intel_mid: Renamed *mrst* to *intel_mid*
[linux-2.6/btrfs-unstable.git] / drivers / usb / host / xhci.c
blob1e36dbb4836693dbe5ac90b8231361f82645a7b1
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
32 #include "xhci.h"
33 #include "xhci-trace.h"
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
45 * xhci_handshake - spin reading hc until handshake completes or fails
46 * @ptr: address of hc register to be read
47 * @mask: bits to look at in result of read
48 * @done: value of those bits when handshake succeeds
49 * @usec: timeout in microseconds
51 * Returns negative errno, or zero on success
53 * Success happens when the "mask" bits have the specified value (hardware
54 * handshake done). There are two failure modes: "usec" have passed (major
55 * hardware flakeout), or the register reads as all-ones (hardware removed).
57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58 u32 mask, u32 done, int usec)
60 u32 result;
62 do {
63 result = xhci_readl(xhci, ptr);
64 if (result == ~(u32)0) /* card removed */
65 return -ENODEV;
66 result &= mask;
67 if (result == done)
68 return 0;
69 udelay(1);
70 usec--;
71 } while (usec > 0);
72 return -ETIMEDOUT;
76 * Disable interrupts and begin the xHCI halting process.
78 void xhci_quiesce(struct xhci_hcd *xhci)
80 u32 halted;
81 u32 cmd;
82 u32 mask;
84 mask = ~(XHCI_IRQS);
85 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86 if (!halted)
87 mask &= ~CMD_RUN;
89 cmd = xhci_readl(xhci, &xhci->op_regs->command);
90 cmd &= mask;
91 xhci_writel(xhci, cmd, &xhci->op_regs->command);
95 * Force HC into halt state.
97 * Disable any IRQs and clear the run/stop bit.
98 * HC will complete any current and actively pipelined transactions, and
99 * should halt within 16 ms of the run/stop bit being cleared.
100 * Read HC Halted bit in the status register to see when the HC is finished.
102 int xhci_halt(struct xhci_hcd *xhci)
104 int ret;
105 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
106 xhci_quiesce(xhci);
108 ret = xhci_handshake(xhci, &xhci->op_regs->status,
109 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110 if (!ret) {
111 xhci->xhc_state |= XHCI_STATE_HALTED;
112 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113 } else
114 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115 XHCI_MAX_HALT_USEC);
116 return ret;
120 * Set the run bit and wait for the host to be running.
122 static int xhci_start(struct xhci_hcd *xhci)
124 u32 temp;
125 int ret;
127 temp = xhci_readl(xhci, &xhci->op_regs->command);
128 temp |= (CMD_RUN);
129 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
130 temp);
131 xhci_writel(xhci, temp, &xhci->op_regs->command);
134 * Wait for the HCHalted Status bit to be 0 to indicate the host is
135 * running.
137 ret = xhci_handshake(xhci, &xhci->op_regs->status,
138 STS_HALT, 0, XHCI_MAX_HALT_USEC);
139 if (ret == -ETIMEDOUT)
140 xhci_err(xhci, "Host took too long to start, "
141 "waited %u microseconds.\n",
142 XHCI_MAX_HALT_USEC);
143 if (!ret)
144 xhci->xhc_state &= ~XHCI_STATE_HALTED;
145 return ret;
149 * Reset a halted HC.
151 * This resets pipelines, timers, counters, state machines, etc.
152 * Transactions will be terminated immediately, and operational registers
153 * will be set to their defaults.
155 int xhci_reset(struct xhci_hcd *xhci)
157 u32 command;
158 u32 state;
159 int ret, i;
161 state = xhci_readl(xhci, &xhci->op_regs->status);
162 if ((state & STS_HALT) == 0) {
163 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164 return 0;
167 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
168 command = xhci_readl(xhci, &xhci->op_regs->command);
169 command |= CMD_RESET;
170 xhci_writel(xhci, command, &xhci->op_regs->command);
172 ret = xhci_handshake(xhci, &xhci->op_regs->command,
173 CMD_RESET, 0, 10 * 1000 * 1000);
174 if (ret)
175 return ret;
177 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
178 "Wait for controller to be ready for doorbell rings");
180 * xHCI cannot write to any doorbells or operational registers other
181 * than status until the "Controller Not Ready" flag is cleared.
183 ret = xhci_handshake(xhci, &xhci->op_regs->status,
184 STS_CNR, 0, 10 * 1000 * 1000);
186 for (i = 0; i < 2; ++i) {
187 xhci->bus_state[i].port_c_suspend = 0;
188 xhci->bus_state[i].suspended_ports = 0;
189 xhci->bus_state[i].resuming_ports = 0;
192 return ret;
195 #ifdef CONFIG_PCI
196 static int xhci_free_msi(struct xhci_hcd *xhci)
198 int i;
200 if (!xhci->msix_entries)
201 return -EINVAL;
203 for (i = 0; i < xhci->msix_count; i++)
204 if (xhci->msix_entries[i].vector)
205 free_irq(xhci->msix_entries[i].vector,
206 xhci_to_hcd(xhci));
207 return 0;
211 * Set up MSI
213 static int xhci_setup_msi(struct xhci_hcd *xhci)
215 int ret;
216 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
218 ret = pci_enable_msi(pdev);
219 if (ret) {
220 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
221 "failed to allocate MSI entry");
222 return ret;
225 ret = request_irq(pdev->irq, xhci_msi_irq,
226 0, "xhci_hcd", xhci_to_hcd(xhci));
227 if (ret) {
228 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
229 "disable MSI interrupt");
230 pci_disable_msi(pdev);
233 return ret;
237 * Free IRQs
238 * free all IRQs request
240 static void xhci_free_irq(struct xhci_hcd *xhci)
242 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243 int ret;
245 /* return if using legacy interrupt */
246 if (xhci_to_hcd(xhci)->irq > 0)
247 return;
249 ret = xhci_free_msi(xhci);
250 if (!ret)
251 return;
252 if (pdev->irq > 0)
253 free_irq(pdev->irq, xhci_to_hcd(xhci));
255 return;
259 * Set up MSI-X
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
263 int i, ret = 0;
264 struct usb_hcd *hcd = xhci_to_hcd(xhci);
265 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
268 * calculate number of msi-x vectors supported.
269 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270 * with max number of interrupters based on the xhci HCSPARAMS1.
271 * - num_online_cpus: maximum msi-x vectors per CPUs core.
272 * Add additional 1 vector to ensure always available interrupt.
274 xhci->msix_count = min(num_online_cpus() + 1,
275 HCS_MAX_INTRS(xhci->hcs_params1));
277 xhci->msix_entries =
278 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
279 GFP_KERNEL);
280 if (!xhci->msix_entries) {
281 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
282 return -ENOMEM;
285 for (i = 0; i < xhci->msix_count; i++) {
286 xhci->msix_entries[i].entry = i;
287 xhci->msix_entries[i].vector = 0;
290 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
291 if (ret) {
292 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
293 "Failed to enable MSI-X");
294 goto free_entries;
297 for (i = 0; i < xhci->msix_count; i++) {
298 ret = request_irq(xhci->msix_entries[i].vector,
299 xhci_msi_irq,
300 0, "xhci_hcd", xhci_to_hcd(xhci));
301 if (ret)
302 goto disable_msix;
305 hcd->msix_enabled = 1;
306 return ret;
308 disable_msix:
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
310 xhci_free_irq(xhci);
311 pci_disable_msix(pdev);
312 free_entries:
313 kfree(xhci->msix_entries);
314 xhci->msix_entries = NULL;
315 return ret;
318 /* Free any IRQs and disable MSI-X */
319 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
321 struct usb_hcd *hcd = xhci_to_hcd(xhci);
322 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
324 xhci_free_irq(xhci);
326 if (xhci->msix_entries) {
327 pci_disable_msix(pdev);
328 kfree(xhci->msix_entries);
329 xhci->msix_entries = NULL;
330 } else {
331 pci_disable_msi(pdev);
334 hcd->msix_enabled = 0;
335 return;
338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
340 int i;
342 if (xhci->msix_entries) {
343 for (i = 0; i < xhci->msix_count; i++)
344 synchronize_irq(xhci->msix_entries[i].vector);
348 static int xhci_try_enable_msi(struct usb_hcd *hcd)
350 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
351 struct pci_dev *pdev;
352 int ret;
354 /* The xhci platform device has set up IRQs through usb_add_hcd. */
355 if (xhci->quirks & XHCI_PLAT)
356 return 0;
358 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
360 * Some Fresco Logic host controllers advertise MSI, but fail to
361 * generate interrupts. Don't even try to enable MSI.
363 if (xhci->quirks & XHCI_BROKEN_MSI)
364 goto legacy_irq;
366 /* unregister the legacy interrupt */
367 if (hcd->irq)
368 free_irq(hcd->irq, hcd);
369 hcd->irq = 0;
371 ret = xhci_setup_msix(xhci);
372 if (ret)
373 /* fall back to msi*/
374 ret = xhci_setup_msi(xhci);
376 if (!ret)
377 /* hcd->irq is 0, we have MSI */
378 return 0;
380 if (!pdev->irq) {
381 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
382 return -EINVAL;
385 legacy_irq:
386 /* fall back to legacy interrupt*/
387 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
388 hcd->irq_descr, hcd);
389 if (ret) {
390 xhci_err(xhci, "request interrupt %d failed\n",
391 pdev->irq);
392 return ret;
394 hcd->irq = pdev->irq;
395 return 0;
398 #else
400 static int xhci_try_enable_msi(struct usb_hcd *hcd)
402 return 0;
405 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
413 #endif
415 static void compliance_mode_recovery(unsigned long arg)
417 struct xhci_hcd *xhci;
418 struct usb_hcd *hcd;
419 u32 temp;
420 int i;
422 xhci = (struct xhci_hcd *)arg;
424 for (i = 0; i < xhci->num_usb3_ports; i++) {
425 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
426 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
428 * Compliance Mode Detected. Letting USB Core
429 * handle the Warm Reset
431 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
432 "Compliance mode detected->port %d",
433 i + 1);
434 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
435 "Attempting compliance mode recovery");
436 hcd = xhci->shared_hcd;
438 if (hcd->state == HC_STATE_SUSPENDED)
439 usb_hcd_resume_root_hub(hcd);
441 usb_hcd_poll_rh_status(hcd);
445 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
446 mod_timer(&xhci->comp_mode_recovery_timer,
447 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
451 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
452 * that causes ports behind that hardware to enter compliance mode sometimes.
453 * The quirk creates a timer that polls every 2 seconds the link state of
454 * each host controller's port and recovers it by issuing a Warm reset
455 * if Compliance mode is detected, otherwise the port will become "dead" (no
456 * device connections or disconnections will be detected anymore). Becasue no
457 * status event is generated when entering compliance mode (per xhci spec),
458 * this quirk is needed on systems that have the failing hardware installed.
460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
462 xhci->port_status_u0 = 0;
463 init_timer(&xhci->comp_mode_recovery_timer);
465 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
466 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
467 xhci->comp_mode_recovery_timer.expires = jiffies +
468 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
470 set_timer_slack(&xhci->comp_mode_recovery_timer,
471 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 add_timer(&xhci->comp_mode_recovery_timer);
473 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
474 "Compliance mode recovery timer initialized");
478 * This function identifies the systems that have installed the SN65LVPE502CP
479 * USB3.0 re-driver and that need the Compliance Mode Quirk.
480 * Systems:
481 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
483 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
485 const char *dmi_product_name, *dmi_sys_vendor;
487 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
488 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
489 if (!dmi_product_name || !dmi_sys_vendor)
490 return false;
492 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
493 return false;
495 if (strstr(dmi_product_name, "Z420") ||
496 strstr(dmi_product_name, "Z620") ||
497 strstr(dmi_product_name, "Z820") ||
498 strstr(dmi_product_name, "Z1 Workstation"))
499 return true;
501 return false;
504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
506 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
511 * Initialize memory for HCD and xHC (one-time init).
513 * Program the PAGESIZE register, initialize the device context array, create
514 * device contexts (?), set up a command ring segment (or two?), create event
515 * ring (one for now).
517 int xhci_init(struct usb_hcd *hcd)
519 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
520 int retval = 0;
522 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
523 spin_lock_init(&xhci->lock);
524 if (xhci->hci_version == 0x95 && link_quirk) {
525 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
526 "QUIRK: Not clearing Link TRB chain bits.");
527 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
528 } else {
529 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
530 "xHCI doesn't need link TRB QUIRK");
532 retval = xhci_mem_init(xhci, GFP_KERNEL);
533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
535 /* Initializing Compliance Mode Recovery Data If Needed */
536 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
537 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
538 compliance_mode_recovery_timer_init(xhci);
541 return retval;
544 /*-------------------------------------------------------------------------*/
547 static int xhci_run_finished(struct xhci_hcd *xhci)
549 if (xhci_start(xhci)) {
550 xhci_halt(xhci);
551 return -ENODEV;
553 xhci->shared_hcd->state = HC_STATE_RUNNING;
554 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
556 if (xhci->quirks & XHCI_NEC_HOST)
557 xhci_ring_cmd_db(xhci);
559 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
560 "Finished xhci_run for USB3 roothub");
561 return 0;
565 * Start the HC after it was halted.
567 * This function is called by the USB core when the HC driver is added.
568 * Its opposite is xhci_stop().
570 * xhci_init() must be called once before this function can be called.
571 * Reset the HC, enable device slot contexts, program DCBAAP, and
572 * set command ring pointer and event ring pointer.
574 * Setup MSI-X vectors and enable interrupts.
576 int xhci_run(struct usb_hcd *hcd)
578 u32 temp;
579 u64 temp_64;
580 int ret;
581 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
583 /* Start the xHCI host controller running only after the USB 2.0 roothub
584 * is setup.
587 hcd->uses_new_polling = 1;
588 if (!usb_hcd_is_primary_hcd(hcd))
589 return xhci_run_finished(xhci);
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
593 ret = xhci_try_enable_msi(hcd);
594 if (ret)
595 return ret;
597 xhci_dbg(xhci, "Command ring memory map follows:\n");
598 xhci_debug_ring(xhci, xhci->cmd_ring);
599 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
600 xhci_dbg_cmd_ptrs(xhci);
602 xhci_dbg(xhci, "ERST memory map follows:\n");
603 xhci_dbg_erst(xhci, &xhci->erst);
604 xhci_dbg(xhci, "Event ring:\n");
605 xhci_debug_ring(xhci, xhci->event_ring);
606 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
607 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
608 temp_64 &= ~ERST_PTR_MASK;
609 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613 "// Set the interrupt modulation register");
614 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
615 temp &= ~ER_IRQ_INTERVAL_MASK;
616 temp |= (u32) 160;
617 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
619 /* Set the HCD state before we enable the irqs */
620 temp = xhci_readl(xhci, &xhci->op_regs->command);
621 temp |= (CMD_EIE);
622 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 "// Enable interrupts, cmd = 0x%x.", temp);
624 xhci_writel(xhci, temp, &xhci->op_regs->command);
626 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
629 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
630 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
631 &xhci->ir_set->irq_pending);
632 xhci_print_ir_set(xhci, 0);
634 if (xhci->quirks & XHCI_NEC_HOST)
635 xhci_queue_vendor_command(xhci, 0, 0, 0,
636 TRB_TYPE(TRB_NEC_GET_FW));
638 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 "Finished xhci_run for USB2 roothub");
640 return 0;
643 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
645 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647 spin_lock_irq(&xhci->lock);
648 xhci_halt(xhci);
650 /* The shared_hcd is going to be deallocated shortly (the USB core only
651 * calls this function when allocation fails in usb_add_hcd(), or
652 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
654 xhci->shared_hcd = NULL;
655 spin_unlock_irq(&xhci->lock);
659 * Stop xHCI driver.
661 * This function is called by the USB core when the HC driver is removed.
662 * Its opposite is xhci_run().
664 * Disable device contexts, disable IRQs, and quiesce the HC.
665 * Reset the HC, finish any completed transactions, and cleanup memory.
667 void xhci_stop(struct usb_hcd *hcd)
669 u32 temp;
670 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
672 if (!usb_hcd_is_primary_hcd(hcd)) {
673 xhci_only_stop_hcd(xhci->shared_hcd);
674 return;
677 spin_lock_irq(&xhci->lock);
678 /* Make sure the xHC is halted for a USB3 roothub
679 * (xhci_stop() could be called as part of failed init).
681 xhci_halt(xhci);
682 xhci_reset(xhci);
683 spin_unlock_irq(&xhci->lock);
685 xhci_cleanup_msix(xhci);
687 /* Deleting Compliance Mode Recovery Timer */
688 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
689 (!(xhci_all_ports_seen_u0(xhci)))) {
690 del_timer_sync(&xhci->comp_mode_recovery_timer);
691 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
692 "%s: compliance mode recovery timer deleted",
693 __func__);
696 if (xhci->quirks & XHCI_AMD_PLL_FIX)
697 usb_amd_dev_put();
699 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
700 "// Disabling event ring interrupts");
701 temp = xhci_readl(xhci, &xhci->op_regs->status);
702 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
703 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
704 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
705 &xhci->ir_set->irq_pending);
706 xhci_print_ir_set(xhci, 0);
708 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
709 xhci_mem_cleanup(xhci);
710 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
711 "xhci_stop completed - status = %x",
712 xhci_readl(xhci, &xhci->op_regs->status));
716 * Shutdown HC (not bus-specific)
718 * This is called when the machine is rebooting or halting. We assume that the
719 * machine will be powered off, and the HC's internal state will be reset.
720 * Don't bother to free memory.
722 * This will only ever be called with the main usb_hcd (the USB3 roothub).
724 void xhci_shutdown(struct usb_hcd *hcd)
726 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
728 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
729 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
731 spin_lock_irq(&xhci->lock);
732 xhci_halt(xhci);
733 spin_unlock_irq(&xhci->lock);
735 xhci_cleanup_msix(xhci);
737 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
738 "xhci_shutdown completed - status = %x",
739 xhci_readl(xhci, &xhci->op_regs->status));
742 #ifdef CONFIG_PM
743 static void xhci_save_registers(struct xhci_hcd *xhci)
745 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
746 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
747 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
748 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
749 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
750 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
751 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
752 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
753 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
756 static void xhci_restore_registers(struct xhci_hcd *xhci)
758 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
759 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
760 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
761 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
762 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
763 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
764 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
765 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
766 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
769 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
771 u64 val_64;
773 /* step 2: initialize command ring buffer */
774 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
775 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
776 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
777 xhci->cmd_ring->dequeue) &
778 (u64) ~CMD_RING_RSVD_BITS) |
779 xhci->cmd_ring->cycle_state;
780 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
781 "// Setting command ring address to 0x%llx",
782 (long unsigned long) val_64);
783 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
787 * The whole command ring must be cleared to zero when we suspend the host.
789 * The host doesn't save the command ring pointer in the suspend well, so we
790 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
791 * aligned, because of the reserved bits in the command ring dequeue pointer
792 * register. Therefore, we can't just set the dequeue pointer back in the
793 * middle of the ring (TRBs are 16-byte aligned).
795 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
797 struct xhci_ring *ring;
798 struct xhci_segment *seg;
800 ring = xhci->cmd_ring;
801 seg = ring->deq_seg;
802 do {
803 memset(seg->trbs, 0,
804 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
805 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
806 cpu_to_le32(~TRB_CYCLE);
807 seg = seg->next;
808 } while (seg != ring->deq_seg);
810 /* Reset the software enqueue and dequeue pointers */
811 ring->deq_seg = ring->first_seg;
812 ring->dequeue = ring->first_seg->trbs;
813 ring->enq_seg = ring->deq_seg;
814 ring->enqueue = ring->dequeue;
816 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
818 * Ring is now zeroed, so the HW should look for change of ownership
819 * when the cycle bit is set to 1.
821 ring->cycle_state = 1;
824 * Reset the hardware dequeue pointer.
825 * Yes, this will need to be re-written after resume, but we're paranoid
826 * and want to make sure the hardware doesn't access bogus memory
827 * because, say, the BIOS or an SMI started the host without changing
828 * the command ring pointers.
830 xhci_set_cmd_ring_deq(xhci);
834 * Stop HC (not bus-specific)
836 * This is called when the machine transition into S3/S4 mode.
839 int xhci_suspend(struct xhci_hcd *xhci)
841 int rc = 0;
842 struct usb_hcd *hcd = xhci_to_hcd(xhci);
843 u32 command;
845 if (hcd->state != HC_STATE_SUSPENDED ||
846 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
847 return -EINVAL;
849 /* Don't poll the roothubs on bus suspend. */
850 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
851 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
852 del_timer_sync(&hcd->rh_timer);
854 spin_lock_irq(&xhci->lock);
855 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
856 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
857 /* step 1: stop endpoint */
858 /* skipped assuming that port suspend has done */
860 /* step 2: clear Run/Stop bit */
861 command = xhci_readl(xhci, &xhci->op_regs->command);
862 command &= ~CMD_RUN;
863 xhci_writel(xhci, command, &xhci->op_regs->command);
864 if (xhci_handshake(xhci, &xhci->op_regs->status,
865 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
866 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
867 spin_unlock_irq(&xhci->lock);
868 return -ETIMEDOUT;
870 xhci_clear_command_ring(xhci);
872 /* step 3: save registers */
873 xhci_save_registers(xhci);
875 /* step 4: set CSS flag */
876 command = xhci_readl(xhci, &xhci->op_regs->command);
877 command |= CMD_CSS;
878 xhci_writel(xhci, command, &xhci->op_regs->command);
879 if (xhci_handshake(xhci, &xhci->op_regs->status,
880 STS_SAVE, 0, 10 * 1000)) {
881 xhci_warn(xhci, "WARN: xHC save state timeout\n");
882 spin_unlock_irq(&xhci->lock);
883 return -ETIMEDOUT;
885 spin_unlock_irq(&xhci->lock);
888 * Deleting Compliance Mode Recovery Timer because the xHCI Host
889 * is about to be suspended.
891 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
892 (!(xhci_all_ports_seen_u0(xhci)))) {
893 del_timer_sync(&xhci->comp_mode_recovery_timer);
894 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
895 "%s: compliance mode recovery timer deleted",
896 __func__);
899 /* step 5: remove core well power */
900 /* synchronize irq when using MSI-X */
901 xhci_msix_sync_irqs(xhci);
903 return rc;
907 * start xHC (not bus-specific)
909 * This is called when the machine transition from S3/S4 mode.
912 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
914 u32 command, temp = 0;
915 struct usb_hcd *hcd = xhci_to_hcd(xhci);
916 struct usb_hcd *secondary_hcd;
917 int retval = 0;
918 bool comp_timer_running = false;
920 /* Wait a bit if either of the roothubs need to settle from the
921 * transition into bus suspend.
923 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
924 time_before(jiffies,
925 xhci->bus_state[1].next_statechange))
926 msleep(100);
928 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
931 spin_lock_irq(&xhci->lock);
932 if (xhci->quirks & XHCI_RESET_ON_RESUME)
933 hibernated = true;
935 if (!hibernated) {
936 /* step 1: restore register */
937 xhci_restore_registers(xhci);
938 /* step 2: initialize command ring buffer */
939 xhci_set_cmd_ring_deq(xhci);
940 /* step 3: restore state and start state*/
941 /* step 3: set CRS flag */
942 command = xhci_readl(xhci, &xhci->op_regs->command);
943 command |= CMD_CRS;
944 xhci_writel(xhci, command, &xhci->op_regs->command);
945 if (xhci_handshake(xhci, &xhci->op_regs->status,
946 STS_RESTORE, 0, 10 * 1000)) {
947 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
948 spin_unlock_irq(&xhci->lock);
949 return -ETIMEDOUT;
951 temp = xhci_readl(xhci, &xhci->op_regs->status);
954 /* If restore operation fails, re-initialize the HC during resume */
955 if ((temp & STS_SRE) || hibernated) {
957 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
958 !(xhci_all_ports_seen_u0(xhci))) {
959 del_timer_sync(&xhci->comp_mode_recovery_timer);
960 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
961 "Compliance Mode Recovery Timer deleted!");
964 /* Let the USB core know _both_ roothubs lost power. */
965 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
966 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
968 xhci_dbg(xhci, "Stop HCD\n");
969 xhci_halt(xhci);
970 xhci_reset(xhci);
971 spin_unlock_irq(&xhci->lock);
972 xhci_cleanup_msix(xhci);
974 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
975 temp = xhci_readl(xhci, &xhci->op_regs->status);
976 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
977 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
978 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
979 &xhci->ir_set->irq_pending);
980 xhci_print_ir_set(xhci, 0);
982 xhci_dbg(xhci, "cleaning up memory\n");
983 xhci_mem_cleanup(xhci);
984 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
985 xhci_readl(xhci, &xhci->op_regs->status));
987 /* USB core calls the PCI reinit and start functions twice:
988 * first with the primary HCD, and then with the secondary HCD.
989 * If we don't do the same, the host will never be started.
991 if (!usb_hcd_is_primary_hcd(hcd))
992 secondary_hcd = hcd;
993 else
994 secondary_hcd = xhci->shared_hcd;
996 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
997 retval = xhci_init(hcd->primary_hcd);
998 if (retval)
999 return retval;
1000 comp_timer_running = true;
1002 xhci_dbg(xhci, "Start the primary HCD\n");
1003 retval = xhci_run(hcd->primary_hcd);
1004 if (!retval) {
1005 xhci_dbg(xhci, "Start the secondary HCD\n");
1006 retval = xhci_run(secondary_hcd);
1008 hcd->state = HC_STATE_SUSPENDED;
1009 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1010 goto done;
1013 /* step 4: set Run/Stop bit */
1014 command = xhci_readl(xhci, &xhci->op_regs->command);
1015 command |= CMD_RUN;
1016 xhci_writel(xhci, command, &xhci->op_regs->command);
1017 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1018 0, 250 * 1000);
1020 /* step 5: walk topology and initialize portsc,
1021 * portpmsc and portli
1023 /* this is done in bus_resume */
1025 /* step 6: restart each of the previously
1026 * Running endpoints by ringing their doorbells
1029 spin_unlock_irq(&xhci->lock);
1031 done:
1032 if (retval == 0) {
1033 usb_hcd_resume_root_hub(hcd);
1034 usb_hcd_resume_root_hub(xhci->shared_hcd);
1038 * If system is subject to the Quirk, Compliance Mode Timer needs to
1039 * be re-initialized Always after a system resume. Ports are subject
1040 * to suffer the Compliance Mode issue again. It doesn't matter if
1041 * ports have entered previously to U0 before system's suspension.
1043 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1044 compliance_mode_recovery_timer_init(xhci);
1046 /* Re-enable port polling. */
1047 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1048 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1049 usb_hcd_poll_rh_status(hcd);
1051 return retval;
1053 #endif /* CONFIG_PM */
1055 /*-------------------------------------------------------------------------*/
1058 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1059 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1060 * value to right shift 1 for the bitmask.
1062 * Index = (epnum * 2) + direction - 1,
1063 * where direction = 0 for OUT, 1 for IN.
1064 * For control endpoints, the IN index is used (OUT index is unused), so
1065 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1067 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1069 unsigned int index;
1070 if (usb_endpoint_xfer_control(desc))
1071 index = (unsigned int) (usb_endpoint_num(desc)*2);
1072 else
1073 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1074 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1075 return index;
1078 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1079 * address from the XHCI endpoint index.
1081 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1083 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1084 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1085 return direction | number;
1088 /* Find the flag for this endpoint (for use in the control context). Use the
1089 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1090 * bit 1, etc.
1092 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1094 return 1 << (xhci_get_endpoint_index(desc) + 1);
1097 /* Find the flag for this endpoint (for use in the control context). Use the
1098 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1099 * bit 1, etc.
1101 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1103 return 1 << (ep_index + 1);
1106 /* Compute the last valid endpoint context index. Basically, this is the
1107 * endpoint index plus one. For slot contexts with more than valid endpoint,
1108 * we find the most significant bit set in the added contexts flags.
1109 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1110 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1112 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1114 return fls(added_ctxs) - 1;
1117 /* Returns 1 if the arguments are OK;
1118 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1120 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1121 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1122 const char *func) {
1123 struct xhci_hcd *xhci;
1124 struct xhci_virt_device *virt_dev;
1126 if (!hcd || (check_ep && !ep) || !udev) {
1127 pr_debug("xHCI %s called with invalid args\n", func);
1128 return -EINVAL;
1130 if (!udev->parent) {
1131 pr_debug("xHCI %s called for root hub\n", func);
1132 return 0;
1135 xhci = hcd_to_xhci(hcd);
1136 if (check_virt_dev) {
1137 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1138 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1139 func);
1140 return -EINVAL;
1143 virt_dev = xhci->devs[udev->slot_id];
1144 if (virt_dev->udev != udev) {
1145 xhci_dbg(xhci, "xHCI %s called with udev and "
1146 "virt_dev does not match\n", func);
1147 return -EINVAL;
1151 if (xhci->xhc_state & XHCI_STATE_HALTED)
1152 return -ENODEV;
1154 return 1;
1157 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1158 struct usb_device *udev, struct xhci_command *command,
1159 bool ctx_change, bool must_succeed);
1162 * Full speed devices may have a max packet size greater than 8 bytes, but the
1163 * USB core doesn't know that until it reads the first 8 bytes of the
1164 * descriptor. If the usb_device's max packet size changes after that point,
1165 * we need to issue an evaluate context command and wait on it.
1167 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1168 unsigned int ep_index, struct urb *urb)
1170 struct xhci_container_ctx *in_ctx;
1171 struct xhci_container_ctx *out_ctx;
1172 struct xhci_input_control_ctx *ctrl_ctx;
1173 struct xhci_ep_ctx *ep_ctx;
1174 int max_packet_size;
1175 int hw_max_packet_size;
1176 int ret = 0;
1178 out_ctx = xhci->devs[slot_id]->out_ctx;
1179 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1180 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1181 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1182 if (hw_max_packet_size != max_packet_size) {
1183 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1184 "Max Packet Size for ep 0 changed.");
1185 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1186 "Max packet size in usb_device = %d",
1187 max_packet_size);
1188 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1189 "Max packet size in xHCI HW = %d",
1190 hw_max_packet_size);
1191 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1192 "Issuing evaluate context command.");
1194 /* Set up the input context flags for the command */
1195 /* FIXME: This won't work if a non-default control endpoint
1196 * changes max packet sizes.
1198 in_ctx = xhci->devs[slot_id]->in_ctx;
1199 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1200 if (!ctrl_ctx) {
1201 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1202 __func__);
1203 return -ENOMEM;
1205 /* Set up the modified control endpoint 0 */
1206 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1207 xhci->devs[slot_id]->out_ctx, ep_index);
1209 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1210 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1211 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1213 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1214 ctrl_ctx->drop_flags = 0;
1216 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1217 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1218 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1219 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1221 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1222 true, false);
1224 /* Clean up the input context for later use by bandwidth
1225 * functions.
1227 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1229 return ret;
1233 * non-error returns are a promise to giveback() the urb later
1234 * we drop ownership so next owner (or urb unlink) can get it
1236 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1238 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1239 struct xhci_td *buffer;
1240 unsigned long flags;
1241 int ret = 0;
1242 unsigned int slot_id, ep_index;
1243 struct urb_priv *urb_priv;
1244 int size, i;
1246 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1247 true, true, __func__) <= 0)
1248 return -EINVAL;
1250 slot_id = urb->dev->slot_id;
1251 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1253 if (!HCD_HW_ACCESSIBLE(hcd)) {
1254 if (!in_interrupt())
1255 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1256 ret = -ESHUTDOWN;
1257 goto exit;
1260 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1261 size = urb->number_of_packets;
1262 else
1263 size = 1;
1265 urb_priv = kzalloc(sizeof(struct urb_priv) +
1266 size * sizeof(struct xhci_td *), mem_flags);
1267 if (!urb_priv)
1268 return -ENOMEM;
1270 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1271 if (!buffer) {
1272 kfree(urb_priv);
1273 return -ENOMEM;
1276 for (i = 0; i < size; i++) {
1277 urb_priv->td[i] = buffer;
1278 buffer++;
1281 urb_priv->length = size;
1282 urb_priv->td_cnt = 0;
1283 urb->hcpriv = urb_priv;
1285 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1286 /* Check to see if the max packet size for the default control
1287 * endpoint changed during FS device enumeration
1289 if (urb->dev->speed == USB_SPEED_FULL) {
1290 ret = xhci_check_maxpacket(xhci, slot_id,
1291 ep_index, urb);
1292 if (ret < 0) {
1293 xhci_urb_free_priv(xhci, urb_priv);
1294 urb->hcpriv = NULL;
1295 return ret;
1299 /* We have a spinlock and interrupts disabled, so we must pass
1300 * atomic context to this function, which may allocate memory.
1302 spin_lock_irqsave(&xhci->lock, flags);
1303 if (xhci->xhc_state & XHCI_STATE_DYING)
1304 goto dying;
1305 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1306 slot_id, ep_index);
1307 if (ret)
1308 goto free_priv;
1309 spin_unlock_irqrestore(&xhci->lock, flags);
1310 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1311 spin_lock_irqsave(&xhci->lock, flags);
1312 if (xhci->xhc_state & XHCI_STATE_DYING)
1313 goto dying;
1314 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1315 EP_GETTING_STREAMS) {
1316 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1317 "is transitioning to using streams.\n");
1318 ret = -EINVAL;
1319 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1320 EP_GETTING_NO_STREAMS) {
1321 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1322 "is transitioning to "
1323 "not having streams.\n");
1324 ret = -EINVAL;
1325 } else {
1326 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1327 slot_id, ep_index);
1329 if (ret)
1330 goto free_priv;
1331 spin_unlock_irqrestore(&xhci->lock, flags);
1332 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1333 spin_lock_irqsave(&xhci->lock, flags);
1334 if (xhci->xhc_state & XHCI_STATE_DYING)
1335 goto dying;
1336 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1337 slot_id, ep_index);
1338 if (ret)
1339 goto free_priv;
1340 spin_unlock_irqrestore(&xhci->lock, flags);
1341 } else {
1342 spin_lock_irqsave(&xhci->lock, flags);
1343 if (xhci->xhc_state & XHCI_STATE_DYING)
1344 goto dying;
1345 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1346 slot_id, ep_index);
1347 if (ret)
1348 goto free_priv;
1349 spin_unlock_irqrestore(&xhci->lock, flags);
1351 exit:
1352 return ret;
1353 dying:
1354 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1355 "non-responsive xHCI host.\n",
1356 urb->ep->desc.bEndpointAddress, urb);
1357 ret = -ESHUTDOWN;
1358 free_priv:
1359 xhci_urb_free_priv(xhci, urb_priv);
1360 urb->hcpriv = NULL;
1361 spin_unlock_irqrestore(&xhci->lock, flags);
1362 return ret;
1365 /* Get the right ring for the given URB.
1366 * If the endpoint supports streams, boundary check the URB's stream ID.
1367 * If the endpoint doesn't support streams, return the singular endpoint ring.
1369 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1370 struct urb *urb)
1372 unsigned int slot_id;
1373 unsigned int ep_index;
1374 unsigned int stream_id;
1375 struct xhci_virt_ep *ep;
1377 slot_id = urb->dev->slot_id;
1378 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1379 stream_id = urb->stream_id;
1380 ep = &xhci->devs[slot_id]->eps[ep_index];
1381 /* Common case: no streams */
1382 if (!(ep->ep_state & EP_HAS_STREAMS))
1383 return ep->ring;
1385 if (stream_id == 0) {
1386 xhci_warn(xhci,
1387 "WARN: Slot ID %u, ep index %u has streams, "
1388 "but URB has no stream ID.\n",
1389 slot_id, ep_index);
1390 return NULL;
1393 if (stream_id < ep->stream_info->num_streams)
1394 return ep->stream_info->stream_rings[stream_id];
1396 xhci_warn(xhci,
1397 "WARN: Slot ID %u, ep index %u has "
1398 "stream IDs 1 to %u allocated, "
1399 "but stream ID %u is requested.\n",
1400 slot_id, ep_index,
1401 ep->stream_info->num_streams - 1,
1402 stream_id);
1403 return NULL;
1407 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1408 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1409 * should pick up where it left off in the TD, unless a Set Transfer Ring
1410 * Dequeue Pointer is issued.
1412 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1413 * the ring. Since the ring is a contiguous structure, they can't be physically
1414 * removed. Instead, there are two options:
1416 * 1) If the HC is in the middle of processing the URB to be canceled, we
1417 * simply move the ring's dequeue pointer past those TRBs using the Set
1418 * Transfer Ring Dequeue Pointer command. This will be the common case,
1419 * when drivers timeout on the last submitted URB and attempt to cancel.
1421 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1422 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1423 * HC will need to invalidate the any TRBs it has cached after the stop
1424 * endpoint command, as noted in the xHCI 0.95 errata.
1426 * 3) The TD may have completed by the time the Stop Endpoint Command
1427 * completes, so software needs to handle that case too.
1429 * This function should protect against the TD enqueueing code ringing the
1430 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1431 * It also needs to account for multiple cancellations on happening at the same
1432 * time for the same endpoint.
1434 * Note that this function can be called in any context, or so says
1435 * usb_hcd_unlink_urb()
1437 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1439 unsigned long flags;
1440 int ret, i;
1441 u32 temp;
1442 struct xhci_hcd *xhci;
1443 struct urb_priv *urb_priv;
1444 struct xhci_td *td;
1445 unsigned int ep_index;
1446 struct xhci_ring *ep_ring;
1447 struct xhci_virt_ep *ep;
1449 xhci = hcd_to_xhci(hcd);
1450 spin_lock_irqsave(&xhci->lock, flags);
1451 /* Make sure the URB hasn't completed or been unlinked already */
1452 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1453 if (ret || !urb->hcpriv)
1454 goto done;
1455 temp = xhci_readl(xhci, &xhci->op_regs->status);
1456 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1457 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1458 "HW died, freeing TD.");
1459 urb_priv = urb->hcpriv;
1460 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1461 td = urb_priv->td[i];
1462 if (!list_empty(&td->td_list))
1463 list_del_init(&td->td_list);
1464 if (!list_empty(&td->cancelled_td_list))
1465 list_del_init(&td->cancelled_td_list);
1468 usb_hcd_unlink_urb_from_ep(hcd, urb);
1469 spin_unlock_irqrestore(&xhci->lock, flags);
1470 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1471 xhci_urb_free_priv(xhci, urb_priv);
1472 return ret;
1474 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1475 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1476 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1477 "Ep 0x%x: URB %p to be canceled on "
1478 "non-responsive xHCI host.",
1479 urb->ep->desc.bEndpointAddress, urb);
1480 /* Let the stop endpoint command watchdog timer (which set this
1481 * state) finish cleaning up the endpoint TD lists. We must
1482 * have caught it in the middle of dropping a lock and giving
1483 * back an URB.
1485 goto done;
1488 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1489 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1490 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1491 if (!ep_ring) {
1492 ret = -EINVAL;
1493 goto done;
1496 urb_priv = urb->hcpriv;
1497 i = urb_priv->td_cnt;
1498 if (i < urb_priv->length)
1499 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1500 "Cancel URB %p, dev %s, ep 0x%x, "
1501 "starting at offset 0x%llx",
1502 urb, urb->dev->devpath,
1503 urb->ep->desc.bEndpointAddress,
1504 (unsigned long long) xhci_trb_virt_to_dma(
1505 urb_priv->td[i]->start_seg,
1506 urb_priv->td[i]->first_trb));
1508 for (; i < urb_priv->length; i++) {
1509 td = urb_priv->td[i];
1510 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1513 /* Queue a stop endpoint command, but only if this is
1514 * the first cancellation to be handled.
1516 if (!(ep->ep_state & EP_HALT_PENDING)) {
1517 ep->ep_state |= EP_HALT_PENDING;
1518 ep->stop_cmds_pending++;
1519 ep->stop_cmd_timer.expires = jiffies +
1520 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1521 add_timer(&ep->stop_cmd_timer);
1522 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1523 xhci_ring_cmd_db(xhci);
1525 done:
1526 spin_unlock_irqrestore(&xhci->lock, flags);
1527 return ret;
1530 /* Drop an endpoint from a new bandwidth configuration for this device.
1531 * Only one call to this function is allowed per endpoint before
1532 * check_bandwidth() or reset_bandwidth() must be called.
1533 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1534 * add the endpoint to the schedule with possibly new parameters denoted by a
1535 * different endpoint descriptor in usb_host_endpoint.
1536 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1537 * not allowed.
1539 * The USB core will not allow URBs to be queued to an endpoint that is being
1540 * disabled, so there's no need for mutual exclusion to protect
1541 * the xhci->devs[slot_id] structure.
1543 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1544 struct usb_host_endpoint *ep)
1546 struct xhci_hcd *xhci;
1547 struct xhci_container_ctx *in_ctx, *out_ctx;
1548 struct xhci_input_control_ctx *ctrl_ctx;
1549 struct xhci_slot_ctx *slot_ctx;
1550 unsigned int last_ctx;
1551 unsigned int ep_index;
1552 struct xhci_ep_ctx *ep_ctx;
1553 u32 drop_flag;
1554 u32 new_add_flags, new_drop_flags, new_slot_info;
1555 int ret;
1557 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1558 if (ret <= 0)
1559 return ret;
1560 xhci = hcd_to_xhci(hcd);
1561 if (xhci->xhc_state & XHCI_STATE_DYING)
1562 return -ENODEV;
1564 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1565 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1566 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1567 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1568 __func__, drop_flag);
1569 return 0;
1572 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1573 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1574 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1575 if (!ctrl_ctx) {
1576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1577 __func__);
1578 return 0;
1581 ep_index = xhci_get_endpoint_index(&ep->desc);
1582 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1583 /* If the HC already knows the endpoint is disabled,
1584 * or the HCD has noted it is disabled, ignore this request
1586 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1587 cpu_to_le32(EP_STATE_DISABLED)) ||
1588 le32_to_cpu(ctrl_ctx->drop_flags) &
1589 xhci_get_endpoint_flag(&ep->desc)) {
1590 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1591 __func__, ep);
1592 return 0;
1595 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1598 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1601 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1602 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1603 /* Update the last valid endpoint context, if we deleted the last one */
1604 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1605 LAST_CTX(last_ctx)) {
1606 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1607 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1609 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1611 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1613 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1614 (unsigned int) ep->desc.bEndpointAddress,
1615 udev->slot_id,
1616 (unsigned int) new_drop_flags,
1617 (unsigned int) new_add_flags,
1618 (unsigned int) new_slot_info);
1619 return 0;
1622 /* Add an endpoint to a new possible bandwidth configuration for this device.
1623 * Only one call to this function is allowed per endpoint before
1624 * check_bandwidth() or reset_bandwidth() must be called.
1625 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1626 * add the endpoint to the schedule with possibly new parameters denoted by a
1627 * different endpoint descriptor in usb_host_endpoint.
1628 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1629 * not allowed.
1631 * The USB core will not allow URBs to be queued to an endpoint until the
1632 * configuration or alt setting is installed in the device, so there's no need
1633 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1635 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1636 struct usb_host_endpoint *ep)
1638 struct xhci_hcd *xhci;
1639 struct xhci_container_ctx *in_ctx, *out_ctx;
1640 unsigned int ep_index;
1641 struct xhci_slot_ctx *slot_ctx;
1642 struct xhci_input_control_ctx *ctrl_ctx;
1643 u32 added_ctxs;
1644 unsigned int last_ctx;
1645 u32 new_add_flags, new_drop_flags, new_slot_info;
1646 struct xhci_virt_device *virt_dev;
1647 int ret = 0;
1649 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1650 if (ret <= 0) {
1651 /* So we won't queue a reset ep command for a root hub */
1652 ep->hcpriv = NULL;
1653 return ret;
1655 xhci = hcd_to_xhci(hcd);
1656 if (xhci->xhc_state & XHCI_STATE_DYING)
1657 return -ENODEV;
1659 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1660 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1661 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1662 /* FIXME when we have to issue an evaluate endpoint command to
1663 * deal with ep0 max packet size changing once we get the
1664 * descriptors
1666 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1667 __func__, added_ctxs);
1668 return 0;
1671 virt_dev = xhci->devs[udev->slot_id];
1672 in_ctx = virt_dev->in_ctx;
1673 out_ctx = virt_dev->out_ctx;
1674 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1675 if (!ctrl_ctx) {
1676 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1677 __func__);
1678 return 0;
1681 ep_index = xhci_get_endpoint_index(&ep->desc);
1682 /* If this endpoint is already in use, and the upper layers are trying
1683 * to add it again without dropping it, reject the addition.
1685 if (virt_dev->eps[ep_index].ring &&
1686 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1687 xhci_get_endpoint_flag(&ep->desc))) {
1688 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1689 "without dropping it.\n",
1690 (unsigned int) ep->desc.bEndpointAddress);
1691 return -EINVAL;
1694 /* If the HCD has already noted the endpoint is enabled,
1695 * ignore this request.
1697 if (le32_to_cpu(ctrl_ctx->add_flags) &
1698 xhci_get_endpoint_flag(&ep->desc)) {
1699 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1700 __func__, ep);
1701 return 0;
1705 * Configuration and alternate setting changes must be done in
1706 * process context, not interrupt context (or so documenation
1707 * for usb_set_interface() and usb_set_configuration() claim).
1709 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1710 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1711 __func__, ep->desc.bEndpointAddress);
1712 return -ENOMEM;
1715 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1716 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1718 /* If xhci_endpoint_disable() was called for this endpoint, but the
1719 * xHC hasn't been notified yet through the check_bandwidth() call,
1720 * this re-adds a new state for the endpoint from the new endpoint
1721 * descriptors. We must drop and re-add this endpoint, so we leave the
1722 * drop flags alone.
1724 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1726 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1727 /* Update the last valid endpoint context, if we just added one past */
1728 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1729 LAST_CTX(last_ctx)) {
1730 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1731 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1733 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1735 /* Store the usb_device pointer for later use */
1736 ep->hcpriv = udev;
1738 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1739 (unsigned int) ep->desc.bEndpointAddress,
1740 udev->slot_id,
1741 (unsigned int) new_drop_flags,
1742 (unsigned int) new_add_flags,
1743 (unsigned int) new_slot_info);
1744 return 0;
1747 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1749 struct xhci_input_control_ctx *ctrl_ctx;
1750 struct xhci_ep_ctx *ep_ctx;
1751 struct xhci_slot_ctx *slot_ctx;
1752 int i;
1754 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1755 if (!ctrl_ctx) {
1756 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1757 __func__);
1758 return;
1761 /* When a device's add flag and drop flag are zero, any subsequent
1762 * configure endpoint command will leave that endpoint's state
1763 * untouched. Make sure we don't leave any old state in the input
1764 * endpoint contexts.
1766 ctrl_ctx->drop_flags = 0;
1767 ctrl_ctx->add_flags = 0;
1768 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1769 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1770 /* Endpoint 0 is always valid */
1771 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1772 for (i = 1; i < 31; ++i) {
1773 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1774 ep_ctx->ep_info = 0;
1775 ep_ctx->ep_info2 = 0;
1776 ep_ctx->deq = 0;
1777 ep_ctx->tx_info = 0;
1781 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1782 struct usb_device *udev, u32 *cmd_status)
1784 int ret;
1786 switch (*cmd_status) {
1787 case COMP_ENOMEM:
1788 dev_warn(&udev->dev, "Not enough host controller resources "
1789 "for new device state.\n");
1790 ret = -ENOMEM;
1791 /* FIXME: can we allocate more resources for the HC? */
1792 break;
1793 case COMP_BW_ERR:
1794 case COMP_2ND_BW_ERR:
1795 dev_warn(&udev->dev, "Not enough bandwidth "
1796 "for new device state.\n");
1797 ret = -ENOSPC;
1798 /* FIXME: can we go back to the old state? */
1799 break;
1800 case COMP_TRB_ERR:
1801 /* the HCD set up something wrong */
1802 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1803 "add flag = 1, "
1804 "and endpoint is not disabled.\n");
1805 ret = -EINVAL;
1806 break;
1807 case COMP_DEV_ERR:
1808 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1809 "configure command.\n");
1810 ret = -ENODEV;
1811 break;
1812 case COMP_SUCCESS:
1813 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1814 "Successful Endpoint Configure command");
1815 ret = 0;
1816 break;
1817 default:
1818 xhci_err(xhci, "ERROR: unexpected command completion "
1819 "code 0x%x.\n", *cmd_status);
1820 ret = -EINVAL;
1821 break;
1823 return ret;
1826 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1827 struct usb_device *udev, u32 *cmd_status)
1829 int ret;
1830 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1832 switch (*cmd_status) {
1833 case COMP_EINVAL:
1834 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1835 "context command.\n");
1836 ret = -EINVAL;
1837 break;
1838 case COMP_EBADSLT:
1839 dev_warn(&udev->dev, "WARN: slot not enabled for"
1840 "evaluate context command.\n");
1841 ret = -EINVAL;
1842 break;
1843 case COMP_CTX_STATE:
1844 dev_warn(&udev->dev, "WARN: invalid context state for "
1845 "evaluate context command.\n");
1846 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1847 ret = -EINVAL;
1848 break;
1849 case COMP_DEV_ERR:
1850 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1851 "context command.\n");
1852 ret = -ENODEV;
1853 break;
1854 case COMP_MEL_ERR:
1855 /* Max Exit Latency too large error */
1856 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1857 ret = -EINVAL;
1858 break;
1859 case COMP_SUCCESS:
1860 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1861 "Successful evaluate context command");
1862 ret = 0;
1863 break;
1864 default:
1865 xhci_err(xhci, "ERROR: unexpected command completion "
1866 "code 0x%x.\n", *cmd_status);
1867 ret = -EINVAL;
1868 break;
1870 return ret;
1873 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1874 struct xhci_input_control_ctx *ctrl_ctx)
1876 u32 valid_add_flags;
1877 u32 valid_drop_flags;
1879 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1880 * (bit 1). The default control endpoint is added during the Address
1881 * Device command and is never removed until the slot is disabled.
1883 valid_add_flags = ctrl_ctx->add_flags >> 2;
1884 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1886 /* Use hweight32 to count the number of ones in the add flags, or
1887 * number of endpoints added. Don't count endpoints that are changed
1888 * (both added and dropped).
1890 return hweight32(valid_add_flags) -
1891 hweight32(valid_add_flags & valid_drop_flags);
1894 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1895 struct xhci_input_control_ctx *ctrl_ctx)
1897 u32 valid_add_flags;
1898 u32 valid_drop_flags;
1900 valid_add_flags = ctrl_ctx->add_flags >> 2;
1901 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1903 return hweight32(valid_drop_flags) -
1904 hweight32(valid_add_flags & valid_drop_flags);
1908 * We need to reserve the new number of endpoints before the configure endpoint
1909 * command completes. We can't subtract the dropped endpoints from the number
1910 * of active endpoints until the command completes because we can oversubscribe
1911 * the host in this case:
1913 * - the first configure endpoint command drops more endpoints than it adds
1914 * - a second configure endpoint command that adds more endpoints is queued
1915 * - the first configure endpoint command fails, so the config is unchanged
1916 * - the second command may succeed, even though there isn't enough resources
1918 * Must be called with xhci->lock held.
1920 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1921 struct xhci_input_control_ctx *ctrl_ctx)
1923 u32 added_eps;
1925 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1926 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1927 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1928 "Not enough ep ctxs: "
1929 "%u active, need to add %u, limit is %u.",
1930 xhci->num_active_eps, added_eps,
1931 xhci->limit_active_eps);
1932 return -ENOMEM;
1934 xhci->num_active_eps += added_eps;
1935 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1936 "Adding %u ep ctxs, %u now active.", added_eps,
1937 xhci->num_active_eps);
1938 return 0;
1942 * The configure endpoint was failed by the xHC for some other reason, so we
1943 * need to revert the resources that failed configuration would have used.
1945 * Must be called with xhci->lock held.
1947 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1948 struct xhci_input_control_ctx *ctrl_ctx)
1950 u32 num_failed_eps;
1952 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1953 xhci->num_active_eps -= num_failed_eps;
1954 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1955 "Removing %u failed ep ctxs, %u now active.",
1956 num_failed_eps,
1957 xhci->num_active_eps);
1961 * Now that the command has completed, clean up the active endpoint count by
1962 * subtracting out the endpoints that were dropped (but not changed).
1964 * Must be called with xhci->lock held.
1966 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1967 struct xhci_input_control_ctx *ctrl_ctx)
1969 u32 num_dropped_eps;
1971 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1972 xhci->num_active_eps -= num_dropped_eps;
1973 if (num_dropped_eps)
1974 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975 "Removing %u dropped ep ctxs, %u now active.",
1976 num_dropped_eps,
1977 xhci->num_active_eps);
1980 static unsigned int xhci_get_block_size(struct usb_device *udev)
1982 switch (udev->speed) {
1983 case USB_SPEED_LOW:
1984 case USB_SPEED_FULL:
1985 return FS_BLOCK;
1986 case USB_SPEED_HIGH:
1987 return HS_BLOCK;
1988 case USB_SPEED_SUPER:
1989 return SS_BLOCK;
1990 case USB_SPEED_UNKNOWN:
1991 case USB_SPEED_WIRELESS:
1992 default:
1993 /* Should never happen */
1994 return 1;
1998 static unsigned int
1999 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2001 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2002 return LS_OVERHEAD;
2003 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2004 return FS_OVERHEAD;
2005 return HS_OVERHEAD;
2008 /* If we are changing a LS/FS device under a HS hub,
2009 * make sure (if we are activating a new TT) that the HS bus has enough
2010 * bandwidth for this new TT.
2012 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2013 struct xhci_virt_device *virt_dev,
2014 int old_active_eps)
2016 struct xhci_interval_bw_table *bw_table;
2017 struct xhci_tt_bw_info *tt_info;
2019 /* Find the bandwidth table for the root port this TT is attached to. */
2020 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2021 tt_info = virt_dev->tt_info;
2022 /* If this TT already had active endpoints, the bandwidth for this TT
2023 * has already been added. Removing all periodic endpoints (and thus
2024 * making the TT enactive) will only decrease the bandwidth used.
2026 if (old_active_eps)
2027 return 0;
2028 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2029 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2030 return -ENOMEM;
2031 return 0;
2033 /* Not sure why we would have no new active endpoints...
2035 * Maybe because of an Evaluate Context change for a hub update or a
2036 * control endpoint 0 max packet size change?
2037 * FIXME: skip the bandwidth calculation in that case.
2039 return 0;
2042 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2043 struct xhci_virt_device *virt_dev)
2045 unsigned int bw_reserved;
2047 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2048 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2049 return -ENOMEM;
2051 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2052 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2053 return -ENOMEM;
2055 return 0;
2059 * This algorithm is a very conservative estimate of the worst-case scheduling
2060 * scenario for any one interval. The hardware dynamically schedules the
2061 * packets, so we can't tell which microframe could be the limiting factor in
2062 * the bandwidth scheduling. This only takes into account periodic endpoints.
2064 * Obviously, we can't solve an NP complete problem to find the minimum worst
2065 * case scenario. Instead, we come up with an estimate that is no less than
2066 * the worst case bandwidth used for any one microframe, but may be an
2067 * over-estimate.
2069 * We walk the requirements for each endpoint by interval, starting with the
2070 * smallest interval, and place packets in the schedule where there is only one
2071 * possible way to schedule packets for that interval. In order to simplify
2072 * this algorithm, we record the largest max packet size for each interval, and
2073 * assume all packets will be that size.
2075 * For interval 0, we obviously must schedule all packets for each interval.
2076 * The bandwidth for interval 0 is just the amount of data to be transmitted
2077 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2078 * the number of packets).
2080 * For interval 1, we have two possible microframes to schedule those packets
2081 * in. For this algorithm, if we can schedule the same number of packets for
2082 * each possible scheduling opportunity (each microframe), we will do so. The
2083 * remaining number of packets will be saved to be transmitted in the gaps in
2084 * the next interval's scheduling sequence.
2086 * As we move those remaining packets to be scheduled with interval 2 packets,
2087 * we have to double the number of remaining packets to transmit. This is
2088 * because the intervals are actually powers of 2, and we would be transmitting
2089 * the previous interval's packets twice in this interval. We also have to be
2090 * sure that when we look at the largest max packet size for this interval, we
2091 * also look at the largest max packet size for the remaining packets and take
2092 * the greater of the two.
2094 * The algorithm continues to evenly distribute packets in each scheduling
2095 * opportunity, and push the remaining packets out, until we get to the last
2096 * interval. Then those packets and their associated overhead are just added
2097 * to the bandwidth used.
2099 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2100 struct xhci_virt_device *virt_dev,
2101 int old_active_eps)
2103 unsigned int bw_reserved;
2104 unsigned int max_bandwidth;
2105 unsigned int bw_used;
2106 unsigned int block_size;
2107 struct xhci_interval_bw_table *bw_table;
2108 unsigned int packet_size = 0;
2109 unsigned int overhead = 0;
2110 unsigned int packets_transmitted = 0;
2111 unsigned int packets_remaining = 0;
2112 unsigned int i;
2114 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2115 return xhci_check_ss_bw(xhci, virt_dev);
2117 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2118 max_bandwidth = HS_BW_LIMIT;
2119 /* Convert percent of bus BW reserved to blocks reserved */
2120 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2121 } else {
2122 max_bandwidth = FS_BW_LIMIT;
2123 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2126 bw_table = virt_dev->bw_table;
2127 /* We need to translate the max packet size and max ESIT payloads into
2128 * the units the hardware uses.
2130 block_size = xhci_get_block_size(virt_dev->udev);
2132 /* If we are manipulating a LS/FS device under a HS hub, double check
2133 * that the HS bus has enough bandwidth if we are activing a new TT.
2135 if (virt_dev->tt_info) {
2136 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137 "Recalculating BW for rootport %u",
2138 virt_dev->real_port);
2139 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2140 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2141 "newly activated TT.\n");
2142 return -ENOMEM;
2144 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145 "Recalculating BW for TT slot %u port %u",
2146 virt_dev->tt_info->slot_id,
2147 virt_dev->tt_info->ttport);
2148 } else {
2149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2150 "Recalculating BW for rootport %u",
2151 virt_dev->real_port);
2154 /* Add in how much bandwidth will be used for interval zero, or the
2155 * rounded max ESIT payload + number of packets * largest overhead.
2157 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2158 bw_table->interval_bw[0].num_packets *
2159 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2161 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2162 unsigned int bw_added;
2163 unsigned int largest_mps;
2164 unsigned int interval_overhead;
2167 * How many packets could we transmit in this interval?
2168 * If packets didn't fit in the previous interval, we will need
2169 * to transmit that many packets twice within this interval.
2171 packets_remaining = 2 * packets_remaining +
2172 bw_table->interval_bw[i].num_packets;
2174 /* Find the largest max packet size of this or the previous
2175 * interval.
2177 if (list_empty(&bw_table->interval_bw[i].endpoints))
2178 largest_mps = 0;
2179 else {
2180 struct xhci_virt_ep *virt_ep;
2181 struct list_head *ep_entry;
2183 ep_entry = bw_table->interval_bw[i].endpoints.next;
2184 virt_ep = list_entry(ep_entry,
2185 struct xhci_virt_ep, bw_endpoint_list);
2186 /* Convert to blocks, rounding up */
2187 largest_mps = DIV_ROUND_UP(
2188 virt_ep->bw_info.max_packet_size,
2189 block_size);
2191 if (largest_mps > packet_size)
2192 packet_size = largest_mps;
2194 /* Use the larger overhead of this or the previous interval. */
2195 interval_overhead = xhci_get_largest_overhead(
2196 &bw_table->interval_bw[i]);
2197 if (interval_overhead > overhead)
2198 overhead = interval_overhead;
2200 /* How many packets can we evenly distribute across
2201 * (1 << (i + 1)) possible scheduling opportunities?
2203 packets_transmitted = packets_remaining >> (i + 1);
2205 /* Add in the bandwidth used for those scheduled packets */
2206 bw_added = packets_transmitted * (overhead + packet_size);
2208 /* How many packets do we have remaining to transmit? */
2209 packets_remaining = packets_remaining % (1 << (i + 1));
2211 /* What largest max packet size should those packets have? */
2212 /* If we've transmitted all packets, don't carry over the
2213 * largest packet size.
2215 if (packets_remaining == 0) {
2216 packet_size = 0;
2217 overhead = 0;
2218 } else if (packets_transmitted > 0) {
2219 /* Otherwise if we do have remaining packets, and we've
2220 * scheduled some packets in this interval, take the
2221 * largest max packet size from endpoints with this
2222 * interval.
2224 packet_size = largest_mps;
2225 overhead = interval_overhead;
2227 /* Otherwise carry over packet_size and overhead from the last
2228 * time we had a remainder.
2230 bw_used += bw_added;
2231 if (bw_used > max_bandwidth) {
2232 xhci_warn(xhci, "Not enough bandwidth. "
2233 "Proposed: %u, Max: %u\n",
2234 bw_used, max_bandwidth);
2235 return -ENOMEM;
2239 * Ok, we know we have some packets left over after even-handedly
2240 * scheduling interval 15. We don't know which microframes they will
2241 * fit into, so we over-schedule and say they will be scheduled every
2242 * microframe.
2244 if (packets_remaining > 0)
2245 bw_used += overhead + packet_size;
2247 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2248 unsigned int port_index = virt_dev->real_port - 1;
2250 /* OK, we're manipulating a HS device attached to a
2251 * root port bandwidth domain. Include the number of active TTs
2252 * in the bandwidth used.
2254 bw_used += TT_HS_OVERHEAD *
2255 xhci->rh_bw[port_index].num_active_tts;
2258 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2259 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2260 "Available: %u " "percent",
2261 bw_used, max_bandwidth, bw_reserved,
2262 (max_bandwidth - bw_used - bw_reserved) * 100 /
2263 max_bandwidth);
2265 bw_used += bw_reserved;
2266 if (bw_used > max_bandwidth) {
2267 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2268 bw_used, max_bandwidth);
2269 return -ENOMEM;
2272 bw_table->bw_used = bw_used;
2273 return 0;
2276 static bool xhci_is_async_ep(unsigned int ep_type)
2278 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2279 ep_type != ISOC_IN_EP &&
2280 ep_type != INT_IN_EP);
2283 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2285 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2288 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2290 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2292 if (ep_bw->ep_interval == 0)
2293 return SS_OVERHEAD_BURST +
2294 (ep_bw->mult * ep_bw->num_packets *
2295 (SS_OVERHEAD + mps));
2296 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2297 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2298 1 << ep_bw->ep_interval);
2302 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2303 struct xhci_bw_info *ep_bw,
2304 struct xhci_interval_bw_table *bw_table,
2305 struct usb_device *udev,
2306 struct xhci_virt_ep *virt_ep,
2307 struct xhci_tt_bw_info *tt_info)
2309 struct xhci_interval_bw *interval_bw;
2310 int normalized_interval;
2312 if (xhci_is_async_ep(ep_bw->type))
2313 return;
2315 if (udev->speed == USB_SPEED_SUPER) {
2316 if (xhci_is_sync_in_ep(ep_bw->type))
2317 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2318 xhci_get_ss_bw_consumed(ep_bw);
2319 else
2320 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2321 xhci_get_ss_bw_consumed(ep_bw);
2322 return;
2325 /* SuperSpeed endpoints never get added to intervals in the table, so
2326 * this check is only valid for HS/FS/LS devices.
2328 if (list_empty(&virt_ep->bw_endpoint_list))
2329 return;
2330 /* For LS/FS devices, we need to translate the interval expressed in
2331 * microframes to frames.
2333 if (udev->speed == USB_SPEED_HIGH)
2334 normalized_interval = ep_bw->ep_interval;
2335 else
2336 normalized_interval = ep_bw->ep_interval - 3;
2338 if (normalized_interval == 0)
2339 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2340 interval_bw = &bw_table->interval_bw[normalized_interval];
2341 interval_bw->num_packets -= ep_bw->num_packets;
2342 switch (udev->speed) {
2343 case USB_SPEED_LOW:
2344 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2345 break;
2346 case USB_SPEED_FULL:
2347 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2348 break;
2349 case USB_SPEED_HIGH:
2350 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2351 break;
2352 case USB_SPEED_SUPER:
2353 case USB_SPEED_UNKNOWN:
2354 case USB_SPEED_WIRELESS:
2355 /* Should never happen because only LS/FS/HS endpoints will get
2356 * added to the endpoint list.
2358 return;
2360 if (tt_info)
2361 tt_info->active_eps -= 1;
2362 list_del_init(&virt_ep->bw_endpoint_list);
2365 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2366 struct xhci_bw_info *ep_bw,
2367 struct xhci_interval_bw_table *bw_table,
2368 struct usb_device *udev,
2369 struct xhci_virt_ep *virt_ep,
2370 struct xhci_tt_bw_info *tt_info)
2372 struct xhci_interval_bw *interval_bw;
2373 struct xhci_virt_ep *smaller_ep;
2374 int normalized_interval;
2376 if (xhci_is_async_ep(ep_bw->type))
2377 return;
2379 if (udev->speed == USB_SPEED_SUPER) {
2380 if (xhci_is_sync_in_ep(ep_bw->type))
2381 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2382 xhci_get_ss_bw_consumed(ep_bw);
2383 else
2384 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2385 xhci_get_ss_bw_consumed(ep_bw);
2386 return;
2389 /* For LS/FS devices, we need to translate the interval expressed in
2390 * microframes to frames.
2392 if (udev->speed == USB_SPEED_HIGH)
2393 normalized_interval = ep_bw->ep_interval;
2394 else
2395 normalized_interval = ep_bw->ep_interval - 3;
2397 if (normalized_interval == 0)
2398 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2399 interval_bw = &bw_table->interval_bw[normalized_interval];
2400 interval_bw->num_packets += ep_bw->num_packets;
2401 switch (udev->speed) {
2402 case USB_SPEED_LOW:
2403 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2404 break;
2405 case USB_SPEED_FULL:
2406 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2407 break;
2408 case USB_SPEED_HIGH:
2409 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2410 break;
2411 case USB_SPEED_SUPER:
2412 case USB_SPEED_UNKNOWN:
2413 case USB_SPEED_WIRELESS:
2414 /* Should never happen because only LS/FS/HS endpoints will get
2415 * added to the endpoint list.
2417 return;
2420 if (tt_info)
2421 tt_info->active_eps += 1;
2422 /* Insert the endpoint into the list, largest max packet size first. */
2423 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2424 bw_endpoint_list) {
2425 if (ep_bw->max_packet_size >=
2426 smaller_ep->bw_info.max_packet_size) {
2427 /* Add the new ep before the smaller endpoint */
2428 list_add_tail(&virt_ep->bw_endpoint_list,
2429 &smaller_ep->bw_endpoint_list);
2430 return;
2433 /* Add the new endpoint at the end of the list. */
2434 list_add_tail(&virt_ep->bw_endpoint_list,
2435 &interval_bw->endpoints);
2438 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439 struct xhci_virt_device *virt_dev,
2440 int old_active_eps)
2442 struct xhci_root_port_bw_info *rh_bw_info;
2443 if (!virt_dev->tt_info)
2444 return;
2446 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447 if (old_active_eps == 0 &&
2448 virt_dev->tt_info->active_eps != 0) {
2449 rh_bw_info->num_active_tts += 1;
2450 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451 } else if (old_active_eps != 0 &&
2452 virt_dev->tt_info->active_eps == 0) {
2453 rh_bw_info->num_active_tts -= 1;
2454 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2458 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459 struct xhci_virt_device *virt_dev,
2460 struct xhci_container_ctx *in_ctx)
2462 struct xhci_bw_info ep_bw_info[31];
2463 int i;
2464 struct xhci_input_control_ctx *ctrl_ctx;
2465 int old_active_eps = 0;
2467 if (virt_dev->tt_info)
2468 old_active_eps = virt_dev->tt_info->active_eps;
2470 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2471 if (!ctrl_ctx) {
2472 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2473 __func__);
2474 return -ENOMEM;
2477 for (i = 0; i < 31; i++) {
2478 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2479 continue;
2481 /* Make a copy of the BW info in case we need to revert this */
2482 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483 sizeof(ep_bw_info[i]));
2484 /* Drop the endpoint from the interval table if the endpoint is
2485 * being dropped or changed.
2487 if (EP_IS_DROPPED(ctrl_ctx, i))
2488 xhci_drop_ep_from_interval_table(xhci,
2489 &virt_dev->eps[i].bw_info,
2490 virt_dev->bw_table,
2491 virt_dev->udev,
2492 &virt_dev->eps[i],
2493 virt_dev->tt_info);
2495 /* Overwrite the information stored in the endpoints' bw_info */
2496 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497 for (i = 0; i < 31; i++) {
2498 /* Add any changed or added endpoints to the interval table */
2499 if (EP_IS_ADDED(ctrl_ctx, i))
2500 xhci_add_ep_to_interval_table(xhci,
2501 &virt_dev->eps[i].bw_info,
2502 virt_dev->bw_table,
2503 virt_dev->udev,
2504 &virt_dev->eps[i],
2505 virt_dev->tt_info);
2508 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509 /* Ok, this fits in the bandwidth we have.
2510 * Update the number of active TTs.
2512 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2513 return 0;
2516 /* We don't have enough bandwidth for this, revert the stored info. */
2517 for (i = 0; i < 31; i++) {
2518 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2519 continue;
2521 /* Drop the new copies of any added or changed endpoints from
2522 * the interval table.
2524 if (EP_IS_ADDED(ctrl_ctx, i)) {
2525 xhci_drop_ep_from_interval_table(xhci,
2526 &virt_dev->eps[i].bw_info,
2527 virt_dev->bw_table,
2528 virt_dev->udev,
2529 &virt_dev->eps[i],
2530 virt_dev->tt_info);
2532 /* Revert the endpoint back to its old information */
2533 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534 sizeof(ep_bw_info[i]));
2535 /* Add any changed or dropped endpoints back into the table */
2536 if (EP_IS_DROPPED(ctrl_ctx, i))
2537 xhci_add_ep_to_interval_table(xhci,
2538 &virt_dev->eps[i].bw_info,
2539 virt_dev->bw_table,
2540 virt_dev->udev,
2541 &virt_dev->eps[i],
2542 virt_dev->tt_info);
2544 return -ENOMEM;
2548 /* Issue a configure endpoint command or evaluate context command
2549 * and wait for it to finish.
2551 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552 struct usb_device *udev,
2553 struct xhci_command *command,
2554 bool ctx_change, bool must_succeed)
2556 int ret;
2557 int timeleft;
2558 unsigned long flags;
2559 struct xhci_container_ctx *in_ctx;
2560 struct xhci_input_control_ctx *ctrl_ctx;
2561 struct completion *cmd_completion;
2562 u32 *cmd_status;
2563 struct xhci_virt_device *virt_dev;
2564 union xhci_trb *cmd_trb;
2566 spin_lock_irqsave(&xhci->lock, flags);
2567 virt_dev = xhci->devs[udev->slot_id];
2569 if (command)
2570 in_ctx = command->in_ctx;
2571 else
2572 in_ctx = virt_dev->in_ctx;
2573 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2574 if (!ctrl_ctx) {
2575 spin_unlock_irqrestore(&xhci->lock, flags);
2576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577 __func__);
2578 return -ENOMEM;
2581 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2582 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2583 spin_unlock_irqrestore(&xhci->lock, flags);
2584 xhci_warn(xhci, "Not enough host resources, "
2585 "active endpoint contexts = %u\n",
2586 xhci->num_active_eps);
2587 return -ENOMEM;
2589 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2590 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2591 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2592 xhci_free_host_resources(xhci, ctrl_ctx);
2593 spin_unlock_irqrestore(&xhci->lock, flags);
2594 xhci_warn(xhci, "Not enough bandwidth\n");
2595 return -ENOMEM;
2598 if (command) {
2599 cmd_completion = command->completion;
2600 cmd_status = &command->status;
2601 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2602 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2603 } else {
2604 cmd_completion = &virt_dev->cmd_completion;
2605 cmd_status = &virt_dev->cmd_status;
2607 init_completion(cmd_completion);
2609 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2610 if (!ctx_change)
2611 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2612 udev->slot_id, must_succeed);
2613 else
2614 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2615 udev->slot_id, must_succeed);
2616 if (ret < 0) {
2617 if (command)
2618 list_del(&command->cmd_list);
2619 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2620 xhci_free_host_resources(xhci, ctrl_ctx);
2621 spin_unlock_irqrestore(&xhci->lock, flags);
2622 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2623 "FIXME allocate a new ring segment");
2624 return -ENOMEM;
2626 xhci_ring_cmd_db(xhci);
2627 spin_unlock_irqrestore(&xhci->lock, flags);
2629 /* Wait for the configure endpoint command to complete */
2630 timeleft = wait_for_completion_interruptible_timeout(
2631 cmd_completion,
2632 XHCI_CMD_DEFAULT_TIMEOUT);
2633 if (timeleft <= 0) {
2634 xhci_warn(xhci, "%s while waiting for %s command\n",
2635 timeleft == 0 ? "Timeout" : "Signal",
2636 ctx_change == 0 ?
2637 "configure endpoint" :
2638 "evaluate context");
2639 /* cancel the configure endpoint command */
2640 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2641 if (ret < 0)
2642 return ret;
2643 return -ETIME;
2646 if (!ctx_change)
2647 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2648 else
2649 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2651 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2652 spin_lock_irqsave(&xhci->lock, flags);
2653 /* If the command failed, remove the reserved resources.
2654 * Otherwise, clean up the estimate to include dropped eps.
2656 if (ret)
2657 xhci_free_host_resources(xhci, ctrl_ctx);
2658 else
2659 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2660 spin_unlock_irqrestore(&xhci->lock, flags);
2662 return ret;
2665 /* Called after one or more calls to xhci_add_endpoint() or
2666 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2667 * to call xhci_reset_bandwidth().
2669 * Since we are in the middle of changing either configuration or
2670 * installing a new alt setting, the USB core won't allow URBs to be
2671 * enqueued for any endpoint on the old config or interface. Nothing
2672 * else should be touching the xhci->devs[slot_id] structure, so we
2673 * don't need to take the xhci->lock for manipulating that.
2675 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2677 int i;
2678 int ret = 0;
2679 struct xhci_hcd *xhci;
2680 struct xhci_virt_device *virt_dev;
2681 struct xhci_input_control_ctx *ctrl_ctx;
2682 struct xhci_slot_ctx *slot_ctx;
2684 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2685 if (ret <= 0)
2686 return ret;
2687 xhci = hcd_to_xhci(hcd);
2688 if (xhci->xhc_state & XHCI_STATE_DYING)
2689 return -ENODEV;
2691 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2692 virt_dev = xhci->devs[udev->slot_id];
2694 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2695 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2696 if (!ctrl_ctx) {
2697 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2698 __func__);
2699 return -ENOMEM;
2701 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2702 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2703 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2705 /* Don't issue the command if there's no endpoints to update. */
2706 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2707 ctrl_ctx->drop_flags == 0)
2708 return 0;
2710 xhci_dbg(xhci, "New Input Control Context:\n");
2711 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2712 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2713 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2715 ret = xhci_configure_endpoint(xhci, udev, NULL,
2716 false, false);
2717 if (ret) {
2718 /* Callee should call reset_bandwidth() */
2719 return ret;
2722 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2723 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2724 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2726 /* Free any rings that were dropped, but not changed. */
2727 for (i = 1; i < 31; ++i) {
2728 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2729 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2730 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2732 xhci_zero_in_ctx(xhci, virt_dev);
2734 * Install any rings for completely new endpoints or changed endpoints,
2735 * and free or cache any old rings from changed endpoints.
2737 for (i = 1; i < 31; ++i) {
2738 if (!virt_dev->eps[i].new_ring)
2739 continue;
2740 /* Only cache or free the old ring if it exists.
2741 * It may not if this is the first add of an endpoint.
2743 if (virt_dev->eps[i].ring) {
2744 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2746 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2747 virt_dev->eps[i].new_ring = NULL;
2750 return ret;
2753 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2755 struct xhci_hcd *xhci;
2756 struct xhci_virt_device *virt_dev;
2757 int i, ret;
2759 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2760 if (ret <= 0)
2761 return;
2762 xhci = hcd_to_xhci(hcd);
2764 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2765 virt_dev = xhci->devs[udev->slot_id];
2766 /* Free any rings allocated for added endpoints */
2767 for (i = 0; i < 31; ++i) {
2768 if (virt_dev->eps[i].new_ring) {
2769 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2770 virt_dev->eps[i].new_ring = NULL;
2773 xhci_zero_in_ctx(xhci, virt_dev);
2776 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2777 struct xhci_container_ctx *in_ctx,
2778 struct xhci_container_ctx *out_ctx,
2779 struct xhci_input_control_ctx *ctrl_ctx,
2780 u32 add_flags, u32 drop_flags)
2782 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2783 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2784 xhci_slot_copy(xhci, in_ctx, out_ctx);
2785 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2787 xhci_dbg(xhci, "Input Context:\n");
2788 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2791 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2792 unsigned int slot_id, unsigned int ep_index,
2793 struct xhci_dequeue_state *deq_state)
2795 struct xhci_input_control_ctx *ctrl_ctx;
2796 struct xhci_container_ctx *in_ctx;
2797 struct xhci_ep_ctx *ep_ctx;
2798 u32 added_ctxs;
2799 dma_addr_t addr;
2801 in_ctx = xhci->devs[slot_id]->in_ctx;
2802 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2803 if (!ctrl_ctx) {
2804 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2805 __func__);
2806 return;
2809 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2810 xhci->devs[slot_id]->out_ctx, ep_index);
2811 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2812 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2813 deq_state->new_deq_ptr);
2814 if (addr == 0) {
2815 xhci_warn(xhci, "WARN Cannot submit config ep after "
2816 "reset ep command\n");
2817 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2818 deq_state->new_deq_seg,
2819 deq_state->new_deq_ptr);
2820 return;
2822 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2824 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2825 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2826 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2827 added_ctxs, added_ctxs);
2830 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2831 struct usb_device *udev, unsigned int ep_index)
2833 struct xhci_dequeue_state deq_state;
2834 struct xhci_virt_ep *ep;
2836 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2837 "Cleaning up stalled endpoint ring");
2838 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2839 /* We need to move the HW's dequeue pointer past this TD,
2840 * or it will attempt to resend it on the next doorbell ring.
2842 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2843 ep_index, ep->stopped_stream, ep->stopped_td,
2844 &deq_state);
2846 /* HW with the reset endpoint quirk will use the saved dequeue state to
2847 * issue a configure endpoint command later.
2849 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2850 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2851 "Queueing new dequeue state");
2852 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2853 ep_index, ep->stopped_stream, &deq_state);
2854 } else {
2855 /* Better hope no one uses the input context between now and the
2856 * reset endpoint completion!
2857 * XXX: No idea how this hardware will react when stream rings
2858 * are enabled.
2860 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2861 "Setting up input context for "
2862 "configure endpoint command");
2863 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2864 ep_index, &deq_state);
2868 /* Deal with stalled endpoints. The core should have sent the control message
2869 * to clear the halt condition. However, we need to make the xHCI hardware
2870 * reset its sequence number, since a device will expect a sequence number of
2871 * zero after the halt condition is cleared.
2872 * Context: in_interrupt
2874 void xhci_endpoint_reset(struct usb_hcd *hcd,
2875 struct usb_host_endpoint *ep)
2877 struct xhci_hcd *xhci;
2878 struct usb_device *udev;
2879 unsigned int ep_index;
2880 unsigned long flags;
2881 int ret;
2882 struct xhci_virt_ep *virt_ep;
2884 xhci = hcd_to_xhci(hcd);
2885 udev = (struct usb_device *) ep->hcpriv;
2886 /* Called with a root hub endpoint (or an endpoint that wasn't added
2887 * with xhci_add_endpoint()
2889 if (!ep->hcpriv)
2890 return;
2891 ep_index = xhci_get_endpoint_index(&ep->desc);
2892 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2893 if (!virt_ep->stopped_td) {
2894 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2895 "Endpoint 0x%x not halted, refusing to reset.",
2896 ep->desc.bEndpointAddress);
2897 return;
2899 if (usb_endpoint_xfer_control(&ep->desc)) {
2900 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2901 "Control endpoint stall already handled.");
2902 return;
2905 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2906 "Queueing reset endpoint command");
2907 spin_lock_irqsave(&xhci->lock, flags);
2908 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2910 * Can't change the ring dequeue pointer until it's transitioned to the
2911 * stopped state, which is only upon a successful reset endpoint
2912 * command. Better hope that last command worked!
2914 if (!ret) {
2915 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2916 kfree(virt_ep->stopped_td);
2917 xhci_ring_cmd_db(xhci);
2919 virt_ep->stopped_td = NULL;
2920 virt_ep->stopped_trb = NULL;
2921 virt_ep->stopped_stream = 0;
2922 spin_unlock_irqrestore(&xhci->lock, flags);
2924 if (ret)
2925 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2928 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2929 struct usb_device *udev, struct usb_host_endpoint *ep,
2930 unsigned int slot_id)
2932 int ret;
2933 unsigned int ep_index;
2934 unsigned int ep_state;
2936 if (!ep)
2937 return -EINVAL;
2938 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2939 if (ret <= 0)
2940 return -EINVAL;
2941 if (ep->ss_ep_comp.bmAttributes == 0) {
2942 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2943 " descriptor for ep 0x%x does not support streams\n",
2944 ep->desc.bEndpointAddress);
2945 return -EINVAL;
2948 ep_index = xhci_get_endpoint_index(&ep->desc);
2949 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2950 if (ep_state & EP_HAS_STREAMS ||
2951 ep_state & EP_GETTING_STREAMS) {
2952 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2953 "already has streams set up.\n",
2954 ep->desc.bEndpointAddress);
2955 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2956 "dynamic stream context array reallocation.\n");
2957 return -EINVAL;
2959 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2960 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2961 "endpoint 0x%x; URBs are pending.\n",
2962 ep->desc.bEndpointAddress);
2963 return -EINVAL;
2965 return 0;
2968 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2969 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2971 unsigned int max_streams;
2973 /* The stream context array size must be a power of two */
2974 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2976 * Find out how many primary stream array entries the host controller
2977 * supports. Later we may use secondary stream arrays (similar to 2nd
2978 * level page entries), but that's an optional feature for xHCI host
2979 * controllers. xHCs must support at least 4 stream IDs.
2981 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2982 if (*num_stream_ctxs > max_streams) {
2983 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2984 max_streams);
2985 *num_stream_ctxs = max_streams;
2986 *num_streams = max_streams;
2990 /* Returns an error code if one of the endpoint already has streams.
2991 * This does not change any data structures, it only checks and gathers
2992 * information.
2994 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2995 struct usb_device *udev,
2996 struct usb_host_endpoint **eps, unsigned int num_eps,
2997 unsigned int *num_streams, u32 *changed_ep_bitmask)
2999 unsigned int max_streams;
3000 unsigned int endpoint_flag;
3001 int i;
3002 int ret;
3004 for (i = 0; i < num_eps; i++) {
3005 ret = xhci_check_streams_endpoint(xhci, udev,
3006 eps[i], udev->slot_id);
3007 if (ret < 0)
3008 return ret;
3010 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3011 if (max_streams < (*num_streams - 1)) {
3012 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3013 eps[i]->desc.bEndpointAddress,
3014 max_streams);
3015 *num_streams = max_streams+1;
3018 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3019 if (*changed_ep_bitmask & endpoint_flag)
3020 return -EINVAL;
3021 *changed_ep_bitmask |= endpoint_flag;
3023 return 0;
3026 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3027 struct usb_device *udev,
3028 struct usb_host_endpoint **eps, unsigned int num_eps)
3030 u32 changed_ep_bitmask = 0;
3031 unsigned int slot_id;
3032 unsigned int ep_index;
3033 unsigned int ep_state;
3034 int i;
3036 slot_id = udev->slot_id;
3037 if (!xhci->devs[slot_id])
3038 return 0;
3040 for (i = 0; i < num_eps; i++) {
3041 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3042 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3043 /* Are streams already being freed for the endpoint? */
3044 if (ep_state & EP_GETTING_NO_STREAMS) {
3045 xhci_warn(xhci, "WARN Can't disable streams for "
3046 "endpoint 0x%x, "
3047 "streams are being disabled already\n",
3048 eps[i]->desc.bEndpointAddress);
3049 return 0;
3051 /* Are there actually any streams to free? */
3052 if (!(ep_state & EP_HAS_STREAMS) &&
3053 !(ep_state & EP_GETTING_STREAMS)) {
3054 xhci_warn(xhci, "WARN Can't disable streams for "
3055 "endpoint 0x%x, "
3056 "streams are already disabled!\n",
3057 eps[i]->desc.bEndpointAddress);
3058 xhci_warn(xhci, "WARN xhci_free_streams() called "
3059 "with non-streams endpoint\n");
3060 return 0;
3062 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3064 return changed_ep_bitmask;
3068 * The USB device drivers use this function (though the HCD interface in USB
3069 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3070 * coordinate mass storage command queueing across multiple endpoints (basically
3071 * a stream ID == a task ID).
3073 * Setting up streams involves allocating the same size stream context array
3074 * for each endpoint and issuing a configure endpoint command for all endpoints.
3076 * Don't allow the call to succeed if one endpoint only supports one stream
3077 * (which means it doesn't support streams at all).
3079 * Drivers may get less stream IDs than they asked for, if the host controller
3080 * hardware or endpoints claim they can't support the number of requested
3081 * stream IDs.
3083 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3084 struct usb_host_endpoint **eps, unsigned int num_eps,
3085 unsigned int num_streams, gfp_t mem_flags)
3087 int i, ret;
3088 struct xhci_hcd *xhci;
3089 struct xhci_virt_device *vdev;
3090 struct xhci_command *config_cmd;
3091 struct xhci_input_control_ctx *ctrl_ctx;
3092 unsigned int ep_index;
3093 unsigned int num_stream_ctxs;
3094 unsigned long flags;
3095 u32 changed_ep_bitmask = 0;
3097 if (!eps)
3098 return -EINVAL;
3100 /* Add one to the number of streams requested to account for
3101 * stream 0 that is reserved for xHCI usage.
3103 num_streams += 1;
3104 xhci = hcd_to_xhci(hcd);
3105 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3106 num_streams);
3108 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3109 if (!config_cmd) {
3110 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3111 return -ENOMEM;
3113 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3114 if (!ctrl_ctx) {
3115 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3116 __func__);
3117 xhci_free_command(xhci, config_cmd);
3118 return -ENOMEM;
3121 /* Check to make sure all endpoints are not already configured for
3122 * streams. While we're at it, find the maximum number of streams that
3123 * all the endpoints will support and check for duplicate endpoints.
3125 spin_lock_irqsave(&xhci->lock, flags);
3126 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3127 num_eps, &num_streams, &changed_ep_bitmask);
3128 if (ret < 0) {
3129 xhci_free_command(xhci, config_cmd);
3130 spin_unlock_irqrestore(&xhci->lock, flags);
3131 return ret;
3133 if (num_streams <= 1) {
3134 xhci_warn(xhci, "WARN: endpoints can't handle "
3135 "more than one stream.\n");
3136 xhci_free_command(xhci, config_cmd);
3137 spin_unlock_irqrestore(&xhci->lock, flags);
3138 return -EINVAL;
3140 vdev = xhci->devs[udev->slot_id];
3141 /* Mark each endpoint as being in transition, so
3142 * xhci_urb_enqueue() will reject all URBs.
3144 for (i = 0; i < num_eps; i++) {
3145 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3146 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3148 spin_unlock_irqrestore(&xhci->lock, flags);
3150 /* Setup internal data structures and allocate HW data structures for
3151 * streams (but don't install the HW structures in the input context
3152 * until we're sure all memory allocation succeeded).
3154 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3155 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3156 num_stream_ctxs, num_streams);
3158 for (i = 0; i < num_eps; i++) {
3159 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3160 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3161 num_stream_ctxs,
3162 num_streams, mem_flags);
3163 if (!vdev->eps[ep_index].stream_info)
3164 goto cleanup;
3165 /* Set maxPstreams in endpoint context and update deq ptr to
3166 * point to stream context array. FIXME
3170 /* Set up the input context for a configure endpoint command. */
3171 for (i = 0; i < num_eps; i++) {
3172 struct xhci_ep_ctx *ep_ctx;
3174 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3175 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3177 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3178 vdev->out_ctx, ep_index);
3179 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3180 vdev->eps[ep_index].stream_info);
3182 /* Tell the HW to drop its old copy of the endpoint context info
3183 * and add the updated copy from the input context.
3185 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3186 vdev->out_ctx, ctrl_ctx,
3187 changed_ep_bitmask, changed_ep_bitmask);
3189 /* Issue and wait for the configure endpoint command */
3190 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3191 false, false);
3193 /* xHC rejected the configure endpoint command for some reason, so we
3194 * leave the old ring intact and free our internal streams data
3195 * structure.
3197 if (ret < 0)
3198 goto cleanup;
3200 spin_lock_irqsave(&xhci->lock, flags);
3201 for (i = 0; i < num_eps; i++) {
3202 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3204 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3205 udev->slot_id, ep_index);
3206 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3208 xhci_free_command(xhci, config_cmd);
3209 spin_unlock_irqrestore(&xhci->lock, flags);
3211 /* Subtract 1 for stream 0, which drivers can't use */
3212 return num_streams - 1;
3214 cleanup:
3215 /* If it didn't work, free the streams! */
3216 for (i = 0; i < num_eps; i++) {
3217 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3219 vdev->eps[ep_index].stream_info = NULL;
3220 /* FIXME Unset maxPstreams in endpoint context and
3221 * update deq ptr to point to normal string ring.
3223 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3224 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3225 xhci_endpoint_zero(xhci, vdev, eps[i]);
3227 xhci_free_command(xhci, config_cmd);
3228 return -ENOMEM;
3231 /* Transition the endpoint from using streams to being a "normal" endpoint
3232 * without streams.
3234 * Modify the endpoint context state, submit a configure endpoint command,
3235 * and free all endpoint rings for streams if that completes successfully.
3237 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3238 struct usb_host_endpoint **eps, unsigned int num_eps,
3239 gfp_t mem_flags)
3241 int i, ret;
3242 struct xhci_hcd *xhci;
3243 struct xhci_virt_device *vdev;
3244 struct xhci_command *command;
3245 struct xhci_input_control_ctx *ctrl_ctx;
3246 unsigned int ep_index;
3247 unsigned long flags;
3248 u32 changed_ep_bitmask;
3250 xhci = hcd_to_xhci(hcd);
3251 vdev = xhci->devs[udev->slot_id];
3253 /* Set up a configure endpoint command to remove the streams rings */
3254 spin_lock_irqsave(&xhci->lock, flags);
3255 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3256 udev, eps, num_eps);
3257 if (changed_ep_bitmask == 0) {
3258 spin_unlock_irqrestore(&xhci->lock, flags);
3259 return -EINVAL;
3262 /* Use the xhci_command structure from the first endpoint. We may have
3263 * allocated too many, but the driver may call xhci_free_streams() for
3264 * each endpoint it grouped into one call to xhci_alloc_streams().
3266 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3267 command = vdev->eps[ep_index].stream_info->free_streams_command;
3268 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3269 if (!ctrl_ctx) {
3270 spin_unlock_irqrestore(&xhci->lock, flags);
3271 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3272 __func__);
3273 return -EINVAL;
3276 for (i = 0; i < num_eps; i++) {
3277 struct xhci_ep_ctx *ep_ctx;
3279 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3280 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3281 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3282 EP_GETTING_NO_STREAMS;
3284 xhci_endpoint_copy(xhci, command->in_ctx,
3285 vdev->out_ctx, ep_index);
3286 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3287 &vdev->eps[ep_index]);
3289 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3290 vdev->out_ctx, ctrl_ctx,
3291 changed_ep_bitmask, changed_ep_bitmask);
3292 spin_unlock_irqrestore(&xhci->lock, flags);
3294 /* Issue and wait for the configure endpoint command,
3295 * which must succeed.
3297 ret = xhci_configure_endpoint(xhci, udev, command,
3298 false, true);
3300 /* xHC rejected the configure endpoint command for some reason, so we
3301 * leave the streams rings intact.
3303 if (ret < 0)
3304 return ret;
3306 spin_lock_irqsave(&xhci->lock, flags);
3307 for (i = 0; i < num_eps; i++) {
3308 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3309 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3310 vdev->eps[ep_index].stream_info = NULL;
3311 /* FIXME Unset maxPstreams in endpoint context and
3312 * update deq ptr to point to normal string ring.
3314 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3315 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3317 spin_unlock_irqrestore(&xhci->lock, flags);
3319 return 0;
3323 * Deletes endpoint resources for endpoints that were active before a Reset
3324 * Device command, or a Disable Slot command. The Reset Device command leaves
3325 * the control endpoint intact, whereas the Disable Slot command deletes it.
3327 * Must be called with xhci->lock held.
3329 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3330 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3332 int i;
3333 unsigned int num_dropped_eps = 0;
3334 unsigned int drop_flags = 0;
3336 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3337 if (virt_dev->eps[i].ring) {
3338 drop_flags |= 1 << i;
3339 num_dropped_eps++;
3342 xhci->num_active_eps -= num_dropped_eps;
3343 if (num_dropped_eps)
3344 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3345 "Dropped %u ep ctxs, flags = 0x%x, "
3346 "%u now active.",
3347 num_dropped_eps, drop_flags,
3348 xhci->num_active_eps);
3352 * This submits a Reset Device Command, which will set the device state to 0,
3353 * set the device address to 0, and disable all the endpoints except the default
3354 * control endpoint. The USB core should come back and call
3355 * xhci_address_device(), and then re-set up the configuration. If this is
3356 * called because of a usb_reset_and_verify_device(), then the old alternate
3357 * settings will be re-installed through the normal bandwidth allocation
3358 * functions.
3360 * Wait for the Reset Device command to finish. Remove all structures
3361 * associated with the endpoints that were disabled. Clear the input device
3362 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3364 * If the virt_dev to be reset does not exist or does not match the udev,
3365 * it means the device is lost, possibly due to the xHC restore error and
3366 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3367 * re-allocate the device.
3369 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3371 int ret, i;
3372 unsigned long flags;
3373 struct xhci_hcd *xhci;
3374 unsigned int slot_id;
3375 struct xhci_virt_device *virt_dev;
3376 struct xhci_command *reset_device_cmd;
3377 int timeleft;
3378 int last_freed_endpoint;
3379 struct xhci_slot_ctx *slot_ctx;
3380 int old_active_eps = 0;
3382 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3383 if (ret <= 0)
3384 return ret;
3385 xhci = hcd_to_xhci(hcd);
3386 slot_id = udev->slot_id;
3387 virt_dev = xhci->devs[slot_id];
3388 if (!virt_dev) {
3389 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3390 "not exist. Re-allocate the device\n", slot_id);
3391 ret = xhci_alloc_dev(hcd, udev);
3392 if (ret == 1)
3393 return 0;
3394 else
3395 return -EINVAL;
3398 if (virt_dev->udev != udev) {
3399 /* If the virt_dev and the udev does not match, this virt_dev
3400 * may belong to another udev.
3401 * Re-allocate the device.
3403 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3404 "not match the udev. Re-allocate the device\n",
3405 slot_id);
3406 ret = xhci_alloc_dev(hcd, udev);
3407 if (ret == 1)
3408 return 0;
3409 else
3410 return -EINVAL;
3413 /* If device is not setup, there is no point in resetting it */
3414 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3415 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3416 SLOT_STATE_DISABLED)
3417 return 0;
3419 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3420 /* Allocate the command structure that holds the struct completion.
3421 * Assume we're in process context, since the normal device reset
3422 * process has to wait for the device anyway. Storage devices are
3423 * reset as part of error handling, so use GFP_NOIO instead of
3424 * GFP_KERNEL.
3426 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3427 if (!reset_device_cmd) {
3428 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3429 return -ENOMEM;
3432 /* Attempt to submit the Reset Device command to the command ring */
3433 spin_lock_irqsave(&xhci->lock, flags);
3434 reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3436 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3437 ret = xhci_queue_reset_device(xhci, slot_id);
3438 if (ret) {
3439 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3440 list_del(&reset_device_cmd->cmd_list);
3441 spin_unlock_irqrestore(&xhci->lock, flags);
3442 goto command_cleanup;
3444 xhci_ring_cmd_db(xhci);
3445 spin_unlock_irqrestore(&xhci->lock, flags);
3447 /* Wait for the Reset Device command to finish */
3448 timeleft = wait_for_completion_interruptible_timeout(
3449 reset_device_cmd->completion,
3450 USB_CTRL_SET_TIMEOUT);
3451 if (timeleft <= 0) {
3452 xhci_warn(xhci, "%s while waiting for reset device command\n",
3453 timeleft == 0 ? "Timeout" : "Signal");
3454 spin_lock_irqsave(&xhci->lock, flags);
3455 /* The timeout might have raced with the event ring handler, so
3456 * only delete from the list if the item isn't poisoned.
3458 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3459 list_del(&reset_device_cmd->cmd_list);
3460 spin_unlock_irqrestore(&xhci->lock, flags);
3461 ret = -ETIME;
3462 goto command_cleanup;
3465 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3466 * unless we tried to reset a slot ID that wasn't enabled,
3467 * or the device wasn't in the addressed or configured state.
3469 ret = reset_device_cmd->status;
3470 switch (ret) {
3471 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3472 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3473 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3474 slot_id,
3475 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3476 xhci_dbg(xhci, "Not freeing device rings.\n");
3477 /* Don't treat this as an error. May change my mind later. */
3478 ret = 0;
3479 goto command_cleanup;
3480 case COMP_SUCCESS:
3481 xhci_dbg(xhci, "Successful reset device command.\n");
3482 break;
3483 default:
3484 if (xhci_is_vendor_info_code(xhci, ret))
3485 break;
3486 xhci_warn(xhci, "Unknown completion code %u for "
3487 "reset device command.\n", ret);
3488 ret = -EINVAL;
3489 goto command_cleanup;
3492 /* Free up host controller endpoint resources */
3493 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3494 spin_lock_irqsave(&xhci->lock, flags);
3495 /* Don't delete the default control endpoint resources */
3496 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3497 spin_unlock_irqrestore(&xhci->lock, flags);
3500 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3501 last_freed_endpoint = 1;
3502 for (i = 1; i < 31; ++i) {
3503 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3505 if (ep->ep_state & EP_HAS_STREAMS) {
3506 xhci_free_stream_info(xhci, ep->stream_info);
3507 ep->stream_info = NULL;
3508 ep->ep_state &= ~EP_HAS_STREAMS;
3511 if (ep->ring) {
3512 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3513 last_freed_endpoint = i;
3515 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3516 xhci_drop_ep_from_interval_table(xhci,
3517 &virt_dev->eps[i].bw_info,
3518 virt_dev->bw_table,
3519 udev,
3520 &virt_dev->eps[i],
3521 virt_dev->tt_info);
3522 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3524 /* If necessary, update the number of active TTs on this root port */
3525 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3527 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3528 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3529 ret = 0;
3531 command_cleanup:
3532 xhci_free_command(xhci, reset_device_cmd);
3533 return ret;
3537 * At this point, the struct usb_device is about to go away, the device has
3538 * disconnected, and all traffic has been stopped and the endpoints have been
3539 * disabled. Free any HC data structures associated with that device.
3541 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3543 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3544 struct xhci_virt_device *virt_dev;
3545 unsigned long flags;
3546 u32 state;
3547 int i, ret;
3549 #ifndef CONFIG_USB_DEFAULT_PERSIST
3551 * We called pm_runtime_get_noresume when the device was attached.
3552 * Decrement the counter here to allow controller to runtime suspend
3553 * if no devices remain.
3555 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3556 pm_runtime_put_noidle(hcd->self.controller);
3557 #endif
3559 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3560 /* If the host is halted due to driver unload, we still need to free the
3561 * device.
3563 if (ret <= 0 && ret != -ENODEV)
3564 return;
3566 virt_dev = xhci->devs[udev->slot_id];
3568 /* Stop any wayward timer functions (which may grab the lock) */
3569 for (i = 0; i < 31; ++i) {
3570 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3571 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3574 if (udev->usb2_hw_lpm_enabled) {
3575 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3576 udev->usb2_hw_lpm_enabled = 0;
3579 spin_lock_irqsave(&xhci->lock, flags);
3580 /* Don't disable the slot if the host controller is dead. */
3581 state = xhci_readl(xhci, &xhci->op_regs->status);
3582 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3583 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3584 xhci_free_virt_device(xhci, udev->slot_id);
3585 spin_unlock_irqrestore(&xhci->lock, flags);
3586 return;
3589 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3590 spin_unlock_irqrestore(&xhci->lock, flags);
3591 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3592 return;
3594 xhci_ring_cmd_db(xhci);
3595 spin_unlock_irqrestore(&xhci->lock, flags);
3597 * Event command completion handler will free any data structures
3598 * associated with the slot. XXX Can free sleep?
3603 * Checks if we have enough host controller resources for the default control
3604 * endpoint.
3606 * Must be called with xhci->lock held.
3608 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3610 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3611 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3612 "Not enough ep ctxs: "
3613 "%u active, need to add 1, limit is %u.",
3614 xhci->num_active_eps, xhci->limit_active_eps);
3615 return -ENOMEM;
3617 xhci->num_active_eps += 1;
3618 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3619 "Adding 1 ep ctx, %u now active.",
3620 xhci->num_active_eps);
3621 return 0;
3626 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3627 * timed out, or allocating memory failed. Returns 1 on success.
3629 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3631 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3632 unsigned long flags;
3633 int timeleft;
3634 int ret;
3635 union xhci_trb *cmd_trb;
3637 spin_lock_irqsave(&xhci->lock, flags);
3638 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3639 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3640 if (ret) {
3641 spin_unlock_irqrestore(&xhci->lock, flags);
3642 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3643 return 0;
3645 xhci_ring_cmd_db(xhci);
3646 spin_unlock_irqrestore(&xhci->lock, flags);
3648 /* XXX: how much time for xHC slot assignment? */
3649 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3650 XHCI_CMD_DEFAULT_TIMEOUT);
3651 if (timeleft <= 0) {
3652 xhci_warn(xhci, "%s while waiting for a slot\n",
3653 timeleft == 0 ? "Timeout" : "Signal");
3654 /* cancel the enable slot request */
3655 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3658 if (!xhci->slot_id) {
3659 xhci_err(xhci, "Error while assigning device slot ID\n");
3660 return 0;
3663 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3664 spin_lock_irqsave(&xhci->lock, flags);
3665 ret = xhci_reserve_host_control_ep_resources(xhci);
3666 if (ret) {
3667 spin_unlock_irqrestore(&xhci->lock, flags);
3668 xhci_warn(xhci, "Not enough host resources, "
3669 "active endpoint contexts = %u\n",
3670 xhci->num_active_eps);
3671 goto disable_slot;
3673 spin_unlock_irqrestore(&xhci->lock, flags);
3675 /* Use GFP_NOIO, since this function can be called from
3676 * xhci_discover_or_reset_device(), which may be called as part of
3677 * mass storage driver error handling.
3679 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3680 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3681 goto disable_slot;
3683 udev->slot_id = xhci->slot_id;
3685 #ifndef CONFIG_USB_DEFAULT_PERSIST
3687 * If resetting upon resume, we can't put the controller into runtime
3688 * suspend if there is a device attached.
3690 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3691 pm_runtime_get_noresume(hcd->self.controller);
3692 #endif
3694 /* Is this a LS or FS device under a HS hub? */
3695 /* Hub or peripherial? */
3696 return 1;
3698 disable_slot:
3699 /* Disable slot, if we can do it without mem alloc */
3700 spin_lock_irqsave(&xhci->lock, flags);
3701 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3702 xhci_ring_cmd_db(xhci);
3703 spin_unlock_irqrestore(&xhci->lock, flags);
3704 return 0;
3708 * Issue an Address Device command (which will issue a SetAddress request to
3709 * the device).
3710 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3711 * we should only issue and wait on one address command at the same time.
3713 * We add one to the device address issued by the hardware because the USB core
3714 * uses address 1 for the root hubs (even though they're not really devices).
3716 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3718 unsigned long flags;
3719 int timeleft;
3720 struct xhci_virt_device *virt_dev;
3721 int ret = 0;
3722 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3723 struct xhci_slot_ctx *slot_ctx;
3724 struct xhci_input_control_ctx *ctrl_ctx;
3725 u64 temp_64;
3726 union xhci_trb *cmd_trb;
3728 if (!udev->slot_id) {
3729 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3730 "Bad Slot ID %d", udev->slot_id);
3731 return -EINVAL;
3734 virt_dev = xhci->devs[udev->slot_id];
3736 if (WARN_ON(!virt_dev)) {
3738 * In plug/unplug torture test with an NEC controller,
3739 * a zero-dereference was observed once due to virt_dev = 0.
3740 * Print useful debug rather than crash if it is observed again!
3742 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3743 udev->slot_id);
3744 return -EINVAL;
3747 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3748 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3749 if (!ctrl_ctx) {
3750 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3751 __func__);
3752 return -EINVAL;
3755 * If this is the first Set Address since device plug-in or
3756 * virt_device realloaction after a resume with an xHCI power loss,
3757 * then set up the slot context.
3759 if (!slot_ctx->dev_info)
3760 xhci_setup_addressable_virt_dev(xhci, udev);
3761 /* Otherwise, update the control endpoint ring enqueue pointer. */
3762 else
3763 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3764 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3765 ctrl_ctx->drop_flags = 0;
3767 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3768 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3769 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3770 slot_ctx->dev_info >> 27);
3772 spin_lock_irqsave(&xhci->lock, flags);
3773 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3774 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3775 udev->slot_id);
3776 if (ret) {
3777 spin_unlock_irqrestore(&xhci->lock, flags);
3778 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3779 "FIXME: allocate a command ring segment");
3780 return ret;
3782 xhci_ring_cmd_db(xhci);
3783 spin_unlock_irqrestore(&xhci->lock, flags);
3785 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3786 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3787 XHCI_CMD_DEFAULT_TIMEOUT);
3788 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3789 * the SetAddress() "recovery interval" required by USB and aborting the
3790 * command on a timeout.
3792 if (timeleft <= 0) {
3793 xhci_warn(xhci, "%s while waiting for address device command\n",
3794 timeleft == 0 ? "Timeout" : "Signal");
3795 /* cancel the address device command */
3796 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3797 if (ret < 0)
3798 return ret;
3799 return -ETIME;
3802 switch (virt_dev->cmd_status) {
3803 case COMP_CTX_STATE:
3804 case COMP_EBADSLT:
3805 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3806 udev->slot_id);
3807 ret = -EINVAL;
3808 break;
3809 case COMP_TX_ERR:
3810 dev_warn(&udev->dev, "Device not responding to set address.\n");
3811 ret = -EPROTO;
3812 break;
3813 case COMP_DEV_ERR:
3814 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3815 "device command.\n");
3816 ret = -ENODEV;
3817 break;
3818 case COMP_SUCCESS:
3819 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3820 "Successful Address Device command");
3821 break;
3822 default:
3823 xhci_err(xhci, "ERROR: unexpected command completion "
3824 "code 0x%x.\n", virt_dev->cmd_status);
3825 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3826 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3827 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3828 ret = -EINVAL;
3829 break;
3831 if (ret) {
3832 return ret;
3834 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3835 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3836 "Op regs DCBAA ptr = %#016llx", temp_64);
3837 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3838 "Slot ID %d dcbaa entry @%p = %#016llx",
3839 udev->slot_id,
3840 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3841 (unsigned long long)
3842 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3843 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3844 "Output Context DMA address = %#08llx",
3845 (unsigned long long)virt_dev->out_ctx->dma);
3846 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3847 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3848 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3849 slot_ctx->dev_info >> 27);
3850 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3851 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3853 * USB core uses address 1 for the roothubs, so we add one to the
3854 * address given back to us by the HC.
3856 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3857 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3858 slot_ctx->dev_info >> 27);
3859 /* Use kernel assigned address for devices; store xHC assigned
3860 * address locally. */
3861 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3862 + 1;
3863 /* Zero the input context control for later use */
3864 ctrl_ctx->add_flags = 0;
3865 ctrl_ctx->drop_flags = 0;
3867 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3868 "Internal device address = %d", virt_dev->address);
3870 return 0;
3874 * Transfer the port index into real index in the HW port status
3875 * registers. Caculate offset between the port's PORTSC register
3876 * and port status base. Divide the number of per port register
3877 * to get the real index. The raw port number bases 1.
3879 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3881 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3882 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3883 __le32 __iomem *addr;
3884 int raw_port;
3886 if (hcd->speed != HCD_USB3)
3887 addr = xhci->usb2_ports[port1 - 1];
3888 else
3889 addr = xhci->usb3_ports[port1 - 1];
3891 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3892 return raw_port;
3896 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3897 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3899 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3900 struct usb_device *udev, u16 max_exit_latency)
3902 struct xhci_virt_device *virt_dev;
3903 struct xhci_command *command;
3904 struct xhci_input_control_ctx *ctrl_ctx;
3905 struct xhci_slot_ctx *slot_ctx;
3906 unsigned long flags;
3907 int ret;
3909 spin_lock_irqsave(&xhci->lock, flags);
3910 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3911 spin_unlock_irqrestore(&xhci->lock, flags);
3912 return 0;
3915 /* Attempt to issue an Evaluate Context command to change the MEL. */
3916 virt_dev = xhci->devs[udev->slot_id];
3917 command = xhci->lpm_command;
3918 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3919 if (!ctrl_ctx) {
3920 spin_unlock_irqrestore(&xhci->lock, flags);
3921 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3922 __func__);
3923 return -ENOMEM;
3926 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3927 spin_unlock_irqrestore(&xhci->lock, flags);
3929 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3930 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3931 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3932 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3934 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3935 "Set up evaluate context for LPM MEL change.");
3936 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3937 xhci_dbg_ctx(xhci, command->in_ctx, 0);
3939 /* Issue and wait for the evaluate context command. */
3940 ret = xhci_configure_endpoint(xhci, udev, command,
3941 true, true);
3942 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3943 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3945 if (!ret) {
3946 spin_lock_irqsave(&xhci->lock, flags);
3947 virt_dev->current_mel = max_exit_latency;
3948 spin_unlock_irqrestore(&xhci->lock, flags);
3950 return ret;
3953 #ifdef CONFIG_PM_RUNTIME
3955 /* BESL to HIRD Encoding array for USB2 LPM */
3956 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3957 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3959 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3960 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3961 struct usb_device *udev)
3963 int u2del, besl, besl_host;
3964 int besl_device = 0;
3965 u32 field;
3967 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3968 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3970 if (field & USB_BESL_SUPPORT) {
3971 for (besl_host = 0; besl_host < 16; besl_host++) {
3972 if (xhci_besl_encoding[besl_host] >= u2del)
3973 break;
3975 /* Use baseline BESL value as default */
3976 if (field & USB_BESL_BASELINE_VALID)
3977 besl_device = USB_GET_BESL_BASELINE(field);
3978 else if (field & USB_BESL_DEEP_VALID)
3979 besl_device = USB_GET_BESL_DEEP(field);
3980 } else {
3981 if (u2del <= 50)
3982 besl_host = 0;
3983 else
3984 besl_host = (u2del - 51) / 75 + 1;
3987 besl = besl_host + besl_device;
3988 if (besl > 15)
3989 besl = 15;
3991 return besl;
3994 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3995 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3997 u32 field;
3998 int l1;
3999 int besld = 0;
4000 int hirdm = 0;
4002 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4004 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4005 l1 = udev->l1_params.timeout / 256;
4007 /* device has preferred BESLD */
4008 if (field & USB_BESL_DEEP_VALID) {
4009 besld = USB_GET_BESL_DEEP(field);
4010 hirdm = 1;
4013 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4016 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4017 struct usb_device *udev)
4019 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4020 struct dev_info *dev_info;
4021 __le32 __iomem **port_array;
4022 __le32 __iomem *addr, *pm_addr;
4023 u32 temp, dev_id;
4024 unsigned int port_num;
4025 unsigned long flags;
4026 int hird;
4027 int ret;
4029 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4030 !udev->lpm_capable)
4031 return -EINVAL;
4033 /* we only support lpm for non-hub device connected to root hub yet */
4034 if (!udev->parent || udev->parent->parent ||
4035 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4036 return -EINVAL;
4038 spin_lock_irqsave(&xhci->lock, flags);
4040 /* Look for devices in lpm_failed_devs list */
4041 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4042 le16_to_cpu(udev->descriptor.idProduct);
4043 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4044 if (dev_info->dev_id == dev_id) {
4045 ret = -EINVAL;
4046 goto finish;
4050 port_array = xhci->usb2_ports;
4051 port_num = udev->portnum - 1;
4053 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4054 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4055 ret = -EINVAL;
4056 goto finish;
4060 * Test USB 2.0 software LPM.
4061 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4062 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4063 * in the June 2011 errata release.
4065 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4067 * Set L1 Device Slot and HIRD/BESL.
4068 * Check device's USB 2.0 extension descriptor to determine whether
4069 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4071 pm_addr = port_array[port_num] + PORTPMSC;
4072 hird = xhci_calculate_hird_besl(xhci, udev);
4073 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4074 xhci_writel(xhci, temp, pm_addr);
4076 /* Set port link state to U2(L1) */
4077 addr = port_array[port_num];
4078 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4080 /* wait for ACK */
4081 spin_unlock_irqrestore(&xhci->lock, flags);
4082 msleep(10);
4083 spin_lock_irqsave(&xhci->lock, flags);
4085 /* Check L1 Status */
4086 ret = xhci_handshake(xhci, pm_addr,
4087 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4088 if (ret != -ETIMEDOUT) {
4089 /* enter L1 successfully */
4090 temp = xhci_readl(xhci, addr);
4091 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4092 port_num, temp);
4093 ret = 0;
4094 } else {
4095 temp = xhci_readl(xhci, pm_addr);
4096 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4097 port_num, temp & PORT_L1S_MASK);
4098 ret = -EINVAL;
4101 /* Resume the port */
4102 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4104 spin_unlock_irqrestore(&xhci->lock, flags);
4105 msleep(10);
4106 spin_lock_irqsave(&xhci->lock, flags);
4108 /* Clear PLC */
4109 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4111 /* Check PORTSC to make sure the device is in the right state */
4112 if (!ret) {
4113 temp = xhci_readl(xhci, addr);
4114 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4115 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4116 (temp & PORT_PLS_MASK) != XDEV_U0) {
4117 xhci_dbg(xhci, "port L1 resume fail\n");
4118 ret = -EINVAL;
4122 if (ret) {
4123 /* Insert dev to lpm_failed_devs list */
4124 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4125 "re-enumerate\n");
4126 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4127 if (!dev_info) {
4128 ret = -ENOMEM;
4129 goto finish;
4131 dev_info->dev_id = dev_id;
4132 INIT_LIST_HEAD(&dev_info->list);
4133 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4134 } else {
4135 xhci_ring_device(xhci, udev->slot_id);
4138 finish:
4139 spin_unlock_irqrestore(&xhci->lock, flags);
4140 return ret;
4143 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4144 struct usb_device *udev, int enable)
4146 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4147 __le32 __iomem **port_array;
4148 __le32 __iomem *pm_addr, *hlpm_addr;
4149 u32 pm_val, hlpm_val, field;
4150 unsigned int port_num;
4151 unsigned long flags;
4152 int hird, exit_latency;
4153 int ret;
4155 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4156 !udev->lpm_capable)
4157 return -EPERM;
4159 if (!udev->parent || udev->parent->parent ||
4160 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4161 return -EPERM;
4163 if (udev->usb2_hw_lpm_capable != 1)
4164 return -EPERM;
4166 spin_lock_irqsave(&xhci->lock, flags);
4168 port_array = xhci->usb2_ports;
4169 port_num = udev->portnum - 1;
4170 pm_addr = port_array[port_num] + PORTPMSC;
4171 pm_val = xhci_readl(xhci, pm_addr);
4172 hlpm_addr = port_array[port_num] + PORTHLPMC;
4173 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4175 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4176 enable ? "enable" : "disable", port_num);
4178 if (enable) {
4179 /* Host supports BESL timeout instead of HIRD */
4180 if (udev->usb2_hw_lpm_besl_capable) {
4181 /* if device doesn't have a preferred BESL value use a
4182 * default one which works with mixed HIRD and BESL
4183 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4185 if ((field & USB_BESL_SUPPORT) &&
4186 (field & USB_BESL_BASELINE_VALID))
4187 hird = USB_GET_BESL_BASELINE(field);
4188 else
4189 hird = udev->l1_params.besl;
4191 exit_latency = xhci_besl_encoding[hird];
4192 spin_unlock_irqrestore(&xhci->lock, flags);
4194 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4195 * input context for link powermanagement evaluate
4196 * context commands. It is protected by hcd->bandwidth
4197 * mutex and is shared by all devices. We need to set
4198 * the max ext latency in USB 2 BESL LPM as well, so
4199 * use the same mutex and xhci_change_max_exit_latency()
4201 mutex_lock(hcd->bandwidth_mutex);
4202 ret = xhci_change_max_exit_latency(xhci, udev,
4203 exit_latency);
4204 mutex_unlock(hcd->bandwidth_mutex);
4206 if (ret < 0)
4207 return ret;
4208 spin_lock_irqsave(&xhci->lock, flags);
4210 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4211 xhci_writel(xhci, hlpm_val, hlpm_addr);
4212 /* flush write */
4213 xhci_readl(xhci, hlpm_addr);
4214 } else {
4215 hird = xhci_calculate_hird_besl(xhci, udev);
4218 pm_val &= ~PORT_HIRD_MASK;
4219 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4220 xhci_writel(xhci, pm_val, pm_addr);
4221 pm_val = xhci_readl(xhci, pm_addr);
4222 pm_val |= PORT_HLE;
4223 xhci_writel(xhci, pm_val, pm_addr);
4224 /* flush write */
4225 xhci_readl(xhci, pm_addr);
4226 } else {
4227 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4228 xhci_writel(xhci, pm_val, pm_addr);
4229 /* flush write */
4230 xhci_readl(xhci, pm_addr);
4231 if (udev->usb2_hw_lpm_besl_capable) {
4232 spin_unlock_irqrestore(&xhci->lock, flags);
4233 mutex_lock(hcd->bandwidth_mutex);
4234 xhci_change_max_exit_latency(xhci, udev, 0);
4235 mutex_unlock(hcd->bandwidth_mutex);
4236 return 0;
4240 spin_unlock_irqrestore(&xhci->lock, flags);
4241 return 0;
4244 /* check if a usb2 port supports a given extened capability protocol
4245 * only USB2 ports extended protocol capability values are cached.
4246 * Return 1 if capability is supported
4248 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4249 unsigned capability)
4251 u32 port_offset, port_count;
4252 int i;
4254 for (i = 0; i < xhci->num_ext_caps; i++) {
4255 if (xhci->ext_caps[i] & capability) {
4256 /* port offsets starts at 1 */
4257 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4258 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4259 if (port >= port_offset &&
4260 port < port_offset + port_count)
4261 return 1;
4264 return 0;
4267 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4269 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4270 int ret;
4271 int portnum = udev->portnum - 1;
4273 ret = xhci_usb2_software_lpm_test(hcd, udev);
4274 if (!ret) {
4275 xhci_dbg(xhci, "software LPM test succeed\n");
4276 if (xhci->hw_lpm_support == 1 &&
4277 xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4278 udev->usb2_hw_lpm_capable = 1;
4279 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4280 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4281 if (xhci_check_usb2_port_capability(xhci, portnum,
4282 XHCI_BLC))
4283 udev->usb2_hw_lpm_besl_capable = 1;
4284 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4285 if (!ret)
4286 udev->usb2_hw_lpm_enabled = 1;
4290 return 0;
4293 #else
4295 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4296 struct usb_device *udev, int enable)
4298 return 0;
4301 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4303 return 0;
4306 #endif /* CONFIG_PM_RUNTIME */
4308 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4310 #ifdef CONFIG_PM
4311 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4312 static unsigned long long xhci_service_interval_to_ns(
4313 struct usb_endpoint_descriptor *desc)
4315 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4318 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4319 enum usb3_link_state state)
4321 unsigned long long sel;
4322 unsigned long long pel;
4323 unsigned int max_sel_pel;
4324 char *state_name;
4326 switch (state) {
4327 case USB3_LPM_U1:
4328 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4329 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4330 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4331 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4332 state_name = "U1";
4333 break;
4334 case USB3_LPM_U2:
4335 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4336 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4337 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4338 state_name = "U2";
4339 break;
4340 default:
4341 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4342 __func__);
4343 return USB3_LPM_DISABLED;
4346 if (sel <= max_sel_pel && pel <= max_sel_pel)
4347 return USB3_LPM_DEVICE_INITIATED;
4349 if (sel > max_sel_pel)
4350 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4351 "due to long SEL %llu ms\n",
4352 state_name, sel);
4353 else
4354 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4355 "due to long PEL %llu ms\n",
4356 state_name, pel);
4357 return USB3_LPM_DISABLED;
4360 /* Returns the hub-encoded U1 timeout value.
4361 * The U1 timeout should be the maximum of the following values:
4362 * - For control endpoints, U1 system exit latency (SEL) * 3
4363 * - For bulk endpoints, U1 SEL * 5
4364 * - For interrupt endpoints:
4365 * - Notification EPs, U1 SEL * 3
4366 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4367 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4369 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4370 struct usb_endpoint_descriptor *desc)
4372 unsigned long long timeout_ns;
4373 int ep_type;
4374 int intr_type;
4376 ep_type = usb_endpoint_type(desc);
4377 switch (ep_type) {
4378 case USB_ENDPOINT_XFER_CONTROL:
4379 timeout_ns = udev->u1_params.sel * 3;
4380 break;
4381 case USB_ENDPOINT_XFER_BULK:
4382 timeout_ns = udev->u1_params.sel * 5;
4383 break;
4384 case USB_ENDPOINT_XFER_INT:
4385 intr_type = usb_endpoint_interrupt_type(desc);
4386 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4387 timeout_ns = udev->u1_params.sel * 3;
4388 break;
4390 /* Otherwise the calculation is the same as isoc eps */
4391 case USB_ENDPOINT_XFER_ISOC:
4392 timeout_ns = xhci_service_interval_to_ns(desc);
4393 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4394 if (timeout_ns < udev->u1_params.sel * 2)
4395 timeout_ns = udev->u1_params.sel * 2;
4396 break;
4397 default:
4398 return 0;
4401 /* The U1 timeout is encoded in 1us intervals. */
4402 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4403 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4404 if (timeout_ns == USB3_LPM_DISABLED)
4405 timeout_ns++;
4407 /* If the necessary timeout value is bigger than what we can set in the
4408 * USB 3.0 hub, we have to disable hub-initiated U1.
4410 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4411 return timeout_ns;
4412 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4413 "due to long timeout %llu ms\n", timeout_ns);
4414 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4417 /* Returns the hub-encoded U2 timeout value.
4418 * The U2 timeout should be the maximum of:
4419 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4420 * - largest bInterval of any active periodic endpoint (to avoid going
4421 * into lower power link states between intervals).
4422 * - the U2 Exit Latency of the device
4424 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4425 struct usb_endpoint_descriptor *desc)
4427 unsigned long long timeout_ns;
4428 unsigned long long u2_del_ns;
4430 timeout_ns = 10 * 1000 * 1000;
4432 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4433 (xhci_service_interval_to_ns(desc) > timeout_ns))
4434 timeout_ns = xhci_service_interval_to_ns(desc);
4436 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4437 if (u2_del_ns > timeout_ns)
4438 timeout_ns = u2_del_ns;
4440 /* The U2 timeout is encoded in 256us intervals */
4441 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4442 /* If the necessary timeout value is bigger than what we can set in the
4443 * USB 3.0 hub, we have to disable hub-initiated U2.
4445 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4446 return timeout_ns;
4447 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4448 "due to long timeout %llu ms\n", timeout_ns);
4449 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4452 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4453 struct usb_device *udev,
4454 struct usb_endpoint_descriptor *desc,
4455 enum usb3_link_state state,
4456 u16 *timeout)
4458 if (state == USB3_LPM_U1) {
4459 if (xhci->quirks & XHCI_INTEL_HOST)
4460 return xhci_calculate_intel_u1_timeout(udev, desc);
4461 } else {
4462 if (xhci->quirks & XHCI_INTEL_HOST)
4463 return xhci_calculate_intel_u2_timeout(udev, desc);
4466 return USB3_LPM_DISABLED;
4469 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4470 struct usb_device *udev,
4471 struct usb_endpoint_descriptor *desc,
4472 enum usb3_link_state state,
4473 u16 *timeout)
4475 u16 alt_timeout;
4477 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4478 desc, state, timeout);
4480 /* If we found we can't enable hub-initiated LPM, or
4481 * the U1 or U2 exit latency was too high to allow
4482 * device-initiated LPM as well, just stop searching.
4484 if (alt_timeout == USB3_LPM_DISABLED ||
4485 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4486 *timeout = alt_timeout;
4487 return -E2BIG;
4489 if (alt_timeout > *timeout)
4490 *timeout = alt_timeout;
4491 return 0;
4494 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4495 struct usb_device *udev,
4496 struct usb_host_interface *alt,
4497 enum usb3_link_state state,
4498 u16 *timeout)
4500 int j;
4502 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4503 if (xhci_update_timeout_for_endpoint(xhci, udev,
4504 &alt->endpoint[j].desc, state, timeout))
4505 return -E2BIG;
4506 continue;
4508 return 0;
4511 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4512 enum usb3_link_state state)
4514 struct usb_device *parent;
4515 unsigned int num_hubs;
4517 if (state == USB3_LPM_U2)
4518 return 0;
4520 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4521 for (parent = udev->parent, num_hubs = 0; parent->parent;
4522 parent = parent->parent)
4523 num_hubs++;
4525 if (num_hubs < 2)
4526 return 0;
4528 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4529 " below second-tier hub.\n");
4530 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4531 "to decrease power consumption.\n");
4532 return -E2BIG;
4535 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4536 struct usb_device *udev,
4537 enum usb3_link_state state)
4539 if (xhci->quirks & XHCI_INTEL_HOST)
4540 return xhci_check_intel_tier_policy(udev, state);
4541 return -EINVAL;
4544 /* Returns the U1 or U2 timeout that should be enabled.
4545 * If the tier check or timeout setting functions return with a non-zero exit
4546 * code, that means the timeout value has been finalized and we shouldn't look
4547 * at any more endpoints.
4549 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4550 struct usb_device *udev, enum usb3_link_state state)
4552 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4553 struct usb_host_config *config;
4554 char *state_name;
4555 int i;
4556 u16 timeout = USB3_LPM_DISABLED;
4558 if (state == USB3_LPM_U1)
4559 state_name = "U1";
4560 else if (state == USB3_LPM_U2)
4561 state_name = "U2";
4562 else {
4563 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4564 state);
4565 return timeout;
4568 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4569 return timeout;
4571 /* Gather some information about the currently installed configuration
4572 * and alternate interface settings.
4574 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4575 state, &timeout))
4576 return timeout;
4578 config = udev->actconfig;
4579 if (!config)
4580 return timeout;
4582 for (i = 0; i < USB_MAXINTERFACES; i++) {
4583 struct usb_driver *driver;
4584 struct usb_interface *intf = config->interface[i];
4586 if (!intf)
4587 continue;
4589 /* Check if any currently bound drivers want hub-initiated LPM
4590 * disabled.
4592 if (intf->dev.driver) {
4593 driver = to_usb_driver(intf->dev.driver);
4594 if (driver && driver->disable_hub_initiated_lpm) {
4595 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4596 "at request of driver %s\n",
4597 state_name, driver->name);
4598 return xhci_get_timeout_no_hub_lpm(udev, state);
4602 /* Not sure how this could happen... */
4603 if (!intf->cur_altsetting)
4604 continue;
4606 if (xhci_update_timeout_for_interface(xhci, udev,
4607 intf->cur_altsetting,
4608 state, &timeout))
4609 return timeout;
4611 return timeout;
4614 static int calculate_max_exit_latency(struct usb_device *udev,
4615 enum usb3_link_state state_changed,
4616 u16 hub_encoded_timeout)
4618 unsigned long long u1_mel_us = 0;
4619 unsigned long long u2_mel_us = 0;
4620 unsigned long long mel_us = 0;
4621 bool disabling_u1;
4622 bool disabling_u2;
4623 bool enabling_u1;
4624 bool enabling_u2;
4626 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4627 hub_encoded_timeout == USB3_LPM_DISABLED);
4628 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4629 hub_encoded_timeout == USB3_LPM_DISABLED);
4631 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4632 hub_encoded_timeout != USB3_LPM_DISABLED);
4633 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4634 hub_encoded_timeout != USB3_LPM_DISABLED);
4636 /* If U1 was already enabled and we're not disabling it,
4637 * or we're going to enable U1, account for the U1 max exit latency.
4639 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4640 enabling_u1)
4641 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4642 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4643 enabling_u2)
4644 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4646 if (u1_mel_us > u2_mel_us)
4647 mel_us = u1_mel_us;
4648 else
4649 mel_us = u2_mel_us;
4650 /* xHCI host controller max exit latency field is only 16 bits wide. */
4651 if (mel_us > MAX_EXIT) {
4652 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4653 "is too big.\n", mel_us);
4654 return -E2BIG;
4656 return mel_us;
4659 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4660 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4661 struct usb_device *udev, enum usb3_link_state state)
4663 struct xhci_hcd *xhci;
4664 u16 hub_encoded_timeout;
4665 int mel;
4666 int ret;
4668 xhci = hcd_to_xhci(hcd);
4669 /* The LPM timeout values are pretty host-controller specific, so don't
4670 * enable hub-initiated timeouts unless the vendor has provided
4671 * information about their timeout algorithm.
4673 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4674 !xhci->devs[udev->slot_id])
4675 return USB3_LPM_DISABLED;
4677 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4678 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4679 if (mel < 0) {
4680 /* Max Exit Latency is too big, disable LPM. */
4681 hub_encoded_timeout = USB3_LPM_DISABLED;
4682 mel = 0;
4685 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4686 if (ret)
4687 return ret;
4688 return hub_encoded_timeout;
4691 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4692 struct usb_device *udev, enum usb3_link_state state)
4694 struct xhci_hcd *xhci;
4695 u16 mel;
4696 int ret;
4698 xhci = hcd_to_xhci(hcd);
4699 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4700 !xhci->devs[udev->slot_id])
4701 return 0;
4703 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4704 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4705 if (ret)
4706 return ret;
4707 return 0;
4709 #else /* CONFIG_PM */
4711 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712 struct usb_device *udev, enum usb3_link_state state)
4714 return USB3_LPM_DISABLED;
4717 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4718 struct usb_device *udev, enum usb3_link_state state)
4720 return 0;
4722 #endif /* CONFIG_PM */
4724 /*-------------------------------------------------------------------------*/
4726 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4727 * internal data structures for the device.
4729 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4730 struct usb_tt *tt, gfp_t mem_flags)
4732 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4733 struct xhci_virt_device *vdev;
4734 struct xhci_command *config_cmd;
4735 struct xhci_input_control_ctx *ctrl_ctx;
4736 struct xhci_slot_ctx *slot_ctx;
4737 unsigned long flags;
4738 unsigned think_time;
4739 int ret;
4741 /* Ignore root hubs */
4742 if (!hdev->parent)
4743 return 0;
4745 vdev = xhci->devs[hdev->slot_id];
4746 if (!vdev) {
4747 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4748 return -EINVAL;
4750 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4751 if (!config_cmd) {
4752 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4753 return -ENOMEM;
4755 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4756 if (!ctrl_ctx) {
4757 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4758 __func__);
4759 xhci_free_command(xhci, config_cmd);
4760 return -ENOMEM;
4763 spin_lock_irqsave(&xhci->lock, flags);
4764 if (hdev->speed == USB_SPEED_HIGH &&
4765 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4766 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4767 xhci_free_command(xhci, config_cmd);
4768 spin_unlock_irqrestore(&xhci->lock, flags);
4769 return -ENOMEM;
4772 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4773 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4774 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4775 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4776 if (tt->multi)
4777 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4778 if (xhci->hci_version > 0x95) {
4779 xhci_dbg(xhci, "xHCI version %x needs hub "
4780 "TT think time and number of ports\n",
4781 (unsigned int) xhci->hci_version);
4782 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4783 /* Set TT think time - convert from ns to FS bit times.
4784 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4785 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4787 * xHCI 1.0: this field shall be 0 if the device is not a
4788 * High-spped hub.
4790 think_time = tt->think_time;
4791 if (think_time != 0)
4792 think_time = (think_time / 666) - 1;
4793 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4794 slot_ctx->tt_info |=
4795 cpu_to_le32(TT_THINK_TIME(think_time));
4796 } else {
4797 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4798 "TT think time or number of ports\n",
4799 (unsigned int) xhci->hci_version);
4801 slot_ctx->dev_state = 0;
4802 spin_unlock_irqrestore(&xhci->lock, flags);
4804 xhci_dbg(xhci, "Set up %s for hub device.\n",
4805 (xhci->hci_version > 0x95) ?
4806 "configure endpoint" : "evaluate context");
4807 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4808 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4810 /* Issue and wait for the configure endpoint or
4811 * evaluate context command.
4813 if (xhci->hci_version > 0x95)
4814 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4815 false, false);
4816 else
4817 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4818 true, false);
4820 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4821 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4823 xhci_free_command(xhci, config_cmd);
4824 return ret;
4827 int xhci_get_frame(struct usb_hcd *hcd)
4829 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4830 /* EHCI mods by the periodic size. Why? */
4831 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4834 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4836 struct xhci_hcd *xhci;
4837 struct device *dev = hcd->self.controller;
4838 int retval;
4840 /* Accept arbitrarily long scatter-gather lists */
4841 hcd->self.sg_tablesize = ~0;
4843 /* support to build packet from discontinuous buffers */
4844 hcd->self.no_sg_constraint = 1;
4846 /* XHCI controllers don't stop the ep queue on short packets :| */
4847 hcd->self.no_stop_on_short = 1;
4849 if (usb_hcd_is_primary_hcd(hcd)) {
4850 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4851 if (!xhci)
4852 return -ENOMEM;
4853 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4854 xhci->main_hcd = hcd;
4855 /* Mark the first roothub as being USB 2.0.
4856 * The xHCI driver will register the USB 3.0 roothub.
4858 hcd->speed = HCD_USB2;
4859 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4861 * USB 2.0 roothub under xHCI has an integrated TT,
4862 * (rate matching hub) as opposed to having an OHCI/UHCI
4863 * companion controller.
4865 hcd->has_tt = 1;
4866 } else {
4867 /* xHCI private pointer was set in xhci_pci_probe for the second
4868 * registered roothub.
4870 return 0;
4873 xhci->cap_regs = hcd->regs;
4874 xhci->op_regs = hcd->regs +
4875 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4876 xhci->run_regs = hcd->regs +
4877 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4878 /* Cache read-only capability registers */
4879 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4880 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4881 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4882 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4883 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4884 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4885 xhci_print_registers(xhci);
4887 get_quirks(dev, xhci);
4889 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4890 * success event after a short transfer. This quirk will ignore such
4891 * spurious event.
4893 if (xhci->hci_version > 0x96)
4894 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4896 /* Make sure the HC is halted. */
4897 retval = xhci_halt(xhci);
4898 if (retval)
4899 goto error;
4901 xhci_dbg(xhci, "Resetting HCD\n");
4902 /* Reset the internal HC memory state and registers. */
4903 retval = xhci_reset(xhci);
4904 if (retval)
4905 goto error;
4906 xhci_dbg(xhci, "Reset complete\n");
4908 /* Set dma_mask and coherent_dma_mask to 64-bits,
4909 * if xHC supports 64-bit addressing */
4910 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4911 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4912 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4913 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4916 xhci_dbg(xhci, "Calling HCD init\n");
4917 /* Initialize HCD and host controller data structures. */
4918 retval = xhci_init(hcd);
4919 if (retval)
4920 goto error;
4921 xhci_dbg(xhci, "Called HCD init\n");
4922 return 0;
4923 error:
4924 kfree(xhci);
4925 return retval;
4928 MODULE_DESCRIPTION(DRIVER_DESC);
4929 MODULE_AUTHOR(DRIVER_AUTHOR);
4930 MODULE_LICENSE("GPL");
4932 static int __init xhci_hcd_init(void)
4934 int retval;
4936 retval = xhci_register_pci();
4937 if (retval < 0) {
4938 pr_debug("Problem registering PCI driver.\n");
4939 return retval;
4941 retval = xhci_register_plat();
4942 if (retval < 0) {
4943 pr_debug("Problem registering platform driver.\n");
4944 goto unreg_pci;
4947 * Check the compiler generated sizes of structures that must be laid
4948 * out in specific ways for hardware access.
4950 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4951 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4952 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4953 /* xhci_device_control has eight fields, and also
4954 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4956 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4957 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4958 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4959 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4960 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4961 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4962 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4963 return 0;
4964 unreg_pci:
4965 xhci_unregister_pci();
4966 return retval;
4968 module_init(xhci_hcd_init);
4970 static void __exit xhci_hcd_cleanup(void)
4972 xhci_unregister_pci();
4973 xhci_unregister_plat();
4975 module_exit(xhci_hcd_cleanup);