regulator: Fix a typo in regulator_mode_to_status() core function.
[linux-2.6/btrfs-unstable.git] / drivers / regulator / core.c
blob4b136f8cb99fc2e555db41530887ee5d1a2f9e94
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/of_regulator.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/regulator/driver.h>
31 #include <linux/regulator/machine.h>
32 #include <linux/module.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/regulator.h>
37 #include "dummy.h"
39 #define rdev_crit(rdev, fmt, ...) \
40 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_err(rdev, fmt, ...) \
42 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_warn(rdev, fmt, ...) \
44 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_info(rdev, fmt, ...) \
46 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_dbg(rdev, fmt, ...) \
48 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 static DEFINE_MUTEX(regulator_list_mutex);
51 static LIST_HEAD(regulator_list);
52 static LIST_HEAD(regulator_map_list);
53 static bool has_full_constraints;
54 static bool board_wants_dummy_regulator;
56 static struct dentry *debugfs_root;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
71 * struct regulator
73 * One for each consumer device.
75 struct regulator {
76 struct device *dev;
77 struct list_head list;
78 unsigned int always_on:1;
79 int uA_load;
80 int min_uV;
81 int max_uV;
82 char *supply_name;
83 struct device_attribute dev_attr;
84 struct regulator_dev *rdev;
85 struct dentry *debugfs;
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94 unsigned long event, void *data);
95 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96 int min_uV, int max_uV);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
101 static const char *rdev_get_name(struct regulator_dev *rdev)
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
112 * of_get_regulator - get a regulator device node based on supply name
113 * @dev: Device pointer for the consumer (of regulator) device
114 * @supply: regulator supply name
116 * Extract the regulator device node corresponding to the supply name.
117 * retruns the device node corresponding to the regulator if found, else
118 * returns NULL.
120 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
122 struct device_node *regnode = NULL;
123 char prop_name[32]; /* 32 is max size of property name */
125 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
127 snprintf(prop_name, 32, "%s-supply", supply);
128 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
130 if (!regnode) {
131 dev_dbg(dev, "Looking up %s property in node %s failed",
132 prop_name, dev->of_node->full_name);
133 return NULL;
135 return regnode;
138 static int _regulator_can_change_status(struct regulator_dev *rdev)
140 if (!rdev->constraints)
141 return 0;
143 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
144 return 1;
145 else
146 return 0;
149 /* Platform voltage constraint check */
150 static int regulator_check_voltage(struct regulator_dev *rdev,
151 int *min_uV, int *max_uV)
153 BUG_ON(*min_uV > *max_uV);
155 if (!rdev->constraints) {
156 rdev_err(rdev, "no constraints\n");
157 return -ENODEV;
159 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
160 rdev_err(rdev, "operation not allowed\n");
161 return -EPERM;
164 if (*max_uV > rdev->constraints->max_uV)
165 *max_uV = rdev->constraints->max_uV;
166 if (*min_uV < rdev->constraints->min_uV)
167 *min_uV = rdev->constraints->min_uV;
169 if (*min_uV > *max_uV) {
170 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
171 *min_uV, *max_uV);
172 return -EINVAL;
175 return 0;
178 /* Make sure we select a voltage that suits the needs of all
179 * regulator consumers
181 static int regulator_check_consumers(struct regulator_dev *rdev,
182 int *min_uV, int *max_uV)
184 struct regulator *regulator;
186 list_for_each_entry(regulator, &rdev->consumer_list, list) {
188 * Assume consumers that didn't say anything are OK
189 * with anything in the constraint range.
191 if (!regulator->min_uV && !regulator->max_uV)
192 continue;
194 if (*max_uV > regulator->max_uV)
195 *max_uV = regulator->max_uV;
196 if (*min_uV < regulator->min_uV)
197 *min_uV = regulator->min_uV;
200 if (*min_uV > *max_uV)
201 return -EINVAL;
203 return 0;
206 /* current constraint check */
207 static int regulator_check_current_limit(struct regulator_dev *rdev,
208 int *min_uA, int *max_uA)
210 BUG_ON(*min_uA > *max_uA);
212 if (!rdev->constraints) {
213 rdev_err(rdev, "no constraints\n");
214 return -ENODEV;
216 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
217 rdev_err(rdev, "operation not allowed\n");
218 return -EPERM;
221 if (*max_uA > rdev->constraints->max_uA)
222 *max_uA = rdev->constraints->max_uA;
223 if (*min_uA < rdev->constraints->min_uA)
224 *min_uA = rdev->constraints->min_uA;
226 if (*min_uA > *max_uA) {
227 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
228 *min_uA, *max_uA);
229 return -EINVAL;
232 return 0;
235 /* operating mode constraint check */
236 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
238 switch (*mode) {
239 case REGULATOR_MODE_FAST:
240 case REGULATOR_MODE_NORMAL:
241 case REGULATOR_MODE_IDLE:
242 case REGULATOR_MODE_STANDBY:
243 break;
244 default:
245 rdev_err(rdev, "invalid mode %x specified\n", *mode);
246 return -EINVAL;
249 if (!rdev->constraints) {
250 rdev_err(rdev, "no constraints\n");
251 return -ENODEV;
253 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
254 rdev_err(rdev, "operation not allowed\n");
255 return -EPERM;
258 /* The modes are bitmasks, the most power hungry modes having
259 * the lowest values. If the requested mode isn't supported
260 * try higher modes. */
261 while (*mode) {
262 if (rdev->constraints->valid_modes_mask & *mode)
263 return 0;
264 *mode /= 2;
267 return -EINVAL;
270 /* dynamic regulator mode switching constraint check */
271 static int regulator_check_drms(struct regulator_dev *rdev)
273 if (!rdev->constraints) {
274 rdev_err(rdev, "no constraints\n");
275 return -ENODEV;
277 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
278 rdev_err(rdev, "operation not allowed\n");
279 return -EPERM;
281 return 0;
284 static ssize_t regulator_uV_show(struct device *dev,
285 struct device_attribute *attr, char *buf)
287 struct regulator_dev *rdev = dev_get_drvdata(dev);
288 ssize_t ret;
290 mutex_lock(&rdev->mutex);
291 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
292 mutex_unlock(&rdev->mutex);
294 return ret;
296 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
298 static ssize_t regulator_uA_show(struct device *dev,
299 struct device_attribute *attr, char *buf)
301 struct regulator_dev *rdev = dev_get_drvdata(dev);
303 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
305 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
307 static ssize_t regulator_name_show(struct device *dev,
308 struct device_attribute *attr, char *buf)
310 struct regulator_dev *rdev = dev_get_drvdata(dev);
312 return sprintf(buf, "%s\n", rdev_get_name(rdev));
315 static ssize_t regulator_print_opmode(char *buf, int mode)
317 switch (mode) {
318 case REGULATOR_MODE_FAST:
319 return sprintf(buf, "fast\n");
320 case REGULATOR_MODE_NORMAL:
321 return sprintf(buf, "normal\n");
322 case REGULATOR_MODE_IDLE:
323 return sprintf(buf, "idle\n");
324 case REGULATOR_MODE_STANDBY:
325 return sprintf(buf, "standby\n");
327 return sprintf(buf, "unknown\n");
330 static ssize_t regulator_opmode_show(struct device *dev,
331 struct device_attribute *attr, char *buf)
333 struct regulator_dev *rdev = dev_get_drvdata(dev);
335 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
337 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
339 static ssize_t regulator_print_state(char *buf, int state)
341 if (state > 0)
342 return sprintf(buf, "enabled\n");
343 else if (state == 0)
344 return sprintf(buf, "disabled\n");
345 else
346 return sprintf(buf, "unknown\n");
349 static ssize_t regulator_state_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
353 ssize_t ret;
355 mutex_lock(&rdev->mutex);
356 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
357 mutex_unlock(&rdev->mutex);
359 return ret;
361 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
363 static ssize_t regulator_status_show(struct device *dev,
364 struct device_attribute *attr, char *buf)
366 struct regulator_dev *rdev = dev_get_drvdata(dev);
367 int status;
368 char *label;
370 status = rdev->desc->ops->get_status(rdev);
371 if (status < 0)
372 return status;
374 switch (status) {
375 case REGULATOR_STATUS_OFF:
376 label = "off";
377 break;
378 case REGULATOR_STATUS_ON:
379 label = "on";
380 break;
381 case REGULATOR_STATUS_ERROR:
382 label = "error";
383 break;
384 case REGULATOR_STATUS_FAST:
385 label = "fast";
386 break;
387 case REGULATOR_STATUS_NORMAL:
388 label = "normal";
389 break;
390 case REGULATOR_STATUS_IDLE:
391 label = "idle";
392 break;
393 case REGULATOR_STATUS_STANDBY:
394 label = "standby";
395 break;
396 default:
397 return -ERANGE;
400 return sprintf(buf, "%s\n", label);
402 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
404 static ssize_t regulator_min_uA_show(struct device *dev,
405 struct device_attribute *attr, char *buf)
407 struct regulator_dev *rdev = dev_get_drvdata(dev);
409 if (!rdev->constraints)
410 return sprintf(buf, "constraint not defined\n");
412 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
414 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
416 static ssize_t regulator_max_uA_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
419 struct regulator_dev *rdev = dev_get_drvdata(dev);
421 if (!rdev->constraints)
422 return sprintf(buf, "constraint not defined\n");
424 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
426 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
428 static ssize_t regulator_min_uV_show(struct device *dev,
429 struct device_attribute *attr, char *buf)
431 struct regulator_dev *rdev = dev_get_drvdata(dev);
433 if (!rdev->constraints)
434 return sprintf(buf, "constraint not defined\n");
436 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
438 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
440 static ssize_t regulator_max_uV_show(struct device *dev,
441 struct device_attribute *attr, char *buf)
443 struct regulator_dev *rdev = dev_get_drvdata(dev);
445 if (!rdev->constraints)
446 return sprintf(buf, "constraint not defined\n");
448 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
450 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
452 static ssize_t regulator_total_uA_show(struct device *dev,
453 struct device_attribute *attr, char *buf)
455 struct regulator_dev *rdev = dev_get_drvdata(dev);
456 struct regulator *regulator;
457 int uA = 0;
459 mutex_lock(&rdev->mutex);
460 list_for_each_entry(regulator, &rdev->consumer_list, list)
461 uA += regulator->uA_load;
462 mutex_unlock(&rdev->mutex);
463 return sprintf(buf, "%d\n", uA);
465 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
467 static ssize_t regulator_num_users_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471 return sprintf(buf, "%d\n", rdev->use_count);
474 static ssize_t regulator_type_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
477 struct regulator_dev *rdev = dev_get_drvdata(dev);
479 switch (rdev->desc->type) {
480 case REGULATOR_VOLTAGE:
481 return sprintf(buf, "voltage\n");
482 case REGULATOR_CURRENT:
483 return sprintf(buf, "current\n");
485 return sprintf(buf, "unknown\n");
488 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
489 struct device_attribute *attr, char *buf)
491 struct regulator_dev *rdev = dev_get_drvdata(dev);
493 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
495 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
496 regulator_suspend_mem_uV_show, NULL);
498 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
499 struct device_attribute *attr, char *buf)
501 struct regulator_dev *rdev = dev_get_drvdata(dev);
503 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
505 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
506 regulator_suspend_disk_uV_show, NULL);
508 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
509 struct device_attribute *attr, char *buf)
511 struct regulator_dev *rdev = dev_get_drvdata(dev);
513 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
515 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
516 regulator_suspend_standby_uV_show, NULL);
518 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
519 struct device_attribute *attr, char *buf)
521 struct regulator_dev *rdev = dev_get_drvdata(dev);
523 return regulator_print_opmode(buf,
524 rdev->constraints->state_mem.mode);
526 static DEVICE_ATTR(suspend_mem_mode, 0444,
527 regulator_suspend_mem_mode_show, NULL);
529 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
530 struct device_attribute *attr, char *buf)
532 struct regulator_dev *rdev = dev_get_drvdata(dev);
534 return regulator_print_opmode(buf,
535 rdev->constraints->state_disk.mode);
537 static DEVICE_ATTR(suspend_disk_mode, 0444,
538 regulator_suspend_disk_mode_show, NULL);
540 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
541 struct device_attribute *attr, char *buf)
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
545 return regulator_print_opmode(buf,
546 rdev->constraints->state_standby.mode);
548 static DEVICE_ATTR(suspend_standby_mode, 0444,
549 regulator_suspend_standby_mode_show, NULL);
551 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
552 struct device_attribute *attr, char *buf)
554 struct regulator_dev *rdev = dev_get_drvdata(dev);
556 return regulator_print_state(buf,
557 rdev->constraints->state_mem.enabled);
559 static DEVICE_ATTR(suspend_mem_state, 0444,
560 regulator_suspend_mem_state_show, NULL);
562 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
563 struct device_attribute *attr, char *buf)
565 struct regulator_dev *rdev = dev_get_drvdata(dev);
567 return regulator_print_state(buf,
568 rdev->constraints->state_disk.enabled);
570 static DEVICE_ATTR(suspend_disk_state, 0444,
571 regulator_suspend_disk_state_show, NULL);
573 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
574 struct device_attribute *attr, char *buf)
576 struct regulator_dev *rdev = dev_get_drvdata(dev);
578 return regulator_print_state(buf,
579 rdev->constraints->state_standby.enabled);
581 static DEVICE_ATTR(suspend_standby_state, 0444,
582 regulator_suspend_standby_state_show, NULL);
586 * These are the only attributes are present for all regulators.
587 * Other attributes are a function of regulator functionality.
589 static struct device_attribute regulator_dev_attrs[] = {
590 __ATTR(name, 0444, regulator_name_show, NULL),
591 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
592 __ATTR(type, 0444, regulator_type_show, NULL),
593 __ATTR_NULL,
596 static void regulator_dev_release(struct device *dev)
598 struct regulator_dev *rdev = dev_get_drvdata(dev);
599 kfree(rdev);
602 static struct class regulator_class = {
603 .name = "regulator",
604 .dev_release = regulator_dev_release,
605 .dev_attrs = regulator_dev_attrs,
608 /* Calculate the new optimum regulator operating mode based on the new total
609 * consumer load. All locks held by caller */
610 static void drms_uA_update(struct regulator_dev *rdev)
612 struct regulator *sibling;
613 int current_uA = 0, output_uV, input_uV, err;
614 unsigned int mode;
616 err = regulator_check_drms(rdev);
617 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
618 (!rdev->desc->ops->get_voltage &&
619 !rdev->desc->ops->get_voltage_sel) ||
620 !rdev->desc->ops->set_mode)
621 return;
623 /* get output voltage */
624 output_uV = _regulator_get_voltage(rdev);
625 if (output_uV <= 0)
626 return;
628 /* get input voltage */
629 input_uV = 0;
630 if (rdev->supply)
631 input_uV = regulator_get_voltage(rdev->supply);
632 if (input_uV <= 0)
633 input_uV = rdev->constraints->input_uV;
634 if (input_uV <= 0)
635 return;
637 /* calc total requested load */
638 list_for_each_entry(sibling, &rdev->consumer_list, list)
639 current_uA += sibling->uA_load;
641 /* now get the optimum mode for our new total regulator load */
642 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
643 output_uV, current_uA);
645 /* check the new mode is allowed */
646 err = regulator_mode_constrain(rdev, &mode);
647 if (err == 0)
648 rdev->desc->ops->set_mode(rdev, mode);
651 static int suspend_set_state(struct regulator_dev *rdev,
652 struct regulator_state *rstate)
654 int ret = 0;
656 /* If we have no suspend mode configration don't set anything;
657 * only warn if the driver implements set_suspend_voltage or
658 * set_suspend_mode callback.
660 if (!rstate->enabled && !rstate->disabled) {
661 if (rdev->desc->ops->set_suspend_voltage ||
662 rdev->desc->ops->set_suspend_mode)
663 rdev_warn(rdev, "No configuration\n");
664 return 0;
667 if (rstate->enabled && rstate->disabled) {
668 rdev_err(rdev, "invalid configuration\n");
669 return -EINVAL;
672 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
673 ret = rdev->desc->ops->set_suspend_enable(rdev);
674 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
675 ret = rdev->desc->ops->set_suspend_disable(rdev);
676 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
677 ret = 0;
679 if (ret < 0) {
680 rdev_err(rdev, "failed to enabled/disable\n");
681 return ret;
684 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
685 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
686 if (ret < 0) {
687 rdev_err(rdev, "failed to set voltage\n");
688 return ret;
692 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
693 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
694 if (ret < 0) {
695 rdev_err(rdev, "failed to set mode\n");
696 return ret;
699 return ret;
702 /* locks held by caller */
703 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
705 if (!rdev->constraints)
706 return -EINVAL;
708 switch (state) {
709 case PM_SUSPEND_STANDBY:
710 return suspend_set_state(rdev,
711 &rdev->constraints->state_standby);
712 case PM_SUSPEND_MEM:
713 return suspend_set_state(rdev,
714 &rdev->constraints->state_mem);
715 case PM_SUSPEND_MAX:
716 return suspend_set_state(rdev,
717 &rdev->constraints->state_disk);
718 default:
719 return -EINVAL;
723 static void print_constraints(struct regulator_dev *rdev)
725 struct regulation_constraints *constraints = rdev->constraints;
726 char buf[80] = "";
727 int count = 0;
728 int ret;
730 if (constraints->min_uV && constraints->max_uV) {
731 if (constraints->min_uV == constraints->max_uV)
732 count += sprintf(buf + count, "%d mV ",
733 constraints->min_uV / 1000);
734 else
735 count += sprintf(buf + count, "%d <--> %d mV ",
736 constraints->min_uV / 1000,
737 constraints->max_uV / 1000);
740 if (!constraints->min_uV ||
741 constraints->min_uV != constraints->max_uV) {
742 ret = _regulator_get_voltage(rdev);
743 if (ret > 0)
744 count += sprintf(buf + count, "at %d mV ", ret / 1000);
747 if (constraints->uV_offset)
748 count += sprintf(buf, "%dmV offset ",
749 constraints->uV_offset / 1000);
751 if (constraints->min_uA && constraints->max_uA) {
752 if (constraints->min_uA == constraints->max_uA)
753 count += sprintf(buf + count, "%d mA ",
754 constraints->min_uA / 1000);
755 else
756 count += sprintf(buf + count, "%d <--> %d mA ",
757 constraints->min_uA / 1000,
758 constraints->max_uA / 1000);
761 if (!constraints->min_uA ||
762 constraints->min_uA != constraints->max_uA) {
763 ret = _regulator_get_current_limit(rdev);
764 if (ret > 0)
765 count += sprintf(buf + count, "at %d mA ", ret / 1000);
768 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
769 count += sprintf(buf + count, "fast ");
770 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
771 count += sprintf(buf + count, "normal ");
772 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
773 count += sprintf(buf + count, "idle ");
774 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
775 count += sprintf(buf + count, "standby");
777 rdev_info(rdev, "%s\n", buf);
779 if ((constraints->min_uV != constraints->max_uV) &&
780 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
781 rdev_warn(rdev,
782 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
785 static int machine_constraints_voltage(struct regulator_dev *rdev,
786 struct regulation_constraints *constraints)
788 struct regulator_ops *ops = rdev->desc->ops;
789 int ret;
791 /* do we need to apply the constraint voltage */
792 if (rdev->constraints->apply_uV &&
793 rdev->constraints->min_uV == rdev->constraints->max_uV) {
794 ret = _regulator_do_set_voltage(rdev,
795 rdev->constraints->min_uV,
796 rdev->constraints->max_uV);
797 if (ret < 0) {
798 rdev_err(rdev, "failed to apply %duV constraint\n",
799 rdev->constraints->min_uV);
800 return ret;
804 /* constrain machine-level voltage specs to fit
805 * the actual range supported by this regulator.
807 if (ops->list_voltage && rdev->desc->n_voltages) {
808 int count = rdev->desc->n_voltages;
809 int i;
810 int min_uV = INT_MAX;
811 int max_uV = INT_MIN;
812 int cmin = constraints->min_uV;
813 int cmax = constraints->max_uV;
815 /* it's safe to autoconfigure fixed-voltage supplies
816 and the constraints are used by list_voltage. */
817 if (count == 1 && !cmin) {
818 cmin = 1;
819 cmax = INT_MAX;
820 constraints->min_uV = cmin;
821 constraints->max_uV = cmax;
824 /* voltage constraints are optional */
825 if ((cmin == 0) && (cmax == 0))
826 return 0;
828 /* else require explicit machine-level constraints */
829 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
830 rdev_err(rdev, "invalid voltage constraints\n");
831 return -EINVAL;
834 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
835 for (i = 0; i < count; i++) {
836 int value;
838 value = ops->list_voltage(rdev, i);
839 if (value <= 0)
840 continue;
842 /* maybe adjust [min_uV..max_uV] */
843 if (value >= cmin && value < min_uV)
844 min_uV = value;
845 if (value <= cmax && value > max_uV)
846 max_uV = value;
849 /* final: [min_uV..max_uV] valid iff constraints valid */
850 if (max_uV < min_uV) {
851 rdev_err(rdev, "unsupportable voltage constraints\n");
852 return -EINVAL;
855 /* use regulator's subset of machine constraints */
856 if (constraints->min_uV < min_uV) {
857 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
858 constraints->min_uV, min_uV);
859 constraints->min_uV = min_uV;
861 if (constraints->max_uV > max_uV) {
862 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
863 constraints->max_uV, max_uV);
864 constraints->max_uV = max_uV;
868 return 0;
872 * set_machine_constraints - sets regulator constraints
873 * @rdev: regulator source
874 * @constraints: constraints to apply
876 * Allows platform initialisation code to define and constrain
877 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
878 * Constraints *must* be set by platform code in order for some
879 * regulator operations to proceed i.e. set_voltage, set_current_limit,
880 * set_mode.
882 static int set_machine_constraints(struct regulator_dev *rdev,
883 const struct regulation_constraints *constraints)
885 int ret = 0;
886 struct regulator_ops *ops = rdev->desc->ops;
888 if (constraints)
889 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
890 GFP_KERNEL);
891 else
892 rdev->constraints = kzalloc(sizeof(*constraints),
893 GFP_KERNEL);
894 if (!rdev->constraints)
895 return -ENOMEM;
897 ret = machine_constraints_voltage(rdev, rdev->constraints);
898 if (ret != 0)
899 goto out;
901 /* do we need to setup our suspend state */
902 if (rdev->constraints->initial_state) {
903 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
904 if (ret < 0) {
905 rdev_err(rdev, "failed to set suspend state\n");
906 goto out;
910 if (rdev->constraints->initial_mode) {
911 if (!ops->set_mode) {
912 rdev_err(rdev, "no set_mode operation\n");
913 ret = -EINVAL;
914 goto out;
917 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
918 if (ret < 0) {
919 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
920 goto out;
924 /* If the constraints say the regulator should be on at this point
925 * and we have control then make sure it is enabled.
927 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
928 ops->enable) {
929 ret = ops->enable(rdev);
930 if (ret < 0) {
931 rdev_err(rdev, "failed to enable\n");
932 goto out;
936 print_constraints(rdev);
937 return 0;
938 out:
939 kfree(rdev->constraints);
940 rdev->constraints = NULL;
941 return ret;
945 * set_supply - set regulator supply regulator
946 * @rdev: regulator name
947 * @supply_rdev: supply regulator name
949 * Called by platform initialisation code to set the supply regulator for this
950 * regulator. This ensures that a regulators supply will also be enabled by the
951 * core if it's child is enabled.
953 static int set_supply(struct regulator_dev *rdev,
954 struct regulator_dev *supply_rdev)
956 int err;
958 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
960 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
961 if (rdev->supply == NULL) {
962 err = -ENOMEM;
963 return err;
966 return 0;
970 * set_consumer_device_supply - Bind a regulator to a symbolic supply
971 * @rdev: regulator source
972 * @consumer_dev_name: dev_name() string for device supply applies to
973 * @supply: symbolic name for supply
975 * Allows platform initialisation code to map physical regulator
976 * sources to symbolic names for supplies for use by devices. Devices
977 * should use these symbolic names to request regulators, avoiding the
978 * need to provide board-specific regulator names as platform data.
980 static int set_consumer_device_supply(struct regulator_dev *rdev,
981 const char *consumer_dev_name,
982 const char *supply)
984 struct regulator_map *node;
985 int has_dev;
987 if (supply == NULL)
988 return -EINVAL;
990 if (consumer_dev_name != NULL)
991 has_dev = 1;
992 else
993 has_dev = 0;
995 list_for_each_entry(node, &regulator_map_list, list) {
996 if (node->dev_name && consumer_dev_name) {
997 if (strcmp(node->dev_name, consumer_dev_name) != 0)
998 continue;
999 } else if (node->dev_name || consumer_dev_name) {
1000 continue;
1003 if (strcmp(node->supply, supply) != 0)
1004 continue;
1006 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1007 consumer_dev_name,
1008 dev_name(&node->regulator->dev),
1009 node->regulator->desc->name,
1010 supply,
1011 dev_name(&rdev->dev), rdev_get_name(rdev));
1012 return -EBUSY;
1015 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1016 if (node == NULL)
1017 return -ENOMEM;
1019 node->regulator = rdev;
1020 node->supply = supply;
1022 if (has_dev) {
1023 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1024 if (node->dev_name == NULL) {
1025 kfree(node);
1026 return -ENOMEM;
1030 list_add(&node->list, &regulator_map_list);
1031 return 0;
1034 static void unset_regulator_supplies(struct regulator_dev *rdev)
1036 struct regulator_map *node, *n;
1038 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1039 if (rdev == node->regulator) {
1040 list_del(&node->list);
1041 kfree(node->dev_name);
1042 kfree(node);
1047 #define REG_STR_SIZE 64
1049 static struct regulator *create_regulator(struct regulator_dev *rdev,
1050 struct device *dev,
1051 const char *supply_name)
1053 struct regulator *regulator;
1054 char buf[REG_STR_SIZE];
1055 int err, size;
1057 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1058 if (regulator == NULL)
1059 return NULL;
1061 mutex_lock(&rdev->mutex);
1062 regulator->rdev = rdev;
1063 list_add(&regulator->list, &rdev->consumer_list);
1065 if (dev) {
1066 regulator->dev = dev;
1068 /* Add a link to the device sysfs entry */
1069 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1070 dev->kobj.name, supply_name);
1071 if (size >= REG_STR_SIZE)
1072 goto overflow_err;
1074 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1075 if (regulator->supply_name == NULL)
1076 goto overflow_err;
1078 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1079 buf);
1080 if (err) {
1081 rdev_warn(rdev, "could not add device link %s err %d\n",
1082 dev->kobj.name, err);
1083 /* non-fatal */
1085 } else {
1086 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1087 if (regulator->supply_name == NULL)
1088 goto overflow_err;
1091 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1092 rdev->debugfs);
1093 if (!regulator->debugfs) {
1094 rdev_warn(rdev, "Failed to create debugfs directory\n");
1095 } else {
1096 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1097 &regulator->uA_load);
1098 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1099 &regulator->min_uV);
1100 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1101 &regulator->max_uV);
1105 * Check now if the regulator is an always on regulator - if
1106 * it is then we don't need to do nearly so much work for
1107 * enable/disable calls.
1109 if (!_regulator_can_change_status(rdev) &&
1110 _regulator_is_enabled(rdev))
1111 regulator->always_on = true;
1113 mutex_unlock(&rdev->mutex);
1114 return regulator;
1115 overflow_err:
1116 list_del(&regulator->list);
1117 kfree(regulator);
1118 mutex_unlock(&rdev->mutex);
1119 return NULL;
1122 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1124 if (!rdev->desc->ops->enable_time)
1125 return 0;
1126 return rdev->desc->ops->enable_time(rdev);
1129 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1130 const char *supply,
1131 int *ret)
1133 struct regulator_dev *r;
1134 struct device_node *node;
1135 struct regulator_map *map;
1136 const char *devname = NULL;
1138 /* first do a dt based lookup */
1139 if (dev && dev->of_node) {
1140 node = of_get_regulator(dev, supply);
1141 if (node) {
1142 list_for_each_entry(r, &regulator_list, list)
1143 if (r->dev.parent &&
1144 node == r->dev.of_node)
1145 return r;
1146 } else {
1148 * If we couldn't even get the node then it's
1149 * not just that the device didn't register
1150 * yet, there's no node and we'll never
1151 * succeed.
1153 *ret = -ENODEV;
1157 /* if not found, try doing it non-dt way */
1158 if (dev)
1159 devname = dev_name(dev);
1161 list_for_each_entry(r, &regulator_list, list)
1162 if (strcmp(rdev_get_name(r), supply) == 0)
1163 return r;
1165 list_for_each_entry(map, &regulator_map_list, list) {
1166 /* If the mapping has a device set up it must match */
1167 if (map->dev_name &&
1168 (!devname || strcmp(map->dev_name, devname)))
1169 continue;
1171 if (strcmp(map->supply, supply) == 0)
1172 return map->regulator;
1176 return NULL;
1179 /* Internal regulator request function */
1180 static struct regulator *_regulator_get(struct device *dev, const char *id,
1181 int exclusive)
1183 struct regulator_dev *rdev;
1184 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1185 const char *devname = NULL;
1186 int ret;
1188 if (id == NULL) {
1189 pr_err("get() with no identifier\n");
1190 return regulator;
1193 if (dev)
1194 devname = dev_name(dev);
1196 mutex_lock(&regulator_list_mutex);
1198 rdev = regulator_dev_lookup(dev, id, &ret);
1199 if (rdev)
1200 goto found;
1202 if (board_wants_dummy_regulator) {
1203 rdev = dummy_regulator_rdev;
1204 goto found;
1207 #ifdef CONFIG_REGULATOR_DUMMY
1208 if (!devname)
1209 devname = "deviceless";
1211 /* If the board didn't flag that it was fully constrained then
1212 * substitute in a dummy regulator so consumers can continue.
1214 if (!has_full_constraints) {
1215 pr_warn("%s supply %s not found, using dummy regulator\n",
1216 devname, id);
1217 rdev = dummy_regulator_rdev;
1218 goto found;
1220 #endif
1222 mutex_unlock(&regulator_list_mutex);
1223 return regulator;
1225 found:
1226 if (rdev->exclusive) {
1227 regulator = ERR_PTR(-EPERM);
1228 goto out;
1231 if (exclusive && rdev->open_count) {
1232 regulator = ERR_PTR(-EBUSY);
1233 goto out;
1236 if (!try_module_get(rdev->owner))
1237 goto out;
1239 regulator = create_regulator(rdev, dev, id);
1240 if (regulator == NULL) {
1241 regulator = ERR_PTR(-ENOMEM);
1242 module_put(rdev->owner);
1243 goto out;
1246 rdev->open_count++;
1247 if (exclusive) {
1248 rdev->exclusive = 1;
1250 ret = _regulator_is_enabled(rdev);
1251 if (ret > 0)
1252 rdev->use_count = 1;
1253 else
1254 rdev->use_count = 0;
1257 out:
1258 mutex_unlock(&regulator_list_mutex);
1260 return regulator;
1264 * regulator_get - lookup and obtain a reference to a regulator.
1265 * @dev: device for regulator "consumer"
1266 * @id: Supply name or regulator ID.
1268 * Returns a struct regulator corresponding to the regulator producer,
1269 * or IS_ERR() condition containing errno.
1271 * Use of supply names configured via regulator_set_device_supply() is
1272 * strongly encouraged. It is recommended that the supply name used
1273 * should match the name used for the supply and/or the relevant
1274 * device pins in the datasheet.
1276 struct regulator *regulator_get(struct device *dev, const char *id)
1278 return _regulator_get(dev, id, 0);
1280 EXPORT_SYMBOL_GPL(regulator_get);
1282 static void devm_regulator_release(struct device *dev, void *res)
1284 regulator_put(*(struct regulator **)res);
1288 * devm_regulator_get - Resource managed regulator_get()
1289 * @dev: device for regulator "consumer"
1290 * @id: Supply name or regulator ID.
1292 * Managed regulator_get(). Regulators returned from this function are
1293 * automatically regulator_put() on driver detach. See regulator_get() for more
1294 * information.
1296 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1298 struct regulator **ptr, *regulator;
1300 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1301 if (!ptr)
1302 return ERR_PTR(-ENOMEM);
1304 regulator = regulator_get(dev, id);
1305 if (!IS_ERR(regulator)) {
1306 *ptr = regulator;
1307 devres_add(dev, ptr);
1308 } else {
1309 devres_free(ptr);
1312 return regulator;
1314 EXPORT_SYMBOL_GPL(devm_regulator_get);
1317 * regulator_get_exclusive - obtain exclusive access to a regulator.
1318 * @dev: device for regulator "consumer"
1319 * @id: Supply name or regulator ID.
1321 * Returns a struct regulator corresponding to the regulator producer,
1322 * or IS_ERR() condition containing errno. Other consumers will be
1323 * unable to obtain this reference is held and the use count for the
1324 * regulator will be initialised to reflect the current state of the
1325 * regulator.
1327 * This is intended for use by consumers which cannot tolerate shared
1328 * use of the regulator such as those which need to force the
1329 * regulator off for correct operation of the hardware they are
1330 * controlling.
1332 * Use of supply names configured via regulator_set_device_supply() is
1333 * strongly encouraged. It is recommended that the supply name used
1334 * should match the name used for the supply and/or the relevant
1335 * device pins in the datasheet.
1337 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1339 return _regulator_get(dev, id, 1);
1341 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1344 * regulator_put - "free" the regulator source
1345 * @regulator: regulator source
1347 * Note: drivers must ensure that all regulator_enable calls made on this
1348 * regulator source are balanced by regulator_disable calls prior to calling
1349 * this function.
1351 void regulator_put(struct regulator *regulator)
1353 struct regulator_dev *rdev;
1355 if (regulator == NULL || IS_ERR(regulator))
1356 return;
1358 mutex_lock(&regulator_list_mutex);
1359 rdev = regulator->rdev;
1361 debugfs_remove_recursive(regulator->debugfs);
1363 /* remove any sysfs entries */
1364 if (regulator->dev)
1365 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1366 kfree(regulator->supply_name);
1367 list_del(&regulator->list);
1368 kfree(regulator);
1370 rdev->open_count--;
1371 rdev->exclusive = 0;
1373 module_put(rdev->owner);
1374 mutex_unlock(&regulator_list_mutex);
1376 EXPORT_SYMBOL_GPL(regulator_put);
1378 static int devm_regulator_match(struct device *dev, void *res, void *data)
1380 struct regulator **r = res;
1381 if (!r || !*r) {
1382 WARN_ON(!r || !*r);
1383 return 0;
1385 return *r == data;
1389 * devm_regulator_put - Resource managed regulator_put()
1390 * @regulator: regulator to free
1392 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1393 * this function will not need to be called and the resource management
1394 * code will ensure that the resource is freed.
1396 void devm_regulator_put(struct regulator *regulator)
1398 int rc;
1400 rc = devres_release(regulator->dev, devm_regulator_release,
1401 devm_regulator_match, regulator);
1402 if (rc != 0)
1403 WARN_ON(rc);
1405 EXPORT_SYMBOL_GPL(devm_regulator_put);
1407 /* locks held by regulator_enable() */
1408 static int _regulator_enable(struct regulator_dev *rdev)
1410 int ret, delay;
1412 /* check voltage and requested load before enabling */
1413 if (rdev->constraints &&
1414 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1415 drms_uA_update(rdev);
1417 if (rdev->use_count == 0) {
1418 /* The regulator may on if it's not switchable or left on */
1419 ret = _regulator_is_enabled(rdev);
1420 if (ret == -EINVAL || ret == 0) {
1421 if (!_regulator_can_change_status(rdev))
1422 return -EPERM;
1424 if (!rdev->desc->ops->enable)
1425 return -EINVAL;
1427 /* Query before enabling in case configuration
1428 * dependent. */
1429 ret = _regulator_get_enable_time(rdev);
1430 if (ret >= 0) {
1431 delay = ret;
1432 } else {
1433 rdev_warn(rdev, "enable_time() failed: %d\n",
1434 ret);
1435 delay = 0;
1438 trace_regulator_enable(rdev_get_name(rdev));
1440 /* Allow the regulator to ramp; it would be useful
1441 * to extend this for bulk operations so that the
1442 * regulators can ramp together. */
1443 ret = rdev->desc->ops->enable(rdev);
1444 if (ret < 0)
1445 return ret;
1447 trace_regulator_enable_delay(rdev_get_name(rdev));
1449 if (delay >= 1000) {
1450 mdelay(delay / 1000);
1451 udelay(delay % 1000);
1452 } else if (delay) {
1453 udelay(delay);
1456 trace_regulator_enable_complete(rdev_get_name(rdev));
1458 } else if (ret < 0) {
1459 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1460 return ret;
1462 /* Fallthrough on positive return values - already enabled */
1465 rdev->use_count++;
1467 return 0;
1471 * regulator_enable - enable regulator output
1472 * @regulator: regulator source
1474 * Request that the regulator be enabled with the regulator output at
1475 * the predefined voltage or current value. Calls to regulator_enable()
1476 * must be balanced with calls to regulator_disable().
1478 * NOTE: the output value can be set by other drivers, boot loader or may be
1479 * hardwired in the regulator.
1481 int regulator_enable(struct regulator *regulator)
1483 struct regulator_dev *rdev = regulator->rdev;
1484 int ret = 0;
1486 if (regulator->always_on)
1487 return 0;
1489 if (rdev->supply) {
1490 ret = regulator_enable(rdev->supply);
1491 if (ret != 0)
1492 return ret;
1495 mutex_lock(&rdev->mutex);
1496 ret = _regulator_enable(rdev);
1497 mutex_unlock(&rdev->mutex);
1499 if (ret != 0 && rdev->supply)
1500 regulator_disable(rdev->supply);
1502 return ret;
1504 EXPORT_SYMBOL_GPL(regulator_enable);
1506 /* locks held by regulator_disable() */
1507 static int _regulator_disable(struct regulator_dev *rdev)
1509 int ret = 0;
1511 if (WARN(rdev->use_count <= 0,
1512 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1513 return -EIO;
1515 /* are we the last user and permitted to disable ? */
1516 if (rdev->use_count == 1 &&
1517 (rdev->constraints && !rdev->constraints->always_on)) {
1519 /* we are last user */
1520 if (_regulator_can_change_status(rdev) &&
1521 rdev->desc->ops->disable) {
1522 trace_regulator_disable(rdev_get_name(rdev));
1524 ret = rdev->desc->ops->disable(rdev);
1525 if (ret < 0) {
1526 rdev_err(rdev, "failed to disable\n");
1527 return ret;
1530 trace_regulator_disable_complete(rdev_get_name(rdev));
1532 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1533 NULL);
1536 rdev->use_count = 0;
1537 } else if (rdev->use_count > 1) {
1539 if (rdev->constraints &&
1540 (rdev->constraints->valid_ops_mask &
1541 REGULATOR_CHANGE_DRMS))
1542 drms_uA_update(rdev);
1544 rdev->use_count--;
1547 return ret;
1551 * regulator_disable - disable regulator output
1552 * @regulator: regulator source
1554 * Disable the regulator output voltage or current. Calls to
1555 * regulator_enable() must be balanced with calls to
1556 * regulator_disable().
1558 * NOTE: this will only disable the regulator output if no other consumer
1559 * devices have it enabled, the regulator device supports disabling and
1560 * machine constraints permit this operation.
1562 int regulator_disable(struct regulator *regulator)
1564 struct regulator_dev *rdev = regulator->rdev;
1565 int ret = 0;
1567 if (regulator->always_on)
1568 return 0;
1570 mutex_lock(&rdev->mutex);
1571 ret = _regulator_disable(rdev);
1572 mutex_unlock(&rdev->mutex);
1574 if (ret == 0 && rdev->supply)
1575 regulator_disable(rdev->supply);
1577 return ret;
1579 EXPORT_SYMBOL_GPL(regulator_disable);
1581 /* locks held by regulator_force_disable() */
1582 static int _regulator_force_disable(struct regulator_dev *rdev)
1584 int ret = 0;
1586 /* force disable */
1587 if (rdev->desc->ops->disable) {
1588 /* ah well, who wants to live forever... */
1589 ret = rdev->desc->ops->disable(rdev);
1590 if (ret < 0) {
1591 rdev_err(rdev, "failed to force disable\n");
1592 return ret;
1594 /* notify other consumers that power has been forced off */
1595 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1596 REGULATOR_EVENT_DISABLE, NULL);
1599 return ret;
1603 * regulator_force_disable - force disable regulator output
1604 * @regulator: regulator source
1606 * Forcibly disable the regulator output voltage or current.
1607 * NOTE: this *will* disable the regulator output even if other consumer
1608 * devices have it enabled. This should be used for situations when device
1609 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1611 int regulator_force_disable(struct regulator *regulator)
1613 struct regulator_dev *rdev = regulator->rdev;
1614 int ret;
1616 mutex_lock(&rdev->mutex);
1617 regulator->uA_load = 0;
1618 ret = _regulator_force_disable(regulator->rdev);
1619 mutex_unlock(&rdev->mutex);
1621 if (rdev->supply)
1622 while (rdev->open_count--)
1623 regulator_disable(rdev->supply);
1625 return ret;
1627 EXPORT_SYMBOL_GPL(regulator_force_disable);
1629 static void regulator_disable_work(struct work_struct *work)
1631 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1632 disable_work.work);
1633 int count, i, ret;
1635 mutex_lock(&rdev->mutex);
1637 BUG_ON(!rdev->deferred_disables);
1639 count = rdev->deferred_disables;
1640 rdev->deferred_disables = 0;
1642 for (i = 0; i < count; i++) {
1643 ret = _regulator_disable(rdev);
1644 if (ret != 0)
1645 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1648 mutex_unlock(&rdev->mutex);
1650 if (rdev->supply) {
1651 for (i = 0; i < count; i++) {
1652 ret = regulator_disable(rdev->supply);
1653 if (ret != 0) {
1654 rdev_err(rdev,
1655 "Supply disable failed: %d\n", ret);
1662 * regulator_disable_deferred - disable regulator output with delay
1663 * @regulator: regulator source
1664 * @ms: miliseconds until the regulator is disabled
1666 * Execute regulator_disable() on the regulator after a delay. This
1667 * is intended for use with devices that require some time to quiesce.
1669 * NOTE: this will only disable the regulator output if no other consumer
1670 * devices have it enabled, the regulator device supports disabling and
1671 * machine constraints permit this operation.
1673 int regulator_disable_deferred(struct regulator *regulator, int ms)
1675 struct regulator_dev *rdev = regulator->rdev;
1676 int ret;
1678 if (regulator->always_on)
1679 return 0;
1681 mutex_lock(&rdev->mutex);
1682 rdev->deferred_disables++;
1683 mutex_unlock(&rdev->mutex);
1685 ret = schedule_delayed_work(&rdev->disable_work,
1686 msecs_to_jiffies(ms));
1687 if (ret < 0)
1688 return ret;
1689 else
1690 return 0;
1692 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1695 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1697 * @rdev: regulator to operate on
1699 * Regulators that use regmap for their register I/O can set the
1700 * enable_reg and enable_mask fields in their descriptor and then use
1701 * this as their is_enabled operation, saving some code.
1703 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1705 unsigned int val;
1706 int ret;
1708 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1709 if (ret != 0)
1710 return ret;
1712 return (val & rdev->desc->enable_mask) != 0;
1714 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1717 * regulator_enable_regmap - standard enable() for regmap users
1719 * @rdev: regulator to operate on
1721 * Regulators that use regmap for their register I/O can set the
1722 * enable_reg and enable_mask fields in their descriptor and then use
1723 * this as their enable() operation, saving some code.
1725 int regulator_enable_regmap(struct regulator_dev *rdev)
1727 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1728 rdev->desc->enable_mask,
1729 rdev->desc->enable_mask);
1731 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1734 * regulator_disable_regmap - standard disable() for regmap users
1736 * @rdev: regulator to operate on
1738 * Regulators that use regmap for their register I/O can set the
1739 * enable_reg and enable_mask fields in their descriptor and then use
1740 * this as their disable() operation, saving some code.
1742 int regulator_disable_regmap(struct regulator_dev *rdev)
1744 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1745 rdev->desc->enable_mask, 0);
1747 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1749 static int _regulator_is_enabled(struct regulator_dev *rdev)
1751 /* If we don't know then assume that the regulator is always on */
1752 if (!rdev->desc->ops->is_enabled)
1753 return 1;
1755 return rdev->desc->ops->is_enabled(rdev);
1759 * regulator_is_enabled - is the regulator output enabled
1760 * @regulator: regulator source
1762 * Returns positive if the regulator driver backing the source/client
1763 * has requested that the device be enabled, zero if it hasn't, else a
1764 * negative errno code.
1766 * Note that the device backing this regulator handle can have multiple
1767 * users, so it might be enabled even if regulator_enable() was never
1768 * called for this particular source.
1770 int regulator_is_enabled(struct regulator *regulator)
1772 int ret;
1774 if (regulator->always_on)
1775 return 1;
1777 mutex_lock(&regulator->rdev->mutex);
1778 ret = _regulator_is_enabled(regulator->rdev);
1779 mutex_unlock(&regulator->rdev->mutex);
1781 return ret;
1783 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1786 * regulator_count_voltages - count regulator_list_voltage() selectors
1787 * @regulator: regulator source
1789 * Returns number of selectors, or negative errno. Selectors are
1790 * numbered starting at zero, and typically correspond to bitfields
1791 * in hardware registers.
1793 int regulator_count_voltages(struct regulator *regulator)
1795 struct regulator_dev *rdev = regulator->rdev;
1797 return rdev->desc->n_voltages ? : -EINVAL;
1799 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1802 * regulator_list_voltage_linear - List voltages with simple calculation
1804 * @rdev: Regulator device
1805 * @selector: Selector to convert into a voltage
1807 * Regulators with a simple linear mapping between voltages and
1808 * selectors can set min_uV and uV_step in the regulator descriptor
1809 * and then use this function as their list_voltage() operation,
1811 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1812 unsigned int selector)
1814 if (selector >= rdev->desc->n_voltages)
1815 return -EINVAL;
1817 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1819 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1822 * regulator_list_voltage_table - List voltages with table based mapping
1824 * @rdev: Regulator device
1825 * @selector: Selector to convert into a voltage
1827 * Regulators with table based mapping between voltages and
1828 * selectors can set volt_table in the regulator descriptor
1829 * and then use this function as their list_voltage() operation.
1831 int regulator_list_voltage_table(struct regulator_dev *rdev,
1832 unsigned int selector)
1834 if (!rdev->desc->volt_table) {
1835 BUG_ON(!rdev->desc->volt_table);
1836 return -EINVAL;
1839 if (selector >= rdev->desc->n_voltages)
1840 return -EINVAL;
1842 return rdev->desc->volt_table[selector];
1844 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1847 * regulator_list_voltage - enumerate supported voltages
1848 * @regulator: regulator source
1849 * @selector: identify voltage to list
1850 * Context: can sleep
1852 * Returns a voltage that can be passed to @regulator_set_voltage(),
1853 * zero if this selector code can't be used on this system, or a
1854 * negative errno.
1856 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1858 struct regulator_dev *rdev = regulator->rdev;
1859 struct regulator_ops *ops = rdev->desc->ops;
1860 int ret;
1862 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1863 return -EINVAL;
1865 mutex_lock(&rdev->mutex);
1866 ret = ops->list_voltage(rdev, selector);
1867 mutex_unlock(&rdev->mutex);
1869 if (ret > 0) {
1870 if (ret < rdev->constraints->min_uV)
1871 ret = 0;
1872 else if (ret > rdev->constraints->max_uV)
1873 ret = 0;
1876 return ret;
1878 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1881 * regulator_is_supported_voltage - check if a voltage range can be supported
1883 * @regulator: Regulator to check.
1884 * @min_uV: Minimum required voltage in uV.
1885 * @max_uV: Maximum required voltage in uV.
1887 * Returns a boolean or a negative error code.
1889 int regulator_is_supported_voltage(struct regulator *regulator,
1890 int min_uV, int max_uV)
1892 struct regulator_dev *rdev = regulator->rdev;
1893 int i, voltages, ret;
1895 /* If we can't change voltage check the current voltage */
1896 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1897 ret = regulator_get_voltage(regulator);
1898 if (ret >= 0)
1899 return (min_uV >= ret && ret <= max_uV);
1900 else
1901 return ret;
1904 ret = regulator_count_voltages(regulator);
1905 if (ret < 0)
1906 return ret;
1907 voltages = ret;
1909 for (i = 0; i < voltages; i++) {
1910 ret = regulator_list_voltage(regulator, i);
1912 if (ret >= min_uV && ret <= max_uV)
1913 return 1;
1916 return 0;
1918 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1921 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1923 * @rdev: regulator to operate on
1925 * Regulators that use regmap for their register I/O can set the
1926 * vsel_reg and vsel_mask fields in their descriptor and then use this
1927 * as their get_voltage_vsel operation, saving some code.
1929 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1931 unsigned int val;
1932 int ret;
1934 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1935 if (ret != 0)
1936 return ret;
1938 val &= rdev->desc->vsel_mask;
1939 val >>= ffs(rdev->desc->vsel_mask) - 1;
1941 return val;
1943 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1946 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1948 * @rdev: regulator to operate on
1949 * @sel: Selector to set
1951 * Regulators that use regmap for their register I/O can set the
1952 * vsel_reg and vsel_mask fields in their descriptor and then use this
1953 * as their set_voltage_vsel operation, saving some code.
1955 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1957 sel <<= ffs(rdev->desc->vsel_mask) - 1;
1959 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1960 rdev->desc->vsel_mask, sel);
1962 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1965 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1967 * @rdev: Regulator to operate on
1968 * @min_uV: Lower bound for voltage
1969 * @max_uV: Upper bound for voltage
1971 * Drivers implementing set_voltage_sel() and list_voltage() can use
1972 * this as their map_voltage() operation. It will find a suitable
1973 * voltage by calling list_voltage() until it gets something in bounds
1974 * for the requested voltages.
1976 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
1977 int min_uV, int max_uV)
1979 int best_val = INT_MAX;
1980 int selector = 0;
1981 int i, ret;
1983 /* Find the smallest voltage that falls within the specified
1984 * range.
1986 for (i = 0; i < rdev->desc->n_voltages; i++) {
1987 ret = rdev->desc->ops->list_voltage(rdev, i);
1988 if (ret < 0)
1989 continue;
1991 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1992 best_val = ret;
1993 selector = i;
1997 if (best_val != INT_MAX)
1998 return selector;
1999 else
2000 return -EINVAL;
2002 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2005 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2007 * @rdev: Regulator to operate on
2008 * @min_uV: Lower bound for voltage
2009 * @max_uV: Upper bound for voltage
2011 * Drivers providing min_uV and uV_step in their regulator_desc can
2012 * use this as their map_voltage() operation.
2014 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2015 int min_uV, int max_uV)
2017 int ret, voltage;
2019 if (!rdev->desc->uV_step) {
2020 BUG_ON(!rdev->desc->uV_step);
2021 return -EINVAL;
2024 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2025 if (ret < 0)
2026 return ret;
2028 /* Map back into a voltage to verify we're still in bounds */
2029 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2030 if (voltage < min_uV || voltage > max_uV)
2031 return -EINVAL;
2033 return ret;
2035 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2037 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2038 int min_uV, int max_uV)
2040 int ret;
2041 int delay = 0;
2042 int best_val = 0;
2043 unsigned int selector;
2044 int old_selector = -1;
2046 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2048 min_uV += rdev->constraints->uV_offset;
2049 max_uV += rdev->constraints->uV_offset;
2052 * If we can't obtain the old selector there is not enough
2053 * info to call set_voltage_time_sel().
2055 if (_regulator_is_enabled(rdev) &&
2056 rdev->desc->ops->set_voltage_time_sel &&
2057 rdev->desc->ops->get_voltage_sel) {
2058 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2059 if (old_selector < 0)
2060 return old_selector;
2063 if (rdev->desc->ops->set_voltage) {
2064 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2065 &selector);
2067 if (ret >= 0) {
2068 if (rdev->desc->ops->list_voltage)
2069 best_val = rdev->desc->ops->list_voltage(rdev,
2070 selector);
2071 else
2072 best_val = _regulator_get_voltage(rdev);
2075 } else if (rdev->desc->ops->set_voltage_sel) {
2076 if (rdev->desc->ops->map_voltage) {
2077 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2078 max_uV);
2079 } else {
2080 if (rdev->desc->ops->list_voltage ==
2081 regulator_list_voltage_linear)
2082 ret = regulator_map_voltage_linear(rdev,
2083 min_uV, max_uV);
2084 else
2085 ret = regulator_map_voltage_iterate(rdev,
2086 min_uV, max_uV);
2089 if (ret >= 0) {
2090 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2091 if (min_uV <= best_val && max_uV >= best_val) {
2092 selector = ret;
2093 ret = rdev->desc->ops->set_voltage_sel(rdev,
2094 ret);
2095 } else {
2096 ret = -EINVAL;
2099 } else {
2100 ret = -EINVAL;
2103 /* Call set_voltage_time_sel if successfully obtained old_selector */
2104 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2105 rdev->desc->ops->set_voltage_time_sel) {
2107 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2108 old_selector, selector);
2109 if (delay < 0) {
2110 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2111 delay);
2112 delay = 0;
2115 /* Insert any necessary delays */
2116 if (delay >= 1000) {
2117 mdelay(delay / 1000);
2118 udelay(delay % 1000);
2119 } else if (delay) {
2120 udelay(delay);
2124 if (ret == 0 && best_val >= 0)
2125 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2126 (void *)best_val);
2128 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2130 return ret;
2134 * regulator_set_voltage - set regulator output voltage
2135 * @regulator: regulator source
2136 * @min_uV: Minimum required voltage in uV
2137 * @max_uV: Maximum acceptable voltage in uV
2139 * Sets a voltage regulator to the desired output voltage. This can be set
2140 * during any regulator state. IOW, regulator can be disabled or enabled.
2142 * If the regulator is enabled then the voltage will change to the new value
2143 * immediately otherwise if the regulator is disabled the regulator will
2144 * output at the new voltage when enabled.
2146 * NOTE: If the regulator is shared between several devices then the lowest
2147 * request voltage that meets the system constraints will be used.
2148 * Regulator system constraints must be set for this regulator before
2149 * calling this function otherwise this call will fail.
2151 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2153 struct regulator_dev *rdev = regulator->rdev;
2154 int ret = 0;
2156 mutex_lock(&rdev->mutex);
2158 /* If we're setting the same range as last time the change
2159 * should be a noop (some cpufreq implementations use the same
2160 * voltage for multiple frequencies, for example).
2162 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2163 goto out;
2165 /* sanity check */
2166 if (!rdev->desc->ops->set_voltage &&
2167 !rdev->desc->ops->set_voltage_sel) {
2168 ret = -EINVAL;
2169 goto out;
2172 /* constraints check */
2173 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2174 if (ret < 0)
2175 goto out;
2176 regulator->min_uV = min_uV;
2177 regulator->max_uV = max_uV;
2179 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2180 if (ret < 0)
2181 goto out;
2183 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2185 out:
2186 mutex_unlock(&rdev->mutex);
2187 return ret;
2189 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2192 * regulator_set_voltage_time - get raise/fall time
2193 * @regulator: regulator source
2194 * @old_uV: starting voltage in microvolts
2195 * @new_uV: target voltage in microvolts
2197 * Provided with the starting and ending voltage, this function attempts to
2198 * calculate the time in microseconds required to rise or fall to this new
2199 * voltage.
2201 int regulator_set_voltage_time(struct regulator *regulator,
2202 int old_uV, int new_uV)
2204 struct regulator_dev *rdev = regulator->rdev;
2205 struct regulator_ops *ops = rdev->desc->ops;
2206 int old_sel = -1;
2207 int new_sel = -1;
2208 int voltage;
2209 int i;
2211 /* Currently requires operations to do this */
2212 if (!ops->list_voltage || !ops->set_voltage_time_sel
2213 || !rdev->desc->n_voltages)
2214 return -EINVAL;
2216 for (i = 0; i < rdev->desc->n_voltages; i++) {
2217 /* We only look for exact voltage matches here */
2218 voltage = regulator_list_voltage(regulator, i);
2219 if (voltage < 0)
2220 return -EINVAL;
2221 if (voltage == 0)
2222 continue;
2223 if (voltage == old_uV)
2224 old_sel = i;
2225 if (voltage == new_uV)
2226 new_sel = i;
2229 if (old_sel < 0 || new_sel < 0)
2230 return -EINVAL;
2232 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2234 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2237 * regulator_sync_voltage - re-apply last regulator output voltage
2238 * @regulator: regulator source
2240 * Re-apply the last configured voltage. This is intended to be used
2241 * where some external control source the consumer is cooperating with
2242 * has caused the configured voltage to change.
2244 int regulator_sync_voltage(struct regulator *regulator)
2246 struct regulator_dev *rdev = regulator->rdev;
2247 int ret, min_uV, max_uV;
2249 mutex_lock(&rdev->mutex);
2251 if (!rdev->desc->ops->set_voltage &&
2252 !rdev->desc->ops->set_voltage_sel) {
2253 ret = -EINVAL;
2254 goto out;
2257 /* This is only going to work if we've had a voltage configured. */
2258 if (!regulator->min_uV && !regulator->max_uV) {
2259 ret = -EINVAL;
2260 goto out;
2263 min_uV = regulator->min_uV;
2264 max_uV = regulator->max_uV;
2266 /* This should be a paranoia check... */
2267 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2268 if (ret < 0)
2269 goto out;
2271 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2272 if (ret < 0)
2273 goto out;
2275 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2277 out:
2278 mutex_unlock(&rdev->mutex);
2279 return ret;
2281 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2283 static int _regulator_get_voltage(struct regulator_dev *rdev)
2285 int sel, ret;
2287 if (rdev->desc->ops->get_voltage_sel) {
2288 sel = rdev->desc->ops->get_voltage_sel(rdev);
2289 if (sel < 0)
2290 return sel;
2291 ret = rdev->desc->ops->list_voltage(rdev, sel);
2292 } else if (rdev->desc->ops->get_voltage) {
2293 ret = rdev->desc->ops->get_voltage(rdev);
2294 } else {
2295 return -EINVAL;
2298 if (ret < 0)
2299 return ret;
2300 return ret - rdev->constraints->uV_offset;
2304 * regulator_get_voltage - get regulator output voltage
2305 * @regulator: regulator source
2307 * This returns the current regulator voltage in uV.
2309 * NOTE: If the regulator is disabled it will return the voltage value. This
2310 * function should not be used to determine regulator state.
2312 int regulator_get_voltage(struct regulator *regulator)
2314 int ret;
2316 mutex_lock(&regulator->rdev->mutex);
2318 ret = _regulator_get_voltage(regulator->rdev);
2320 mutex_unlock(&regulator->rdev->mutex);
2322 return ret;
2324 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2327 * regulator_set_current_limit - set regulator output current limit
2328 * @regulator: regulator source
2329 * @min_uA: Minimuum supported current in uA
2330 * @max_uA: Maximum supported current in uA
2332 * Sets current sink to the desired output current. This can be set during
2333 * any regulator state. IOW, regulator can be disabled or enabled.
2335 * If the regulator is enabled then the current will change to the new value
2336 * immediately otherwise if the regulator is disabled the regulator will
2337 * output at the new current when enabled.
2339 * NOTE: Regulator system constraints must be set for this regulator before
2340 * calling this function otherwise this call will fail.
2342 int regulator_set_current_limit(struct regulator *regulator,
2343 int min_uA, int max_uA)
2345 struct regulator_dev *rdev = regulator->rdev;
2346 int ret;
2348 mutex_lock(&rdev->mutex);
2350 /* sanity check */
2351 if (!rdev->desc->ops->set_current_limit) {
2352 ret = -EINVAL;
2353 goto out;
2356 /* constraints check */
2357 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2358 if (ret < 0)
2359 goto out;
2361 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2362 out:
2363 mutex_unlock(&rdev->mutex);
2364 return ret;
2366 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2368 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2370 int ret;
2372 mutex_lock(&rdev->mutex);
2374 /* sanity check */
2375 if (!rdev->desc->ops->get_current_limit) {
2376 ret = -EINVAL;
2377 goto out;
2380 ret = rdev->desc->ops->get_current_limit(rdev);
2381 out:
2382 mutex_unlock(&rdev->mutex);
2383 return ret;
2387 * regulator_get_current_limit - get regulator output current
2388 * @regulator: regulator source
2390 * This returns the current supplied by the specified current sink in uA.
2392 * NOTE: If the regulator is disabled it will return the current value. This
2393 * function should not be used to determine regulator state.
2395 int regulator_get_current_limit(struct regulator *regulator)
2397 return _regulator_get_current_limit(regulator->rdev);
2399 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2402 * regulator_set_mode - set regulator operating mode
2403 * @regulator: regulator source
2404 * @mode: operating mode - one of the REGULATOR_MODE constants
2406 * Set regulator operating mode to increase regulator efficiency or improve
2407 * regulation performance.
2409 * NOTE: Regulator system constraints must be set for this regulator before
2410 * calling this function otherwise this call will fail.
2412 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2414 struct regulator_dev *rdev = regulator->rdev;
2415 int ret;
2416 int regulator_curr_mode;
2418 mutex_lock(&rdev->mutex);
2420 /* sanity check */
2421 if (!rdev->desc->ops->set_mode) {
2422 ret = -EINVAL;
2423 goto out;
2426 /* return if the same mode is requested */
2427 if (rdev->desc->ops->get_mode) {
2428 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2429 if (regulator_curr_mode == mode) {
2430 ret = 0;
2431 goto out;
2435 /* constraints check */
2436 ret = regulator_mode_constrain(rdev, &mode);
2437 if (ret < 0)
2438 goto out;
2440 ret = rdev->desc->ops->set_mode(rdev, mode);
2441 out:
2442 mutex_unlock(&rdev->mutex);
2443 return ret;
2445 EXPORT_SYMBOL_GPL(regulator_set_mode);
2447 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2449 int ret;
2451 mutex_lock(&rdev->mutex);
2453 /* sanity check */
2454 if (!rdev->desc->ops->get_mode) {
2455 ret = -EINVAL;
2456 goto out;
2459 ret = rdev->desc->ops->get_mode(rdev);
2460 out:
2461 mutex_unlock(&rdev->mutex);
2462 return ret;
2466 * regulator_get_mode - get regulator operating mode
2467 * @regulator: regulator source
2469 * Get the current regulator operating mode.
2471 unsigned int regulator_get_mode(struct regulator *regulator)
2473 return _regulator_get_mode(regulator->rdev);
2475 EXPORT_SYMBOL_GPL(regulator_get_mode);
2478 * regulator_set_optimum_mode - set regulator optimum operating mode
2479 * @regulator: regulator source
2480 * @uA_load: load current
2482 * Notifies the regulator core of a new device load. This is then used by
2483 * DRMS (if enabled by constraints) to set the most efficient regulator
2484 * operating mode for the new regulator loading.
2486 * Consumer devices notify their supply regulator of the maximum power
2487 * they will require (can be taken from device datasheet in the power
2488 * consumption tables) when they change operational status and hence power
2489 * state. Examples of operational state changes that can affect power
2490 * consumption are :-
2492 * o Device is opened / closed.
2493 * o Device I/O is about to begin or has just finished.
2494 * o Device is idling in between work.
2496 * This information is also exported via sysfs to userspace.
2498 * DRMS will sum the total requested load on the regulator and change
2499 * to the most efficient operating mode if platform constraints allow.
2501 * Returns the new regulator mode or error.
2503 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2505 struct regulator_dev *rdev = regulator->rdev;
2506 struct regulator *consumer;
2507 int ret, output_uV, input_uV, total_uA_load = 0;
2508 unsigned int mode;
2510 mutex_lock(&rdev->mutex);
2513 * first check to see if we can set modes at all, otherwise just
2514 * tell the consumer everything is OK.
2516 regulator->uA_load = uA_load;
2517 ret = regulator_check_drms(rdev);
2518 if (ret < 0) {
2519 ret = 0;
2520 goto out;
2523 if (!rdev->desc->ops->get_optimum_mode)
2524 goto out;
2527 * we can actually do this so any errors are indicators of
2528 * potential real failure.
2530 ret = -EINVAL;
2532 if (!rdev->desc->ops->set_mode)
2533 goto out;
2535 /* get output voltage */
2536 output_uV = _regulator_get_voltage(rdev);
2537 if (output_uV <= 0) {
2538 rdev_err(rdev, "invalid output voltage found\n");
2539 goto out;
2542 /* get input voltage */
2543 input_uV = 0;
2544 if (rdev->supply)
2545 input_uV = regulator_get_voltage(rdev->supply);
2546 if (input_uV <= 0)
2547 input_uV = rdev->constraints->input_uV;
2548 if (input_uV <= 0) {
2549 rdev_err(rdev, "invalid input voltage found\n");
2550 goto out;
2553 /* calc total requested load for this regulator */
2554 list_for_each_entry(consumer, &rdev->consumer_list, list)
2555 total_uA_load += consumer->uA_load;
2557 mode = rdev->desc->ops->get_optimum_mode(rdev,
2558 input_uV, output_uV,
2559 total_uA_load);
2560 ret = regulator_mode_constrain(rdev, &mode);
2561 if (ret < 0) {
2562 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2563 total_uA_load, input_uV, output_uV);
2564 goto out;
2567 ret = rdev->desc->ops->set_mode(rdev, mode);
2568 if (ret < 0) {
2569 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2570 goto out;
2572 ret = mode;
2573 out:
2574 mutex_unlock(&rdev->mutex);
2575 return ret;
2577 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2580 * regulator_register_notifier - register regulator event notifier
2581 * @regulator: regulator source
2582 * @nb: notifier block
2584 * Register notifier block to receive regulator events.
2586 int regulator_register_notifier(struct regulator *regulator,
2587 struct notifier_block *nb)
2589 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2590 nb);
2592 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2595 * regulator_unregister_notifier - unregister regulator event notifier
2596 * @regulator: regulator source
2597 * @nb: notifier block
2599 * Unregister regulator event notifier block.
2601 int regulator_unregister_notifier(struct regulator *regulator,
2602 struct notifier_block *nb)
2604 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2605 nb);
2607 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2609 /* notify regulator consumers and downstream regulator consumers.
2610 * Note mutex must be held by caller.
2612 static void _notifier_call_chain(struct regulator_dev *rdev,
2613 unsigned long event, void *data)
2615 /* call rdev chain first */
2616 blocking_notifier_call_chain(&rdev->notifier, event, data);
2620 * regulator_bulk_get - get multiple regulator consumers
2622 * @dev: Device to supply
2623 * @num_consumers: Number of consumers to register
2624 * @consumers: Configuration of consumers; clients are stored here.
2626 * @return 0 on success, an errno on failure.
2628 * This helper function allows drivers to get several regulator
2629 * consumers in one operation. If any of the regulators cannot be
2630 * acquired then any regulators that were allocated will be freed
2631 * before returning to the caller.
2633 int regulator_bulk_get(struct device *dev, int num_consumers,
2634 struct regulator_bulk_data *consumers)
2636 int i;
2637 int ret;
2639 for (i = 0; i < num_consumers; i++)
2640 consumers[i].consumer = NULL;
2642 for (i = 0; i < num_consumers; i++) {
2643 consumers[i].consumer = regulator_get(dev,
2644 consumers[i].supply);
2645 if (IS_ERR(consumers[i].consumer)) {
2646 ret = PTR_ERR(consumers[i].consumer);
2647 dev_err(dev, "Failed to get supply '%s': %d\n",
2648 consumers[i].supply, ret);
2649 consumers[i].consumer = NULL;
2650 goto err;
2654 return 0;
2656 err:
2657 while (--i >= 0)
2658 regulator_put(consumers[i].consumer);
2660 return ret;
2662 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2665 * devm_regulator_bulk_get - managed get multiple regulator consumers
2667 * @dev: Device to supply
2668 * @num_consumers: Number of consumers to register
2669 * @consumers: Configuration of consumers; clients are stored here.
2671 * @return 0 on success, an errno on failure.
2673 * This helper function allows drivers to get several regulator
2674 * consumers in one operation with management, the regulators will
2675 * automatically be freed when the device is unbound. If any of the
2676 * regulators cannot be acquired then any regulators that were
2677 * allocated will be freed before returning to the caller.
2679 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2680 struct regulator_bulk_data *consumers)
2682 int i;
2683 int ret;
2685 for (i = 0; i < num_consumers; i++)
2686 consumers[i].consumer = NULL;
2688 for (i = 0; i < num_consumers; i++) {
2689 consumers[i].consumer = devm_regulator_get(dev,
2690 consumers[i].supply);
2691 if (IS_ERR(consumers[i].consumer)) {
2692 ret = PTR_ERR(consumers[i].consumer);
2693 dev_err(dev, "Failed to get supply '%s': %d\n",
2694 consumers[i].supply, ret);
2695 consumers[i].consumer = NULL;
2696 goto err;
2700 return 0;
2702 err:
2703 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2704 devm_regulator_put(consumers[i].consumer);
2706 return ret;
2708 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2710 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2712 struct regulator_bulk_data *bulk = data;
2714 bulk->ret = regulator_enable(bulk->consumer);
2718 * regulator_bulk_enable - enable multiple regulator consumers
2720 * @num_consumers: Number of consumers
2721 * @consumers: Consumer data; clients are stored here.
2722 * @return 0 on success, an errno on failure
2724 * This convenience API allows consumers to enable multiple regulator
2725 * clients in a single API call. If any consumers cannot be enabled
2726 * then any others that were enabled will be disabled again prior to
2727 * return.
2729 int regulator_bulk_enable(int num_consumers,
2730 struct regulator_bulk_data *consumers)
2732 LIST_HEAD(async_domain);
2733 int i;
2734 int ret = 0;
2736 for (i = 0; i < num_consumers; i++) {
2737 if (consumers[i].consumer->always_on)
2738 consumers[i].ret = 0;
2739 else
2740 async_schedule_domain(regulator_bulk_enable_async,
2741 &consumers[i], &async_domain);
2744 async_synchronize_full_domain(&async_domain);
2746 /* If any consumer failed we need to unwind any that succeeded */
2747 for (i = 0; i < num_consumers; i++) {
2748 if (consumers[i].ret != 0) {
2749 ret = consumers[i].ret;
2750 goto err;
2754 return 0;
2756 err:
2757 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2758 while (--i >= 0)
2759 regulator_disable(consumers[i].consumer);
2761 return ret;
2763 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2766 * regulator_bulk_disable - disable multiple regulator consumers
2768 * @num_consumers: Number of consumers
2769 * @consumers: Consumer data; clients are stored here.
2770 * @return 0 on success, an errno on failure
2772 * This convenience API allows consumers to disable multiple regulator
2773 * clients in a single API call. If any consumers cannot be disabled
2774 * then any others that were disabled will be enabled again prior to
2775 * return.
2777 int regulator_bulk_disable(int num_consumers,
2778 struct regulator_bulk_data *consumers)
2780 int i;
2781 int ret, r;
2783 for (i = num_consumers - 1; i >= 0; --i) {
2784 ret = regulator_disable(consumers[i].consumer);
2785 if (ret != 0)
2786 goto err;
2789 return 0;
2791 err:
2792 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2793 for (++i; i < num_consumers; ++i) {
2794 r = regulator_enable(consumers[i].consumer);
2795 if (r != 0)
2796 pr_err("Failed to reename %s: %d\n",
2797 consumers[i].supply, r);
2800 return ret;
2802 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2805 * regulator_bulk_force_disable - force disable multiple regulator consumers
2807 * @num_consumers: Number of consumers
2808 * @consumers: Consumer data; clients are stored here.
2809 * @return 0 on success, an errno on failure
2811 * This convenience API allows consumers to forcibly disable multiple regulator
2812 * clients in a single API call.
2813 * NOTE: This should be used for situations when device damage will
2814 * likely occur if the regulators are not disabled (e.g. over temp).
2815 * Although regulator_force_disable function call for some consumers can
2816 * return error numbers, the function is called for all consumers.
2818 int regulator_bulk_force_disable(int num_consumers,
2819 struct regulator_bulk_data *consumers)
2821 int i;
2822 int ret;
2824 for (i = 0; i < num_consumers; i++)
2825 consumers[i].ret =
2826 regulator_force_disable(consumers[i].consumer);
2828 for (i = 0; i < num_consumers; i++) {
2829 if (consumers[i].ret != 0) {
2830 ret = consumers[i].ret;
2831 goto out;
2835 return 0;
2836 out:
2837 return ret;
2839 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2842 * regulator_bulk_free - free multiple regulator consumers
2844 * @num_consumers: Number of consumers
2845 * @consumers: Consumer data; clients are stored here.
2847 * This convenience API allows consumers to free multiple regulator
2848 * clients in a single API call.
2850 void regulator_bulk_free(int num_consumers,
2851 struct regulator_bulk_data *consumers)
2853 int i;
2855 for (i = 0; i < num_consumers; i++) {
2856 regulator_put(consumers[i].consumer);
2857 consumers[i].consumer = NULL;
2860 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2863 * regulator_notifier_call_chain - call regulator event notifier
2864 * @rdev: regulator source
2865 * @event: notifier block
2866 * @data: callback-specific data.
2868 * Called by regulator drivers to notify clients a regulator event has
2869 * occurred. We also notify regulator clients downstream.
2870 * Note lock must be held by caller.
2872 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2873 unsigned long event, void *data)
2875 _notifier_call_chain(rdev, event, data);
2876 return NOTIFY_DONE;
2879 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2882 * regulator_mode_to_status - convert a regulator mode into a status
2884 * @mode: Mode to convert
2886 * Convert a regulator mode into a status.
2888 int regulator_mode_to_status(unsigned int mode)
2890 switch (mode) {
2891 case REGULATOR_MODE_FAST:
2892 return REGULATOR_STATUS_FAST;
2893 case REGULATOR_MODE_NORMAL:
2894 return REGULATOR_STATUS_NORMAL;
2895 case REGULATOR_MODE_IDLE:
2896 return REGULATOR_STATUS_IDLE;
2897 case REGULATOR_MODE_STANDBY:
2898 return REGULATOR_STATUS_STANDBY;
2899 default:
2900 return 0;
2903 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2906 * To avoid cluttering sysfs (and memory) with useless state, only
2907 * create attributes that can be meaningfully displayed.
2909 static int add_regulator_attributes(struct regulator_dev *rdev)
2911 struct device *dev = &rdev->dev;
2912 struct regulator_ops *ops = rdev->desc->ops;
2913 int status = 0;
2915 /* some attributes need specific methods to be displayed */
2916 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2917 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2918 status = device_create_file(dev, &dev_attr_microvolts);
2919 if (status < 0)
2920 return status;
2922 if (ops->get_current_limit) {
2923 status = device_create_file(dev, &dev_attr_microamps);
2924 if (status < 0)
2925 return status;
2927 if (ops->get_mode) {
2928 status = device_create_file(dev, &dev_attr_opmode);
2929 if (status < 0)
2930 return status;
2932 if (ops->is_enabled) {
2933 status = device_create_file(dev, &dev_attr_state);
2934 if (status < 0)
2935 return status;
2937 if (ops->get_status) {
2938 status = device_create_file(dev, &dev_attr_status);
2939 if (status < 0)
2940 return status;
2943 /* some attributes are type-specific */
2944 if (rdev->desc->type == REGULATOR_CURRENT) {
2945 status = device_create_file(dev, &dev_attr_requested_microamps);
2946 if (status < 0)
2947 return status;
2950 /* all the other attributes exist to support constraints;
2951 * don't show them if there are no constraints, or if the
2952 * relevant supporting methods are missing.
2954 if (!rdev->constraints)
2955 return status;
2957 /* constraints need specific supporting methods */
2958 if (ops->set_voltage || ops->set_voltage_sel) {
2959 status = device_create_file(dev, &dev_attr_min_microvolts);
2960 if (status < 0)
2961 return status;
2962 status = device_create_file(dev, &dev_attr_max_microvolts);
2963 if (status < 0)
2964 return status;
2966 if (ops->set_current_limit) {
2967 status = device_create_file(dev, &dev_attr_min_microamps);
2968 if (status < 0)
2969 return status;
2970 status = device_create_file(dev, &dev_attr_max_microamps);
2971 if (status < 0)
2972 return status;
2975 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2976 if (status < 0)
2977 return status;
2978 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2979 if (status < 0)
2980 return status;
2981 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2982 if (status < 0)
2983 return status;
2985 if (ops->set_suspend_voltage) {
2986 status = device_create_file(dev,
2987 &dev_attr_suspend_standby_microvolts);
2988 if (status < 0)
2989 return status;
2990 status = device_create_file(dev,
2991 &dev_attr_suspend_mem_microvolts);
2992 if (status < 0)
2993 return status;
2994 status = device_create_file(dev,
2995 &dev_attr_suspend_disk_microvolts);
2996 if (status < 0)
2997 return status;
3000 if (ops->set_suspend_mode) {
3001 status = device_create_file(dev,
3002 &dev_attr_suspend_standby_mode);
3003 if (status < 0)
3004 return status;
3005 status = device_create_file(dev,
3006 &dev_attr_suspend_mem_mode);
3007 if (status < 0)
3008 return status;
3009 status = device_create_file(dev,
3010 &dev_attr_suspend_disk_mode);
3011 if (status < 0)
3012 return status;
3015 return status;
3018 static void rdev_init_debugfs(struct regulator_dev *rdev)
3020 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3021 if (!rdev->debugfs) {
3022 rdev_warn(rdev, "Failed to create debugfs directory\n");
3023 return;
3026 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3027 &rdev->use_count);
3028 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3029 &rdev->open_count);
3033 * regulator_register - register regulator
3034 * @regulator_desc: regulator to register
3035 * @config: runtime configuration for regulator
3037 * Called by regulator drivers to register a regulator.
3038 * Returns 0 on success.
3040 struct regulator_dev *
3041 regulator_register(const struct regulator_desc *regulator_desc,
3042 const struct regulator_config *config)
3044 const struct regulation_constraints *constraints = NULL;
3045 const struct regulator_init_data *init_data;
3046 static atomic_t regulator_no = ATOMIC_INIT(0);
3047 struct regulator_dev *rdev;
3048 struct device *dev;
3049 int ret, i;
3050 const char *supply = NULL;
3052 if (regulator_desc == NULL || config == NULL)
3053 return ERR_PTR(-EINVAL);
3055 dev = config->dev;
3056 WARN_ON(!dev);
3058 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3059 return ERR_PTR(-EINVAL);
3061 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3062 regulator_desc->type != REGULATOR_CURRENT)
3063 return ERR_PTR(-EINVAL);
3065 /* Only one of each should be implemented */
3066 WARN_ON(regulator_desc->ops->get_voltage &&
3067 regulator_desc->ops->get_voltage_sel);
3068 WARN_ON(regulator_desc->ops->set_voltage &&
3069 regulator_desc->ops->set_voltage_sel);
3071 /* If we're using selectors we must implement list_voltage. */
3072 if (regulator_desc->ops->get_voltage_sel &&
3073 !regulator_desc->ops->list_voltage) {
3074 return ERR_PTR(-EINVAL);
3076 if (regulator_desc->ops->set_voltage_sel &&
3077 !regulator_desc->ops->list_voltage) {
3078 return ERR_PTR(-EINVAL);
3081 init_data = config->init_data;
3083 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3084 if (rdev == NULL)
3085 return ERR_PTR(-ENOMEM);
3087 mutex_lock(&regulator_list_mutex);
3089 mutex_init(&rdev->mutex);
3090 rdev->reg_data = config->driver_data;
3091 rdev->owner = regulator_desc->owner;
3092 rdev->desc = regulator_desc;
3093 if (config->regmap)
3094 rdev->regmap = config->regmap;
3095 else
3096 rdev->regmap = dev_get_regmap(dev, NULL);
3097 INIT_LIST_HEAD(&rdev->consumer_list);
3098 INIT_LIST_HEAD(&rdev->list);
3099 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3100 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3102 /* preform any regulator specific init */
3103 if (init_data && init_data->regulator_init) {
3104 ret = init_data->regulator_init(rdev->reg_data);
3105 if (ret < 0)
3106 goto clean;
3109 /* register with sysfs */
3110 rdev->dev.class = &regulator_class;
3111 rdev->dev.of_node = config->of_node;
3112 rdev->dev.parent = dev;
3113 dev_set_name(&rdev->dev, "regulator.%d",
3114 atomic_inc_return(&regulator_no) - 1);
3115 ret = device_register(&rdev->dev);
3116 if (ret != 0) {
3117 put_device(&rdev->dev);
3118 goto clean;
3121 dev_set_drvdata(&rdev->dev, rdev);
3123 /* set regulator constraints */
3124 if (init_data)
3125 constraints = &init_data->constraints;
3127 ret = set_machine_constraints(rdev, constraints);
3128 if (ret < 0)
3129 goto scrub;
3131 /* add attributes supported by this regulator */
3132 ret = add_regulator_attributes(rdev);
3133 if (ret < 0)
3134 goto scrub;
3136 if (init_data && init_data->supply_regulator)
3137 supply = init_data->supply_regulator;
3138 else if (regulator_desc->supply_name)
3139 supply = regulator_desc->supply_name;
3141 if (supply) {
3142 struct regulator_dev *r;
3144 r = regulator_dev_lookup(dev, supply, &ret);
3146 if (!r) {
3147 dev_err(dev, "Failed to find supply %s\n", supply);
3148 ret = -EPROBE_DEFER;
3149 goto scrub;
3152 ret = set_supply(rdev, r);
3153 if (ret < 0)
3154 goto scrub;
3156 /* Enable supply if rail is enabled */
3157 if (_regulator_is_enabled(rdev)) {
3158 ret = regulator_enable(rdev->supply);
3159 if (ret < 0)
3160 goto scrub;
3164 /* add consumers devices */
3165 if (init_data) {
3166 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3167 ret = set_consumer_device_supply(rdev,
3168 init_data->consumer_supplies[i].dev_name,
3169 init_data->consumer_supplies[i].supply);
3170 if (ret < 0) {
3171 dev_err(dev, "Failed to set supply %s\n",
3172 init_data->consumer_supplies[i].supply);
3173 goto unset_supplies;
3178 list_add(&rdev->list, &regulator_list);
3180 rdev_init_debugfs(rdev);
3181 out:
3182 mutex_unlock(&regulator_list_mutex);
3183 return rdev;
3185 unset_supplies:
3186 unset_regulator_supplies(rdev);
3188 scrub:
3189 if (rdev->supply)
3190 regulator_put(rdev->supply);
3191 kfree(rdev->constraints);
3192 device_unregister(&rdev->dev);
3193 /* device core frees rdev */
3194 rdev = ERR_PTR(ret);
3195 goto out;
3197 clean:
3198 kfree(rdev);
3199 rdev = ERR_PTR(ret);
3200 goto out;
3202 EXPORT_SYMBOL_GPL(regulator_register);
3205 * regulator_unregister - unregister regulator
3206 * @rdev: regulator to unregister
3208 * Called by regulator drivers to unregister a regulator.
3210 void regulator_unregister(struct regulator_dev *rdev)
3212 if (rdev == NULL)
3213 return;
3215 if (rdev->supply)
3216 regulator_put(rdev->supply);
3217 mutex_lock(&regulator_list_mutex);
3218 debugfs_remove_recursive(rdev->debugfs);
3219 flush_work_sync(&rdev->disable_work.work);
3220 WARN_ON(rdev->open_count);
3221 unset_regulator_supplies(rdev);
3222 list_del(&rdev->list);
3223 kfree(rdev->constraints);
3224 device_unregister(&rdev->dev);
3225 mutex_unlock(&regulator_list_mutex);
3227 EXPORT_SYMBOL_GPL(regulator_unregister);
3230 * regulator_suspend_prepare - prepare regulators for system wide suspend
3231 * @state: system suspend state
3233 * Configure each regulator with it's suspend operating parameters for state.
3234 * This will usually be called by machine suspend code prior to supending.
3236 int regulator_suspend_prepare(suspend_state_t state)
3238 struct regulator_dev *rdev;
3239 int ret = 0;
3241 /* ON is handled by regulator active state */
3242 if (state == PM_SUSPEND_ON)
3243 return -EINVAL;
3245 mutex_lock(&regulator_list_mutex);
3246 list_for_each_entry(rdev, &regulator_list, list) {
3248 mutex_lock(&rdev->mutex);
3249 ret = suspend_prepare(rdev, state);
3250 mutex_unlock(&rdev->mutex);
3252 if (ret < 0) {
3253 rdev_err(rdev, "failed to prepare\n");
3254 goto out;
3257 out:
3258 mutex_unlock(&regulator_list_mutex);
3259 return ret;
3261 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3264 * regulator_suspend_finish - resume regulators from system wide suspend
3266 * Turn on regulators that might be turned off by regulator_suspend_prepare
3267 * and that should be turned on according to the regulators properties.
3269 int regulator_suspend_finish(void)
3271 struct regulator_dev *rdev;
3272 int ret = 0, error;
3274 mutex_lock(&regulator_list_mutex);
3275 list_for_each_entry(rdev, &regulator_list, list) {
3276 struct regulator_ops *ops = rdev->desc->ops;
3278 mutex_lock(&rdev->mutex);
3279 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3280 ops->enable) {
3281 error = ops->enable(rdev);
3282 if (error)
3283 ret = error;
3284 } else {
3285 if (!has_full_constraints)
3286 goto unlock;
3287 if (!ops->disable)
3288 goto unlock;
3289 if (!_regulator_is_enabled(rdev))
3290 goto unlock;
3292 error = ops->disable(rdev);
3293 if (error)
3294 ret = error;
3296 unlock:
3297 mutex_unlock(&rdev->mutex);
3299 mutex_unlock(&regulator_list_mutex);
3300 return ret;
3302 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3305 * regulator_has_full_constraints - the system has fully specified constraints
3307 * Calling this function will cause the regulator API to disable all
3308 * regulators which have a zero use count and don't have an always_on
3309 * constraint in a late_initcall.
3311 * The intention is that this will become the default behaviour in a
3312 * future kernel release so users are encouraged to use this facility
3313 * now.
3315 void regulator_has_full_constraints(void)
3317 has_full_constraints = 1;
3319 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3322 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3324 * Calling this function will cause the regulator API to provide a
3325 * dummy regulator to consumers if no physical regulator is found,
3326 * allowing most consumers to proceed as though a regulator were
3327 * configured. This allows systems such as those with software
3328 * controllable regulators for the CPU core only to be brought up more
3329 * readily.
3331 void regulator_use_dummy_regulator(void)
3333 board_wants_dummy_regulator = true;
3335 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3338 * rdev_get_drvdata - get rdev regulator driver data
3339 * @rdev: regulator
3341 * Get rdev regulator driver private data. This call can be used in the
3342 * regulator driver context.
3344 void *rdev_get_drvdata(struct regulator_dev *rdev)
3346 return rdev->reg_data;
3348 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3351 * regulator_get_drvdata - get regulator driver data
3352 * @regulator: regulator
3354 * Get regulator driver private data. This call can be used in the consumer
3355 * driver context when non API regulator specific functions need to be called.
3357 void *regulator_get_drvdata(struct regulator *regulator)
3359 return regulator->rdev->reg_data;
3361 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3364 * regulator_set_drvdata - set regulator driver data
3365 * @regulator: regulator
3366 * @data: data
3368 void regulator_set_drvdata(struct regulator *regulator, void *data)
3370 regulator->rdev->reg_data = data;
3372 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3375 * regulator_get_id - get regulator ID
3376 * @rdev: regulator
3378 int rdev_get_id(struct regulator_dev *rdev)
3380 return rdev->desc->id;
3382 EXPORT_SYMBOL_GPL(rdev_get_id);
3384 struct device *rdev_get_dev(struct regulator_dev *rdev)
3386 return &rdev->dev;
3388 EXPORT_SYMBOL_GPL(rdev_get_dev);
3390 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3392 return reg_init_data->driver_data;
3394 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3396 #ifdef CONFIG_DEBUG_FS
3397 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3398 size_t count, loff_t *ppos)
3400 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3401 ssize_t len, ret = 0;
3402 struct regulator_map *map;
3404 if (!buf)
3405 return -ENOMEM;
3407 list_for_each_entry(map, &regulator_map_list, list) {
3408 len = snprintf(buf + ret, PAGE_SIZE - ret,
3409 "%s -> %s.%s\n",
3410 rdev_get_name(map->regulator), map->dev_name,
3411 map->supply);
3412 if (len >= 0)
3413 ret += len;
3414 if (ret > PAGE_SIZE) {
3415 ret = PAGE_SIZE;
3416 break;
3420 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3422 kfree(buf);
3424 return ret;
3426 #endif
3428 static const struct file_operations supply_map_fops = {
3429 #ifdef CONFIG_DEBUG_FS
3430 .read = supply_map_read_file,
3431 .llseek = default_llseek,
3432 #endif
3435 static int __init regulator_init(void)
3437 int ret;
3439 ret = class_register(&regulator_class);
3441 debugfs_root = debugfs_create_dir("regulator", NULL);
3442 if (!debugfs_root)
3443 pr_warn("regulator: Failed to create debugfs directory\n");
3445 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3446 &supply_map_fops);
3448 regulator_dummy_init();
3450 return ret;
3453 /* init early to allow our consumers to complete system booting */
3454 core_initcall(regulator_init);
3456 static int __init regulator_init_complete(void)
3458 struct regulator_dev *rdev;
3459 struct regulator_ops *ops;
3460 struct regulation_constraints *c;
3461 int enabled, ret;
3463 mutex_lock(&regulator_list_mutex);
3465 /* If we have a full configuration then disable any regulators
3466 * which are not in use or always_on. This will become the
3467 * default behaviour in the future.
3469 list_for_each_entry(rdev, &regulator_list, list) {
3470 ops = rdev->desc->ops;
3471 c = rdev->constraints;
3473 if (!ops->disable || (c && c->always_on))
3474 continue;
3476 mutex_lock(&rdev->mutex);
3478 if (rdev->use_count)
3479 goto unlock;
3481 /* If we can't read the status assume it's on. */
3482 if (ops->is_enabled)
3483 enabled = ops->is_enabled(rdev);
3484 else
3485 enabled = 1;
3487 if (!enabled)
3488 goto unlock;
3490 if (has_full_constraints) {
3491 /* We log since this may kill the system if it
3492 * goes wrong. */
3493 rdev_info(rdev, "disabling\n");
3494 ret = ops->disable(rdev);
3495 if (ret != 0) {
3496 rdev_err(rdev, "couldn't disable: %d\n", ret);
3498 } else {
3499 /* The intention is that in future we will
3500 * assume that full constraints are provided
3501 * so warn even if we aren't going to do
3502 * anything here.
3504 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3507 unlock:
3508 mutex_unlock(&rdev->mutex);
3511 mutex_unlock(&regulator_list_mutex);
3513 return 0;
3515 late_initcall(regulator_init_complete);