].consumer)) {
2040 ret = PTR_ERR(consumers[i].consumer);
2041 dev_err(dev, "Failed to get supply '%s': %d\n",
2042 consumers[i].supply, ret);
2043 consumers[i].consumer = NULL;
2044 goto err;
2048 return 0;
2050 err:
2051 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2052 regulator_put(consumers[i].consumer);
2054 return ret;
2056 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2059 * regulator_bulk_enable - enable multiple regulator consumers
2061 * @num_consumers: Number of consumers
2062 * @consumers: Consumer data; clients are stored here.
2063 * @return 0 on success, an errno on failure
2065 * This convenience API allows consumers to enable multiple regulator
2066 * clients in a single API call. If any consumers cannot be enabled
2067 * then any others that were enabled will be disabled again prior to
2068 * return.
2070 int regulator_bulk_enable(int num_consumers,
2071 struct regulator_bulk_data *consumers)
2073 int i;
2074 int ret;
2076 for (i = 0; i < num_consumers; i++) {
2077 ret = regulator_enable(consumers[i].consumer);
2078 if (ret != 0)
2079 goto err;
2082 return 0;
2084 err:
2085 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2086 for (--i; i >= 0; --i)
2087 regulator_disable(consumers[i].consumer);
2089 return ret;
2091 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2094 * regulator_bulk_disable - disable multiple regulator consumers
2096 * @num_consumers: Number of consumers
2097 * @consumers: Consumer data; clients are stored here.
2098 * @return 0 on success, an errno on failure
2100 * This convenience API allows consumers to disable multiple regulator
2101 * clients in a single API call. If any consumers cannot be enabled
2102 * then any others that were disabled will be disabled again prior to
2103 * return.
2105 int regulator_bulk_disable(int num_consumers,
2106 struct regulator_bulk_data *consumers)
2108 int i;
2109 int ret;
2111 for (i = 0; i < num_consumers; i++) {
2112 ret = regulator_disable(consumers[i].consumer);
2113 if (ret != 0)
2114 goto err;
2117 return 0;
2119 err:
2120 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2121 for (--i; i >= 0; --i)
2122 regulator_enable(consumers[i].consumer);
2124 return ret;
2126 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2129 * regulator_bulk_free - free multiple regulator consumers
2131 * @num_consumers: Number of consumers
2132 * @consumers: Consumer data; clients are stored here.
2134 * This convenience API allows consumers to free multiple regulator
2135 * clients in a single API call.
2137 void regulator_bulk_free(int num_consumers,
2138 struct regulator_bulk_data *consumers)
2140 int i;
2142 for (i = 0; i < num_consumers; i++) {
2143 regulator_put(consumers[i].consumer);
2144 consumers[i].consumer = NULL;
2147 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2150 * regulator_notifier_call_chain - call regulator event notifier
2151 * @rdev: regulator source
2152 * @event: notifier block
2153 * @data: callback-specific data.
2155 * Called by regulator drivers to notify clients a regulator event has
2156 * occurred. We also notify regulator clients downstream.
2157 * Note lock must be held by caller.
2159 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2160 unsigned long event, void *data)
2162 _notifier_call_chain(rdev, event, data);
2163 return NOTIFY_DONE;
2166 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2169 * regulator_mode_to_status - convert a regulator mode into a status
2171 * @mode: Mode to convert
2173 * Convert a regulator mode into a status.
2175 int regulator_mode_to_status(unsigned int mode)
2177 switch (mode) {
2178 case REGULATOR_MODE_FAST:
2179 return REGULATOR_STATUS_FAST;
2180 case REGULATOR_MODE_NORMAL:
2181 return REGULATOR_STATUS_NORMAL;
2182 case REGULATOR_MODE_IDLE:
2183 return REGULATOR_STATUS_IDLE;
2184 case REGULATOR_STATUS_STANDBY:
2185 return REGULATOR_STATUS_STANDBY;
2186 default:
2187 return 0;
2190 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2193 * To avoid cluttering sysfs (and memory) with useless state, only
2194 * create attributes that can be meaningfully displayed.
2196 static int add_regulator_attributes(struct regulator_dev *rdev)
2198 struct device *dev = &rdev->dev;
2199 struct regulator_ops *ops = rdev->desc->ops;
2200 int status = 0;
2202 /* some attributes need specific methods to be displayed */
2203 if (ops->get_voltage || ops->get_voltage_sel) {
2204 status = device_create_file(dev, &dev_attr_microvolts);
2205 if (status < 0)
2206 return status;
2208 if (ops->get_current_limit) {
2209 status = device_create_file(dev, &dev_attr_microamps);
2210 if (status < 0)
2211 return status;
2213 if (ops->get_mode) {
2214 status = device_create_file(dev, &dev_attr_opmode);
2215 if (status < 0)
2216 return status;
2218 if (ops->is_enabled) {
2219 status = device_create_file(dev, &dev_attr_state);
2220 if (status < 0)
2221 return status;
2223 if (ops->get_status) {
2224 status = device_create_file(dev, &dev_attr_status);
2225 if (status < 0)
2226 return status;
2229 /* some attributes are type-specific */
2230 if (rdev->desc->type == REGULATOR_CURRENT) {
2231 status = device_create_file(dev, &dev_attr_requested_microamps);
2232 if (status < 0)
2233 return status;
2236 /* all the other attributes exist to support constraints;
2237 * don't show them if there are no constraints, or if the
2238 * relevant supporting methods are missing.
2240 if (!rdev->constraints)
2241 return status;
2243 /* constraints need specific supporting methods */
2244 if (ops->set_voltage) {
2245 status = device_create_file(dev, &dev_attr_min_microvolts);
2246 if (status < 0)
2247 return status;
2248 status = device_create_file(dev, &dev_attr_max_microvolts);
2249 if (status < 0)
2250 return status;
2252 if (ops->set_current_limit) {
2253 status = device_create_file(dev, &dev_attr_min_microamps);
2254 if (status < 0)
2255 return status;
2256 status = device_create_file(dev, &dev_attr_max_microamps);
2257 if (status < 0)
2258 return status;
2261 /* suspend mode constraints need multiple supporting methods */
2262 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2263 return status;
2265 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2266 if (status < 0)
2267 return status;
2268 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2269 if (status < 0)
2270 return status;
2271 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2272 if (status < 0)
2273 return status;
2275 if (ops->set_suspend_voltage) {
2276 status = device_create_file(dev,
2277 &dev_attr_suspend_standby_microvolts);
2278 if (status < 0)
2279 return status;
2280 status = device_create_file(dev,
2281 &dev_attr_suspend_mem_microvolts);
2282 if (status < 0)
2283 return status;
2284 status = device_create_file(dev,
2285 &dev_attr_suspend_disk_microvolts);
2286 if (status < 0)
2287 return status;
2290 if (ops->set_suspend_mode) {
2291 status = device_create_file(dev,
2292 &dev_attr_suspend_standby_mode);
2293 if (status < 0)
2294 return status;
2295 status = device_create_file(dev,
2296 &dev_attr_suspend_mem_mode);
2297 if (status < 0)
2298 return status;
2299 status = device_create_file(dev,
2300 &dev_attr_suspend_disk_mode);
2301 if (status < 0)
2302 return status;
2305 return status;
2309 * regulator_register - register regulator
2310 * @regulator_desc: regulator to register
2311 * @dev: struct device for the regulator
2312 * @init_data: platform provided init data, passed through by driver
2313 * @driver_data: private regulator data
2315 * Called by regulator drivers to register a regulator.
2316 * Returns 0 on success.
2318 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2319 struct device *dev, const struct regulator_init_data *init_data,
2320 void *driver_data)
2322 static atomic_t regulator_no = ATOMIC_INIT(0);
2323 struct regulator_dev *rdev;
2324 int ret, i;
2326 if (regulator_desc == NULL)
2327 return ERR_PTR(-EINVAL);
2329 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2330 return ERR_PTR(-EINVAL);
2332 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2333 regulator_desc->type != REGULATOR_CURRENT)
2334 return ERR_PTR(-EINVAL);
2336 if (!init_data)
2337 return ERR_PTR(-EINVAL);
2339 /* Only one of each should be implemented */
2340 WARN_ON(regulator_desc->ops->get_voltage &&
2341 regulator_desc->ops->get_voltage_sel);
2343 /* If we're using selectors we must implement list_voltage. */
2344 if (regulator_desc->ops->get_voltage_sel &&
2345 !regulator_desc->ops->list_voltage) {
2346 return ERR_PTR(-EINVAL);
2349 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2350 if (rdev == NULL)
2351 return ERR_PTR(-ENOMEM);
2353 mutex_lock(&regulator_list_mutex);
2355 mutex_init(&rdev->mutex);
2356 rdev->reg_data = driver_data;
2357 rdev->owner = regulator_desc->owner;
2358 rdev->desc = regulator_desc;
2359 INIT_LIST_HEAD(&rdev->consumer_list);
2360 INIT_LIST_HEAD(&rdev->supply_list);
2361 INIT_LIST_HEAD(&rdev->list);
2362 INIT_LIST_HEAD(&rdev->slist);
2363 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2365 /* preform any regulator specific init */
2366 if (init_data->regulator_init) {
2367 ret = init_data->regulator_init(rdev->reg_data);
2368 if (ret < 0)
2369 goto clean;
2372 /* register with sysfs */
2373 rdev->dev.class = &regulator_class;
2374 rdev->dev.parent = dev;
2375 dev_set_name(&rdev->dev, "regulator.%d",
2376 atomic_inc_return(&regulator_no) - 1);
2377 ret = device_register(&rdev->dev);
2378 if (ret != 0) {
2379 put_device(&rdev->dev);
2380 goto clean;
2383 dev_set_drvdata(&rdev->dev, rdev);
2385 /* set regulator constraints */
2386 ret = set_machine_constraints(rdev, &init_data->constraints);
2387 if (ret < 0)
2388 goto scrub;
2390 /* add attributes supported by this regulator */
2391 ret = add_regulator_attributes(rdev);
2392 if (ret < 0)
2393 goto scrub;
2395 /* set supply regulator if it exists */
2396 if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2397 dev_err(dev,
2398 "Supply regulator specified by both name and dev\n");
2399 ret = -EINVAL;
2400 goto scrub;
2403 if (init_data->supply_regulator) {
2404 struct regulator_dev *r;
2405 int found = 0;
2407 list_for_each_entry(r, &regulator_list, list) {
2408 if (strcmp(rdev_get_name(r),
2409 init_data->supply_regulator) == 0) {
2410 found = 1;
2411 break;
2415 if (!found) {
2416 dev_err(dev, "Failed to find supply %s\n",
2417 init_data->supply_regulator);
2418 ret = -ENODEV;
2419 goto scrub;
2422 ret = set_supply(rdev, r);
2423 if (ret < 0)
2424 goto scrub;
2427 if (init_data->supply_regulator_dev) {
2428 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2429 ret = set_supply(rdev,
2430 dev_get_drvdata(init_data->supply_regulator_dev));
2431 if (ret < 0)
2432 goto scrub;
2435 /* add consumers devices */
2436 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2437 ret = set_consumer_device_supply(rdev,
2438 init_data->consumer_supplies[i].dev,
2439 init_data->consumer_supplies[i].dev_name,
2440 init_data->consumer_supplies[i].supply);
2441 if (ret < 0)
2442 goto unset_supplies;
2445 list_add(&rdev->list, &regulator_list);
2446 out:
2447 mutex_unlock(&regulator_list_mutex);
2448 return rdev;
2450 unset_supplies:
2451 unset_regulator_supplies(rdev);
2453 scrub:
2454 device_unregister(&rdev->dev);
2455 /* device core frees rdev */
2456 rdev = ERR_PTR(ret);
2457 goto out;
2459 clean:
2460 kfree(rdev);
2461 rdev = ERR_PTR(ret);
2462 goto out;
2464 EXPORT_SYMBOL_GPL(regulator_register);
2467 * regulator_unregister - unregister regulator
2468 * @rdev: regulator to unregister
2470 * Called by regulator drivers to unregister a regulator.
2472 void regulator_unregister(struct regulator_dev *rdev)
2474 if (rdev == NULL)
2475 return;
2477 mutex_lock(&regulator_list_mutex);
2478 WARN_ON(rdev->open_count);
2479 unset_regulator_supplies(rdev);
2480 list_del(&rdev->list);
2481 if (rdev->supply)
2482 sysfs_remove_link(&rdev->dev.kobj, "supply");
2483 device_unregister(&rdev->dev);
2484 kfree(rdev->constraints);
2485 mutex_unlock(&regulator_list_mutex);
2487 EXPORT_SYMBOL_GPL(regulator_unregister);
2490 * regulator_suspend_prepare - prepare regulators for system wide suspend
2491 * @state: system suspend state
2493 * Configure each regulator with it's suspend operating parameters for state.
2494 * This will usually be called by machine suspend code prior to supending.
2496 int regulator_suspend_prepare(suspend_state_t state)
2498 struct regulator_dev *rdev;
2499 int ret = 0;
2501 /* ON is handled by regulator active state */
2502 if (state == PM_SUSPEND_ON)
2503 return -EINVAL;
2505 mutex_lock(&regulator_list_mutex);
2506 list_for_each_entry(rdev, &regulator_list, list) {
2508 mutex_lock(&rdev->mutex);
2509 ret = suspend_prepare(rdev, state);
2510 mutex_unlock(&rdev->mutex);
2512 if (ret < 0) {
2513 rdev_err(rdev, "failed to prepare\n");
2514 goto out;
2517 out:
2518 mutex_unlock(&regulator_list_mutex);
2519 return ret;
2521 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2524 * regulator_has_full_constraints - the system has fully specified constraints
2526 * Calling this function will cause the regulator API to disable all
2527 * regulators which have a zero use count and don't have an always_on
2528 * constraint in a late_initcall.
2530 * The intention is that this will become the default behaviour in a
2531 * future kernel release so users are encouraged to use this facility
2532 * now.
2534 void regulator_has_full_constraints(void)
2536 has_full_constraints = 1;
2538 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2541 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2543 * Calling this function will cause the regulator API to provide a
2544 * dummy regulator to consumers if no physical regulator is found,
2545 * allowing most consumers to proceed as though a regulator were
2546 * configured. This allows systems such as those with software
2547 * controllable regulators for the CPU core only to be brought up more
2548 * readily.
2550 void regulator_use_dummy_regulator(void)
2552 board_wants_dummy_regulator = true;
2554 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2557 * rdev_get_drvdata - get rdev regulator driver data
2558 * @rdev: regulator
2560 * Get rdev regulator driver private data. This call can be used in the
2561 * regulator driver context.
2563 void *rdev_get_drvdata(struct regulator_dev *rdev)
2565 return rdev->reg_data;
2567 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2570 * regulator_get_drvdata - get regulator driver data
2571 * @regulator: regulator
2573 * Get regulator driver private data. This call can be used in the consumer
2574 * driver context when non API regulator specific functions need to be called.
2576 void *regulator_get_drvdata(struct regulator *regulator)
2578 return regulator->rdev->reg_data;
2580 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2583 * regulator_set_drvdata - set regulator driver data
2584 * @regulator: regulator
2585 * @data: data
2587 void regulator_set_drvdata(struct regulator *regulator, void *data)
2589 regulator->rdev->reg_data = data;
2591 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2594 * regulator_get_id - get regulator ID
2595 * @rdev: regulator
2597 int rdev_get_id(struct regulator_dev *rdev)
2599 return rdev->desc->id;
2601 EXPORT_SYMBOL_GPL(rdev_get_id);
2603 struct device *rdev_get_dev(struct regulator_dev *rdev)
2605 return &rdev->dev;
2607 EXPORT_SYMBOL_GPL(rdev_get_dev);
2609 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2611 return reg_init_data->driver_data;
2613 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2615 static int __init regulator_init(void)
2617 int ret;
2619 ret = class_register(&regulator_class);
2621 regulator_dummy_init();
2623 return ret;
2626 /* init early to allow our consumers to complete system booting */
2627 core_initcall(regulator_init);
2629 static int __init regulator_init_complete(void)
2631 struct regulator_dev *rdev;
2632 struct regulator_ops *ops;
2633 struct regulation_constraints *c;
2634 int enabled, ret;
2636 mutex_lock(&regulator_list_mutex);
2638 /* If we have a full configuration then disable any regulators
2639 * which are not in use or always_on. This will become the
2640 * default behaviour in the future.
2642 list_for_each_entry(rdev, &regulator_list, list) {
2643 ops = rdev->desc->ops;
2644 c = rdev->constraints;
2646 if (!ops->disable || (c && c->always_on))
2647 continue;
2649 mutex_lock(&rdev->mutex);
2651 if (rdev->use_count)
2652 goto unlock;
2654 /* If we can't read the status assume it's on. */
2655 if (ops->is_enabled)
2656 enabled = ops->is_enabled(rdev);
2657 else
2658 enabled = 1;
2660 if (!enabled)
2661 goto unlock;
2663 if (has_full_constraints) {
2664 /* We log since this may kill the system if it
2665 * goes wrong. */
2666 rdev_info(rdev, "disabling\n");
2667 ret = ops->disable(rdev);
2668 if (ret != 0) {
2669 rdev_err(rdev, "couldn't disable: %d\n", ret);
2671 } else {
2672 /* The intention is that in future we will
2673 * assume that full constraints are provided
2674 * so warn even if we aren't going to do
2675 * anything here.
2677 rdev_warn(rdev, "incomplete constraints, leaving on\n");
2680 unlock:
2681 mutex_unlock(&rdev->mutex);
2684 mutex_unlock(&regulator_list_mutex);
2686 return 0;
2688 late_initcall(regulator_init_complete);