regulator: core: use debug level print in regulator_check_drms
[linux-2.6/btrfs-unstable.git] / drivers / regulator / core.c
blob22e276f7e72fb507213fa945a6c8b963e15bbb90
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
39 #include "dummy.h"
40 #include "internal.h"
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
60 static struct dentry *debugfs_root;
63 * struct regulator_map
65 * Used to provide symbolic supply names to devices.
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
75 * struct regulator_enable_gpio
77 * Management for shared enable GPIO pin
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
88 * struct regulator_supply_alias
90 * Used to map lookups for a supply onto an alternative device.
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
113 static const char *rdev_get_name(struct regulator_dev *rdev)
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
123 static bool have_full_constraints(void)
125 return has_full_constraints || of_have_populated_dt();
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
147 if (!regnode) {
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
150 return NULL;
152 return regnode;
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
157 if (!rdev->constraints)
158 return 0;
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 return 1;
162 else
163 return 0;
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
170 BUG_ON(*min_uV > *max_uV);
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 *min_uV, *max_uV);
189 return -EINVAL;
192 return 0;
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
201 struct regulator *regulator;
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
208 if (!regulator->min_uV && !regulator->max_uV)
209 continue;
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 *min_uV, *max_uV);
220 return -EINVAL;
223 return 0;
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
230 BUG_ON(*min_uA > *max_uA);
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
234 return -ENODEV;
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
238 return -EPERM;
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 *min_uA, *max_uA);
249 return -EINVAL;
252 return 0;
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
258 switch (*mode) {
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
263 break;
264 default:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 return -EINVAL;
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
271 return -ENODEV;
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
275 return -EPERM;
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
281 while (*mode) {
282 if (rdev->constraints->valid_modes_mask & *mode)
283 return 0;
284 *mode /= 2;
287 return -EINVAL;
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
295 return -ENODEV;
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_dbg(rdev, "operation not allowed\n");
299 return -EPERM;
301 return 0;
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 ssize_t ret;
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
314 return ret;
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
334 static DEVICE_ATTR_RO(name);
336 static ssize_t regulator_print_opmode(char *buf, int mode)
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
348 return sprintf(buf, "unknown\n");
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
360 static ssize_t regulator_print_state(char *buf, int state)
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
380 return ret;
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 case REGULATOR_STATUS_BYPASS:
418 label = "bypass";
419 break;
420 case REGULATOR_STATUS_UNDEFINED:
421 label = "undefined";
422 break;
423 default:
424 return -ERANGE;
427 return sprintf(buf, "%s\n", label);
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 char *buf)
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
500 static DEVICE_ATTR_RO(num_users);
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 char *buf)
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
513 return sprintf(buf, "unknown\n");
515 static DEVICE_ATTR_RO(type);
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 const char *report;
618 bool bypass;
619 int ret;
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
623 if (ret != 0)
624 report = "unknown";
625 else if (bypass)
626 report = "enabled";
627 else
628 report = "disabled";
630 return sprintf(buf, "%s\n", report);
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
635 /* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
639 struct regulator *sibling;
640 int current_uA = 0, output_uV, input_uV, err;
641 unsigned int mode;
643 lockdep_assert_held_once(&rdev->mutex);
646 * first check to see if we can set modes at all, otherwise just
647 * tell the consumer everything is OK.
649 err = regulator_check_drms(rdev);
650 if (err < 0)
651 return 0;
653 if (!rdev->desc->ops->get_optimum_mode &&
654 !rdev->desc->ops->set_load)
655 return 0;
657 if (!rdev->desc->ops->set_mode &&
658 !rdev->desc->ops->set_load)
659 return -EINVAL;
661 /* get output voltage */
662 output_uV = _regulator_get_voltage(rdev);
663 if (output_uV <= 0) {
664 rdev_err(rdev, "invalid output voltage found\n");
665 return -EINVAL;
668 /* get input voltage */
669 input_uV = 0;
670 if (rdev->supply)
671 input_uV = regulator_get_voltage(rdev->supply);
672 if (input_uV <= 0)
673 input_uV = rdev->constraints->input_uV;
674 if (input_uV <= 0) {
675 rdev_err(rdev, "invalid input voltage found\n");
676 return -EINVAL;
679 /* calc total requested load */
680 list_for_each_entry(sibling, &rdev->consumer_list, list)
681 current_uA += sibling->uA_load;
683 current_uA += rdev->constraints->system_load;
685 if (rdev->desc->ops->set_load) {
686 /* set the optimum mode for our new total regulator load */
687 err = rdev->desc->ops->set_load(rdev, current_uA);
688 if (err < 0)
689 rdev_err(rdev, "failed to set load %d\n", current_uA);
690 } else {
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err < 0) {
698 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
699 current_uA, input_uV, output_uV);
700 return err;
703 err = rdev->desc->ops->set_mode(rdev, mode);
704 if (err < 0)
705 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
708 return err;
711 static int suspend_set_state(struct regulator_dev *rdev,
712 struct regulator_state *rstate)
714 int ret = 0;
716 /* If we have no suspend mode configration don't set anything;
717 * only warn if the driver implements set_suspend_voltage or
718 * set_suspend_mode callback.
720 if (!rstate->enabled && !rstate->disabled) {
721 if (rdev->desc->ops->set_suspend_voltage ||
722 rdev->desc->ops->set_suspend_mode)
723 rdev_warn(rdev, "No configuration\n");
724 return 0;
727 if (rstate->enabled && rstate->disabled) {
728 rdev_err(rdev, "invalid configuration\n");
729 return -EINVAL;
732 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
733 ret = rdev->desc->ops->set_suspend_enable(rdev);
734 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
735 ret = rdev->desc->ops->set_suspend_disable(rdev);
736 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
737 ret = 0;
739 if (ret < 0) {
740 rdev_err(rdev, "failed to enabled/disable\n");
741 return ret;
744 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
745 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
746 if (ret < 0) {
747 rdev_err(rdev, "failed to set voltage\n");
748 return ret;
752 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
753 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
754 if (ret < 0) {
755 rdev_err(rdev, "failed to set mode\n");
756 return ret;
759 return ret;
762 /* locks held by caller */
763 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
765 lockdep_assert_held_once(&rdev->mutex);
767 if (!rdev->constraints)
768 return -EINVAL;
770 switch (state) {
771 case PM_SUSPEND_STANDBY:
772 return suspend_set_state(rdev,
773 &rdev->constraints->state_standby);
774 case PM_SUSPEND_MEM:
775 return suspend_set_state(rdev,
776 &rdev->constraints->state_mem);
777 case PM_SUSPEND_MAX:
778 return suspend_set_state(rdev,
779 &rdev->constraints->state_disk);
780 default:
781 return -EINVAL;
785 static void print_constraints(struct regulator_dev *rdev)
787 struct regulation_constraints *constraints = rdev->constraints;
788 char buf[160] = "";
789 size_t len = sizeof(buf) - 1;
790 int count = 0;
791 int ret;
793 if (constraints->min_uV && constraints->max_uV) {
794 if (constraints->min_uV == constraints->max_uV)
795 count += scnprintf(buf + count, len - count, "%d mV ",
796 constraints->min_uV / 1000);
797 else
798 count += scnprintf(buf + count, len - count,
799 "%d <--> %d mV ",
800 constraints->min_uV / 1000,
801 constraints->max_uV / 1000);
804 if (!constraints->min_uV ||
805 constraints->min_uV != constraints->max_uV) {
806 ret = _regulator_get_voltage(rdev);
807 if (ret > 0)
808 count += scnprintf(buf + count, len - count,
809 "at %d mV ", ret / 1000);
812 if (constraints->uV_offset)
813 count += scnprintf(buf + count, len - count, "%dmV offset ",
814 constraints->uV_offset / 1000);
816 if (constraints->min_uA && constraints->max_uA) {
817 if (constraints->min_uA == constraints->max_uA)
818 count += scnprintf(buf + count, len - count, "%d mA ",
819 constraints->min_uA / 1000);
820 else
821 count += scnprintf(buf + count, len - count,
822 "%d <--> %d mA ",
823 constraints->min_uA / 1000,
824 constraints->max_uA / 1000);
827 if (!constraints->min_uA ||
828 constraints->min_uA != constraints->max_uA) {
829 ret = _regulator_get_current_limit(rdev);
830 if (ret > 0)
831 count += scnprintf(buf + count, len - count,
832 "at %d mA ", ret / 1000);
835 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
836 count += scnprintf(buf + count, len - count, "fast ");
837 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
838 count += scnprintf(buf + count, len - count, "normal ");
839 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
840 count += scnprintf(buf + count, len - count, "idle ");
841 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
842 count += scnprintf(buf + count, len - count, "standby");
844 if (!count)
845 scnprintf(buf, len, "no parameters");
847 rdev_dbg(rdev, "%s\n", buf);
849 if ((constraints->min_uV != constraints->max_uV) &&
850 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
851 rdev_warn(rdev,
852 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
855 static int machine_constraints_voltage(struct regulator_dev *rdev,
856 struct regulation_constraints *constraints)
858 const struct regulator_ops *ops = rdev->desc->ops;
859 int ret;
861 /* do we need to apply the constraint voltage */
862 if (rdev->constraints->apply_uV &&
863 rdev->constraints->min_uV == rdev->constraints->max_uV) {
864 int current_uV = _regulator_get_voltage(rdev);
865 if (current_uV < 0) {
866 rdev_err(rdev,
867 "failed to get the current voltage(%d)\n",
868 current_uV);
869 return current_uV;
871 if (current_uV < rdev->constraints->min_uV ||
872 current_uV > rdev->constraints->max_uV) {
873 ret = _regulator_do_set_voltage(
874 rdev, rdev->constraints->min_uV,
875 rdev->constraints->max_uV);
876 if (ret < 0) {
877 rdev_err(rdev,
878 "failed to apply %duV constraint(%d)\n",
879 rdev->constraints->min_uV, ret);
880 return ret;
885 /* constrain machine-level voltage specs to fit
886 * the actual range supported by this regulator.
888 if (ops->list_voltage && rdev->desc->n_voltages) {
889 int count = rdev->desc->n_voltages;
890 int i;
891 int min_uV = INT_MAX;
892 int max_uV = INT_MIN;
893 int cmin = constraints->min_uV;
894 int cmax = constraints->max_uV;
896 /* it's safe to autoconfigure fixed-voltage supplies
897 and the constraints are used by list_voltage. */
898 if (count == 1 && !cmin) {
899 cmin = 1;
900 cmax = INT_MAX;
901 constraints->min_uV = cmin;
902 constraints->max_uV = cmax;
905 /* voltage constraints are optional */
906 if ((cmin == 0) && (cmax == 0))
907 return 0;
909 /* else require explicit machine-level constraints */
910 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
911 rdev_err(rdev, "invalid voltage constraints\n");
912 return -EINVAL;
915 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
916 for (i = 0; i < count; i++) {
917 int value;
919 value = ops->list_voltage(rdev, i);
920 if (value <= 0)
921 continue;
923 /* maybe adjust [min_uV..max_uV] */
924 if (value >= cmin && value < min_uV)
925 min_uV = value;
926 if (value <= cmax && value > max_uV)
927 max_uV = value;
930 /* final: [min_uV..max_uV] valid iff constraints valid */
931 if (max_uV < min_uV) {
932 rdev_err(rdev,
933 "unsupportable voltage constraints %u-%uuV\n",
934 min_uV, max_uV);
935 return -EINVAL;
938 /* use regulator's subset of machine constraints */
939 if (constraints->min_uV < min_uV) {
940 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
941 constraints->min_uV, min_uV);
942 constraints->min_uV = min_uV;
944 if (constraints->max_uV > max_uV) {
945 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
946 constraints->max_uV, max_uV);
947 constraints->max_uV = max_uV;
951 return 0;
954 static int machine_constraints_current(struct regulator_dev *rdev,
955 struct regulation_constraints *constraints)
957 const struct regulator_ops *ops = rdev->desc->ops;
958 int ret;
960 if (!constraints->min_uA && !constraints->max_uA)
961 return 0;
963 if (constraints->min_uA > constraints->max_uA) {
964 rdev_err(rdev, "Invalid current constraints\n");
965 return -EINVAL;
968 if (!ops->set_current_limit || !ops->get_current_limit) {
969 rdev_warn(rdev, "Operation of current configuration missing\n");
970 return 0;
973 /* Set regulator current in constraints range */
974 ret = ops->set_current_limit(rdev, constraints->min_uA,
975 constraints->max_uA);
976 if (ret < 0) {
977 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
978 return ret;
981 return 0;
984 static int _regulator_do_enable(struct regulator_dev *rdev);
987 * set_machine_constraints - sets regulator constraints
988 * @rdev: regulator source
989 * @constraints: constraints to apply
991 * Allows platform initialisation code to define and constrain
992 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
993 * Constraints *must* be set by platform code in order for some
994 * regulator operations to proceed i.e. set_voltage, set_current_limit,
995 * set_mode.
997 static int set_machine_constraints(struct regulator_dev *rdev,
998 const struct regulation_constraints *constraints)
1000 int ret = 0;
1001 const struct regulator_ops *ops = rdev->desc->ops;
1003 if (constraints)
1004 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1005 GFP_KERNEL);
1006 else
1007 rdev->constraints = kzalloc(sizeof(*constraints),
1008 GFP_KERNEL);
1009 if (!rdev->constraints)
1010 return -ENOMEM;
1012 ret = machine_constraints_voltage(rdev, rdev->constraints);
1013 if (ret != 0)
1014 goto out;
1016 ret = machine_constraints_current(rdev, rdev->constraints);
1017 if (ret != 0)
1018 goto out;
1020 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1021 ret = ops->set_input_current_limit(rdev,
1022 rdev->constraints->ilim_uA);
1023 if (ret < 0) {
1024 rdev_err(rdev, "failed to set input limit\n");
1025 goto out;
1029 /* do we need to setup our suspend state */
1030 if (rdev->constraints->initial_state) {
1031 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1032 if (ret < 0) {
1033 rdev_err(rdev, "failed to set suspend state\n");
1034 goto out;
1038 if (rdev->constraints->initial_mode) {
1039 if (!ops->set_mode) {
1040 rdev_err(rdev, "no set_mode operation\n");
1041 ret = -EINVAL;
1042 goto out;
1045 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1046 if (ret < 0) {
1047 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1048 goto out;
1052 /* If the constraints say the regulator should be on at this point
1053 * and we have control then make sure it is enabled.
1055 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1056 ret = _regulator_do_enable(rdev);
1057 if (ret < 0 && ret != -EINVAL) {
1058 rdev_err(rdev, "failed to enable\n");
1059 goto out;
1063 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1064 && ops->set_ramp_delay) {
1065 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1066 if (ret < 0) {
1067 rdev_err(rdev, "failed to set ramp_delay\n");
1068 goto out;
1072 if (rdev->constraints->pull_down && ops->set_pull_down) {
1073 ret = ops->set_pull_down(rdev);
1074 if (ret < 0) {
1075 rdev_err(rdev, "failed to set pull down\n");
1076 goto out;
1080 if (rdev->constraints->soft_start && ops->set_soft_start) {
1081 ret = ops->set_soft_start(rdev);
1082 if (ret < 0) {
1083 rdev_err(rdev, "failed to set soft start\n");
1084 goto out;
1088 print_constraints(rdev);
1089 return 0;
1090 out:
1091 kfree(rdev->constraints);
1092 rdev->constraints = NULL;
1093 return ret;
1097 * set_supply - set regulator supply regulator
1098 * @rdev: regulator name
1099 * @supply_rdev: supply regulator name
1101 * Called by platform initialisation code to set the supply regulator for this
1102 * regulator. This ensures that a regulators supply will also be enabled by the
1103 * core if it's child is enabled.
1105 static int set_supply(struct regulator_dev *rdev,
1106 struct regulator_dev *supply_rdev)
1108 int err;
1110 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1112 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1113 if (rdev->supply == NULL) {
1114 err = -ENOMEM;
1115 return err;
1117 supply_rdev->open_count++;
1119 return 0;
1123 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1124 * @rdev: regulator source
1125 * @consumer_dev_name: dev_name() string for device supply applies to
1126 * @supply: symbolic name for supply
1128 * Allows platform initialisation code to map physical regulator
1129 * sources to symbolic names for supplies for use by devices. Devices
1130 * should use these symbolic names to request regulators, avoiding the
1131 * need to provide board-specific regulator names as platform data.
1133 static int set_consumer_device_supply(struct regulator_dev *rdev,
1134 const char *consumer_dev_name,
1135 const char *supply)
1137 struct regulator_map *node;
1138 int has_dev;
1140 if (supply == NULL)
1141 return -EINVAL;
1143 if (consumer_dev_name != NULL)
1144 has_dev = 1;
1145 else
1146 has_dev = 0;
1148 list_for_each_entry(node, &regulator_map_list, list) {
1149 if (node->dev_name && consumer_dev_name) {
1150 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1151 continue;
1152 } else if (node->dev_name || consumer_dev_name) {
1153 continue;
1156 if (strcmp(node->supply, supply) != 0)
1157 continue;
1159 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1160 consumer_dev_name,
1161 dev_name(&node->regulator->dev),
1162 node->regulator->desc->name,
1163 supply,
1164 dev_name(&rdev->dev), rdev_get_name(rdev));
1165 return -EBUSY;
1168 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1169 if (node == NULL)
1170 return -ENOMEM;
1172 node->regulator = rdev;
1173 node->supply = supply;
1175 if (has_dev) {
1176 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1177 if (node->dev_name == NULL) {
1178 kfree(node);
1179 return -ENOMEM;
1183 list_add(&node->list, &regulator_map_list);
1184 return 0;
1187 static void unset_regulator_supplies(struct regulator_dev *rdev)
1189 struct regulator_map *node, *n;
1191 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1192 if (rdev == node->regulator) {
1193 list_del(&node->list);
1194 kfree(node->dev_name);
1195 kfree(node);
1200 #define REG_STR_SIZE 64
1202 static struct regulator *create_regulator(struct regulator_dev *rdev,
1203 struct device *dev,
1204 const char *supply_name)
1206 struct regulator *regulator;
1207 char buf[REG_STR_SIZE];
1208 int err, size;
1210 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1211 if (regulator == NULL)
1212 return NULL;
1214 mutex_lock(&rdev->mutex);
1215 regulator->rdev = rdev;
1216 list_add(&regulator->list, &rdev->consumer_list);
1218 if (dev) {
1219 regulator->dev = dev;
1221 /* Add a link to the device sysfs entry */
1222 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1223 dev->kobj.name, supply_name);
1224 if (size >= REG_STR_SIZE)
1225 goto overflow_err;
1227 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1228 if (regulator->supply_name == NULL)
1229 goto overflow_err;
1231 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1232 buf);
1233 if (err) {
1234 rdev_dbg(rdev, "could not add device link %s err %d\n",
1235 dev->kobj.name, err);
1236 /* non-fatal */
1238 } else {
1239 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1240 if (regulator->supply_name == NULL)
1241 goto overflow_err;
1244 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1245 rdev->debugfs);
1246 if (!regulator->debugfs) {
1247 rdev_warn(rdev, "Failed to create debugfs directory\n");
1248 } else {
1249 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1250 &regulator->uA_load);
1251 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1252 &regulator->min_uV);
1253 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1254 &regulator->max_uV);
1258 * Check now if the regulator is an always on regulator - if
1259 * it is then we don't need to do nearly so much work for
1260 * enable/disable calls.
1262 if (!_regulator_can_change_status(rdev) &&
1263 _regulator_is_enabled(rdev))
1264 regulator->always_on = true;
1266 mutex_unlock(&rdev->mutex);
1267 return regulator;
1268 overflow_err:
1269 list_del(&regulator->list);
1270 kfree(regulator);
1271 mutex_unlock(&rdev->mutex);
1272 return NULL;
1275 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1277 if (rdev->constraints && rdev->constraints->enable_time)
1278 return rdev->constraints->enable_time;
1279 if (!rdev->desc->ops->enable_time)
1280 return rdev->desc->enable_time;
1281 return rdev->desc->ops->enable_time(rdev);
1284 static struct regulator_supply_alias *regulator_find_supply_alias(
1285 struct device *dev, const char *supply)
1287 struct regulator_supply_alias *map;
1289 list_for_each_entry(map, &regulator_supply_alias_list, list)
1290 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1291 return map;
1293 return NULL;
1296 static void regulator_supply_alias(struct device **dev, const char **supply)
1298 struct regulator_supply_alias *map;
1300 map = regulator_find_supply_alias(*dev, *supply);
1301 if (map) {
1302 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1303 *supply, map->alias_supply,
1304 dev_name(map->alias_dev));
1305 *dev = map->alias_dev;
1306 *supply = map->alias_supply;
1310 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1311 const char *supply,
1312 int *ret)
1314 struct regulator_dev *r;
1315 struct device_node *node;
1316 struct regulator_map *map;
1317 const char *devname = NULL;
1319 regulator_supply_alias(&dev, &supply);
1321 /* first do a dt based lookup */
1322 if (dev && dev->of_node) {
1323 node = of_get_regulator(dev, supply);
1324 if (node) {
1325 list_for_each_entry(r, &regulator_list, list)
1326 if (r->dev.parent &&
1327 node == r->dev.of_node)
1328 return r;
1329 *ret = -EPROBE_DEFER;
1330 return NULL;
1331 } else {
1333 * If we couldn't even get the node then it's
1334 * not just that the device didn't register
1335 * yet, there's no node and we'll never
1336 * succeed.
1338 *ret = -ENODEV;
1342 /* if not found, try doing it non-dt way */
1343 if (dev)
1344 devname = dev_name(dev);
1346 list_for_each_entry(r, &regulator_list, list)
1347 if (strcmp(rdev_get_name(r), supply) == 0)
1348 return r;
1350 list_for_each_entry(map, &regulator_map_list, list) {
1351 /* If the mapping has a device set up it must match */
1352 if (map->dev_name &&
1353 (!devname || strcmp(map->dev_name, devname)))
1354 continue;
1356 if (strcmp(map->supply, supply) == 0)
1357 return map->regulator;
1361 return NULL;
1364 static int regulator_resolve_supply(struct regulator_dev *rdev)
1366 struct regulator_dev *r;
1367 struct device *dev = rdev->dev.parent;
1368 int ret;
1370 /* No supply to resovle? */
1371 if (!rdev->supply_name)
1372 return 0;
1374 /* Supply already resolved? */
1375 if (rdev->supply)
1376 return 0;
1378 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1379 if (ret == -ENODEV) {
1381 * No supply was specified for this regulator and
1382 * there will never be one.
1384 return 0;
1387 if (!r) {
1388 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1389 rdev->supply_name, rdev->desc->name);
1390 return -EPROBE_DEFER;
1393 /* Recursively resolve the supply of the supply */
1394 ret = regulator_resolve_supply(r);
1395 if (ret < 0)
1396 return ret;
1398 ret = set_supply(rdev, r);
1399 if (ret < 0)
1400 return ret;
1402 /* Cascade always-on state to supply */
1403 if (_regulator_is_enabled(rdev)) {
1404 ret = regulator_enable(rdev->supply);
1405 if (ret < 0)
1406 return ret;
1409 return 0;
1412 /* Internal regulator request function */
1413 static struct regulator *_regulator_get(struct device *dev, const char *id,
1414 bool exclusive, bool allow_dummy)
1416 struct regulator_dev *rdev;
1417 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1418 const char *devname = NULL;
1419 int ret;
1421 if (id == NULL) {
1422 pr_err("get() with no identifier\n");
1423 return ERR_PTR(-EINVAL);
1426 if (dev)
1427 devname = dev_name(dev);
1429 if (have_full_constraints())
1430 ret = -ENODEV;
1431 else
1432 ret = -EPROBE_DEFER;
1434 mutex_lock(&regulator_list_mutex);
1436 rdev = regulator_dev_lookup(dev, id, &ret);
1437 if (rdev)
1438 goto found;
1440 regulator = ERR_PTR(ret);
1443 * If we have return value from dev_lookup fail, we do not expect to
1444 * succeed, so, quit with appropriate error value
1446 if (ret && ret != -ENODEV)
1447 goto out;
1449 if (!devname)
1450 devname = "deviceless";
1453 * Assume that a regulator is physically present and enabled
1454 * even if it isn't hooked up and just provide a dummy.
1456 if (have_full_constraints() && allow_dummy) {
1457 pr_warn("%s supply %s not found, using dummy regulator\n",
1458 devname, id);
1460 rdev = dummy_regulator_rdev;
1461 goto found;
1462 /* Don't log an error when called from regulator_get_optional() */
1463 } else if (!have_full_constraints() || exclusive) {
1464 dev_warn(dev, "dummy supplies not allowed\n");
1467 mutex_unlock(&regulator_list_mutex);
1468 return regulator;
1470 found:
1471 if (rdev->exclusive) {
1472 regulator = ERR_PTR(-EPERM);
1473 goto out;
1476 if (exclusive && rdev->open_count) {
1477 regulator = ERR_PTR(-EBUSY);
1478 goto out;
1481 ret = regulator_resolve_supply(rdev);
1482 if (ret < 0) {
1483 regulator = ERR_PTR(ret);
1484 goto out;
1487 if (!try_module_get(rdev->owner))
1488 goto out;
1490 regulator = create_regulator(rdev, dev, id);
1491 if (regulator == NULL) {
1492 regulator = ERR_PTR(-ENOMEM);
1493 module_put(rdev->owner);
1494 goto out;
1497 rdev->open_count++;
1498 if (exclusive) {
1499 rdev->exclusive = 1;
1501 ret = _regulator_is_enabled(rdev);
1502 if (ret > 0)
1503 rdev->use_count = 1;
1504 else
1505 rdev->use_count = 0;
1508 out:
1509 mutex_unlock(&regulator_list_mutex);
1511 return regulator;
1515 * regulator_get - lookup and obtain a reference to a regulator.
1516 * @dev: device for regulator "consumer"
1517 * @id: Supply name or regulator ID.
1519 * Returns a struct regulator corresponding to the regulator producer,
1520 * or IS_ERR() condition containing errno.
1522 * Use of supply names configured via regulator_set_device_supply() is
1523 * strongly encouraged. It is recommended that the supply name used
1524 * should match the name used for the supply and/or the relevant
1525 * device pins in the datasheet.
1527 struct regulator *regulator_get(struct device *dev, const char *id)
1529 return _regulator_get(dev, id, false, true);
1531 EXPORT_SYMBOL_GPL(regulator_get);
1534 * regulator_get_exclusive - obtain exclusive access to a regulator.
1535 * @dev: device for regulator "consumer"
1536 * @id: Supply name or regulator ID.
1538 * Returns a struct regulator corresponding to the regulator producer,
1539 * or IS_ERR() condition containing errno. Other consumers will be
1540 * unable to obtain this regulator while this reference is held and the
1541 * use count for the regulator will be initialised to reflect the current
1542 * state of the regulator.
1544 * This is intended for use by consumers which cannot tolerate shared
1545 * use of the regulator such as those which need to force the
1546 * regulator off for correct operation of the hardware they are
1547 * controlling.
1549 * Use of supply names configured via regulator_set_device_supply() is
1550 * strongly encouraged. It is recommended that the supply name used
1551 * should match the name used for the supply and/or the relevant
1552 * device pins in the datasheet.
1554 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1556 return _regulator_get(dev, id, true, false);
1558 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1561 * regulator_get_optional - obtain optional access to a regulator.
1562 * @dev: device for regulator "consumer"
1563 * @id: Supply name or regulator ID.
1565 * Returns a struct regulator corresponding to the regulator producer,
1566 * or IS_ERR() condition containing errno.
1568 * This is intended for use by consumers for devices which can have
1569 * some supplies unconnected in normal use, such as some MMC devices.
1570 * It can allow the regulator core to provide stub supplies for other
1571 * supplies requested using normal regulator_get() calls without
1572 * disrupting the operation of drivers that can handle absent
1573 * supplies.
1575 * Use of supply names configured via regulator_set_device_supply() is
1576 * strongly encouraged. It is recommended that the supply name used
1577 * should match the name used for the supply and/or the relevant
1578 * device pins in the datasheet.
1580 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1582 return _regulator_get(dev, id, false, false);
1584 EXPORT_SYMBOL_GPL(regulator_get_optional);
1586 /* regulator_list_mutex lock held by regulator_put() */
1587 static void _regulator_put(struct regulator *regulator)
1589 struct regulator_dev *rdev;
1591 if (IS_ERR_OR_NULL(regulator))
1592 return;
1594 lockdep_assert_held_once(&regulator_list_mutex);
1596 rdev = regulator->rdev;
1598 debugfs_remove_recursive(regulator->debugfs);
1600 /* remove any sysfs entries */
1601 if (regulator->dev)
1602 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1603 mutex_lock(&rdev->mutex);
1604 kfree(regulator->supply_name);
1605 list_del(&regulator->list);
1606 kfree(regulator);
1608 rdev->open_count--;
1609 rdev->exclusive = 0;
1610 mutex_unlock(&rdev->mutex);
1612 module_put(rdev->owner);
1616 * regulator_put - "free" the regulator source
1617 * @regulator: regulator source
1619 * Note: drivers must ensure that all regulator_enable calls made on this
1620 * regulator source are balanced by regulator_disable calls prior to calling
1621 * this function.
1623 void regulator_put(struct regulator *regulator)
1625 mutex_lock(&regulator_list_mutex);
1626 _regulator_put(regulator);
1627 mutex_unlock(&regulator_list_mutex);
1629 EXPORT_SYMBOL_GPL(regulator_put);
1632 * regulator_register_supply_alias - Provide device alias for supply lookup
1634 * @dev: device that will be given as the regulator "consumer"
1635 * @id: Supply name or regulator ID
1636 * @alias_dev: device that should be used to lookup the supply
1637 * @alias_id: Supply name or regulator ID that should be used to lookup the
1638 * supply
1640 * All lookups for id on dev will instead be conducted for alias_id on
1641 * alias_dev.
1643 int regulator_register_supply_alias(struct device *dev, const char *id,
1644 struct device *alias_dev,
1645 const char *alias_id)
1647 struct regulator_supply_alias *map;
1649 map = regulator_find_supply_alias(dev, id);
1650 if (map)
1651 return -EEXIST;
1653 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1654 if (!map)
1655 return -ENOMEM;
1657 map->src_dev = dev;
1658 map->src_supply = id;
1659 map->alias_dev = alias_dev;
1660 map->alias_supply = alias_id;
1662 list_add(&map->list, &regulator_supply_alias_list);
1664 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1665 id, dev_name(dev), alias_id, dev_name(alias_dev));
1667 return 0;
1669 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1672 * regulator_unregister_supply_alias - Remove device alias
1674 * @dev: device that will be given as the regulator "consumer"
1675 * @id: Supply name or regulator ID
1677 * Remove a lookup alias if one exists for id on dev.
1679 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1681 struct regulator_supply_alias *map;
1683 map = regulator_find_supply_alias(dev, id);
1684 if (map) {
1685 list_del(&map->list);
1686 kfree(map);
1689 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1692 * regulator_bulk_register_supply_alias - register multiple aliases
1694 * @dev: device that will be given as the regulator "consumer"
1695 * @id: List of supply names or regulator IDs
1696 * @alias_dev: device that should be used to lookup the supply
1697 * @alias_id: List of supply names or regulator IDs that should be used to
1698 * lookup the supply
1699 * @num_id: Number of aliases to register
1701 * @return 0 on success, an errno on failure.
1703 * This helper function allows drivers to register several supply
1704 * aliases in one operation. If any of the aliases cannot be
1705 * registered any aliases that were registered will be removed
1706 * before returning to the caller.
1708 int regulator_bulk_register_supply_alias(struct device *dev,
1709 const char *const *id,
1710 struct device *alias_dev,
1711 const char *const *alias_id,
1712 int num_id)
1714 int i;
1715 int ret;
1717 for (i = 0; i < num_id; ++i) {
1718 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1719 alias_id[i]);
1720 if (ret < 0)
1721 goto err;
1724 return 0;
1726 err:
1727 dev_err(dev,
1728 "Failed to create supply alias %s,%s -> %s,%s\n",
1729 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1731 while (--i >= 0)
1732 regulator_unregister_supply_alias(dev, id[i]);
1734 return ret;
1736 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1739 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1741 * @dev: device that will be given as the regulator "consumer"
1742 * @id: List of supply names or regulator IDs
1743 * @num_id: Number of aliases to unregister
1745 * This helper function allows drivers to unregister several supply
1746 * aliases in one operation.
1748 void regulator_bulk_unregister_supply_alias(struct device *dev,
1749 const char *const *id,
1750 int num_id)
1752 int i;
1754 for (i = 0; i < num_id; ++i)
1755 regulator_unregister_supply_alias(dev, id[i]);
1757 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1760 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1761 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1762 const struct regulator_config *config)
1764 struct regulator_enable_gpio *pin;
1765 struct gpio_desc *gpiod;
1766 int ret;
1768 gpiod = gpio_to_desc(config->ena_gpio);
1770 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1771 if (pin->gpiod == gpiod) {
1772 rdev_dbg(rdev, "GPIO %d is already used\n",
1773 config->ena_gpio);
1774 goto update_ena_gpio_to_rdev;
1778 ret = gpio_request_one(config->ena_gpio,
1779 GPIOF_DIR_OUT | config->ena_gpio_flags,
1780 rdev_get_name(rdev));
1781 if (ret)
1782 return ret;
1784 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1785 if (pin == NULL) {
1786 gpio_free(config->ena_gpio);
1787 return -ENOMEM;
1790 pin->gpiod = gpiod;
1791 pin->ena_gpio_invert = config->ena_gpio_invert;
1792 list_add(&pin->list, &regulator_ena_gpio_list);
1794 update_ena_gpio_to_rdev:
1795 pin->request_count++;
1796 rdev->ena_pin = pin;
1797 return 0;
1800 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1802 struct regulator_enable_gpio *pin, *n;
1804 if (!rdev->ena_pin)
1805 return;
1807 /* Free the GPIO only in case of no use */
1808 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1809 if (pin->gpiod == rdev->ena_pin->gpiod) {
1810 if (pin->request_count <= 1) {
1811 pin->request_count = 0;
1812 gpiod_put(pin->gpiod);
1813 list_del(&pin->list);
1814 kfree(pin);
1815 rdev->ena_pin = NULL;
1816 return;
1817 } else {
1818 pin->request_count--;
1825 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1826 * @rdev: regulator_dev structure
1827 * @enable: enable GPIO at initial use?
1829 * GPIO is enabled in case of initial use. (enable_count is 0)
1830 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1832 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1834 struct regulator_enable_gpio *pin = rdev->ena_pin;
1836 if (!pin)
1837 return -EINVAL;
1839 if (enable) {
1840 /* Enable GPIO at initial use */
1841 if (pin->enable_count == 0)
1842 gpiod_set_value_cansleep(pin->gpiod,
1843 !pin->ena_gpio_invert);
1845 pin->enable_count++;
1846 } else {
1847 if (pin->enable_count > 1) {
1848 pin->enable_count--;
1849 return 0;
1852 /* Disable GPIO if not used */
1853 if (pin->enable_count <= 1) {
1854 gpiod_set_value_cansleep(pin->gpiod,
1855 pin->ena_gpio_invert);
1856 pin->enable_count = 0;
1860 return 0;
1864 * _regulator_enable_delay - a delay helper function
1865 * @delay: time to delay in microseconds
1867 * Delay for the requested amount of time as per the guidelines in:
1869 * Documentation/timers/timers-howto.txt
1871 * The assumption here is that regulators will never be enabled in
1872 * atomic context and therefore sleeping functions can be used.
1874 static void _regulator_enable_delay(unsigned int delay)
1876 unsigned int ms = delay / 1000;
1877 unsigned int us = delay % 1000;
1879 if (ms > 0) {
1881 * For small enough values, handle super-millisecond
1882 * delays in the usleep_range() call below.
1884 if (ms < 20)
1885 us += ms * 1000;
1886 else
1887 msleep(ms);
1891 * Give the scheduler some room to coalesce with any other
1892 * wakeup sources. For delays shorter than 10 us, don't even
1893 * bother setting up high-resolution timers and just busy-
1894 * loop.
1896 if (us >= 10)
1897 usleep_range(us, us + 100);
1898 else
1899 udelay(us);
1902 static int _regulator_do_enable(struct regulator_dev *rdev)
1904 int ret, delay;
1906 /* Query before enabling in case configuration dependent. */
1907 ret = _regulator_get_enable_time(rdev);
1908 if (ret >= 0) {
1909 delay = ret;
1910 } else {
1911 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1912 delay = 0;
1915 trace_regulator_enable(rdev_get_name(rdev));
1917 if (rdev->desc->off_on_delay) {
1918 /* if needed, keep a distance of off_on_delay from last time
1919 * this regulator was disabled.
1921 unsigned long start_jiffy = jiffies;
1922 unsigned long intended, max_delay, remaining;
1924 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1925 intended = rdev->last_off_jiffy + max_delay;
1927 if (time_before(start_jiffy, intended)) {
1928 /* calc remaining jiffies to deal with one-time
1929 * timer wrapping.
1930 * in case of multiple timer wrapping, either it can be
1931 * detected by out-of-range remaining, or it cannot be
1932 * detected and we gets a panelty of
1933 * _regulator_enable_delay().
1935 remaining = intended - start_jiffy;
1936 if (remaining <= max_delay)
1937 _regulator_enable_delay(
1938 jiffies_to_usecs(remaining));
1942 if (rdev->ena_pin) {
1943 if (!rdev->ena_gpio_state) {
1944 ret = regulator_ena_gpio_ctrl(rdev, true);
1945 if (ret < 0)
1946 return ret;
1947 rdev->ena_gpio_state = 1;
1949 } else if (rdev->desc->ops->enable) {
1950 ret = rdev->desc->ops->enable(rdev);
1951 if (ret < 0)
1952 return ret;
1953 } else {
1954 return -EINVAL;
1957 /* Allow the regulator to ramp; it would be useful to extend
1958 * this for bulk operations so that the regulators can ramp
1959 * together. */
1960 trace_regulator_enable_delay(rdev_get_name(rdev));
1962 _regulator_enable_delay(delay);
1964 trace_regulator_enable_complete(rdev_get_name(rdev));
1966 return 0;
1969 /* locks held by regulator_enable() */
1970 static int _regulator_enable(struct regulator_dev *rdev)
1972 int ret;
1974 lockdep_assert_held_once(&rdev->mutex);
1976 /* check voltage and requested load before enabling */
1977 if (rdev->constraints &&
1978 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1979 drms_uA_update(rdev);
1981 if (rdev->use_count == 0) {
1982 /* The regulator may on if it's not switchable or left on */
1983 ret = _regulator_is_enabled(rdev);
1984 if (ret == -EINVAL || ret == 0) {
1985 if (!_regulator_can_change_status(rdev))
1986 return -EPERM;
1988 ret = _regulator_do_enable(rdev);
1989 if (ret < 0)
1990 return ret;
1992 } else if (ret < 0) {
1993 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1994 return ret;
1996 /* Fallthrough on positive return values - already enabled */
1999 rdev->use_count++;
2001 return 0;
2005 * regulator_enable - enable regulator output
2006 * @regulator: regulator source
2008 * Request that the regulator be enabled with the regulator output at
2009 * the predefined voltage or current value. Calls to regulator_enable()
2010 * must be balanced with calls to regulator_disable().
2012 * NOTE: the output value can be set by other drivers, boot loader or may be
2013 * hardwired in the regulator.
2015 int regulator_enable(struct regulator *regulator)
2017 struct regulator_dev *rdev = regulator->rdev;
2018 int ret = 0;
2020 if (regulator->always_on)
2021 return 0;
2023 if (rdev->supply) {
2024 ret = regulator_enable(rdev->supply);
2025 if (ret != 0)
2026 return ret;
2029 mutex_lock(&rdev->mutex);
2030 ret = _regulator_enable(rdev);
2031 mutex_unlock(&rdev->mutex);
2033 if (ret != 0 && rdev->supply)
2034 regulator_disable(rdev->supply);
2036 return ret;
2038 EXPORT_SYMBOL_GPL(regulator_enable);
2040 static int _regulator_do_disable(struct regulator_dev *rdev)
2042 int ret;
2044 trace_regulator_disable(rdev_get_name(rdev));
2046 if (rdev->ena_pin) {
2047 if (rdev->ena_gpio_state) {
2048 ret = regulator_ena_gpio_ctrl(rdev, false);
2049 if (ret < 0)
2050 return ret;
2051 rdev->ena_gpio_state = 0;
2054 } else if (rdev->desc->ops->disable) {
2055 ret = rdev->desc->ops->disable(rdev);
2056 if (ret != 0)
2057 return ret;
2060 /* cares about last_off_jiffy only if off_on_delay is required by
2061 * device.
2063 if (rdev->desc->off_on_delay)
2064 rdev->last_off_jiffy = jiffies;
2066 trace_regulator_disable_complete(rdev_get_name(rdev));
2068 return 0;
2071 /* locks held by regulator_disable() */
2072 static int _regulator_disable(struct regulator_dev *rdev)
2074 int ret = 0;
2076 lockdep_assert_held_once(&rdev->mutex);
2078 if (WARN(rdev->use_count <= 0,
2079 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2080 return -EIO;
2082 /* are we the last user and permitted to disable ? */
2083 if (rdev->use_count == 1 &&
2084 (rdev->constraints && !rdev->constraints->always_on)) {
2086 /* we are last user */
2087 if (_regulator_can_change_status(rdev)) {
2088 ret = _notifier_call_chain(rdev,
2089 REGULATOR_EVENT_PRE_DISABLE,
2090 NULL);
2091 if (ret & NOTIFY_STOP_MASK)
2092 return -EINVAL;
2094 ret = _regulator_do_disable(rdev);
2095 if (ret < 0) {
2096 rdev_err(rdev, "failed to disable\n");
2097 _notifier_call_chain(rdev,
2098 REGULATOR_EVENT_ABORT_DISABLE,
2099 NULL);
2100 return ret;
2102 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2103 NULL);
2106 rdev->use_count = 0;
2107 } else if (rdev->use_count > 1) {
2109 if (rdev->constraints &&
2110 (rdev->constraints->valid_ops_mask &
2111 REGULATOR_CHANGE_DRMS))
2112 drms_uA_update(rdev);
2114 rdev->use_count--;
2117 return ret;
2121 * regulator_disable - disable regulator output
2122 * @regulator: regulator source
2124 * Disable the regulator output voltage or current. Calls to
2125 * regulator_enable() must be balanced with calls to
2126 * regulator_disable().
2128 * NOTE: this will only disable the regulator output if no other consumer
2129 * devices have it enabled, the regulator device supports disabling and
2130 * machine constraints permit this operation.
2132 int regulator_disable(struct regulator *regulator)
2134 struct regulator_dev *rdev = regulator->rdev;
2135 int ret = 0;
2137 if (regulator->always_on)
2138 return 0;
2140 mutex_lock(&rdev->mutex);
2141 ret = _regulator_disable(rdev);
2142 mutex_unlock(&rdev->mutex);
2144 if (ret == 0 && rdev->supply)
2145 regulator_disable(rdev->supply);
2147 return ret;
2149 EXPORT_SYMBOL_GPL(regulator_disable);
2151 /* locks held by regulator_force_disable() */
2152 static int _regulator_force_disable(struct regulator_dev *rdev)
2154 int ret = 0;
2156 lockdep_assert_held_once(&rdev->mutex);
2158 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2159 REGULATOR_EVENT_PRE_DISABLE, NULL);
2160 if (ret & NOTIFY_STOP_MASK)
2161 return -EINVAL;
2163 ret = _regulator_do_disable(rdev);
2164 if (ret < 0) {
2165 rdev_err(rdev, "failed to force disable\n");
2166 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2167 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2168 return ret;
2171 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2172 REGULATOR_EVENT_DISABLE, NULL);
2174 return 0;
2178 * regulator_force_disable - force disable regulator output
2179 * @regulator: regulator source
2181 * Forcibly disable the regulator output voltage or current.
2182 * NOTE: this *will* disable the regulator output even if other consumer
2183 * devices have it enabled. This should be used for situations when device
2184 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2186 int regulator_force_disable(struct regulator *regulator)
2188 struct regulator_dev *rdev = regulator->rdev;
2189 int ret;
2191 mutex_lock(&rdev->mutex);
2192 regulator->uA_load = 0;
2193 ret = _regulator_force_disable(regulator->rdev);
2194 mutex_unlock(&rdev->mutex);
2196 if (rdev->supply)
2197 while (rdev->open_count--)
2198 regulator_disable(rdev->supply);
2200 return ret;
2202 EXPORT_SYMBOL_GPL(regulator_force_disable);
2204 static void regulator_disable_work(struct work_struct *work)
2206 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2207 disable_work.work);
2208 int count, i, ret;
2210 mutex_lock(&rdev->mutex);
2212 BUG_ON(!rdev->deferred_disables);
2214 count = rdev->deferred_disables;
2215 rdev->deferred_disables = 0;
2217 for (i = 0; i < count; i++) {
2218 ret = _regulator_disable(rdev);
2219 if (ret != 0)
2220 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2223 mutex_unlock(&rdev->mutex);
2225 if (rdev->supply) {
2226 for (i = 0; i < count; i++) {
2227 ret = regulator_disable(rdev->supply);
2228 if (ret != 0) {
2229 rdev_err(rdev,
2230 "Supply disable failed: %d\n", ret);
2237 * regulator_disable_deferred - disable regulator output with delay
2238 * @regulator: regulator source
2239 * @ms: miliseconds until the regulator is disabled
2241 * Execute regulator_disable() on the regulator after a delay. This
2242 * is intended for use with devices that require some time to quiesce.
2244 * NOTE: this will only disable the regulator output if no other consumer
2245 * devices have it enabled, the regulator device supports disabling and
2246 * machine constraints permit this operation.
2248 int regulator_disable_deferred(struct regulator *regulator, int ms)
2250 struct regulator_dev *rdev = regulator->rdev;
2251 int ret;
2253 if (regulator->always_on)
2254 return 0;
2256 if (!ms)
2257 return regulator_disable(regulator);
2259 mutex_lock(&rdev->mutex);
2260 rdev->deferred_disables++;
2261 mutex_unlock(&rdev->mutex);
2263 ret = queue_delayed_work(system_power_efficient_wq,
2264 &rdev->disable_work,
2265 msecs_to_jiffies(ms));
2266 if (ret < 0)
2267 return ret;
2268 else
2269 return 0;
2271 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2273 static int _regulator_is_enabled(struct regulator_dev *rdev)
2275 /* A GPIO control always takes precedence */
2276 if (rdev->ena_pin)
2277 return rdev->ena_gpio_state;
2279 /* If we don't know then assume that the regulator is always on */
2280 if (!rdev->desc->ops->is_enabled)
2281 return 1;
2283 return rdev->desc->ops->is_enabled(rdev);
2287 * regulator_is_enabled - is the regulator output enabled
2288 * @regulator: regulator source
2290 * Returns positive if the regulator driver backing the source/client
2291 * has requested that the device be enabled, zero if it hasn't, else a
2292 * negative errno code.
2294 * Note that the device backing this regulator handle can have multiple
2295 * users, so it might be enabled even if regulator_enable() was never
2296 * called for this particular source.
2298 int regulator_is_enabled(struct regulator *regulator)
2300 int ret;
2302 if (regulator->always_on)
2303 return 1;
2305 mutex_lock(&regulator->rdev->mutex);
2306 ret = _regulator_is_enabled(regulator->rdev);
2307 mutex_unlock(&regulator->rdev->mutex);
2309 return ret;
2311 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2314 * regulator_can_change_voltage - check if regulator can change voltage
2315 * @regulator: regulator source
2317 * Returns positive if the regulator driver backing the source/client
2318 * can change its voltage, false otherwise. Useful for detecting fixed
2319 * or dummy regulators and disabling voltage change logic in the client
2320 * driver.
2322 int regulator_can_change_voltage(struct regulator *regulator)
2324 struct regulator_dev *rdev = regulator->rdev;
2326 if (rdev->constraints &&
2327 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2328 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2329 return 1;
2331 if (rdev->desc->continuous_voltage_range &&
2332 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2333 rdev->constraints->min_uV != rdev->constraints->max_uV)
2334 return 1;
2337 return 0;
2339 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2342 * regulator_count_voltages - count regulator_list_voltage() selectors
2343 * @regulator: regulator source
2345 * Returns number of selectors, or negative errno. Selectors are
2346 * numbered starting at zero, and typically correspond to bitfields
2347 * in hardware registers.
2349 int regulator_count_voltages(struct regulator *regulator)
2351 struct regulator_dev *rdev = regulator->rdev;
2353 if (rdev->desc->n_voltages)
2354 return rdev->desc->n_voltages;
2356 if (!rdev->supply)
2357 return -EINVAL;
2359 return regulator_count_voltages(rdev->supply);
2361 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2364 * regulator_list_voltage - enumerate supported voltages
2365 * @regulator: regulator source
2366 * @selector: identify voltage to list
2367 * Context: can sleep
2369 * Returns a voltage that can be passed to @regulator_set_voltage(),
2370 * zero if this selector code can't be used on this system, or a
2371 * negative errno.
2373 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2375 struct regulator_dev *rdev = regulator->rdev;
2376 const struct regulator_ops *ops = rdev->desc->ops;
2377 int ret;
2379 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2380 return rdev->desc->fixed_uV;
2382 if (ops->list_voltage) {
2383 if (selector >= rdev->desc->n_voltages)
2384 return -EINVAL;
2385 mutex_lock(&rdev->mutex);
2386 ret = ops->list_voltage(rdev, selector);
2387 mutex_unlock(&rdev->mutex);
2388 } else if (rdev->supply) {
2389 ret = regulator_list_voltage(rdev->supply, selector);
2390 } else {
2391 return -EINVAL;
2394 if (ret > 0) {
2395 if (ret < rdev->constraints->min_uV)
2396 ret = 0;
2397 else if (ret > rdev->constraints->max_uV)
2398 ret = 0;
2401 return ret;
2403 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2406 * regulator_get_regmap - get the regulator's register map
2407 * @regulator: regulator source
2409 * Returns the register map for the given regulator, or an ERR_PTR value
2410 * if the regulator doesn't use regmap.
2412 struct regmap *regulator_get_regmap(struct regulator *regulator)
2414 struct regmap *map = regulator->rdev->regmap;
2416 return map ? map : ERR_PTR(-EOPNOTSUPP);
2420 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2421 * @regulator: regulator source
2422 * @vsel_reg: voltage selector register, output parameter
2423 * @vsel_mask: mask for voltage selector bitfield, output parameter
2425 * Returns the hardware register offset and bitmask used for setting the
2426 * regulator voltage. This might be useful when configuring voltage-scaling
2427 * hardware or firmware that can make I2C requests behind the kernel's back,
2428 * for example.
2430 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2431 * and 0 is returned, otherwise a negative errno is returned.
2433 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2434 unsigned *vsel_reg,
2435 unsigned *vsel_mask)
2437 struct regulator_dev *rdev = regulator->rdev;
2438 const struct regulator_ops *ops = rdev->desc->ops;
2440 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2441 return -EOPNOTSUPP;
2443 *vsel_reg = rdev->desc->vsel_reg;
2444 *vsel_mask = rdev->desc->vsel_mask;
2446 return 0;
2448 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2451 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2452 * @regulator: regulator source
2453 * @selector: identify voltage to list
2455 * Converts the selector to a hardware-specific voltage selector that can be
2456 * directly written to the regulator registers. The address of the voltage
2457 * register can be determined by calling @regulator_get_hardware_vsel_register.
2459 * On error a negative errno is returned.
2461 int regulator_list_hardware_vsel(struct regulator *regulator,
2462 unsigned selector)
2464 struct regulator_dev *rdev = regulator->rdev;
2465 const struct regulator_ops *ops = rdev->desc->ops;
2467 if (selector >= rdev->desc->n_voltages)
2468 return -EINVAL;
2469 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2470 return -EOPNOTSUPP;
2472 return selector;
2474 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2477 * regulator_get_linear_step - return the voltage step size between VSEL values
2478 * @regulator: regulator source
2480 * Returns the voltage step size between VSEL values for linear
2481 * regulators, or return 0 if the regulator isn't a linear regulator.
2483 unsigned int regulator_get_linear_step(struct regulator *regulator)
2485 struct regulator_dev *rdev = regulator->rdev;
2487 return rdev->desc->uV_step;
2489 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2492 * regulator_is_supported_voltage - check if a voltage range can be supported
2494 * @regulator: Regulator to check.
2495 * @min_uV: Minimum required voltage in uV.
2496 * @max_uV: Maximum required voltage in uV.
2498 * Returns a boolean or a negative error code.
2500 int regulator_is_supported_voltage(struct regulator *regulator,
2501 int min_uV, int max_uV)
2503 struct regulator_dev *rdev = regulator->rdev;
2504 int i, voltages, ret;
2506 /* If we can't change voltage check the current voltage */
2507 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2508 ret = regulator_get_voltage(regulator);
2509 if (ret >= 0)
2510 return min_uV <= ret && ret <= max_uV;
2511 else
2512 return ret;
2515 /* Any voltage within constrains range is fine? */
2516 if (rdev->desc->continuous_voltage_range)
2517 return min_uV >= rdev->constraints->min_uV &&
2518 max_uV <= rdev->constraints->max_uV;
2520 ret = regulator_count_voltages(regulator);
2521 if (ret < 0)
2522 return ret;
2523 voltages = ret;
2525 for (i = 0; i < voltages; i++) {
2526 ret = regulator_list_voltage(regulator, i);
2528 if (ret >= min_uV && ret <= max_uV)
2529 return 1;
2532 return 0;
2534 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2536 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2537 int min_uV, int max_uV,
2538 unsigned *selector)
2540 struct pre_voltage_change_data data;
2541 int ret;
2543 data.old_uV = _regulator_get_voltage(rdev);
2544 data.min_uV = min_uV;
2545 data.max_uV = max_uV;
2546 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2547 &data);
2548 if (ret & NOTIFY_STOP_MASK)
2549 return -EINVAL;
2551 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2552 if (ret >= 0)
2553 return ret;
2555 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2556 (void *)data.old_uV);
2558 return ret;
2561 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2562 int uV, unsigned selector)
2564 struct pre_voltage_change_data data;
2565 int ret;
2567 data.old_uV = _regulator_get_voltage(rdev);
2568 data.min_uV = uV;
2569 data.max_uV = uV;
2570 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2571 &data);
2572 if (ret & NOTIFY_STOP_MASK)
2573 return -EINVAL;
2575 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2576 if (ret >= 0)
2577 return ret;
2579 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2580 (void *)data.old_uV);
2582 return ret;
2585 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2586 int min_uV, int max_uV)
2588 int ret;
2589 int delay = 0;
2590 int best_val = 0;
2591 unsigned int selector;
2592 int old_selector = -1;
2594 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2596 min_uV += rdev->constraints->uV_offset;
2597 max_uV += rdev->constraints->uV_offset;
2600 * If we can't obtain the old selector there is not enough
2601 * info to call set_voltage_time_sel().
2603 if (_regulator_is_enabled(rdev) &&
2604 rdev->desc->ops->set_voltage_time_sel &&
2605 rdev->desc->ops->get_voltage_sel) {
2606 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2607 if (old_selector < 0)
2608 return old_selector;
2611 if (rdev->desc->ops->set_voltage) {
2612 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2613 &selector);
2615 if (ret >= 0) {
2616 if (rdev->desc->ops->list_voltage)
2617 best_val = rdev->desc->ops->list_voltage(rdev,
2618 selector);
2619 else
2620 best_val = _regulator_get_voltage(rdev);
2623 } else if (rdev->desc->ops->set_voltage_sel) {
2624 if (rdev->desc->ops->map_voltage) {
2625 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2626 max_uV);
2627 } else {
2628 if (rdev->desc->ops->list_voltage ==
2629 regulator_list_voltage_linear)
2630 ret = regulator_map_voltage_linear(rdev,
2631 min_uV, max_uV);
2632 else if (rdev->desc->ops->list_voltage ==
2633 regulator_list_voltage_linear_range)
2634 ret = regulator_map_voltage_linear_range(rdev,
2635 min_uV, max_uV);
2636 else
2637 ret = regulator_map_voltage_iterate(rdev,
2638 min_uV, max_uV);
2641 if (ret >= 0) {
2642 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2643 if (min_uV <= best_val && max_uV >= best_val) {
2644 selector = ret;
2645 if (old_selector == selector)
2646 ret = 0;
2647 else
2648 ret = _regulator_call_set_voltage_sel(
2649 rdev, best_val, selector);
2650 } else {
2651 ret = -EINVAL;
2654 } else {
2655 ret = -EINVAL;
2658 /* Call set_voltage_time_sel if successfully obtained old_selector */
2659 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2660 && old_selector != selector) {
2662 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2663 old_selector, selector);
2664 if (delay < 0) {
2665 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2666 delay);
2667 delay = 0;
2670 /* Insert any necessary delays */
2671 if (delay >= 1000) {
2672 mdelay(delay / 1000);
2673 udelay(delay % 1000);
2674 } else if (delay) {
2675 udelay(delay);
2679 if (ret == 0 && best_val >= 0) {
2680 unsigned long data = best_val;
2682 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2683 (void *)data);
2686 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2688 return ret;
2692 * regulator_set_voltage - set regulator output voltage
2693 * @regulator: regulator source
2694 * @min_uV: Minimum required voltage in uV
2695 * @max_uV: Maximum acceptable voltage in uV
2697 * Sets a voltage regulator to the desired output voltage. This can be set
2698 * during any regulator state. IOW, regulator can be disabled or enabled.
2700 * If the regulator is enabled then the voltage will change to the new value
2701 * immediately otherwise if the regulator is disabled the regulator will
2702 * output at the new voltage when enabled.
2704 * NOTE: If the regulator is shared between several devices then the lowest
2705 * request voltage that meets the system constraints will be used.
2706 * Regulator system constraints must be set for this regulator before
2707 * calling this function otherwise this call will fail.
2709 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2711 struct regulator_dev *rdev = regulator->rdev;
2712 int ret = 0;
2713 int old_min_uV, old_max_uV;
2714 int current_uV;
2716 mutex_lock(&rdev->mutex);
2718 /* If we're setting the same range as last time the change
2719 * should be a noop (some cpufreq implementations use the same
2720 * voltage for multiple frequencies, for example).
2722 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2723 goto out;
2725 /* If we're trying to set a range that overlaps the current voltage,
2726 * return successfully even though the regulator does not support
2727 * changing the voltage.
2729 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2730 current_uV = _regulator_get_voltage(rdev);
2731 if (min_uV <= current_uV && current_uV <= max_uV) {
2732 regulator->min_uV = min_uV;
2733 regulator->max_uV = max_uV;
2734 goto out;
2738 /* sanity check */
2739 if (!rdev->desc->ops->set_voltage &&
2740 !rdev->desc->ops->set_voltage_sel) {
2741 ret = -EINVAL;
2742 goto out;
2745 /* constraints check */
2746 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2747 if (ret < 0)
2748 goto out;
2750 /* restore original values in case of error */
2751 old_min_uV = regulator->min_uV;
2752 old_max_uV = regulator->max_uV;
2753 regulator->min_uV = min_uV;
2754 regulator->max_uV = max_uV;
2756 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2757 if (ret < 0)
2758 goto out2;
2760 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2761 if (ret < 0)
2762 goto out2;
2764 out:
2765 mutex_unlock(&rdev->mutex);
2766 return ret;
2767 out2:
2768 regulator->min_uV = old_min_uV;
2769 regulator->max_uV = old_max_uV;
2770 mutex_unlock(&rdev->mutex);
2771 return ret;
2773 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2776 * regulator_set_voltage_time - get raise/fall time
2777 * @regulator: regulator source
2778 * @old_uV: starting voltage in microvolts
2779 * @new_uV: target voltage in microvolts
2781 * Provided with the starting and ending voltage, this function attempts to
2782 * calculate the time in microseconds required to rise or fall to this new
2783 * voltage.
2785 int regulator_set_voltage_time(struct regulator *regulator,
2786 int old_uV, int new_uV)
2788 struct regulator_dev *rdev = regulator->rdev;
2789 const struct regulator_ops *ops = rdev->desc->ops;
2790 int old_sel = -1;
2791 int new_sel = -1;
2792 int voltage;
2793 int i;
2795 /* Currently requires operations to do this */
2796 if (!ops->list_voltage || !ops->set_voltage_time_sel
2797 || !rdev->desc->n_voltages)
2798 return -EINVAL;
2800 for (i = 0; i < rdev->desc->n_voltages; i++) {
2801 /* We only look for exact voltage matches here */
2802 voltage = regulator_list_voltage(regulator, i);
2803 if (voltage < 0)
2804 return -EINVAL;
2805 if (voltage == 0)
2806 continue;
2807 if (voltage == old_uV)
2808 old_sel = i;
2809 if (voltage == new_uV)
2810 new_sel = i;
2813 if (old_sel < 0 || new_sel < 0)
2814 return -EINVAL;
2816 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2818 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2821 * regulator_set_voltage_time_sel - get raise/fall time
2822 * @rdev: regulator source device
2823 * @old_selector: selector for starting voltage
2824 * @new_selector: selector for target voltage
2826 * Provided with the starting and target voltage selectors, this function
2827 * returns time in microseconds required to rise or fall to this new voltage
2829 * Drivers providing ramp_delay in regulation_constraints can use this as their
2830 * set_voltage_time_sel() operation.
2832 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2833 unsigned int old_selector,
2834 unsigned int new_selector)
2836 unsigned int ramp_delay = 0;
2837 int old_volt, new_volt;
2839 if (rdev->constraints->ramp_delay)
2840 ramp_delay = rdev->constraints->ramp_delay;
2841 else if (rdev->desc->ramp_delay)
2842 ramp_delay = rdev->desc->ramp_delay;
2844 if (ramp_delay == 0) {
2845 rdev_warn(rdev, "ramp_delay not set\n");
2846 return 0;
2849 /* sanity check */
2850 if (!rdev->desc->ops->list_voltage)
2851 return -EINVAL;
2853 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2854 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2856 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2858 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2861 * regulator_sync_voltage - re-apply last regulator output voltage
2862 * @regulator: regulator source
2864 * Re-apply the last configured voltage. This is intended to be used
2865 * where some external control source the consumer is cooperating with
2866 * has caused the configured voltage to change.
2868 int regulator_sync_voltage(struct regulator *regulator)
2870 struct regulator_dev *rdev = regulator->rdev;
2871 int ret, min_uV, max_uV;
2873 mutex_lock(&rdev->mutex);
2875 if (!rdev->desc->ops->set_voltage &&
2876 !rdev->desc->ops->set_voltage_sel) {
2877 ret = -EINVAL;
2878 goto out;
2881 /* This is only going to work if we've had a voltage configured. */
2882 if (!regulator->min_uV && !regulator->max_uV) {
2883 ret = -EINVAL;
2884 goto out;
2887 min_uV = regulator->min_uV;
2888 max_uV = regulator->max_uV;
2890 /* This should be a paranoia check... */
2891 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2892 if (ret < 0)
2893 goto out;
2895 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2896 if (ret < 0)
2897 goto out;
2899 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2901 out:
2902 mutex_unlock(&rdev->mutex);
2903 return ret;
2905 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2907 static int _regulator_get_voltage(struct regulator_dev *rdev)
2909 int sel, ret;
2911 if (rdev->desc->ops->get_voltage_sel) {
2912 sel = rdev->desc->ops->get_voltage_sel(rdev);
2913 if (sel < 0)
2914 return sel;
2915 ret = rdev->desc->ops->list_voltage(rdev, sel);
2916 } else if (rdev->desc->ops->get_voltage) {
2917 ret = rdev->desc->ops->get_voltage(rdev);
2918 } else if (rdev->desc->ops->list_voltage) {
2919 ret = rdev->desc->ops->list_voltage(rdev, 0);
2920 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2921 ret = rdev->desc->fixed_uV;
2922 } else if (rdev->supply) {
2923 ret = regulator_get_voltage(rdev->supply);
2924 } else {
2925 return -EINVAL;
2928 if (ret < 0)
2929 return ret;
2930 return ret - rdev->constraints->uV_offset;
2934 * regulator_get_voltage - get regulator output voltage
2935 * @regulator: regulator source
2937 * This returns the current regulator voltage in uV.
2939 * NOTE: If the regulator is disabled it will return the voltage value. This
2940 * function should not be used to determine regulator state.
2942 int regulator_get_voltage(struct regulator *regulator)
2944 int ret;
2946 mutex_lock(&regulator->rdev->mutex);
2948 ret = _regulator_get_voltage(regulator->rdev);
2950 mutex_unlock(&regulator->rdev->mutex);
2952 return ret;
2954 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2957 * regulator_set_current_limit - set regulator output current limit
2958 * @regulator: regulator source
2959 * @min_uA: Minimum supported current in uA
2960 * @max_uA: Maximum supported current in uA
2962 * Sets current sink to the desired output current. This can be set during
2963 * any regulator state. IOW, regulator can be disabled or enabled.
2965 * If the regulator is enabled then the current will change to the new value
2966 * immediately otherwise if the regulator is disabled the regulator will
2967 * output at the new current when enabled.
2969 * NOTE: Regulator system constraints must be set for this regulator before
2970 * calling this function otherwise this call will fail.
2972 int regulator_set_current_limit(struct regulator *regulator,
2973 int min_uA, int max_uA)
2975 struct regulator_dev *rdev = regulator->rdev;
2976 int ret;
2978 mutex_lock(&rdev->mutex);
2980 /* sanity check */
2981 if (!rdev->desc->ops->set_current_limit) {
2982 ret = -EINVAL;
2983 goto out;
2986 /* constraints check */
2987 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2988 if (ret < 0)
2989 goto out;
2991 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2992 out:
2993 mutex_unlock(&rdev->mutex);
2994 return ret;
2996 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2998 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3000 int ret;
3002 mutex_lock(&rdev->mutex);
3004 /* sanity check */
3005 if (!rdev->desc->ops->get_current_limit) {
3006 ret = -EINVAL;
3007 goto out;
3010 ret = rdev->desc->ops->get_current_limit(rdev);
3011 out:
3012 mutex_unlock(&rdev->mutex);
3013 return ret;
3017 * regulator_get_current_limit - get regulator output current
3018 * @regulator: regulator source
3020 * This returns the current supplied by the specified current sink in uA.
3022 * NOTE: If the regulator is disabled it will return the current value. This
3023 * function should not be used to determine regulator state.
3025 int regulator_get_current_limit(struct regulator *regulator)
3027 return _regulator_get_current_limit(regulator->rdev);
3029 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3032 * regulator_set_mode - set regulator operating mode
3033 * @regulator: regulator source
3034 * @mode: operating mode - one of the REGULATOR_MODE constants
3036 * Set regulator operating mode to increase regulator efficiency or improve
3037 * regulation performance.
3039 * NOTE: Regulator system constraints must be set for this regulator before
3040 * calling this function otherwise this call will fail.
3042 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3044 struct regulator_dev *rdev = regulator->rdev;
3045 int ret;
3046 int regulator_curr_mode;
3048 mutex_lock(&rdev->mutex);
3050 /* sanity check */
3051 if (!rdev->desc->ops->set_mode) {
3052 ret = -EINVAL;
3053 goto out;
3056 /* return if the same mode is requested */
3057 if (rdev->desc->ops->get_mode) {
3058 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3059 if (regulator_curr_mode == mode) {
3060 ret = 0;
3061 goto out;
3065 /* constraints check */
3066 ret = regulator_mode_constrain(rdev, &mode);
3067 if (ret < 0)
3068 goto out;
3070 ret = rdev->desc->ops->set_mode(rdev, mode);
3071 out:
3072 mutex_unlock(&rdev->mutex);
3073 return ret;
3075 EXPORT_SYMBOL_GPL(regulator_set_mode);
3077 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3079 int ret;
3081 mutex_lock(&rdev->mutex);
3083 /* sanity check */
3084 if (!rdev->desc->ops->get_mode) {
3085 ret = -EINVAL;
3086 goto out;
3089 ret = rdev->desc->ops->get_mode(rdev);
3090 out:
3091 mutex_unlock(&rdev->mutex);
3092 return ret;
3096 * regulator_get_mode - get regulator operating mode
3097 * @regulator: regulator source
3099 * Get the current regulator operating mode.
3101 unsigned int regulator_get_mode(struct regulator *regulator)
3103 return _regulator_get_mode(regulator->rdev);
3105 EXPORT_SYMBOL_GPL(regulator_get_mode);
3108 * regulator_set_load - set regulator load
3109 * @regulator: regulator source
3110 * @uA_load: load current
3112 * Notifies the regulator core of a new device load. This is then used by
3113 * DRMS (if enabled by constraints) to set the most efficient regulator
3114 * operating mode for the new regulator loading.
3116 * Consumer devices notify their supply regulator of the maximum power
3117 * they will require (can be taken from device datasheet in the power
3118 * consumption tables) when they change operational status and hence power
3119 * state. Examples of operational state changes that can affect power
3120 * consumption are :-
3122 * o Device is opened / closed.
3123 * o Device I/O is about to begin or has just finished.
3124 * o Device is idling in between work.
3126 * This information is also exported via sysfs to userspace.
3128 * DRMS will sum the total requested load on the regulator and change
3129 * to the most efficient operating mode if platform constraints allow.
3131 * On error a negative errno is returned.
3133 int regulator_set_load(struct regulator *regulator, int uA_load)
3135 struct regulator_dev *rdev = regulator->rdev;
3136 int ret;
3138 mutex_lock(&rdev->mutex);
3139 regulator->uA_load = uA_load;
3140 ret = drms_uA_update(rdev);
3141 mutex_unlock(&rdev->mutex);
3143 return ret;
3145 EXPORT_SYMBOL_GPL(regulator_set_load);
3148 * regulator_allow_bypass - allow the regulator to go into bypass mode
3150 * @regulator: Regulator to configure
3151 * @enable: enable or disable bypass mode
3153 * Allow the regulator to go into bypass mode if all other consumers
3154 * for the regulator also enable bypass mode and the machine
3155 * constraints allow this. Bypass mode means that the regulator is
3156 * simply passing the input directly to the output with no regulation.
3158 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3160 struct regulator_dev *rdev = regulator->rdev;
3161 int ret = 0;
3163 if (!rdev->desc->ops->set_bypass)
3164 return 0;
3166 if (rdev->constraints &&
3167 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3168 return 0;
3170 mutex_lock(&rdev->mutex);
3172 if (enable && !regulator->bypass) {
3173 rdev->bypass_count++;
3175 if (rdev->bypass_count == rdev->open_count) {
3176 ret = rdev->desc->ops->set_bypass(rdev, enable);
3177 if (ret != 0)
3178 rdev->bypass_count--;
3181 } else if (!enable && regulator->bypass) {
3182 rdev->bypass_count--;
3184 if (rdev->bypass_count != rdev->open_count) {
3185 ret = rdev->desc->ops->set_bypass(rdev, enable);
3186 if (ret != 0)
3187 rdev->bypass_count++;
3191 if (ret == 0)
3192 regulator->bypass = enable;
3194 mutex_unlock(&rdev->mutex);
3196 return ret;
3198 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3201 * regulator_register_notifier - register regulator event notifier
3202 * @regulator: regulator source
3203 * @nb: notifier block
3205 * Register notifier block to receive regulator events.
3207 int regulator_register_notifier(struct regulator *regulator,
3208 struct notifier_block *nb)
3210 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3211 nb);
3213 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3216 * regulator_unregister_notifier - unregister regulator event notifier
3217 * @regulator: regulator source
3218 * @nb: notifier block
3220 * Unregister regulator event notifier block.
3222 int regulator_unregister_notifier(struct regulator *regulator,
3223 struct notifier_block *nb)
3225 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3226 nb);
3228 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3230 /* notify regulator consumers and downstream regulator consumers.
3231 * Note mutex must be held by caller.
3233 static int _notifier_call_chain(struct regulator_dev *rdev,
3234 unsigned long event, void *data)
3236 /* call rdev chain first */
3237 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3241 * regulator_bulk_get - get multiple regulator consumers
3243 * @dev: Device to supply
3244 * @num_consumers: Number of consumers to register
3245 * @consumers: Configuration of consumers; clients are stored here.
3247 * @return 0 on success, an errno on failure.
3249 * This helper function allows drivers to get several regulator
3250 * consumers in one operation. If any of the regulators cannot be
3251 * acquired then any regulators that were allocated will be freed
3252 * before returning to the caller.
3254 int regulator_bulk_get(struct device *dev, int num_consumers,
3255 struct regulator_bulk_data *consumers)
3257 int i;
3258 int ret;
3260 for (i = 0; i < num_consumers; i++)
3261 consumers[i].consumer = NULL;
3263 for (i = 0; i < num_consumers; i++) {
3264 consumers[i].consumer = regulator_get(dev,
3265 consumers[i].supply);
3266 if (IS_ERR(consumers[i].consumer)) {
3267 ret = PTR_ERR(consumers[i].consumer);
3268 dev_err(dev, "Failed to get supply '%s': %d\n",
3269 consumers[i].supply, ret);
3270 consumers[i].consumer = NULL;
3271 goto err;
3275 return 0;
3277 err:
3278 while (--i >= 0)
3279 regulator_put(consumers[i].consumer);
3281 return ret;
3283 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3285 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3287 struct regulator_bulk_data *bulk = data;
3289 bulk->ret = regulator_enable(bulk->consumer);
3293 * regulator_bulk_enable - enable multiple regulator consumers
3295 * @num_consumers: Number of consumers
3296 * @consumers: Consumer data; clients are stored here.
3297 * @return 0 on success, an errno on failure
3299 * This convenience API allows consumers to enable multiple regulator
3300 * clients in a single API call. If any consumers cannot be enabled
3301 * then any others that were enabled will be disabled again prior to
3302 * return.
3304 int regulator_bulk_enable(int num_consumers,
3305 struct regulator_bulk_data *consumers)
3307 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3308 int i;
3309 int ret = 0;
3311 for (i = 0; i < num_consumers; i++) {
3312 if (consumers[i].consumer->always_on)
3313 consumers[i].ret = 0;
3314 else
3315 async_schedule_domain(regulator_bulk_enable_async,
3316 &consumers[i], &async_domain);
3319 async_synchronize_full_domain(&async_domain);
3321 /* If any consumer failed we need to unwind any that succeeded */
3322 for (i = 0; i < num_consumers; i++) {
3323 if (consumers[i].ret != 0) {
3324 ret = consumers[i].ret;
3325 goto err;
3329 return 0;
3331 err:
3332 for (i = 0; i < num_consumers; i++) {
3333 if (consumers[i].ret < 0)
3334 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3335 consumers[i].ret);
3336 else
3337 regulator_disable(consumers[i].consumer);
3340 return ret;
3342 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3345 * regulator_bulk_disable - disable multiple regulator consumers
3347 * @num_consumers: Number of consumers
3348 * @consumers: Consumer data; clients are stored here.
3349 * @return 0 on success, an errno on failure
3351 * This convenience API allows consumers to disable multiple regulator
3352 * clients in a single API call. If any consumers cannot be disabled
3353 * then any others that were disabled will be enabled again prior to
3354 * return.
3356 int regulator_bulk_disable(int num_consumers,
3357 struct regulator_bulk_data *consumers)
3359 int i;
3360 int ret, r;
3362 for (i = num_consumers - 1; i >= 0; --i) {
3363 ret = regulator_disable(consumers[i].consumer);
3364 if (ret != 0)
3365 goto err;
3368 return 0;
3370 err:
3371 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3372 for (++i; i < num_consumers; ++i) {
3373 r = regulator_enable(consumers[i].consumer);
3374 if (r != 0)
3375 pr_err("Failed to reename %s: %d\n",
3376 consumers[i].supply, r);
3379 return ret;
3381 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3384 * regulator_bulk_force_disable - force disable multiple regulator consumers
3386 * @num_consumers: Number of consumers
3387 * @consumers: Consumer data; clients are stored here.
3388 * @return 0 on success, an errno on failure
3390 * This convenience API allows consumers to forcibly disable multiple regulator
3391 * clients in a single API call.
3392 * NOTE: This should be used for situations when device damage will
3393 * likely occur if the regulators are not disabled (e.g. over temp).
3394 * Although regulator_force_disable function call for some consumers can
3395 * return error numbers, the function is called for all consumers.
3397 int regulator_bulk_force_disable(int num_consumers,
3398 struct regulator_bulk_data *consumers)
3400 int i;
3401 int ret;
3403 for (i = 0; i < num_consumers; i++)
3404 consumers[i].ret =
3405 regulator_force_disable(consumers[i].consumer);
3407 for (i = 0; i < num_consumers; i++) {
3408 if (consumers[i].ret != 0) {
3409 ret = consumers[i].ret;
3410 goto out;
3414 return 0;
3415 out:
3416 return ret;
3418 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3421 * regulator_bulk_free - free multiple regulator consumers
3423 * @num_consumers: Number of consumers
3424 * @consumers: Consumer data; clients are stored here.
3426 * This convenience API allows consumers to free multiple regulator
3427 * clients in a single API call.
3429 void regulator_bulk_free(int num_consumers,
3430 struct regulator_bulk_data *consumers)
3432 int i;
3434 for (i = 0; i < num_consumers; i++) {
3435 regulator_put(consumers[i].consumer);
3436 consumers[i].consumer = NULL;
3439 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3442 * regulator_notifier_call_chain - call regulator event notifier
3443 * @rdev: regulator source
3444 * @event: notifier block
3445 * @data: callback-specific data.
3447 * Called by regulator drivers to notify clients a regulator event has
3448 * occurred. We also notify regulator clients downstream.
3449 * Note lock must be held by caller.
3451 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3452 unsigned long event, void *data)
3454 lockdep_assert_held_once(&rdev->mutex);
3456 _notifier_call_chain(rdev, event, data);
3457 return NOTIFY_DONE;
3460 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3463 * regulator_mode_to_status - convert a regulator mode into a status
3465 * @mode: Mode to convert
3467 * Convert a regulator mode into a status.
3469 int regulator_mode_to_status(unsigned int mode)
3471 switch (mode) {
3472 case REGULATOR_MODE_FAST:
3473 return REGULATOR_STATUS_FAST;
3474 case REGULATOR_MODE_NORMAL:
3475 return REGULATOR_STATUS_NORMAL;
3476 case REGULATOR_MODE_IDLE:
3477 return REGULATOR_STATUS_IDLE;
3478 case REGULATOR_MODE_STANDBY:
3479 return REGULATOR_STATUS_STANDBY;
3480 default:
3481 return REGULATOR_STATUS_UNDEFINED;
3484 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3486 static struct attribute *regulator_dev_attrs[] = {
3487 &dev_attr_name.attr,
3488 &dev_attr_num_users.attr,
3489 &dev_attr_type.attr,
3490 &dev_attr_microvolts.attr,
3491 &dev_attr_microamps.attr,
3492 &dev_attr_opmode.attr,
3493 &dev_attr_state.attr,
3494 &dev_attr_status.attr,
3495 &dev_attr_bypass.attr,
3496 &dev_attr_requested_microamps.attr,
3497 &dev_attr_min_microvolts.attr,
3498 &dev_attr_max_microvolts.attr,
3499 &dev_attr_min_microamps.attr,
3500 &dev_attr_max_microamps.attr,
3501 &dev_attr_suspend_standby_state.attr,
3502 &dev_attr_suspend_mem_state.attr,
3503 &dev_attr_suspend_disk_state.attr,
3504 &dev_attr_suspend_standby_microvolts.attr,
3505 &dev_attr_suspend_mem_microvolts.attr,
3506 &dev_attr_suspend_disk_microvolts.attr,
3507 &dev_attr_suspend_standby_mode.attr,
3508 &dev_attr_suspend_mem_mode.attr,
3509 &dev_attr_suspend_disk_mode.attr,
3510 NULL
3514 * To avoid cluttering sysfs (and memory) with useless state, only
3515 * create attributes that can be meaningfully displayed.
3517 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3518 struct attribute *attr, int idx)
3520 struct device *dev = kobj_to_dev(kobj);
3521 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3522 const struct regulator_ops *ops = rdev->desc->ops;
3523 umode_t mode = attr->mode;
3525 /* these three are always present */
3526 if (attr == &dev_attr_name.attr ||
3527 attr == &dev_attr_num_users.attr ||
3528 attr == &dev_attr_type.attr)
3529 return mode;
3531 /* some attributes need specific methods to be displayed */
3532 if (attr == &dev_attr_microvolts.attr) {
3533 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3534 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3535 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3536 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3537 return mode;
3538 return 0;
3541 if (attr == &dev_attr_microamps.attr)
3542 return ops->get_current_limit ? mode : 0;
3544 if (attr == &dev_attr_opmode.attr)
3545 return ops->get_mode ? mode : 0;
3547 if (attr == &dev_attr_state.attr)
3548 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3550 if (attr == &dev_attr_status.attr)
3551 return ops->get_status ? mode : 0;
3553 if (attr == &dev_attr_bypass.attr)
3554 return ops->get_bypass ? mode : 0;
3556 /* some attributes are type-specific */
3557 if (attr == &dev_attr_requested_microamps.attr)
3558 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3560 /* constraints need specific supporting methods */
3561 if (attr == &dev_attr_min_microvolts.attr ||
3562 attr == &dev_attr_max_microvolts.attr)
3563 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3565 if (attr == &dev_attr_min_microamps.attr ||
3566 attr == &dev_attr_max_microamps.attr)
3567 return ops->set_current_limit ? mode : 0;
3569 if (attr == &dev_attr_suspend_standby_state.attr ||
3570 attr == &dev_attr_suspend_mem_state.attr ||
3571 attr == &dev_attr_suspend_disk_state.attr)
3572 return mode;
3574 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3575 attr == &dev_attr_suspend_mem_microvolts.attr ||
3576 attr == &dev_attr_suspend_disk_microvolts.attr)
3577 return ops->set_suspend_voltage ? mode : 0;
3579 if (attr == &dev_attr_suspend_standby_mode.attr ||
3580 attr == &dev_attr_suspend_mem_mode.attr ||
3581 attr == &dev_attr_suspend_disk_mode.attr)
3582 return ops->set_suspend_mode ? mode : 0;
3584 return mode;
3587 static const struct attribute_group regulator_dev_group = {
3588 .attrs = regulator_dev_attrs,
3589 .is_visible = regulator_attr_is_visible,
3592 static const struct attribute_group *regulator_dev_groups[] = {
3593 &regulator_dev_group,
3594 NULL
3597 static void regulator_dev_release(struct device *dev)
3599 struct regulator_dev *rdev = dev_get_drvdata(dev);
3600 kfree(rdev);
3603 static struct class regulator_class = {
3604 .name = "regulator",
3605 .dev_release = regulator_dev_release,
3606 .dev_groups = regulator_dev_groups,
3609 static void rdev_init_debugfs(struct regulator_dev *rdev)
3611 struct device *parent = rdev->dev.parent;
3612 const char *rname = rdev_get_name(rdev);
3613 char name[NAME_MAX];
3615 /* Avoid duplicate debugfs directory names */
3616 if (parent && rname == rdev->desc->name) {
3617 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3618 rname);
3619 rname = name;
3622 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3623 if (!rdev->debugfs) {
3624 rdev_warn(rdev, "Failed to create debugfs directory\n");
3625 return;
3628 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3629 &rdev->use_count);
3630 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3631 &rdev->open_count);
3632 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3633 &rdev->bypass_count);
3637 * regulator_register - register regulator
3638 * @regulator_desc: regulator to register
3639 * @cfg: runtime configuration for regulator
3641 * Called by regulator drivers to register a regulator.
3642 * Returns a valid pointer to struct regulator_dev on success
3643 * or an ERR_PTR() on error.
3645 struct regulator_dev *
3646 regulator_register(const struct regulator_desc *regulator_desc,
3647 const struct regulator_config *cfg)
3649 const struct regulation_constraints *constraints = NULL;
3650 const struct regulator_init_data *init_data;
3651 struct regulator_config *config = NULL;
3652 static atomic_t regulator_no = ATOMIC_INIT(-1);
3653 struct regulator_dev *rdev;
3654 struct device *dev;
3655 int ret, i;
3657 if (regulator_desc == NULL || cfg == NULL)
3658 return ERR_PTR(-EINVAL);
3660 dev = cfg->dev;
3661 WARN_ON(!dev);
3663 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3664 return ERR_PTR(-EINVAL);
3666 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3667 regulator_desc->type != REGULATOR_CURRENT)
3668 return ERR_PTR(-EINVAL);
3670 /* Only one of each should be implemented */
3671 WARN_ON(regulator_desc->ops->get_voltage &&
3672 regulator_desc->ops->get_voltage_sel);
3673 WARN_ON(regulator_desc->ops->set_voltage &&
3674 regulator_desc->ops->set_voltage_sel);
3676 /* If we're using selectors we must implement list_voltage. */
3677 if (regulator_desc->ops->get_voltage_sel &&
3678 !regulator_desc->ops->list_voltage) {
3679 return ERR_PTR(-EINVAL);
3681 if (regulator_desc->ops->set_voltage_sel &&
3682 !regulator_desc->ops->list_voltage) {
3683 return ERR_PTR(-EINVAL);
3686 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3687 if (rdev == NULL)
3688 return ERR_PTR(-ENOMEM);
3691 * Duplicate the config so the driver could override it after
3692 * parsing init data.
3694 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3695 if (config == NULL) {
3696 kfree(rdev);
3697 return ERR_PTR(-ENOMEM);
3700 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3701 &rdev->dev.of_node);
3702 if (!init_data) {
3703 init_data = config->init_data;
3704 rdev->dev.of_node = of_node_get(config->of_node);
3707 mutex_lock(&regulator_list_mutex);
3709 mutex_init(&rdev->mutex);
3710 rdev->reg_data = config->driver_data;
3711 rdev->owner = regulator_desc->owner;
3712 rdev->desc = regulator_desc;
3713 if (config->regmap)
3714 rdev->regmap = config->regmap;
3715 else if (dev_get_regmap(dev, NULL))
3716 rdev->regmap = dev_get_regmap(dev, NULL);
3717 else if (dev->parent)
3718 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3719 INIT_LIST_HEAD(&rdev->consumer_list);
3720 INIT_LIST_HEAD(&rdev->list);
3721 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3722 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3724 /* preform any regulator specific init */
3725 if (init_data && init_data->regulator_init) {
3726 ret = init_data->regulator_init(rdev->reg_data);
3727 if (ret < 0)
3728 goto clean;
3731 /* register with sysfs */
3732 rdev->dev.class = &regulator_class;
3733 rdev->dev.parent = dev;
3734 dev_set_name(&rdev->dev, "regulator.%lu",
3735 (unsigned long) atomic_inc_return(&regulator_no));
3736 ret = device_register(&rdev->dev);
3737 if (ret != 0) {
3738 put_device(&rdev->dev);
3739 goto clean;
3742 dev_set_drvdata(&rdev->dev, rdev);
3744 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3745 gpio_is_valid(config->ena_gpio)) {
3746 ret = regulator_ena_gpio_request(rdev, config);
3747 if (ret != 0) {
3748 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3749 config->ena_gpio, ret);
3750 goto wash;
3754 /* set regulator constraints */
3755 if (init_data)
3756 constraints = &init_data->constraints;
3758 ret = set_machine_constraints(rdev, constraints);
3759 if (ret < 0)
3760 goto scrub;
3762 if (init_data && init_data->supply_regulator)
3763 rdev->supply_name = init_data->supply_regulator;
3764 else if (regulator_desc->supply_name)
3765 rdev->supply_name = regulator_desc->supply_name;
3767 /* add consumers devices */
3768 if (init_data) {
3769 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3770 ret = set_consumer_device_supply(rdev,
3771 init_data->consumer_supplies[i].dev_name,
3772 init_data->consumer_supplies[i].supply);
3773 if (ret < 0) {
3774 dev_err(dev, "Failed to set supply %s\n",
3775 init_data->consumer_supplies[i].supply);
3776 goto unset_supplies;
3781 list_add(&rdev->list, &regulator_list);
3783 rdev_init_debugfs(rdev);
3784 out:
3785 mutex_unlock(&regulator_list_mutex);
3786 kfree(config);
3787 return rdev;
3789 unset_supplies:
3790 unset_regulator_supplies(rdev);
3792 scrub:
3793 regulator_ena_gpio_free(rdev);
3794 kfree(rdev->constraints);
3795 wash:
3796 device_unregister(&rdev->dev);
3797 /* device core frees rdev */
3798 rdev = ERR_PTR(ret);
3799 goto out;
3801 clean:
3802 kfree(rdev);
3803 rdev = ERR_PTR(ret);
3804 goto out;
3806 EXPORT_SYMBOL_GPL(regulator_register);
3809 * regulator_unregister - unregister regulator
3810 * @rdev: regulator to unregister
3812 * Called by regulator drivers to unregister a regulator.
3814 void regulator_unregister(struct regulator_dev *rdev)
3816 if (rdev == NULL)
3817 return;
3819 if (rdev->supply) {
3820 while (rdev->use_count--)
3821 regulator_disable(rdev->supply);
3822 regulator_put(rdev->supply);
3824 mutex_lock(&regulator_list_mutex);
3825 debugfs_remove_recursive(rdev->debugfs);
3826 flush_work(&rdev->disable_work.work);
3827 WARN_ON(rdev->open_count);
3828 unset_regulator_supplies(rdev);
3829 list_del(&rdev->list);
3830 mutex_unlock(&regulator_list_mutex);
3831 kfree(rdev->constraints);
3832 regulator_ena_gpio_free(rdev);
3833 of_node_put(rdev->dev.of_node);
3834 device_unregister(&rdev->dev);
3836 EXPORT_SYMBOL_GPL(regulator_unregister);
3839 * regulator_suspend_prepare - prepare regulators for system wide suspend
3840 * @state: system suspend state
3842 * Configure each regulator with it's suspend operating parameters for state.
3843 * This will usually be called by machine suspend code prior to supending.
3845 int regulator_suspend_prepare(suspend_state_t state)
3847 struct regulator_dev *rdev;
3848 int ret = 0;
3850 /* ON is handled by regulator active state */
3851 if (state == PM_SUSPEND_ON)
3852 return -EINVAL;
3854 mutex_lock(&regulator_list_mutex);
3855 list_for_each_entry(rdev, &regulator_list, list) {
3857 mutex_lock(&rdev->mutex);
3858 ret = suspend_prepare(rdev, state);
3859 mutex_unlock(&rdev->mutex);
3861 if (ret < 0) {
3862 rdev_err(rdev, "failed to prepare\n");
3863 goto out;
3866 out:
3867 mutex_unlock(&regulator_list_mutex);
3868 return ret;
3870 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3873 * regulator_suspend_finish - resume regulators from system wide suspend
3875 * Turn on regulators that might be turned off by regulator_suspend_prepare
3876 * and that should be turned on according to the regulators properties.
3878 int regulator_suspend_finish(void)
3880 struct regulator_dev *rdev;
3881 int ret = 0, error;
3883 mutex_lock(&regulator_list_mutex);
3884 list_for_each_entry(rdev, &regulator_list, list) {
3885 mutex_lock(&rdev->mutex);
3886 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3887 if (!_regulator_is_enabled(rdev)) {
3888 error = _regulator_do_enable(rdev);
3889 if (error)
3890 ret = error;
3892 } else {
3893 if (!have_full_constraints())
3894 goto unlock;
3895 if (!_regulator_is_enabled(rdev))
3896 goto unlock;
3898 error = _regulator_do_disable(rdev);
3899 if (error)
3900 ret = error;
3902 unlock:
3903 mutex_unlock(&rdev->mutex);
3905 mutex_unlock(&regulator_list_mutex);
3906 return ret;
3908 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3911 * regulator_has_full_constraints - the system has fully specified constraints
3913 * Calling this function will cause the regulator API to disable all
3914 * regulators which have a zero use count and don't have an always_on
3915 * constraint in a late_initcall.
3917 * The intention is that this will become the default behaviour in a
3918 * future kernel release so users are encouraged to use this facility
3919 * now.
3921 void regulator_has_full_constraints(void)
3923 has_full_constraints = 1;
3925 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3928 * rdev_get_drvdata - get rdev regulator driver data
3929 * @rdev: regulator
3931 * Get rdev regulator driver private data. This call can be used in the
3932 * regulator driver context.
3934 void *rdev_get_drvdata(struct regulator_dev *rdev)
3936 return rdev->reg_data;
3938 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3941 * regulator_get_drvdata - get regulator driver data
3942 * @regulator: regulator
3944 * Get regulator driver private data. This call can be used in the consumer
3945 * driver context when non API regulator specific functions need to be called.
3947 void *regulator_get_drvdata(struct regulator *regulator)
3949 return regulator->rdev->reg_data;
3951 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3954 * regulator_set_drvdata - set regulator driver data
3955 * @regulator: regulator
3956 * @data: data
3958 void regulator_set_drvdata(struct regulator *regulator, void *data)
3960 regulator->rdev->reg_data = data;
3962 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3965 * regulator_get_id - get regulator ID
3966 * @rdev: regulator
3968 int rdev_get_id(struct regulator_dev *rdev)
3970 return rdev->desc->id;
3972 EXPORT_SYMBOL_GPL(rdev_get_id);
3974 struct device *rdev_get_dev(struct regulator_dev *rdev)
3976 return &rdev->dev;
3978 EXPORT_SYMBOL_GPL(rdev_get_dev);
3980 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3982 return reg_init_data->driver_data;
3984 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3986 #ifdef CONFIG_DEBUG_FS
3987 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3988 size_t count, loff_t *ppos)
3990 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3991 ssize_t len, ret = 0;
3992 struct regulator_map *map;
3994 if (!buf)
3995 return -ENOMEM;
3997 list_for_each_entry(map, &regulator_map_list, list) {
3998 len = snprintf(buf + ret, PAGE_SIZE - ret,
3999 "%s -> %s.%s\n",
4000 rdev_get_name(map->regulator), map->dev_name,
4001 map->supply);
4002 if (len >= 0)
4003 ret += len;
4004 if (ret > PAGE_SIZE) {
4005 ret = PAGE_SIZE;
4006 break;
4010 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4012 kfree(buf);
4014 return ret;
4016 #endif
4018 static const struct file_operations supply_map_fops = {
4019 #ifdef CONFIG_DEBUG_FS
4020 .read = supply_map_read_file,
4021 .llseek = default_llseek,
4022 #endif
4025 #ifdef CONFIG_DEBUG_FS
4026 static void regulator_summary_show_subtree(struct seq_file *s,
4027 struct regulator_dev *rdev,
4028 int level)
4030 struct list_head *list = s->private;
4031 struct regulator_dev *child;
4032 struct regulation_constraints *c;
4033 struct regulator *consumer;
4035 if (!rdev)
4036 return;
4038 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4039 level * 3 + 1, "",
4040 30 - level * 3, rdev_get_name(rdev),
4041 rdev->use_count, rdev->open_count, rdev->bypass_count);
4043 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4044 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4046 c = rdev->constraints;
4047 if (c) {
4048 switch (rdev->desc->type) {
4049 case REGULATOR_VOLTAGE:
4050 seq_printf(s, "%5dmV %5dmV ",
4051 c->min_uV / 1000, c->max_uV / 1000);
4052 break;
4053 case REGULATOR_CURRENT:
4054 seq_printf(s, "%5dmA %5dmA ",
4055 c->min_uA / 1000, c->max_uA / 1000);
4056 break;
4060 seq_puts(s, "\n");
4062 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4063 if (consumer->dev->class == &regulator_class)
4064 continue;
4066 seq_printf(s, "%*s%-*s ",
4067 (level + 1) * 3 + 1, "",
4068 30 - (level + 1) * 3, dev_name(consumer->dev));
4070 switch (rdev->desc->type) {
4071 case REGULATOR_VOLTAGE:
4072 seq_printf(s, "%37dmV %5dmV",
4073 consumer->min_uV / 1000,
4074 consumer->max_uV / 1000);
4075 break;
4076 case REGULATOR_CURRENT:
4077 break;
4080 seq_puts(s, "\n");
4083 list_for_each_entry(child, list, list) {
4084 /* handle only non-root regulators supplied by current rdev */
4085 if (!child->supply || child->supply->rdev != rdev)
4086 continue;
4088 regulator_summary_show_subtree(s, child, level + 1);
4092 static int regulator_summary_show(struct seq_file *s, void *data)
4094 struct list_head *list = s->private;
4095 struct regulator_dev *rdev;
4097 seq_puts(s, " regulator use open bypass voltage current min max\n");
4098 seq_puts(s, "-------------------------------------------------------------------------------\n");
4100 mutex_lock(&regulator_list_mutex);
4102 list_for_each_entry(rdev, list, list) {
4103 if (rdev->supply)
4104 continue;
4106 regulator_summary_show_subtree(s, rdev, 0);
4109 mutex_unlock(&regulator_list_mutex);
4111 return 0;
4114 static int regulator_summary_open(struct inode *inode, struct file *file)
4116 return single_open(file, regulator_summary_show, inode->i_private);
4118 #endif
4120 static const struct file_operations regulator_summary_fops = {
4121 #ifdef CONFIG_DEBUG_FS
4122 .open = regulator_summary_open,
4123 .read = seq_read,
4124 .llseek = seq_lseek,
4125 .release = single_release,
4126 #endif
4129 static int __init regulator_init(void)
4131 int ret;
4133 ret = class_register(&regulator_class);
4135 debugfs_root = debugfs_create_dir("regulator", NULL);
4136 if (!debugfs_root)
4137 pr_warn("regulator: Failed to create debugfs directory\n");
4139 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4140 &supply_map_fops);
4142 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4143 &regulator_list, &regulator_summary_fops);
4145 regulator_dummy_init();
4147 return ret;
4150 /* init early to allow our consumers to complete system booting */
4151 core_initcall(regulator_init);
4153 static int __init regulator_init_complete(void)
4155 struct regulator_dev *rdev;
4156 const struct regulator_ops *ops;
4157 struct regulation_constraints *c;
4158 int enabled, ret;
4161 * Since DT doesn't provide an idiomatic mechanism for
4162 * enabling full constraints and since it's much more natural
4163 * with DT to provide them just assume that a DT enabled
4164 * system has full constraints.
4166 if (of_have_populated_dt())
4167 has_full_constraints = true;
4169 mutex_lock(&regulator_list_mutex);
4171 /* If we have a full configuration then disable any regulators
4172 * we have permission to change the status for and which are
4173 * not in use or always_on. This is effectively the default
4174 * for DT and ACPI as they have full constraints.
4176 list_for_each_entry(rdev, &regulator_list, list) {
4177 ops = rdev->desc->ops;
4178 c = rdev->constraints;
4180 if (c && c->always_on)
4181 continue;
4183 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4184 continue;
4186 mutex_lock(&rdev->mutex);
4188 if (rdev->use_count)
4189 goto unlock;
4191 /* If we can't read the status assume it's on. */
4192 if (ops->is_enabled)
4193 enabled = ops->is_enabled(rdev);
4194 else
4195 enabled = 1;
4197 if (!enabled)
4198 goto unlock;
4200 if (have_full_constraints()) {
4201 /* We log since this may kill the system if it
4202 * goes wrong. */
4203 rdev_info(rdev, "disabling\n");
4204 ret = _regulator_do_disable(rdev);
4205 if (ret != 0)
4206 rdev_err(rdev, "couldn't disable: %d\n", ret);
4207 } else {
4208 /* The intention is that in future we will
4209 * assume that full constraints are provided
4210 * so warn even if we aren't going to do
4211 * anything here.
4213 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4216 unlock:
4217 mutex_unlock(&rdev->mutex);
4220 mutex_unlock(&regulator_list_mutex);
4222 return 0;
4224 late_initcall_sync(regulator_init_complete);