Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / drivers / usb / host / xhci.c
blob0420eefa647a15cb5321dfa5fd95556a5a5432e5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 struct xhci_segment *seg = ring->first_seg;
44 if (!td || !td->start_seg)
45 return false;
46 do {
47 if (seg == td->start_seg)
48 return true;
49 seg = seg->next;
50 } while (seg && seg != ring->first_seg);
52 return false;
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
63 * Returns negative errno, or zero on success
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
71 u32 result;
73 do {
74 result = readl(ptr);
75 if (result == ~(u32)0) /* card removed */
76 return -ENODEV;
77 result &= mask;
78 if (result == done)
79 return 0;
80 udelay(1);
81 usec--;
82 } while (usec > 0);
83 return -ETIMEDOUT;
87 * Disable interrupts and begin the xHCI halting process.
89 void xhci_quiesce(struct xhci_hcd *xhci)
91 u32 halted;
92 u32 cmd;
93 u32 mask;
95 mask = ~(XHCI_IRQS);
96 halted = readl(&xhci->op_regs->status) & STS_HALT;
97 if (!halted)
98 mask &= ~CMD_RUN;
100 cmd = readl(&xhci->op_regs->command);
101 cmd &= mask;
102 writel(cmd, &xhci->op_regs->command);
106 * Force HC into halt state.
108 * Disable any IRQs and clear the run/stop bit.
109 * HC will complete any current and actively pipelined transactions, and
110 * should halt within 16 ms of the run/stop bit being cleared.
111 * Read HC Halted bit in the status register to see when the HC is finished.
113 int xhci_halt(struct xhci_hcd *xhci)
115 int ret;
116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 xhci_quiesce(xhci);
119 ret = xhci_handshake(&xhci->op_regs->status,
120 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 if (ret) {
122 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 return ret;
125 xhci->xhc_state |= XHCI_STATE_HALTED;
126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 return ret;
131 * Set the run bit and wait for the host to be running.
133 int xhci_start(struct xhci_hcd *xhci)
135 u32 temp;
136 int ret;
138 temp = readl(&xhci->op_regs->command);
139 temp |= (CMD_RUN);
140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 temp);
142 writel(temp, &xhci->op_regs->command);
145 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 * running.
148 ret = xhci_handshake(&xhci->op_regs->status,
149 STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 if (ret == -ETIMEDOUT)
151 xhci_err(xhci, "Host took too long to start, "
152 "waited %u microseconds.\n",
153 XHCI_MAX_HALT_USEC);
154 if (!ret)
155 /* clear state flags. Including dying, halted or removing */
156 xhci->xhc_state = 0;
158 return ret;
162 * Reset a halted HC.
164 * This resets pipelines, timers, counters, state machines, etc.
165 * Transactions will be terminated immediately, and operational registers
166 * will be set to their defaults.
168 int xhci_reset(struct xhci_hcd *xhci)
170 u32 command;
171 u32 state;
172 int ret, i;
174 state = readl(&xhci->op_regs->status);
176 if (state == ~(u32)0) {
177 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 return -ENODEV;
181 if ((state & STS_HALT) == 0) {
182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 return 0;
186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 command = readl(&xhci->op_regs->command);
188 command |= CMD_RESET;
189 writel(command, &xhci->op_regs->command);
191 /* Existing Intel xHCI controllers require a delay of 1 mS,
192 * after setting the CMD_RESET bit, and before accessing any
193 * HC registers. This allows the HC to complete the
194 * reset operation and be ready for HC register access.
195 * Without this delay, the subsequent HC register access,
196 * may result in a system hang very rarely.
198 if (xhci->quirks & XHCI_INTEL_HOST)
199 udelay(1000);
201 ret = xhci_handshake(&xhci->op_regs->command,
202 CMD_RESET, 0, 10 * 1000 * 1000);
203 if (ret)
204 return ret;
206 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210 "Wait for controller to be ready for doorbell rings");
212 * xHCI cannot write to any doorbells or operational registers other
213 * than status until the "Controller Not Ready" flag is cleared.
215 ret = xhci_handshake(&xhci->op_regs->status,
216 STS_CNR, 0, 10 * 1000 * 1000);
218 for (i = 0; i < 2; i++) {
219 xhci->bus_state[i].port_c_suspend = 0;
220 xhci->bus_state[i].suspended_ports = 0;
221 xhci->bus_state[i].resuming_ports = 0;
224 return ret;
227 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
230 int err, i;
231 u64 val;
234 * Some Renesas controllers get into a weird state if they are
235 * reset while programmed with 64bit addresses (they will preserve
236 * the top half of the address in internal, non visible
237 * registers). You end up with half the address coming from the
238 * kernel, and the other half coming from the firmware. Also,
239 * changing the programming leads to extra accesses even if the
240 * controller is supposed to be halted. The controller ends up with
241 * a fatal fault, and is then ripe for being properly reset.
243 * Special care is taken to only apply this if the device is behind
244 * an iommu. Doing anything when there is no iommu is definitely
245 * unsafe...
247 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group)
248 return;
250 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
252 /* Clear HSEIE so that faults do not get signaled */
253 val = readl(&xhci->op_regs->command);
254 val &= ~CMD_HSEIE;
255 writel(val, &xhci->op_regs->command);
257 /* Clear HSE (aka FATAL) */
258 val = readl(&xhci->op_regs->status);
259 val |= STS_FATAL;
260 writel(val, &xhci->op_regs->status);
262 /* Now zero the registers, and brace for impact */
263 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 if (upper_32_bits(val))
265 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 if (upper_32_bits(val))
268 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
270 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
271 struct xhci_intr_reg __iomem *ir;
273 ir = &xhci->run_regs->ir_set[i];
274 val = xhci_read_64(xhci, &ir->erst_base);
275 if (upper_32_bits(val))
276 xhci_write_64(xhci, 0, &ir->erst_base);
277 val= xhci_read_64(xhci, &ir->erst_dequeue);
278 if (upper_32_bits(val))
279 xhci_write_64(xhci, 0, &ir->erst_dequeue);
282 /* Wait for the fault to appear. It will be cleared on reset */
283 err = xhci_handshake(&xhci->op_regs->status,
284 STS_FATAL, STS_FATAL,
285 XHCI_MAX_HALT_USEC);
286 if (!err)
287 xhci_info(xhci, "Fault detected\n");
290 #ifdef CONFIG_USB_PCI
292 * Set up MSI
294 static int xhci_setup_msi(struct xhci_hcd *xhci)
296 int ret;
298 * TODO:Check with MSI Soc for sysdev
300 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
302 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
303 if (ret < 0) {
304 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
305 "failed to allocate MSI entry");
306 return ret;
309 ret = request_irq(pdev->irq, xhci_msi_irq,
310 0, "xhci_hcd", xhci_to_hcd(xhci));
311 if (ret) {
312 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313 "disable MSI interrupt");
314 pci_free_irq_vectors(pdev);
317 return ret;
321 * Set up MSI-X
323 static int xhci_setup_msix(struct xhci_hcd *xhci)
325 int i, ret = 0;
326 struct usb_hcd *hcd = xhci_to_hcd(xhci);
327 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330 * calculate number of msi-x vectors supported.
331 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
332 * with max number of interrupters based on the xhci HCSPARAMS1.
333 * - num_online_cpus: maximum msi-x vectors per CPUs core.
334 * Add additional 1 vector to ensure always available interrupt.
336 xhci->msix_count = min(num_online_cpus() + 1,
337 HCS_MAX_INTRS(xhci->hcs_params1));
339 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
340 PCI_IRQ_MSIX);
341 if (ret < 0) {
342 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
343 "Failed to enable MSI-X");
344 return ret;
347 for (i = 0; i < xhci->msix_count; i++) {
348 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
349 "xhci_hcd", xhci_to_hcd(xhci));
350 if (ret)
351 goto disable_msix;
354 hcd->msix_enabled = 1;
355 return ret;
357 disable_msix:
358 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
359 while (--i >= 0)
360 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
361 pci_free_irq_vectors(pdev);
362 return ret;
365 /* Free any IRQs and disable MSI-X */
366 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
368 struct usb_hcd *hcd = xhci_to_hcd(xhci);
369 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
371 if (xhci->quirks & XHCI_PLAT)
372 return;
374 /* return if using legacy interrupt */
375 if (hcd->irq > 0)
376 return;
378 if (hcd->msix_enabled) {
379 int i;
381 for (i = 0; i < xhci->msix_count; i++)
382 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
383 } else {
384 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387 pci_free_irq_vectors(pdev);
388 hcd->msix_enabled = 0;
391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 struct usb_hcd *hcd = xhci_to_hcd(xhci);
395 if (hcd->msix_enabled) {
396 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
397 int i;
399 for (i = 0; i < xhci->msix_count; i++)
400 synchronize_irq(pci_irq_vector(pdev, i));
404 static int xhci_try_enable_msi(struct usb_hcd *hcd)
406 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
407 struct pci_dev *pdev;
408 int ret;
410 /* The xhci platform device has set up IRQs through usb_add_hcd. */
411 if (xhci->quirks & XHCI_PLAT)
412 return 0;
414 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
416 * Some Fresco Logic host controllers advertise MSI, but fail to
417 * generate interrupts. Don't even try to enable MSI.
419 if (xhci->quirks & XHCI_BROKEN_MSI)
420 goto legacy_irq;
422 /* unregister the legacy interrupt */
423 if (hcd->irq)
424 free_irq(hcd->irq, hcd);
425 hcd->irq = 0;
427 ret = xhci_setup_msix(xhci);
428 if (ret)
429 /* fall back to msi*/
430 ret = xhci_setup_msi(xhci);
432 if (!ret) {
433 hcd->msi_enabled = 1;
434 return 0;
437 if (!pdev->irq) {
438 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
439 return -EINVAL;
442 legacy_irq:
443 if (!strlen(hcd->irq_descr))
444 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
445 hcd->driver->description, hcd->self.busnum);
447 /* fall back to legacy interrupt*/
448 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449 hcd->irq_descr, hcd);
450 if (ret) {
451 xhci_err(xhci, "request interrupt %d failed\n",
452 pdev->irq);
453 return ret;
455 hcd->irq = pdev->irq;
456 return 0;
459 #else
461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
463 return 0;
466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 #endif
476 static void compliance_mode_recovery(struct timer_list *t)
478 struct xhci_hcd *xhci;
479 struct usb_hcd *hcd;
480 struct xhci_hub *rhub;
481 u32 temp;
482 int i;
484 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
485 rhub = &xhci->usb3_rhub;
487 for (i = 0; i < rhub->num_ports; i++) {
488 temp = readl(rhub->ports[i]->addr);
489 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
491 * Compliance Mode Detected. Letting USB Core
492 * handle the Warm Reset
494 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495 "Compliance mode detected->port %d",
496 i + 1);
497 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498 "Attempting compliance mode recovery");
499 hcd = xhci->shared_hcd;
501 if (hcd->state == HC_STATE_SUSPENDED)
502 usb_hcd_resume_root_hub(hcd);
504 usb_hcd_poll_rh_status(hcd);
508 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
509 mod_timer(&xhci->comp_mode_recovery_timer,
510 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
514 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
515 * that causes ports behind that hardware to enter compliance mode sometimes.
516 * The quirk creates a timer that polls every 2 seconds the link state of
517 * each host controller's port and recovers it by issuing a Warm reset
518 * if Compliance mode is detected, otherwise the port will become "dead" (no
519 * device connections or disconnections will be detected anymore). Becasue no
520 * status event is generated when entering compliance mode (per xhci spec),
521 * this quirk is needed on systems that have the failing hardware installed.
523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
525 xhci->port_status_u0 = 0;
526 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
528 xhci->comp_mode_recovery_timer.expires = jiffies +
529 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
531 add_timer(&xhci->comp_mode_recovery_timer);
532 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533 "Compliance mode recovery timer initialized");
537 * This function identifies the systems that have installed the SN65LVPE502CP
538 * USB3.0 re-driver and that need the Compliance Mode Quirk.
539 * Systems:
540 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
544 const char *dmi_product_name, *dmi_sys_vendor;
546 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
547 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
548 if (!dmi_product_name || !dmi_sys_vendor)
549 return false;
551 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
552 return false;
554 if (strstr(dmi_product_name, "Z420") ||
555 strstr(dmi_product_name, "Z620") ||
556 strstr(dmi_product_name, "Z820") ||
557 strstr(dmi_product_name, "Z1 Workstation"))
558 return true;
560 return false;
563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
565 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
570 * Initialize memory for HCD and xHC (one-time init).
572 * Program the PAGESIZE register, initialize the device context array, create
573 * device contexts (?), set up a command ring segment (or two?), create event
574 * ring (one for now).
576 static int xhci_init(struct usb_hcd *hcd)
578 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
579 int retval = 0;
581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
582 spin_lock_init(&xhci->lock);
583 if (xhci->hci_version == 0x95 && link_quirk) {
584 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
585 "QUIRK: Not clearing Link TRB chain bits.");
586 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
587 } else {
588 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
589 "xHCI doesn't need link TRB QUIRK");
591 retval = xhci_mem_init(xhci, GFP_KERNEL);
592 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
594 /* Initializing Compliance Mode Recovery Data If Needed */
595 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
596 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
597 compliance_mode_recovery_timer_init(xhci);
600 return retval;
603 /*-------------------------------------------------------------------------*/
606 static int xhci_run_finished(struct xhci_hcd *xhci)
608 if (xhci_start(xhci)) {
609 xhci_halt(xhci);
610 return -ENODEV;
612 xhci->shared_hcd->state = HC_STATE_RUNNING;
613 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
615 if (xhci->quirks & XHCI_NEC_HOST)
616 xhci_ring_cmd_db(xhci);
618 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619 "Finished xhci_run for USB3 roothub");
620 return 0;
624 * Start the HC after it was halted.
626 * This function is called by the USB core when the HC driver is added.
627 * Its opposite is xhci_stop().
629 * xhci_init() must be called once before this function can be called.
630 * Reset the HC, enable device slot contexts, program DCBAAP, and
631 * set command ring pointer and event ring pointer.
633 * Setup MSI-X vectors and enable interrupts.
635 int xhci_run(struct usb_hcd *hcd)
637 u32 temp;
638 u64 temp_64;
639 int ret;
640 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
642 /* Start the xHCI host controller running only after the USB 2.0 roothub
643 * is setup.
646 hcd->uses_new_polling = 1;
647 if (!usb_hcd_is_primary_hcd(hcd))
648 return xhci_run_finished(xhci);
650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
652 ret = xhci_try_enable_msi(hcd);
653 if (ret)
654 return ret;
656 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
657 temp_64 &= ~ERST_PTR_MASK;
658 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
659 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
661 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 "// Set the interrupt modulation register");
663 temp = readl(&xhci->ir_set->irq_control);
664 temp &= ~ER_IRQ_INTERVAL_MASK;
665 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
666 writel(temp, &xhci->ir_set->irq_control);
668 /* Set the HCD state before we enable the irqs */
669 temp = readl(&xhci->op_regs->command);
670 temp |= (CMD_EIE);
671 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
672 "// Enable interrupts, cmd = 0x%x.", temp);
673 writel(temp, &xhci->op_regs->command);
675 temp = readl(&xhci->ir_set->irq_pending);
676 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
677 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
678 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
679 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
681 if (xhci->quirks & XHCI_NEC_HOST) {
682 struct xhci_command *command;
684 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
685 if (!command)
686 return -ENOMEM;
688 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
689 TRB_TYPE(TRB_NEC_GET_FW));
690 if (ret)
691 xhci_free_command(xhci, command);
693 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694 "Finished xhci_run for USB2 roothub");
696 xhci_dbc_init(xhci);
698 xhci_debugfs_init(xhci);
700 return 0;
702 EXPORT_SYMBOL_GPL(xhci_run);
705 * Stop xHCI driver.
707 * This function is called by the USB core when the HC driver is removed.
708 * Its opposite is xhci_run().
710 * Disable device contexts, disable IRQs, and quiesce the HC.
711 * Reset the HC, finish any completed transactions, and cleanup memory.
713 static void xhci_stop(struct usb_hcd *hcd)
715 u32 temp;
716 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
718 mutex_lock(&xhci->mutex);
720 /* Only halt host and free memory after both hcds are removed */
721 if (!usb_hcd_is_primary_hcd(hcd)) {
722 /* usb core will free this hcd shortly, unset pointer */
723 xhci->shared_hcd = NULL;
724 mutex_unlock(&xhci->mutex);
725 return;
728 xhci_dbc_exit(xhci);
730 spin_lock_irq(&xhci->lock);
731 xhci->xhc_state |= XHCI_STATE_HALTED;
732 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733 xhci_halt(xhci);
734 xhci_reset(xhci);
735 spin_unlock_irq(&xhci->lock);
737 xhci_cleanup_msix(xhci);
739 /* Deleting Compliance Mode Recovery Timer */
740 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741 (!(xhci_all_ports_seen_u0(xhci)))) {
742 del_timer_sync(&xhci->comp_mode_recovery_timer);
743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744 "%s: compliance mode recovery timer deleted",
745 __func__);
748 if (xhci->quirks & XHCI_AMD_PLL_FIX)
749 usb_amd_dev_put();
751 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752 "// Disabling event ring interrupts");
753 temp = readl(&xhci->op_regs->status);
754 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755 temp = readl(&xhci->ir_set->irq_pending);
756 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759 xhci_mem_cleanup(xhci);
760 xhci_debugfs_exit(xhci);
761 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762 "xhci_stop completed - status = %x",
763 readl(&xhci->op_regs->status));
764 mutex_unlock(&xhci->mutex);
768 * Shutdown HC (not bus-specific)
770 * This is called when the machine is rebooting or halting. We assume that the
771 * machine will be powered off, and the HC's internal state will be reset.
772 * Don't bother to free memory.
774 * This will only ever be called with the main usb_hcd (the USB3 roothub).
776 static void xhci_shutdown(struct usb_hcd *hcd)
778 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783 spin_lock_irq(&xhci->lock);
784 xhci_halt(xhci);
785 /* Workaround for spurious wakeups at shutdown with HSW */
786 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787 xhci_reset(xhci);
788 spin_unlock_irq(&xhci->lock);
790 xhci_cleanup_msix(xhci);
792 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793 "xhci_shutdown completed - status = %x",
794 readl(&xhci->op_regs->status));
796 /* Yet another workaround for spurious wakeups at shutdown with HSW */
797 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
798 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
801 #ifdef CONFIG_PM
802 static void xhci_save_registers(struct xhci_hcd *xhci)
804 xhci->s3.command = readl(&xhci->op_regs->command);
805 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
806 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
807 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
808 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
809 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
810 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
811 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
812 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
815 static void xhci_restore_registers(struct xhci_hcd *xhci)
817 writel(xhci->s3.command, &xhci->op_regs->command);
818 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
819 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
820 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
821 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
822 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
823 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
824 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
825 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
828 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
830 u64 val_64;
832 /* step 2: initialize command ring buffer */
833 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
834 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
835 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
836 xhci->cmd_ring->dequeue) &
837 (u64) ~CMD_RING_RSVD_BITS) |
838 xhci->cmd_ring->cycle_state;
839 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
840 "// Setting command ring address to 0x%llx",
841 (long unsigned long) val_64);
842 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
846 * The whole command ring must be cleared to zero when we suspend the host.
848 * The host doesn't save the command ring pointer in the suspend well, so we
849 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
850 * aligned, because of the reserved bits in the command ring dequeue pointer
851 * register. Therefore, we can't just set the dequeue pointer back in the
852 * middle of the ring (TRBs are 16-byte aligned).
854 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
856 struct xhci_ring *ring;
857 struct xhci_segment *seg;
859 ring = xhci->cmd_ring;
860 seg = ring->deq_seg;
861 do {
862 memset(seg->trbs, 0,
863 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
864 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
865 cpu_to_le32(~TRB_CYCLE);
866 seg = seg->next;
867 } while (seg != ring->deq_seg);
869 /* Reset the software enqueue and dequeue pointers */
870 ring->deq_seg = ring->first_seg;
871 ring->dequeue = ring->first_seg->trbs;
872 ring->enq_seg = ring->deq_seg;
873 ring->enqueue = ring->dequeue;
875 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
877 * Ring is now zeroed, so the HW should look for change of ownership
878 * when the cycle bit is set to 1.
880 ring->cycle_state = 1;
883 * Reset the hardware dequeue pointer.
884 * Yes, this will need to be re-written after resume, but we're paranoid
885 * and want to make sure the hardware doesn't access bogus memory
886 * because, say, the BIOS or an SMI started the host without changing
887 * the command ring pointers.
889 xhci_set_cmd_ring_deq(xhci);
892 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
894 struct xhci_port **ports;
895 int port_index;
896 unsigned long flags;
897 u32 t1, t2;
899 spin_lock_irqsave(&xhci->lock, flags);
901 /* disable usb3 ports Wake bits */
902 port_index = xhci->usb3_rhub.num_ports;
903 ports = xhci->usb3_rhub.ports;
904 while (port_index--) {
905 t1 = readl(ports[port_index]->addr);
906 t1 = xhci_port_state_to_neutral(t1);
907 t2 = t1 & ~PORT_WAKE_BITS;
908 if (t1 != t2)
909 writel(t2, ports[port_index]->addr);
912 /* disable usb2 ports Wake bits */
913 port_index = xhci->usb2_rhub.num_ports;
914 ports = xhci->usb2_rhub.ports;
915 while (port_index--) {
916 t1 = readl(ports[port_index]->addr);
917 t1 = xhci_port_state_to_neutral(t1);
918 t2 = t1 & ~PORT_WAKE_BITS;
919 if (t1 != t2)
920 writel(t2, ports[port_index]->addr);
923 spin_unlock_irqrestore(&xhci->lock, flags);
926 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
928 struct xhci_port **ports;
929 int port_index;
930 u32 status;
931 u32 portsc;
933 status = readl(&xhci->op_regs->status);
934 if (status & STS_EINT)
935 return true;
937 * Checking STS_EINT is not enough as there is a lag between a change
938 * bit being set and the Port Status Change Event that it generated
939 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
942 port_index = xhci->usb2_rhub.num_ports;
943 ports = xhci->usb2_rhub.ports;
944 while (port_index--) {
945 portsc = readl(ports[port_index]->addr);
946 if (portsc & PORT_CHANGE_MASK ||
947 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
948 return true;
950 port_index = xhci->usb3_rhub.num_ports;
951 ports = xhci->usb3_rhub.ports;
952 while (port_index--) {
953 portsc = readl(ports[port_index]->addr);
954 if (portsc & PORT_CHANGE_MASK ||
955 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
956 return true;
958 return false;
962 * Stop HC (not bus-specific)
964 * This is called when the machine transition into S3/S4 mode.
967 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
969 int rc = 0;
970 unsigned int delay = XHCI_MAX_HALT_USEC;
971 struct usb_hcd *hcd = xhci_to_hcd(xhci);
972 u32 command;
974 if (!hcd->state)
975 return 0;
977 if (hcd->state != HC_STATE_SUSPENDED ||
978 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
979 return -EINVAL;
981 xhci_dbc_suspend(xhci);
983 /* Clear root port wake on bits if wakeup not allowed. */
984 if (!do_wakeup)
985 xhci_disable_port_wake_on_bits(xhci);
987 /* Don't poll the roothubs on bus suspend. */
988 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
989 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
990 del_timer_sync(&hcd->rh_timer);
991 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
992 del_timer_sync(&xhci->shared_hcd->rh_timer);
994 if (xhci->quirks & XHCI_SUSPEND_DELAY)
995 usleep_range(1000, 1500);
997 spin_lock_irq(&xhci->lock);
998 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
999 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1000 /* step 1: stop endpoint */
1001 /* skipped assuming that port suspend has done */
1003 /* step 2: clear Run/Stop bit */
1004 command = readl(&xhci->op_regs->command);
1005 command &= ~CMD_RUN;
1006 writel(command, &xhci->op_regs->command);
1008 /* Some chips from Fresco Logic need an extraordinary delay */
1009 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1011 if (xhci_handshake(&xhci->op_regs->status,
1012 STS_HALT, STS_HALT, delay)) {
1013 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1014 spin_unlock_irq(&xhci->lock);
1015 return -ETIMEDOUT;
1017 xhci_clear_command_ring(xhci);
1019 /* step 3: save registers */
1020 xhci_save_registers(xhci);
1022 /* step 4: set CSS flag */
1023 command = readl(&xhci->op_regs->command);
1024 command |= CMD_CSS;
1025 writel(command, &xhci->op_regs->command);
1026 if (xhci_handshake(&xhci->op_regs->status,
1027 STS_SAVE, 0, 10 * 1000)) {
1028 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1029 spin_unlock_irq(&xhci->lock);
1030 return -ETIMEDOUT;
1032 spin_unlock_irq(&xhci->lock);
1035 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1036 * is about to be suspended.
1038 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039 (!(xhci_all_ports_seen_u0(xhci)))) {
1040 del_timer_sync(&xhci->comp_mode_recovery_timer);
1041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042 "%s: compliance mode recovery timer deleted",
1043 __func__);
1046 /* step 5: remove core well power */
1047 /* synchronize irq when using MSI-X */
1048 xhci_msix_sync_irqs(xhci);
1050 return rc;
1052 EXPORT_SYMBOL_GPL(xhci_suspend);
1055 * start xHC (not bus-specific)
1057 * This is called when the machine transition from S3/S4 mode.
1060 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1062 u32 command, temp = 0;
1063 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1064 struct usb_hcd *secondary_hcd;
1065 int retval = 0;
1066 bool comp_timer_running = false;
1068 if (!hcd->state)
1069 return 0;
1071 /* Wait a bit if either of the roothubs need to settle from the
1072 * transition into bus suspend.
1074 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1075 time_before(jiffies,
1076 xhci->bus_state[1].next_statechange))
1077 msleep(100);
1079 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1080 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1082 spin_lock_irq(&xhci->lock);
1083 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1084 hibernated = true;
1086 if (!hibernated) {
1087 /* step 1: restore register */
1088 xhci_restore_registers(xhci);
1089 /* step 2: initialize command ring buffer */
1090 xhci_set_cmd_ring_deq(xhci);
1091 /* step 3: restore state and start state*/
1092 /* step 3: set CRS flag */
1093 command = readl(&xhci->op_regs->command);
1094 command |= CMD_CRS;
1095 writel(command, &xhci->op_regs->command);
1097 * Some controllers take up to 55+ ms to complete the controller
1098 * restore so setting the timeout to 100ms. Xhci specification
1099 * doesn't mention any timeout value.
1101 if (xhci_handshake(&xhci->op_regs->status,
1102 STS_RESTORE, 0, 100 * 1000)) {
1103 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1104 spin_unlock_irq(&xhci->lock);
1105 return -ETIMEDOUT;
1107 temp = readl(&xhci->op_regs->status);
1110 /* If restore operation fails, re-initialize the HC during resume */
1111 if ((temp & STS_SRE) || hibernated) {
1113 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1114 !(xhci_all_ports_seen_u0(xhci))) {
1115 del_timer_sync(&xhci->comp_mode_recovery_timer);
1116 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1117 "Compliance Mode Recovery Timer deleted!");
1120 /* Let the USB core know _both_ roothubs lost power. */
1121 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1122 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1124 xhci_dbg(xhci, "Stop HCD\n");
1125 xhci_halt(xhci);
1126 xhci_zero_64b_regs(xhci);
1127 xhci_reset(xhci);
1128 spin_unlock_irq(&xhci->lock);
1129 xhci_cleanup_msix(xhci);
1131 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1132 temp = readl(&xhci->op_regs->status);
1133 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1134 temp = readl(&xhci->ir_set->irq_pending);
1135 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1137 xhci_dbg(xhci, "cleaning up memory\n");
1138 xhci_mem_cleanup(xhci);
1139 xhci_debugfs_exit(xhci);
1140 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1141 readl(&xhci->op_regs->status));
1143 /* USB core calls the PCI reinit and start functions twice:
1144 * first with the primary HCD, and then with the secondary HCD.
1145 * If we don't do the same, the host will never be started.
1147 if (!usb_hcd_is_primary_hcd(hcd))
1148 secondary_hcd = hcd;
1149 else
1150 secondary_hcd = xhci->shared_hcd;
1152 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1153 retval = xhci_init(hcd->primary_hcd);
1154 if (retval)
1155 return retval;
1156 comp_timer_running = true;
1158 xhci_dbg(xhci, "Start the primary HCD\n");
1159 retval = xhci_run(hcd->primary_hcd);
1160 if (!retval) {
1161 xhci_dbg(xhci, "Start the secondary HCD\n");
1162 retval = xhci_run(secondary_hcd);
1164 hcd->state = HC_STATE_SUSPENDED;
1165 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1166 goto done;
1169 /* step 4: set Run/Stop bit */
1170 command = readl(&xhci->op_regs->command);
1171 command |= CMD_RUN;
1172 writel(command, &xhci->op_regs->command);
1173 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1174 0, 250 * 1000);
1176 /* step 5: walk topology and initialize portsc,
1177 * portpmsc and portli
1179 /* this is done in bus_resume */
1181 /* step 6: restart each of the previously
1182 * Running endpoints by ringing their doorbells
1185 spin_unlock_irq(&xhci->lock);
1187 xhci_dbc_resume(xhci);
1189 done:
1190 if (retval == 0) {
1191 /* Resume root hubs only when have pending events. */
1192 if (xhci_pending_portevent(xhci)) {
1193 usb_hcd_resume_root_hub(xhci->shared_hcd);
1194 usb_hcd_resume_root_hub(hcd);
1199 * If system is subject to the Quirk, Compliance Mode Timer needs to
1200 * be re-initialized Always after a system resume. Ports are subject
1201 * to suffer the Compliance Mode issue again. It doesn't matter if
1202 * ports have entered previously to U0 before system's suspension.
1204 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1205 compliance_mode_recovery_timer_init(xhci);
1207 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1208 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1210 /* Re-enable port polling. */
1211 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1212 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1213 usb_hcd_poll_rh_status(xhci->shared_hcd);
1214 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1215 usb_hcd_poll_rh_status(hcd);
1217 return retval;
1219 EXPORT_SYMBOL_GPL(xhci_resume);
1220 #endif /* CONFIG_PM */
1222 /*-------------------------------------------------------------------------*/
1225 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1226 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1227 * value to right shift 1 for the bitmask.
1229 * Index = (epnum * 2) + direction - 1,
1230 * where direction = 0 for OUT, 1 for IN.
1231 * For control endpoints, the IN index is used (OUT index is unused), so
1232 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1234 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1236 unsigned int index;
1237 if (usb_endpoint_xfer_control(desc))
1238 index = (unsigned int) (usb_endpoint_num(desc)*2);
1239 else
1240 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1241 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1242 return index;
1245 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1246 * address from the XHCI endpoint index.
1248 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1250 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1251 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1252 return direction | number;
1255 /* Find the flag for this endpoint (for use in the control context). Use the
1256 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1257 * bit 1, etc.
1259 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1261 return 1 << (xhci_get_endpoint_index(desc) + 1);
1264 /* Find the flag for this endpoint (for use in the control context). Use the
1265 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1266 * bit 1, etc.
1268 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1270 return 1 << (ep_index + 1);
1273 /* Compute the last valid endpoint context index. Basically, this is the
1274 * endpoint index plus one. For slot contexts with more than valid endpoint,
1275 * we find the most significant bit set in the added contexts flags.
1276 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1277 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1279 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1281 return fls(added_ctxs) - 1;
1284 /* Returns 1 if the arguments are OK;
1285 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1287 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1288 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1289 const char *func) {
1290 struct xhci_hcd *xhci;
1291 struct xhci_virt_device *virt_dev;
1293 if (!hcd || (check_ep && !ep) || !udev) {
1294 pr_debug("xHCI %s called with invalid args\n", func);
1295 return -EINVAL;
1297 if (!udev->parent) {
1298 pr_debug("xHCI %s called for root hub\n", func);
1299 return 0;
1302 xhci = hcd_to_xhci(hcd);
1303 if (check_virt_dev) {
1304 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1305 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1306 func);
1307 return -EINVAL;
1310 virt_dev = xhci->devs[udev->slot_id];
1311 if (virt_dev->udev != udev) {
1312 xhci_dbg(xhci, "xHCI %s called with udev and "
1313 "virt_dev does not match\n", func);
1314 return -EINVAL;
1318 if (xhci->xhc_state & XHCI_STATE_HALTED)
1319 return -ENODEV;
1321 return 1;
1324 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1325 struct usb_device *udev, struct xhci_command *command,
1326 bool ctx_change, bool must_succeed);
1329 * Full speed devices may have a max packet size greater than 8 bytes, but the
1330 * USB core doesn't know that until it reads the first 8 bytes of the
1331 * descriptor. If the usb_device's max packet size changes after that point,
1332 * we need to issue an evaluate context command and wait on it.
1334 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1335 unsigned int ep_index, struct urb *urb)
1337 struct xhci_container_ctx *out_ctx;
1338 struct xhci_input_control_ctx *ctrl_ctx;
1339 struct xhci_ep_ctx *ep_ctx;
1340 struct xhci_command *command;
1341 int max_packet_size;
1342 int hw_max_packet_size;
1343 int ret = 0;
1345 out_ctx = xhci->devs[slot_id]->out_ctx;
1346 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1347 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1348 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1349 if (hw_max_packet_size != max_packet_size) {
1350 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1351 "Max Packet Size for ep 0 changed.");
1352 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1353 "Max packet size in usb_device = %d",
1354 max_packet_size);
1355 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1356 "Max packet size in xHCI HW = %d",
1357 hw_max_packet_size);
1358 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1359 "Issuing evaluate context command.");
1361 /* Set up the input context flags for the command */
1362 /* FIXME: This won't work if a non-default control endpoint
1363 * changes max packet sizes.
1366 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1367 if (!command)
1368 return -ENOMEM;
1370 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1371 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1372 if (!ctrl_ctx) {
1373 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1374 __func__);
1375 ret = -ENOMEM;
1376 goto command_cleanup;
1378 /* Set up the modified control endpoint 0 */
1379 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1380 xhci->devs[slot_id]->out_ctx, ep_index);
1382 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1383 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1384 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1386 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1387 ctrl_ctx->drop_flags = 0;
1389 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1390 true, false);
1392 /* Clean up the input context for later use by bandwidth
1393 * functions.
1395 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1396 command_cleanup:
1397 kfree(command->completion);
1398 kfree(command);
1400 return ret;
1404 * non-error returns are a promise to giveback() the urb later
1405 * we drop ownership so next owner (or urb unlink) can get it
1407 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1409 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1410 unsigned long flags;
1411 int ret = 0;
1412 unsigned int slot_id, ep_index;
1413 unsigned int *ep_state;
1414 struct urb_priv *urb_priv;
1415 int num_tds;
1417 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1418 true, true, __func__) <= 0)
1419 return -EINVAL;
1421 slot_id = urb->dev->slot_id;
1422 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1423 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1425 if (!HCD_HW_ACCESSIBLE(hcd)) {
1426 if (!in_interrupt())
1427 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1428 return -ESHUTDOWN;
1431 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1432 num_tds = urb->number_of_packets;
1433 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1434 urb->transfer_buffer_length > 0 &&
1435 urb->transfer_flags & URB_ZERO_PACKET &&
1436 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1437 num_tds = 2;
1438 else
1439 num_tds = 1;
1441 urb_priv = kzalloc(sizeof(struct urb_priv) +
1442 num_tds * sizeof(struct xhci_td), mem_flags);
1443 if (!urb_priv)
1444 return -ENOMEM;
1446 urb_priv->num_tds = num_tds;
1447 urb_priv->num_tds_done = 0;
1448 urb->hcpriv = urb_priv;
1450 trace_xhci_urb_enqueue(urb);
1452 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1453 /* Check to see if the max packet size for the default control
1454 * endpoint changed during FS device enumeration
1456 if (urb->dev->speed == USB_SPEED_FULL) {
1457 ret = xhci_check_maxpacket(xhci, slot_id,
1458 ep_index, urb);
1459 if (ret < 0) {
1460 xhci_urb_free_priv(urb_priv);
1461 urb->hcpriv = NULL;
1462 return ret;
1467 spin_lock_irqsave(&xhci->lock, flags);
1469 if (xhci->xhc_state & XHCI_STATE_DYING) {
1470 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1471 urb->ep->desc.bEndpointAddress, urb);
1472 ret = -ESHUTDOWN;
1473 goto free_priv;
1475 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1476 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1477 *ep_state);
1478 ret = -EINVAL;
1479 goto free_priv;
1481 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1482 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1483 ret = -EINVAL;
1484 goto free_priv;
1487 switch (usb_endpoint_type(&urb->ep->desc)) {
1489 case USB_ENDPOINT_XFER_CONTROL:
1490 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1491 slot_id, ep_index);
1492 break;
1493 case USB_ENDPOINT_XFER_BULK:
1494 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1495 slot_id, ep_index);
1496 break;
1497 case USB_ENDPOINT_XFER_INT:
1498 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1499 slot_id, ep_index);
1500 break;
1501 case USB_ENDPOINT_XFER_ISOC:
1502 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1503 slot_id, ep_index);
1506 if (ret) {
1507 free_priv:
1508 xhci_urb_free_priv(urb_priv);
1509 urb->hcpriv = NULL;
1511 spin_unlock_irqrestore(&xhci->lock, flags);
1512 return ret;
1516 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1517 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1518 * should pick up where it left off in the TD, unless a Set Transfer Ring
1519 * Dequeue Pointer is issued.
1521 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1522 * the ring. Since the ring is a contiguous structure, they can't be physically
1523 * removed. Instead, there are two options:
1525 * 1) If the HC is in the middle of processing the URB to be canceled, we
1526 * simply move the ring's dequeue pointer past those TRBs using the Set
1527 * Transfer Ring Dequeue Pointer command. This will be the common case,
1528 * when drivers timeout on the last submitted URB and attempt to cancel.
1530 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1531 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1532 * HC will need to invalidate the any TRBs it has cached after the stop
1533 * endpoint command, as noted in the xHCI 0.95 errata.
1535 * 3) The TD may have completed by the time the Stop Endpoint Command
1536 * completes, so software needs to handle that case too.
1538 * This function should protect against the TD enqueueing code ringing the
1539 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1540 * It also needs to account for multiple cancellations on happening at the same
1541 * time for the same endpoint.
1543 * Note that this function can be called in any context, or so says
1544 * usb_hcd_unlink_urb()
1546 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1548 unsigned long flags;
1549 int ret, i;
1550 u32 temp;
1551 struct xhci_hcd *xhci;
1552 struct urb_priv *urb_priv;
1553 struct xhci_td *td;
1554 unsigned int ep_index;
1555 struct xhci_ring *ep_ring;
1556 struct xhci_virt_ep *ep;
1557 struct xhci_command *command;
1558 struct xhci_virt_device *vdev;
1560 xhci = hcd_to_xhci(hcd);
1561 spin_lock_irqsave(&xhci->lock, flags);
1563 trace_xhci_urb_dequeue(urb);
1565 /* Make sure the URB hasn't completed or been unlinked already */
1566 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1567 if (ret)
1568 goto done;
1570 /* give back URB now if we can't queue it for cancel */
1571 vdev = xhci->devs[urb->dev->slot_id];
1572 urb_priv = urb->hcpriv;
1573 if (!vdev || !urb_priv)
1574 goto err_giveback;
1576 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1577 ep = &vdev->eps[ep_index];
1578 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1579 if (!ep || !ep_ring)
1580 goto err_giveback;
1582 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1583 temp = readl(&xhci->op_regs->status);
1584 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1585 xhci_hc_died(xhci);
1586 goto done;
1590 * check ring is not re-allocated since URB was enqueued. If it is, then
1591 * make sure none of the ring related pointers in this URB private data
1592 * are touched, such as td_list, otherwise we overwrite freed data
1594 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1595 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1596 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1597 td = &urb_priv->td[i];
1598 if (!list_empty(&td->cancelled_td_list))
1599 list_del_init(&td->cancelled_td_list);
1601 goto err_giveback;
1604 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1605 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1606 "HC halted, freeing TD manually.");
1607 for (i = urb_priv->num_tds_done;
1608 i < urb_priv->num_tds;
1609 i++) {
1610 td = &urb_priv->td[i];
1611 if (!list_empty(&td->td_list))
1612 list_del_init(&td->td_list);
1613 if (!list_empty(&td->cancelled_td_list))
1614 list_del_init(&td->cancelled_td_list);
1616 goto err_giveback;
1619 i = urb_priv->num_tds_done;
1620 if (i < urb_priv->num_tds)
1621 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1622 "Cancel URB %p, dev %s, ep 0x%x, "
1623 "starting at offset 0x%llx",
1624 urb, urb->dev->devpath,
1625 urb->ep->desc.bEndpointAddress,
1626 (unsigned long long) xhci_trb_virt_to_dma(
1627 urb_priv->td[i].start_seg,
1628 urb_priv->td[i].first_trb));
1630 for (; i < urb_priv->num_tds; i++) {
1631 td = &urb_priv->td[i];
1632 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1635 /* Queue a stop endpoint command, but only if this is
1636 * the first cancellation to be handled.
1638 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1639 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1640 if (!command) {
1641 ret = -ENOMEM;
1642 goto done;
1644 ep->ep_state |= EP_STOP_CMD_PENDING;
1645 ep->stop_cmd_timer.expires = jiffies +
1646 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1647 add_timer(&ep->stop_cmd_timer);
1648 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1649 ep_index, 0);
1650 xhci_ring_cmd_db(xhci);
1652 done:
1653 spin_unlock_irqrestore(&xhci->lock, flags);
1654 return ret;
1656 err_giveback:
1657 if (urb_priv)
1658 xhci_urb_free_priv(urb_priv);
1659 usb_hcd_unlink_urb_from_ep(hcd, urb);
1660 spin_unlock_irqrestore(&xhci->lock, flags);
1661 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1662 return ret;
1665 /* Drop an endpoint from a new bandwidth configuration for this device.
1666 * Only one call to this function is allowed per endpoint before
1667 * check_bandwidth() or reset_bandwidth() must be called.
1668 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1669 * add the endpoint to the schedule with possibly new parameters denoted by a
1670 * different endpoint descriptor in usb_host_endpoint.
1671 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1672 * not allowed.
1674 * The USB core will not allow URBs to be queued to an endpoint that is being
1675 * disabled, so there's no need for mutual exclusion to protect
1676 * the xhci->devs[slot_id] structure.
1678 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1679 struct usb_host_endpoint *ep)
1681 struct xhci_hcd *xhci;
1682 struct xhci_container_ctx *in_ctx, *out_ctx;
1683 struct xhci_input_control_ctx *ctrl_ctx;
1684 unsigned int ep_index;
1685 struct xhci_ep_ctx *ep_ctx;
1686 u32 drop_flag;
1687 u32 new_add_flags, new_drop_flags;
1688 int ret;
1690 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1691 if (ret <= 0)
1692 return ret;
1693 xhci = hcd_to_xhci(hcd);
1694 if (xhci->xhc_state & XHCI_STATE_DYING)
1695 return -ENODEV;
1697 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1698 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1699 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1700 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1701 __func__, drop_flag);
1702 return 0;
1705 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1706 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1707 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1708 if (!ctrl_ctx) {
1709 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1710 __func__);
1711 return 0;
1714 ep_index = xhci_get_endpoint_index(&ep->desc);
1715 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1716 /* If the HC already knows the endpoint is disabled,
1717 * or the HCD has noted it is disabled, ignore this request
1719 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1720 le32_to_cpu(ctrl_ctx->drop_flags) &
1721 xhci_get_endpoint_flag(&ep->desc)) {
1722 /* Do not warn when called after a usb_device_reset */
1723 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1724 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1725 __func__, ep);
1726 return 0;
1729 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1730 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1732 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1733 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1735 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1737 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1739 if (xhci->quirks & XHCI_MTK_HOST)
1740 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1742 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1743 (unsigned int) ep->desc.bEndpointAddress,
1744 udev->slot_id,
1745 (unsigned int) new_drop_flags,
1746 (unsigned int) new_add_flags);
1747 return 0;
1750 /* Add an endpoint to a new possible bandwidth configuration for this device.
1751 * Only one call to this function is allowed per endpoint before
1752 * check_bandwidth() or reset_bandwidth() must be called.
1753 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1754 * add the endpoint to the schedule with possibly new parameters denoted by a
1755 * different endpoint descriptor in usb_host_endpoint.
1756 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1757 * not allowed.
1759 * The USB core will not allow URBs to be queued to an endpoint until the
1760 * configuration or alt setting is installed in the device, so there's no need
1761 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1763 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1764 struct usb_host_endpoint *ep)
1766 struct xhci_hcd *xhci;
1767 struct xhci_container_ctx *in_ctx;
1768 unsigned int ep_index;
1769 struct xhci_input_control_ctx *ctrl_ctx;
1770 u32 added_ctxs;
1771 u32 new_add_flags, new_drop_flags;
1772 struct xhci_virt_device *virt_dev;
1773 int ret = 0;
1775 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1776 if (ret <= 0) {
1777 /* So we won't queue a reset ep command for a root hub */
1778 ep->hcpriv = NULL;
1779 return ret;
1781 xhci = hcd_to_xhci(hcd);
1782 if (xhci->xhc_state & XHCI_STATE_DYING)
1783 return -ENODEV;
1785 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1786 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1787 /* FIXME when we have to issue an evaluate endpoint command to
1788 * deal with ep0 max packet size changing once we get the
1789 * descriptors
1791 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1792 __func__, added_ctxs);
1793 return 0;
1796 virt_dev = xhci->devs[udev->slot_id];
1797 in_ctx = virt_dev->in_ctx;
1798 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1799 if (!ctrl_ctx) {
1800 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1801 __func__);
1802 return 0;
1805 ep_index = xhci_get_endpoint_index(&ep->desc);
1806 /* If this endpoint is already in use, and the upper layers are trying
1807 * to add it again without dropping it, reject the addition.
1809 if (virt_dev->eps[ep_index].ring &&
1810 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1811 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1812 "without dropping it.\n",
1813 (unsigned int) ep->desc.bEndpointAddress);
1814 return -EINVAL;
1817 /* If the HCD has already noted the endpoint is enabled,
1818 * ignore this request.
1820 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1821 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1822 __func__, ep);
1823 return 0;
1827 * Configuration and alternate setting changes must be done in
1828 * process context, not interrupt context (or so documenation
1829 * for usb_set_interface() and usb_set_configuration() claim).
1831 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1832 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1833 __func__, ep->desc.bEndpointAddress);
1834 return -ENOMEM;
1837 if (xhci->quirks & XHCI_MTK_HOST) {
1838 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1839 if (ret < 0) {
1840 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1841 virt_dev->eps[ep_index].new_ring = NULL;
1842 return ret;
1846 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1847 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1849 /* If xhci_endpoint_disable() was called for this endpoint, but the
1850 * xHC hasn't been notified yet through the check_bandwidth() call,
1851 * this re-adds a new state for the endpoint from the new endpoint
1852 * descriptors. We must drop and re-add this endpoint, so we leave the
1853 * drop flags alone.
1855 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1857 /* Store the usb_device pointer for later use */
1858 ep->hcpriv = udev;
1860 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1862 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1863 (unsigned int) ep->desc.bEndpointAddress,
1864 udev->slot_id,
1865 (unsigned int) new_drop_flags,
1866 (unsigned int) new_add_flags);
1867 return 0;
1870 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1872 struct xhci_input_control_ctx *ctrl_ctx;
1873 struct xhci_ep_ctx *ep_ctx;
1874 struct xhci_slot_ctx *slot_ctx;
1875 int i;
1877 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1878 if (!ctrl_ctx) {
1879 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1880 __func__);
1881 return;
1884 /* When a device's add flag and drop flag are zero, any subsequent
1885 * configure endpoint command will leave that endpoint's state
1886 * untouched. Make sure we don't leave any old state in the input
1887 * endpoint contexts.
1889 ctrl_ctx->drop_flags = 0;
1890 ctrl_ctx->add_flags = 0;
1891 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1892 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1893 /* Endpoint 0 is always valid */
1894 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1895 for (i = 1; i < 31; i++) {
1896 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1897 ep_ctx->ep_info = 0;
1898 ep_ctx->ep_info2 = 0;
1899 ep_ctx->deq = 0;
1900 ep_ctx->tx_info = 0;
1904 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1905 struct usb_device *udev, u32 *cmd_status)
1907 int ret;
1909 switch (*cmd_status) {
1910 case COMP_COMMAND_ABORTED:
1911 case COMP_COMMAND_RING_STOPPED:
1912 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1913 ret = -ETIME;
1914 break;
1915 case COMP_RESOURCE_ERROR:
1916 dev_warn(&udev->dev,
1917 "Not enough host controller resources for new device state.\n");
1918 ret = -ENOMEM;
1919 /* FIXME: can we allocate more resources for the HC? */
1920 break;
1921 case COMP_BANDWIDTH_ERROR:
1922 case COMP_SECONDARY_BANDWIDTH_ERROR:
1923 dev_warn(&udev->dev,
1924 "Not enough bandwidth for new device state.\n");
1925 ret = -ENOSPC;
1926 /* FIXME: can we go back to the old state? */
1927 break;
1928 case COMP_TRB_ERROR:
1929 /* the HCD set up something wrong */
1930 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1931 "add flag = 1, "
1932 "and endpoint is not disabled.\n");
1933 ret = -EINVAL;
1934 break;
1935 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1936 dev_warn(&udev->dev,
1937 "ERROR: Incompatible device for endpoint configure command.\n");
1938 ret = -ENODEV;
1939 break;
1940 case COMP_SUCCESS:
1941 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1942 "Successful Endpoint Configure command");
1943 ret = 0;
1944 break;
1945 default:
1946 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1947 *cmd_status);
1948 ret = -EINVAL;
1949 break;
1951 return ret;
1954 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1955 struct usb_device *udev, u32 *cmd_status)
1957 int ret;
1959 switch (*cmd_status) {
1960 case COMP_COMMAND_ABORTED:
1961 case COMP_COMMAND_RING_STOPPED:
1962 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1963 ret = -ETIME;
1964 break;
1965 case COMP_PARAMETER_ERROR:
1966 dev_warn(&udev->dev,
1967 "WARN: xHCI driver setup invalid evaluate context command.\n");
1968 ret = -EINVAL;
1969 break;
1970 case COMP_SLOT_NOT_ENABLED_ERROR:
1971 dev_warn(&udev->dev,
1972 "WARN: slot not enabled for evaluate context command.\n");
1973 ret = -EINVAL;
1974 break;
1975 case COMP_CONTEXT_STATE_ERROR:
1976 dev_warn(&udev->dev,
1977 "WARN: invalid context state for evaluate context command.\n");
1978 ret = -EINVAL;
1979 break;
1980 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1981 dev_warn(&udev->dev,
1982 "ERROR: Incompatible device for evaluate context command.\n");
1983 ret = -ENODEV;
1984 break;
1985 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1986 /* Max Exit Latency too large error */
1987 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1988 ret = -EINVAL;
1989 break;
1990 case COMP_SUCCESS:
1991 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1992 "Successful evaluate context command");
1993 ret = 0;
1994 break;
1995 default:
1996 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1997 *cmd_status);
1998 ret = -EINVAL;
1999 break;
2001 return ret;
2004 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2005 struct xhci_input_control_ctx *ctrl_ctx)
2007 u32 valid_add_flags;
2008 u32 valid_drop_flags;
2010 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2011 * (bit 1). The default control endpoint is added during the Address
2012 * Device command and is never removed until the slot is disabled.
2014 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2015 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2017 /* Use hweight32 to count the number of ones in the add flags, or
2018 * number of endpoints added. Don't count endpoints that are changed
2019 * (both added and dropped).
2021 return hweight32(valid_add_flags) -
2022 hweight32(valid_add_flags & valid_drop_flags);
2025 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2026 struct xhci_input_control_ctx *ctrl_ctx)
2028 u32 valid_add_flags;
2029 u32 valid_drop_flags;
2031 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2032 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2034 return hweight32(valid_drop_flags) -
2035 hweight32(valid_add_flags & valid_drop_flags);
2039 * We need to reserve the new number of endpoints before the configure endpoint
2040 * command completes. We can't subtract the dropped endpoints from the number
2041 * of active endpoints until the command completes because we can oversubscribe
2042 * the host in this case:
2044 * - the first configure endpoint command drops more endpoints than it adds
2045 * - a second configure endpoint command that adds more endpoints is queued
2046 * - the first configure endpoint command fails, so the config is unchanged
2047 * - the second command may succeed, even though there isn't enough resources
2049 * Must be called with xhci->lock held.
2051 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2052 struct xhci_input_control_ctx *ctrl_ctx)
2054 u32 added_eps;
2056 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2057 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2058 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2059 "Not enough ep ctxs: "
2060 "%u active, need to add %u, limit is %u.",
2061 xhci->num_active_eps, added_eps,
2062 xhci->limit_active_eps);
2063 return -ENOMEM;
2065 xhci->num_active_eps += added_eps;
2066 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2067 "Adding %u ep ctxs, %u now active.", added_eps,
2068 xhci->num_active_eps);
2069 return 0;
2073 * The configure endpoint was failed by the xHC for some other reason, so we
2074 * need to revert the resources that failed configuration would have used.
2076 * Must be called with xhci->lock held.
2078 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2079 struct xhci_input_control_ctx *ctrl_ctx)
2081 u32 num_failed_eps;
2083 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2084 xhci->num_active_eps -= num_failed_eps;
2085 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2086 "Removing %u failed ep ctxs, %u now active.",
2087 num_failed_eps,
2088 xhci->num_active_eps);
2092 * Now that the command has completed, clean up the active endpoint count by
2093 * subtracting out the endpoints that were dropped (but not changed).
2095 * Must be called with xhci->lock held.
2097 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2098 struct xhci_input_control_ctx *ctrl_ctx)
2100 u32 num_dropped_eps;
2102 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2103 xhci->num_active_eps -= num_dropped_eps;
2104 if (num_dropped_eps)
2105 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2106 "Removing %u dropped ep ctxs, %u now active.",
2107 num_dropped_eps,
2108 xhci->num_active_eps);
2111 static unsigned int xhci_get_block_size(struct usb_device *udev)
2113 switch (udev->speed) {
2114 case USB_SPEED_LOW:
2115 case USB_SPEED_FULL:
2116 return FS_BLOCK;
2117 case USB_SPEED_HIGH:
2118 return HS_BLOCK;
2119 case USB_SPEED_SUPER:
2120 case USB_SPEED_SUPER_PLUS:
2121 return SS_BLOCK;
2122 case USB_SPEED_UNKNOWN:
2123 case USB_SPEED_WIRELESS:
2124 default:
2125 /* Should never happen */
2126 return 1;
2130 static unsigned int
2131 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2133 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2134 return LS_OVERHEAD;
2135 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2136 return FS_OVERHEAD;
2137 return HS_OVERHEAD;
2140 /* If we are changing a LS/FS device under a HS hub,
2141 * make sure (if we are activating a new TT) that the HS bus has enough
2142 * bandwidth for this new TT.
2144 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2145 struct xhci_virt_device *virt_dev,
2146 int old_active_eps)
2148 struct xhci_interval_bw_table *bw_table;
2149 struct xhci_tt_bw_info *tt_info;
2151 /* Find the bandwidth table for the root port this TT is attached to. */
2152 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2153 tt_info = virt_dev->tt_info;
2154 /* If this TT already had active endpoints, the bandwidth for this TT
2155 * has already been added. Removing all periodic endpoints (and thus
2156 * making the TT enactive) will only decrease the bandwidth used.
2158 if (old_active_eps)
2159 return 0;
2160 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2161 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2162 return -ENOMEM;
2163 return 0;
2165 /* Not sure why we would have no new active endpoints...
2167 * Maybe because of an Evaluate Context change for a hub update or a
2168 * control endpoint 0 max packet size change?
2169 * FIXME: skip the bandwidth calculation in that case.
2171 return 0;
2174 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2175 struct xhci_virt_device *virt_dev)
2177 unsigned int bw_reserved;
2179 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2180 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2181 return -ENOMEM;
2183 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2184 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2185 return -ENOMEM;
2187 return 0;
2191 * This algorithm is a very conservative estimate of the worst-case scheduling
2192 * scenario for any one interval. The hardware dynamically schedules the
2193 * packets, so we can't tell which microframe could be the limiting factor in
2194 * the bandwidth scheduling. This only takes into account periodic endpoints.
2196 * Obviously, we can't solve an NP complete problem to find the minimum worst
2197 * case scenario. Instead, we come up with an estimate that is no less than
2198 * the worst case bandwidth used for any one microframe, but may be an
2199 * over-estimate.
2201 * We walk the requirements for each endpoint by interval, starting with the
2202 * smallest interval, and place packets in the schedule where there is only one
2203 * possible way to schedule packets for that interval. In order to simplify
2204 * this algorithm, we record the largest max packet size for each interval, and
2205 * assume all packets will be that size.
2207 * For interval 0, we obviously must schedule all packets for each interval.
2208 * The bandwidth for interval 0 is just the amount of data to be transmitted
2209 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2210 * the number of packets).
2212 * For interval 1, we have two possible microframes to schedule those packets
2213 * in. For this algorithm, if we can schedule the same number of packets for
2214 * each possible scheduling opportunity (each microframe), we will do so. The
2215 * remaining number of packets will be saved to be transmitted in the gaps in
2216 * the next interval's scheduling sequence.
2218 * As we move those remaining packets to be scheduled with interval 2 packets,
2219 * we have to double the number of remaining packets to transmit. This is
2220 * because the intervals are actually powers of 2, and we would be transmitting
2221 * the previous interval's packets twice in this interval. We also have to be
2222 * sure that when we look at the largest max packet size for this interval, we
2223 * also look at the largest max packet size for the remaining packets and take
2224 * the greater of the two.
2226 * The algorithm continues to evenly distribute packets in each scheduling
2227 * opportunity, and push the remaining packets out, until we get to the last
2228 * interval. Then those packets and their associated overhead are just added
2229 * to the bandwidth used.
2231 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2232 struct xhci_virt_device *virt_dev,
2233 int old_active_eps)
2235 unsigned int bw_reserved;
2236 unsigned int max_bandwidth;
2237 unsigned int bw_used;
2238 unsigned int block_size;
2239 struct xhci_interval_bw_table *bw_table;
2240 unsigned int packet_size = 0;
2241 unsigned int overhead = 0;
2242 unsigned int packets_transmitted = 0;
2243 unsigned int packets_remaining = 0;
2244 unsigned int i;
2246 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2247 return xhci_check_ss_bw(xhci, virt_dev);
2249 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2250 max_bandwidth = HS_BW_LIMIT;
2251 /* Convert percent of bus BW reserved to blocks reserved */
2252 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2253 } else {
2254 max_bandwidth = FS_BW_LIMIT;
2255 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2258 bw_table = virt_dev->bw_table;
2259 /* We need to translate the max packet size and max ESIT payloads into
2260 * the units the hardware uses.
2262 block_size = xhci_get_block_size(virt_dev->udev);
2264 /* If we are manipulating a LS/FS device under a HS hub, double check
2265 * that the HS bus has enough bandwidth if we are activing a new TT.
2267 if (virt_dev->tt_info) {
2268 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2269 "Recalculating BW for rootport %u",
2270 virt_dev->real_port);
2271 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2272 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2273 "newly activated TT.\n");
2274 return -ENOMEM;
2276 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2277 "Recalculating BW for TT slot %u port %u",
2278 virt_dev->tt_info->slot_id,
2279 virt_dev->tt_info->ttport);
2280 } else {
2281 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2282 "Recalculating BW for rootport %u",
2283 virt_dev->real_port);
2286 /* Add in how much bandwidth will be used for interval zero, or the
2287 * rounded max ESIT payload + number of packets * largest overhead.
2289 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2290 bw_table->interval_bw[0].num_packets *
2291 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2293 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2294 unsigned int bw_added;
2295 unsigned int largest_mps;
2296 unsigned int interval_overhead;
2299 * How many packets could we transmit in this interval?
2300 * If packets didn't fit in the previous interval, we will need
2301 * to transmit that many packets twice within this interval.
2303 packets_remaining = 2 * packets_remaining +
2304 bw_table->interval_bw[i].num_packets;
2306 /* Find the largest max packet size of this or the previous
2307 * interval.
2309 if (list_empty(&bw_table->interval_bw[i].endpoints))
2310 largest_mps = 0;
2311 else {
2312 struct xhci_virt_ep *virt_ep;
2313 struct list_head *ep_entry;
2315 ep_entry = bw_table->interval_bw[i].endpoints.next;
2316 virt_ep = list_entry(ep_entry,
2317 struct xhci_virt_ep, bw_endpoint_list);
2318 /* Convert to blocks, rounding up */
2319 largest_mps = DIV_ROUND_UP(
2320 virt_ep->bw_info.max_packet_size,
2321 block_size);
2323 if (largest_mps > packet_size)
2324 packet_size = largest_mps;
2326 /* Use the larger overhead of this or the previous interval. */
2327 interval_overhead = xhci_get_largest_overhead(
2328 &bw_table->interval_bw[i]);
2329 if (interval_overhead > overhead)
2330 overhead = interval_overhead;
2332 /* How many packets can we evenly distribute across
2333 * (1 << (i + 1)) possible scheduling opportunities?
2335 packets_transmitted = packets_remaining >> (i + 1);
2337 /* Add in the bandwidth used for those scheduled packets */
2338 bw_added = packets_transmitted * (overhead + packet_size);
2340 /* How many packets do we have remaining to transmit? */
2341 packets_remaining = packets_remaining % (1 << (i + 1));
2343 /* What largest max packet size should those packets have? */
2344 /* If we've transmitted all packets, don't carry over the
2345 * largest packet size.
2347 if (packets_remaining == 0) {
2348 packet_size = 0;
2349 overhead = 0;
2350 } else if (packets_transmitted > 0) {
2351 /* Otherwise if we do have remaining packets, and we've
2352 * scheduled some packets in this interval, take the
2353 * largest max packet size from endpoints with this
2354 * interval.
2356 packet_size = largest_mps;
2357 overhead = interval_overhead;
2359 /* Otherwise carry over packet_size and overhead from the last
2360 * time we had a remainder.
2362 bw_used += bw_added;
2363 if (bw_used > max_bandwidth) {
2364 xhci_warn(xhci, "Not enough bandwidth. "
2365 "Proposed: %u, Max: %u\n",
2366 bw_used, max_bandwidth);
2367 return -ENOMEM;
2371 * Ok, we know we have some packets left over after even-handedly
2372 * scheduling interval 15. We don't know which microframes they will
2373 * fit into, so we over-schedule and say they will be scheduled every
2374 * microframe.
2376 if (packets_remaining > 0)
2377 bw_used += overhead + packet_size;
2379 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2380 unsigned int port_index = virt_dev->real_port - 1;
2382 /* OK, we're manipulating a HS device attached to a
2383 * root port bandwidth domain. Include the number of active TTs
2384 * in the bandwidth used.
2386 bw_used += TT_HS_OVERHEAD *
2387 xhci->rh_bw[port_index].num_active_tts;
2390 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2391 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2392 "Available: %u " "percent",
2393 bw_used, max_bandwidth, bw_reserved,
2394 (max_bandwidth - bw_used - bw_reserved) * 100 /
2395 max_bandwidth);
2397 bw_used += bw_reserved;
2398 if (bw_used > max_bandwidth) {
2399 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2400 bw_used, max_bandwidth);
2401 return -ENOMEM;
2404 bw_table->bw_used = bw_used;
2405 return 0;
2408 static bool xhci_is_async_ep(unsigned int ep_type)
2410 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2411 ep_type != ISOC_IN_EP &&
2412 ep_type != INT_IN_EP);
2415 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2417 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2420 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2422 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2424 if (ep_bw->ep_interval == 0)
2425 return SS_OVERHEAD_BURST +
2426 (ep_bw->mult * ep_bw->num_packets *
2427 (SS_OVERHEAD + mps));
2428 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2429 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2430 1 << ep_bw->ep_interval);
2434 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2435 struct xhci_bw_info *ep_bw,
2436 struct xhci_interval_bw_table *bw_table,
2437 struct usb_device *udev,
2438 struct xhci_virt_ep *virt_ep,
2439 struct xhci_tt_bw_info *tt_info)
2441 struct xhci_interval_bw *interval_bw;
2442 int normalized_interval;
2444 if (xhci_is_async_ep(ep_bw->type))
2445 return;
2447 if (udev->speed >= USB_SPEED_SUPER) {
2448 if (xhci_is_sync_in_ep(ep_bw->type))
2449 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2450 xhci_get_ss_bw_consumed(ep_bw);
2451 else
2452 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2453 xhci_get_ss_bw_consumed(ep_bw);
2454 return;
2457 /* SuperSpeed endpoints never get added to intervals in the table, so
2458 * this check is only valid for HS/FS/LS devices.
2460 if (list_empty(&virt_ep->bw_endpoint_list))
2461 return;
2462 /* For LS/FS devices, we need to translate the interval expressed in
2463 * microframes to frames.
2465 if (udev->speed == USB_SPEED_HIGH)
2466 normalized_interval = ep_bw->ep_interval;
2467 else
2468 normalized_interval = ep_bw->ep_interval - 3;
2470 if (normalized_interval == 0)
2471 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2472 interval_bw = &bw_table->interval_bw[normalized_interval];
2473 interval_bw->num_packets -= ep_bw->num_packets;
2474 switch (udev->speed) {
2475 case USB_SPEED_LOW:
2476 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2477 break;
2478 case USB_SPEED_FULL:
2479 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2480 break;
2481 case USB_SPEED_HIGH:
2482 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2483 break;
2484 case USB_SPEED_SUPER:
2485 case USB_SPEED_SUPER_PLUS:
2486 case USB_SPEED_UNKNOWN:
2487 case USB_SPEED_WIRELESS:
2488 /* Should never happen because only LS/FS/HS endpoints will get
2489 * added to the endpoint list.
2491 return;
2493 if (tt_info)
2494 tt_info->active_eps -= 1;
2495 list_del_init(&virt_ep->bw_endpoint_list);
2498 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2499 struct xhci_bw_info *ep_bw,
2500 struct xhci_interval_bw_table *bw_table,
2501 struct usb_device *udev,
2502 struct xhci_virt_ep *virt_ep,
2503 struct xhci_tt_bw_info *tt_info)
2505 struct xhci_interval_bw *interval_bw;
2506 struct xhci_virt_ep *smaller_ep;
2507 int normalized_interval;
2509 if (xhci_is_async_ep(ep_bw->type))
2510 return;
2512 if (udev->speed == USB_SPEED_SUPER) {
2513 if (xhci_is_sync_in_ep(ep_bw->type))
2514 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2515 xhci_get_ss_bw_consumed(ep_bw);
2516 else
2517 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2518 xhci_get_ss_bw_consumed(ep_bw);
2519 return;
2522 /* For LS/FS devices, we need to translate the interval expressed in
2523 * microframes to frames.
2525 if (udev->speed == USB_SPEED_HIGH)
2526 normalized_interval = ep_bw->ep_interval;
2527 else
2528 normalized_interval = ep_bw->ep_interval - 3;
2530 if (normalized_interval == 0)
2531 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2532 interval_bw = &bw_table->interval_bw[normalized_interval];
2533 interval_bw->num_packets += ep_bw->num_packets;
2534 switch (udev->speed) {
2535 case USB_SPEED_LOW:
2536 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2537 break;
2538 case USB_SPEED_FULL:
2539 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2540 break;
2541 case USB_SPEED_HIGH:
2542 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2543 break;
2544 case USB_SPEED_SUPER:
2545 case USB_SPEED_SUPER_PLUS:
2546 case USB_SPEED_UNKNOWN:
2547 case USB_SPEED_WIRELESS:
2548 /* Should never happen because only LS/FS/HS endpoints will get
2549 * added to the endpoint list.
2551 return;
2554 if (tt_info)
2555 tt_info->active_eps += 1;
2556 /* Insert the endpoint into the list, largest max packet size first. */
2557 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2558 bw_endpoint_list) {
2559 if (ep_bw->max_packet_size >=
2560 smaller_ep->bw_info.max_packet_size) {
2561 /* Add the new ep before the smaller endpoint */
2562 list_add_tail(&virt_ep->bw_endpoint_list,
2563 &smaller_ep->bw_endpoint_list);
2564 return;
2567 /* Add the new endpoint at the end of the list. */
2568 list_add_tail(&virt_ep->bw_endpoint_list,
2569 &interval_bw->endpoints);
2572 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2573 struct xhci_virt_device *virt_dev,
2574 int old_active_eps)
2576 struct xhci_root_port_bw_info *rh_bw_info;
2577 if (!virt_dev->tt_info)
2578 return;
2580 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2581 if (old_active_eps == 0 &&
2582 virt_dev->tt_info->active_eps != 0) {
2583 rh_bw_info->num_active_tts += 1;
2584 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2585 } else if (old_active_eps != 0 &&
2586 virt_dev->tt_info->active_eps == 0) {
2587 rh_bw_info->num_active_tts -= 1;
2588 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2592 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2593 struct xhci_virt_device *virt_dev,
2594 struct xhci_container_ctx *in_ctx)
2596 struct xhci_bw_info ep_bw_info[31];
2597 int i;
2598 struct xhci_input_control_ctx *ctrl_ctx;
2599 int old_active_eps = 0;
2601 if (virt_dev->tt_info)
2602 old_active_eps = virt_dev->tt_info->active_eps;
2604 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2605 if (!ctrl_ctx) {
2606 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2607 __func__);
2608 return -ENOMEM;
2611 for (i = 0; i < 31; i++) {
2612 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2613 continue;
2615 /* Make a copy of the BW info in case we need to revert this */
2616 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2617 sizeof(ep_bw_info[i]));
2618 /* Drop the endpoint from the interval table if the endpoint is
2619 * being dropped or changed.
2621 if (EP_IS_DROPPED(ctrl_ctx, i))
2622 xhci_drop_ep_from_interval_table(xhci,
2623 &virt_dev->eps[i].bw_info,
2624 virt_dev->bw_table,
2625 virt_dev->udev,
2626 &virt_dev->eps[i],
2627 virt_dev->tt_info);
2629 /* Overwrite the information stored in the endpoints' bw_info */
2630 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2631 for (i = 0; i < 31; i++) {
2632 /* Add any changed or added endpoints to the interval table */
2633 if (EP_IS_ADDED(ctrl_ctx, i))
2634 xhci_add_ep_to_interval_table(xhci,
2635 &virt_dev->eps[i].bw_info,
2636 virt_dev->bw_table,
2637 virt_dev->udev,
2638 &virt_dev->eps[i],
2639 virt_dev->tt_info);
2642 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2643 /* Ok, this fits in the bandwidth we have.
2644 * Update the number of active TTs.
2646 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2647 return 0;
2650 /* We don't have enough bandwidth for this, revert the stored info. */
2651 for (i = 0; i < 31; i++) {
2652 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2653 continue;
2655 /* Drop the new copies of any added or changed endpoints from
2656 * the interval table.
2658 if (EP_IS_ADDED(ctrl_ctx, i)) {
2659 xhci_drop_ep_from_interval_table(xhci,
2660 &virt_dev->eps[i].bw_info,
2661 virt_dev->bw_table,
2662 virt_dev->udev,
2663 &virt_dev->eps[i],
2664 virt_dev->tt_info);
2666 /* Revert the endpoint back to its old information */
2667 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2668 sizeof(ep_bw_info[i]));
2669 /* Add any changed or dropped endpoints back into the table */
2670 if (EP_IS_DROPPED(ctrl_ctx, i))
2671 xhci_add_ep_to_interval_table(xhci,
2672 &virt_dev->eps[i].bw_info,
2673 virt_dev->bw_table,
2674 virt_dev->udev,
2675 &virt_dev->eps[i],
2676 virt_dev->tt_info);
2678 return -ENOMEM;
2682 /* Issue a configure endpoint command or evaluate context command
2683 * and wait for it to finish.
2685 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2686 struct usb_device *udev,
2687 struct xhci_command *command,
2688 bool ctx_change, bool must_succeed)
2690 int ret;
2691 unsigned long flags;
2692 struct xhci_input_control_ctx *ctrl_ctx;
2693 struct xhci_virt_device *virt_dev;
2694 struct xhci_slot_ctx *slot_ctx;
2696 if (!command)
2697 return -EINVAL;
2699 spin_lock_irqsave(&xhci->lock, flags);
2701 if (xhci->xhc_state & XHCI_STATE_DYING) {
2702 spin_unlock_irqrestore(&xhci->lock, flags);
2703 return -ESHUTDOWN;
2706 virt_dev = xhci->devs[udev->slot_id];
2708 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2709 if (!ctrl_ctx) {
2710 spin_unlock_irqrestore(&xhci->lock, flags);
2711 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2712 __func__);
2713 return -ENOMEM;
2716 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2717 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2718 spin_unlock_irqrestore(&xhci->lock, flags);
2719 xhci_warn(xhci, "Not enough host resources, "
2720 "active endpoint contexts = %u\n",
2721 xhci->num_active_eps);
2722 return -ENOMEM;
2724 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2725 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2726 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2727 xhci_free_host_resources(xhci, ctrl_ctx);
2728 spin_unlock_irqrestore(&xhci->lock, flags);
2729 xhci_warn(xhci, "Not enough bandwidth\n");
2730 return -ENOMEM;
2733 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2734 trace_xhci_configure_endpoint(slot_ctx);
2736 if (!ctx_change)
2737 ret = xhci_queue_configure_endpoint(xhci, command,
2738 command->in_ctx->dma,
2739 udev->slot_id, must_succeed);
2740 else
2741 ret = xhci_queue_evaluate_context(xhci, command,
2742 command->in_ctx->dma,
2743 udev->slot_id, must_succeed);
2744 if (ret < 0) {
2745 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2746 xhci_free_host_resources(xhci, ctrl_ctx);
2747 spin_unlock_irqrestore(&xhci->lock, flags);
2748 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2749 "FIXME allocate a new ring segment");
2750 return -ENOMEM;
2752 xhci_ring_cmd_db(xhci);
2753 spin_unlock_irqrestore(&xhci->lock, flags);
2755 /* Wait for the configure endpoint command to complete */
2756 wait_for_completion(command->completion);
2758 if (!ctx_change)
2759 ret = xhci_configure_endpoint_result(xhci, udev,
2760 &command->status);
2761 else
2762 ret = xhci_evaluate_context_result(xhci, udev,
2763 &command->status);
2765 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2766 spin_lock_irqsave(&xhci->lock, flags);
2767 /* If the command failed, remove the reserved resources.
2768 * Otherwise, clean up the estimate to include dropped eps.
2770 if (ret)
2771 xhci_free_host_resources(xhci, ctrl_ctx);
2772 else
2773 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2774 spin_unlock_irqrestore(&xhci->lock, flags);
2776 return ret;
2779 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2780 struct xhci_virt_device *vdev, int i)
2782 struct xhci_virt_ep *ep = &vdev->eps[i];
2784 if (ep->ep_state & EP_HAS_STREAMS) {
2785 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2786 xhci_get_endpoint_address(i));
2787 xhci_free_stream_info(xhci, ep->stream_info);
2788 ep->stream_info = NULL;
2789 ep->ep_state &= ~EP_HAS_STREAMS;
2793 /* Called after one or more calls to xhci_add_endpoint() or
2794 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2795 * to call xhci_reset_bandwidth().
2797 * Since we are in the middle of changing either configuration or
2798 * installing a new alt setting, the USB core won't allow URBs to be
2799 * enqueued for any endpoint on the old config or interface. Nothing
2800 * else should be touching the xhci->devs[slot_id] structure, so we
2801 * don't need to take the xhci->lock for manipulating that.
2803 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2805 int i;
2806 int ret = 0;
2807 struct xhci_hcd *xhci;
2808 struct xhci_virt_device *virt_dev;
2809 struct xhci_input_control_ctx *ctrl_ctx;
2810 struct xhci_slot_ctx *slot_ctx;
2811 struct xhci_command *command;
2813 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2814 if (ret <= 0)
2815 return ret;
2816 xhci = hcd_to_xhci(hcd);
2817 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2818 (xhci->xhc_state & XHCI_STATE_REMOVING))
2819 return -ENODEV;
2821 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2822 virt_dev = xhci->devs[udev->slot_id];
2824 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2825 if (!command)
2826 return -ENOMEM;
2828 command->in_ctx = virt_dev->in_ctx;
2830 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2831 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2832 if (!ctrl_ctx) {
2833 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2834 __func__);
2835 ret = -ENOMEM;
2836 goto command_cleanup;
2838 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2839 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2840 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2842 /* Don't issue the command if there's no endpoints to update. */
2843 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2844 ctrl_ctx->drop_flags == 0) {
2845 ret = 0;
2846 goto command_cleanup;
2848 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2849 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2850 for (i = 31; i >= 1; i--) {
2851 __le32 le32 = cpu_to_le32(BIT(i));
2853 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2854 || (ctrl_ctx->add_flags & le32) || i == 1) {
2855 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2856 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2857 break;
2861 ret = xhci_configure_endpoint(xhci, udev, command,
2862 false, false);
2863 if (ret)
2864 /* Callee should call reset_bandwidth() */
2865 goto command_cleanup;
2867 /* Free any rings that were dropped, but not changed. */
2868 for (i = 1; i < 31; i++) {
2869 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2870 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2871 xhci_free_endpoint_ring(xhci, virt_dev, i);
2872 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2875 xhci_zero_in_ctx(xhci, virt_dev);
2877 * Install any rings for completely new endpoints or changed endpoints,
2878 * and free any old rings from changed endpoints.
2880 for (i = 1; i < 31; i++) {
2881 if (!virt_dev->eps[i].new_ring)
2882 continue;
2883 /* Only free the old ring if it exists.
2884 * It may not if this is the first add of an endpoint.
2886 if (virt_dev->eps[i].ring) {
2887 xhci_free_endpoint_ring(xhci, virt_dev, i);
2889 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2890 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2891 virt_dev->eps[i].new_ring = NULL;
2893 command_cleanup:
2894 kfree(command->completion);
2895 kfree(command);
2897 return ret;
2900 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2902 struct xhci_hcd *xhci;
2903 struct xhci_virt_device *virt_dev;
2904 int i, ret;
2906 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2907 if (ret <= 0)
2908 return;
2909 xhci = hcd_to_xhci(hcd);
2911 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2912 virt_dev = xhci->devs[udev->slot_id];
2913 /* Free any rings allocated for added endpoints */
2914 for (i = 0; i < 31; i++) {
2915 if (virt_dev->eps[i].new_ring) {
2916 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2917 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2918 virt_dev->eps[i].new_ring = NULL;
2921 xhci_zero_in_ctx(xhci, virt_dev);
2924 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2925 struct xhci_container_ctx *in_ctx,
2926 struct xhci_container_ctx *out_ctx,
2927 struct xhci_input_control_ctx *ctrl_ctx,
2928 u32 add_flags, u32 drop_flags)
2930 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2931 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2932 xhci_slot_copy(xhci, in_ctx, out_ctx);
2933 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2936 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2937 unsigned int slot_id, unsigned int ep_index,
2938 struct xhci_dequeue_state *deq_state)
2940 struct xhci_input_control_ctx *ctrl_ctx;
2941 struct xhci_container_ctx *in_ctx;
2942 struct xhci_ep_ctx *ep_ctx;
2943 u32 added_ctxs;
2944 dma_addr_t addr;
2946 in_ctx = xhci->devs[slot_id]->in_ctx;
2947 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2948 if (!ctrl_ctx) {
2949 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2950 __func__);
2951 return;
2954 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2955 xhci->devs[slot_id]->out_ctx, ep_index);
2956 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2957 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2958 deq_state->new_deq_ptr);
2959 if (addr == 0) {
2960 xhci_warn(xhci, "WARN Cannot submit config ep after "
2961 "reset ep command\n");
2962 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2963 deq_state->new_deq_seg,
2964 deq_state->new_deq_ptr);
2965 return;
2967 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2969 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2970 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2971 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2972 added_ctxs, added_ctxs);
2975 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2976 unsigned int stream_id, struct xhci_td *td)
2978 struct xhci_dequeue_state deq_state;
2979 struct usb_device *udev = td->urb->dev;
2981 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2982 "Cleaning up stalled endpoint ring");
2983 /* We need to move the HW's dequeue pointer past this TD,
2984 * or it will attempt to resend it on the next doorbell ring.
2986 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2987 ep_index, stream_id, td, &deq_state);
2989 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2990 return;
2992 /* HW with the reset endpoint quirk will use the saved dequeue state to
2993 * issue a configure endpoint command later.
2995 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2996 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2997 "Queueing new dequeue state");
2998 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2999 ep_index, &deq_state);
3000 } else {
3001 /* Better hope no one uses the input context between now and the
3002 * reset endpoint completion!
3003 * XXX: No idea how this hardware will react when stream rings
3004 * are enabled.
3006 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3007 "Setting up input context for "
3008 "configure endpoint command");
3009 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3010 ep_index, &deq_state);
3015 * Called after usb core issues a clear halt control message.
3016 * The host side of the halt should already be cleared by a reset endpoint
3017 * command issued when the STALL event was received.
3019 * The reset endpoint command may only be issued to endpoints in the halted
3020 * state. For software that wishes to reset the data toggle or sequence number
3021 * of an endpoint that isn't in the halted state this function will issue a
3022 * configure endpoint command with the Drop and Add bits set for the target
3023 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3026 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3027 struct usb_host_endpoint *host_ep)
3029 struct xhci_hcd *xhci;
3030 struct usb_device *udev;
3031 struct xhci_virt_device *vdev;
3032 struct xhci_virt_ep *ep;
3033 struct xhci_input_control_ctx *ctrl_ctx;
3034 struct xhci_command *stop_cmd, *cfg_cmd;
3035 unsigned int ep_index;
3036 unsigned long flags;
3037 u32 ep_flag;
3039 xhci = hcd_to_xhci(hcd);
3040 if (!host_ep->hcpriv)
3041 return;
3042 udev = (struct usb_device *) host_ep->hcpriv;
3043 vdev = xhci->devs[udev->slot_id];
3044 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3045 ep = &vdev->eps[ep_index];
3047 /* Bail out if toggle is already being cleared by a endpoint reset */
3048 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3049 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3050 return;
3052 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3053 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3054 usb_endpoint_xfer_isoc(&host_ep->desc))
3055 return;
3057 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3059 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3060 return;
3062 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3063 if (!stop_cmd)
3064 return;
3066 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3067 if (!cfg_cmd)
3068 goto cleanup;
3070 spin_lock_irqsave(&xhci->lock, flags);
3072 /* block queuing new trbs and ringing ep doorbell */
3073 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3076 * Make sure endpoint ring is empty before resetting the toggle/seq.
3077 * Driver is required to synchronously cancel all transfer request.
3078 * Stop the endpoint to force xHC to update the output context
3081 if (!list_empty(&ep->ring->td_list)) {
3082 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3083 spin_unlock_irqrestore(&xhci->lock, flags);
3084 xhci_free_command(xhci, cfg_cmd);
3085 goto cleanup;
3087 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3088 xhci_ring_cmd_db(xhci);
3089 spin_unlock_irqrestore(&xhci->lock, flags);
3091 wait_for_completion(stop_cmd->completion);
3093 spin_lock_irqsave(&xhci->lock, flags);
3095 /* config ep command clears toggle if add and drop ep flags are set */
3096 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3097 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3098 ctrl_ctx, ep_flag, ep_flag);
3099 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3101 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3102 udev->slot_id, false);
3103 xhci_ring_cmd_db(xhci);
3104 spin_unlock_irqrestore(&xhci->lock, flags);
3106 wait_for_completion(cfg_cmd->completion);
3108 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3109 xhci_free_command(xhci, cfg_cmd);
3110 cleanup:
3111 xhci_free_command(xhci, stop_cmd);
3114 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3115 struct usb_device *udev, struct usb_host_endpoint *ep,
3116 unsigned int slot_id)
3118 int ret;
3119 unsigned int ep_index;
3120 unsigned int ep_state;
3122 if (!ep)
3123 return -EINVAL;
3124 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3125 if (ret <= 0)
3126 return -EINVAL;
3127 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3128 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3129 " descriptor for ep 0x%x does not support streams\n",
3130 ep->desc.bEndpointAddress);
3131 return -EINVAL;
3134 ep_index = xhci_get_endpoint_index(&ep->desc);
3135 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3136 if (ep_state & EP_HAS_STREAMS ||
3137 ep_state & EP_GETTING_STREAMS) {
3138 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3139 "already has streams set up.\n",
3140 ep->desc.bEndpointAddress);
3141 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3142 "dynamic stream context array reallocation.\n");
3143 return -EINVAL;
3145 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3146 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3147 "endpoint 0x%x; URBs are pending.\n",
3148 ep->desc.bEndpointAddress);
3149 return -EINVAL;
3151 return 0;
3154 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3155 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3157 unsigned int max_streams;
3159 /* The stream context array size must be a power of two */
3160 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3162 * Find out how many primary stream array entries the host controller
3163 * supports. Later we may use secondary stream arrays (similar to 2nd
3164 * level page entries), but that's an optional feature for xHCI host
3165 * controllers. xHCs must support at least 4 stream IDs.
3167 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3168 if (*num_stream_ctxs > max_streams) {
3169 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3170 max_streams);
3171 *num_stream_ctxs = max_streams;
3172 *num_streams = max_streams;
3176 /* Returns an error code if one of the endpoint already has streams.
3177 * This does not change any data structures, it only checks and gathers
3178 * information.
3180 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3181 struct usb_device *udev,
3182 struct usb_host_endpoint **eps, unsigned int num_eps,
3183 unsigned int *num_streams, u32 *changed_ep_bitmask)
3185 unsigned int max_streams;
3186 unsigned int endpoint_flag;
3187 int i;
3188 int ret;
3190 for (i = 0; i < num_eps; i++) {
3191 ret = xhci_check_streams_endpoint(xhci, udev,
3192 eps[i], udev->slot_id);
3193 if (ret < 0)
3194 return ret;
3196 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3197 if (max_streams < (*num_streams - 1)) {
3198 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3199 eps[i]->desc.bEndpointAddress,
3200 max_streams);
3201 *num_streams = max_streams+1;
3204 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3205 if (*changed_ep_bitmask & endpoint_flag)
3206 return -EINVAL;
3207 *changed_ep_bitmask |= endpoint_flag;
3209 return 0;
3212 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3213 struct usb_device *udev,
3214 struct usb_host_endpoint **eps, unsigned int num_eps)
3216 u32 changed_ep_bitmask = 0;
3217 unsigned int slot_id;
3218 unsigned int ep_index;
3219 unsigned int ep_state;
3220 int i;
3222 slot_id = udev->slot_id;
3223 if (!xhci->devs[slot_id])
3224 return 0;
3226 for (i = 0; i < num_eps; i++) {
3227 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3228 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3229 /* Are streams already being freed for the endpoint? */
3230 if (ep_state & EP_GETTING_NO_STREAMS) {
3231 xhci_warn(xhci, "WARN Can't disable streams for "
3232 "endpoint 0x%x, "
3233 "streams are being disabled already\n",
3234 eps[i]->desc.bEndpointAddress);
3235 return 0;
3237 /* Are there actually any streams to free? */
3238 if (!(ep_state & EP_HAS_STREAMS) &&
3239 !(ep_state & EP_GETTING_STREAMS)) {
3240 xhci_warn(xhci, "WARN Can't disable streams for "
3241 "endpoint 0x%x, "
3242 "streams are already disabled!\n",
3243 eps[i]->desc.bEndpointAddress);
3244 xhci_warn(xhci, "WARN xhci_free_streams() called "
3245 "with non-streams endpoint\n");
3246 return 0;
3248 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3250 return changed_ep_bitmask;
3254 * The USB device drivers use this function (through the HCD interface in USB
3255 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3256 * coordinate mass storage command queueing across multiple endpoints (basically
3257 * a stream ID == a task ID).
3259 * Setting up streams involves allocating the same size stream context array
3260 * for each endpoint and issuing a configure endpoint command for all endpoints.
3262 * Don't allow the call to succeed if one endpoint only supports one stream
3263 * (which means it doesn't support streams at all).
3265 * Drivers may get less stream IDs than they asked for, if the host controller
3266 * hardware or endpoints claim they can't support the number of requested
3267 * stream IDs.
3269 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3270 struct usb_host_endpoint **eps, unsigned int num_eps,
3271 unsigned int num_streams, gfp_t mem_flags)
3273 int i, ret;
3274 struct xhci_hcd *xhci;
3275 struct xhci_virt_device *vdev;
3276 struct xhci_command *config_cmd;
3277 struct xhci_input_control_ctx *ctrl_ctx;
3278 unsigned int ep_index;
3279 unsigned int num_stream_ctxs;
3280 unsigned int max_packet;
3281 unsigned long flags;
3282 u32 changed_ep_bitmask = 0;
3284 if (!eps)
3285 return -EINVAL;
3287 /* Add one to the number of streams requested to account for
3288 * stream 0 that is reserved for xHCI usage.
3290 num_streams += 1;
3291 xhci = hcd_to_xhci(hcd);
3292 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3293 num_streams);
3295 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3296 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3297 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3298 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3299 return -ENOSYS;
3302 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3303 if (!config_cmd)
3304 return -ENOMEM;
3306 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3307 if (!ctrl_ctx) {
3308 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3309 __func__);
3310 xhci_free_command(xhci, config_cmd);
3311 return -ENOMEM;
3314 /* Check to make sure all endpoints are not already configured for
3315 * streams. While we're at it, find the maximum number of streams that
3316 * all the endpoints will support and check for duplicate endpoints.
3318 spin_lock_irqsave(&xhci->lock, flags);
3319 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3320 num_eps, &num_streams, &changed_ep_bitmask);
3321 if (ret < 0) {
3322 xhci_free_command(xhci, config_cmd);
3323 spin_unlock_irqrestore(&xhci->lock, flags);
3324 return ret;
3326 if (num_streams <= 1) {
3327 xhci_warn(xhci, "WARN: endpoints can't handle "
3328 "more than one stream.\n");
3329 xhci_free_command(xhci, config_cmd);
3330 spin_unlock_irqrestore(&xhci->lock, flags);
3331 return -EINVAL;
3333 vdev = xhci->devs[udev->slot_id];
3334 /* Mark each endpoint as being in transition, so
3335 * xhci_urb_enqueue() will reject all URBs.
3337 for (i = 0; i < num_eps; i++) {
3338 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3339 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3341 spin_unlock_irqrestore(&xhci->lock, flags);
3343 /* Setup internal data structures and allocate HW data structures for
3344 * streams (but don't install the HW structures in the input context
3345 * until we're sure all memory allocation succeeded).
3347 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3348 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3349 num_stream_ctxs, num_streams);
3351 for (i = 0; i < num_eps; i++) {
3352 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3353 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3354 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3355 num_stream_ctxs,
3356 num_streams,
3357 max_packet, mem_flags);
3358 if (!vdev->eps[ep_index].stream_info)
3359 goto cleanup;
3360 /* Set maxPstreams in endpoint context and update deq ptr to
3361 * point to stream context array. FIXME
3365 /* Set up the input context for a configure endpoint command. */
3366 for (i = 0; i < num_eps; i++) {
3367 struct xhci_ep_ctx *ep_ctx;
3369 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3370 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3372 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3373 vdev->out_ctx, ep_index);
3374 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3375 vdev->eps[ep_index].stream_info);
3377 /* Tell the HW to drop its old copy of the endpoint context info
3378 * and add the updated copy from the input context.
3380 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3381 vdev->out_ctx, ctrl_ctx,
3382 changed_ep_bitmask, changed_ep_bitmask);
3384 /* Issue and wait for the configure endpoint command */
3385 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3386 false, false);
3388 /* xHC rejected the configure endpoint command for some reason, so we
3389 * leave the old ring intact and free our internal streams data
3390 * structure.
3392 if (ret < 0)
3393 goto cleanup;
3395 spin_lock_irqsave(&xhci->lock, flags);
3396 for (i = 0; i < num_eps; i++) {
3397 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3398 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3399 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3400 udev->slot_id, ep_index);
3401 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3403 xhci_free_command(xhci, config_cmd);
3404 spin_unlock_irqrestore(&xhci->lock, flags);
3406 /* Subtract 1 for stream 0, which drivers can't use */
3407 return num_streams - 1;
3409 cleanup:
3410 /* If it didn't work, free the streams! */
3411 for (i = 0; i < num_eps; i++) {
3412 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3413 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3414 vdev->eps[ep_index].stream_info = NULL;
3415 /* FIXME Unset maxPstreams in endpoint context and
3416 * update deq ptr to point to normal string ring.
3418 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3419 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3420 xhci_endpoint_zero(xhci, vdev, eps[i]);
3422 xhci_free_command(xhci, config_cmd);
3423 return -ENOMEM;
3426 /* Transition the endpoint from using streams to being a "normal" endpoint
3427 * without streams.
3429 * Modify the endpoint context state, submit a configure endpoint command,
3430 * and free all endpoint rings for streams if that completes successfully.
3432 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3433 struct usb_host_endpoint **eps, unsigned int num_eps,
3434 gfp_t mem_flags)
3436 int i, ret;
3437 struct xhci_hcd *xhci;
3438 struct xhci_virt_device *vdev;
3439 struct xhci_command *command;
3440 struct xhci_input_control_ctx *ctrl_ctx;
3441 unsigned int ep_index;
3442 unsigned long flags;
3443 u32 changed_ep_bitmask;
3445 xhci = hcd_to_xhci(hcd);
3446 vdev = xhci->devs[udev->slot_id];
3448 /* Set up a configure endpoint command to remove the streams rings */
3449 spin_lock_irqsave(&xhci->lock, flags);
3450 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3451 udev, eps, num_eps);
3452 if (changed_ep_bitmask == 0) {
3453 spin_unlock_irqrestore(&xhci->lock, flags);
3454 return -EINVAL;
3457 /* Use the xhci_command structure from the first endpoint. We may have
3458 * allocated too many, but the driver may call xhci_free_streams() for
3459 * each endpoint it grouped into one call to xhci_alloc_streams().
3461 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3462 command = vdev->eps[ep_index].stream_info->free_streams_command;
3463 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3464 if (!ctrl_ctx) {
3465 spin_unlock_irqrestore(&xhci->lock, flags);
3466 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3467 __func__);
3468 return -EINVAL;
3471 for (i = 0; i < num_eps; i++) {
3472 struct xhci_ep_ctx *ep_ctx;
3474 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3475 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3476 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3477 EP_GETTING_NO_STREAMS;
3479 xhci_endpoint_copy(xhci, command->in_ctx,
3480 vdev->out_ctx, ep_index);
3481 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3482 &vdev->eps[ep_index]);
3484 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3485 vdev->out_ctx, ctrl_ctx,
3486 changed_ep_bitmask, changed_ep_bitmask);
3487 spin_unlock_irqrestore(&xhci->lock, flags);
3489 /* Issue and wait for the configure endpoint command,
3490 * which must succeed.
3492 ret = xhci_configure_endpoint(xhci, udev, command,
3493 false, true);
3495 /* xHC rejected the configure endpoint command for some reason, so we
3496 * leave the streams rings intact.
3498 if (ret < 0)
3499 return ret;
3501 spin_lock_irqsave(&xhci->lock, flags);
3502 for (i = 0; i < num_eps; i++) {
3503 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3504 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3505 vdev->eps[ep_index].stream_info = NULL;
3506 /* FIXME Unset maxPstreams in endpoint context and
3507 * update deq ptr to point to normal string ring.
3509 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3510 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3512 spin_unlock_irqrestore(&xhci->lock, flags);
3514 return 0;
3518 * Deletes endpoint resources for endpoints that were active before a Reset
3519 * Device command, or a Disable Slot command. The Reset Device command leaves
3520 * the control endpoint intact, whereas the Disable Slot command deletes it.
3522 * Must be called with xhci->lock held.
3524 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3525 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3527 int i;
3528 unsigned int num_dropped_eps = 0;
3529 unsigned int drop_flags = 0;
3531 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3532 if (virt_dev->eps[i].ring) {
3533 drop_flags |= 1 << i;
3534 num_dropped_eps++;
3537 xhci->num_active_eps -= num_dropped_eps;
3538 if (num_dropped_eps)
3539 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3540 "Dropped %u ep ctxs, flags = 0x%x, "
3541 "%u now active.",
3542 num_dropped_eps, drop_flags,
3543 xhci->num_active_eps);
3547 * This submits a Reset Device Command, which will set the device state to 0,
3548 * set the device address to 0, and disable all the endpoints except the default
3549 * control endpoint. The USB core should come back and call
3550 * xhci_address_device(), and then re-set up the configuration. If this is
3551 * called because of a usb_reset_and_verify_device(), then the old alternate
3552 * settings will be re-installed through the normal bandwidth allocation
3553 * functions.
3555 * Wait for the Reset Device command to finish. Remove all structures
3556 * associated with the endpoints that were disabled. Clear the input device
3557 * structure? Reset the control endpoint 0 max packet size?
3559 * If the virt_dev to be reset does not exist or does not match the udev,
3560 * it means the device is lost, possibly due to the xHC restore error and
3561 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3562 * re-allocate the device.
3564 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3565 struct usb_device *udev)
3567 int ret, i;
3568 unsigned long flags;
3569 struct xhci_hcd *xhci;
3570 unsigned int slot_id;
3571 struct xhci_virt_device *virt_dev;
3572 struct xhci_command *reset_device_cmd;
3573 struct xhci_slot_ctx *slot_ctx;
3574 int old_active_eps = 0;
3576 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3577 if (ret <= 0)
3578 return ret;
3579 xhci = hcd_to_xhci(hcd);
3580 slot_id = udev->slot_id;
3581 virt_dev = xhci->devs[slot_id];
3582 if (!virt_dev) {
3583 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3584 "not exist. Re-allocate the device\n", slot_id);
3585 ret = xhci_alloc_dev(hcd, udev);
3586 if (ret == 1)
3587 return 0;
3588 else
3589 return -EINVAL;
3592 if (virt_dev->tt_info)
3593 old_active_eps = virt_dev->tt_info->active_eps;
3595 if (virt_dev->udev != udev) {
3596 /* If the virt_dev and the udev does not match, this virt_dev
3597 * may belong to another udev.
3598 * Re-allocate the device.
3600 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3601 "not match the udev. Re-allocate the device\n",
3602 slot_id);
3603 ret = xhci_alloc_dev(hcd, udev);
3604 if (ret == 1)
3605 return 0;
3606 else
3607 return -EINVAL;
3610 /* If device is not setup, there is no point in resetting it */
3611 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3612 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3613 SLOT_STATE_DISABLED)
3614 return 0;
3616 trace_xhci_discover_or_reset_device(slot_ctx);
3618 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3619 /* Allocate the command structure that holds the struct completion.
3620 * Assume we're in process context, since the normal device reset
3621 * process has to wait for the device anyway. Storage devices are
3622 * reset as part of error handling, so use GFP_NOIO instead of
3623 * GFP_KERNEL.
3625 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3626 if (!reset_device_cmd) {
3627 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3628 return -ENOMEM;
3631 /* Attempt to submit the Reset Device command to the command ring */
3632 spin_lock_irqsave(&xhci->lock, flags);
3634 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3635 if (ret) {
3636 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3637 spin_unlock_irqrestore(&xhci->lock, flags);
3638 goto command_cleanup;
3640 xhci_ring_cmd_db(xhci);
3641 spin_unlock_irqrestore(&xhci->lock, flags);
3643 /* Wait for the Reset Device command to finish */
3644 wait_for_completion(reset_device_cmd->completion);
3646 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3647 * unless we tried to reset a slot ID that wasn't enabled,
3648 * or the device wasn't in the addressed or configured state.
3650 ret = reset_device_cmd->status;
3651 switch (ret) {
3652 case COMP_COMMAND_ABORTED:
3653 case COMP_COMMAND_RING_STOPPED:
3654 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3655 ret = -ETIME;
3656 goto command_cleanup;
3657 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3658 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3659 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3660 slot_id,
3661 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3662 xhci_dbg(xhci, "Not freeing device rings.\n");
3663 /* Don't treat this as an error. May change my mind later. */
3664 ret = 0;
3665 goto command_cleanup;
3666 case COMP_SUCCESS:
3667 xhci_dbg(xhci, "Successful reset device command.\n");
3668 break;
3669 default:
3670 if (xhci_is_vendor_info_code(xhci, ret))
3671 break;
3672 xhci_warn(xhci, "Unknown completion code %u for "
3673 "reset device command.\n", ret);
3674 ret = -EINVAL;
3675 goto command_cleanup;
3678 /* Free up host controller endpoint resources */
3679 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3680 spin_lock_irqsave(&xhci->lock, flags);
3681 /* Don't delete the default control endpoint resources */
3682 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3683 spin_unlock_irqrestore(&xhci->lock, flags);
3686 /* Everything but endpoint 0 is disabled, so free the rings. */
3687 for (i = 1; i < 31; i++) {
3688 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3690 if (ep->ep_state & EP_HAS_STREAMS) {
3691 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3692 xhci_get_endpoint_address(i));
3693 xhci_free_stream_info(xhci, ep->stream_info);
3694 ep->stream_info = NULL;
3695 ep->ep_state &= ~EP_HAS_STREAMS;
3698 if (ep->ring) {
3699 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3700 xhci_free_endpoint_ring(xhci, virt_dev, i);
3702 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3703 xhci_drop_ep_from_interval_table(xhci,
3704 &virt_dev->eps[i].bw_info,
3705 virt_dev->bw_table,
3706 udev,
3707 &virt_dev->eps[i],
3708 virt_dev->tt_info);
3709 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3711 /* If necessary, update the number of active TTs on this root port */
3712 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3713 ret = 0;
3715 command_cleanup:
3716 xhci_free_command(xhci, reset_device_cmd);
3717 return ret;
3721 * At this point, the struct usb_device is about to go away, the device has
3722 * disconnected, and all traffic has been stopped and the endpoints have been
3723 * disabled. Free any HC data structures associated with that device.
3725 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3727 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3728 struct xhci_virt_device *virt_dev;
3729 struct xhci_slot_ctx *slot_ctx;
3730 int i, ret;
3732 #ifndef CONFIG_USB_DEFAULT_PERSIST
3734 * We called pm_runtime_get_noresume when the device was attached.
3735 * Decrement the counter here to allow controller to runtime suspend
3736 * if no devices remain.
3738 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3739 pm_runtime_put_noidle(hcd->self.controller);
3740 #endif
3742 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3743 /* If the host is halted due to driver unload, we still need to free the
3744 * device.
3746 if (ret <= 0 && ret != -ENODEV)
3747 return;
3749 virt_dev = xhci->devs[udev->slot_id];
3750 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751 trace_xhci_free_dev(slot_ctx);
3753 /* Stop any wayward timer functions (which may grab the lock) */
3754 for (i = 0; i < 31; i++) {
3755 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3756 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3758 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3759 virt_dev->udev = NULL;
3760 ret = xhci_disable_slot(xhci, udev->slot_id);
3761 if (ret)
3762 xhci_free_virt_device(xhci, udev->slot_id);
3765 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3767 struct xhci_command *command;
3768 unsigned long flags;
3769 u32 state;
3770 int ret = 0;
3772 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3773 if (!command)
3774 return -ENOMEM;
3776 spin_lock_irqsave(&xhci->lock, flags);
3777 /* Don't disable the slot if the host controller is dead. */
3778 state = readl(&xhci->op_regs->status);
3779 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3780 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3781 spin_unlock_irqrestore(&xhci->lock, flags);
3782 kfree(command);
3783 return -ENODEV;
3786 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3787 slot_id);
3788 if (ret) {
3789 spin_unlock_irqrestore(&xhci->lock, flags);
3790 kfree(command);
3791 return ret;
3793 xhci_ring_cmd_db(xhci);
3794 spin_unlock_irqrestore(&xhci->lock, flags);
3795 return ret;
3799 * Checks if we have enough host controller resources for the default control
3800 * endpoint.
3802 * Must be called with xhci->lock held.
3804 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3806 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3807 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3808 "Not enough ep ctxs: "
3809 "%u active, need to add 1, limit is %u.",
3810 xhci->num_active_eps, xhci->limit_active_eps);
3811 return -ENOMEM;
3813 xhci->num_active_eps += 1;
3814 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3815 "Adding 1 ep ctx, %u now active.",
3816 xhci->num_active_eps);
3817 return 0;
3822 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3823 * timed out, or allocating memory failed. Returns 1 on success.
3825 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3827 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3828 struct xhci_virt_device *vdev;
3829 struct xhci_slot_ctx *slot_ctx;
3830 unsigned long flags;
3831 int ret, slot_id;
3832 struct xhci_command *command;
3834 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3835 if (!command)
3836 return 0;
3838 spin_lock_irqsave(&xhci->lock, flags);
3839 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3840 if (ret) {
3841 spin_unlock_irqrestore(&xhci->lock, flags);
3842 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3843 xhci_free_command(xhci, command);
3844 return 0;
3846 xhci_ring_cmd_db(xhci);
3847 spin_unlock_irqrestore(&xhci->lock, flags);
3849 wait_for_completion(command->completion);
3850 slot_id = command->slot_id;
3852 if (!slot_id || command->status != COMP_SUCCESS) {
3853 xhci_err(xhci, "Error while assigning device slot ID\n");
3854 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3855 HCS_MAX_SLOTS(
3856 readl(&xhci->cap_regs->hcs_params1)));
3857 xhci_free_command(xhci, command);
3858 return 0;
3861 xhci_free_command(xhci, command);
3863 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3864 spin_lock_irqsave(&xhci->lock, flags);
3865 ret = xhci_reserve_host_control_ep_resources(xhci);
3866 if (ret) {
3867 spin_unlock_irqrestore(&xhci->lock, flags);
3868 xhci_warn(xhci, "Not enough host resources, "
3869 "active endpoint contexts = %u\n",
3870 xhci->num_active_eps);
3871 goto disable_slot;
3873 spin_unlock_irqrestore(&xhci->lock, flags);
3875 /* Use GFP_NOIO, since this function can be called from
3876 * xhci_discover_or_reset_device(), which may be called as part of
3877 * mass storage driver error handling.
3879 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3880 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3881 goto disable_slot;
3883 vdev = xhci->devs[slot_id];
3884 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3885 trace_xhci_alloc_dev(slot_ctx);
3887 udev->slot_id = slot_id;
3889 xhci_debugfs_create_slot(xhci, slot_id);
3891 #ifndef CONFIG_USB_DEFAULT_PERSIST
3893 * If resetting upon resume, we can't put the controller into runtime
3894 * suspend if there is a device attached.
3896 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3897 pm_runtime_get_noresume(hcd->self.controller);
3898 #endif
3900 /* Is this a LS or FS device under a HS hub? */
3901 /* Hub or peripherial? */
3902 return 1;
3904 disable_slot:
3905 ret = xhci_disable_slot(xhci, udev->slot_id);
3906 if (ret)
3907 xhci_free_virt_device(xhci, udev->slot_id);
3909 return 0;
3913 * Issue an Address Device command and optionally send a corresponding
3914 * SetAddress request to the device.
3916 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3917 enum xhci_setup_dev setup)
3919 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3920 unsigned long flags;
3921 struct xhci_virt_device *virt_dev;
3922 int ret = 0;
3923 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3924 struct xhci_slot_ctx *slot_ctx;
3925 struct xhci_input_control_ctx *ctrl_ctx;
3926 u64 temp_64;
3927 struct xhci_command *command = NULL;
3929 mutex_lock(&xhci->mutex);
3931 if (xhci->xhc_state) { /* dying, removing or halted */
3932 ret = -ESHUTDOWN;
3933 goto out;
3936 if (!udev->slot_id) {
3937 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3938 "Bad Slot ID %d", udev->slot_id);
3939 ret = -EINVAL;
3940 goto out;
3943 virt_dev = xhci->devs[udev->slot_id];
3945 if (WARN_ON(!virt_dev)) {
3947 * In plug/unplug torture test with an NEC controller,
3948 * a zero-dereference was observed once due to virt_dev = 0.
3949 * Print useful debug rather than crash if it is observed again!
3951 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3952 udev->slot_id);
3953 ret = -EINVAL;
3954 goto out;
3956 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3957 trace_xhci_setup_device_slot(slot_ctx);
3959 if (setup == SETUP_CONTEXT_ONLY) {
3960 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3961 SLOT_STATE_DEFAULT) {
3962 xhci_dbg(xhci, "Slot already in default state\n");
3963 goto out;
3967 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3968 if (!command) {
3969 ret = -ENOMEM;
3970 goto out;
3973 command->in_ctx = virt_dev->in_ctx;
3975 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3976 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3977 if (!ctrl_ctx) {
3978 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3979 __func__);
3980 ret = -EINVAL;
3981 goto out;
3984 * If this is the first Set Address since device plug-in or
3985 * virt_device realloaction after a resume with an xHCI power loss,
3986 * then set up the slot context.
3988 if (!slot_ctx->dev_info)
3989 xhci_setup_addressable_virt_dev(xhci, udev);
3990 /* Otherwise, update the control endpoint ring enqueue pointer. */
3991 else
3992 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3993 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3994 ctrl_ctx->drop_flags = 0;
3996 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3997 le32_to_cpu(slot_ctx->dev_info) >> 27);
3999 spin_lock_irqsave(&xhci->lock, flags);
4000 trace_xhci_setup_device(virt_dev);
4001 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4002 udev->slot_id, setup);
4003 if (ret) {
4004 spin_unlock_irqrestore(&xhci->lock, flags);
4005 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4006 "FIXME: allocate a command ring segment");
4007 goto out;
4009 xhci_ring_cmd_db(xhci);
4010 spin_unlock_irqrestore(&xhci->lock, flags);
4012 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4013 wait_for_completion(command->completion);
4015 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4016 * the SetAddress() "recovery interval" required by USB and aborting the
4017 * command on a timeout.
4019 switch (command->status) {
4020 case COMP_COMMAND_ABORTED:
4021 case COMP_COMMAND_RING_STOPPED:
4022 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4023 ret = -ETIME;
4024 break;
4025 case COMP_CONTEXT_STATE_ERROR:
4026 case COMP_SLOT_NOT_ENABLED_ERROR:
4027 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4028 act, udev->slot_id);
4029 ret = -EINVAL;
4030 break;
4031 case COMP_USB_TRANSACTION_ERROR:
4032 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4034 mutex_unlock(&xhci->mutex);
4035 ret = xhci_disable_slot(xhci, udev->slot_id);
4036 if (!ret)
4037 xhci_alloc_dev(hcd, udev);
4038 kfree(command->completion);
4039 kfree(command);
4040 return -EPROTO;
4041 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4042 dev_warn(&udev->dev,
4043 "ERROR: Incompatible device for setup %s command\n", act);
4044 ret = -ENODEV;
4045 break;
4046 case COMP_SUCCESS:
4047 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4048 "Successful setup %s command", act);
4049 break;
4050 default:
4051 xhci_err(xhci,
4052 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4053 act, command->status);
4054 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4055 ret = -EINVAL;
4056 break;
4058 if (ret)
4059 goto out;
4060 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4061 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4062 "Op regs DCBAA ptr = %#016llx", temp_64);
4063 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4064 "Slot ID %d dcbaa entry @%p = %#016llx",
4065 udev->slot_id,
4066 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4067 (unsigned long long)
4068 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4069 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4070 "Output Context DMA address = %#08llx",
4071 (unsigned long long)virt_dev->out_ctx->dma);
4072 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4073 le32_to_cpu(slot_ctx->dev_info) >> 27);
4075 * USB core uses address 1 for the roothubs, so we add one to the
4076 * address given back to us by the HC.
4078 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4079 le32_to_cpu(slot_ctx->dev_info) >> 27);
4080 /* Zero the input context control for later use */
4081 ctrl_ctx->add_flags = 0;
4082 ctrl_ctx->drop_flags = 0;
4084 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4085 "Internal device address = %d",
4086 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4087 out:
4088 mutex_unlock(&xhci->mutex);
4089 if (command) {
4090 kfree(command->completion);
4091 kfree(command);
4093 return ret;
4096 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4098 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4101 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4103 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4107 * Transfer the port index into real index in the HW port status
4108 * registers. Caculate offset between the port's PORTSC register
4109 * and port status base. Divide the number of per port register
4110 * to get the real index. The raw port number bases 1.
4112 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4114 struct xhci_hub *rhub;
4116 rhub = xhci_get_rhub(hcd);
4117 return rhub->ports[port1 - 1]->hw_portnum + 1;
4121 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4122 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4124 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4125 struct usb_device *udev, u16 max_exit_latency)
4127 struct xhci_virt_device *virt_dev;
4128 struct xhci_command *command;
4129 struct xhci_input_control_ctx *ctrl_ctx;
4130 struct xhci_slot_ctx *slot_ctx;
4131 unsigned long flags;
4132 int ret;
4134 spin_lock_irqsave(&xhci->lock, flags);
4136 virt_dev = xhci->devs[udev->slot_id];
4139 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4140 * xHC was re-initialized. Exit latency will be set later after
4141 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4144 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4145 spin_unlock_irqrestore(&xhci->lock, flags);
4146 return 0;
4149 /* Attempt to issue an Evaluate Context command to change the MEL. */
4150 command = xhci->lpm_command;
4151 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4152 if (!ctrl_ctx) {
4153 spin_unlock_irqrestore(&xhci->lock, flags);
4154 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4155 __func__);
4156 return -ENOMEM;
4159 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4160 spin_unlock_irqrestore(&xhci->lock, flags);
4162 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4163 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4164 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4165 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4166 slot_ctx->dev_state = 0;
4168 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4169 "Set up evaluate context for LPM MEL change.");
4171 /* Issue and wait for the evaluate context command. */
4172 ret = xhci_configure_endpoint(xhci, udev, command,
4173 true, true);
4175 if (!ret) {
4176 spin_lock_irqsave(&xhci->lock, flags);
4177 virt_dev->current_mel = max_exit_latency;
4178 spin_unlock_irqrestore(&xhci->lock, flags);
4180 return ret;
4183 #ifdef CONFIG_PM
4185 /* BESL to HIRD Encoding array for USB2 LPM */
4186 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4187 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4189 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4190 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4191 struct usb_device *udev)
4193 int u2del, besl, besl_host;
4194 int besl_device = 0;
4195 u32 field;
4197 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4198 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4200 if (field & USB_BESL_SUPPORT) {
4201 for (besl_host = 0; besl_host < 16; besl_host++) {
4202 if (xhci_besl_encoding[besl_host] >= u2del)
4203 break;
4205 /* Use baseline BESL value as default */
4206 if (field & USB_BESL_BASELINE_VALID)
4207 besl_device = USB_GET_BESL_BASELINE(field);
4208 else if (field & USB_BESL_DEEP_VALID)
4209 besl_device = USB_GET_BESL_DEEP(field);
4210 } else {
4211 if (u2del <= 50)
4212 besl_host = 0;
4213 else
4214 besl_host = (u2del - 51) / 75 + 1;
4217 besl = besl_host + besl_device;
4218 if (besl > 15)
4219 besl = 15;
4221 return besl;
4224 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4225 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4227 u32 field;
4228 int l1;
4229 int besld = 0;
4230 int hirdm = 0;
4232 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4234 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4235 l1 = udev->l1_params.timeout / 256;
4237 /* device has preferred BESLD */
4238 if (field & USB_BESL_DEEP_VALID) {
4239 besld = USB_GET_BESL_DEEP(field);
4240 hirdm = 1;
4243 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4246 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4247 struct usb_device *udev, int enable)
4249 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4250 struct xhci_port **ports;
4251 __le32 __iomem *pm_addr, *hlpm_addr;
4252 u32 pm_val, hlpm_val, field;
4253 unsigned int port_num;
4254 unsigned long flags;
4255 int hird, exit_latency;
4256 int ret;
4258 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4259 !udev->lpm_capable)
4260 return -EPERM;
4262 if (!udev->parent || udev->parent->parent ||
4263 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4264 return -EPERM;
4266 if (udev->usb2_hw_lpm_capable != 1)
4267 return -EPERM;
4269 spin_lock_irqsave(&xhci->lock, flags);
4271 ports = xhci->usb2_rhub.ports;
4272 port_num = udev->portnum - 1;
4273 pm_addr = ports[port_num]->addr + PORTPMSC;
4274 pm_val = readl(pm_addr);
4275 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4276 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4278 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4279 enable ? "enable" : "disable", port_num + 1);
4281 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4282 /* Host supports BESL timeout instead of HIRD */
4283 if (udev->usb2_hw_lpm_besl_capable) {
4284 /* if device doesn't have a preferred BESL value use a
4285 * default one which works with mixed HIRD and BESL
4286 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4288 if ((field & USB_BESL_SUPPORT) &&
4289 (field & USB_BESL_BASELINE_VALID))
4290 hird = USB_GET_BESL_BASELINE(field);
4291 else
4292 hird = udev->l1_params.besl;
4294 exit_latency = xhci_besl_encoding[hird];
4295 spin_unlock_irqrestore(&xhci->lock, flags);
4297 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4298 * input context for link powermanagement evaluate
4299 * context commands. It is protected by hcd->bandwidth
4300 * mutex and is shared by all devices. We need to set
4301 * the max ext latency in USB 2 BESL LPM as well, so
4302 * use the same mutex and xhci_change_max_exit_latency()
4304 mutex_lock(hcd->bandwidth_mutex);
4305 ret = xhci_change_max_exit_latency(xhci, udev,
4306 exit_latency);
4307 mutex_unlock(hcd->bandwidth_mutex);
4309 if (ret < 0)
4310 return ret;
4311 spin_lock_irqsave(&xhci->lock, flags);
4313 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4314 writel(hlpm_val, hlpm_addr);
4315 /* flush write */
4316 readl(hlpm_addr);
4317 } else {
4318 hird = xhci_calculate_hird_besl(xhci, udev);
4321 pm_val &= ~PORT_HIRD_MASK;
4322 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4323 writel(pm_val, pm_addr);
4324 pm_val = readl(pm_addr);
4325 pm_val |= PORT_HLE;
4326 writel(pm_val, pm_addr);
4327 /* flush write */
4328 readl(pm_addr);
4329 } else {
4330 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4331 writel(pm_val, pm_addr);
4332 /* flush write */
4333 readl(pm_addr);
4334 if (udev->usb2_hw_lpm_besl_capable) {
4335 spin_unlock_irqrestore(&xhci->lock, flags);
4336 mutex_lock(hcd->bandwidth_mutex);
4337 xhci_change_max_exit_latency(xhci, udev, 0);
4338 mutex_unlock(hcd->bandwidth_mutex);
4339 return 0;
4343 spin_unlock_irqrestore(&xhci->lock, flags);
4344 return 0;
4347 /* check if a usb2 port supports a given extened capability protocol
4348 * only USB2 ports extended protocol capability values are cached.
4349 * Return 1 if capability is supported
4351 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4352 unsigned capability)
4354 u32 port_offset, port_count;
4355 int i;
4357 for (i = 0; i < xhci->num_ext_caps; i++) {
4358 if (xhci->ext_caps[i] & capability) {
4359 /* port offsets starts at 1 */
4360 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4361 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4362 if (port >= port_offset &&
4363 port < port_offset + port_count)
4364 return 1;
4367 return 0;
4370 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4372 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4373 int portnum = udev->portnum - 1;
4375 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4376 !udev->lpm_capable)
4377 return 0;
4379 /* we only support lpm for non-hub device connected to root hub yet */
4380 if (!udev->parent || udev->parent->parent ||
4381 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4382 return 0;
4384 if (xhci->hw_lpm_support == 1 &&
4385 xhci_check_usb2_port_capability(
4386 xhci, portnum, XHCI_HLC)) {
4387 udev->usb2_hw_lpm_capable = 1;
4388 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4389 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4390 if (xhci_check_usb2_port_capability(xhci, portnum,
4391 XHCI_BLC))
4392 udev->usb2_hw_lpm_besl_capable = 1;
4395 return 0;
4398 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4400 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4401 static unsigned long long xhci_service_interval_to_ns(
4402 struct usb_endpoint_descriptor *desc)
4404 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4407 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4408 enum usb3_link_state state)
4410 unsigned long long sel;
4411 unsigned long long pel;
4412 unsigned int max_sel_pel;
4413 char *state_name;
4415 switch (state) {
4416 case USB3_LPM_U1:
4417 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4418 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4419 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4420 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4421 state_name = "U1";
4422 break;
4423 case USB3_LPM_U2:
4424 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4425 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4426 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4427 state_name = "U2";
4428 break;
4429 default:
4430 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4431 __func__);
4432 return USB3_LPM_DISABLED;
4435 if (sel <= max_sel_pel && pel <= max_sel_pel)
4436 return USB3_LPM_DEVICE_INITIATED;
4438 if (sel > max_sel_pel)
4439 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4440 "due to long SEL %llu ms\n",
4441 state_name, sel);
4442 else
4443 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4444 "due to long PEL %llu ms\n",
4445 state_name, pel);
4446 return USB3_LPM_DISABLED;
4449 /* The U1 timeout should be the maximum of the following values:
4450 * - For control endpoints, U1 system exit latency (SEL) * 3
4451 * - For bulk endpoints, U1 SEL * 5
4452 * - For interrupt endpoints:
4453 * - Notification EPs, U1 SEL * 3
4454 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4455 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4457 static unsigned long long xhci_calculate_intel_u1_timeout(
4458 struct usb_device *udev,
4459 struct usb_endpoint_descriptor *desc)
4461 unsigned long long timeout_ns;
4462 int ep_type;
4463 int intr_type;
4465 ep_type = usb_endpoint_type(desc);
4466 switch (ep_type) {
4467 case USB_ENDPOINT_XFER_CONTROL:
4468 timeout_ns = udev->u1_params.sel * 3;
4469 break;
4470 case USB_ENDPOINT_XFER_BULK:
4471 timeout_ns = udev->u1_params.sel * 5;
4472 break;
4473 case USB_ENDPOINT_XFER_INT:
4474 intr_type = usb_endpoint_interrupt_type(desc);
4475 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4476 timeout_ns = udev->u1_params.sel * 3;
4477 break;
4479 /* Otherwise the calculation is the same as isoc eps */
4480 /* fall through */
4481 case USB_ENDPOINT_XFER_ISOC:
4482 timeout_ns = xhci_service_interval_to_ns(desc);
4483 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4484 if (timeout_ns < udev->u1_params.sel * 2)
4485 timeout_ns = udev->u1_params.sel * 2;
4486 break;
4487 default:
4488 return 0;
4491 return timeout_ns;
4494 /* Returns the hub-encoded U1 timeout value. */
4495 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4496 struct usb_device *udev,
4497 struct usb_endpoint_descriptor *desc)
4499 unsigned long long timeout_ns;
4501 if (xhci->quirks & XHCI_INTEL_HOST)
4502 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4503 else
4504 timeout_ns = udev->u1_params.sel;
4506 /* The U1 timeout is encoded in 1us intervals.
4507 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4509 if (timeout_ns == USB3_LPM_DISABLED)
4510 timeout_ns = 1;
4511 else
4512 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4514 /* If the necessary timeout value is bigger than what we can set in the
4515 * USB 3.0 hub, we have to disable hub-initiated U1.
4517 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4518 return timeout_ns;
4519 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4520 "due to long timeout %llu ms\n", timeout_ns);
4521 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4524 /* The U2 timeout should be the maximum of:
4525 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4526 * - largest bInterval of any active periodic endpoint (to avoid going
4527 * into lower power link states between intervals).
4528 * - the U2 Exit Latency of the device
4530 static unsigned long long xhci_calculate_intel_u2_timeout(
4531 struct usb_device *udev,
4532 struct usb_endpoint_descriptor *desc)
4534 unsigned long long timeout_ns;
4535 unsigned long long u2_del_ns;
4537 timeout_ns = 10 * 1000 * 1000;
4539 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4540 (xhci_service_interval_to_ns(desc) > timeout_ns))
4541 timeout_ns = xhci_service_interval_to_ns(desc);
4543 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4544 if (u2_del_ns > timeout_ns)
4545 timeout_ns = u2_del_ns;
4547 return timeout_ns;
4550 /* Returns the hub-encoded U2 timeout value. */
4551 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4552 struct usb_device *udev,
4553 struct usb_endpoint_descriptor *desc)
4555 unsigned long long timeout_ns;
4557 if (xhci->quirks & XHCI_INTEL_HOST)
4558 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4559 else
4560 timeout_ns = udev->u2_params.sel;
4562 /* The U2 timeout is encoded in 256us intervals */
4563 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4564 /* If the necessary timeout value is bigger than what we can set in the
4565 * USB 3.0 hub, we have to disable hub-initiated U2.
4567 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4568 return timeout_ns;
4569 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4570 "due to long timeout %llu ms\n", timeout_ns);
4571 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4574 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4575 struct usb_device *udev,
4576 struct usb_endpoint_descriptor *desc,
4577 enum usb3_link_state state,
4578 u16 *timeout)
4580 if (state == USB3_LPM_U1)
4581 return xhci_calculate_u1_timeout(xhci, udev, desc);
4582 else if (state == USB3_LPM_U2)
4583 return xhci_calculate_u2_timeout(xhci, udev, desc);
4585 return USB3_LPM_DISABLED;
4588 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4589 struct usb_device *udev,
4590 struct usb_endpoint_descriptor *desc,
4591 enum usb3_link_state state,
4592 u16 *timeout)
4594 u16 alt_timeout;
4596 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4597 desc, state, timeout);
4599 /* If we found we can't enable hub-initiated LPM, or
4600 * the U1 or U2 exit latency was too high to allow
4601 * device-initiated LPM as well, just stop searching.
4603 if (alt_timeout == USB3_LPM_DISABLED ||
4604 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4605 *timeout = alt_timeout;
4606 return -E2BIG;
4608 if (alt_timeout > *timeout)
4609 *timeout = alt_timeout;
4610 return 0;
4613 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4614 struct usb_device *udev,
4615 struct usb_host_interface *alt,
4616 enum usb3_link_state state,
4617 u16 *timeout)
4619 int j;
4621 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4622 if (xhci_update_timeout_for_endpoint(xhci, udev,
4623 &alt->endpoint[j].desc, state, timeout))
4624 return -E2BIG;
4625 continue;
4627 return 0;
4630 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4631 enum usb3_link_state state)
4633 struct usb_device *parent;
4634 unsigned int num_hubs;
4636 if (state == USB3_LPM_U2)
4637 return 0;
4639 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4640 for (parent = udev->parent, num_hubs = 0; parent->parent;
4641 parent = parent->parent)
4642 num_hubs++;
4644 if (num_hubs < 2)
4645 return 0;
4647 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4648 " below second-tier hub.\n");
4649 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4650 "to decrease power consumption.\n");
4651 return -E2BIG;
4654 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4655 struct usb_device *udev,
4656 enum usb3_link_state state)
4658 if (xhci->quirks & XHCI_INTEL_HOST)
4659 return xhci_check_intel_tier_policy(udev, state);
4660 else
4661 return 0;
4664 /* Returns the U1 or U2 timeout that should be enabled.
4665 * If the tier check or timeout setting functions return with a non-zero exit
4666 * code, that means the timeout value has been finalized and we shouldn't look
4667 * at any more endpoints.
4669 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4670 struct usb_device *udev, enum usb3_link_state state)
4672 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4673 struct usb_host_config *config;
4674 char *state_name;
4675 int i;
4676 u16 timeout = USB3_LPM_DISABLED;
4678 if (state == USB3_LPM_U1)
4679 state_name = "U1";
4680 else if (state == USB3_LPM_U2)
4681 state_name = "U2";
4682 else {
4683 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4684 state);
4685 return timeout;
4688 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4689 return timeout;
4691 /* Gather some information about the currently installed configuration
4692 * and alternate interface settings.
4694 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4695 state, &timeout))
4696 return timeout;
4698 config = udev->actconfig;
4699 if (!config)
4700 return timeout;
4702 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4703 struct usb_driver *driver;
4704 struct usb_interface *intf = config->interface[i];
4706 if (!intf)
4707 continue;
4709 /* Check if any currently bound drivers want hub-initiated LPM
4710 * disabled.
4712 if (intf->dev.driver) {
4713 driver = to_usb_driver(intf->dev.driver);
4714 if (driver && driver->disable_hub_initiated_lpm) {
4715 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4716 "at request of driver %s\n",
4717 state_name, driver->name);
4718 return xhci_get_timeout_no_hub_lpm(udev, state);
4722 /* Not sure how this could happen... */
4723 if (!intf->cur_altsetting)
4724 continue;
4726 if (xhci_update_timeout_for_interface(xhci, udev,
4727 intf->cur_altsetting,
4728 state, &timeout))
4729 return timeout;
4731 return timeout;
4734 static int calculate_max_exit_latency(struct usb_device *udev,
4735 enum usb3_link_state state_changed,
4736 u16 hub_encoded_timeout)
4738 unsigned long long u1_mel_us = 0;
4739 unsigned long long u2_mel_us = 0;
4740 unsigned long long mel_us = 0;
4741 bool disabling_u1;
4742 bool disabling_u2;
4743 bool enabling_u1;
4744 bool enabling_u2;
4746 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4747 hub_encoded_timeout == USB3_LPM_DISABLED);
4748 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4749 hub_encoded_timeout == USB3_LPM_DISABLED);
4751 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4752 hub_encoded_timeout != USB3_LPM_DISABLED);
4753 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4754 hub_encoded_timeout != USB3_LPM_DISABLED);
4756 /* If U1 was already enabled and we're not disabling it,
4757 * or we're going to enable U1, account for the U1 max exit latency.
4759 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4760 enabling_u1)
4761 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4762 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4763 enabling_u2)
4764 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4766 if (u1_mel_us > u2_mel_us)
4767 mel_us = u1_mel_us;
4768 else
4769 mel_us = u2_mel_us;
4770 /* xHCI host controller max exit latency field is only 16 bits wide. */
4771 if (mel_us > MAX_EXIT) {
4772 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4773 "is too big.\n", mel_us);
4774 return -E2BIG;
4776 return mel_us;
4779 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4780 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4781 struct usb_device *udev, enum usb3_link_state state)
4783 struct xhci_hcd *xhci;
4784 u16 hub_encoded_timeout;
4785 int mel;
4786 int ret;
4788 xhci = hcd_to_xhci(hcd);
4789 /* The LPM timeout values are pretty host-controller specific, so don't
4790 * enable hub-initiated timeouts unless the vendor has provided
4791 * information about their timeout algorithm.
4793 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4794 !xhci->devs[udev->slot_id])
4795 return USB3_LPM_DISABLED;
4797 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4798 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4799 if (mel < 0) {
4800 /* Max Exit Latency is too big, disable LPM. */
4801 hub_encoded_timeout = USB3_LPM_DISABLED;
4802 mel = 0;
4805 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4806 if (ret)
4807 return ret;
4808 return hub_encoded_timeout;
4811 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4812 struct usb_device *udev, enum usb3_link_state state)
4814 struct xhci_hcd *xhci;
4815 u16 mel;
4817 xhci = hcd_to_xhci(hcd);
4818 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4819 !xhci->devs[udev->slot_id])
4820 return 0;
4822 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4823 return xhci_change_max_exit_latency(xhci, udev, mel);
4825 #else /* CONFIG_PM */
4827 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4828 struct usb_device *udev, int enable)
4830 return 0;
4833 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4835 return 0;
4838 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4839 struct usb_device *udev, enum usb3_link_state state)
4841 return USB3_LPM_DISABLED;
4844 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4845 struct usb_device *udev, enum usb3_link_state state)
4847 return 0;
4849 #endif /* CONFIG_PM */
4851 /*-------------------------------------------------------------------------*/
4853 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4854 * internal data structures for the device.
4856 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4857 struct usb_tt *tt, gfp_t mem_flags)
4859 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4860 struct xhci_virt_device *vdev;
4861 struct xhci_command *config_cmd;
4862 struct xhci_input_control_ctx *ctrl_ctx;
4863 struct xhci_slot_ctx *slot_ctx;
4864 unsigned long flags;
4865 unsigned think_time;
4866 int ret;
4868 /* Ignore root hubs */
4869 if (!hdev->parent)
4870 return 0;
4872 vdev = xhci->devs[hdev->slot_id];
4873 if (!vdev) {
4874 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4875 return -EINVAL;
4878 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4879 if (!config_cmd)
4880 return -ENOMEM;
4882 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4883 if (!ctrl_ctx) {
4884 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4885 __func__);
4886 xhci_free_command(xhci, config_cmd);
4887 return -ENOMEM;
4890 spin_lock_irqsave(&xhci->lock, flags);
4891 if (hdev->speed == USB_SPEED_HIGH &&
4892 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4893 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4894 xhci_free_command(xhci, config_cmd);
4895 spin_unlock_irqrestore(&xhci->lock, flags);
4896 return -ENOMEM;
4899 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4900 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4901 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4902 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4904 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4905 * but it may be already set to 1 when setup an xHCI virtual
4906 * device, so clear it anyway.
4908 if (tt->multi)
4909 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4910 else if (hdev->speed == USB_SPEED_FULL)
4911 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4913 if (xhci->hci_version > 0x95) {
4914 xhci_dbg(xhci, "xHCI version %x needs hub "
4915 "TT think time and number of ports\n",
4916 (unsigned int) xhci->hci_version);
4917 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4918 /* Set TT think time - convert from ns to FS bit times.
4919 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4920 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4922 * xHCI 1.0: this field shall be 0 if the device is not a
4923 * High-spped hub.
4925 think_time = tt->think_time;
4926 if (think_time != 0)
4927 think_time = (think_time / 666) - 1;
4928 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4929 slot_ctx->tt_info |=
4930 cpu_to_le32(TT_THINK_TIME(think_time));
4931 } else {
4932 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4933 "TT think time or number of ports\n",
4934 (unsigned int) xhci->hci_version);
4936 slot_ctx->dev_state = 0;
4937 spin_unlock_irqrestore(&xhci->lock, flags);
4939 xhci_dbg(xhci, "Set up %s for hub device.\n",
4940 (xhci->hci_version > 0x95) ?
4941 "configure endpoint" : "evaluate context");
4943 /* Issue and wait for the configure endpoint or
4944 * evaluate context command.
4946 if (xhci->hci_version > 0x95)
4947 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4948 false, false);
4949 else
4950 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4951 true, false);
4953 xhci_free_command(xhci, config_cmd);
4954 return ret;
4957 static int xhci_get_frame(struct usb_hcd *hcd)
4959 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4960 /* EHCI mods by the periodic size. Why? */
4961 return readl(&xhci->run_regs->microframe_index) >> 3;
4964 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4966 struct xhci_hcd *xhci;
4968 * TODO: Check with DWC3 clients for sysdev according to
4969 * quirks
4971 struct device *dev = hcd->self.sysdev;
4972 unsigned int minor_rev;
4973 int retval;
4975 /* Accept arbitrarily long scatter-gather lists */
4976 hcd->self.sg_tablesize = ~0;
4978 /* support to build packet from discontinuous buffers */
4979 hcd->self.no_sg_constraint = 1;
4981 /* XHCI controllers don't stop the ep queue on short packets :| */
4982 hcd->self.no_stop_on_short = 1;
4984 xhci = hcd_to_xhci(hcd);
4986 if (usb_hcd_is_primary_hcd(hcd)) {
4987 xhci->main_hcd = hcd;
4988 xhci->usb2_rhub.hcd = hcd;
4989 /* Mark the first roothub as being USB 2.0.
4990 * The xHCI driver will register the USB 3.0 roothub.
4992 hcd->speed = HCD_USB2;
4993 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4995 * USB 2.0 roothub under xHCI has an integrated TT,
4996 * (rate matching hub) as opposed to having an OHCI/UHCI
4997 * companion controller.
4999 hcd->has_tt = 1;
5000 } else {
5002 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5003 * minor revision instead of sbrn
5005 minor_rev = xhci->usb3_rhub.min_rev;
5006 if (minor_rev) {
5007 hcd->speed = HCD_USB31;
5008 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5010 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5011 minor_rev,
5012 minor_rev ? "Enhanced" : "");
5014 xhci->usb3_rhub.hcd = hcd;
5015 /* xHCI private pointer was set in xhci_pci_probe for the second
5016 * registered roothub.
5018 return 0;
5021 mutex_init(&xhci->mutex);
5022 xhci->cap_regs = hcd->regs;
5023 xhci->op_regs = hcd->regs +
5024 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5025 xhci->run_regs = hcd->regs +
5026 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5027 /* Cache read-only capability registers */
5028 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5029 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5030 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5031 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5032 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5033 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5034 if (xhci->hci_version > 0x100)
5035 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5037 xhci->quirks |= quirks;
5039 get_quirks(dev, xhci);
5041 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5042 * success event after a short transfer. This quirk will ignore such
5043 * spurious event.
5045 if (xhci->hci_version > 0x96)
5046 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5048 /* Make sure the HC is halted. */
5049 retval = xhci_halt(xhci);
5050 if (retval)
5051 return retval;
5053 xhci_zero_64b_regs(xhci);
5055 xhci_dbg(xhci, "Resetting HCD\n");
5056 /* Reset the internal HC memory state and registers. */
5057 retval = xhci_reset(xhci);
5058 if (retval)
5059 return retval;
5060 xhci_dbg(xhci, "Reset complete\n");
5063 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5064 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5065 * address memory pointers actually. So, this driver clears the AC64
5066 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5067 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5069 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5070 xhci->hcc_params &= ~BIT(0);
5072 /* Set dma_mask and coherent_dma_mask to 64-bits,
5073 * if xHC supports 64-bit addressing */
5074 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5075 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5076 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5077 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5078 } else {
5080 * This is to avoid error in cases where a 32-bit USB
5081 * controller is used on a 64-bit capable system.
5083 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5084 if (retval)
5085 return retval;
5086 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5087 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5090 xhci_dbg(xhci, "Calling HCD init\n");
5091 /* Initialize HCD and host controller data structures. */
5092 retval = xhci_init(hcd);
5093 if (retval)
5094 return retval;
5095 xhci_dbg(xhci, "Called HCD init\n");
5097 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5098 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5100 return 0;
5102 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5104 static const struct hc_driver xhci_hc_driver = {
5105 .description = "xhci-hcd",
5106 .product_desc = "xHCI Host Controller",
5107 .hcd_priv_size = sizeof(struct xhci_hcd),
5110 * generic hardware linkage
5112 .irq = xhci_irq,
5113 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5116 * basic lifecycle operations
5118 .reset = NULL, /* set in xhci_init_driver() */
5119 .start = xhci_run,
5120 .stop = xhci_stop,
5121 .shutdown = xhci_shutdown,
5124 * managing i/o requests and associated device resources
5126 .urb_enqueue = xhci_urb_enqueue,
5127 .urb_dequeue = xhci_urb_dequeue,
5128 .alloc_dev = xhci_alloc_dev,
5129 .free_dev = xhci_free_dev,
5130 .alloc_streams = xhci_alloc_streams,
5131 .free_streams = xhci_free_streams,
5132 .add_endpoint = xhci_add_endpoint,
5133 .drop_endpoint = xhci_drop_endpoint,
5134 .endpoint_reset = xhci_endpoint_reset,
5135 .check_bandwidth = xhci_check_bandwidth,
5136 .reset_bandwidth = xhci_reset_bandwidth,
5137 .address_device = xhci_address_device,
5138 .enable_device = xhci_enable_device,
5139 .update_hub_device = xhci_update_hub_device,
5140 .reset_device = xhci_discover_or_reset_device,
5143 * scheduling support
5145 .get_frame_number = xhci_get_frame,
5148 * root hub support
5150 .hub_control = xhci_hub_control,
5151 .hub_status_data = xhci_hub_status_data,
5152 .bus_suspend = xhci_bus_suspend,
5153 .bus_resume = xhci_bus_resume,
5154 .get_resuming_ports = xhci_get_resuming_ports,
5157 * call back when device connected and addressed
5159 .update_device = xhci_update_device,
5160 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5161 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5162 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5163 .find_raw_port_number = xhci_find_raw_port_number,
5166 void xhci_init_driver(struct hc_driver *drv,
5167 const struct xhci_driver_overrides *over)
5169 BUG_ON(!over);
5171 /* Copy the generic table to drv then apply the overrides */
5172 *drv = xhci_hc_driver;
5174 if (over) {
5175 drv->hcd_priv_size += over->extra_priv_size;
5176 if (over->reset)
5177 drv->reset = over->reset;
5178 if (over->start)
5179 drv->start = over->start;
5182 EXPORT_SYMBOL_GPL(xhci_init_driver);
5184 MODULE_DESCRIPTION(DRIVER_DESC);
5185 MODULE_AUTHOR(DRIVER_AUTHOR);
5186 MODULE_LICENSE("GPL");
5188 static int __init xhci_hcd_init(void)
5191 * Check the compiler generated sizes of structures that must be laid
5192 * out in specific ways for hardware access.
5194 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5195 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5196 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5197 /* xhci_device_control has eight fields, and also
5198 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5200 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5201 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5202 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5203 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5204 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5205 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5206 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5208 if (usb_disabled())
5209 return -ENODEV;
5211 xhci_debugfs_create_root();
5213 return 0;
5217 * If an init function is provided, an exit function must also be provided
5218 * to allow module unload.
5220 static void __exit xhci_hcd_fini(void)
5222 xhci_debugfs_remove_root();
5225 module_init(xhci_hcd_init);
5226 module_exit(xhci_hcd_fini);